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To Suzanne



Preface

The great response to the publication of the book Classical and Modern Fourier
Analysis has been very gratifying. I am delighted that Springer has offered to publish
the second edition of this book in two volumes: Classical Fourier Analysis, 2nd
Edition, and Modern Fourier Analysis, 2nd Edition.

These volumes are mainly addressed to graduate students who wish to study
Fourier analysis. This first volume is intended to serve as a text for a one-semester
course in the subject. The prerequisite for understanding the material herein is satis-
factory completion of courses in measure theory, Lebesgue integration, and complex
variables.

The details included in the proofs make the exposition longer. Although it will
behoove many readers to skim through the more technical aspects of the presenta-
tion and concentrate on the flow of ideas, the fact that details are present will be
comforting to some. The exercises at the end of each section enrich the material
of the corresponding section and provide an opportunity to develop additional intu-
ition and deeper comprehension. The historical notes of each chapter are intended to
provide an account of past research but also to suggest directions for further investi-
gation. The appendix includes miscellaneous auxiliary material needed throughout
the text.

A web site for the book is maintained at

http://math.missouri.edu/~loukas/FourierAnalysis.html

I am solely responsible for any misprints, mistakes, and historical omissions in
this book. Please contact me directly (loukas@math.missouri.edu) if you have cor-
rections, comments, suggestions for improvements, or questions.

Columbia, Missouri, Loukas Grafakos
April 2008
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Chapter 1
L? Spaces and Interpolation

Many quantitative properties of functions are expressed in terms of their integra-
bility to a power. For this reason it is desirable to acquire a good understanding
of spaces of functions whose modulus to a power p is integrable. These are called
Lebesgue spaces and are denoted by L”. Although an in-depth study of Lebesgue
spaces falls outside the scope of this book, it seems appropriate to devote a chapter
to reviewing some of their fundamental properties.

The emphasis of this review is basic interpolation between Lebesgue spaces.
Many problems in Fourier analysis concern boundedness of operators on Lebesgue
spaces, and interpolation provides a framework that often simplifies this study. For
instance, in order to show that a linear operator maps L? to itself for all 1 < p < oo,
it is sufficient to show that it maps the (smaller) Lorentz space L”'! into the (larger)
Lorentz space LP* for the same range of p’s. Moreover, some further reductions can
be made in terms of the Lorentz space L”!. This and other considerations indicate
that interpolation is a powerful tool in the study of boundedness of operators.

Although we are mainly concerned with L” subspaces of Euclidean spaces, we
discuss in this chapter L? spaces of arbitrary measure spaces, since they represent a
useful general setting. Many results in the text require working with general mea-
sures instead of Lebesgue measure.

1.1 L? and Weak L?

Let X be a measure space and let i be a positive, not necessarily finite, measure
on X. For 0 < p < oo, LP(X, 1) denotes the set of all complex-valued p1-measurable
functions on X whose modulus to the pth power is integrable. L™ (X, ) is the set
of all complex-valued pt-measurable functions f on X such that for some B > 0, the
set {x: |f(x)| > B} has u-measure zero. Two functions in L” (X, 1) are considered
equal if they are equal p-almost everywhere. The notation LP(R") is reserved for
the space L” (R", |-|), where | - | denotes n-dimensional Lebesgue measure. Lebesgue
measure on R” is also denoted by dx. Within context and in the absence of ambi-

L. Grafakos, Classical Fourier Analysis, Second Edition, 1
DOI: 10.1007/978-0-387-09432-8 1, © Springer Science+Business Media, LLC 2008



2 1 L? Spaces and Interpolation
guity, LP(X, ) is simply written as L”. The space LP(Z) equipped with counting

measure is denoted by ¢P(Z) or simply (7.
For 0 < p < o, we define the L” quasinorm of a function f by

171

v = ([0 du)’ i

and for p = oo by
||fHLN(X7m:ess.sup\f|:inf{B>O: p({x: [f(x)]>B})=0}. (1.12)

It is well known that Minkowski’s (or the triangle) inequality

Hf"'gHLP(X,y) = Hf’ gt HgHLP(X,p) (1.1.3)
holds for all f, g in L? = LP(X,u), whenever 1 < p < oo. Since in addition

H f H ) = 0 implies that f = 0 (u-a.e.), the L” spaces are normed linear spaces

for 1 < p <oo.For0 < p < 1, inequality (1.1.3) is reversed when f, g > 0. However,
the following substitute of (1.1.3) holds:

iy <2PP(|11]

£+l Ll’(X.u)+‘|g|‘LP(X,u)>’ (1.1.4)
and thus LP (X, u) is a quasinormed linear space. See also Exercise 1.1.5. For all
0 < p < oo, it can be shown that every Cauchy sequence in L” (X, t) is convergent,
and hence the spaces LP(X, ) are complete. For the case 0 < p < 1 we refer to
Exercise 1.1.8. Therefore, the L” spaces are Banach spaces for 1 < p < oo and quasi-
Banach spaces for 0 < p < 1. Forany p € (0,0) \ {1} we use the notation p’ = £5.
Moreover, we set 1’ = oo and o’ = 1, so that p” = p for all p € (0,0]. Holder’s
inequality says that for all p € [1,0] and all measurable functions f,g on (X, 1) we
have

178l < 170 18l

It is a well-known fact that the dual (L?)* of L? is isometric to L7 forall 1 < p <o,
Furthermore, the L” norm of a function can be obtained via duality when 1 < p <o
as follows:

171

/ngdu‘-

sup

I
llell, =1

For the endpoint cases p = 1, p = oo, see Exercise 1.4.12(a), (b).

1.1.1 The Distribution Function

Definition 1.1.1. For f a measurable function on X, the distribution function of f is
the function dy defined on [0, ) as follows:
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d(a) =p({xeX: [f(x)| > a}). (1.1.5)

The distribution function dy provides information about the size of f but not
about the behavior of f itself near any given point. For instance, a function on R"” and
each of its translates have the same distribution function. It follows from Definition
1.1.1 that dy is a decreasing function of & (not necessarily strictly).

A A
Jx) ds(a)
alt pr—
;1Y S—
aszt
N
0 E3 E1 E2 ? 0 al3 ap al TX

Fig. 1.1 The graph of a simple function f :Zizl ar X, and its distribution function dy(ct). Here
Bj:Z.i:] ”(Ek)'

Example 1.1.2. Recall that simple functions are finite linear combinations of char-
acteristic functions of sets of finite measure. For pedagogical reasons we compute
the distribution function dy of a nonnegative simple function

N
f(x) = Z:lanEj(x)v
j=

where the sets E; are pairwise disjoint and a; > --- > ay > 0. If @ > ay, then clearly
ds(a) = 0. However, if ap < o0 < a; then |f(x)| > o precisely when x € Ej, and in
general, if aj. | < a < aj, then |f(x)| > « precisely when x € E| U---UE;. Setting

J
Bj=) W(E),
k=1
we have
N
df(a) = Z Bjx[llﬁ,l,llj) (a) Y
Jj=0
where ay = o and By = ay+1 = 0. Figure 1.1 illustrates this example when N = 3.

We now state a few simple facts about the distribution function dy.



4 1 L? Spaces and Interpolation

Proposition 1.1.3. Ler f and g be measurable functions on (X,i). Then for all
o, > 0 we have

(1) |g| < |f| u-a.e. implies that dy < dy;
(2) deg(or) =dg(ot/|c]), for all c € C\ {0};
(3) dysg(a+pB) <dp(a) +dg(B);

(4) dpg(af) < dp(e) +dg(B).

Proof. The simple proofs are left to the reader. 0

Knowledge of the distribution function d provides sufficient information to eval-
uate the L” norm of a function f precisely. We state and prove the following impor-
tant description of the L” norm in terms of the distribution function.

Proposition 1.1.4. For f in LP (X, 1), 0 < p < oo, we have

171

Z,Zp/ a’ds(a)da. (1.1.6)
0
Proof. Indeed, we have
p/o ol lds(a)da =p/0 a”’l/XX{x: f@)>ay di(x)da
@l

:// paf  dodu(x)

X JO
= [ e ane)
=111z

where we used Fubini’s theorem in the second equality. This proves (1.1.6). O

Notice that the same argument yields the more general fact that for any increasing
continuously differentiable function ¢ on [0, ) with ¢(0) = 0 we have

Jotthdu= [ ¢(@d(e)da. (117)

Definition 1.1.5. For 0 < p < o, the space weak LP(X,u) is defined as the set of
all pu-measurable functions f such that

£l :inf{C>O:df(a)§§—[; forall >0} (1.1.8)
= sup{yds(y)"/": y> 0} (1.1.9)

is finite. The space weak-L*(X, 1) is by definition L= (X, it).

The reader should check that (1.1.9) and (1.1.8) are in fact equal. The weak L”
spaces are denoted by L”**(X, ut). Two functions in L7 (X, 1) are considered equal
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if they are equal p-a.e. The notation L?*(R") is reserved for L"**(R",|-|). Using
Proposition 1.1.3 (2), we can easily show that

& f || e = KL F]] e (1.1.10)
for any complex nonzero constant k. The analogue of (1.1.3) is
1 +8llpe < cp (1l + llgl o) (LLI1)

where ¢, = max(2, 2]/P), a fact that follows from Proposition 1.1.3 (3), taking both
o and f equal to /2. We also have that

1l ppeey =0=F=0  p-ae. (1.1.12)

In view of (1.1.10), (1.1.11), and (1.1.12), L”* is a quasinormed linear space for
0<p<oo
The weak L? spaces are larger than the usual L” spaces. We have the following:

Proposition 1.1.6. For any 0 < p < e and any f in LP(X,u) we have Hf”mm <
||fHLP’ hence LP(X,“) g Lpﬁoo(leJ‘).

Proof. This is just a trivial consequence of Chebyshev’s inequality:

aPdy(at) < szlﬂxm} P du). (1.1.13)

The integral in (1.1.13) is at most Hinp and using (1.1.9) we obtain that HfHLp’w <
171l C

The inclusion LP C LP* is strict. For example, on R” with the usual Lebesgue
measure, let h(x) = |x|_%. Obviously, % is not in L?(R") but 4 is in L7 (R") with
||h’ Lpes(Re) = Vs where v, is the measure of the unit ball of R”.

It is not immediate from their definition that the weak L? spaces are complete
with respect to the quasinorm H . | pe- The completeness of these spaces is proved
in Theorem 1.4.11, but it is also a consequence of Theorem 1.1.13, proved in this
section.

1.1.2 Convergence in Measure

Next we discuss some convergence notions. The following notion is important in
probability theory.

Definition 1.1.7. Let f, f,, n = 1,2,..., be measurable functions on the measure
space (X, ). The sequence f, is said to converge in measure to f if for all € > 0
there exists an ny € Z" such that
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n>ng = p({xeX: |fulx)—f(x)|>¢€}) <e. (1.1.14)
Remark 1.1.8. The preceding definition is equivalent to the following statement:

Forall € >0 ’}ij‘}ou({xeX: [fulx) = f(x)| >¢€})=0. (1.1.15)

Clearly (1.1.15) implies (1.1.14). To see the converse given € > 0, pick 0 < § < €
and apply (1.1.14) for this 8. There exists an ny € Z" such that

pu({xeX: |fulx) = f(x)[ > 8}) < &

holds for n > ng. Since

p{xeX: [fulx) = f(x)]>e}) Sp({xeX: |fulx) — f(x)]>8}),
we conclude that
p{xeX: |fulx) = f(x)| > €}) <6

for all n > ng. Let n — oo to deduce that

limsupu({x € X : |fu(x)— f(x)| > €}) < 9. (1.1.16)

n—oo

Since (1.1.16) holds for all 0 < 6 < &, (1.1.15) follows by letting § — 0.
Convergence in measure is a weaker notion than convergence in either L?” or L™,
0 < p < oo, as the following proposition indicates:

Proposition 1.1.9. Ler 0 < p < o and f,, f be in LP=(X, ).

(1) If fo, farein L? and f, — f in L?, then f, — f in LP"™.
(2) If fu — fin LP*, then f, converges to f in measure.

Proof. Fix 0 < p < o. Proposition 1.1.6 gives that for all € > 0 we have

1 P
LHxeX: |fn(x)—f(x)|>€})§E/X|fn—f\ du.

This shows that convergence in L implies convergence in weak L”. The case p = oo
is tautological.
Given € > 0 find an ng such that for n > ng, we have

[ = Al = sup ral{x €X 5 1) = S (2)] > ap)r <ertt.

Taking o = €, we conclude that convergence in L7 implies convergence in mea-
sure. O

Example 1.1.10. Fix 0 < p < eo. On [0, 1] define the functions

frj= kl/”x(jfl '

ik

k>1,1<j<k.
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Consider the sequence {fi1, 2.1, /2.2, f3.1, f32, f33,--.}. Observe that

{x: fij(x) >0} = 1/k.
Therefore, fi ; converges to 0 in measure. Likewise, observe that
il e = e 1/p (k—1/k)!P
kaJHpr _Z‘i%a‘{x- Jij(x) > a}t| Zig kl/p =1
which implies that f; ; does not converge to 0 in L7,

It turns out that every sequence convergent in L”(X, ) or in L”*(X,u) has a
subsequence that converges a.e. to the same limit.

Theorem 1.1.11. Let f, and f be complex-valued measurable functions on a mea-
sure space (X, L) and suppose that f,, converges to f in measure. Then some subse-
quence of f, converges to f l-a.e.

Proof. For all k=1,2,... choose inductively n; such that

p{xeX: |f,(x)— f(x)] >27%F) <27* (1.1.17)

and such that n; < np <--- <mn < ---. Define the sets

Av={xeX: |fo(x) = f(x)| > 27

Equation (1.1.17) implies that

u(UAk) < iu(Ak)g iz*kzz“m (1.1.18)
k=m k=m

k=m

forallm=1,2,3,.... It follows from (1.1.18) that

u(UAk>§1<oo. (1.1.19)

k=1

Using (1.1.18) and (1.1.19), we conclude that the sequence of the measures of the
sets {Ur_,, Ak} converges as m — oo to

u<ﬂ UAk):O. (1.1.20)

m=1k=m

To finish the proof, observe that the null set in (1.1.20) contains the set of all x € X
for which f;, (x) does not converge to f(x). O

In many situations we are given a sequence of functions and we would like to
extract a convergent subsequence. One way to achieve this is via the next theorem,
which is a useful variant of Theorem 1.1.11. We first give a relevant definition.
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Definition 1.1.12. We say that a sequence of measurable functions { f,,} on the mea-
sure space (X, ) is Cauchy in measure if for every € > 0, there exists an ng € Z™*
such that for n,m > no we have

B EX: [ful®)— fulx)] > €}) <.

Theorem 1.1.13. Let (X, 1) be a measure space and let {f,} be a complex-valued
sequence on X that is Cauchy in measure. Then some subsequence of f, converges

u-a.e.

Proof. The proof is very similar to that of Theorem 1.1.11. For all k = 1,2,...
choose ny inductively such that

LEx €X [ £, (x) = fu,, (¥)] > 275} <27F (1.1.21)
and such that ny <np < --- <m <ngyp < ---. Define
Ar={xeX: |fnk(x) _fnk+1 (x)| > 27](}-

As shown in the proof of Theorem 1.1.11, (1.1.21) implies that

u( F) OAk> =0. (1.1.22)

m=1k=m

For x ¢ Ur_,,Ax and i > j > jo > m (and jo large enough) we have
i—1 i—1 l - L
| fo; (%) _fnj(x)| < Z | fy (%) = fi () < 227 <2772
I=j I=j

This implies that the sequence { f;,,(x) }; is Cauchy for every x in the set (Uy_,,Ax)¢
and therefore converges for all such x. We define a function

}i_{gfnj (x)  whenx & ;1 Ul Ak
0 when x € (—1 Urn Ak -

fx) =

Then f,, — f almost everywhere. U

1.1.3 A First Glimpse at Interpolation

It is a useful fact that if a function f is in L”(X, i) and in L9(X, ), then it also lies
in L"(X, ) for all p < r < q. The usefulness of the spaces LP* can be seen from
the following sharpening of this statement:

Proposition 1.1.14. Let 0 < p < g < oo and let f in LP*=(X,u) NLY=(X, ). Then
fisin L'(X, ) forall p<r< qand
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, I
£l < IVMﬂHﬂéq, (1.1.23)
r— P
with the suitable interpretation when q = oo.
Proof. Let us take first g < co. We know that
P q
dy(a) < min ( Hf(‘lp =, ||fl|61(;q'm> : (1.1.24)
Set 1
B= (H;”ﬁq‘”) o (1.1.25)

We now estimate the L norm of f. By (1.1.24), (1.1.25), and Proposition 1.1.4 we
have

Hf Zr(X#) :r/ a” ldf( )dOC
<r / ( |fHLl’“’ ||f“”°°>dot
ol ol
= [ @ e [ @ da (0120
r
= r—p”f’ leBr p+q7||f||m°°3r 1
r g-r L

( -p q—r)(HfHLn )i (|| £]|%-) 77

Observe that the integrals converge, since r —p >0 and r — g < 0.
The case g = oo is easier. Since dy(o) = 0 for @ > HfHL"" we need to use only

the inequality d¢(ot) < a”||f||7,.. for & <||f||,. in estimating the first integral in
(1.1.26). We obtain

Il < = W11

which is nothing other than (1.1.23) when g = 0. This completes the proof. O

Note that (1.1.23) holds with constant 1 if L”* and L?* are replaced by L? and
L9, respectively. It is often convenient to work with functions that are only locally
in some L? space. This leads to the following definition.

Definition 1.1.15. For 0 < p < oo, the space L{ .(R",|-|) or simply L{, (R") is the

set of all Lebesgue-measurable functions f on R” that satisfy

loc

/I.(‘f(x)|”dx<oo (1.1.27)
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for any compact subset K of R”. Functions that satisfy (1.1.27) with p = 1 are called
locally integrable functions on R”.

The union of all LP(R") spaces for 1 < p < oo is contained in L] _(R"). More
generally, for 0 < p < g < o we have the following:

L(R") C LY (R") C LD (R").

Functions in L7 (R") for 0 < p < 1 may not be locally integrable. For example, take
f(x) = |x[7""*¥|x<1, which is in LP(R") when p < n/(n+ ), and observe that f
is not integrable over any open set in R” containing the origin.

Exercises

1.1.1. Suppose f and f, are measurable functions on (X, it). Prove that

(a) dy is right continuous on [0, o).

() If | f| < liminf, .. |f,| p-a.e., then dy < liminf, .. dy,.

(© If [fu| T |f], then dy, T dy.

[Hint: Part (a): Let #, be a decreasing sequence of positive numbers that tends to
zero. Show that dy(ap +1,) T dr(0) using a convergence theorem. Part (b): Let
E={xeX: |f(x)]>a}andE, ={xeX : |f,(x)] > a}. Use that p(_, Ex) <
liminf u(E,) and E € Uy_t (7 En p-a.e.]

1.1.2. (Holder’s inequality) Let 0 < p, p1,..., py < oo, where k > 2, and let f; be in
LPi =LPi(X,u). Assume that

1 1 1
—_—= — 4 —
JZE 4| Pk

(a) Show that the product f; - - - f; is in L” and that

== Fell < Al - 1l -

(b) When no p; is infinite, show that if equality holds in part (a), then it must be the
case that ¢{|fi|”! = --- = ci| f¥|’* a.e. for some ¢; > 0.

~1
L+

(c) Let 0 < g < 1. For r < 0 and g > 0 almost everywhere, let ||g = ||g’1|

Show that for f > 0, g > 0 a.e. we have

||ngL1 2 Hf”LquHLq“

1.1.3. Let (X, i) be a measure space.
(a) If fisin LP(X, ) for some pg < oo, prove that

lim HfHLP = ||fHL°°'

p—oo
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(b) (Jensen’s inequality ) Suppose that (1(X) = 1. Show that

11l > exp [ toels9lato)

forall 0 < p < oo.
() If u(X) =1 and f is in some LP0 (X, i) for some py > 0, then

tim 7], = exp [ toel 9l ato)

with the interpretation e~ = 0.
[Hint: Part (a): Given 0 < & < || f|| =, find a measurable set E C X of positive mea-

sure such that | f(x)| > |||z~ — € for all x € E. Then || f||z» > (|| ]|z~ — €)p(E)"/?
and thus liminf, .. || f||z» > || f||z= — €. Part (b) is a direct consequence of Jensen’s
inequality [y log|h|dp <log ( [y |h|du). Part (c): Fix a sequence 0 < p, < p such
that p, | 0 and define

) = %(If(X)\"O —1)- iuﬂan 1),

Use that %(t” —1) | logt as p | 0 forall r > 0. The Lebesgue monotone convergence

theorem yields [y h,du 1 [y hdu, hence [y #(|f|l’” —1)du | [ylog|f|du, where
the latter could be —oo. Use

n% 1
exp ([ toelslan) < ([ 1ran)” <exo ([ (- aw)

to complete the proof. |

1.1.4. Let a; be a sequence of positive reals. Show that
(a)(Z?laj) <Z';°1a forany 0 < 0 < 1.

(b) X3- 1a6<():J 111) ,forany 1 < 0 < oo,

(C)( *]aj) <Ne IZN]a when 1 < 6 < o,

(d le\’:laj <N'- 6’(X‘f}’:la]) ,when0< 0 <1.

1.1.5. Let { f 17, be a sequence of L” (X, i) functions.
(a) (Minkowski’, s mequalzty) For 1 < p < oo show that

N
H _Z]fjHLP = Z HfJHLP
j=

(b) (Minkowski’s inequality ) For 0 < p < 1 and f; > 0 prove that
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N N
YAl < I fill
j=1 j=1

(c) For 0 < p < 1 show that
N iy N
1% Ailly <% L 5l
j= j=

1—
(d) The constant N N in part (c) is best possible.
[Hint: Part (c): Use Exercise 1.1.4(c). Part (d): Take { fi ijz | to be characteristic
functions of disjoint sets with the same measure.]

1.1.6. (Minkowski’s integral inequality) Let 1 < p < co. Let F' be a measurable
function on the product space (X, ) x (T, V), where i, v are o-finite. Show that

() |F(X=f)|dﬂ(x))pdv(t)r <[l ]F(x,t)]pdv(t)rdu(x),

Moreover, prove that when 0 < p < 1, then the preceding inequality is reversed.

1.1.7. Let f1,..., fy be in LP*=(X ).
(a) Prove that for 1 < p < oo we have

N N
| Z,lfjHLP-“' < NZI 1 £ill e -
J= J=

(b) Show that for 0 < p < 1 we have

N 1 N
I Al < N7 X il
J= J=

[Hint: Use that u({|fi + -+ fv| > a}) < ley:1 u({|fj| > a/N}) and Exercise
1.1.4(a) and (c).]

1.1.8. Let 0 < p < co. Prove that LP(X, 1) is a complete quasinormed space. This
means that every quasinorm Cauchy sequence is quasinorm convergent.

[Hint: Let f, be a Cauchy sequence in L. Pass to a subsequence {n;}; such that
| furer — fusllr <277 Then the series f = fu, + ¥ (fu,, — f;) converges in L]

1.1.9. Let (X, 1) be a measure space with (t(X) < co. Suppose that a sequence of
measurable functions f,, on X converges to f u-a.e. Prove that f,, converges to f in
measure.

[Hint: Fore >0, {x€X: f,(x) — f@)} S U N {xeX: [ful) - F(x)] < e} ]

m=1n=m
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1.1.10. Given a measurable function f on (X, i) and y > 0, define f, = f| s~y and

'=r=f=M<y
(a) Prove that

dr (o) dr(a)  when o>,
T \dp(y) when  a<y,

0 when o>,
dr(e) —dg(y) when  a<y.

dfy(Ot) =
(b)If f € LP(X, ) then
15z, =r | @ ds(@yda+yas,
Y|P 4 p—1 D
Hf HLP :p/o alde(a)do —y'ds(y),
. 5
[ iiPan =p [ d(@ar da—6dn(8)+ yds ()
Jy<|fI=é Y

(c) If fis in LP*(X,u) prove that f7 is in L9(X,u) for any ¢ > p and fy is in
L1(X,u) for any g < p. Thus L C LP0 + Pt when 0 < pp < p < p; < oo.

1.1.11. Let (X, u) be a measure space and let E be a subset of X with (E) < eo.
Assume that f is in LP>* (X, i) for some 0 < p < oo,
(a) Show that for 0 < g < p we have

p 1-4 q
9d <—Uu(E) »r oo -
1 du) < L) 1]l
(b) Conclude that if pt(X) < e and 0 < ¢ < p, then
LP(X, 1) € 1P (X, 1) € L9(X, ).

[Hint: Part (a): Use /.L(E NA{|f] > OC}) < min (IJ(E)v a—pr}

1))

1.1.12. (Normability of weak L for p > 1) Let (X, 1) be a measure space and let
0 < p < oo. Pick 0 < r < p and define

1
141 7
|Hf|HLn,m: sup  W(E) v </|f|rdll) )

O<p(E)<eo E

where the supremum is taken over all measurable subsets E of X of finite measure.
(a) Use Exercise 1.1.11 with ¢ = r to conclude that

1 Mre = (525) 10

p—r
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forall fin LP*=(X, u).

(b) Take E = {|f| > ot} to deduce that Hf”mw < 1Al 1pe forall fin LP=(X, ).
(c) Show that L7 (X, i) is metrizable for all 0 < p < o and normable when p > 1
(by picking r = 1).

(d) Use the characterization of the weak L” quasinorm obtained in parts (a) and (b)
to prove Fatou’s theorem for this space: For all measurable functions g, on X we
have

[timinf|g[ . < Cyliminf|ga]],,.

for some constant C, that depends only on p € (0,00).
1.1.13. Consider the N! functions on the line

S N
fazgwl[%,%)y
where o is a permutation of the set {1,2,...,N}.

(a) Show that each f; satisfies Hf0||L1~°° =1.
(b) Show that || Lesy fol[ - = N1+ 3+ +%).
(c) Conclude that the space L (R) is not normable.

(d) Use a similar argument to prove that L'**(R") is not normable by considering
the functions

N N
X1y X . A X in=1 jn\\Xn ),
f 1 1Z= Jn=1 O-( (.]17a]n))%[”TI7W])( 1) %[1 I7IW)( )
where o is a permutation of the set {1,2,...,N"} and 7 is a fixed injective map

from the set of all n-tuples of integers with coordinates 1 < j < N onto the set
{1,2,...,N"}. One may take

T(jtseesdn) = ANz = 1) +N* (3= 1) 4+ N (ju - 1),
for instance.

1.1.14. Let 0 < p < 1,0 < s < oo and let (X, it) be a measure space.
(a) Let f be a measurable function on X. Show that

Lpe

[ i< Sl
If1<s

(b) Let f;, 1 < j <m, be measurable functions on X. Show that

e o I

max
’ 1<j<m |fj

(c) Conclude that
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2_ m
I+t pallfye < 722 Y5l
=

The latter estimate is referred to as the p-normability of weak L for p < 1.
[Hint: Part (c): First obtain the estimate

df|+'~+fm(a) < :u({|fl+"'+fm|>a’max|fj‘Sa})ermax\jH(a)
for all a > O.]

1.1.15. (Holder’s inequality for weak spaces ) Let f; be in LP/** of a measure space
X where 0 < pj <eoand 1 < j <k. Let

1 1 1
—= 44—
JZ 4| Pk

Prove that P
_1 i
Uil < o7 T T
j= j=
[Hint: Take || fj||;»j= = 1 for all j. Control dy,...; (o) by

plfil>afsi}) + -+ m{fio1l>sk-2/se-1}) + L ({ el > se-1})
< (sl/a)p' + (Sz/sl)pz +"'+(Sk71/sk—2>pk71 _~_(1/sk71)pk.

Set x; =s1/0, x2 = 52/51,...,% = 1/s_1. Minimize x’f' + --~+xfk subject to the
constraint x; - -x = 1/t

1.1.16. Let 0 < pg < p < p; < o and let % = % + % for some 6 € [0, 1]. Prove
the following:

oo I1lzsr

1l <l
1-6 6
1l < W oAl
1.1.17. (Loomis and Whitney [178]) Follow the steps below to prove the isoperi-

metric inequality. For n > 2 and 1 < j < n define the projection maps 7; : R" —
R"~! by setting for x = (x1,...,%,),

Ti(x) = (X1, Xjm 1, X 155 Xn)

with the obvious interpretations when j =1 or j = n.
(a) For maps f; : R"~! — C prove that

Aliseeof) = J TTIfremlax< 1115
= j=

n—1 (Rnfl) .



16 1 L? Spaces and Interpolation

(b) Let  be a compact set with a rectifiable boundary in R” where n > 2. Show
that there is a constant ¢, independent of 2 such that

Q| < culoQ|mT,

where the expression |02 | denotes the (n—1)-dimensional surface measure of the
boundary of Q.
[Hint: Part (a): Use induction starting with n = 2. Then write

A(fis-eoifn) S/ P(x1, s X 1) f (70 (x)) | dxy - dox

R

<|1P|

n—1 )anoﬂn

= (Rn—l Ln—l(Rn—l) )

where P(xq,...,xp—1) = Jg|f1(m(x)) - fa—1(m—1(x))|dxp, and apply the induc-
tion hypothesis to the n — 1 functions

1

{/Rfj(”j(x))ﬂl dxn] s |

for j=1,...,n—1, to obtain the required conclusion. Part (b): Specialize part (a) to
the case fj = Xnjlq) to obtain

| <|m[Q]IFT - |mlQ] |

and then use that |7;[Q]| < %|8.Q|}

1.2 Convolution and Approximate Identities

The notion of convolution can be defined on measure spaces endowed with a group
structure. It turns out that the most natural environment to define convolution is the
context of topological groups. Although the focus of this book is harmonic analysis
on Euclidean spaces, we develop the notion of convolution on general groups. This
allows us to study this concept on R”, Z", and T”, in a unified way. Moreover,
since the basic properties of convolutions and approximate identities do not require
commutativity of the group operation, we may assume that the underlying groups
are not necessarily abelian. Thus, the results in this section can be also applied to
nonabelian structures such as the Heisenberg group.

1.2.1 Examples of Topological Groups

A topological group G is a Hausdorff topological space that is also a group with law



1.2 Convolution and Approximate Identities 17

(x,¥) = xy (1.2.1)

1

such that the maps (x,y) — xy and x — x~ ' are continuous.

Example 1.2.1. The standard examples are provided by the spaces R" and Z" with
the usual topology and the usual addition of n-tuples. Another example is the space
T" defined as follows:

T =[0,1] x --- x [0,1]
—_—

n times

with the usual topology and group law addition of n-tuples mod 1, that is,
(X1, es0) + 1y e ey yn) = (k1 +y1) mod 1., (x, +y,) mod1).

Let G be alocally compact group. It is known that G possesses a positive measure
A on the Borel sets that is nonzero on all nonempty open sets and is left invariant,
meaning that

A(tA) = A(A), (12.2)

for all measurable sets A and all # € G. Such a measure A is called a (left) Haar
measure on G. For a constructive proof of the existence of Haar measure we refer
to Lang [168, §16.3]. Furthermore, Haar measure is unique up to positive multi-
plicative constants. If G is abelian then any left Haar measure on G is a constant
multiple of any given right Haar measure on G, the latter meaning right invariant
[i.e., A (A?r) = A(A), for all measurable A C G and ¢ € G].

Example 1.2.2. Let G = R* = R\ {0} with group law the usual multiplication. It is
easy to verify that the measure A = dx/|x| is invariant under multiplicative transla-

tions, that is, J J
°° X °° X
fe = @
Lw x| Jw |x]
for all £ in L'(G, ) and all + € R*. Therefore, dx/|x| is a Haar measure. [Taking
f =24 gives A(tA) = A(A).]

Example 1.2.3. Similarly, on the multiplicative group G = R™, a Haar measure is
dx/x.

Example 1.2.4. Counting measure is a Haar measure on the group Z" with group
operation the usual addition.

Example 1.2.5. The Heisenberg group H" is the set C" x R with the group operation
n
(215520, t) (Whs oo, Wiy ) = (Zl +W1,---7Zn+wn,f+s+21mZZjo>~
j=1

It can easily be seen that the identity element e of this group is 0 € C" x R and
(215-+-,2n,t) "' = (=21,...,—2n, —t). Topologically the Heisenberg group is identi-
fied with C" x R, and both left and right Haar measure on H" is Lebesgue measure.
The norm
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ez = | (L) + }

introduces balls B, (x) = {y € H" : [y~'x| < r} on the Heisenberg group that are quite
different from Euclidean balls. For x close to the origin, the balls B,(x) are not far
from being Euclidean, but for x far away from e = 0 they look like slanted truncated
cylinders. The Heisenberg group can be naturally identified as the boundary of the
unit ball in C" and plays an important role in quantum mechanics.

1.2.2 Convolution

Throughout the rest of this section, fix a locally compact group G and a left invariant
Haar measure A on G. The spaces L?(G,A) and LP*°(G, ) are simply denoted by
L?(G) and L”>(G).

Left invariance of A is equivalent to the fact that for all 7 € G and all f € L'(G),

/ftx YdA (x /f YdA(x (1.2.3)

Equation (1.2.3) is a restatement of (1.2.2) if f is a characteristic function. For a
general f € L'(G) it follows by linearity and approximation.
We are now ready to define the operation of convolution.

Definition 1.2.6. Let f, g be in L' (G). Define the convolution f * g by

(fxg)(x /f g 'x)dA(y). (1.2.4)

For instance, if G = R” with the usual additive structure, then y_1

integral in (1.2.4) is written as

(r9)@ = [ 10)

Remark 1.2.7. The right-hand side of (1.2.4) is defined a.e., since the following
double integral converges absolutely:

= —y and the

L [ 176)ls67 91d2 ) da
= [ [1£0)ls0"5)1ar () dn )
= L) [ s 0l a0 a2 )
= [ 170l [ le)larar) by (122)
G G

= 11z 181G < +oe-
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The change of variables z = x~ 'y yields that (1.2.4) is in fact equal to

(f*g)(x /fxz “DdA(z), (1.2.5)

where the substitution of dA(y) by dA(z) is justified by left invariance.

Example 1.2.8. On R let f(x) = 1 when —1 < x < 1 and zero otherwise. We see
that (f * f)(x) is equal to the length of the intersection of the intervals [—1, 1] and
[x — L,x+ 1]. It follows that (f * f)(x) =2 — |x| for |x| < 2 and zero otherwise.
Observe that f « f is a smoother function than f. Similarly, we obtain that f* f* f
is a smoother function than f x f.

There is an analogous calculation when g is the characteristic function of the unit
disk B(0,1) in R?. A simple computation gives

J1—L1x2
T (2 1—t2—|x|)dt

(gxg)(x |B(O l)ﬁBxl ’—/ TN
7

= 2arcsin <m> —|x[y/1— %|x|2

when x = (x1,x;) in R? satisfies |x| < 2, while (g g)(x) = 0if |x| > 2.
A calculation similar to that in Remark 1.2.7 yields that
78]l G = HfHLl(G)HgHL' G)” (1.2.6)
that is, the convolution of two integrable functions is also an integrable function

with L' norm less than or equal to the product of the L! norms.

Proposition 1.2.9. For all f, g, h in L' (G), the following properties are valid:

(1) f(gxh)=(f*g)=*h (associativity)
(2) fx(g+h)=fxg+ fxhand (f+g)«h= f*h+gxh (distributivity)

Proof. The easy proofs are omitted. 0

Proposition 1.2.9 implies that L!(G) is a (not necessarily commutative) Banach
algebra under the convolution product.

1.2.3 Basic Convolution Inequalities

The most fundamental inequality involving convolutions is the following.
Theorem 1.2.10. (Minkowski’s inequality) Let 1 < p <. For f in L?(G) and g in
L'(G) we have

Hg*fHLp(G) = HgHLl(G)HfHLP(G)' (1.2.7)
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Proof. Estimate (1.2.7) follows directly from Exercise 1.1.6. Here we give a direct
proof. We may assume that 1 < p < oo, since the cases p = 1 and p = oo are simple.
Clearly, we have

(e* NI [ 1767911801 dAD). (128

Apply Hélder’s inequality in (1.2.8) with respect to the measure |g(y)|dA(y) to the
functions y +— f(y~'x) and 1 with exponents p and p’ = p/(p — 1), respectively. We
obtain

(1= ( [ orsiare)) ( [oram) .

Taking L? norms of both sides of (1.2.9) we deduce

Jex sl < (el [, [ 1o 0Plemlaioiaac )’

= (lells [ 160 arletlare ))1

= (Hg! Zfl/(;/GIf(X)”dﬂt(x)lg(y)ld/l(y))p by (1.2.3)

= (112 el el ) = 1 el

where the second equality follows by Fubini’s theorem. The proof is complete. [

Remark 1.2.11. Theorem 1.2.10 may fail for nonabelian groups if g * f is replaced
by f*gin (1.2.7). Note, however, that if

sl = 11&l.s (12.10)

where g(x) = g(x~!), then (1.2.7) holds when the quantity ||g>kaLp is replaced
by Hf*gHL,, . To see this, observe that if (1.2.10) holds, then we can use (1.2.5)
to conclude that if fin LP(G) and g in L'(G), then

17 *8ll o) < I8l 1]

() (1.2.11)

If the left Haar measure satisfies
AA) =214 (1.2.12)

for all measurable A C G, then (1.2.10) holds and thus (1.2.11) is satisfied for all g
in L' (G). This is, for instance, the case for the Heisenberg group H".

Minkowski’s inequality (1.2.11) is only a special case of Young’s inequality in
which the function g can be in any space L"(G) for 1 < r < oo,
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Theorem 1.2.12. (Young’s inequality) Let 1 < p,q,r < oo satisfy

q p r
Then for all f in LP(G) and all g in L"(G) satisfying Hg rG) = Hg G We have
Hf*gHLq(G) <l }L"(G)||f| L?(G) (1.2.14)

Proof. Young’s inequality is proved in a way similar to Minkowski’s inequality. We
do a suitable splitting of the product | f(y)||g(y~'x)| and apply Holder’s inequality.
Observe that when r < oo, the hypotheses on the indices imply that

1

r/

+Z =1, =1.

P
q

RE RS

1 1 ror
- -
q D q P

Using Holder’s inequality with exponents ¥/, ¢, and p’, we obtain

()@ < [ 1£0)1e6 0l dAb)
< [0 (0118601 9)lg0 017 dAo)

( FO)PIay 0l dA(y ) (/Igy Wl dAG >)l/
([ rorisor ano) ) (/g twran ))1'
(/G OO dAly >||f||ml|g

where we used left invariance. Now take L7 norms (in x) and apply Fubini’s theorem
to deduce that

'E

S

Q\

< |/l

\

L

I slls < 715 1E1E (] /;|f<y>|Pg<y‘x>|'dx<x>duy>)‘l’
= 711112 1l o

=l

e

using the hypothesis on g. Finally, note that if r = oo, the assumptions on p and ¢
imply that p = 1 and g = oo, in which case the required inequality trivially holds. [

Lr

We now give a version of Theorem 1.2.12 for weak L? spaces. Theorem 1.2.13
is improved in Section 1.4.

Theorem 1.2.13. (Young’s inequality for weak type spaces) Let G be a locally com-
pact group with left Haar measure A that satisfies (1.2.12). Let 1 < p < oo and
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1 < g,r < oo satisfy
1 1 1
S l=— -, (1.2.15)
q p r

Then there exists a constant Cp 4, > 0 such that for all f in LP(G) and g in L"*(G)

we have

17 %8l o) < Crarllgll romcy 1 o) (1.2.16)

Proof. The proof is based on a suitable splitting of the function g. Let M be a posi-
tive real number to be chosen later. Define g1 = gX|g|<p and g2 = gX|¢|>n- In view
of Exercise 1.1.10(a) we have

0 if o0 > M
dgl(a)={ ro=m (1.2.17)

dg(o) —dg(M) ifa <M,
_Jdy(a)  ifa>M,
dg, (@) = {dg(M) . (1.2.18)

Proposition 1.1.3 gives
dfg(@) < dpeg (0/2) +dpegy(0/2), (1.2.19)

and thus it suffices to estimate the distribution functions of f* g; and f * g>. Since
g1 is the “small” part of g, it is in L* for any s > r. In fact, we have

/G g1 () dA(x) = s/m o dy, (o) det

. / —dy(M))da
(1.2.20)
M M
<s / a7 |g Lmda—s/ o dy (M) da
0 0
s r
=M llg|| 7 —MPdg(M),
when s < co.
Similarly, since g5 is the “large” part of g, it is in L' for any # < r, and
[l are) =1 [~ o d(@)da
JG Jo
M
:r/ o dy(M )da+t/ o dy(a)da
0
§M’dg(M)+t/ at*I*’Hg eda
<M" ng L’°“+ Mt r” Lre
r
= ”|| L (1.2.21)

r—t
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Since 1/r = 1/p' +1/q, it follows that 1 < r < p'. Select t = 1 and s = p/.
Holder’s inequality and (1.2.20) give

1
7

an) T (1222

0 < Wl < Wy (2007 e

when p’ < oo, while

if p’ = . Choose an M such that the right-hand side of (1.2.22) if p’ < oo, or (1.2.23)
if p’ = oo, is equal to o /2. For instance, choose

M = (277 rg VI f17 llglle) )
if p’ <eoand M = a /(2| f]|,1) if p’ = oo. For this choice of M we have that
dfsg (0t/2) =0.

Next by Theorem 1.2.10 and (1.2.21) with t = 1 we obtain

,
Lry 1

||f*g2HLP = HfHLPHg2HL1 <|l£] Mling Zr,cm‘

(1.2.24)

For the value of M chosen, using (1.2.24) and Chebyshev’s inequality, we obtain

dpg(@) <dpig,(a/2)
< @l gallpe )"
< @r|#llpM" (gl e (r = Dt
=Crgra |11 llg

which is the required inequality. This proof gives that the constant C, 4 blows up
like (r—1)"7/%asr— 1. O

(1.2.25)

q
L5

Example 1.2.14. Theorem 1.2.13 may fail at some endpoints:

(I) r=1and 1 < p =g <e.OnRtake g(x) = 1/|x| and f = x|, . Clearly, g is in
LY and fin L? for all 1 < p < oo, but the convolution of f and g is identically
equal to infinity on the interval [0, 1]. Therefore, (1.2.16) fails in this case.

(2) g=ocand 1 < r=p’ <oo.OnRlet f(x) = (|x|'/?log |x|)~" for |x| > 2 and zero
otherwise, and also let g(x) = |x|~!/". We see that (f * g)(x) = oo for |x| < 1.
Thus (1.2.16) fails in this case also.

(3) r = g = 0o and p = 1. Then inequality (1.2.16) trivially holds.
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1.2.4 Approximate Identities

We now introduce the notion of approximate identities. The Banach algebra L!(G)
may not have a unit element, that is, an element f; such that

Joxf=f=[f*fo (1.2.26)

forall f € L (G). In particular, this is the case when G = R; in fact, the only fj that
satisfies (1.2.26) for all f € L!(R) is not a function but the Dirac delta distribution,
introduced in Chapter 2. It is reasonable therefore to introduce the notion of approx-
imate unit or identity, a family of functions k¢ with the property ke * f — fin L! as
e—0.

Definition 1.2.15. An approximate identity (as € — 0) is a family of L' (G) functions
ke with the following three properties:

(i) There exists a constant ¢ > 0 such that Hkg < cforall € > 0.

(i) [ske(x)dA(x) =1 forall € > 0.
(iii)) For any neighborhood V of the identity element e of the group G we have
Jyelke(x)|dA(x) — 0as e — 0.

HLI(G)

The construction of approximate identities on general locally compact groups G
is beyond the scope of this book and is omitted. We refer to Hewitt and Ross [125]
for details. In this book we are interested only in groups with Euclidean structure,
where approximate identities exist in abundance. See the following examples.

Sometimes we think of approximate identities as sequences {k;, },. In this case
property (iii) holds as n — oo. It is best to visualize approximate identities as se-
quences of positive functions k&, that spike near O in such a way that the signed area
under the graph of each function remains constant (equal to one) but the support
shrinks to zero. See Figure 1.2.

Example 1.2.16. On R” let k(x) be an integrable function with integral one. Let
ke(x) = e k(e 'x). It is straightforward to see that ke (x) is an approximate identity.
Property (iii) follows from the fact that

k dx — 0
/‘x ICEIEE

as € — 0 for 6 fixed.

Example 1.2.17. On R let P(x) = (z(x*+ 1)) and P (x) = ¢! P(¢ " 'x) for € > 0.
Since P; and P have the same L' norm and

7 e = i, [ttt ] = x/2)~ (-x/2) =

property (ii) is satisfied. Property (iii) follows from the fact that
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Fig. 1.2 The Fejér kernel
F5 plotted on the interval

(=53]

1 1 1 2
—/ ————5——dx=1— —arctan(§/€) — 0 as€ — 0,
7T Jix=s € (x/€)>+1 T

for all 6 > 0. The function P is called the Poisson kernel.

Example 1.2.18. On the circle group T' let

N . . 2
_ UL\ omije 1 (sin(m(N+1)r)
FN(’)_jZN(l_N+1)e ' _N+1< sin(7r) ) - a2z

To check the previous equality we use that
sin?(x) = (2 — ™ —e72%) /4

and we carry out the calculation. Fy is called the Fejér kernel. To see that the se-
quence {Fy}n is an approximate identity, we check conditions (i), (ii), and (iii) in
Definition 1.2.15. Property (iii) follows from the expression giving Fy in terms of
sines, while property (i) follows from the expression giving Fy in terms of exponen-
tials. Property (ii) is identical to property (i), since Fy is nonnegative.

Next comes the basic theorem concerning approximate identities.

Theorem 1.2.19. Let k; be an approximate identity on a locally compact group G
with left Haar measure A.

(1) If f € LP(G) for 1 < p < o, then Hkg*f—fHLp(G> —0ase—0.
(2) When p = oo, the following is valid: If f is continuous in a neighborhood of a
a compact subset K of G, then Hks *f_fHL”(K) —0ase—0.

Proof. We start with the case 1 < p < co. We recall that continuous functions with
compact support are dense in LP of locally compact Hausdorff spaces equipped
with measures arising from nonnegative linear functionals (see Hewitt and Ross
[125], Theorem 12.10). For a continuous function with compact support g we have
lg(h~'x) = g(x)” < (2| g ;)P for hin a relatively compact neighborhood of the
origin e, and by the Lebesgue dominated convergence theorem we obtain
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/|g (%) — g ()P dA(x) — (1.2.28)

as h — e. Now approximate a given f in L”(G) by a continuous function with com-
pact support g to deduce that

/\fh x) = f(x)[PdA(x) — as h—e. (1.2.29)

Because of (1.2.29), given a 6 > 0 there exists a neighborhood V of e such that

6 14
hev — /G|f(h*1x)—f(x)|f’d,1(x) < <2€> : (1.2.30)

where ¢ is the constant that appears in Definition 1.2.15 (i). Since k¢ has integral
one for all € > 0, we have

(ke 1)) = 1) = (ke <)) = F3) [ ke()dA
(FO™"%) = f(@)ke(y) dA(y)
[ (F07"0) ~ F)ke () d2.0)
+ [ 07 = F0)ke) M),

Now take L? norms in x in (1.2.31). In view of (1.2.30),

(1.2.31)

— 5

H /V(f(y_lx) — f(x)ke(y) dA(y)

LP(GdA(x))

< /VHf(y_lx)_f(x)||Lp(G7de)>|kg(y)|d)L(y) (12.32)

0 1)
< [ solke()ldae) < 3

while

[ (6715 = £ ke ()42 ()

L7 (G.dA(x)) (1.2.33)
13}
< [ 2l ke lda o) < 5.

provided we have that

ke (x)] d2 (x (1.2.34)
/ ) 4y Hu

Choose gy > 0 such that (1.2.34) is valid for € < & by property (iii). Now (1.2.32)
and (1.2.33) imply the required conclusion.
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The case p = oo follows similarly. Since f is uniformly continuous on K, given
6 > 0 find a neighborhood V of e € G such that

heV = |f(h'x)— f(x)| < % forall x € K, (1.2.35)

where c is as in Definition 1.2.15(i), and then find an & > 0 such that for 0 < € < &

we have
/ |ke(¥)|dA(y) (1.2.36)
4||f -
Using (1.2.35) and (1.2.36), we easily conclude that

sup| (ke * ) (x) — f ()]

xek
< [ Iee)lsuplf75) ~ £ dAG) + [ keO)lsuplf7'x) — ()| aA )
xXe ’ xe
)
< — i
-2 2 =9,
which shows that k. * f converges uniformly to f on K as € — 0. 0

Remark 1.2.20. Observe that if Haar measure satisfies (1.2.12), then the conclusion
of Theorem 1.2.19 also holds for f k.

A simple modification in the proof of Theorem 1.2.19 yields the following vari-
ant.

Theorem 1.2.21. Let ke be a family of functions on a locally compact group G that
satisfies properties (i) and (iii) of Definition 1.2.15 and also

/kg(x)dx(x):aec, forall e > 0.
JG

Let f € LP(G) for some 1 < p < oo.

(a)If1§p<00,thenHk£*f—af| —0ase—0.

L7(G)
(b) If p =0 and f is continuous on a compact K C G, then
Hkg*f_afHL""(K) —0
as€—0.

Remark 1.2.22. With the notation of Theorem 1.2.21, if f is continuous and tends
to zero at infinity, then ||kg * f — afHLN(G) — 0. To see this, simply observe that
outside a compact subset of G, both k¢ * f, af have small L* norm, while inside a
compact subset of G, uniform convergence holds.
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Exercises

1.2.1. Let G be a locally compact group and let f,g in L'(G) be supported in the
subsets A and B of G, respectively. Prove that f * g is supported in the algebraic
product set AB.

1.2.2. For a function f on a locally compact group G and 7 € G, let 'f(x) = f(tx)
and f'(x) = f(xr). Show that

'frg="(f+xg) and  fxg' =(fxg)
whenever f,g € L'(G), equipped with left Haar measure.

1.2.3. Let G be a locally compact group with left Haar measure. Let f € L?(G)
and g € L (G), where 1 < p < oo; recall that g(x) = g(x~!). For t,x € G, let
"g(x) = g(tx). Show that for any & > 0 there exists a relatively compact symmet-
ric neighborhood of the origin U such that u € U implies Hug— g H G <€ and
therefore

(f+8) (V) = (fg) W) < || f]l» €

whenever vw—! € U.

1.2.4. Let G be a locally compact group and let 1 < p < oo. Let f € LP(G) and u
be a finite Borel measure on G with total variation H u H Define

(e = [ 1079 du0).

Show that if u is an absolutely continuous measure, then the preceding definition
extends (1.2.4). Prove that ||u *fHLp(G> < H‘uHHfHLP(G)‘

1.2.5. Show that a Haar measure A for the multiplicative group of all positive real
numbers is

M) = [T

1.2.6. Let G =R?\ {(0,y) : y € R} with group operation (x,y)(z,w) = (xz,xw+y).
[Think of G as the group of all 2 x 2 matrices with bottom row (0, 1) and nonzero
top left entry.] Show that a left Haar measure on G is

Foo e dxd
M= [ [ S

— oo —

while a right Haar measure on G is

dxdy
x|

ey = [ ey
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1.2.7. (Hardy [118], [119]) Use Theorem 1.2.10 to prove that

o /1 [x P %
(G roiar) )" < 2251l
') oo P % oo %
([7([1wia)a) <o [rwpea)”
0 X 0
when 1 < p < oo

[Hmt On the multiplicative group (R+ di ) consider the convolution of the functlon
|f(x )|xP with the function x 7 |1~ and the convolution of the function | f(x YT
with xP X((L 1] ]

1.2.8. (G. H. Hardy ) Let 0 < b < e and 1 < p < oo, Prove that

(/Ow </°X |f<t)|dt) B dx>;’ = % </ow () |Pep=b dl>;) ,
</Om </xm |f(t)|dt) pr_l dx>,1’ < % </0°° |f(e)|Per b df>ll’.

[Hint: On the multiplicative group (R, %) consider the convolution of the function

- .. -t : 1+ .. L
|£(x)[x" "7 with x™ 7 ¥ ) and of the function [f(x)[x "7 with x X(0,1]~]

1.2.9. On R" let T(f) = f x K, where K is a positive L' function and f is in L?,
1 < p < oo. Prove that the operator norm of 7 : L” — L7 is equal to HKHLI

[Hint: Clearly, ||T||z»—r» < ||K| ;1. Conversely, fix 0 < & < 1 and let N be a positive
integer. Let Xy = Xp(o,v) and for any R > 0 let Kg = Kxp(o ), Where B(x,R) is the
ball of radius R centered at x. Observe that for |x| < (1 —€)N, we have B(0,N¢) C
B(x,N); thus [g x5 (x —¥)Kne (v) dy = Jgn Kne(y) dy = || Kne|| 1~ Then

K 2w - || Kve * 2| Z’(B((L(l—e)N)
iz, — w7

> HKNsHil (1 _E)n'

2

Let N — oo first and then & — 0.

1.2.10. On the multiplicative group (R*, %) let T(f) = f* K, where K is a positive
L' function and f is in L”, 1 < p < oo. Prove that the operator norm of T : L” — L”
is equal to the L' norm of K. Deduce that the constants p/(p — 1) and p/b are sharp
in Exercises 1.2.7 and 1.2.8.

[Hint: Adapt the idea of Exercise 1.2.9 to this setting. ]

1.2.11. Let Q;(t) = ¢;(1 —*)/ for t € [—1, 1] and zero elsewhere, where c; is cho-
sen such that [', Q;(t)dr =1 forall j=1,2,....
(a) Show that ¢; < +/J.
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(b) Use part (a) to show that {Q;}; is an approximate identity on R as j — co.

(c) Given a continuous function f on R that vanishes outside the interval [—1,1],
show that f * Q; converges to f uniformly on [—1,1].

(d) (Weierstrass) Prove that every continuous function on [—1, 1] can be approxi-
mated uniformly by polynomials.

[Hint: Part (a): Consider the integral f\t\ an-120Qj (t)dt. Part (d): Consider the func-

tion (1) = f(r) — f(—=1) = F(f(1) = f(=1)).]

1.2.12. (Christ and Grafakos [51]) Let F > 0, G > 0 be measurable functions on
the sphere $"~! and let K > 0 be a measurable function on [—1, 1]. Prove that

L L )Gk (6-9)d9d6 < C|F| g [ Gl

where 1 <p <o, 0-9=Y"_,0;¢;and C = [5.-1 K(6-¢)d ¢, which is independent
of 6. Moreover, show that C is the best possible constant in the preceding inequality.
Using duality, compute the norm of the linear operator

F(0)— SnilF(G)K(pr)d(p

from LP(S"~1) to itself.
[Hint: Observe that [g.1 g1 F(0)G(@)K(6 - ¢)d@d is bounded by the quan-

1
tity {fs,,fl US'H F(0)K(6- (p)de}pd(p}” HG||U,/(S,,,1). Apply Holder’s inequality
to the functions F and 1 with respect to the measure K(0 - ¢)d6 to deduce that
Jsr1 F(B)K(6 - ¢)d8 is controlled by

 F(0)’K(6-9)dO v K(6-9)do "
(L ) ([ ke ort0)

Use Fubini’s theorem to bound the latter by
1Pl Gl g [, K(8-0)do.

Note that equality is attained if and only if both F and G are constants.]

1.3 Interpolation

The theory of interpolation of operators is vast and extensive. In this section we
are mainly concerned with a couple of basic interpolation results that appear in a
variety of applications and constitute the foundation of the field. These results are
the Marcinkiewicz interpolation theorem and the Riesz—Thorin interpolation theo-
rem. These theorems are traditionally proved using real and complex variables tech-
niques, respectively. A byproduct of the Riesz—Thorin interpolation theorem, Stein’s
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theorem on interpolation of analytic families of operators, has also proved to be an
important and useful tool in many applications and is presented at the end of the
section.

We begin by setting up the background required to formulate the results of this
section. Let (X, i) and (Y, V) be two measure spaces. Suppose we are given a linear
operator 7', initially defined on the set of simple functions on X, such that for all f
simple on X, T(f) is a v-measurable functionon Y. Let 0 < p < o0 and 0 < g < oo.
If there exists a constant Cp, , > 0 such that for all simple functions f on X we have

||T(f)HLq(Y7V) < CFJIHf’

L) (1.3.1)

then by density, 7 admits a unique bounded extension from LP(X,u) to L1(Y, V).
This extension is also denoted by 7. Operators that map L to L? are called of strong
type (p,q) and operators that map L? to L9 are called weak type (p,q).

1.3.1 Real Method: The Marcinkiewicz Interpolation Theorem

Definition 1.3.1. Let 7' be an operator defined on a linear space of complex-valued
measurable functions on a measure space (X, 1) and taking values in the set of all
complex-valued finite almost everywhere measurable functions on a measure space
(Y,v). Then T is called linear if for all f, g and all A € C, we have

T(f+g)=T(f)+T(g) and T(Af)=AT(f). (1.3.2)
T is called sublinear if for all f, g and all A € C, we have
TS+ <ITNI+IT()]  and  |T(Af)| = AT(f)]. (1.3.3)
T is called quasilinear if for all f, g and all A € C, we have

IT(f+) <K(T(NHI+IT(g)])  and  [TAfS)|=AIT(H]  (1.3.4)
for some constant K > (. Sublinearity is a special case of quasilinearity.
We begin with the first interpolation theorem.

Theorem 1.3.2. Let (X, 1) and (Y, V) be measure spaces and let 0 < py < pj < 0.
Let T be a sublinear operator defined on the space L**(X) + LP1 (X) and taking val-
ues in the space of measurable functions on Y. Assume that there exist two positive
constants Ay and Ay such that

1T roeey) < Aol ]
T rrmgy < Al ]

forall f € LP(X), (1.3.5)
Sforall feLP'(X). (1.3.6)

LPO(X)

LP1(X)

Then for all py < p < p and for all f in LP(X) we have the estimate
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(1.3.7)

Ty <Al o

where .

1’1

1
A:2< P, P ) AJS T AT (13.8)
pP—po PpP1—p

—||
31~
o

Proof. Assume first that p; < oo. Fix f a function in L(X) and o > 0. We split
f=fg+ f where f§ isin L0 and f* is in LP'. The splitting is obtained by
cutting | f] at height § & for some & > 0 to be determined later. Set

o B f(x) for |f(x)|> o,
Jo'x) = {o for |f(x)| < 8a,
o B f(x) for |f(x)| <da,
St = {o for [f(x)| > 6a

It can be checked easily that f§* (the unbounded part of f) is an L”° function and
that f* (the bounded part of f) is an L' function. Indeed, since py < p, we have

P|FIPOP du(x) <
= [ I du <
and similarly, since p < py,

1Az < Gy 71]2-

By the sublinearity property (1.3.3) we obtain that
T < T+ IT UL

which implies

{x: TN > o} SH{x: [T )] > /23 U{x: [T()(x)] > /23,

and therefore
dT(f)(a) SdT(fg)(a/2)+dT(fla>(a/2). (1.3.9)

Hypotheses (1.3.5) and (1.3.6) together with (1.3.9) now give

AP0 AP
1 (00 < gy s PO )+ [ 7 dn(),

In view of the last estimate and Proposition 1.1.4, we obtain that
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b < e [Tartarm [0l du) do

s [Cartan [ pldu da

|fI<6a

17l

L)l
= pao [ e [F ar ()

SpA [, art dadut

2A9)
-2 1 ,,0/|f )PP dp)
2A
PO [P el au(

(@A 1 AP L,
_p<P—po s ol 111z

and the convergence of the integrals in ¢ is justified from pg < p < p;. We pick

6 > 0 such that |

dP—ro

(240)7 = (24,)P 8717

and observe that the last displayed constant is equal to the pth power of the constant
in (1.3.8). We have therefore proved the theorem when p; < co.
We now consider the case p; = co. Write f = f* + f*, where

w0 o )] > e
Jor) {0 for | ()] < 7,
arn ) IX) for [f(x)] <y,
h (x)_{o for |f(x)| > va.

We have
1T < A FE] e < Arve = @/2,

provided we choose ¥ = (2A4;)~!. It follows that the set {x: |T(f)(x)| > a/2} has
measure zero. Therefore,

dr(g) (o) < drpey(0t/2).

Since T maps L0 to LP0= it follows that

(249 pOHfO HLPO (24¢)P0

drgg(@/2) < gm0 < S [ P dut). (13.10)

Using (1.3.10) and Proposition 1.1.4, we obtain
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||T(f)|ip :P/O Ot"_ldT(f>(a)da

gp/o a"_ldT(fm(a/Z)da

0 Po
< p/ ab~! (240)7 /
0 P J|fl>a/(24;)

[f ()7 dp(x) dex

2A1[f(x)]
= pao [ e [T ar m dadp ()

2A1)P7P0(240)P0
P Py /If )P dp(x)

This proves the theorem with constant

p \7 o1 m
A:z( ) A TAL (1.3.11)
P—po

Observe that when p; = oo, the constant in (1.3.11) coincides with that in (1.3.8). [J

Remark 1.3.3. If T is a linear operator (instead of sublinear), then we can relax
the hypotheses of Theorem 1.3.2 by assuming that (1.3.5) and (1.3.6) hold for all
simple functions f on X. Then the functions f§* and f{* constructed in the proof are
also simple, and we conclude that (1.3.7) holds for all simple functions f on X. By
density, T has a unique extension on L”(X) that also satisfies (1.3.7).

1.3.2 Complex Method: The Riesz—Thorin Interpolation Theorem

The next interpolation theorem assumes stronger endpoint estimates, but yields a
more natural bound on the norm of the operator on the intermediate spaces. Unfor-
tunately, it is mostly applicable for linear operators and in some cases for sublinear
operators (often via a linearization process). It does not apply to quasilinear opera-
tors without some loss in the constant. A short history of this theorem is discussed
at the end of this chapter.

Theorem 1.3.4. Let (X, 1) and (Y, V) be two measure spaces. Let T be a linear
operator defined on the set of all simple functions on X and taking values in the set
of measurable functions on Y. Let 1 < po, p1,q0,q1 < o and assume that

1T a0 < MollF]po »
||T(f)Hqu SMleHLPl )

for all simple functions f on X. Then for all 0 < 6 < 1 we have

(1.3.12)

1T ()0 <My~ MP | £, (1.3.13)
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for all simple functions f on X, where

1 1-6 6 1 1-6 o
= +—~ and -= +=. (1.3.14)
2 g @ @ q

By density, T has a unique extension as a bounded operator from LP(X,L) to
L4(Y,v) forall p and q as in (1.3.14).

We note that in many applications, 7 may be defined on L”0 + P!, in which case
hypothesis (1.3.12) and conclusion (1.3.13) can be stated in terms of functions in
the corresponding Lebesgue spaces.

Proof. Let
m
f=Y aeya,
k=1

be a simple function on X, where a; > 0, oy are real, and Ay are pairwise disjoint
subsets of X with finite measure.
We need to control

IT(f)

La(y,v) — SUP

[ T(@saviz).

where the supremum is taken over all simple functions g on Y with L7 norm less
than or equal to 1. Write

n
g=Y biePixs, (1.3.15)
j=1

where b; > 0, B; are real, and B; are pairwise disjoint subsets of ¥ with finite mea-
sure. Let

/ /

Po)=L(-2+L2 and 0@ =La-2+ZL: (1.3.16)
Po P1 99 q,

For z in the closed strip S = {z€ C:0<Rez< 1}, define

F@) = [ TR0 gl dvie).

where . )
fo= Z flf(Z)eia"ZAka g = Z bJQ(Z)eiﬁjXBj . (1.3.17)
k=1 j=1

By linearity,

F= Y ¥ 9620 b, /Y T (xa) (%) o8, (x) v (x)
f=1j=1 -

and hence F' is analytic in z, since ai,b; > 0.
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Let us now consider a z € S with Rez = 0. By the disjointness of the sets A; we

have ||fz| 0 = ||f| Z,, since |af(z)| = a,f%. Similarly, by the disjointness of the sets
B; we have that HgZHq6 = Hg||Lq,, since |bQ(Z)| = bqo
By the same token, when Rez = 1, we have HfZHLp1 = HfHZp and HgZHZ/}],I =
||gH e Holder’s inequality and the hypothesis now give
F@! < 1T oo Il
A (1.3.18)
9
< Mo|[ el o &l . = MollF1I25 el o
when Rez = 0. Similarly, we obtain
IF(z \<M1Hf!| HgH (13.19)

when Rez = 1.
We state the following lemma, known as Hadamard’s three lines lemma, whose
proof we postpone until the end of this section.

Lemma 1.3.5. Let F be analytic in the open strip S = {z € C: 0 < Re z < 1},
continuous and bounded on its closure, such that |F(z)| < By when Re z =0 and
|F(z)| < By when Re z =1, where 0 < By, By < . Then |F(z)| < By °BY when
Rez=0, forany0 <6 < 1.

Returning to the proof of Theorem 1.3.4, we observe that F' is analytic in the
open strip S and continuous on its closure. Also, F is bounded on the closed unit
strip (by some constant that depends on f and g). Therefore, (1.3.18), (1.3.19), and
Lemma 1.3.5 give

1’1

q7/
814 )

FEI < (Mol 112 g )
=M, M7 || /]

(Mle

g||L‘I”

when Rez = 0. Observe that P(0) = Q(6) = 1 and hence

Ly

F(6)= [ T(5)gav.

Taking the supremum over all simple functions g on ¥ with L7 norm less than or
equal to one, we conclude the proof of the theorem. 0

We now give an application of the theorem just proved.
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Example 1.3.6. One may prove Young’s inequality (Theorem 1.2.12) using the
Riesz—Thorin interpolation theorem (Theorem 1.3.4). Fix a function g in L" and
let T(f) = f*g.Since T : L' — L" with norm at most ||g||,, and T : L — L™ with
norm at most ||g Theorem 1.3.4 gives that 7" maps L? to L7 with norm at most

-6
U= Hg

L
8

the quantity Hg zr 1> Where

1 1-6 6 1 1-6 06
— ,_A'_f/ and - = + —. (1320)
P 1 r q oo

Finally, observe that equations (1.3.20) give (1.2.13).

1.3.3 Interpolation of Analytic Families of Operators

Theorem 1.3.4 can now be extended to the case in which the interpolated operators
are allowed to vary. In particular, if a family of operators depends analytically on a
parameter z, then the proof of this theorem can be adapted to work in this setting.

We now describe the setup for this theorem. Let (X, u) and (Y, V) be measure
spaces. Suppose that for every z in the closed strip § = {z € C: 0 < Rez < 1} there
is an associated linear operator T, defined on the space of simple functions on X and
taking values in the space of measurable functions on ¥ such that

/YITz(f)gIdV<°° (1.321)

whenever f and g are simple functions on X and Y, respectively. The family {7},
is said to be analytic if the function

Z'—>/Tz(f)gdv (1.3.22)
Y

is analytic in the open strip S = {z € C: 0 < Rez < 1} and continuous on its closure.
Finally, the analytic family is of admissible growth if there is a constant a < 7 and
a constant Cy ¢ such that

o—allmz] log <Cpg< oo (1.3.23)

| T gav

for all z satisfying 0 < Rez < 1. The extension of the Riesz—Thorin interpolation
theorem is now stated.

Theorem 1.3.7. Let T, be an analytic family of linear operators of admissible
growth. Let 1 < pg, p1,q0,q1 < o and suppose that My and M are positive functions
on the real line such that

sup e bl logM;(y) < oo (1.3.24)

—ooly< o0
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for j=0,1and some b < 1. Let 0 < 8 < 1 satisfy

1_1=0. 6  a 112090 (1.3.25)
Po P1 q q0 q1
Suppose that
T (F)| oo < Mo £ 100+ (13.26)
| Ty ()] por < M) F]] 1 - (13.27)

for all simple functions f on X. Then
1To ()0 <M(0)]f|l,, whenO<6<1 (1.3.28)

for all simple functions f on X, where for 0 <t < 1,

M(t)exp{sin;m)/_‘:[COShlogMo(y) L logMi(y) }dy}.

(my)—cos(mt)  cosh(my)+cos(mr)

By density, Ty has a unique extension as a bounded operator from LP (X, L) to
Li(Y,V) for all p and q as in (1.3.25).

As expected, the proof of the previous theorem is based on an extension of
Lemma 1.3.5.

Lemma 1.3.8. Let F be analytic on the open strip S ={z€ C: 0<Rez < 1} and
continuous on its closure such that

supe M Jog |F(z)| <A < e (1.3.29)
z€S

for some fixed A and a < 7. Then

sin(7x) [ log |F (iy)| log |F(1+1iy)]
FOol < exp{ 2 Lw [cosh(ﬂ:y)—cos(nx) * cosh(?ty)+c0s(7rx)}dy}

whenever 0 < x < 1.
Assuming Lemma 1.3.8, we prove Theorem 1.3.7.

Proof. As in the proof of Theorem 1.3.4, we work with simple functions f on X
and gon Y. Fix 0 < 6 < 1 and also fix simple functions f, g such that Hf”Lp =1=

gl - Let

m n
f=Y ae%ys, and g=Y bje’ﬁfxgj,
k=1 j=1
where a; >0, b; > 0, o, By are real, Ay, are pairwise disjoint subsets of X with finite
measure, and B; are pairwise disjoint subsets of ¥ with finite measure. Let f; and g,
be as in the proof of Theorem 1.3.4. Define
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F(z) = /YTz(fz)gde- (1.3.30)

It follows from the assumptions about {7}, that F(z) is an analytic function that
satisfies the hypotheses of Lemma 1.3.8. Moreover,

1l = 1105 = 1= gl = lewll®,  whenye R,  (1331)
ialn =171 = 1= sty = lsrsll, whenveR. 1332
Holder’s inequality, (1.3.31), and the hypothesis (1.3.26) now give

E@)] < 1T (i) ol
< Mo05) | ol sl = Mo0)

for all y real. Similarly, (1.3.32), and (1.3.27) imply

IF(U+iy)| < || Ty (Fiiy) || o || €143 ]
<My )|| iy o1 81445

4
for all y € R. Therefore, the hypotheses of Lemma 1.3.8 are satisfied. We conclude
that

| 7o) gdv
Y

=[F(0)|<M(8), (1.3.33)

where M (x) is the function given in the hypothesis of the theorem.
Taking the supremum over all simple functions g on Y with L7 norm equal to
one, we conclude the proof of the theorem. 0

1.3.4 Proofs of Lemmas 1.3.5 and 1.3.8

Proof of Lemma 1.3.5. Define analytic functions

2

G(z) =F(z2)(By°B)™"  and  Gy(z) = G(z)el& ~D/m.

Since F is bounded on the closed unit strip and B(')*ZBZ1 is bounded from below,
we conclude that G is bounded by some constant M on the closed strip. Also, G is
bounded by one on its boundary. Since

|Gn(x+iy)| < Me ™ /mel®=N/n < Mefyz/”7
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we deduce that G, (x+ iy) converges to zero uniformly in 0 <x < 1 as |y| — oo. Se-
lect y(n) > 0 such that for |y| > y(n), |G, (x+iy)| < 1 uniformly in x € [0, 1]. By the
maximum principle we obtain that |G,(z)| < 1 in the rectangle [0, 1] x [—y(n),y(n)];
hence |G,(z)| < 1 everywhere in the closed strip. Letting n — oo, we conclude that
|G(z)| < 1 in the closed strip.
O
Having disposed of the proof of Lemma 1.3.5, we end this section with a proof
of Lemma 1.3.8.

Proof of Lemma 1.3.8. Recall the Poisson integral formula

1 +r . *P

— URe'?) ———— = pe'? 1.3.34
2w J- (Re )|Rel(P peze|2 de, z=pe-, ( )

U(z) =
which is valid for a harmonic function U defined on the unit disk D = {z: |z] < 1}
when |z| < R < 1. See Rudin [229, p. 258].

Consider now a subharmonic function u on D that is continuous on the circle
|§| =R < 1. When U = u, the right side of (1.3.34) defines a harmonic function on
the set {z € C: |z] < R} that coincides with u on the circle |{| = R. The maximum
principle for subharmonic functions (Rudin [229, p. 362]) implies that for |z| < R <
1 we have

1 + ) RZ _ p2 )
_ wpoy__ - F _ i0
u(z) < = /77[ u(Re )|Rei‘P —pe"9|2d(p’ z=pe’. (1.3.35)
This is valid for all subharmonic functions # on D that are continuous on the circle
|| =Rwhenp <R <.
It is not difficult to verify that

) = e (117 )

is a conformal map from D onto the strip S = (0,1) x R. Indeed, i(1+&)/(1—&)
lies in the upper half-plane and the preceding complex logarithm is a well defined
holomorphic function that takes the upper half-plane onto the strip R x (0, 7). Since
F oh is a holomorphic function on D, log |F o h| is a subharmonic function on D.
Applying (1.3.35) to the function z — log|F (h(z))|, we obtain

T ) 2 A2
log\F(h(z))|§§/+ log |F (h(Re'®))| R —p

o R2 —2pRcos(0 — @) + p2 de (1.3.36)

when z = pe'? and |z| = p < R. Observe that when || = 1 and { # +1, h({) has
real part zero or one. It follows from the hypothesis that

1+§“

log |F(h(2))] < Aem O] = g mates(TE)] < g%
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Therefore, log|F (h(&))| is bounded by a multiple of |1+ {|~%/ 4 |1 — {|~%/7,
which is integrable over the set |{| = 1, since a < 7. Fix now z = pe® with p < R
and let R — 1 in (1.3.36). The Lebesgue dominated convergence theorem gives that

oz Fh(pe™)| < 5 [ "log e P g 337
g Perl=on |, 8 ¢ 1—-2pcos(6 — @)+ p2 ¢

Setting x = h(pe'®), we obtain that

e —i _ cos(mx) [ cos(mx) o—i(n/2)
e™ i 1+sin(mx) | 1+ sin(7x) ’

pe’® = (x) =

from which it follows that p = (cos(mx))/(1 + sin(zx)) and 6 = —(7/2), when
0 <x <1, while p = —(cos(mx))/(1 +sin(rx)) and @ = 7/2, when § <x < 1.In
either case we easily deduce that

1-p? B sin(7x)
1—2pcos(6—¢)+p2  1+cos(mx)sin(¢p)

Using this we write (1.3.37) as

T sin(7x)

o
log|F(x)| < 7 /,7, T cos(ome sinlg) EIF (@) o (13.38)

We now change variables. On the interval [-7,0) we use the change of variables
iy = h(e'?) or, equivalently, ¢'? = — tanh(7y) — isech(7y). Observe that as ¢ ranges
from —7 to 0, y ranges from oo to —oo. Furthermore, d¢ = —msech(my)dy. We
have

| /o sin(ﬂx)' log |F (h(e'?))|de

27 J_z 1+ cos(mx) sin(@)

sin(7x)
log |F (iy)|dy.
Z/mcosh (y) —cos(mx) og|F (iy)|dy

(1.3.39)

On the interval (0, 7t] we use the change of variables 1+ iy = h(e'?) or, equivalently,
¢'? = —tanh(my) +isech(ry). Observe that as ¢ ranges from 0 to 7, y ranges from
—oo to +oo. Furthermore, d¢ = wsech(my)dy. Similarly, we obtain

Lo sin(7x) i
E/O 1+C05(7rx)sin((P) log |F (h(e'?))|de

(1.3.40)

sin nx)
F(1+1iy)|dy.
2 /oo COSh 7'Cy +COS(7C}C) Og‘ ( +ly)| Yy

Now add (1.3.39) and (1.3.40) and use (1.3.38) to conclude the proof. ]
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Exercises

1.3.1. Generalize Theorem 1.3.2 to the situation in which 7 is quasilinear, that is,
it satisfies for some K > 0,

TANI=IATN)] and  |T(f+)| <K(T () +IT(&)D)

forall A € C, and all f, g in the domain of T'. Prove that in this case, the constant A
in (1.3.7) can be taken to be K times the constant in (1.3.8).

1.3.2. Let I < p < r < oo and suppose that T is a linear operator that maps L' to
L with norm Ag and L” to L” with norm A ;. Prove that T maps L to L” with norm
at most

1—

[sl—

— sl—
S —

1 _
8(p—1) 1A, T A

~I—|

[Hint: First interpolate between L' and L” using Theorem 1.3.2 and then interpolate

between L% and L" using Theorem 1.3.4.]

1.3.3. Let 0 < po < p < p1 < oo and let T be an operator as in Theorem 1.3.2 that
also satisfies

IT(HI<T(f]),
forall f € LPo 4 LP1.
(@) If po =1 and p; = oo, prove that T maps L? to LP with norm at most
p 1 1_l

(b) More generally, if pg < p < p; = oo, prove that the norm of 7 from L to L? is
at most

)

1
141 {B(Po+ 1717—1?0)} "A%"A‘J?O
py(p—po)rro | O

where B(s,t) = les’l (1 —x)'"!dx is the usual Beta function.
(¢) When 0 < pg < p1 < oo, then the norm of 7' from L?” to L” is at most

L 11

1

pi—p+l 1 PP Po P
. L(B(p—po.po+1) o \? ,mor
min pp< = A + A Ay A .

0<A<1

[Hint: Parts (a), (b): The hypothesis |7(f)| < T(|f|) reduces matters to nonneg-
ative functions. For f > 0 and for fixed @ > 0 write f = fy + fi, where fy =
f—Ao/A; when f > Aa/A; and zero otherwise for some 0 < A < 1. Then we
have that |[{|T(f)| > a}| < [{|T(fo)| > (1—A)a}|. When p; < oo write f = fo+ fi,
where fo = f — da when f > do and zero otherwise. Use that [{|T(f)]| > o}] <
{IT(fo)| > (1 —=2A)a}|+ {|T(f1)| > Ao}| and optimize over & > 0.]
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1.34. Let 0 < o, B < 7. Let T, be a family of linear operators defined on the strip
Sap = {z€ C: a <Rez < b} that is analytic on the interior of S, ;, in the sense of
(1.3.22), continuous on its closure, and satisfies for all z € S, 5,

o~ lmz|/(b—a) log < Cpg <o

| T:tngay

Let 1 < po,q0,P1,q1 < oo. Suppose that T, ;, maps LP°(X) to L%(Y) with bound
My(y) and Tj;, maps L' (X) to L9 (Y) with bound M, (y), where

sup e*ﬁ‘»‘"/("*“)logMj(y)<°o, j=0,1.

—co<ly<oo

Then for a <t < b, T, maps L”(X) to LI(Y), where

b—t t—a
| _ b= b
p po D1

t

a
—d

S

b—t
_bma
g  q

and

o =

1.3.5. (Stein [251]) On R" let K (x1,...,x,) be the function

n—1

m? F(l:rl 1) /+1 st )2 At g
F()y + nT) -1

where A is a complex number. Let 7, be the operator given by convolution with K} .
Show that 7) maps L”(R") to itself for ReA > (n—1)|4 — %|

[Hint: Using the result in Appendix B.5, show that when ReA =0, 7; maps L*(R")
to itself with norm 1. Using the estimates in Appendices B.6 and B.7, conclude that
Ty maps L' (R") to itself with an appropriate constant when Re A = (n—1)/2+ 8
(for 6 > 0) and then appeal to Theorem 1.3.7.]

1.3.6. Under the same hypotheses as in Theorem 1.3.7, prove the stronger conclu-
sion

()]0 < B[]
for z in the open strip S = (0,1) x R, where

L sin(mt) [ logMo(y)
B(t+is) = eXP{ 2 Lw [cosh(ﬂ?(y—s)) —cos(r)

Lr

log M (y) dy
cosh(m(y —s)) + cos(mr) '
[Hint: Apply Theorem 1.3.7 to the analytic family T“z = THiS.]

1.3.7. (Yano [294]) Let (X,u) and (Y, V) be two measure spaces with ((X) < oo
and v(Y) < eo. Let T be a sublinear operator that maps L”(X) to LP(Y) for every
1 < p <2 with norm HT”L,,HLP < A(p—1)"% for some fixed A, @ > 0. Prove that
for all f measurable on X we have
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1 1
Jirlav < aqvr?| [ 1sitoss 1) au+ ot ux)t .

where Cy = Y'io_ | k%(2/3)%. This result provides an example of extrapolation.
[Hint: Write
=Y s
k=0

where Sy = {2 < |f| < 2¥"'} when k > 1 and Sy = {|f| < 2}. Using Holder’s
inequality and the hypotheses on 7', obtain that

/Y|T(f%sk)|dv < 2Av(Y)ﬁ2kkau(Sk)%

for k > 1. Note that for k > 1 we have v(Y)ﬁ < max(1, v(Y))% and consider the
cases 1(Sy) > 3% ! and u(Sy) < 37%! when summing in k > 1. The term with
k =0 is easier. |

1.3.8. Prove that for 0 < x < 1 we have

/ sin(7x)
w cosh(my) + cos(mx) Y ’

sin(7x)
dy =1—
2/00 cosh(my) — cos(7x) Y ©

and conclude that Lemma 1.3.8 is indeed an extension of Lemma 1.3.5.
[Hint: In the first integral write cosh(7y) = (e™ +e~™). Then use the change of
variables z = ™ |

1.4 Lorentz Spaces

Suppose that f is a measurable function on a measure space (X, it). It would be de-
sirable to have another function f* defined on [0, o) that is decreasing and equidis-
tributed with f. By this we mean

dy(o) = dg (ot) (1.4.1)

for all @ > 0. This is achieved via a simple construction discussed in this section.

1.4.1 Decreasing Rearrangements

Definition 1.4.1. Let f be a complex-valued function defined on X. The decreasing
rearrangement of f is the function f* defined on [0,0) by
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fH(t) =inf{s > 0: ds(s) <t}. (14.2)

We adopt the convention inf(@ = oo, thus having f*(r) = co whenever ds(o) > ¢ for
all o > 0. Observe that f* is decreasing and supported in [0, i (X)].

Before we proceed with properties of the function f*, we work out three exam-
ples.

A A
1) 140
a e ] G
azt az ' ‘_‘
0 ks Ey E, x 0 B B, B Ty

Fig. 1.3 The graph of a simple function f(x) and its decreasing rearrangement f*(z).

Example 1.4.2. Consider the simple function of Example 1.1.2,

N
fx) = ;anE,(x),

where the sets E; have finite measure and are pairwise disjoint and a; > --- > ay.
We saw in Example 1.1.2 that

N
df(a) = Z BjX[a_H..,aj)(a) ?

j=0

where

and ay+1 = Bp = 0 and gy = . Observe that for By <t < By, the smallest s > 0
with dy(s) <t is a;. Similarly, for B; <t < B, the smallest s > 0 with d(s) <1 is
a». Arguing this way, it is not difficult to see that

N
f*<t) = Z an[Bj,l,Bj)(t) .
j=1
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Example 1.4.3. On (R",dx) let

f(x):ﬁ, 0<p<oo.
A computation shows that
S R
and therefore |
()= Sk

where v, is the volume of the unit ball in R”.

Example 1.4.4. Again on (R",dx) let g(x) =1 — e K. We can easily see that
de(a) =0if o > 1 and dg(ar) = oo if o < 1. We conclude that g*(¢) = 1 for all
t > 0. This example indicates that although quantitative information is preserved,
significant qualitative information is lost in passing from a function to its decreas-
ing rearrangement.

It is clear from the previous examples that f* is continuous from the right and
decreasing. The following are some properties of the function f™*.

Proposition 1.4.5. For f, g, f,, L-measurable, k € C, and 0 <t,s,t1,ty < o we have
(1)  f*(df(e)) < ot whenever o > 0.
) dp(fr) <t
(3) [ (t) >sifand only ift <dy(s); thatis, {t > 0: f*(t) > s} =[0,d(s)).
(4) gl < |f| u-a.e. implies that g* < f* and |f|* = f*.
(5)  (kf)" = [KIf".
0) (f+8) (i +n)<f(n)+g )
(7)  (fe)'(h+n) < f(h)g ().
(8) Sl T1f] u-a.e. implies f7 T f*.
9) |fl< ligglf|fn| U-a.e. implies f* < lirrlllglff,f.

(10)  f* is right continuous on [0,o).

(11) t<pu({lfl =z @)} if u{lf| = f*(t) — c}) < oo for some ¢ > 0.
(12)  df=dp-.
(13)  (If1P)" = (f*)" when 0 < p < oo.

(14) /X|f|pdu:/Omf*(t)pdtwhen0<p<°°.
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(15)  [|f]lp- = £*(0).
(16)  suptif*(t) = supa (dy())? for 0 < g < oo.

>0 a>0
Proof. Property (1): The set A = {s > 0: dy(s) < ds(o)} contains o and thus
F*(df(e)) = infA < a.

Property (2): Let s, € {s >0: d¢(s) <t} be such thats, | f*(t). Thend(s,) <t,
and the right continuity of d; (Exercise 1.1.1(a)) implies that d¢(f*(r)) <t.

Property (3): If s < f*(t) = inf{u > 0: dy(u) <t}, thens & {u>0: dy(u) <t}
which gives d(s) > t. Conversely, if for some t < dy(s) we had f*(t) < s, applying
dy and using property (2) would yield the contradiction d¢(s) < dy(f*(t)) <t.

Properties (4) and (5) are left to the reader.

Properties (6) and (7): Let A = {s1 > 0: d¢(s1) <t1},B={s2>0: dy(s52) <1},
P= {S >0: dfg(s) <n +l‘2}, and S = {S >0: df+g(s) <n —I-tz}. ThenA+BC S
andA-BC P;thus (f+g)*(t; +1) =infS < s +s0 and (fg)*(t; +12) =inf P < 5157
are valid for all s; € A and s, € B. Taking the infimum over all s; € A and s, € B
yields the conclusions.

Property (8): It follows from the definition of decreasing rearrangements that
fo < [y < f7 forall n. Let h = lim,, .. f,,'; then obviously & < f*. Since f; <h,
we have dy, (h(t)) < df, (f;(t)) <t, which implies, in view of Exercise 1.1.1(c), that
dy(h(t)) <t by letting n — oo, It follows that f* < h, hence h = f*.

Property (9): Set F,, = inf,,>, | fin| and h = liminf, . | f4| = sup,,~ Fy. Since F;, T
h, property (8) yields that F* T h* as n — oo. By hypothesis we have | f| < h, hence
f*<h*=sup,F;.Since F, <|f,,| form > n, it follows that F,* < f;* for m > n; thus
F; <inf,,>, f,,. Putting these facts together, we obtain f* < h* <sup,inf,>, f;; =
liminf,, e f;.

Property (10): If f*(t9) = 0, then f*(t) = 0 for all # > 7y and thus f* is right
continuous at fo. Suppose f*(f9) > 0. Pick o such that 0 < o0 < f*(fp) and let {£, };7_,
be a sequence of real numbers decreasing to zero. The definition of f* yields that
dr(f*(to) — &) > to. Since #, | 0, there is an ng € Z" such that d¢(f* (1) — o) >
to +t, for all n > ng. Property (3) yields that for all n > ny we have f*(1p) — a <
S*(to+1,), and since the latter is at most f*(#y), the right continuity of f* follows.

Property (11): The definition of f* yields that the set A, = {|f| > f*(t) —c¢/n}
has measure [1(A,) > 1. The sets A, form a decreasing sequence as n increases and
U(Ay) < oo by assumption. Consequently, {|f| > f*(#)} = N, A, has measure
greater than or equal to ¢.

Property (12): This is immediate for nonnegative simple functions in view of
Examples 1.1.2 and 1.4.2. For an arbitrary measurable function f, find a sequence
of nonnegative simple functions f;, such that f, 1 |f| and apply (9).

Property (13): It follows from djy» (t) = df(a'/?) = dg+ (a1/7) = d -0 (1) for
all oo > 0.

Property (14): This is a consequence of property (12) and of Proposition 1.1.4.

Property (15): This is a restatement of (1.1.2).

Property (16): Given o > 0, pick € satisfying 0 < € < . Property (3) yields
f*(ds(a) — €) > o, which implies that
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supt? £ (1) > (dy(o) — €)°f"(dy(@) — €) > (d(e) — €)7ar.

t>0

We first let € — 0 and then take the supremum over all & > 0 to obtain one direction.
Conversely, given r > 0, pick 0 < € < f*(r). Property (3) yields d¢(f*(t) —¢€) > t.

This implies that sup,o ot(ds(a))? > (f*(r) —€)(ds(f* () — €))7 > (f*(r) —€)r9.
We first let € — 0 and then take the supremum over all # > 0 to obtain the opposite
direction of the claimed equality. 0

1.4.2 Lorentz Spaces

Having disposed of the basic properties of decreasing rearrangements of functions,
we proceed with the definition of the Lorentz spaces.

Definition 1.4.6. Given f a measurable function on a measure space (X, u) and
0 < p,q < oo, define

HfHLM: (/000 (t%f*(t)>q it>q ifg <o,

1
supt? f*(t) if g=oo.
t>0

The set of all f with || f| .,
space with indices p and q.

< oo is denoted by LP4(X, i) and is called the Lorentz

As in L? and in weak L?, two functions in L”7(X, ) are considered equal if they
are equal p-almost everywhere. Observe that the previous definition implies that
L™% =L, LP* = weak L? in view of Proposition 1.4.5 (16) and that LP"? = LP.

Remark 1.4.7. Observe that for all 0 < p,r < e and 0 < g < « we have
ngerLM = HgHZPW' (1.4.3)

OnR"let 6%(f)(x) = f(€x), € > 0, be the dilation operator. It is straightforward that
dse(p) (o) = e "dy(a) and (6°(f))"(r) = f*(€"t). It follows that Lorentz norms
satisfy the following dilation identity:

H5£(f)HLM - s_n/p||f|

Next, we calculate the Lorentz norms of a simple function.

(1.4.4)

L
Example 1.4.8. Using the notation of Example 1.4.2, when 0 < p,q < oo we have

pé int gt q g (ol q q
Il = (& aB] +af(BY —BY )+ +af (Bl ~BL_) |

and also
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1
[l = sup aiB]

The preceding expression for || f||,,., is also valid when p = eo, but in this case
it is equal to infinity if at least one a; is strictly positive. We conclude that the only
simple function with finite L4 norm is the zero function. For this reason we have
that L=>9 = {0} for every 0 < g < oo.

Proposition 1.4.9. For 0 < p < e and 0 < g < oo, we have the identity

= ([ )" 145

Proof. The case g = o is statement (16) in Proposition 1.4.5, and we may therefore
concentrate on the case g < oo. If f is the simple function of Example 1.1.2, then

N
dy(s) = Z fo[“jﬂﬂj)(s)
=1

with the understanding that ay; = 0. Using the this formula and identity in Exam-
ple 1.4.8, we obtain the validity of (1.4.5) for simple functions. In general, given a
measurable function f, find a sequence of nonnegative simple functions such that

fu11|f] ae. Then dy, T dy (Exercise 1.1.1(c)) and f; T f* (Proposition 1.4.5 (8)).
Using the Lebesgue monotone convergence theorem we deduce (1.4.5). U

Since L?P C LP*, one may wonder whether these spaces are nested. The next
result shows that for any fixed p, the Lorentz spaces L”*¢ increase as the exponent g
increases.

Proposition 1.4.10. Suppose 0 < p < o0 and 0 < g < r < oo. Then there exists a
constant ¢y, 4 - (which depends on p, q, and r) such that

171

In other words, L is a subspace of LP".

Lpr é Cp,q,l‘“fuu,q . (146)

Proof. We may assume p < oo, since the case p = oo is trivial. We have

APy = {Q/Ot[sl/pf*(t”qu}l/q

P s

IN

t 1/q
{Z /0 [s'/P f* (s)]"dss} since f* is decreasing,

1/q
(£) 15l

Hence, taking the supremum over all # > 0, we obtain

IN
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1/q
q
1Al o < (p> [¥a[ (14.7)

This establishes (1.4.6) in the case r = oo. Finally, when r < oo, we have

o= { [0 W‘”} <]

Inequality (1.4.7) combined with (1.4.8) gives (1.4.6) with ¢, = (¢/p)"~9/". 0

i v (1.4.8)

Unfortunately, the functionals || . ] ¢ 40 not satisfy the triangle inequality. For
instance, consider the functions f(r) =t and g(r) = 1 —t defined on [0, 1]. Then
fr(a) =g"(a) = (1 — ) j0,1)(). A simple calculation shows that the triangle
would be equivalent

inequality for these functions with respect to the norm || -

to
P 5 I'(g+1)I'(q/p) 7
q I'(¢g+1+4/p)
which fails in general. However, since for all # > 0 we have

(f+8) (1) <[ (t/2)+8&"(1/2),

Iz

the estimate

Hf+g| Lra S CP#I(HfHLP»'I + HgHLM)’ (1.4.9)

where ¢, o = 2!/Pmax(1,2(179)/9), is a consequence of (1.1.4). Also, if || f|| ,, = 0
then we must have f = 0 p-a.e. Therefore, LP4 is a quasinormed space for all 0 <
p,q < oo. Is this space complete with respect to its quasinorm? The next theorem
answers this question.

Theorem 1.4.11. Let (X, 1) be a measure space. Then for all 0 < p,q < oo, the
spaces LP4(X, L) are complete with respect to their quasinorm and they are there-
fore quasi-Banach spaces.

Proof. We consider only the case p < oo. First we note that convergence in L9
implies convergence in measure. When g = oo, this is proved in Proposition 1.1.9.
When g < oo, in view of Proposition 1.4.5 (16) and (1.4.7), it follows that

1/q
supt!/P (1) = sup aud ()P < (q> 117

>0 a>0 p

for all f € LP4, from which the same conclusion follows. Let {f,} be a Cauchy
sequence in LP4. Then {f, } is Cauchy in measure, and hence it has a subsequence
{fn} that converges almost everywhere to some f by Theorem 1.1.13. Fix ko and
apply property (9) in Proposition 1.4.5. Since |f — f,,k0| = limy oo | fr, — g |- it
follows that

(f = Fig )" (6) < liminf (£, — fi )" (0). (1.4.10)
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Raise (1.4.10) to the power ¢, multiply by /P, integrate with respect to dr/t over
(0,00), and apply Fatou’s lemma to obtain

1 = Foy 20 < Nimin || f, = fo (25 (1411

Now let kg — oo in (1.4.11) and use the fact that { f,,} is Cauchy to conclude that S,
converges to f in L4 It is a general fact that if a Cauchy sequence has a convergent
subsequence in a quasinormed space, then the sequence is convergent to the same
limit. It follows that f, converges to f in L9, 0

Remark 1.4.12. It can be shown that the spaces L”¢ are normable when p, g are
bigger than 1; see Exercise 1.4.3. Therefore, these spaces can be normed to become
Banach spaces.

It is natural to ask whether simple functions are dense in L”*9. This is in fact the
case when g # co.

Theorem 1.4.13. Simple functions are dense in LP4(X, 1) when 0 < g < oo,

Proof. Let f € LP4(X, ). Assume without loss of generality that f > 0. Given
n=1,2,3,..., we find a simple function f,, > 0 such that

fa(x)=0
when f(x) < 1/n, and
£~ 1 < ) < )

when f(x) > 1/n, except on a set of measure less than 1/x. It follows that
u({xeX: [f(x) = fax)]>1/n}) <1/n;
hence (f — fn)*(¢t) < 1/nfort > 1/n. Thus
(f=fa) (1) =0 asm—ocand f; ()< f*(r) forallz>0.

Since (f — f,)*(¢t) < 2f*(¢/2), an application of the Lebesgue dominated conver-

gence theorem gives that Hf,, — fHLM — 0asn— oo, U

Remark 1.4.14. One may wonder whether simple functions are dense in LP*. This
turns out to be false for all 0 < p < eo. However, if X is o-finite, countable linear
combinations of characteristic functions of sets with finite measure are dense in
LP=(X,u). We call such functions countably simple. See Exercise 1.4.4 for details.

1.4.3 Duals of Lorentz Spaces

Given a quasi-Banach space Z with norm H : ‘ - its dual Z* is defined as the space
of all continuous linear functionals T on Z equipped with the norm
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1]

2= sup [T(x)].

[lxllz=1

Observe that the dual of a quasi-Banach space is always a Banach space.

We are now considering the following question: What are the dual spaces (L79)*
of LP1? The answer to this question presents some technical difficulties for general
measure spaces. In this exposition we restrict our attention to o-finite nonatomic
measure spaces, where the situation is simpler.

Definition 1.4.15. A subset A of a measure space (X, it) is called an atom if p(A) >
0 and every subset B of A has measure either equal to zero or equal to ©(A). A
measure space (X, 1) is called nonatomic if it contains no atoms. In other words, X
is nonatomic if and only if for any A C X with (A) > 0, there exists a proper subset
B G A with u(B) > 0and u(A\B) > 0.

For instance, R with Lebesgue measure is nonatomic, but any measure space
with counting measure is atomic. Nonatomic spaces have the property that every
measurable subset of them with strictly positive measure contains subsets of any
given measure smaller than the measure of the original subset. See Exercise 1.4.5.

Definition 1.4.16. A measure space is called o-finite if there is a sequence of mea-
surable sets Ky with i (Ky) < o such that

D Ky =X.
N=1

For instance, R” equipped with Lebesgue measure is a o-finite measure space. So
is Z" with the usual counting measure.

Theorem 1.4.17. Suppose that (X, L) is a nonatomic G-finite measure space. Then

@) (LP9* = {0}, when0 <p<1,0<g<oo,
(ii) (LrY* =L~ whenp=10<¢g<1,

(iii) (LP9)* ={0}, whenp=1,1<g <o,

(iv) (L7)" # {0}, when p =1, q =,

) (LPy* :L”l’“’, when1 < p <o, 0<g<1,
(vi) (LP)* = Lp/’q/, when 1 < p <o, 1< g<oo,
(vii) (LPY* £ {0}, when 1 < p <oo, g=oo,
(viii) (LP1)* £ {0}, when p =q =oo.

Proof. Since X is o-finite, we have X = (Jy_; Ky, where Ky is an increasing
sequence of sets with p(Ky) < o. Given T € (LP9)*, where 0 < p < oo and
0 < g < oo, consider the measure ¢(E) = T(xg). Since o satisfies |0(E)| <
(p/q)l/qHT |,LL(E)1/’7 when g < o and |6(E)| < ||T||/,L(E)1/”, it follows that &
is absolutely continuous with respect to the measure . By the Radon—-Nikodym
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theorem, there exists a complex-valued measurable function g (which satisfies
Jk 18ldp < oo for all N) such that

o(E) =T(te) = | s du. (14.12)

Linearity implies that (1.4.12) holds for any simple function on X. The continuity
of T and the density of the simple functions on LP*¢ (when g < ) gives

:/gfdu (1.4.13)
X

for every f € LP*1. We now examine each case (i)—(viii) separately.

(i) We first consider the case 0 < p < 1. Let f =Y, a, X, be a simple function
on X (take f to be countably simple when g = o). If X is nonatomic, we can split
each E, as a union of N disjoint sets £, each having measure N “u(E,). Let f =
Yo anXe,,- We see that || £;]|, ., = N~V||f]| 4 Now if T € (L), it follows that

1o < ITINTY ] g

= Rl I g s

Let N — oo and use that p < 1 to obtain that 7 = 0.
(i1) We now consider the case p =1 and 0 < g < 1. Clearly, every g € L™ gives a
bounded linear functional on L4, since

[ rean] < el < ol

Conversely, suppose that T € (L'9)* where ¢ < 1. The function g given in (1.4.12)
satisfies

‘/gdu‘ <||T||u(E)

for all E C Ky, and hence |g| < ||TH u-a.e. on every Ky. See Rudin [229, p. 31]
(Theorem 1.40) for a proof of this fact. It follows that || gH = < HTH and hence
(LY =L~

(iii) Let us now take p = 1, 1 < g < oo, and suppose that T € (L'4)*. Then

[ rsau] <11 (14.14)

where g is the function in (1.4.13). We show that g = 0 a.e. Suppose that |g| > &
on some set Eg with p(Ep) > 0. Let f = glg|~' xg,h, where h > 0. Then (1.4.14)
implies that
-1
HhHL](EO) = ||T||6 HhHLLq(EO)
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for all 4 > 0. Since X is nonatomic, this can’t happen unless 7' = 0. See Exercise
1.4.8.

(iv) In the case p = 1, g = o something interesting happens. Since every contin-
uous linear functional on L' extends to a continuous linear functional on L'¢ for
1 < g < oo, it must necessarily vanish on all simple functions by part (iii). However,
(L'*)* contains nontrivial linear functionals. For details we refer to the articles of
Cwikel and Fefferman [63], [64].

(v) We now take up the case p > 1 and 0 < g < 1. Using Exercise 1.4.1(b) and
Proposition 1.4.10, we see that if g € LP/=°°, then

dt

‘/fgdu’ < /wtéf*(t)tig*(t)—
X 0 t
<N Fllpallgl e
< Cpg||Fllpallgll -

Conversely, suppose that T € (LP9)* when 1 < p < e and 0 < g < 1. Let g satisfy
(1.4.13). Taking f = §|g|_1x‘g|>a and using that

[ reau] <INl
we obtain that

au({lg] > a}) < (p/a)"/4||T | ({lel > a})7 .

It follows that ||g| Lo R ||TH
(vi) Using Exercise 1.4.1(b) and Holder’s inequality, we obtain

L v 5

1 *k i/ * dt
‘/ngdu‘ < [0 g O < ||l

thus every g € L gives a bounded linear functional on LP4. Conversely, let T be
in (LP)*. By (1.4.13), T is given by integration against a locally integrable function
g. It remains to prove that g € L7 For all fin LP4(X) we have

| g o=
0

sup /hgd/.t‘ < HTH HfHLmv (1.4.15)
h: dy=dy | /X

where the equality is a consequence of the fact that X is nonatomic (see Exercise
1.4.5). Pick a function f on X such that

(@) =/tms%71g*(s)‘/*‘ ds. (1.4.16)

This can be achieved again by Exercise 1.4.5. The fact that the integral in (1.4.16)
converges is a consequence of the observation that the function f* defined in
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(1.4.16) lies in the space L9(0,0) with respect to the measure 19/7~!dr. This fol-
lows from the inequality

1Al pa = (/::Z Ut;”‘g*( )q’—lcis]qcit>t11
<Ci(p.q) ( /0 ”(tp”g*(mq"f);

=Ci(p,q) ||g||q//q/ < oo,

which is a consequence of Hardy’s second inequality in Exercise 1.2.8 with b =g/ p.
Using (1.4.15), we conclude that

e <Ci(p.9)|T]| ||g]‘”q (1.4.17)

| g wa <) ]

On the other hand, we have

/ fH(t)g" (1) dt >/ / 57 g (s)7 1dsg*(t)dr
0 t/2 s

o[ ——1ds (1.4.18)
2(/0 g(f)”/ st —dt

1/2 S
= CZ(p’Q)HgHle’,q"

Combining (1.4.17) and (1.4.18), we obtain HgHLP’«q’ <C(p,q) H T H This estimate is
valid only when we have a priori knowledge that ||g||, 7, < e°. Suitably modifying

<

T (Ky) —

C(p,q) HTH forall N =1,2,.... Letting N — oo, we obtain the required conclusion.

(vii) For a complete characterization of this space, we refer to the article of
Cwikel [62].

(viii) The dual of L™ can be identified with the set of all bounded finitely additive

set functions. See Dunford and Schwartz [77]. ]

the preceding proof and using that H gH 174 (Ky)

Remark 1.4.18. Some parts of Theorem 1.4.17 are false if X is atomic. For instance,
the dual of ¢7(Z) contains /* when 0 < p < 1 and thus it is not {0}.

1.4.4 The Off-Diagonal Marcinkiewicz Interpolation Theorem

We now present the main result of this section, the off-diagonal extension of
Marcinkiewicz’s interpolation theorem (Theorem 1.3.2). Recall that an operator T
is called quasilinear if it satisfies

TANI=IATNI and [T (f+ ) < KT+ T @)D,



56 1 L? Spaces and Interpolation

for some K > 0, A € C, and all functions f, g in the domain of 7. To avoid triviali-
ties, we assume that K > 1.

Theorem 1.4.19. Let 0 < r < oo, 0 < pg # p1 < oo, and 0 < qo # q1 < oo and let
(X,u) and (Y,Vv) be two measure spaces. Let T be either a quasilinear operator
defined on LP0(X) 4 LP1 (X ) and taking values in the set of measurable functions on
Y or a linear operator defined on the set of simple functions on X and taking values
as before. Assume that for some My,M| < oo the following (restricted) weak type
estimates hold:

|7 (xa) || jaoe < Mo pa(A)/P0, (1.4.19)
T ()| g < My (AP (1.4.20)

for all measurable subsets A of X with L(A) < eo. Fix 0 < 0 < 1 and let

1 1-6 0 1 1-6 6
= + — and - = + —. (1.4.21)
p Po P1 q q0 q1

Then there exists a constant M, which depends on K, po, p1, qo, q1, Mo, My, r, and
0, such that for all functions f in the domain of T and in L7 (X) we have

T gar < MUF ] (14.22)

We note that L7 C LPo 4+ LP1 (Exercise 1.1.10(c)), and thus T is well defined on
LP" for all r < oo, If r < oo and T is linear and defined on the set of simple functions
on X, then 7 has a unique extension that satisfies (1.4.22) for all f in L”"(X), since
simple functions are dense in this space.

Before we give the proof of Theorem 1.4.19, we state and prove a lemma that is
interesting on its own.

Lemma 1.4.20. Let 0 < p < oo and 0 < g < oo. Let T be either a quasilinear oper-
ator defined on LP(X, 1) and taking values in the set of measurable functions of a
measure space (Y, V), or a linear operator initially defined on the space of simple
functions on X and taking values as before. Suppose that there exists a constant
L > 0 such that for all A C X of finite measure we have

1T () || e < L1s(A)'/7. (1.4.23)

Fix op < g with 0 < op < l(l)(égzzk. Then for all 0 < a0 < 0 there exists a constant

C(p,q,K,ct) > 0 (depending only on the parameters indicated) such that for all
Sunctions f in LP*(X) that lie in the domain of T, we have the estimate

|7 ()| g < C(P.a, K, )L | - (1.4.24)

Lemma 1.4.20 is saying that if a quasilinear operator satisfies a L' — L9 es-
timate uniformly on all characteristic functions, then it must map a Lorentz space
LP* to L7 for some o < 1.
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Proof. 1t suffices to prove Lemma 1.4.20 for f > 0, since we can express a general
function f as

f=h—R)+ilfs—f1),

where f; > 0, and use quasilinearity.
It follows from the Aoki—Rolewicz theorem (Exercise 1.4.6) that for all fi,..., fi
we have the pointwise inequality

1
i oy

IT(fi+ -+ fm)l <4<Z |T(fj)|a1>

= (14.25)

<a(Erupe)”.

j=1
where 0 < o0 < o1 and o satisfies the equation
(2K)* =2.
The second inequality in (1.4.25) is a simple consequence of the fact that o < .

Fix o > 0 with
log?2

- log2K

oy < o and op<gq.

This ensures that the quasinormed space L9/%= is normable when o < . In fact,
Exercise 1.1.12 gives that the space L** is normable as long as s > 1 and for some

equivalent norm |H f H s We have
s
[lm < e € 51 e
Next we claim that for any f > 0 we have
|7 (F )| o < Cla ) L (A) 7 1] . (1.4.26)

To prove (1.4.26) first observe that multiplying by a suitable constant, we may as-
sume that f < 1. Write

in binary expansion, where d;(x) =0 or 1. Let
Bj = {x €A: dj(x) = 1}

Then B; C A and the function fx4 can be written as the sum

Z 2*/'7531. .
j=1
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We use (1.4.25) once and (1.4.3) twice in the following argument. We have

ol <o)

L4
_ —ja all®
4Hj=212 70| .
< —ja . a‘ o
N

1
o
Lq/oc,w)
1
o
Lq/a‘w)

(L2
(£ iral)”

j=1

<t(L o]

Q=

T (xs,)|*

1

“L(izmuw,»)“/f’)“

Jj=1

<
RS
Q
N——— N——— N———
ol

(1—2"%) aLu(4)',

<
RS
Q
N———
Q=

since B; C A. This establishes (1.4.26) with
L 1
Clg,a) = 2(%%) “(1-27%) .
Now write the function f as

=% fxa,

n—=—oo

where A, are measurable sets defined by
Ap={xeX: 2" <|fx)| <2} (1.4.27)
Observe that

n(An) = [{reR: fF@") < f(1) < f12")}]
_ |[2n72n+1”
:2”7

since f and f* are equidistributed. Next we have
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=

17N <4)|( X IT(fon)|a)é

n=—oo

L4

=

—4| ¥ 1Tl

n—=-—oo

1
a

L9/%>

=)

¥ e

La/o.e

n=-—oo

<4 (iw [ crzant| Lq/m>a
(q_ia) (H_Z_MHIT fxa,) Lq/a‘w)a

<s(72) (L Jrum;,)
(L)%(l—z— —aL( Y @ 0‘2"0‘/1’)

n—=—oo

1

<8( ) -2 ey

Lo

Taking into account the splitting ' = f1 — f2 +if3 —ify, where f; > 0, we conclude
the proof of the lemma with constant

YA 1 vl
C(p,q,K,a) =CpK (q— ) (log2)a(1-2"%)"@. (1.4.28)
Recall that we have been assuming that & < min (1(1;?2 —.q) throughout. O

We now continue with the proof of Theorem 1.4.19.

Proof. We assume that py < p1, since if po > p; we may simply reverse the roles
of pg and p;. We first consider the case p; < co. Lemma 1.4.20 implies that

HT(f)HL‘iO~°° SA()HfHLPo«m ;

(1.4.29)
HT(f)Hqu*’ gAleHLp]-m )

. 1
where m = %mln (610,611710(;,%)7 AO = C(p()vq()aKam)MO’ Al - C(platham)Ml’

and C(p,q,K, ) is as in (1.4.28).
Fix a function f in LP". Split f = f' + f; as follows:

o [0 Ll £,
& {) i 1F00] < £ 07),
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s Jo i@ e,
filx) = {f(x) if [f(x)] < f*(17),

where 7 is the following nonzero real number:

11 1_1
__ 40 q __ 9 q1
V=T 1T 1 o1

Po P P P1

Next, observe that the following inequalities are valid:

ffs) ifo<s<rt?,
0 ifs >17,

. ) ifo<s<t?,
(ft) (S) < {f*(s) if s > ¢,

(f)(s) < {

It follows from these inequalities that f* lies in LPo™ and f; lies in LP1"" for all r > 0.
The sublinearity of the operator 7" and (1.4.9) imply

170 = 77
< K[ (TGN 0 e
< K|S T () () + 9T () (§)
< Ka, (|l T(£) ()

111
< Kar<||t‘1 Wt T(f)*

L(4)
l *
L (%)"‘H”T(ft) (%)
(%) Lr(%)
1

1_1 1
e Ty (5)

(1.4.30)

u(%))

)
where

1 when r > 1,
a, =
: 201=r)/r when r < 1.

It follows from (1.4.29) that

1 1 1
) <2% sulgs% T(f')*(s) < 2% Ao || oo - (1.4.31)
5>

1 1 1 €1
tT(fi)"(5) <29 sups* T(fi)"(s) <27 A1 f;]
5>

T ()

I~

[P s (1.4.32)
for all 7 > 0. Now use (1.4.31) and (1.4.32) to estimate (1.4.30) by

Ka, 20 Ao |19 |

)

+Ka 2T AL |0 £]
Lr(d L

t t

‘
=3
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which is the same as
—V(% - ﬁ)

1
Ka, 290 Ay ||t

o

r(l

S
~—

(1.4.33)

(,_i

JrKarquA] 7N ||ﬁHLP1m

L dt

t

Next, we change variables u = 7 in the first term of (1.4.33) to obtain

1 -
Ka,2% Ay ||t "70

o],
1
20 A0 || —(L_1 w mods\ m
< a,| |1/S u <P0 P)( A f (s)msl’o s)
4 ()
1
290 Ay r © L _(L_Lyds\ "
7Karm| G (1 1)(/ (sP0 f*(s))"s (7o p)s>
Y T 0
1
270A0
|—y|l/r 1 1||f| Lo

where the last inequality is a consequence of Hardy’s first inequality in Exercise
1.28 withp=r/m>1andb= (1/py—1/p)r.
Similarly, change variables u = t7 in the second term of (1.4.33) to obtain

Ka,27 Ay ||| £

Lp1m

1_1 m ds m
ul r { S (u mepy &2 +/ Fr(s)"ser }
0

Ka22'+" 2an1{
< 2= 7 2
m

—~
=
—

1
Ka,291 A
Y

P T

B Y Lr(de)

1
up 1:1 (/ f sm ) L"(‘{j‘)}
1
Ka22' 520 A r . -
s — 1/r : ﬂ||f| T T 1 ’ W77 )f*(”)r“p'
7l m mr(;—ﬁ) Lr(du)

Ka2'52m A [y {
I Eer [Faiee

where the last inequality above is Hardy’s second inequality in Exercise 1.2.8 with
p=r/m>1landb=(1/p—1/p))r.
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‘We have now shown that

1T ()l < M1 1]

Lpr

with constant

1 1
2 420 [ A
M= * ( 0

1-m 1
@i | ToT e Al(pl—l—l_l)). (1.4.34)
Po P PP

We have been tacitly assuming that » < co. The remaining case is a simple con-
sequence of the result just proved by letting » — oo, in which case a, — 1 and
y]V/r— 1.

We now turn to the case p; = co. Hypotheses (1.4.19) and (1.4.20) together with
Exercise 1.1.16 imply that

T () || o < MG OMF (A)'P

for all 0 < 6 < 1. We select A € (0,1) such that the indices p = p; and ¢ = ¢,
defined by (1.4.21) when 6 = A satisfy pp < p < pj < oo and g, is strictly between
qo and g;. Then apply the case p; < oo just proved with pg, go as before and p; = p;,
and g; = g, . The result follows with M as in (1.4.34) except that p; is replaced by

Py and g1 by g;,. U

Corollary 1.4.21. Let T be as in the statement of Theorem 1.4.19 and let 0 < py #
p1 <ooand 0 < qg # q1 <oo. If T maps LP0 to L10% and LP! to L1V*, and for some
0 < 0 <1 we have

1 1-6 6 1 1-6 @6

—= +—, - = +—, and p<q,
p Po D1 q q0 q1

then T satisfies the strong type estimate HT(f)HLq < CHfHU, for all functions f
in the domain of T. Moreover, if T is linear, then it has a bounded extension from
LP(X,u) to L1(Y,V).

Proof. Take r = g in the previous theorem. U

Definition 1.4.22. Let 0 < p, g < . We call an operator T of restricted weak type
(p,q) if it satisfies

1T ()| 0 < Cri(A)'/P

for all subsets A of a measure space (X, i) with finite measure. Using this terminol-
ogy, Corollary 1.4.21 says that if a quasilinear operator T is of restricted weak types
(po,qo) and (p1,q1) for some py # py and g # q1, then it is bounded from L? to
L9 when p < gq.

We now give examples to indicate why the assumptions pgy # p; and go # ¢
cannot be dropped in Theorem 1.4.19.
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Example 1.4.23. Let X =Y = R and

T =12 o,

Then a|{x: |T(xa)(x)| > a}|'/? = 21/2]AN[0,1]| and thus T is of restricted weak
types (1,2) and (3,2). But observe that 7 does not map L> = L>? to L%?. Thus
Theorem 1.4.19 fails if the assumption go # ¢ is dropped. The dual operator

S(f)(x) = X[O,]](X) /;J:Of(t)h‘*l/zdt

satisfies ot {x: |S(xa)(x)] > a}|'/? < c|A|'/?> when g = 1 or 3, and thus it furnishes
an example of an operator of restricted weak types (2,1) and (2,3) that is not L?
bounded. Thus Theorem 1.4.19 fails if the assumption py # p; is dropped.

As an application of Theorem 1.4.19, we give the following strengthening of
Theorem 1.2.13.

Theorem 1.4.24. (Young’s inequality for weak type spaces) Let G be a locally com-
pact group with left Haar measure A that satisfies (1.2.12) for all measurable sub-
sets A of G. Let 1 < p,q,r < oo satisfy

1 11
LR S (1.4.35)
q r

Then there exists a constant By, > 0 such that for all f in LP(G) and g in L"*(G)
we have
(1.4.36)

Hf*gHLq(G) < Bporls L’-°°(G)HfHLP(G)'

Proof. We fix 1 < p,q < o. Since p and ¢ range in an open interval, we can find
Po<p<pi,q0<qg<gqi,and 0 < 0 < 1 such that (1.4.21) and (1.4.35) hold. Let
T(f) = f *g, defined for all functions f on G. By Theorem 1.2.13, T extends to
a bounded operator from L0 to L1 and from L% to L91=. It follows from the

Marcinkiewicz interpolation theorem that 7 extends to a bounded operator from
L?(G) to L1(G). O

Exercises

1.4.1. (a) Let g be a nonnegative simple function on (X, ) and let A be a measur-
able subset of X. Prove that

1(A)
/gdu S/ g (r)dr.
A JO

(b) (G. H. Hardy and J. E. Littlewood ) For f and g measurable on (X, i), prove that
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Jrge)ldut) < [ 5@ @)
0

Compare this result to the classical Hardy—Littlewood result asserting thatif a;,b; >
0, the sum }’;a;b; is greatest when both a; and b; are rearranged in decreasing order
(for this see Hardy, Littlewood, and Pdlya [122, p. 261]).

1.4.2. Prove that if f € L0 N L% for some 0 < gp < g1 < oo, then f € L9* for
all0 <s <o and gy < g <qi.

1.4.3. (Hunt [134]) Given 0 < p,q < oo, fixan r =r(p,q) > Osuchthatr <1,r <gq
and r < p. For t < u(X) define

1 1/r
ok — rd
e JE&(#(E)/EV' “) ’

while for > p(X) (f pu(X) < o) let
ok _ 1 r Lr
0= (1 furan)

U= ([ ror )"

(The function f** and the functional f — |H f ||| e depend on r.)
(a) Prove that the inequality

((f+)™) )" < (f()" + (g™ ()"
is valid for all # > 0. Since r < g, conclude that the functional
r
F= AN e

is subadditive and hence it is a norm when r = 1 (this is possible only if p > 1).
(b) Show that for all f we have

Also define

1/r
||f||L/’=q S H|fH’LI"q S [: ||f||Ll’>q'
P r

(c) In conjunction with Exercise 1.1.12, conclude that L4 is metrizable whenever
0 < p,q < oo and also normable when 1 < p <coand | < g < oo,

1.4.4. (a) Show that on a o-finite measure space (X, ) the set of countable linear
combinations of simple functions is dense in L7 (X).

(b) Prove that simple functions are not dense in L”**(R) for any 0 < p < eo.

[Hint: Part (b): Show that the function h(x) = x /Py cannot be approxi-
mated by a sequence of simple functions L”*. To see this, partition the inter-



1.4 Lorentz Spaces 65

val (0,00) into small subintervals of length € > 0 and let f; be the step function

Y 1/IE/JE]f(ke) ke, (k+1)e] (X). Show that for some ¢ > 0 we have || fe — f||1r= > c.]

1.4.5. Let (X, i) be a nonatomic measure space. Prove the following facts:

(@) IfA) CA; CX,0< u(Ay) <oo, and u(Ap) <t < u(Ay), then there exists an
E; C A, with u(E;) =1.

(b) Given ¢(r) continuous and decreasing on [0,c0), there exists a measurable func-
tion f on X with f*(¢) = ¢@(¢) for all # > 0.

(c) Given A C X with 0 < 1(A) < e and g an integrable function on X, there exists
a subset A of X with p1(A) = u(A) such that

u(A)
-
A 0

(d) Given f and g measurable functions on X, we have

/. hgdu’ - [ reg s

where the supremum is taken over all /4 equidistributed with f.

[Hint: Part (a): Reduce matters to the situation in which Ay = (. Consider first
the case that for all A C X there exists a subset B of X satisfying 1L0 u(A) <
u(B) < %M(A). Then we can find subsets of A; of measure in any arbitrar-
ily small interval, and by continuity the required conclusion follows. Next con-
sider the case in which there is a subset A} of X such that every B C A; satis-
fies (1(B) < 15 (A1) or u(B) > 25 1t(Ay). Without loss of generality, normalize U
so that /.L(Al) = 1. Let u; = sup{u(C): C C Ay, u(C) < } and pick B; C A
such that f,ul < u(By) < uy. Set A, = A\ By and define ,uz = sup{[.l,( ): CC
Ao, ,u(C) ] 0} Continue in this way and define sets A| D Ay D A3 D --- and num-
bers 15 > 1 > o > > m > IfCC Aypy with u(CUA 1) < 75, then CUB, C A,
with [J(CUB ) <53 L < 10, and hence by assumption we must have (CUB,,) < %.
Conclude that /.Ln+1 < %/.Ln and that pu(A,) > ‘51 for all n =1,2,.... Then the set
(=1 A, must be an atom. Part (b): First show that when d is a simple right con-
tinuous decreasing function on [0,0) there exists a measurable f on X such that
f* = d. For general continuous functions, use approximation. Part (c): Letr = ft(A)
and define A} = {x: |g(x)| > g"(¢)} and Ax = {x: |g(x)] > g*(r)}. Then A} C A,
and (A;) <1 < p(A;). Pick A such that A; C A C A, and p(A) =1 = u(A) by
part (a). Then [;gdu = fxgxgdu = Jo (gx;)"ds = j;)“(A) g*(s)ds. Part (d): Let
f= szv 1 ajXa; Where ap > ap > --- > ay >0 and the A; are pairwise disjoint.
Write f as Zj 1b/XB,’ where b; = (aj ajr1)and Bj=A U---UA;. Pick§~ as in
part (c). Then 31 - C BN and the function f; = ¥ i=1bj xB/ has the same distri-
bution function as f. It follows from part (c) that [y figdu = [y f*(s)g"(s)ds. The
case of a general function f follows from that in which f is simple using Exercise
1.4.1 and approximation. |

sup
h: dh =df
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1.4.6. (Aoki [5]/ Rolewicz [224]) Let || . || be a nonnegative functional on a vector
space X that satisfies
(et < K ([fel} =+ [J[1)

for all x and y in X. (To avoid trivialities, assume that K > 1.) Then for o defined by
the equation
(2K)* =2 (<1,

we have
[Pt [ * < [ [l

forallnm=1,2,... and all x{, xp, ..., x, in X.

[Hint: Quasilinearity implies that [x; 4 -+ + x,|| < max;<;<,[(2K)”||x;||] for all
X1,...,%, in X (use that K > 1). Define H : X — R by setting H(0) =0 and H(x) =
27193 271 < ||x||* <27. Then ||x|| < H(x) < 2!/%||x|| for all x € X. Prove by induc-
tion that ||x; + - +x,||* <2(H(x1)* + -+ H(x,;)*). Suppose that this statement
is true when n = m. To show its validity for n = m + 1, without loss of generality
assume that ||x]| > ||x2|| > -+ > ||xm+1]|- Then H(x;) > H(xp) > --+ > H(Xp41)-
Assume that all the H(x j)’s are distinct. Then since H(x;)* are distinct powers of
2, they must satisfy H(x;)* < 27/"1H(x;)*. Then

e+ [ < [ max (2K) )
< J
- [ <]<ar§+1 ZK H(xj)}
<[ max (2K)72"/%279/%H (x))]“
l<]<m+l
=2H(x)"

<2(H(x1)*+- -+ H(xpg1)%).

We now consider the case that H(x;) = H(xj4) for some 1 < j < m. Then for some
integer r we must have 2! < [Jx;41[|% < ||lx;||* < 2" and H(x;) = 2"/%. Next note
that

b +xj 1% < K (gl + g ) < K*(227)* <27

This implies
H(xj+x51)* <2 =2" 42" = H(x;)* + H(xj11)%.

Now apply the inductive hypothesis to xi,...,Xj_1,Xj +Xj41,Xj+1,...,%, and use
the previous inequality to obtain the required conclusion.]

1.4.7. (Stein and Weiss [264]) Let (X, ) and (Y, V) be measure spaces. Let Z be
a Banach space of complex-valued measurable functions on Y. Assume that Z is
closed under absolute values and satisfies HfHZ = H |f] Hz Suppose that 7' is a linear
operator defined on the space of measurable functions on (X, it) and taking values in
Z. Suppose that for some constant A > 0 we have the restricted weak type estimate
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1T (xe)|, < Au(E)"?

for all E measurable subsets of X and some 0 < p < 0. Then there is a constant
C(p) > 0 such that

17Nl < CPIA|F] s

for all f in the domain of 7.

[Hint: Let f = le\’:lanEj >0, where a; > ay > --- > ay >0, u(E;j) < eo pair-
wise disjoint. Let F; = E{U---UEj, By =0, and B; = u(Fj) for j > 1. Write
f = ):1}/:1 (aj — ajH)xF]., where aN+1 = 0. Then

17Ol = 1T,

< Y (aj—aj )| T(xr)|l,

<AN —a; Fy)'/r

<AY (aj—aj)(u(F))

=AY a8 —B]")
j=0

=p 'Allf]

Lp:l>

where the penultimate equality follows summing by parts; see Appendix F]

14.8. Let0O< p<ooand 0 < g < gp <oo. Leta,f,q> 0.

(a) Show that the function f(¢) =t~ %(logt ™! )7[39((0,1) (t) lies in LP4(R) if and only
if either p > 1/0¢ or both p = l/a and g > 1/[3

(b) Show that the function ¢~ ’ (logt~')~ a Z(0,1)(t) lies in LP42(R) but not in
P (R)

(c) On R” construct examples to show that LP+4! ; LPa2,

(d) On a general nonatomic measure space (X, i) prove that there does not exist a
constant C(p,q1,q2) > 0 such that for all f in LP92(X) the following is valid:

HfHLP"Il < C(paqvaZ)HfHLp‘qz .

1.4.9. (Stein and Weiss [263]) Let LP(®) denote the weighted L” space with mea-
sure @(x)dx. Let T be a sublinear operator that maps

T: LP(ay) — L1 (w),
T L (@) — L9 (w),

for some pg # p1, where 0 < po, p1,90,q1 < e and @), @1, @ are positive functions.

Suppose that
1 1-6 6 1 1-6 6

)

Pe pPo P1 qe q90 q1
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Then T maps
0
GZpe  ppe

LPB ( wl ) — L‘]eape (a)) .

[Hint: Define
L(f) = (@1/ o) "7 f

and observe that for each 6 € [0, 1], L maps

1-9 1
LPe ( 0”0 7o a)lplpe) — LPo ((a)(’)]‘wl_po)prpo)

isometrically. Then apply the classical Marcinkiewicz interpolation theorem to the
sublinear operator T o L™, and the required conclusion easily follows.]

1.4.10. (Kalton [ 147 ]/Stein and Weiss [266] ) Let A, be a sequence of positive num-
bers with ¥, A, < land ¥, A, log(%n) =K < oo,

(a) Let f, be a sequence of complex-valued functions in L' (X) such that || f, || ;... <
1 uniformly in n. Prove that ¥, A, f, lies in L'**(X) with norm at most 2(K + 2).
(This property is referred to as the logconvexity of L))

(b) Let T, be a sequence of sublinear operators that map L!(X) to L= (Y) with
norms ||7; ||, ;1 < B uniformly in n. Use part (a) to prove that ¥, A, T, maps
L'(X) to L'*(Y) with norm at most 2B(K +2).

(c) Given 6 > 0 pick 0 < € < & and use the simple estimate

=

({ i 2—5nfn > (X} Z {Z—Snfn )Z—En })
n=1

to obtain a simple proof of the statements in part (a) and (b) when A, = 270n =
1,2,..., and zero otherwise.

[Hmt Part (a): For fixed o > 0, write f,, = ity + vy + wp, Where u, = fu | <
Vp = fnxmbﬁ and w, = fnx%<|fn‘5% Letu=Y,Au,, v=Y, A, and

w
L Anwy. Clearly [u] < 0t/2. Also {v # 0} C U, {|fu| > 51 }: hence u({v #0}) < 2,
Finally,

<,
2

Jowlan < En [ 1lzg e g d

<X [ a@rap+ [y @ ap]

<K+1.

Using p({Ju+v+w|>a}) <pu({lul > a/2}) + p({[v] # 0}) + n({|w] > a/2}),
deduce the conclusion.]

1.4.11. Construct a sequence of functions f; in L'*(R") and a function f € L'
such that || fi — f|| ;. — 0 but || fi|| 1. — o0 as k — co.
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1.4.12. (a) Suppose that X is a quasi-Banach space and let X* be its dual (which is
always a Banach space). Prove that for all 7 € X* we have

I]

.= sup |T(x)|.
X Xl()l

X
[lxllx <1

(b) Now suppose that X is a Banach space. Use the Hahn—Banach theorem to prove
that for every x € X we have

sup |T(x)].
Tex*
7 xx<t

el =

Observe that this result may fail for quasi-Banach spaces. For example, if X = L1>,
every linear functional on X* vanishes on the set of simple functions.

(c) Take X = LP! and X* = LP"*. Then for 1 < p < oo both of these spaces are
normable. Conclude that

Flips = swp || fean|.

(K s

||f’|LI’=°° A~ sup /fgdu‘.
Il <t 1/X

1.4.13. Let 0 < p,q < 0. Prove that any function in L”9(X, 1) can be written as

f= Z Cnfus

Nn=—oo

where f,, is a function bounded by 2~"/7, supported on a set of measure 2", and the
sequence {cy }¢ lies in £7 and satisfies

1 1 1 1
2 (logZ)qH{ck}ka = Hf”uui B H{Ck}k||m2”(10g2)".
[Hint: Let ¢, = 2P f#(27) and f, = ;' fxa, Where A, is as in (1.4.27).]

1.4.14. (T. Tao) Let 0 < p < 0,0 < y< 1,A > 0, and let f be a measurable function
on a measure space (X, ).

(a) Suppose that H f H e < A. Then for every measurable set E' of finite measure
there exists a measurable subset £’ of E with L (E") > yu(E) such that

'/Elfdu‘ <CARE) 7,

where Cy = (1—y)~!/7.
(b) Conversely, if the last condition holds for some Cy,A < o and all measurable
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subsets E of finite measure, then Hf| < cyA, where ¢y = Cy41/”y_1 V2.

LD
(¢) Conclude that
1
||f| e 2 SUP inf 'u(E)_H'E fd/,t’,
ECX E'CE E

0<p(E)<eo u(E")>4u(E)

[Hint: Part (a): Take E' = E\ {|f| > A(1—7) » (E)_%} Part (b): Given o > 0,
note that the set {|f| > ot} is contained in

{Ref>F}u{mf>%}U{Re f<—F}U{Imf<—S%}
For E any of the preceding four sets, let E’ be a subset of it with measure at

least YU (E) such as in the hypothesis. Then ] e f d,u| y,u( ), which gives
1l =417y Cyv/2A]
1.4.15. Given a linear operator 7" defined on the set of measurable functions on

a measure space (X, ) and taking values in the set of measurable functions on a
measure space (Y, V), define its “transpose” T” via the identity

| 1(nsav= [ T'(0)fau

for all measurable functions f on X and g on Y, whenever the integrals converge.
Let T be such a linear operator given in the form

9= [ Ko s dut),

where K is measurable and bounded by some constant M > 0. Suppose that 7" maps
L'(X) to L'=(Y) maps L' (Y) to L'*(X) with norm ||T"|.
Show that for all 1 < p < oo there exists a constant C, that depends only on p and is
independent of M such that T maps L?(X) to L?(Y) with norm

1 _1
17l oryoy < CollTNZ T )7

[Hint: For R > 0, let % be the set of all (A, B), where A is a measurable subset of
X with u(A) <R and B is a measurable subset of ¥ with v(B) < R. Let %y be
the set of all (A,B) in % such that |[K(x,y)| <M for all x € A and y € B. Also let
M, =M, (R,M) < oo be the smallest constant such that for all (A, B) € % » we have
| T () dv] < Myu(A)Pv(B)7 . Let § > 0 and (A,B) € Bp. If 1(A) < 5v(B),
use Exercise 1.4.14 to find a B with v(B') > $v(B) such that | [y T(xa)dV| <

¢|T||i(A) < 87 | T||e(A)7v(B)7 . Then v(B\ B) < Lv(B) and we have

/ T(xa)dv|<M
B\B'
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Summing, we obtalnM <My2 i +C5P |T]|. Whenever v(B) < 8~ uu(A), write
| [5T (xa dv‘ = | [T (8 du’ and use Exercise 1.4.14 to find a set A" with
u(A ) Tu(A) and | [y T (x5)dt| < c||T*||v(B). Argue similarly to obtain M), <
M2 ’ +cd , T H Pick a suitable 0 to optimize both expressions. Obtain that
M, is independent of R and M. Considering By = BN{T(xa) > 0} and B_ =

1 1
BN{T(x4) <0}, obtain that [ |T(xa)|dV < 2M,u(A)? v(B)? for (A,B) € Bru.
Use Fatou’s lemma to remove the restriction that (A,B) € % y. Finally, use the
characterization of || . | obtained in Exercise 1.1.12 with » = 1 to conclude that

e
7 (xa)|

1 _1 1
e SG||T]| 7|7 P e(a)7]

1.4.16. (Bourgain [29]) Let 0 < po < p; <~ and 0 < &, B,A, B < oo. Suppose that
a family of sublinear operators 7} is of restricted weak type (po, po) with constant
A27*% and of restricted weak type (p1, p1) with constant B2 B for all k € Z. Show
that there is a constant C = C(ct, 8, po, p1) such that Y.z Ty is of restricted weak
type (p, p) with constant CA'~®B®, where 6 = a/ (o + B) and

1 1-6 6
J— + —.
p Po P1

[Hint: Estimate u({|T (x£)| > A}) by the sum Yy 1 ({|T(x£)| > cA2% (k=K 1)
Yheko L({|Tk(xg)| > cA2P'~k0)}), where c is a suitable constant and 0 < & < a,
B < B’ < oo. Apply the restricted weak type (po, po) hypothesis on each term of the
first sum, the restricted weak type (p1, p1) hypothesis on each term of the second
sum, and choose kq to optimize the resulting expression.}

APPENDIX: SOME MULTILINEAR INTERPOLATION

Multilinear maps are defined on products on linear spaces and take values in another
linear space. We are interested in the situation that these linear spaces are function
spaces. Let (X1, 1), ..., (X, ) be measure spaces, let Z; be spaces of measurable
functions on X;, and let T be a map defined on Z; X --- X &, and taking values in
the set of measurable functions on another measure space (Z, ). Then T is called
multilinear if for all f;, g; in Z; and all scalars A we have

|T(f177)’f_]’7fm)‘ = |A’HT(f117fj77fm)|7
T(f1,~~~,fj+gj7~-;fm) T(fl,-~.7fj,~..,fm)+T(f1,.-~,gj,~~~,fm).

If 2; are dense subspaces of LPj (thuj) and T is a multlinear map defined on
[T}2, Z; and satisfies

701 o)l <€A

LP1(X)) Hmeme (Xm)’
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forall f; € &}, then T has a bounded extension from LF! x - - x LP" — Z. The norm
of a multilinear map 7 : LP! X --- x LPm — Z is the smallest constant C such that
the preceding inequality holds and is denoted by

HT||LPI><--.><Lﬂm4,Z'

Suppose that 7 is defined on H;f’:l 2}, where each &; contains the simple func-
tions. We say that T is quasimultilinear if there is a K > 0 such that forall 1 < j <m,
all fj, gjin Z;, and all A € C we have

T(fr s AL fm)l = AT (froes fi oo Sl
|T(f1a7fj+g]77fm)| S K(‘T(fla7fj7afm)|+|T(f17vg]a7f;7’l)|)

In the special case in which K = 1, T is called multisublinear.

1.4.17. Let T be a multilinear map defined on the set of simple functions of the
product of m measure spaces (X, 1) X -+ X (X, ) and taking values in the set
of measurable functions on another measure space (Z,0). Let | < p ik Soeoforl <
k<mand je€ {0,1} and also let 1 < p; <eofor j € {0,1}. Suppose that T satisfies

HT(f17'~'afm)Hij SMijlHLle HﬁnHLI’jNH j:OaL

for all simple functions f; on X;. Let (1/¢,1/q1,...,1/qn) lie on the open line seg-

ment joining (1/po,1/pot;---,1/pom) and (1/p1,1/p11,--.,1/pim) in R™*1 Then
for some 0 < 8 < 1 we have

1 1-6 0 1 1-6 0
= +—, — = +—, 1<k<m.
q Po P1 dk Pok Pik

Prove that 7 has a bounded extension from L1 x --- x L9m to L4 that satisfies

1T (Al < Mo MY Al oy = ol

for all f € L% (Xy).
[Hint: Adapt the proof of Theorem 1.3.4.]

1.4.18. Let (Xi,u1),..., (X, n) be measure spaces, let Z; be spaces of mea-
surable functions on X; that contain the simple functions, and let 7 be a quasi-
multilinear map defined on Z; X --- x %, that takes values in the set of measurable
functions on another measure space (Z,0). Let 0 < p jk Soofor 1 < j<m+1
and 1 < k <m, and also let 0 < p; < o for 1 < j < m+ 1. Suppose that for all
1 <j<m+1,T satisfies

1

e
- SM,ul(El)pjl "'l»Lm(Em)pjm

17 ey ) s

for all sets Ej, of finite t; measure. Assume that the system
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1/pn l/prz ... 1/pm 1\ [0 1/p1
1/[)21 1/1722 l/pzm 1 (o)) 1/[72
1/17ml 1/Pm2 1/pmm 1 Om 1/pm
1/Pmsin 1/Pms1y2 -+ V/Pmsym 1 T 1/pmy1
has a unique solution (o1,...,0,,T) € R with not all 0; = 0. (This assumption

implies that the determinant of the displayed square matrix is nonzero.) Suppose
that the point (1/¢,1/q1,...,1/gm) lies in the open convex hull of the m + 1 points
(1/pjs1/pjts-- s 1/pjm) in R™HL 1T < j<m+1.Let O < ty,t < oo satisfy

1 1
— Z —
0 #0 I 4

Prove that there exists a constant C that depends only on the pj’s, gi’s, p;’s, and on
K (but not on M) such that for all f; in &; we have

HT(f“"'vfm)HLqJ < CMHf' HLqm ||fm||L‘Ime .

[Hint: Split the functions f; as in the proof of Theorem 1.4.19. For simplicity, you
may want to prove this result only when m = 2. }

1.4.19. (O’ Neil [207] ) Show that

Hf*g s S CP#:Sl:SszHLP»Tl gHL‘”Z’
whenever 1 < p,q,r < oo, 0 < 51,57 < oo, %Jré = %Jrl, and %Jré = % Also
deduce Holder’s inequality for Lorentz spaces,

Hfg s = CP-!I-,Sl-,Ssz||LPvfl |g||L‘1-S2’

1,1 1 1 1 1
wherenowO<p,q,r§°°,0<S1,Sz§°°,;+*:;,and§+g:’

q s’
[Hint: Use Exercise 1.4.17.]

1.4.20. (Grafakos and Tao [112]) Suppose that 7' is a multilinear operator of the
form

T(flavfm)(y):/xl ¥ K(X],...,Xm,y)fl()q)"'fm(xm)dlil()(])"'dﬂm(xm),

where the kernel K is bounded by some constant M. The jth transpose of T is the
m-linear operator whose kernel is obtained from K by interchanging the variables
x; and y. Suppose that 7 and all of its transposes map L!(X;) x -+ x L!(X,,) to
L'/m=(y). Conclude that T maps LP! (X;) x --- x LP"(X,,) to LP(Y) when 1 < p; <
oo, p<eo,and 1/p=1/p;+---+ 1/p, with a bound independent of the kernel K.
[Hint: Take p > 1 and use the same idea as in Exercise 1.4.15. The full range of p’s
follows by interpolation. |
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HISTORICAL NOTES

The modern theory of measure and integration was founded with the publication of Lebesgue’s
dissertation [169]; see also [170]. The theory of the Lebesgue integral reshaped the course of
integration. The spaces L ([a,D]), | < p < oo, were first investigated by Riesz [217], who obtained
many important properties of them. A rigorous treatise of harmonic analysis on general groups
can be found in the book of Hewitt and Ross [125]. The best possible constant C) in Young’s
inequality || f *gllrrr) < Cogrllfllr v 18l o (rry» % + % = % +1, 1< p,q,r <o, was shown by
Beckner [16] to be Cpq, = (B,ByB,)", where B2 = p'/ (p/)~\/V'.

Theorem 1.3.2 first appeared without proof in Marcinkiewicz’s brief note [187]. After his death
in World War II, this theorem seemed to have escaped attention until Zygmund reintroduced it in
[302]. This reference presents the more difficult off-diagonal version of the theorem, derived by
Zygmund. Stein and Weiss [264] strengthened Zygmund’s theorem by assuming that the initial
estimates are of restricted weak type whenever 1 < po, p1,qo,q1 < oo. The extension of this result
to the case 0 < pg, p1,90,91 < 1 as presented in Theorem 1.4.19 is due to the author; the critical
Lemma 1.4.20 was suggested by Kalton. Equivalence of restricted weak type (1, 1) and weak type
(1, 1) properties for certain maximal multipliers was obtained by Moon [201]. The following partial
converse of Theorem 1.2.13 is due to Stepanov [268]: If a convolution operator maps L' (R") to
L% (R") for some 1 < g < oo then its kernel must be in L9,

The extrapolation result of Exercise 1.3.7 is due to Yano [294]; see also Zygmund [304, pp.
119-120]. We refer to Carro [47] for a generalization. See also the related work of Soria [250] and
Tao [274].

The original version of Theorem 1.3.4 was proved by Riesz [220] in the context of bilinear
forms. This version is called the Riesz convexity theorem, since it says that the logarithm of the
function M (o, B) = infy, | Yo X ajkx_,-yk} Hx||;}a ||yH1;}ﬁ (where the infimum is taken over all
sequences {xj}’/’-:l in 01/ and {n i, in ¢'/B) is a convex function of (o, B) in the triangle 0 <
o,f <1, o +B > 1. Riesz’s student Thorin [278] extended this triangle to the unit square 0 <
o,B < 1 and generalized this theorem by replacing the maximum of a bilinear form with the
maximum of the modulus of an entire function in many variables. After the end of World War II,
Thorin published his thesis [279], building the subject and giving a variety of applications. The
original proof of Thorin was rather long, but a few years later, Tamarkin and Zygmund [272] gave
a very elegant short proof using the maximum modulus principle in a more efficient way. Today,
this theorem is referred to as the Riesz—Thorin interpolation theorem.

Calderodn [34] elaborated the complex-variables proof of the Riesz—Thorin theorem into a gen-
eral method of interpolation between Banach spaces. The complex interpolation method can also be
defined for pairs of quasi-Banach spaces, although certain complications arise in this setting; how-
ever, the Riesz—Thorin theorem is true for pairs of L spaces (with the “correct” geometric mean
constant) for all 0 < p < o and also for Lorentz spaces. In this setting, duality cannot be used, but
a well-developed theory of analytic functions with values in quasi-Banach spaces is crucial. We
refer to the articles of Kalton [148] and [149] for details. Complex interpolation for sublinear maps
is also possible; see the article of Calderén and Zygmund [38]. Interpolation for analytic families
of operators (Theorem 1.3.7) is due to Stein [251]. The critical Lemma 1.3.8 used in the proof was
previously obtained by Hirschman [126].

The fact that nonatomic measure spaces contain subsets of all possible measures is classical.
An extension of this result to countably additive vector measures with values in finite-dimensional
Banach spaces was obtained by Lyapunov [183]; for a proof of this fact, see Diestel and Uhl [75,
p. 264]. The Aoki—Rolewicz theorem (Exercise 1.4.6) was proved independently by Aoki [5] and
Rolewicz [224]. For a proof of this fact and a variety of its uses in the context of quasi-Banach
spaces we refer to the book of Kalton, Peck, and Roberts [150].

Decreasing rearrangements of functions were introduced by Hardy and Littlewood [123]; the
authors attribute their motivation to understanding cricket averages. The L” spaces were intro-
duced by Lorentz in [179] and in [180]. A general treatment of Lorentz spaces is given in the
article of Hunt [134]. The normability of the spaces L4 (which holds exactly when 1 < p < oo
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and 1 < g < o) can be traced back to general principles obtained by Kolmogorov [160]. The in-
troduction of the function f**, which was used in Exercise 1.4.3, to explicitly define a norm on
the normable spaces L”¢ is due to Calderdn [34]. These spaces appear as intermediate spaces in
the general interpolation theory of Calderén [34] and in that of Lions and Peetre [172]. The latter
was pointed out by Peetre [211]. For a systematic study of the duals of Lorentz spaces we refer to
Cwikel [62] and Cwikel and Fefferman [63], [64]. An extension of the Marcinkiewicz interpola-
tion theorem to Lorentz spaces was obtained by Hunt [133]. Standard references on interpolation
include the books of Bennett and Sharpley [20], Bergh and Lofstrom [22], Sadosky [232], and
Chapter 5 in Stein and Weiss [265].

Multilinear complex interpolation (cf. Exercise 1.4.16) is a straightforward adaptation of the
linear one (cf. Theorem 1.3.4); see Zygmund [304, p. 106] and Berg and Lofstrom [22]. The mul-
tilinear real interpolation method is more involved. References on the subject include (in chrono-
logical order) the articles of Strichartz [269], Sharpley [241] and [242], Zafran [297], Christ [48],
Janson [139], and Grafakos and Kalton [105]. The latter contains, in particular, the proof of Exer-
cise 1.4.17.



Chapter 2

Maximal Functions, Fourier Transform, and
Distributions

We have already seen that the convolution of a function with a fixed density is a
smoothing operation that produces a certain average of the function. Averaging is an
important operation in analysis and naturally arises in many situations. The study of
averages of functions is better understood and simplified by the introduction of the
maximal function. This is defined as the largest average of a function over all balls
containing a fixed point. Maximal functions play a key role in differentiation theory,
where they are used in obtaining almost everywhere convergence for certain integral
averages. Although maximal functions do do not preserve qualitative information
about the given functions, they maintain crucial quantitative information, a fact of
great importance in the subject of Fourier analysis.

Another important operation we study in this chapter is the Fourier transform.
This is as fundamental to Fourier analysis as marrow is to the human bone. It is
the father of all oscillatory integrals and a powerful transformation that carries a
function from its spatial domain to its frequency domain. By doing this, it inverts
the function’s localization properties. Then magically, if applied one more time, it
gives back the function composed with a reflection. More important, it transforms
our point of view in harmonic analysis. It changes convolution to multiplication,
translation to modulation, and expanding dilation to shrinking dilation, while its
decay at infinity encodes information about the local smoothness of the function.
The study of the Fourier transform also motivates the launch of a thorough study
of general oscillatory integrals. We take a quick look at this topic with emphasis on
one-dimensional results.

Distributions changed our view of analysis as they furnished a mathematical
framework for many operations that did not exactly qualify to be called functions.
These operations found their mathematical place in the world of functionals ap-
plied to smooth functions (called test functions). These functionals also introduced
the correct interpretation for many physical objects, such as the Dirac delta func-
tion. Distributions quickly became an indispensable tool in analysis and brought a
broader perspective.

L. Grafakos, Classical Fourier Analysis, Second Edition, 77
DOI: 10.1007/978-0-387-09432-8 2, © Springer Science+Business Media, LLC 2008
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2.1 Maximal Functions

Given a Lebesgue measurable subset A of R”, we denote by |A| its Lebesgue mea-
sure. For x € R" and r > 0, we denote by B(x, r) the open ball of radius r centered at
x. We also use the notation aB(x, ) = B(x,ad), for a > 0, for the ball with the same
center and radius ad. Given 6 > 0 and f a locally integrable function on R”, let

Avg |f / dy
B(x,5>| = X5| (x.8) )l

denote the average of | f| over the ball of radius 6 centered at x.

2.1.1 The Hardy-Littlewood Maximal Operator

Definition 2.1.1. The function

M) = sup Ave 7] =sup— [ |r(x—)lay
5>0B(x,8) §>0Vn [yl<é

is called the centered Hardy—Littlewood maximal function of f.

Obviously we have M(f) = M(|f]) > 0; thus the maximal function is a positive
operator. Information concerning cancellation of the function f is lost by passing
to M(f). We show later that M(f) pointwise controls f (i.e., M(f) > |f| almost
everywhere). Note that M maps L™ to itself, that is, we have

IV = < 1]

Let us compute the Hardy—Littlewood maximal function of a specific function.

Example 2.1.2. On R, let f be the characteristic function of the interval [a,b]. For

€ (a,b), clearly M(f) = 1. For x > b, a simple calculation shows that the largest
average of f over all intervals (x — §,x+ 0) is obtained when 8§ = x — a. Similarly,
when x < q, the largest average is obtained when 6 = b — x. Therefore,

(b—a)/2|x—D| when x <a,
M(f)x)=<1 when x € (a,b),
(b—a)/2|x—d| when x> b.

Observe that M(f) has a jump at x = a and x = b equal to one-half that of f.

M is a sublinear operator and never vanishes. In fact, we have that if M(f)(xo) =
0 for some xp € R”, then f = 0 a.e. Moreover, if f is compactly supported, say in
|x| <R, then
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Al 1
vo ([ +R)"

for |x| > R, where v, is the volume of the unit ball in R”. Equation (2.1.1) implies
that M(f) is never in L' (R") if f # 0 a.e., a strong property that reflects a certain
behavior of the maximal function. In fact, if g is in L] . and M(g) is in L' (R"), then
g =0a.e. To see this, use (2.1.1) with gg(x) = g(x) x|y <r to conclude that gg(x) =0
for almost all x in the ball of radius R > 0. Thus g = 0 a.e. in R”. However, it is true
that M(f) is in L' when f is in L!.

A related analogue of M(f) is its uncentered version M(f), defined as the supre-
mum of all averages of f over all open balls containing a given point.

M(f)(x) = 2.1.1)

Definition 2.1.3. The uncentered Hardy-Littlewood maximal function of f,

M(f)(x)= sup Avg|f],
550 B(y,8)
[y—x|<é

is defined as the supremum of the averages of |f| over all open balls B(y,0) that
contain the point x.

Clearly M(f) < M(f); in other words, M is a larger operator than M. However,
M(f) <2"M(f) and the boundedness properties of M are identical to those of M.

Example 2.1.4. On R, let f be the characteristic function of the interval I = [a,b].
For x € (a,b), clearly M(f)(x) = 1. For x > b, a calculation shows that the largest
average of f over all intervals (y — 8,y + &) that contain x is obtained when 6 =
$(x—a) and y = ¥(x+a). Similarly, when x < a, the largest average is obtained

when 8 = 1(b—x) and y = 1 (b+x). We conclude that

(b—a)/lx—D| when x <a,
M(f)(x)=41 when x € (a,b),
(b—a)/lx—al when x > b.

Observe that M does not have a jump at x = @ and x = b and that it is comparable to

the function (1+ diSt‘I(‘x’I) ) !

We are now ready to obtain some basic properties of maximal functions. We need
the following simple covering lemma.

Lemma 2.1.5. Let {By,Bs,...,By} be a finite collection of open balls in R". Then

there exists a finite subcollection {Bj, ,...,B;,} of pairwise disjoint balls such that
! k
Y |B;.|=37"|UBi|. (2.12)
r=1 i=1

Proof. Let us reindex the balls so that
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Bi| > [Ba| > -+ > |By.

Let j; = 1. Having chosen ji, jo,..., ji, let ji11 be the least index s > j; such that
Ufn:1 Bj,, is disjoint from By. Since we have a finite number of balls, this process will
terminate, say after / steps. We have now selected pairwise disjoint balls B, ,...,B;,.
If some B, was not selected, that is, m ¢ {j,...,ji}, then B, must intersect a
selected ball B;, for some j, < m. Then B, has smaller size than Bj, and we must
have B, C 3B;,. This shows that the union of the unselected balls is contained in the
union of the triples of the selected balls. Therefore, the union of all balls is contained
in the union of the triples of the selected balls. Thus

l

U3,

r=1

l ]
r=I1 r=I1

and the required conclusion follows. 0

We are now ready to prove the main theorem concerning the boundedness of the
centered and uncentered maximal functions M and M, respectively.

Theorem 2.1.6. The uncentered Hardy-Littlewood maximal function maps L' (R")
to L' (R"™) with constant at most 3" and also LP(R") to LP(R") for 1 < p < o
with constant at most 3"/? p(p —1)7L. The same is true for the centered maximal
operator M.

We note that operators that map L' to L' are said to be weak type (1,1).
Proof. Since M(f) > M(f), we have
{xeR": [M(/)(x)] > o} C {x e R™: [M(f)()| > ),
and therefore it suffices to show that

{xeR": |M(f)(x)|>a}|g3"”fllﬂ. 2.1.3)

‘We claim that the set
Eq={xeR": [M(f)(x)| > o}

is open. Indeed, for x € E, there is an open ball B, that contains x such that the av-
erage of | f| over By is strictly bigger than ¢. Then the uncentered maximal function
of any other point in B, is also bigger than o, and thus B, is contained in E. This
proves that E is open.

Let K be a compact subset of Eq. For each x € K there exists an open ball B,
containing the point x such that

/B.|f(y)|dy>a|Bx|~ (2.1.4)
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Observe that B, C Ey for all x. By compactness there exists a finite subcover
{By,,...,By} of K. Using Lemma 2.1.5 we find a subcollection of pairwise dis-
joint balls Bx_,.1 A ’B".iz such that (2.1.2) holds. Using (2.1.4) and (2.1.2) we obtain

k
K| < ’UBX
i=1

n 1 3
2|Bx,,\f 21/ Dldy <7 [ 170)lay.

since all the balls By; are disjoint and contained in E. Taking the supremum over
all compact K C Ej, and using the inner regularity of Lebesgue measure, we deduce
(2.1.3). We have now proved that M maps L! — L' with constant 3”. It is a trivial
fact that M maps L™ — L with constant 1. Since M is well defined and finite a.e.
on L' + L=, it is also on LP(R") for 1 < p < . The Marcinkiewicz interpolation
theorem (Theorem 1.3.2) implies that M maps L?(R") to L?(R") for all 1 < p < eo.
Using Exercise 1.3.3, we obtain the following estimate for the operator norm of M
on L7 (R"):

<3

p3

||MHLPHL1) < — 1 (2.1.5)

Observe that a direct application of Theorem 1.3.2 would give the slightly worse
bound of 2( 527 )P3P O
Remark 2.1.7. The previous proof gives a bound on the operator norm of M on
LP(R") that grows exponentially with the dimension. One may wonder whether this

bound could be improved to a better one that does not grow exponentially in the
dimension n, as n — oo. This is not possible; see Exercise 2.1.8.
Example 2.1.8. Let R > 0. Then there are dimensional constants ¢, and ¢}, such that
R cy R"
e < M(Xpor)(¥) < T (2.1.6)
(] -+ Ry = M H00) ) = T

Since these functions are not integrable over R”, it follows that M does not map
L'(R") to L' (R™).
Next we estimate M(M (o)) (x). First we write

R" - d R"
(W Ry = ABOR T k;o (Rt 2FR)n ABO2TR\BO.2R) -

Using the upper estimate in (2.1.6) and the sublinearity of M, we obtain

R" i 1
M(W) (x) <M(xp(o.r)*) +k§6 WM<XB(O,2"+1R))<X)
cnR" i 1 cn (2KFIR)"
(X[ +R)r & (1 42K)m ([x| 4 2KHIR)
C,log(e+|x|/R)
= (IR
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where the last estimate follows by summing separately over k satisfying 2¢+! <
|x|/R and 2¥*! > |x|/R. Note that the presence of the logarithm does not affect the
L? boundedness of this function when p > 1.

2.1.2 Control of Other Maximal Operators

We now study some properties of the Hardy—Littlewood maximal function. We be-
gin with a notational definition that we plan to use throughout this book.

Definition 2.1.9. Given a function g on R"” and € > 0, we denote by g the following
function:
ge(x) =& "g(e ). (2.1.7)

As observed in Example 1.2.16, if g is an integrable function with integral equal
to 1, then the family defined by (2.1.7) is an approximate identity. Therefore, convo-
lution with g, is an averaging operation. The Hardy-Littlewood maximal function
M(f) is obtained as the supremum of the averages of a function f with respect to
the dilates of the kernel k = v, ! XB(0,1) in R"; here v, is the volume of the unit ball
B(0,1). Indeed, we have

1
M) = sup s [ 1) 7o (3 ) dy

= sup(|f]*ke)(x).
e>0

Note that the function k = v, ! XB(0,1) has integral equal to 1, and the operation given
by convolution with k¢ is indeed an averaging operation.

It turns out that the Hardy—Littlewood maximal function controls the averages of
a function with respect to any radially decreasing L! function. Recall that a function
f on R" is called radial if f(x) = f(y) whenever |x| = |y|. Note that a radial func-
tion f on R” has the form f(x) = ¢(|x|) for some function ¢ on RT. We have the
following result.

Theorem 2.1.10. Let k > 0 be a function on [0,00) that is continuous except at a
finite number of points. Suppose that K (x) = k(|x|) is an integrable function on R"
that satisfies

K(x) > K(y), whenever |x| <|y| (2.1.8)

(i.e., k is decreasing). Then the following estimate is true:
sulg(|f\*l(£)(x) < HKHLIM(f)(x) (2.1.9)
&>

for all locally integrable functions f on R".

Proof. We prove (2.1.9) when K is radial, satisfies (2.1.8), and is compactly sup-
ported and continuous. When this case is established, select a sequence K of radial,
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compactly supported, continuous functions that increase to K as j — oo. This is pos-
sible, since the function & is continuous except at a finite number of points. If (2.1.9)
holds for each K, passing to the limit implies that (2.1.9) also holds for K. Next,
we observe that it suffices to prove (2.1.9) for x = 0. When this case is established,
replacing f(¢) by f(z +x) implies that (2.1.9) holds for all x.

Let us now fix a radial, continuous, and compactly supported function K with
support in the ball B(0,R), satisfying (2.1.8). Also fix an f € L} _ and take x = 0.
Let e; be the vector (1,0,0,...,0) on the unit sphere S"=1. Polar coordinates give

|f(y)|Ke(—y)dy = // F(r0)|Ke(re))r"'do dr. (2.1.10)
R)l

Define functions
F) = [ 1£to)]de.
G(r) = / F(s)s" ds,
Jo

where d@ denotes surface measure on S" 1. Using these functions, (2.1.10), and
integration by parts, we obtain

ER
[0k dy = [ F0r Ketrer dr
R” 0
ER
— G(eR)Ke(eRer) — G(0)Ke (0) — /0 G(r)dKe(re1)
—/ G(r)d(—Ke(rer)), 2.1.11)

where two of the integrals are of Lebesgue—Stieltjes type and we used our assump-
tions that G(0) =0, K¢(0) < o, G(€R) < oo, and K¢ (€Re; ) = 0. Let v, be the volume
of the unit ball in R”. Since

6= [ Feptas= [ 1f0)ldy <A O
. Jly|<r
it follows that the expression in (2.1.11) is dominated by

M(f)(0)vs /O " Pd(=Ke(rer)) = M(f)(0) /O " e Ko (rer ) dr
= M(£)(0)[|K][,: -

Here we used integration by parts and the fact that the surface measure of the unit
sphere S"~! is equal to nv,. See Appendix A.3. The theorem is now proved. 0

Remark 2.1.11. Theorem 2.1.10 can be generalized as follows. If K is an L' func-
tion on R"” whose absolute value is bounded above by some continuous integrable
radial function K that satisfies (2.1.8), then (2.1.9) holds with HK H 11 Teplaced by
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||K0 || L Such a Ky is called a radial decreasing majorant of K. This observation is
formulated as the following corollary.

Corollary 2.1.12. If a function @ has an integrable radially decreasing majorant
@D, then the estimate

fgg\(f*tpz)(X)l <||@| i M(f)(x)

is valid for all locally integrable functions f on R".

Example 2.1.13. Let

Cn
P(x) = ————,
(1+ )5
where ¢, is a constant such that
P(x)dx=1.

Rl‘l

The function P is called the Poisson kernel. We define L! dilates P; of the Poisson
kernel P by setting
P(x)=t"P(t 'x)

for r > 0. It is straightforward to verify that when n > 2,
2 n )
ﬁpr + Zi d P =0,
j:
thatis, P (x1,...,x,) is @ harmonic function of the variables (xy,...,x,,). Therefore,
for f € LP(R"), 1 < p < oo, the function

u(x,1) = (f+B)(x)

is harmonic in R""! and converges to f(x) in LP(dx) as t — 0, since {P},~0 is an
approximate identity. If we knew that f x P, converged to f a.e. as t — 0, then we
could say that u(x,) solves the Dirichlet problem

n+1
Z&;u =0 on RTI,

=1 (2.1.12)
u(x,0) = f(x) a.e.on R".

Solving the Dirichlet problem (2.1.12) motivates the study of the almost everywhere
convergence of the expressions f * . This is discussed in the next subsection.

Let us now compute the value of the constant ¢,. Denote by w,_; the surface
area of 8"~!. Using polar coordinates, we obtain
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)
w/2
:wnfl/ (sing)"'do (r=tang)
0

where we used the formula for @,_; in Appendix A.3 and an identity in Appendix

A.4. We conclude that

s
21

Cn = n+

T
and that the Poisson kernel on R" is given by

= 1
P(x) = nfl) T (2.1.13)
T (1+x?) 2

Theorem 2.1.10 implies that the solution of the Dirichlet problem (2.1.12) is point-
wise bounded by the Hardy—Littlewood maximal function of f.

2.1.3 Applications to Differentiation Theory

We continue this section by obtaining some applications of the boundedness of the
Hardy-Littlewood maximal function in differentiation theory.

We now show that the weak type (1,1) property of the Hardy-Littlewood max-
imal function implies almost everywhere convergence for a variety of families of
functions. We deduce this from the more general fact that a certain weak type prop-
erty for the supremum of a family of linear operators implies almost everywhere
convergence.

Here is our setup. Let (X, ), (Y, V) be measure spaces and let 0 < p < o, 0 <
g < 0. Suppose that D is a dense subspace of L”(X,u). This means that for all
f €L and all § > 0 there exists a g € D such that Hf— gHU, < 8. Suppose that
for every € > 0, T, is a linear operator defined on L” (X, i) with values in the set of
measurable functions on Y. Define a sublinear operator

T.(f)(x) = sup|Te (f) (x)|- (2.1.14)

>0
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We have the following.

Theorem 2.1.14. Let 0 < p < o0, 0 < g < oo, and T and T, as previously. Suppose
that for some B > 0 and all f € LP(X) we have

1T o < B Ao 2.1.15)

and that for all f € D,
lim 72 () = T(f) (2.1.16)

exists and is finite vV-a.e. (and defines a linear operator on D). Then for all func-
tions f in LP(X, ) the limit (2.1.16) exists and is finite V-a.e., and defines a linear
operator T on LP(X) (uniquely extending T defined on D) that satisfies

TNl o < Bl f] - (2.1.17)

Proof. Given f in L?, we define the oscillation of f:

Or(y) = lilgljgpli?jgp Te(f)(y) = To(f) )]

We would like to show that for all f € L” and é > 0,
v({yeY: Os(y)>6})=0. (2.1.18)

Once (2.1.18) is established, given f € L”(X), we obtain that Of(y) =0 for v-almost
all y, which implies that T;(f)(y) is Cauchy for v-almost all y, and it therefore
converges V-a.e. to some T(f)(y) as € — 0. The operator T defined this way on
L?(X) is linear and extends T defined on D.

To approximate O we use density. Given 11 > 0, find a function g € D such that
|f =g, <. Since Tz (g) — T(g) v-a.e, it follows that Oy = 0 v-a.e. Using this
fact and the linearity of the T;’s, we conclude that

Or(y) < O0g(y) +05-¢(y) = Of—(y) v-a.e.

Now for any 6 > 0 we have

V{y €Y : Op(y) > 8}) <v({yeY: Op,(y)>6})
<v({yeY:2T.(f—g)(y) > 6}
281 ~gl|,,/8)"

(2B1/8)7 .

(

IN A

Letting 1 — 0, we deduce (2.1.18). We conclude that T;(f) is a Cauchy sequence,
and hence it converges v-a.e. to some T(f). Since |T(f)| < |T.(f)|, the conclusion
(2.1.17) of the theorem follows easily. ]

We now derive some applications. First we return to the issue of almost every-
where convergence of the expressions f * P, where P is the Poisson kernel.
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Example 2.1.15. Fix | < p < and f € LP(R"). Let

r LH) 1
P(_X) = nfl

T (1+xf2)"

be the Poisson kernel on R” and let P (x) = £ P (£~ 'x). We deduce from the previ-
ous theorem that the family f x P converges to f a.e. Let D be the set of all contin-
uous functions with compact support on R”. Since the family (P )e~0 is an approx-
imate identity, Theorem 1.2.19 (2) implies that for f in D we have that f*x P, — f
uniformly on compact subsets of R” and hence a.e. In view of Theorem 2.1.10,
the supremum of the family of linear operators T¢(f) = f * P is controlled by the
Hardy-Littlewood maximal function, and thus it maps L? to L”® for 1 < p < oo,
Theorem 2.1.14 now gives that f x P; converges to f a.e. for all f € L”.

Here is another application of Theorem 2.1.14. We refer to Exercise 2.1.10 for
others.

Corollary 2.1.16. (Lebesgue’s differentiation theorem) For any locally integrable
function f on R" we have

1 -
lim /B o Ty =) (2.1.19)

for almost all x in R". Consequently we have |f| < M(f) a.e.

Proof. Since R" is the union of the balls B(0,N) for N = 1,2,3..., it suffices to
prove the required conclusion for almost all x inside the ball B(0,N). Then we may
take f supported in a larger ball, thus working with f integrable over the whole
space. Let T, be the operator given with convolution with ke, where k = v, ! XB(0,1)-
We know that the corresponding maximal operator 7, is controlled by the the cen-
tered Hardy-Littlewood maximal function M, which maps L' to L. It is straight-
forward to verify that (2.1.19) holds for all continuous functions f with compact
support. Since the set of these functions is dense in L', and 7, maps L! to L,
Theorem 2.1.14 implies that (2.1.19) holds for a general fin L'. U

The following corollaries were inspired by Example 2.1.15.

Corollary 2.1.17. (Differentiation theorem for approximate identities) Let K be an
L' function on R" with integral 1 that has a continuous integrable radially decreas-
ing majorant. Then fxK; — f a.e. as € — 0 forall f € LP(R"), 1 < p < oo,

Proof. 1t follows from Example 1.2.16 that K, is an approximate identity. Theorem
1.2.19 now implies that f * K. — f uniformly on compact sets when f is continuous.
Let D be the space of all continuous functions with compact support. Then f * K —
fae. for f € D. 1t follows from Corollary 2.1.12 that T;.(f) = supg~ | f * K¢| maps
L? to L™ for 1 < p < oo. Using Theorem 2.1.14, we conclude the proof of the
corollary. O
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Remark 2.1.18. Fix f € L?(R") for some 1 < p < oo. Theorem 1.2.19 implies that
f* K¢ converges to f in L” and hence some subsequence f* K, of f * K, converges
to f a.e. as n — oo, (g, — 0). Compare this result with Corollary 2.1.17, which gives
a.e. convergence for the whole family f K, as € — 0.

Corollary 2.1.19. (Differentiation theorem for multiples of approximate identi-
ties) Let K be a function on R" that has an integrable radially decreasing majorant.
Let a = [puK(x)dx. Then for all f € LP(R") and 1 < p < oo, (f*K¢)(x) — af(x)
for almost all x € R" as € — 0.

Proof. Use Theorem 1.2.21 instead of Theorem 1.2.19 in the proof of Corollary
2.1.17. O

The following application of the Lebesgue differentiation theorem uses a simple
stopping-time argument. This is the sort of argument in which a selection procedure
stops when it is exhausted at a certain scale and is then repeated at the next scale. A
certain refinement of the following proposition is of fundamental importance in the
study of singular integrals given in Chapter 4.

Proposition 2.1.20. Given a nonnegative integrable function f on R" and o > 0,
there exist disjoint open cubes Q; such that for almost all x € (U Y% j)c we have
fx) <aand
f(t)ydt <2"a. (2.1.20)
|Q]‘ Qj

Proof. The proof provides an excellent paradigm of a stopping-time argument. Start
by decomposing R” as a union of cubes of equal size, whose interiors are disjoint,
and whose diameter is so large that |Q| ! Jo f(x)dx < a for every Q in this mesh.
This is possible since f is integrable and |Q| ! Jo f(x)dx — 0 as [Q| — . Call the
union of these cubes &.

Divide each cube in the mesh into 2" congruent cubes by bisecting each of the
sides. Call the new collection of cubes &]. Select a cube Q in &7 if

L/f(x)dx>oc (2.1.21)
0] Jo

and call the set of all selected cubes .#]. Now subdivide each cube in & \ .7 into
2" congruent cubes by bisecting each of the sides as before. Call this new collection
of cubes &,. Repeat the same procedure and select a family of cubes .# that satisfy
(2.1.21). Continue this way ad infinitum and call the cubes in | J;,_, .7, “selected.”
If O was selected, then there exists Q; in &, containing Q that was not selected
at the (m — 1)th step for some m > 1. Therefore,

(x<@/f |Q1| [ fwdx <o

Now call F the closure of the complement of the union of all selected cubes. If
X € F, then there exists a sequence of cubes containing x whose diameter shrinks
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down to zero such that the average of f over these cubes is less than or equal to o.
By Corollary 2.1.16, it follows that f(x) < a almost everywhere in F. This proves
the proposition. O

In the proof of Proposition 2.1.20 it was not crucial to assume that f was defined
on all R”, but only on a cube. We now give a local version of this result.

Corollary 2.1.21. Let f > 0 be an integrable function over a cube Q in R" and let
a> @ J. o f dx. Then there exist disjoint open subcubes Q; of Q such that for almost

all x € Q\Uj Qj we have f < o and (2.1.20) holds for all j.

Proof. This easily follows by a simple modification of Proposition 2.1.20 in which
R” is replaced by the fixed cube Q. 0

See Exercise 2.1.4 for an application of Proposition 2.1.20 involving maximal
functions.

Exercises

2.1.1. A positive Borel measure pt on R” is called inner regular if for any open
subset U of R" we have u(U) = sup{u(K) : K € U, K compact} and u is called
locally finite if p(B) < oo for all balls B.

(a) Let u be a positive inner regular locally finite measure on R” that satisfies the
following doubling condition: There exists a constant D(i) > 0 such that for all
x € R" and r > 0 we have

1(3B(x,r)) < D(u) u(B(x,r)).
For f € L}, (R", 1) define the uncentered maximal function M, (f) with respect to
U by
M, (f)(x) =sup sup ——————=
,U( )( ) r>0 z:|z—x|<r .U(B(Zv")) B(z,r
1(B(z,r)) 70

Show that M, maps L'(R",u) to L'**(R", i) with constant at most D(u) and

)f(y)d#(y)~

LP(R", 1) to itself with constant at most 2(%) %D([.L) .

(b) Obtain as a consequence a differentiation theorem analogous to Corollary 2.1.16.
[Hint: Part (a): For f € L'(R", it) show that the set Eq = {M,(f) > a} is open.
Then use the argument of the proof of Theorem 2.1.6 and the inner regularity of ,u.}

2.1.2. On R consider the maximal function M, of Exercise 2.1.1.

(a) (W. H. Young ) Prove the following covering lemma. Given a finite set .% of open
intervals in R, prove that there exist two subfamilies each consisting of pairwise
disjoint intervals such that the union of the intervals in the original family is equal
to the union of the intervals of both subfamilies. Use this result to show that the
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maximal function M, of Exercise 2.1.1 maps L'(u) — L'(u) with constant at
most 2.

(b) (Grafakos and Kinnunen [107]) Prove that for any o-finite positive measure U
onR, a>0,and f € L (R, u) we have

loc

o

o fan @< o [ e (1> o).

Use this result and part (a) to prove that for all &« > 0 and all locally integrable f we
have

1 1
M — du+— d
G R R N R BN L

and note that equality is obtained when o = 1 and f(x) = |x|~/7.
(c) Conclude that My, maps LP(u) to LP(u), 1 < p < oo, with bound at most the
unique positive solution A, of the equation

(p—1)xP —pxP~'—1=0.

(d) (Grafakos and Montgomery-Smith [109]) If u is the Lebesgue measure show
that for 1 < p < oo we have

||M||LP—>LP =Ap,

where A, is the unique positive solution of the equation in part (c).
[Hint: Part (a): Select a subset 4 of .# with minimal cardinality such that ;e J =
U,e 1. Part (d): One direction follows from part (c). Conversely, M (|x|~'/7)(1) =

1/ 1/p
p Y +1 . . e . . p 7 +1
T where 7 is the unique positive solution of the equation P

y~!/P. Conclude that M(|x|~'/?)(1) = A, and that M(|x|~'/?) = A, |x|~'/7. Since
this function is not in L?, consider the family fe (x) = [x|~'/? min(|x| ¢, |x|¥), & > 0,

P9 (L +e) fel) for 0 < e < ]

and show that M (f¢)(x) > (1+y#

2.1.3. Define the centered Hardy—Littlewood maximal function M, and the uncen-
tered Hardy-Littlewood maximal function M, using cubes with sides parallel to the
axes instead of balls in R". Prove that

v (n n/2 M(f) n/y v. (n
n(n/2) SM—c(f)SZ/n, n (1/2)

n/2 < M(f)
= Me(f)

where v, is the volume of the unit ball in R”. Conclude that M. and M, are weak
type (1,1) and they map L?(R") to itself for 1 < p < eo.

< zn/Vna

2.1.4. (a) Prove the estimate:

n

R MW > 20 < [ 17Ny

(04
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and conclude that M maps L” to LP* with norm at most 2-3"/? for 1 < p < co.
Deduce that if flog™ (2|f|) is integrable over a ball B, then M(f) is integrable over
the same ball B.

(b) (Wiener [291], Stein [255]) Apply Proposition 2.1.20 to |f| and o > 0 and
Exercise 2.1.3 to show that with ¢, = (1/2)"/?v, we have

—n

" x)>c 27
LR MW > eaod| =70 [ I7)lay.

(c) Suppose that f is integrable and supported in a ball B(0,p). Show that for x in
B(0,2p)\ B(0,p) we have M(f)(x) < M(p?|x|~%x). Conclude that

[ apaxs@+n [ wpax
B(0,2p) B(0,p)

and from this deduce a similar inequality for M(f).

(d) Suppose that f is integrable and supported in a ball B and that M(f) is integrable
over B. Let Ay = 2"|B|~! ||f||L1 . Use part (b) to prove that flog™ (A, 'c, |f]) is inte-
grable over B.

[Hint: Part (a): Write f = f|fj>q + fX|f|<a- Part (¢): Let X' = p*|x|~2x for some
p < |x| < 2p. Show that for R > |x| — p, we have that

/Bw [f(@)ldz < /B oy @142

by showing that B(x,R)NB(0,p) C B(x',R). Part (d): For x ¢ 2B we have M(f)(x) <
Ao, hence [ M(f)(x)dx > [ |{x € 2B: M(f)(x) > al|do.]

2.1.5. (A. Kolmogorov) Let S be a sublinear operator that maps L' (R") to L (R")
with norm B. Suppose that f € L' (R"). Prove that for any set A of finite Lebesgue
measure and for all 0 < g < 1 we have

/A|S<f><x>|wx < (1—q) 'BYA|" |17,

and in particular, for the Hardy-Littlewood maximal operator,
[ M@ < (1 -g) 3l
[Hint: Use the identity
JIst@ax= ["qos | rea: s()w > allda

and estimate the last measure by min(|A[, 2 f|,,).]
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2.1.6. Let M, (f)(x) be the supremum of the averages of | f| over all rectangles with
sides parallel to the axes containing x. The operator M is called the strong maximal
function.

(a) Prove that M; maps L (R") to itself.

(b) Show that the operator norm of Mj is AZ, where A, is as in Exercise 2.1.2(c).
(c) Prove that M; is not weak type (1,1).

2.1.7. Prove that if

|9Cxt,e ) S AL+ e )78 (L) 18

for some A, € >0,and @, (x) =t; -t @(t; ' x1,. .., 1,7 'x,), then the maximal

operator
[ sup [y

H yerestn >0

is pointwise controlled by the strong maximal function.

2.1.8. Prove that for any fixed 1 < p < oo, the operator norm of M on L”(R") tends
to infinity as n — oo.

[Hint: Let fy be the characteristic function of the unit ball in R". Consider the aver-
ages |B.| ™! [ fody, where By = B(5(|x| - |x|’1)‘§—‘,%(|x| +[x|71)) for |x| > 1.]

2.1.9. (a) In R? let Mo (f)(x) be the maximal function obtained by taking the supre-
mum of the averages of |f| over all rectangles (of arbitrary orientation) containing
x. Prove that M is not bounded on L”(R") for p < 2 and conclude that M is not
weak type (1, 1).

(b) Let Moo (f)(x) be the maximal function obtained by taking the supremum of the
averages of | f| over all rectangles in R? of arbitrary orientation but fixed eccentricity
containing x. (The eccentricity of a rectangle is the ratio of its longer side to its
shorter side.) Using a covering lemma, show that My is weak type (1,1) with a
bound proportional to the square of the eccentricity.

(c) On R” define a maximal function by taking the supremum of the averages
of |f| over all products of intervals I; x --- x I, containing a point x with |L| =
a|h|,..., || = an|li| and ay,...,a, > 0 fixed. Show that this maximal function is
weak type (1, 1) with bound independent of the numbers ay, ..., ay.

[Hint: Part (b): Let b be the eccentricity. If two rectangles with the same eccentricity
intersect, then the smaller one is contained in the bigger one scaled 4b times. Then
use an argument similar to that in Lemma 2.1.5 ]

2.1.10. (a) Let p,q,X,Y be as in Theorem 2.1.14. Assume that T; is a family of
quasilinear operators defined on L?(X) [i.e., |Te(f +¢)| < K(|Te(f)|+ |Te(g)]) for
all f,g € LP(X)] such that limg_,o Tz (f) = O for all f in some dense subspace D of
L?(X). Use the argument of Theorem 2.1.14 to prove that lime_ 7¢(f) = O for all
fin LP(X).

(b) Use the result in part (a) to prove the following improvement of the Lebesgue
differentiation theorem: Let f € L (R") for some 1 < p < co. Then for almost all
x € R" we have
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) Pdy=0,
\B|Ho 1B| / | ()

B>x

where the limit is taken over all open balls B containing x.
[Hint: Define

nmmzing&/” w@ym

and observe that 7. (f) = supg- Te (f) < |f] +M(|f|1’)%. Use Theorem 2.1.14. ]

2.1.11. On R define the right and left maximal functions Mg and M}, as follows:

X

1
ML(f)(x) = sup— [ |f(1)]dr,
>0 T Jx—r
X+r

1
Mg(f)(x) = sup— [f(r)ldt.
>0 T Jx
(a) (Riesz’s sunrise lemma [218]) Show that
1 n
{xeR: M (f)(x) > a}| = [f(t)ldt,
JML(f)>a}

{xeR: Mr(f)(x) >a}| =—

t)|de.
o /{MR(f)>oc} )

(b) Conclude that M;, and Mg map L to L” with norm at most p/(p—1) for 1 <
p < oo,

(c) Construct examples to show that the operator norms of My and Mg on L? are
exactly p/(p—1) for 1 < p < oo,

(d) (K. L. Phillips ) Prove that M = max (Mg, My ).

(e) (J. Duoandikoetxea ) Let N = min(Mg,My,). Since

M(f)P +N(f)" =M(f)" +Mr(f)",
integrate over the line and use the following consequence of part (a),
S+ My = L [ a0+
to prove that

(p=D[[M(P]

b= eIl 2" = 1517

This provides an alternative proof of the result in Exercise 2.1.2(c).

Ll’ =

2.1.12. A cube Q = [a12%, (a1 +1)2%) x -+ x [a,2*, (a, +1)2%) on R" is called
dyadic if k, ay,...,a, € Z. Observe that either two dyadic cubes are disjoint or one
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contains the other. Define the dyadic maximal function
1
Ma(H)e) =sup o [ f(v)dy.
0>x |Q‘ 9]

where the supremum is taken over all dyadic cubes Q containing x.
(a) Prove that M; maps L' to L' with constant at most one, that is, show that for
all o > 0and f € L'(R") we have

{reR": My(f)(x) > aff <o /{ oy T

(b) Conclude that M, maps L (R") to itself with constant at most p/(p —1).

2.1.13. Observe that the proof of Theorem 2.1.6 yields the estimate

AMU) > 117 <M > 1 [l

for A > 0 and f locally integrable. Use the result of Exercise 1.1.12(a) to prove that
the Hardy-Littlewood maximal operator M maps the space LP**(R") to itself for
1 < p<oo.

2.1.14. Let K (x) = (1+|x|) "% be defined on R”. Prove that there exists a constant
C,,s such that for all & > 0 we have the estimate

1
sup (/1K) < Cuasup = [ 1rlay,
£>g) e>gy € Jly—x|<e

for all f locally integrable on R".
[Hint.' Apply only a minor modification to the proof of Theorem 2.1.10.}

2.2 The Schwartz Class and the Fourier Transform

In this section we introduce the single most important tool in harmonic analysis, the
Fourier transform. It is often the case that the Fourier transform is introduced as an
operation on L' functions. In this exposition we first define the Fourier transform
on a smaller class, the space of Schwartz functions, which turns out to be a very
natural environment. Once the basic properties of the Fourier transform are derived,
we extend its definition to other spaces of functions.

We begin with some preliminaries. Given x = (xy,...,x,) € R", we set |x| =
(x% + - +x,21)1/ 2. The first partial derivative of a function f on R” with respect to
the jth variable x; is denoted by d;f while the mth partial derivative with respect
to the jth variable is denoted by (9;." f- A multi-index o is an ordered n-tuple of
nonnegative integers. For a multi-index @ = (@, ..., &), 9% f denotes the derivative
ot 9% f.If = (au,...,0) is amulti-index, || = oty + - + @, denotes its size
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and a! = oy !- - - o,! denotes the product of the factorials of its entries. The number
|| indicates the total order of differentiation of d*f. The space of functions in
R” all of whose derivatives of order at most N € Z* are continuous is denoted by
€N (R") and the space of all infinitely differentiable functions on R" by €= (R").
The space of ¢ functions with compact support on R” is denoted by %;°(R").
This space is nonempty; see Exercise 2.2.1(a).
For x € R" and o = (auy,...,,) a multi-index, we set x* = x{"---x% It is a
simple fact to verify that
X% < cpalx]®, (2.2.1)

for some constant that depends on the dimension n and on o. In fact, ¢, ¢ is
the maximum of the continuous function (xi,...,x,) — [x{"" ---x%| on the sphere
S ! = {x € R": |x| = 1}. The converse inequality in (2.2.1) fails. However, the
following substitute of the converse of (2.2.1) is of great use: for k € Z* we have

< Cur Y I¥PI (2.2.2)
|Bl=k

To prove (2.2.2), take 1/C,,x to be the minimum of the function

X Z B

|Bl=k

on 8"~ !; this minimum is positive since this function has no zeros on §*~!.
We end the preliminaries by noting the validity of the one-dimensional Leibniz

rule ; .
d" X (m\df d" g
dtm(fg):kz()<k>dtkdt’”k’ (2.2.3)
for all ™ functions f, g on R, and its multidimensional analogue
(o= ¥ (5 ) (5) @@, 24

B<a

for f,g in %"”(R“) for some multi-index o, where the notation § < o in (2.2.4)
means that  ranges over all multi-indices satisfying 0 < 8; < aj forall 1 < j <n.
We observe that identity (2.2.4) is easily deduced by repeated application of (2.2.3),
which in turn is obtained by induction.

2.2.1 The Class of Schwartz Functions

We now introduce the class of Schwartz functions on R". Roughly speaking, a func-
tion is Schwartz if it is smooth and all of its derivatives decay faster than the recip-
rocal of any polynomial at infinity. More precisely, we give the following definition.
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Definition 2.2.1. A ¢ complex-valued function f on R” is called a Schwartz func-
tion if for every pair of multi-indices o and 8 there exists a positive constant Cy g
such that
Pap(f) = sup [x*9P f(x)| = Cop < . (2.2.5)
xeR"
The quantities py g (f) are called the Schwartz seminorms of f. The set of all
Schwartz functions on R” is denoted by .7 (R").

Example 2.2.2. The function e isin .7 (R") but e~ is not, since it fails to be
differentiable at the origin. The ¢ function g(x) = (1 + |x|*)~% a > 0, is not in .7
since it decays only like the reciprocal of a fixed polynomial at infinity. The set of
all smooth functions with compact support, €;°(R"), is contained in .’(R").

Remark 2.2.3. If f; is in .(R") and f; is in .’(R™), then the function of m+n
variables fi(x1, ..., X1) f2(Xnt1s - - - Xpm) 18 i (RP7)If fis in .7 (R") and P(x)
is a polynomial of n variables, then P(x) f(x) is also in .7 (R"). If & is a multi-index
and f is in .7 (R"), then % f is in . (R"). Also note that

fe SR < sup |0*(xPf(x))| <o  forall multi-indices a, B.
xeR?

Remark 2.2.4. The following alternative characterization of Schwartz functions is
very useful. A € function f is in . (R") if and only if for all positive integers N
and all multi-indices o there exists a positive constant Cy x such that

1(%f)(x)] < Can(1+]x])~N. (2.2.6)

The simple proofs are omitted. We now discuss convergence in . (R").

Definition 2.2.5. Let f;, f be in . (R") for k = 1,2,.... We say that the sequence
S converges to f in .7(R") if for all multi-indices & and 3 we have

Pa,ﬁ(fk_f) = sup \xa(8ﬁ(fk—f))(x)| —0 as  k — oo,

xeR?

For instance, for any fixed xog € R", f(x+x9/k) — f(x) in .#(R") for any f in
7 (R") as k — oo,

This notion of convergence is compatible with a topology on . (R") under which
the operations (f,g) — f+g, (a,f) — af, and f — 9d*f are continuous for all
complex scalars a and multi-indices a (f,g € 7 (R")). A subbasis for open sets
containing 0 in this topology is

{fes: paplf) <ri,

for all o, B multi-indices and all r € Q. Observe the following: If pg g (f) = 0, then
f =0. This means that . (R") is a locally convex topological vector space equipped
with the family of seminorms py, g that separate points. We refer to Reed and Simon
[215] for the pertinent definitions. Since the origin in .’ (R") has a countable base,
this space is metrizable. In fact, the following is a metric on . (R"):
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oo

_ v, Pilf—8)
W)= L2 T g

where p; is an enumeration of all the seminorms py g, o and B multi-indices. One
may easily verify that . is complete with respect to the metric d. Indeed, a Cauchy
sequence {/;}; in ./ would have to be Cauchy in L* and therefore it would con-
verge uniformly to some function /. The same is true for the sequences {dPh;};
and {x*h;(x)};, and the limits of these sequences can be shown to be the functions
9P hand x*h(x), respectively. It follows that the sequence {4} converges to /2 in ..
Therefore, . (R") is a Fréchet space (complete metrizable locally convex space).

We note that convergence in .7 is stronger than convergence in all L”. We have
the following.

Proposition 2.2.6. Let f, fi, k =1,2,3,..., be in S (R"). If fiy — [ in . then
Ji — fin L? for all 0 < p < 0. Moreover, there exists a C, , > 0 such that

I

Y  paplh) 2.2.7)

|| <[(n+1)/p]+1
for all f for which the right-hand side is finite.
Proof. Observe that
1/p
19811 < ([ 0P rieas [ at1a8 s ax)
x[<1 x[>1
1/p
< (vn||8“f|\2’m+ sup <" |oP £l [ |x<"“>dx)
[x[>1 [x|[>1
< Cpn([|0P £]] = + sup (|x D771+ [9P £(x))))
xeR"

Now setm = [(n+1)/p]+ 1 and use (2.2.2) to obtain

xl"0P (Ol < Cum Y, K0P f(x)].

|a|=m

Thus the L norm of the Schwartz function 9P f is controlled by a constant multiple
of a sum of some py o seminorms of it. Conclusion (2.2.7) now follows immediately.
This shows that convergence in . implies convergence in L. O

We now show that the Schwartz class is closed under certain operations.

Proposition 2.2.7. Let f, g be in ./ (R"). Then fg and f x g are in /(R"). More-
over,

0% (fxg)=(0%f)xg = f*(d%g) (2.2.8)

for all multi-indices Q.
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Proof. Fix f and g in .(R"). Let ¢; be the unit vector (0,...,1,...,0) with 1 in the
Jjth entry and zeros in all the other entries. Since

w — (@) y) =0 (22.9)

as h — 0, and since the expression in (2.2.9) is pointwise bounded by some constant
depending on f, the integral of the expression in (2.2.9) with respect to the measure
g(x —y)dy converges to zero as h — 0 by the Lebesgue dominated convergence
theorem. This proves (2.2.8) when o = (0,...,1,...,0). The general case follows
by repeating the previous argument and using induction.

We now show that the convolution of two functions in . is also in .. For each
N > n we have

)0 < [ (=) M1+ 1y) dy. (2.2.10)
The part of the integral in (2.2.10) over the set {y: 1 |x| <[y — x|} is bounded by

/Iy T, 3 DTNy Ny < By (1+x) 7Y,
=2

where By is a constant depending on N and on the dimension. When 1 [x| > [y — x|
we have that [y| > 7 |x|, and it follows that the part of the integral in (2.2.10) over
the set {y: [y—x| < J x|} is bounded by

[ =) ™Y ) Nay < By(1+ k).
y—x|<5 [

This shows that f * g decays like (1 + |x|)~" at infinity, but since N > n is arbitrary
it follows that f % g decays faster than the reciprocal of any polynomial.

Since d%(f xg) = (9% f) x g, replacing f by 0 f in the previous argument, we
also conclude that all the derivatives of f * g decay faster than the reciprocal of any
polynomial at infinity. Using (2.2.6), we conclude that f* g is in .#. Finally, the fact
that fg is in . follows directly from Leibniz’s rule (2.2.4) and (2.2.6). O

2.2.2 The Fourier Transform of a Schwartz Function

The Fourier transform is often introduced as an operation on L!. In that setting,
problems of convergence arise when certain manipulations of functions are per-
formed. Also, Fourier inversion requires the additional assumption that the Fourier
transform is in L!. Here we initially introduce the Fourier transform on the space
of Schwartz functions. The rapid decay of Schwartz functions at infinity allows us
to develop its fundamental properties without encountering any convergence prob-
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lems. The Fourier transform is a homeomorphism of the Schwartz class and Fourier
inversion holds in it. For these reasons, this class is a natural environment for it.
Forx = (x1,...,X%4), ¥y = (V1,--.,¥s) in R" we use the notation

n
X-y= ijyj
j=1

Definition 2.2.8. Given f in .(R") we define
7&)= | rtoemax.

We call fthe Fourier transform of f.

Example 2.2.9. Let f(x) = ¢~ defined on R. Then F(&) = f(). First observe
that the function

e — 1t (x+is)?
s / e ) dx, seR,

is constant. Indeed, its derivative is

oo _ oo _
/ —2mi(x+ is)67”<x+’s)2dx = / i% (€7ﬂ<x+”)2) dx=0.

. . 2 . .
The computation of the Fourier transform of f(x) = ¢ """ relies on simple com-
pletion of squares. We have

/ o TP 2 % g / e—”):’}zl(xjﬁéj)zeﬂi?:](iéj)zdx

oo n
_ ( / * emzdx> o7l

CE2
_ TP,

where we used that

~+oo
/ e dx= V7, 22.11)

—oo

a fact that can be found in Appendix A.1.

Remark 2.2.10. It follows from the definition of the Fourier transform that if f is
in .(R") and g is in . (R™), then

~

[FOety e %0)8 a1+ s Xnam)] "= (815 580)8(Ent 15+ Envm)s

where the first ™ denotes the Fourier transform on R, In other words, the Fourier
transform preserves separation of variables.
Combining this observation with the result in Example 2.2.9, we conclude that

. "y . . .
the function f(x) = ¢ X" defined on R" is equal to its Fourier transform.
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We now continue with some properties of the Fourier transform. Before we do
this we introduce some notation. For a measurable function f on R”, x € R", and
a > 0 we define the translation, dilation, and reflection of f by

o“(f)(x) = flax) (2.2.12)

Also recall the notation f, = a~"8'/%(f) introduced in Definition 2.1.9.

Proposition 2.2.11. Given f, g in #(R"), y e R", b € C, o a multi-index, and t > 0,
we have

@ Nl <l

2) fre=r+%

(3) bf=bf
4 f=Ff,
5) F=1.

(6) (&) =e ™ EfE),
(7) (™ f(x)) (&) = P(f)(E),
8) (&) =18 (F)=(F)
(9)  (9*F)(E) = 2mi&)*F(E),
(10)  (9%f)
(11) fe.7,
(12) f+g=18
(13) f/o\A(é) = f(Aé ), where A is an orthogonal matrix and & is a column vector:

Proof. Property (1) follows from Definition 2.2.8 and implies that the Fourier trans-
form is always bounded. Properties (2)—(5) are trivial. Properties (6)—(8) require a
suitable change of variables but they are omitted. Property (9) is proved by integra-
tion by parts (which is justified by the rapid decay of the integrands):

(D4fY(E) = /R (9% ) (x)e 27 dx

D/ [ (-2mig)%e 2 dx
= (2mi§)“ f(£).
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To prove (10), let @ = (0,...,1,...,0), where all entries are zero except for the
Jjth entry, which is 1. Since

e 2mix:(Ethe;) _ ,—2mix-§
h

— (=2mixj)e 2"E 0 (2.2.13)

as h — 0 and the preceding function is bounded by C|x| for all & and &, the Lebesgue
dominated convergence theorem implies that the integral of the function in (2.2.13)
with respect to the measure f(x)dx converges to zero. Thus we have proved (10) for
o =(0,...,1,...,0). For other a’s use induction. To prove (11) we use (9), (10),
and (1) in the following way:

N o R \ﬁl "
@ P = S0P - < % ) <

Identity (12) follows from the following calculation:

- / . / flr=y)g(y)e ™ dydx

= f(_x—y)g(y)efzﬂi(xfy)-gefzﬂl'y.é dyd_x
R" JR"

= [ &) / Fx—y)e 2T)E gy =21 g
R” R”

= f(&)g(),

where the application of Fubini’s theorem is justified by the absolute convergence
of the integrals. Finally, we prove (13). We have

FoA(E) = [ flaxe 2y
= [ fy)e e ay

- iAl ).
= [ SO S dy

= ot (y)e 2™04S dy
= f(Ag),

where we used the change of variables y = Ax and the fact that |detA| = 1. O

Corollary 2.2.12. The Fourier transform of a radial function is radial. Products and
convolutions of radial functions are radial.

Proof. Let &, & in R” with |€;| = |&;|. Then for some orthogonal matrix A we have
A& = &,. Since f is radial, we have f = foA. Then

f(&) = f(A&) = foA (&) = f(&),
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where we used (13) in Proposition 2.2.11 to justify the second equality. Products
and convolutions of radial functions are easily seen to be radial. g

2.2.3 The Inverse Fourier Transform and Fourier Inversion

We now define the inverse Fourier transform.

Definition 2.2.13. Given a Schwartz function f, we define

for all x € R". The operation
[

is called the inverse Fourier transform.

It is straightforward that the inverse Fourier transform shares the same properties
as the Fourier transform. One may want to list (and prove) properties for the inverse
Fourier transform analogous to those in Proposition 2.2.11.

We now investigate the relation between the Fourier transform and the inverse
Fourier transform. In the next theorem, we prove that one is the inverse operation of
the other. This property is referred to as Fourier inversion.

Theorem 2.2.14. Given f, g, and h in ' (R"), we have
() [ e = [ Fogtodx,

(2) (Fourier Inversion) (f)V = f=(f')
(3) (Parseval’s relation) / F(x)h(x)dx = / f(é)mdé
R" R"

(4) (Plancherel’s identity) HfHLz = ||fHL2 - ||fVHL2’

5) [ ss)ds= [ g wax.

Proof. (1) follows immediately from the definition of the Fourier transform and
Fubini’s theorem. To prove (2) we use (1) with

g(E) = 2ttt
By Proposition 2.2.11 (7) and (8) and Example 2.2.9, we have that

3(x) = e mlen)/el,
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which is an approximate identity. Now (1) gives

/ flx)e e ™ el gy = / F(E)e2mE TS g (2.2.14)
Now let € — 0 in (2.2.14). The left-hand side of (2.2.14) converges to f(¢) uniformly
on compact sets by Theorem 1.2.19. The right-hand side of (2.2.14) converges to
(f)V (¢) as € — 0 by the Lebesgue dominated convergence theorem. We conclude
that (f)v = fon R". Replacing f by fand using the result just proved, we conclude
that (V) = f.

To prove (3), use (1) with g = 7 and the fact that g = h, which is a conse-
quence of Proposition 2.2.11 (5) and Fourier inversion. Plancherel’s identity is a
trivial consequence of (3). (Sometimes the polarized identity (3) is also referred to
as Plancherel’s identity.) Finally, (5) easily follows from (1) and (2). ]

Next we have the following simple corollary of Theorem 2.2.14.

Corollary 2.2.15. The Fourier transform is a homeomorphism from . (R") onto
itself.

Proof. The continuity of the Fourier transform (and its inverse) follows from Exer-
cise 2.2.2, while Fourier inversion yields that this map is bijective. g

2.2.4 The Fourier Transform on L' + >

We have defined the Fourier transform on . (R"). We now extend this definition to
the space L! (R") + L?(R™).
We begin by observing that the Fourier transform given in Definition 2.2.8,

o~

F&) = [ flx)e ™= dx,
Rn

makes sense as a convergent integral for functions f € L'(R"). This allows us to
extend the definition of the Fourier transform on L!. Moreover, this operator satisfies
properties (1)—(8) as well as (12) and (13) in Proposition 2.2.11, with f, g integrable.
We also define the inverse Fourier transform on L' by setting £ (x) = f(—x) for
f € L'(R") and we note that analogous properties hold for it. One problem in this
generality is that when f is integrable, one may not necessarily have (]?)v = fae.
This inversion is possible when fis also integrable; see Exercise 2.2.6.

The integral defining the Fourier transform does not converge absolutely for
functions in LZ(R”); however, the Fourier transform has a natural definition in this
space accompanied by an elegant theory. In view of the result in Exercise 2.2.8, the
Fourier transform is an L? isometry on L' N L2, which is a dense subspace of L. By
density, there is a unique bounded extension of the Fourier transform on L?. Let us
denote this extension by .%. Then .% is also an isometry on 1% ie.,
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[Z D2 =12

for all f € L?(R"), and any sequence of functions fy € L' (R")NL?(R") converging
to a given f in L?(R") satisfies

v —=Z(f)],2 — 0. (2.2.15)

as N — oo. In particular, the sequence of functions fy(x) = f(x) x|y <y yields that

Tn(€) = / F(x)e 276 gx (2.2.16)

lx[<N

converges to .7 (f)(€) in L* as N — oo, If f is both integrable and square inte-
grable, the expressions in (2.2.16) also converge to f(i) pointwise Also, in view of
Theorem 1.1.11 and (2.2.15), there is a subsequence of fN that converges to F(f)
pointwise a.e. Consequently, for f in L' (R") N L?*(R") the expressions fand .Z(f)

coincide pointwise a.e. For this reason we often adopt the notation f to denote the
Fourier transform of functions f in L? as well.

In a similar fashion, we let .#’ be the isometry on L?(R") that extends the op-
erator f +— fY, which is an I? isometry on L' N L2; the last statement follows
by adapting the result of Exercise 2.2.8 to the inverse Fourier transform. Since
@Y (x) = @(—x) for ¢ in the Schwartz class, which is dense in L? (Exercise 2.2.5),
it follows that .Z'(f)(x) = .Z (f)(—x) for all f € L? and x € R". The operators .7
and .%' are L-isometries that satisfy .%’ 0.% = .% 0.%’ = 1d on the Schwartz space.
By density this identity also holds for L? functions and implies that .% and .%' are
injective and surjective mappings from L? to itself; consequently, .’ coincides with
the inverse operator .% ~! of .% : L?> — L?, and Fourier inversion

f=F 0T (f)=FoF (f)

holds on L2.

Having set down the basic facts concerning the action of the Fourier transform on
L' and L2, it is now a simple matter to exten(i its geﬁnAition on L? for 1 < p < 2. For
functions f € LP(R"), 1 < p < 2, we define f = f| + f», where f; € L!, f» € L?, and
f = fi+ fa; we may take, for instance, fi = f|s~1 and f> = f| <. The definition
of fis independent of the choice of f1 and f>, forif fi + f> = hy + hy for fi,hy € L
and f»>,hy € L?, we have f; —h; = hy — f> € L' N L?. Since these functlons are equal
onL'NI?, thelr Fourier transforms are also equal, and we obtain fl h2 — fz,

which yields fl +fo= hﬁ\hz. We have the following result concerning the action
of the Fourier transform on L”.

Proposition 2.2.16. (Hausdorff-Young inequality) For every function f in LP(R")
we have the estimate

HfHLp’ < ||fHLP

whenever 1 < p <2.
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Proof. This follows easily from Theorem 1.3.4. Interpolate between the estimates
£ 1l= < [|£]l,1 Proposition 2.2.11 (1)) and ||f > < || f]|,2 to obtain || £, <
H f H 1»- We conclude that the Fourier transform is a bounded operator from L”(R")
to L’ (R") with norm at most 1 when 1 < p < 2. O

Next, we are concerned with the behavior of the Fourier transform at infinity.

Proposition 2.2.17. (Riemann-Lebesgue lemma) For a function f in L'(R") we
have that R
IF(E)—0 as &> ee.

Proof. Consider the function x|, ; on R. A simple computation gives

6*27”5“ _ ef2m'§b

2mi& ’

—

Xan)(§) =

which tends to zero as |§] — . Likewise, if g =T}_, Xla;b;) o0 R”, then

n 6—27'51'15_/(1_,' _ e—2ﬂi§jbj

2=

Jj=1

which also tends to zero as |§| — o in R”.
To prove the assertion, approximate in the L' norm a general integrable function
S on R” by a finite sum / of “step functions” like g and use

7)< 1F(E) =h(E)| + &) < ||f = hl| i + (&)
O

We end this section with an example that illustrates some of the practical uses of
the Fourier transform.

Example 2.2.18. We are asked to find a function f(x;,x2,x3) on R? that satisfies the
partial differential equation

F(x) + 29294 £(x) + 4id2f (x) + 01 f(x) = e 7RI,

Taking the Fourier transform on both sides of this identity and using Proposition
2.2.11 (2), (9) and the result of Example 2.2.9, we obtain

o~

() [1 + (2mi&) )2 (2mi&y ) (2miks)* + 4i(2mi&p ) + (ngz)q e

Let p(&) = p(&1,&2,&3) be the polynomial inside the square brackets. We observe
that p(&) has no real zeros and we may therefore write

F&) =P pE) ! = fx)= (e ™ pE) ") (v).
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In general, let P(§) = ¥|qj<y Ca&* be a polynomial in R" with constant complex
coefficients Cy, indexed by multi-indices . If P(27i&) has no real zeros, and u is in
-7 (R"), then the partial differential equation

P)f = Z Cad%f=u

loe|<N

is solved as before to give
f=(@&)Pr@emig)™)".

Since P(27i&) has no real zeros and u € . (R"), the function u(&§)P(2mi&) =" is
smooth and therefore a Schwartz function. Then f is also in .’(R") by Proposition
2211 (11).

Exercises

2.2.1. (a) Construct a Schwartz function with compact support.

(b) Construct a 6;;°(R") function equal to 1 on the annulus 1 < |x| <2 and vanishing
off the annulus 1/2 < |x| <4.

(c) Construct a nonnegative nonzero Schwartz function f whose Fourier transform
is nonnegative and compactly supported.

[Hint: Part (a): Try the construction in dimension one first using the %* function
N (x) = e~/ for x > 0 and n(x) = 0 for x < 0. Part (c): Take f = |@ * @|?, where @
is odd, real-valued, and compactly supported.]

222.1f fi, f € (R") and f; — f in.#(R"), then f — fand f — f in.(R").

2.2.3. Find the spectrum (i.e., the set of all eigenvalues of the Fourier transform),
that is, all complex numbers A for which there exist nonzero functions f such that

f=Af.

[Hint: Apply the Fourier transform three times to the preceding identity. Consider

) 2 2 2 .
the functions xe ™", (a + bx?)e™™", and (cx 4 dx3)e ™ for suitable a,b,c,d to
show that all fourth roots of unity are indeed eigenvalues of the Fourier transform.]

2.2.4. Use the idea of the proof of Proposition 2.2.7 to show that if the functions f,
g defined on R” satisfy |f(x)| < A(1+ |x|)™ and |g(x)| < B(1+|x|)~" for some
M ,N > n, then

|(f+8)(x)| <ABC(1+x]) 7,

where L = min(N,M) and C = C(N,M) > 0.

2.2.5. (a) Show that €;°(R") is dense on LP(R") for 1 < p < eo. Conclude that
. (R") is also dense on L? spaces.
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(b) Prove that these spaces are also dense in L? for 0 < p < 1.

[Hint: When 1 < p < e you may convolve with an approximate identity. For 0 <
p < 1 you may approximate a compactly supported step function with a smooth
function. |

2.2.6. (a) Prove that if f € L', then fis uniformly continuous on R”.
(b) Prove that for f € L! and g € . we have

[ S8 dx= /R Tw)g)ds.

(c) Take g(x) = e e~ k1 in (b) and let € — 0 to prove that if £ and f are both
in L', then (f)" = f a.e. This fact is called Fourier inversion on L'.

2.2.7. (a) Prove that if f is continuous at 0, then

o~

lim [ fx)e ™ dx = £(0).
e—0 JRn

(b) Prove that if f € L'(R"), fz 0, and f is continuous at zero, then fis in L' and
therefore Fourier inversion f(0) = ‘ f H ;1 holds at zero and f = (f)" a.e. in general.
[Hint: Part (a): Take g(x) = e~™e? in Exercise 2.2.6(b).]

2.2.8. (a) Given f in L' (R") N L?(R"), prove that

HfHLZ = HfHLZ'

[Hint: Let h= f % ?, where f(x) = f(—x) and the bar indicates complex conjuga-
tion. Then 1 € L'(R"), h = |f|*> > 0, and / is continuous at zero. Exercise 2.2.7(b)
. 212 - ' = N 2
yields |77 = ],y = 1(0) = [ £e)F(=0)dx= 1]
2.2.9. (a) Prove that for all 0 < € <t < oo we have
*sin(&)
e &

(b) If £ is an odd L' function on the line, conclude that for all # > & > 0 we have

[ 22 ae] <4l

(c) Let g(&) be a continuous odd function that is equal to 1/log(&) for & > 2. Show
that there does not exist an L' function whose Fourier transform is g.

2.2.10. Let f be in L' (R). Prove that

d§‘§4.

oo +oo
f(x)dx= fx—1/x)dx.
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2.2.11. (a) Use Exercise 2.2.10 with f(x) = ¢~ to obtain the subordination iden-
tity

_ 1 /°° o2 dy

2 _ y=t=/y

= e , where ¢ > 0.
NE VY

(b) Set # = 7|x| and integrate with respect to e~ 2% ¥dx to prove that
ntl
(e 2y (E) = r 2z ) : — .
T (146

This calculation gives the Fourier transform of the Poisson kernel.

2.2.12. Let 1 < p < oo and let p’ be its dual index.
(a) Prove that Schwartz functions f on the line satisfy the estimate

I£1z- <2111

f/HLP’ :

(b) Prove that all Schwartz functions f on R” satisfy the estimate

Ly

IA-<2 X loslullof sl
o+p=(1,....1)
where the sum is taken over all multi-indices & and 8 whose sumis (1,1,...,1).

[Hint: Part (a): Write f(x)2 = [*_ £ f(1)?dt.]

2.2.13. The uncertainty principle says that the position and the momentum of a
particle cannot be simultaneously localized. Prove the following inequality, which
presents a quantitative version of this principle:

R T o e AR o

n yeR"
where f is a Schwartz function on R” (or an L? function with sufficient decay at

infinity).
[Hint: Let y be in R". Start with

|Mb—/n®ﬂﬂ;%m—

integrate by parts, apply the Cauchy—Schwarz inequality, Plancherel’s identity, and
the identity Y (<§)|2 AT |E 2| (E +2)* forall €,z € R ]

2.2.14. Let —o0 < o < 5 < B < +oo. Prove the validity of the following inequality:

B—n/2 nf2—o

el ey = €Il gl 2 g 141 g

||L2 Rn
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for some constant C = C(n, o, ) independent of g.
[Hint: First prove HgHLl < C|[|x|*g(x) ||L2 + | lx|Pg(x) HL2 and then replace g(x) by
g(Ax) for some suitable A > 0.

2.3 The Class of Tempered Distributions

The fundamental idea of the theory of distributions is that it is generally easier to
work with linear functionals acting on spaces of “nice” functions than to work with
“bad” functions directly. The set of “nice” functions we consider is closed under
the basic operations in analysis, and these operations are extended to distributions
by duality. This wonderful interpretation has proved to be an indispensable tool that
has clarified many situations in analysis.

2.3.1 Spaces of Test Functions

We recall the space %;°(R") of all smooth functions with compact support, and
¢ (R") of all smooth functions on R”. We are mainly interested in the three spaces
of “nice” functions on R" that are nested as follows:

% (R") C 7 (R") C 6™ (R").

Here .(R") is the space of Schwartz functions introduced in Section 2.2.

Definition 2.3.1. We define convergence of sequences in these spaces. We say that
fi— fin€” < fi,f€€¢ and klim sup |[0%(fi — f)(x)]| =0
T x|<N

V a multi-indices and all N = 1,2,....

femfins = fi.f €S and lim sup 1x*0P (fi — £)(x)| =0
o xeR”?

Y a, B multi-indices.
fi— fin6y < fi,f € Gy, support(fy) C B for all k, B compact,

and klim 10 (fc — f)|| .~ =0 V o multi-indices.

It follows that convergence in ¢;°(R") implies convergence in .~ (R"), which in
turn implies convergence in € (R").

Example 2.3.2. Let ¢ be a nonzero 4;° function on R. We call such functions
smooth bumps. Define the sequence of smooth bumps ¢ (x) = ¢(x — k)/k. Then
¢k (x) does not converge to zero in %;°(R), even though ¢ (and all of its deriva-
tives) converge to zero uniformly. Furthermore, we see that ¢ does not converge to
any function in .(R). Clearly ¢, — 01in € (R).
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The space ¢ (R") is equipped with the family of seminorms

Pan(f) = sup [(d%f)(x)], o a multi-index, N =1,2,.... (2.3.1)
[x|<N

It can be shown that € (R") is complete with respect to this countable family of
seminorms, i.e., it is a Fréchet space. However, it is true that %;°(R") is not complete
with respect to the topology generated by this family of seminorms.

The topology of 4;° given in Definition 2.3.1 is the inductive limit topology,
and under this topology it can be seen that 6;° is complete. Indeed, 6;°(R") is a
countable union of spaces J;_; 6;°(B(0,k)) and each of these spaces is complete
with respect to the topology generated by the family of seminorms P x; hence so
is €;°(R"). Nevertheless, %;°(R") is not metrizable. We refer to Reed and Simon
[215] for details on the topologies of these spaces.

2.3.2 Spaces of Functionals on Test Functions

The dual spaces (i.e., the spaces of continuous linear functionals on the sets of test
functions) we introduced is denoted by

(45 (R")" = 7'(R"),
(7 (R") =" (R"),
(¢7(R")) = &'(R").

By definition of the topologies on the dual spaces, we have

T —T in92 <= T,TeZ andTi(f)— T(f)forall fe€E;.
T,—T inY — T,Te S andTi(f)— T(f)forall fe.7.
T »T in& <= T,Tc& and Ti(f) — T(f) forall f € €.

The dual spaces are nested as follows:

éa/(Rn) g yI(Rn) g @/(Rn) .

Definition 2.3.3. Elements of the space 2’ (R") are called distributions. Elements of
' (R") are called rempered distributions. Elements of the space &’ (R") are called
distributions with compact support.

Before we discuss some examples, we give alternative characterizations of distri-
butions, which are very useful from the practical point of view. The action of a
distribution u on a test function f is represented in either one of the following two
ways:

(uf) =u(f).
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Proposition 2.3.4. (a) A linear functional u on 6;°(R") is a distribution if and only
if for every compact K C R", there exist C > 0 and an integer m such that

(.| <C Y ||0%f||,=: forall f € € with support in K. (2.3.2)

lot| <m

(b) A linear functional u on . (R") is a tempered distribution if and only if there
exist C > 0 and k, m integers such that

(u, /)] <C Y pop(f), forall fe.[R"). (2.3.3)

|a|<m
IB|<k

(c) A linear functional u on €= (R") is a distribution with compact support if and
only if there exist C > 0 and N, m integers such that

(., 1) <C Y pan(f),  forall f €€ (R"), (2.3.4)

la|<m
where pg g and IN)a,N are defined in (2.2.5) and (2.3.1).

Proof. We prove only (2.3.3), since the proofs of (2.3.2) and (2.3.4) are similar. It is
clear that (2.3.3) implies continuity of u. Conversely, it was pointed out in Section
2.2 that the family of sets {f € #(R") : pgp(f) < 6}, where a, B are multi-
indices and 8 > 0, forms a subbasis for the topology of .. Thus if u is a continuous
functional on .7, there exist integers k, m and a > 0 such that

lao| <m, |B| <k, and pyp(f) <6 = |[(u,f)|<1. (2.3.5)
We see that (2.3.3) follows from (2.3.5) with C =1/4. O

Examples 2.3.5. We now discuss some important examples.

1. The Dirac mass at the origin &. This is defined by

(0.f) = £(0).

We claim that & is in &”. To see this we observe that if f; — f in € then
(&, fi) — (&, f). The Dirac mass at a point a € R" is defined similarly by the

equation
<5a7f> = f(a)

2. Some functions g can be thought of as distributions via the identification g —
Lg, where L, is the functional
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Here are some examples: The function 1 is in .%” but not in &”. Compactly
supported integrable functions are in &”. The function eM” is in 2’ but not in
y/

3. Functions in L, _ are distributions. To see this, first observe thatif g € L., then
the integral

n

Le(f)= [ fx)g)dx

is well defined for all f € &, and then note that fy — f in Z implies that
Le(fi) = Le(f)-

4. Functions in L, 1 < p < o, are tempered distributions, but they are not in &’
unless they have compact support.

5. Any finite Borel measure u is a tempered distribution via the identification

Lu(f) = [ S0 du(s).

To see this, observe that f; — f in . implies that L, ( fy) — Ly (f). Finite Borel
measures may not be distributions with compact support. Lebesgue measure is
also a tempered distribution.

6. Every function g that satisfies |g(x)| < C (14 |x|)¥, for some real number , is a
tempered distribution. To see this, observe that

L) < sup ()" 9] [ (1 o),

xeR”

where m > n+k and the expression sup,gn |(1+ |x|)" f(x)| is bounded by a
sum of py g seminorms in the Schwartz space.

7. The function log|x| is a tempered distribution. The integral of this function
against Schwartz functions is well defined. More generally, any function that
is integrable in a neighborhood of the origin and satisfies [g(x)| < C(1 + |x|)*
for |x| > M is a tempered distribution.

8. Here is an example of a compactly supported distribution on R that is neither a
function nor a measure:

dx
P

(why=tim [ 0 =tm [ (0)-70)

e<lx|<1 e<|x|<1

We have that | (u, f)| < 2| f/||, and that if f,, — fin €, then (u, f,) — (u, f).

2.3.3 The Space of Tempered Distributions

Having set down the basic definitions of distributions, we now focus our study on the
space of tempered distributions. These distributions are the most useful in harmonic
analysis. The main reason for this is that the subject is concerned with boundedness
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of translation-invariant operators, and every such bounded operator from L” (R") to
L?(R") is given by convolution with a tempered distribution. This fact is shown in
Section 2.5.

Suppose that f and g are Schwartz functions and o a multi-index. Integrating by
parts |o¢| times, we obtain

| @ NWswdr= 1 [ fm@tmd. @36

If we wanted to define the derivative of a tempered distribution u, we would have to
give a definition that extends the definition of the derivative of the function and that
satisfies (2.3.6) for g in .%” and f € .7 if the integrals in (2.3.6) are interpreted as
actions of distributions on functions. We simply use equation (2.3.6) to define the
derivative of a distribution.

Definition 2.3.6. Let u € .’ and a a multi-index. Define
(0%, f) = (= 1) (u,0%f). 2.3.7)

If u is a function, the derivatives of u in the sense of distributions are called distri-
butional derivatives.

In view of Theorem 2.2.14, it is natural to give the following:

Definition 2.3.7. Let u € .’. We define the Fourier transform # and the inverse
Fourier transform u" of a tempered distribution u by

(i f)y=(uf) and  (u’ f)={(uf"), (23.8)
forall fin.7.

Example 2.3.8. We observe that 5Ao = 1. More generally, for any multi-index o we
have

(0%8)" = (2mix)*.
To see this, observe that for all f € . we have
((0%&)" 1) = (9%, F)
(—1)!*(8,0%F)
(=)&), ((~2mx)*f(x))")
(=
= (=

1)/ ((=27ix)* £(x))(0)
1)‘“'/ —2mix)* f(x) dx

= / (2mix)* f(x) dx
R

This calculation indicates that (%)~ can be identified with the function (27ix)?.
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Example 2.3.9. Recall that for xo € R", &, (f) = <5xw f > = f(x0). Then

(8:h) = (8i,h) =h(xo) = | h(x)e > 0dx,  he Z(R"),
Rn

that is, Oy, can be identified with the function x — e 2mixXo p particular, 8y = 1.

Example 2.3.10. The function M isnotin .7/ (R") and therefore its Fourier trans-
form is not defined as a distribution. However, the Fourier transform of any locally
integrable function with polynomial growth at infinity is defined as a tempered dis-
tribution.

Now observe that the following are true whenever f, g are in ..

Wfx=nydx = [ glenstodx,

(x)a"f(a"'x)dx, (2.3.9)

8
R

glax)f(x)dx = | g
R” R

[ g0wdx = [ e)fx)dr,
for all # € R" and a > 0. Recall now the definitions of 7/, §%, and ~ given in (2.2.12).
Motivated by (2.3.9), we give the following:

Definition 2.3.11. The translation t'(u), the dilation 6°(u), and the reflection u of
a tempered distribution u are defined as follows:

(T(w), f) = (uw,7'(f)), (2.3.10)
(8°(u), f) = (u,a™"8Y°(f)), (2.3.11)
(ii.f) = (u,f), (2.3.12)

for all# € R" and a > 0. Let A be an invertible matrix. The composition of a distri-
bution u with an invertible matrix A is the distribution

(@) = |det A| ™ (u, 0" ), (23.13)

where ¢4 (x) = @(A " lx).

It is easy to see that the operations of translation, dilation, reflection, and differ-
entiation are continuous on tempered distributions.

Example 2.3.12. The Dirac mass at the origin &y is equal to its reflection, while
0%(8y) = a"dy. Also, T¥(8) = O, for any x € R".

Now observe that for f, g, and 4 in . we have

/n(h*g)(x)f(x)dx:/

[ 80 (e f) () dx. (2.3.14)
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Motivated by (2.3.14), we define the convolution of a function with a tempered
distribution as follows:

Definition 2.3.13. Let u € .’ and h € .. Define the convolution % * u by
(hxu,f)y=(uhxf), fe. (2.3.15)

Example 2.3.14. Let u = 6, and f € .. Then f &, is the function x — f(x —xp),
for when h € ., we have

(f 5 8 by = (84, T ) = (Fh)(x0) = /R Flx—x0)h(x) dx.

It follows that convolution with J is the identity operator.
We now define the product of a function and a distribution.

Definition 2.3.15. Let u € . and let i be a 6™ function that has at most polynomial
growth at infinity and the same is true for all of its derivatives. This means that
it satisfies |(@%h)(x)| < C(1+ |x|)* for all o and some kg > 0. Then define the
product hu of h and u by

(hu, fy = (u,hf),  fe.7. (2.3.16)

Note that Af is in . and thus (2.3.16) is well defined. The product of an arbitrary
¢ function with a tempered distribution is not defined.

We observe that if a function g is supported in a set K, then for all f € €;°(K)
we have

i (x)g(x)dx=0. (2.3.17)

Moreover, the support of g is the intersection of all closed sets K with the property
(2.3.17) for all f in €;°(K). Motivated by the preceding observation we give the
following:

Definition 2.3.16. Let u be in 2’ (R"). The support of u (supp u) is the intersection
of all closed sets K with the property

¢ € ¢~ (R"), suppp C K = (u,¢) =0. (2.3.18)

Distributions with compact support are exactly those whose support (as defined
in the previous definition) is a compact set. To prove this assertion, we start with
a distribution u with compact support as defined in Definition 2.3.3. Then there
exist C,N,m > 0 such that (2.3.4) holds. For a smooth function f whose support is
contained in B(0,N)¢, the expression on the right in (2.3.4) vanishes and we must
therefore have <u, f > = 0. This shows that the support of « is bounded, and since it
is already closed (as an intersection of closed sets), it must be compact. Conversely,
if the support of u as defined in Definition 2.3.16 is a compact set, then there exists
an N > 0 such that supp « is contained in B(0,N). We take a smooth function 7 that
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is equal to 1 on B(0,N) and vanishes off B(0,N + 1). Then the support of f(1—17)
does not meet the support of u, and we must have

(. f) = (u )+ {u f(1=m)) = (u.fn).

Taking m to be the integer that corresponds to the compact set K = B(0,N+1)
in (2.3.2), and using that the L™ norm of d*(fn) is controlled by a finite sum of
seminorms Py n-+1(f) with |a| < m, we obtain the validity of (2.3.4).

Example 2.3.17. The support of Dirac mass at xo is the set {xo}.
Along the same lines, we give the following definition:

Definition 2.3.18. We say that a distribution u in 2’ (R") coincides with the function
h on an open set 2 if

(u, f)y = | SWh(x)dx  forall fin @5(Q). (2.3.19)

When (2.3.19) occurs we often say that u agrees with s away from Q°¢.

This definition implies that the support of the distribution u — & is contained in
the set Q°.

Example 2.3.19. The distribution |x|? + Ou, + Ouy, Where ay, ap are in R”, coincides
with the function |x|> on any open set not containing the points a; and ay. Also, the
distribution in Example 2.3.5 (8) coincides with the function x~! Xlx|<1 away from
the origin in the real line.

Having ended the streak of definitions regarding operations with distributions,
we now discuss properties of convolutions and Fourier transforms.

Theorem 2.3.20. If u € .¥' and ¢ € .7, then @ xu is a € function. Moreover, for
all multi-indices o there exist constants Cy, kg > 0 such that

[0%(@%u)(x)] < Ca(1+ |x])*.
Furthermore, if u has compact support, then f *u is a Schwartz function.
Proof. Let y be in . (R"). We have

(v =u(@ev) =
<

2 @)D dy) (2.3.20)
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where the last step is justified by the continuity of u and by the fact that the Riemann
sums of the integral in (2.3.20) converge to that integral in the topology of .7, a fact
proved later. This calculation identifies the function ¢ % u as

(¢ u)(x) =u(7"(9)). (2.3.21)

We now show that (¢ *u)(x) is a € function. Let e; = (0,...,1,...,0) with 1
in the jth entry and zero elsewhere. Then

“hej (@ xu)(x) — (@ xu)(x —hej @) —1(Q ~
R0, (EHEBIZED) oo

by the continuity of u and the fact that (t"¢/ (t*(@)) — t°(@)) /A tends to 7*(9; @) in
- as h— 0. See Exercise 2.3.5(a). The same calculation for higher-order derivatives
shows that @ xu € € and that d7(@ *u) = (d7¢) * u for all multi-indices 7. It
follows from (2.3.3) that for some C, m, and k we have

0%(@xu)(x)| <C Y. sup [y'z(9* P ) (y)|
y|<mYER"
|Bl<k

—C Y sup |(x+9)"(0*FG) ()] (2.3.22)
|y|<mYER"
IBI<k

<Cu Y, sup (X" + "% R) )],
|B|<kyeR"

and this clearly implies that d% (¢ *u) grows at most polynomially at infinity.
We now indicate why ¢ *u is Schwartz whenever u has compact support. Apply-
ing estimate (2.3.4) to the function y — ¢(x —y) yields that

(1, 9(x =) =(@xu)(x)| <C Y sup |97 @(x—y)]

loc|<m [¥I<SN
for some constants C,m,N. Since
0 @(x—y)| < Capm (14 [x—y) ™ < Copn(1+1x)) ™

for |x| > 2N, it follows that @+ u decays rapidly at infinity. Since 97 (@ xu) = (d7¢) *
u, the same argument yields that all the derivatives of ¢ * u decay rapidly at infinity;
hence ¢ *u is a Schwartz function. Incidentally, this argument actually shows that
any Schwartz seminorm of ¢ *u is controlled by a finite sum of Schwartz seminorms
of .

We now return to the point left open concerning the convergence of the Riemann
sums in (2.3.20) in the topology of .’(R"). For each N = 1,2,. .., consider a parti-
tion of [~N,N]" into (2N?)" cubes Q,, of side length 1/N and let y,, be the center
of each Q,,. For multi-indices a, , we must show that
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(2N2)n
Dy = ¥ 3#0lfle )y Om)IQnl -~ [ x%0Polr— )W) dy
m=1
converges to zero in L”(R") as N — co. We have

X0y () 0l = [ 40P H(x—y)w () dy

m

=./(;) (= ) - Vo { P G(x —y)y(y) }(E) dy

for some & = y+ 0(y,, —y), where 6 € [0, 1]. It follows that |y| < |&|++/n/N <
|€]+1 for N > \/n. It is easy to see that the last integrand is at most

C|x|‘°“@ ! !
N (T4 =EPM 2+ (8D

for M large (pick M > 2|a|), which in turn is at most

1 1 N 1
O 1l Y < 'yl Y ,
M N e arEpe = MY T e

Inserting this estimate for the integrand in the last displayed integral, we obtain

x|l / dy / B~
D < —=— —_— oP — dy.
[-N.N]" (=N N

But the integrand in the last integral is controlled by

C/”‘x“al dy _ C///|x||a\ dy
(L pe=yDM (U DM = (1 M2 (14 y)M/2

Using these estimates it is now easy to see that limy e Sup,cg» |Dy(x)| = 0. O

Next we have the following important result regarding distributions with compact
support:

Theorem 2.3.21. If u is in &' (R"), then u is a real analytic function on R". More-
over, u has a holomorphic extension on C". In particular;, 0 is a €* function. Fur-
thermore, u and all of its derivatives have polynomial growth at infinity.

Proof. Given a distribution u with compact support and a polynomial p(&), the
action of u on the ' function & — p(&)e 2**% is a well defined function of x,
which we denote by u(p(-)e~>**()). Here x is an element of R" or C".

It is straightforward to verify that the function of z = (zy,...,2,)

F(Z) _ u(e—Zm(~)~Z)
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defined on C” is holomorphic, in fact entire. Indeed, the continuity and linearity of
u and the fact that (e=2™&" — 1) /h — —2mi&; in €= (R") as h — 0 in the complex
plane imply that F' is differentiable and its derivative with respect to z; is the action
of the distribution u to the €™ function

& (—2mikj)e T 5
By induction it follows that for all multi-indices ¢ we have
0L+ 0% F = u((—2mi()) e EA ).

Since F is entire, its restriction on R”, i.e., F(xy,...,x,), where xj = Re z;, is real
analytic. Also, as a consequence of (2.3.4), this restriction and all of its derivatives
have polynomial growth at infinity.

Now for f in . (R") we have

(@)= ) =

provided we can justify the passage of u inside the integral. The reason for this
is that the Riemann sums of the integral of f(x)e 2"*¢ over R" converge to it in
the topology of ¢, and thus the linear functional u can be interchanged with the
integral. We conclude that the tempered distribution & can be identified with the real
analytic function x — F(x) whose derivatives have polynomial growth at infinity.

To justify the fact concerning the convergence of the Riemann sums, we argue as
in the proof of the previous theorem. For each N = 1,2,..., consider a partition of
[~N,N]" into (2N?)" cubes Q,, of side length 1/N and let y,, be the center of each
Q.. For a multi-index o let

R”

(x)e_zm""é dx) = /nf(x)u(e_zmx‘('))dx,

(2N?)" _ i
Dn(§) = Z f()’m)(_zniYm)aeizmy’"'g |Om| — ./R” f(X)(—Znix)aefz’”"ﬁ dx.

m=1

We must show that for every M > 0, supje| < |Dn(&)| converges to zero as N — oo.
Setting g(x) = f(x)(—2mix)%, we write

N2\

) ' .
Z / [g(ym)efzmy”"é —g(x)efz’”’"é] dx—|—/ g(x)e’zm"é dx.
m ([-N,NJm)e

m=1

(
Dy(E) =

Using the mean value theorem, we bound the absolute value of the expression inside
the square brackets by

Vi _ Cr(1+[E]) v

(|Vg(1m)‘+2”|é||g(zfn)|) N — (1+|Zm|)K N’

for some point z,, in the cube Q,,. Since
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Ny

Ck (1+18D) _ ~
—————= < C(14+M) <o
L o Toape <G00
for |§| < M, it follows that sup|g <y, [Dn(§)] — 0 as N — oo. 0

Next we give a proposition that extends the properties of the Fourier transform
to tempered distributions.

Proposition 2.3.22. Given u, vin .'(R"), f € ., y € R", b a complex scalar, & a
multi-index, and a > 0, we have

(1) utv="u+v,
(2) bu=bi,
(3) Ifuj —uin.', then uj — win .,
(4) (u)™=(u),
(5) (2 (u)) = e 2m0¢q,
(6) (¥™Yu)"= (),
(7) (6%u))™= ()g =a""(6%
(8) (9%u)"= (2mi&)%u,
(9) %= ((—2mix)%u)",
(10) (@)" =u,

1

(@),

(11) f+u=fa,
(12) fu=f*i,
(13) (Leibniz’s rule) 97 (fu) = Yo () (95 )(9) " u), me ZF,

(14) (Leibniz’s rule) 0%(fu) = Z?ﬂ:o - ’Z?’T:O (%1) (i’:) (V) (0% Tu),

(15) If uy, u € LP(R") and wy — u in LP (1 < p < o), then uy — u in &' (R").
Therefore, convergence in . implies convergence in LP, which in turn implies
convergence in . (R").

Proof. All the statements can be proved easily using duality and the corresponding
statements for Schwartz functions. O

We continue with an application of Theorem 2.3.21.

Proposition 2.3.23. Given u € ' (R"), there exists a sequence of € functions fi
such that fi — u in the sense of tempered distributions; in particular, 65°(R") is
dense in ' (R").
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Proof. Fix a function in 6;°(R") with ¢(x) = 1 in a neighborhood of the origin. Let
@ (x) = 8% (@) (x) = @(x/k). It follows from Exercise 2.3.5(b) that for u € ./ (R"),
O — u in ', By Proposition 2.3.22 (3), we have that the map u — (@i1)" is
continuous on .’ (R"). Now Theorem 2.3.21 gives that (¢;%)" is a € function
and therefore @;(@yit)" is in €;°(R"). As observed, @; (@) — (@i)" in . when
k is fixed and j — 0. Exercise 2.3.5(c) gives that the diagonal sequence @ (@ f)"~
converges to [~ in .% as k — oo for all f € .%. Using duality and Exercise 2.2.2,
we conclude that the sequence of € functions ¢4 (@it)" converges to u in . as
k — oo, 0

2.3.4 The Space of Tempered Distributions Modulo Polynomials

Definition 2.3.24. We define & to be set of all polynomials of n real variables,

B B B
YoopP = Y cppo
Blom B,eZ7 U{0)

ﬁ]++ﬁn§m

with complex coefficients cg and m an arbitrary integer. We then define an equiva-
lence relation ~ on ./ (R") by setting

U~V <= u—ve .
The space of all resulting equivalence classes is denoted by ./ 2.

To avoid cumbersome notation, two elements u, v of the same equivalence class
in .’/ are identified, and in this case we write u = v in .#'/%. Note that for
u,v €./ P we have

u=v inS|P = (@0)= (Vo) forallpc SR ;)0
with support contained in R” \ {0}.

Proposition 2.3.25. Let . (R") be the space of all Schwartz functions @ that sat-
isfy
/ x'o(x)dx =0

Sfor all multi-indices y. Then .7 (R") is a subspace of . (R") that inherits the same
topology as . (R") and whose dual is ' (R")/ P, that is,

(Z=(R")) =7 (RY)) 2.
Proof. Consider the map J that takes an element u of .’ (R") to the equivalence

class in .”/(R")/ & that contains it. The kernel of this map is &2 and the claimed
identification follows. O
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We write uj — u in ./(R") /&7 if and only if u;,u are elements of .’ (R")/Z
and we have

(@) = (u.9)
as j — oo for all @ in .7 (R").

Exercises

2.3.1. Show that a positive measure i that satisfies

dp(x)
/Rn A+ =T

for some k > 0, can be identified with a tempered distribution. Show that if we think
of Lebesgue measure as a tempered distribution, then it coincides with the constant
function 1 also interpreted as a tempered distribution.

23.2.Let ¢,f € Z(R"), and for € > 0 let @(x) = € "@(e 'x). Prove that
Qe * f — b fin .7, where b is the integral of ¢.

2.3.3. Prove that for alla > 0, u € ./(R"), and f € . (R") we have
64(f) % 6%(u) = a™"8(f xu).

2.3.4. (a) Prove that the derivative of Y[, ;] is 0z — -

(b) Compute 9;¥(9,1) on R.

(c) Compute the Fourier transforms of the locally integrable functions sinx and
cosx.

(d) Prove that the derivative of the distribution log x| € ./ (R) is the distribution

. dx
u(p)=lim [ o(x°.
e<|x|

2.3.5. Let f € 7(R") and let ¢ € €;° be identically equal to 1 in a neighborhood
of origin. Define ¢ (x) = @(x/k) as in the proof of Proposition 2.3.23.

(a) Prove that (t7"¢/(f) — f)/h — 9;f in & as h — 0.

(b) Prove that ¢ f — f in .7 as k — oo, R

(c) Prove that the sequence @ (¢ f) converges to f in . as k — oo,

2.3.6. Use Theorem 2.3.21 to show that there does not exist a nonzero %;° function
whose Fourier transform is also a %;;” function.

2.3.7. Let f € LP(R") for some 1 < p < eo. Show that the sequence of functions

_ —2mix-&
@)= [ e Ea
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converges to f in ..

2.3.8. Let (cx)rezr be a sequence that satisfies |c;| < A(1+ |k|)™ for all k and some
fixed M and A > 0. Let & denote Dirac mass at the integer k. Show that the sequence
of distributions

Y, cde

k=N

converges to some tempered distribution u in ./ (R") as N — oo. Also show that u
is the . limit of the sequence of functions

hn(g) =Y cre Mk,

[kl<Nv
2.3.9. A distribution in ./ (R") is called homogeneous of degree y € C if
(u,6*(f)y=A"""u,f),  forallA >0.

(a) Prove that this definition agrees with the usual definition for functions.

(b) Show that &y is homogeneous of degree —n.

(¢) Prove that if u is homogeneous of degree 7, then d%u is homogeneous of degree
7—lal.

(d) Show that u is homogeneous of degree v if and only if # is homogeneous of
degree —n—7.

2.3.10. Show that the functions e and e~ converge to zero in .#’ and 2’ as
n — oo, Conclude that multiplication of distributions is not a continuous operation
even when it is defined. What is the limit of v/z(1+n/x|*) ! in Z/(R) as n — oo?

2.3.11. (S. Bernstein) Let f be a bounded function on R” with fsupported in the
ball B(0,R). Prove that for all multi-indices o there exist constants Cy, , (depending
only on ¢ and on the dimension n) such that

10% 1l = CoonR™ 1]

[Hint: Write f = f xhy g, where h is a Schwartz function 4 in R" whose Fourier
transform is equal to one on the ball B(0, 1) and vanishes outside the ball B(0,2).]

2.3.12. Let Pbe a %, function that is equal to 1 in B(0, 1) and let O be a €™ func-
tion that is equal to 1 in a neighborhood of infinity and vanishes in a neighborhood
of zero. Prove the following.

(a) For all u in ./ (R") we have

N v
(qs(g /2N)ﬁ) —u  inS(R") asN — oo,
(b) For all u in ./ (R") we have

(@(é/ZN)ﬁ>v —0 in.”(R")as N — o,
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(¢) The convergence in part (b) also holds in the topology of .#/(R")/ 2.
[Hint: Prove first the corresponding assertions for functions ¢ in . or %, with
convergence in the topology of these spaces.]

2.3.13. Prove that there exists a function in L” for 2 < p < oo whose distributional
Fourier transform is not a locally integrable function.

[Hint: Assume the converse. Then for all f € LP(R"), fis locally integrable and
hence the map f — f is a well defined linear operator from L?(R") to L' (B(0,1))
(i.e. ||f||L1 (B0.1)) < for all f € LP(R")). Use the closed graph theorem to deduce

that HfHLl(B(O,l)) <C|f] LP(R"

p > 2, take fy(x) = (1+iN) "2~ #(1+N) "W and et N — oo, noting that fy (&) =
e~ TEP(1+iN) }

) for some C < oo. To violate this inequality whenever

2.4 More About Distributions and the Fourier Transform

In this section we discuss further properties of distributions and Fourier transforms
and bring up certain connections that arise between harmonic analysis and partial
differential equations.

2.4.1 Distributions Supported at a Point

We begin with the following characterization of distributions supported at a single
point.

Proposition 2.4.1. If u € ./(R") is supported in the singleton {xy}, then there ex-
ists an integer k and complex numbers ay, such that

u= Z aqd%éy,.

<k

Proof. Without loss of generality we may assume that xo = 0. By (2.3.3) we have
that for some C, m, and k,

[(u, f)| <C Y sup x*(9Pf)(x)|  forall f € #(R").
|a\§mXER"
IB|<k
We now prove that if ¢ € .7 satisfies
(0%p)(0) =0  forall || <k, (2.4.1)

then (u, @) = 0. To see this, fix a ¢ satisfying (2.4.1) and let {(x) be a smooth
function on R” that is equal to 1 when |x| > 2 and equal to zero for |x| < 1. Let
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£8(x) = €(x/€). Then, using (2.4.1) and the continuity of the derivatives of ¢ at the
origin, it is not hard to show that p, g(£¢@ — @) — 0 as € — 0 for all || < m and
|B| < k. Then

|(u, @) < [(u, C5@)|+[(u, 80— )| <O+C Y pap(lo—9)—0
lot|<m

|Bl<k

as € — 0. This proves our assertion.
Now let f € .(R"). Let n be a %;;° function on R” that is equal to 1 in a neigh-
borhood of the origin. Write

o =ne( ¥ %x" +h(x)) + (1= () (), (24.2)

o] <k
where h(x) = O(x*') as [x| — 0. Then 1A satisfies (2.4.1) and hence (u,nh) =0

by the claim. Also,

by our hypothesis. Applying u to both sides of (2.4.2), we obtain
(9%)(0)

(u,fy="Y% Tu(x“n(x)): Y, au(9%80)(f),
lor| <k ’ |o|<k
with ag = (—1)*lu(x*n(x)) /a!. This proves the proposition. O

An immediate consequence is the following result.

Corollary 2.4.2. Let u € ' (R"). If u is supported in the singleton {&y}, then u is
a finite linear combination of functions (—2mi&)*2™&%0 where o is a multi-index.
In particular, if i is supported at the origin, then u is a polynomial.

Proof. Proposition 2.4.1 gives that i is a linear combination of derivatives of Dirac
masses at &. Then Proposition 2.3.22 (8) yields the required conclusion. 0

2.4.2 The Laplacian

The Laplacian A is a partial differential operator acting on tempered distributions
on R” as follows:

Aw) =Y a}u.
=1

Solutions of Laplace’s equation A (1) = 0 are called harmonic distributions. We have
the following:

Corollary 2.4.3. Let u € ./ (R") satisfy A(u) = 0. Then u is a polynomial.
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Proof. Taking Fourier transforms, we obtain that A/(u\) = (0. Therefore,
—4m?|EPa=0 in..

This implies that u is supported at the origin, and by Corollary 2.4.2 it follows that
u must be polynomial. 0

Liouville’s classical theorem that every bounded harmonic function must be con-
stant is a consequence of Corollary 2.4.3. See Exercise 2.4.2.

Next we would like to compute the fundamental solutions of Laplace’s equation
in R". A distribution is called a fundamental solution of a partial differential operator
L if we have L(u) = &. The following result gives the fundamental solution of the
Laplacian.

Proposition 2.4.4. For n > 3 we have

2/2
A = ~(2=2) 5o . (243)
while for n =2,
A(logl|x|) =27dy. 2.4.4)

Proof. We use Green’s identity

du  dv
/Q\)A(u)—uA(v)dx:/aQ (vav—u&v> ds,

where Q is an open set in R” with smooth boundary and dv/dv denotes the
derivative of v with respect to the outer unit normal vector. Take 2 = R"\ B(0, €),
v=|x|>"", and u = f a ¢;°(R") function in the previous identity. The normal deriva-
tive of f(r0) is the derivative with respect to the radial variable r. Observe that
A(|x|>~") = 0 for x # 0. We obtain

2—n
AP dx = — / (e“aaf— f(rG)a;r )d@. (2.4.5)

[x|>€
[ré|=¢

Now observe two things: first, that for some C = C(f) we have
d
’/ fde‘ <ce" !,
Jiro|=¢ dr

second, that

/‘9‘7 F(r0)e!"d6 — @, £(0)

as € — 0. Letting € — 0 in (2.4.5), we obtain that

lim [ A() )R dx = —(n—2) @, 1£(0),

€20/ |x|>¢
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which implies (2.4.3) in view of the formula for @,_; given in Appendix A.3.
The proof of (2.4.4) is identical. The only difference is that the quantity dr>~"/dr
in (2.4.5) is replaced by dlogr/dr. O

2.4.3 Homogeneous Distributions

The fundamental solutions of the Laplacian are locally integrable functions on R”
and also homogeneous of degree 2 —n when n > 3. Since homogeneous distribu-
tions often arise in applications, it is desirable to pursue their study. Here we do not
undertake such a study in depth, but we discuss a few important examples.

Definition 2.4.5. For z € C we define a distribution u, as follows:

(ug, ) = /R Ijr(z;)IXIZf(X)dx- (2.4.6)
h 2

Clearly the u,’s coincide with the locally integrable functions

ztn

n () |

when Rez > —n and the definition makes sense only for that range of z’s. It follows
from its definition that u, is a homogeneous distribution of degree z.

We would like to extend the definition of u, for z € C. Let Re z > —n first. Fix N
to be a positive integer. Given f € . (R"), write the integral in (2.4.6) as follows:

n% %)) o
fo 7 {f(x)_ T }'x| d

la[<N

n_ZJrn
+
w>1 (55" !

)

() [x[Fdx + T Z (aag.)(o)xﬂx“

The preceding expression is equal to

15" 9“ 0 (0] z
P {ro- 2, e o

2 |a|<N

tn

T2 .
Jr/\x\>1 @ﬂxﬂﬂ dx

(9%£)(0) =" /1 / .
+ 0)* 1 drde,
T el I ML

ja[=N

where we switched to polar coordinates in the penultimate integral. Now set
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. 1
n+z—1
b(n,a,2) = (&) al ( snle“dﬂ) /r:O riotereetdr

L 0%de
: Snfl

)

2
&%) laj+z+n

where @ = (a,...,o,) is a multi-index. These coefficients are zero when at least
one o is odd. Consider now the case that all the o;’s are even; then || is also even.
The function I'(£5) has simple poles at the points

z=-—n, z=—(n+2), z=—(n+4), and so on;
see Appendix A.5. These poles cancel exactly the poles of the function

2= (o] +z4n)"!

atz= —n— |ot| when || is an even integer in [0, N]. We therefore have
ﬂ:zgn
(wef) = [ e bt T bln,,2) (998, £)
[x[>1 F( 2 ) la|<N
. (2.4.7)
n (9%/)(0)
Jr/ o ) () — x* 3 |x|*dx.
<1 T'(52) { IOC\ZS’N o!

Both integrals converge absolutely when Re z > —N —n — 1, since the expression
inside the curly brackets above is bounded by a constant multiple of |[x|N*!, and
the resulting function of z in (2.4.7) is a well defined analytic function in the range
Rez>-N—-n—1.

Since N was arbitrary, <uz, f > has an analytic extension to all of C. Therefore, u,
is a distribution-valued entire function of z.

Next we would like to calculate the Fourier transform of u,. We know by Exercise
2.3.9 that u; is a homogeneous distribution of degree —n — z. The choice of constant
in the definition of u, was made to justify the following result:

Theorem 2.4.6. For all z € C we have tt; = u_,_.

Proof. The idea of the proof is straightforward. First we show that for a certain
range of z’s we have

[ JEF(E)aE =Cnz) [ (o dx, 248)
R" R"

for some fixed constant C(n,z) and all ¢ € .(R"). Next we pick a specific ¢ to
evaluate the constant C(n,z). Then we use analytic continuation to extend the va-
lidity of (2.4.8) for all z’s. Use polar coordinates by setting & = p@ and x = r6 in
(2.4.8). We have
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[ 1EFo(E) a
Rﬂ
_ /mpz—&-n—l /oo I(P(re) </ ]e—2ﬂirp(9-¢’)d(p) dern_ld}”dp
Snf Snf
f/ </ (rp)p¥™~ 1dp> < 1(p(rG)dQ) " dr
S

=C(n, z)/wr”( - l(p(rQ)dG) " Lar

nZ/|x|l’lZ

where we set

o(r) = /S nile_zmt(e'q’)d(p: Snile_zmt(‘pl)d(p, (2.4.9)

C(n,z) = /O o) dr, (2.4.10)

and the second equality in (2.4.9) is a consequence of rotational invariance. It re-
mains to prove that the integral in (2.4.10) converges for some range of z’s.
If n =1, then

ot)= /0 e 9 g = 2T 1 2T — D cos(2mr)
S

and the integral in (2.4.10) converges conditionally for —1 < Re z < 0.

Let us therefore assume that n > 2. Since |6(¢)| < ®,_1, the integral converges
near zero when —n < Re z. Let us study the behavior of (¢) for ¢ large. Using the
formula in Appendix D.2 and the definition of Bessel functions in Appendix B.1,
we write

for some constant ¢,. Using the asymptotics for Bessel functions (Appendix B.7),
we obtain that |o(z)| < ct~'/> when n—2 > —1/2 and ¢ > 1. In either case the
integral in (2.4.10) converges absolutely near infinity whenRe z+n—1—-1/2 < —1,
ie.,whenRez< —n+1/2.

We have now proved that when —n < Re z < —n+ 1/2 we have

ity = C(n, 2)u—p—

. . 2
for some constant C(n, z) that we wish to compute. Insert the function @ (x) = e~ "M
in (2.4.8). Example 2.2.9 gives that this function is equal to its Fourier transform.
Use polar coordinates to write

1)

- I o,
(anl/ ptnlg=ar dr:C(n,z)a)n,l/ i Pl
0 0
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Change variables s = 77> and use the definition of the gamma function to obtain
that -
NG DL
r(=3) =
It follows that i, = u_,_, for the range of z’s considered.

At this point observe that for every f € .(R"), the function z — <LTZ —U_zp, f >
is entire and vanishes for —n < Rez < —n+ 1/2. Therefore, it must vanish every-
where and the theorem is proved. 0

C(n,z) =

Homogeneous distributions were introduced in Exercise 2.3.9. We already saw
that the Dirac mass on R" is a homogeneous distribution of degree —n. There is
another important example of a homogeneous distributions of degree —n, which we
now discuss.

Let Q be an integrable function on the sphere 8"~! with integral zero. Define a
tempered distribution Wg on R” by setting

(Wa, f) = lim (/1) f(x)dx. (2.4.11)
e=0 e x|
We check that W is a well defined tempered distribution on R”. Indeed, since
Q(x/|x])/|x|" has integral zero over all annuli centered at the origin, we obtain

Q(x/]x])

_ | QU/1) oo ds
[(Wo,0)] = |tim [ 00 —0@)axt [ R p()a

1 (x/[x])] / 1 (x/[x])]
< ||V _— _
> H (PHL‘” /|x\§1 1 dx + xseuRR' x| @ (x)] NG dx

<CVel =Rl 1) +C X [l0C@x* [l 51y

<1

for suitable constants C| and C, in view of (2.2.2).

One can verify that Wo € /(R") is a homogeneous distribution of degree —n
just like the Dirac mass at the origin. It is an interesting fact that all homogeneous
distributions on R" of degree —n that coincide with a smooth function away from
the origin arise in this way. We have the following result.

Proposition 2.4.7. Suppose that m is a €* function on R"\ {0} that is homoge-
neous of degree zero. Then there exist a scalar b and a €° function Q on "' with
integral zero such that

m' =b& +Wq, (2.4.12)

where Wq denotes the distribution defined in (2.4.11).

To prove this result we need the following proposition, whose proof we postpone
until the end of this section.

Proposition 2.4.8. Suppose that u is a €= function on R"\ {0} that is homogeneous
of degree z € C. Then u is a €* function on R" \ {0}.
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We now prove Proposition 2.4.7 using Proposition 2.4.8.

Proof. Let a be the integral of the smooth function m over 8”~!. The function m —a
is homogeneous of degree zero and thus locally integrable on R”; hence it can be
thought of as a distribution that we call & (the Fourier transform of a tempered
distribution u). Since # is a € function on R"\ {0}, Proposition 2.4.8 implies
that u is also a € function on R"\ {0}. Let 2 be the restriction of u on §"" !,
Then Q is a well defined € function on S"~!. Since u is a homogeneous function
of degree —n that coincides with the smooth function Q on 8”1, it follows that
u(x) = Q(x/|x|)/|x|" for x in R"\ {0}.

We show that © has mean value zero over S"!. Pick a nonnegative, radial,
smooth, and nonzero function y on R” supported in the annulus 1 < |x| < 2. Switch-
ing to polar coordinates, we write

Q(x/|x]) /
u, = —————y(x)dx=c 0Q(0)do,
(ww) = [ vy =cy [ (0)
(wy) = (@)= [ m&-aw&ds=c, [
and thus Q has mean value zero over 8"~ ! (since cy #0).
We can now legitimately define the distribution Wg, which coincides with the
function Q(x/|x|)/|x|" on R"\ {0}. But the distribution u also coincides with this
function on R"\ {0}. It follows that u — W, is supported at the origin. Proposition
2.4.1 now gives that u — Wq is a sum of derivatives of Dirac masses. Since both
distributions are homogeneous of degree —n, it follows that

(m(6)—a)dé =0,

u—Wao =cdy.

Butu= (m—a)’ =m’ —ady, and thus m’ = (c+a)& + Wq. This proves the propo-
sition. 0

We now turn to the proof of Proposition 2.4.8.

Proof. Let u € .’ be homogeneous of degree z and 4~ on R"\ {0}. We need to
show that i is €= away from the origin. We prove that # is €™ for all M. Fix
M € Z" and let & be any multi-index such that

lot| >n+M+Rez. (2.4.13)

Pick a ¢ function ¢ on R” that is equal to 1 when |x| > 2 and equal to zero for
|x| < 1. Write ug = (1 — ¢)u and u. = @u. Then

0% = 0%uy + %o and thus ﬂ:ﬂﬂr&/“u\w,

where the operations are performed in the sense of distributions. Since ug is com-

pactly supported, Theorem 2.3.21 implies that m is €. Now Leibniz’s rule gives
that
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0% = v+ @0%u,

where v is a smooth function supported in the annulus 1 < |x| < 2. Then v is
and we need to show only that @d%u is ™. The function @d%u is actually ¢,
and by the homogeneity of d%u (Exercise 2.3.9(c)) we obtain that (d%u)(x) =
x| ~1®+2(9%u) (x/|x|). Since ¢ is supported away from zero, it follows that

Ca
(1 R

lo(x)(d%u)(x)] < (2.4.14)
for some Cy > 0. It is now straightforward to see that if a function satisfies (2.4.14),
then its Fourier transfogn\is &M whenever (2.4.13) is satisfied. See Exercise 2.4.1.

We/c\onclude tgag 0%, is a €M function whenever (2.4.13) is satisfied; thus
s0 is d%u. Since d%u(&) = (2mi&)*u(&), we deduce smoothness for & away from
the origin. Let & # 0. Pick a neighborhood V of & that does not meet the jth co-
ordinate axis for some 1 < j <n. Then n; # 0 when 1 € V. Let & be the multi-
index (0,...,M,...,0) with M in the jth coordinate and zeros elsewhere. Then
(2zin;)Mu(n) is a €™ function on V, and thus so is #(n), since we can divide by
n;-‘” . We conclude that #(&) is ™ on R"\ {0}. Since M is arbitrary, the conclusion
follows. 0

We end this section with an example that illustrates the usefulness of some of the
ideas discussed in this section.

Example 2.4.9. Let 1 be a smooth function on R” that is equal to 1 on the set
|x| > 1/2 and vanishes on the set |x| < 1/4. Let 0 < Re(o) < n. Let

g(&) = (n()lx|~*)7(&)-

The function g decays faster than the reciprocal of any polynomial at infinity and

2
r(3)

ﬂafgl—v(nfa)

8(6) - &%

is a ¥ function on R". Therefore, g is integrable on R”. This example indicates
the interplay between the smoothness of a function and the decay of its Fourier
transform. The smoothness of the function 1 (x)|x|~* near zero is reflected by the
decay of g near infinity. Moreover, the function 1(x)|x|~% is not affected by the
bump 1) near infinity, and this results in a behavior of g(&) near zero similar to that
of (x| ~#)(&).

To see these assertions, first observe that d7(n(x)|x|~%) is integrable and thus
(—2mi&)7g(&) is bounded if y is large enough. This gives the decay of g near infin-
ity. We now use Theorem 2.4.6 to obtain

na—%l—v(naa)

g(&) = men‘*‘a(é%
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where ¢(&) = ((n(x) — 1)[x|"*)(&), which is € as the Fourier transform of a
compactly supported distribution.

Exercises

2.4.1. Suppose that a function f satisfies the estimate

Co
[f(x)] < W’

for some N > n. Then fis €M when 1 <M < [N —n).

2.4.2. Use Corollary 2.4.3 to prove Liouville’s theorem that every bounded har-
monic function on R” must be a constant. Derive as a consequence the fundamental
theorem of algebra, stating that every polynomial on C must have a complex root.

2.4.3. Prove that ¢* is not in .#”(R) but that e*¢®" is in .7 (R).

2.4.4. Show that the Schwartz function x — sech (7x), x € R, coincides with its
Fourier transform.

[Hint: Integrate the function e“* over the rectangular contour with corners (—R,0),
(R,0), (R,ir), and (—R,i7).]

2.4.5. (Ismagilov [137]) Construct an uncountable family of linearly independent
Schwartz functions f, such that |f,| = |f,| and |f,| = |f»| for all f; and f} in the
family.

[Hint: Let w be a smooth nonzero function whose Fourier transform is supported
in the interval [—1/2,1/2] and let ¢ be a real-valued smooth nonconstant periodic
function with period 1. Then take f,(x) = w(x)e’?*~% fora € R.]

2.4.6. Let P, be the Poisson kernel defined in (2.1.13). Prove that for f € LP(R"),
1 < p < oo, the function

() = (B f)(x)

is a harmonic function on R'ﬂl. Use the Fourier transform and Exercise 2.2.11 to
prove that (P, * P,,)(x) = P, 4+,,(x) for all x € R".

2.4.7. (a) For a fixed xy € R", show that the function

v(x;x0) =

is harmonic on R"\ {x¢}.
(b) For fixed xg € S"~!, prove that the family of functions 8 — v(8;rxg), 0 < r < 1,
defined on the sphere satisfies
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lim (8;rx0)d0 =0

1%
1 est!

10—xo|>8

uniformly in xo. The function v(6;rxo) is called the Poisson kernel for the sphere.
(c) Let f be a continuous function on S"~1. Prove that the function

1 /(6)
) = o= ) [ e

solves the Dirichlet problem A (#) =0on |x| < 1 andu = f on |x| = 1.

2.4.8. Fix areal number A, 0 < A < n.
(a) Prove that

Fr(%*)
T2 7
[je-nirag =t
s r(n—-1%)
(b) Prove that
E[‘(”*l)
w2t 2 A
[y P =2 A s 1 )
[Hint: Use the stereographic projection in Appendix D.6.]
2.4.9. Prove the following beta integral identity:
— O — o +0p—
/ dr :717% F(HZI)F(HZZ)F( I 22 Vl) |X*y|n_al_a2,
N OGRS

where 0 < oy, 00 < n, a; + o0 > n.

2.4.10. (a) Prove that if a function f on R” (n > 3) is constant on the spheres rS" !
for all » > 0, then so is its Fourier transform.

(b) If a function on R” (n > 2) is constant on all (n —2)—dimensional spheres orthog-
onal to e; = (1,0,...,0), then its Fourier transform possesses the same property.

2.4.11. (Grafakos and Morpurgo [108]) Suppose that 0 < dy,d»,d; < n satisfy
di +d> 4+ d; = 2n. Prove that for any distinct x,y,z € R"” we have the identity

/ |y — 1]z — 1| dr
Rﬂ

n 3 I'(n— ﬂ

— 72 H # |x—y|d' “nly— Z‘dzfn|z_x|d37n'

. J

T (F)

[Hint: Reduce matters to the case that z =0 and y = e;. Then take the Fourier
transform in x and use Exercise 2.4.10.]
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2.4.12. (a) Integrate the function ¢ over the contour consisting of the three pieces
P ={(x,0): 0<x<R},P,={(Rcos®,Rsin0): 0<60 < Z} and P; = {(z,1):
t between RT‘E and 0} to obtain the Fresnel integral identity:

4R |
lim e’xzdx:@(l—ki).
R—e J_R

. . . L2
(b) Use the result in part (a) to show that the Fourier transform of the function emh

in R" is equal to ¢/ & e imlEl,
[Hint: Part (a): On P, we have ¢ Rsin(20) < ,= R0 and the integral over P> tends
to 0. Part (b): Try first n = 1.

2.5 Convolution Operators on L” Spaces and Multipliers

In this section we study the class of operators that commute with translations. We
prove in this section that bounded operators that commute with translations must be
of convolution type. Convolution operators arise in many situations, and we would
like to know under what circumstances they are bounded between L? spaces.

2.5.1 Operators That Commute with Translations

Definition 2.5.1. A vector space X of measurable functions on R" is called closed
under translations if for f € X we have t°(f) € X for all z € R". Let X and Y be
vector spaces of measurable functions on R” that are closed under translations. Let
also T be an operator from X to Y. We say that 7' commutes with translations or is
translation-invariant if

T(7(f)) =7(T(f))
forall f € X and ally € R".
It is automatic to see that convolution operators commute with translations. One

of the main goals of this section is to prove the converse: every bounded linear oper-
ator that commutes with translations is of convolution type. We have the following:

Theorem 2.5.2. Suppose 1 < p,q < oo, Suppose T is a bounded linear operator
Sfrom LP(R™) to LY(R") that commutes with translations. Then there exists a unique
tempered distribution v such that

T(f)=fxv  fordl fe.Z.

The theorem is a consequence of the following two results:
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Lemma 2.5.3. Under the hypotheses of Theorem 2.5.2 and for f € . (R"), the dis-
tributional derivatives of T (f) are L? functions that satisfy

T (f) =T(2%f), for all multi-indices a. (2.5.1)

Lemma 2.54. Let 1 < g < o and let h € L1(R"). If all distributional derivatives
d%h are also in LY, then h is almost everywhere equal to a continuous function H
satisfying

H(0)[ <Cag Y, 0%, (2.5.2)

|o]<n+1

Proof. Assuming Lemmas 2.5.3 and 2.5.4, we prove Theorem 2.5.2.
Define a linear functional u on .% by setting

(u, f) =T(£)(0).
By (2.5.1), (2.5.2), (2.2.7), and the boundedness of 7', we have

()< Cog X, (10°T()],e

|| <n+1

S VRPN il

|a|<n+1

<Gl Tl X [19%F]

lot| <n+1

< quHTHLPHLq Z pa,ﬁ(f)a
]| BI=N

which implies that u is in .. We now set v = i and we claim that 7'(f) = f *v for
f € .7. To see this, by Theorem 2.3.20 and by the translation invariance of 7', we
have

(fu)(x) = (@7(f)) = (u, 7 ()
=T(t" ( ))(0) =T (f))(0)
=T(f)(x)
whenever f € . (R"). This proves the theorem. ]

We now return to Lemmas 2.5.3 and 2.5.4. We begin with Lemma 2.5.3.

Proof. Let oo =(0,...,1,...,0), where 1 is in the jth entry. Let f,g € .. Since
—he;
T J—
w—ajgao in.7 as h— 0, (25.3)

it follows that (2.5.3) converges to zero in L” and thus

—he; _
T(T’f)g—%g—w in L9 as h— 0. (2.5.4)
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Therefore, (2.5.4) converges to zero when integrated against the function d;g.
We now have

(0;T(f).8) = — /T djgdx

T*hej _1

—lim [ 7(f) (F——(g)) dx

h—0./R"

i [, ((557) 70 s

he,-

: (f)) gdx

li T(I—T
= um
h—0 JR h

— [ 1) gdx,
Rll
where we used the fact that 7 commutes with translations and (2.5.4). This shows
that ;T (f) = T(9d;f). The general case follows by induction on |ct|. O
We now prove Lemma 2.5.4.

Proof. Let R > 1. Fix a 6" function @ that is equal to 1 in the ball |x| < R and
equal to zero when |x| > 2R. Since & is in LY(R"), it follows that @gh is in ! (RM).

We show that (pRh is also in L'. We begin with the inequality

1< Cu(1+x)" 0D Y | (—2mix) ], (2.5.5)

lot| <n+1

which is trivial for |x| < 2 and follows from (2.2.2) when |x| > 2. Now multiply
(2.5.5) by |@rh(x)| to obtain

|orh(x)] < Cu(1+[x])" "D Y [(—27ix)* gh(x)]

lot|<n+1
Cu(L+12) 70 3 ([0 (@rh)) | -
|o|<n+1
Co(1+[x)~ ) 3 [|0%(grh)||
la|<n+1
< G2 R (14 )70 Y[ 0% ()|
|o|<n+1
<Cur(U+ )™ (0%
|| <n+1

where we used Leibniz’s rule and the fact that all derivatives of ¢g are bounded by
constants (depending on R).
Integrate the previously displayed inequality with respect to x to obtain

ol < Con X (0], <o @56)

\O(\S)H»l
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Therefore, Fourier inversion holds for @gh (see Exercise 2.2.6). This implies that
@rh is equal a.e. to a continuous function, namely the inverse Fourier transform of
its Fourier transform. Since @g = 1 on the ball B(0,R), we conclude that % is a.e.
equal to a continuous function in this ball. Since R > 0 was arbitrary, it follows that &
is a.e. equal to a continuous function on R”, which we denote blfl . Finally, (2.5.2)
is a direct consequence of (2.5.6) with R = 1, since |H(0)| < ||(p1hHL1. O

2.5.2 The Transpose and the Adjoint of a Linear Operator

We briefly discuss the notions of the transpose and the adjoint of a linear operator.
We first recall real and complex inner products. For f,g measurable functions on
R"”, we define the complex inner product

(r18) = [ 1080 dx

whenever the integral converges absolutely. We reserve the notation
(f:8) = [ F(0)gle)d

for the real inner product on L*>(R") and also for the action of a distribution f on
a test function g. (This notation also makes sense when a distribution f coincides
with a function.)

Let 1 < p,q < eo. For a bounded linear operator T from L? (X, ) to L(Y,Vv) we
denote by T* its adjoint operator defined by

(T(1)lg) = [ T(zdv = [ ST du=(71T"(®)) 2.5.7)

for fin LP(X, 1) and g in LY (Y, V) (or in a dense subspace of it). We also define the
transpose of T as the unique operator 7" that satisfies

(T(f).8) = [ T(Ngdr= [ 1T (9)dx=(£.7'(s))

forall f € LP(X, ) and all g € L7 (Y, V).
If T is an integral operator of the form

T = [ K)s0)duo).
then T* and T’ are also integral operators with kernels K*(x,y) = K(y,x) and
K'(x,y) = K(y,x), respectively. If T has the form T'(f) = (fm)", that is, it is given
by multiplication on the Fourier transform by a (complex-valued) function m(&),
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then 7* is given by multiplication on the Fourier transform by the function m(&).
Indeed for f,g in .7 (R") we have

| STy = [ T(/)zax
- | T()5as
- | Fgag

— [ fTmayax.
Rn

A similar argument (using Theorem 2.2.14 (5)) gives that if T is given by multipli-
cation on the Fourier transform by the function m(&), then 77 is given by multipli-
cation on the Fourier transform by the function m(—&). Since the complex-valued
functions m(&) and m(—&) may be different, the operators 7* and T* may be dif-
ferent in general. Also, if m(§) is real-valued, then T is self-adjoint (i.e., T = T™*)

while if m(&) is even, then T is self-transpose (i.e., T =T").

2.5.3 The Spaces .#"4(R")

Definition 2.5.5. Given 1 < p,g < oo, we denote by .Z74(R") the set of all bounded
linear operators from LP(R") to L¢(R") that commute with translations.

By Theorem 2.5.2 we have that every T in .# 7 is given by convolution with a
tempered distribution. We introduce a norm || . || on .Z/P1 by setting
HTH(///M = HTHUHUN

that is, the norm of 7" in .#?4 is the operator norm of 7 as an operator from L to
L9, Tt is a known fact that under this norm, .Z7? is a complete normed space (i.e.,
a Banach space).

Next we show that when p > ¢ the set .# "4 consists of only one element, namely
the zero operator 7' = (. This means that the only interesting classes of operators
arise when p < ¢.

Theorem 2.5.6. .77 = {0} whenever 1 < g < p < oo,

Proof. Let f be a nonzero ¢ function and let 7 € R". We have

"Th(T(f))+T(f)"Lq = ||T(Th(f) +f)HLq < HTHLPeLqHTh(f) +f||LP’
Now let || — oo and use Exercise 2.5.1. We conclude that

29[|7(f)l o = (17|

1
rpa2? | f]

Ly
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which is impossible if ¢ < p unless 7T is the zero operator. O
Next we have a theorem concerning the duals of the spaces .#74(R").

Theorem 2.5.7. Let | < p < g <ooand T € .#P4(R"). Then T can be defined on
L7 (R™), coinciding with its previous definition on the subspace LP (R") NL7 (R") of
LP(R"), so that it maps LY (R") to L” (R") with norm

=117

(2.5.8)

H THM%LP LP—IL4"

(Recall ' = 1.) In other words, we have the following isometric identification of
spaces:

MV (R = PR,
Proof. We first observe that if T : LP — L4 is given by convolution with u € .%’,
then T* : LY — L” is given by convolution with & € .#. Indeed, for f in L”(R")
and g in L7 (R") we have

fT*(g)dx =
JR"

— [ fEriax
Rﬂ

= fgxudx.
R)‘l

Therefore T* is given by convolution with . Moreover, T* is well defined on L.
Using the simple identity

fra=(f*u)", felr?, 2.5.9)

it follows that 7 is also well defined on L4 . 1t remains to show that T (convolution
with u) and T* (convolution with ) map LY to LP with the same norm. But this
easily follows from (2.5.9), which implies that

I >l |IF *u]

L

Il F),

for all f € L7, f # 0. We conclude that HT*

||THL/7~>L‘1 = ||THL‘I/HLI’/ :

, and therefore
O

Hm’—w’ HTHUI’—»LP

We next focus attention on the spaces .#Z”4(R") whenever p = q. These spaces
are of particular interest, since they include the singular integral operators, which
we study in Chapter 4.
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2.5.4 Characterizations of .# "' (R") and .2#/**(R")

It would be desirable to have a characterization of the spaces .Z7”7 in terms of
properties of the convolving distribution. Unfortunately, this is unknown at present
(it is not clear whether it is possible) except for certain cases.

Theorem 2.5.8. An operator T is in 4" (R") if and only if it is given by convo-
lution with a finite Borel (complex-valued) measure. In this case, the norm of the
operator is equal to the total variation of the measure.

Proof. If T is given with convolution with a finite Borel measure p, then clearly T
maps L' to itself and HTHLMLI < H,u”///, where ||,u||/// is the total variation of .

Conversely, let T be an operator bounded from L' to L'. By Theorem 2.5.2, T is
given by convolution with a tempered distribution u. Let

folo) = &7 el

Since the functions f; are uniformly bounded in L', it follows from the boundedness
of T that fe * u are also uniformly bounded in L!. Since L' is naturally embedded in
the space of finite Borel measures, which is the dual of the space Cyy of continuous
functions that tend to zero at infinity, we obtain that the family f; * u lies in a fixed
multiple of the unit ball of Cy,. By the Banach—Alaoglu theorem, this is a weak™
compact set. Therefore, some subsequence of f, *u converges in the weak™ topology
to a measure U. That is, for some & — 0 and all g € Cypo(R") we have

lim [ gx) (fo ) () dx = / g(x)du(x). (2.5.10)
—o0 JR R"

We claim that u = p. To see this, fix g € .. Equation (2.5.10) implies that
(u, fo, #8) = (, fo x8) — (W.8)
as k — oo, Exercise 2.3.2 gives that g x f¢, converges to g in .. Therefore,
(u, fo v g) = (u:2).

It follows from (2.5.10) that <u,g> = <[.L,g>, and since g was arbitrary, u = U.
Next, (2.5.10) implies that for all g € Cypo we have

g(x)dp(x)
R}'l

< llgll - Slzp [ fe el o0 < Mgl o 1T Ml o 2.5.1D)
The Riesz representation theorem gives that the norm of the functional

g | 8)dut)
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on Cy is exactly H”H/// It follows from (2.5.11) that ||T||L1HL1 > H/JH/// Since

the reverse inequality is obvious, we conclude that HTH o = ||~ - 0

Operators given by convolution with finite complex-valued Borel measures ob-
viously map L=(R") to L(R"); hence .#'-! (R") is a subspace of .#*>(R"). But
there may exist bounded linear operators on L™ that commute with translations that
are not given by a convolution. The following example captures a strange behavior
in the case p = g = co.

Example 2.5.9. Let X be the space of all bounded complex-valued functions on the
real line such that

exists. Then @ is a bounded linear functional on X that has a bounded extension @
on L by the Hahn—Banach theorem. We may view @ as a bounded linear operator
from L= (R) to the space of constant functions, which is contained in L*(R). We
note that @ commutes with translations, since for all f€L”(R)and x € R we have

where the last two equalities follow from the fact that for bounded functions f the
expression % fo f(t —x) — f(£)dt has limit zero as R — oo. Since the operator ®
vanishes on all test functions, it is not given by convolution.

We now study the case p = 2. We have the following theorem:

Theorem 2.5.10. An operator T is in .4#**(R") if and only if it is given by convo-
lution with some u € . whose Fourier transform u is an L™ function. In this case
the norm of T : L* — L? is equal to HIYHLN

Proof. If u € L, Plancherel’s theorem gives

et = [ @@ < [l |71

< HﬁHLw and hence T is in ///2’2(R”).

Now suppose that T € .#*?(R") is given by convolution with a tempered distri-
bution u. We show that # is a bounded function. For R > 0 let ¢ be a %;;° function
supported inside the ball B(0,2R) and equal to one on the ball B(0,R). The product
of the function @g with the distribution u is @git = ((@r)" *u)"= T(@g )", which
is an L? function. Since the L? function @i coincides with the distribution 7 on
the set B(0,R), it follows that @ is in L?>(B(0,R)) for all R > 0 and therefore it is
in L} .. If f € L”(R") has compact support, the function fu is in L, and therefore
Plancherel’s theorem and the boundedness of 7' give

L= [ (P TR [ 1P,

R"?
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We conclude that for all bounded functions with compact support f we have
Taking f = |B(x,r)| ™" xp(x, for r > 0 and using Corollary 2.1.16, we obtain that
||THZ2HL2 — |(x)|*> > 0 for almost all x. Hence # is in L~ and ||ﬁHLm < ||T||L2HL2.

Combining this with the estimate ||7'||,, ,» < ||it]|,~. which holds if & € L™, we
deduce that HT||L2—>L2 = ||ﬁ||L°° O

7|5, — 1) ) (o) Pdx > 0.

2.5.5 The Space of Fourier Multipliers .#,(R")

We have now characterized all convolution operators that map L? to L?. Suppose
now that T is in .#ZP?, where 1 < p < 2. As discussed in Theorem 2.5.7, T also
maps L” to L” . Since p <2< p,by Theorem 1.3.4, it follows that T also maps L?
to L2. Thus T is given by convolution with a tempered distribution whose Fourier
transform is a bounded function.

Definition 2.5.11. Given 1 < p < o, we denote by .#,(R") the space of all bounded
functions m on R” such that the operator

Tu(f)=(fm)", fe,

is bounded on LP(R") (or is initially defined in a dense subspace of L”(R") and has
a bounded extension on the whole space). The norm of m in .#),(R") is defined by

||m||///p = HTmHLPHLP' (2.5.12)

Definition 2.5.11 implies that m € .#), if and only if T, € .#7". Elements of
the space .#,, are called L? multipliers or LP Fourier multipliers. It follows from
Theorem 2.5.10 that .5, the set of all L2 multipliers, is L. Theorem 2.5.8 implies
that ., (R") is the set of the Fourier transforms of finite Borel measures that is
usually denoted by .# (R"). Theorem 2.5.7 states that a bounded function m is an
L? multiplier if and only if it is an LY multiplier, and in this case

nlly =l 1<p<en

It is a consequence of Theorem 1.3.4 that the normed spaces .#), are nested, that is,
for 1 < p <¢g<2wehave

M C My C My C My =L

Moreover, if m € A4, and 1 <p <2 < p', Theorem 1.3.4 gives



144 2 Maximal Functions, Fourier Transform, and Distributions

(2.5.13)

1 1
| Tonl| 22 < 1Tl 2o 1 [T Tonl|

2
-

since 1/2=(1/2)/p+(1/2)/p’. Theorem 1.3.4 also gives that

mll s, < llmll_s,

whenever 1 < g < p <2. Thus the .#),’s form an increasing family of spaces as p
increases from 1 to 2.

Example 2.5.12. The function m(&) = 2% is an L” multiplier for all b € R”,
since the corresponding operator T,,(f)(x) = f(x+b) is bounded on L? (R"). Clearly
Imll 4, = 1.

My

Proposition 2.5.13. For 1 < p < o, the normed space (l///p, || . H ” ) is a Banach
“ep

space. Furthermore, ), is closed under pointwise multiplication and is a Banach

algebra.

Proof. Tt suffices to consider the case 1 < p < 2. It is straightforward that if m, my
are in ., and b € C then m| 4 my and bm; are also in .#),. Observe that mm; is
the multiplier that corresponds to the operator 7y, Ty, = T, m, and thus

Hm]mZH.///p = |Ton Tons || 1 < [l ||.///p||m2|‘.//p'

This proves that .#), is an algebra. To show that .#), is a complete space, take a
Cauchy sequence m; in .#,. It follows from (2.5.13) that m; is Cauchy in L”, and
hence it converges to some bounded function m in the L norm. We have to show
that m € .#,. Fix f € .. We have

o~

T (00 = [ FEm ™4 ag — [ FEmE)e=as = T,(/)()

a.e. by the Lebesgue dominated convergence theorem. Since {m;}; is a Cauchy
sequence in .#,, it is bounded in ///,,, and thus sup j Hm ,H u < C. Fatou’s lemma
SHAp

now implies that
[T dx = [ timinf(7,, (7)) dx
R” R” J—°
< liminf [ [T, (f)[7 dx
R'

Jj—roo
Az

< lijriglmeij///p

p
Lo

<]

which implies that m € .#,,. Incidentally, this argument shows that if u; € .#, and
u; — W a.e., then u is in .#), and satisfies

leell g, < timinf| 1]y,
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Apply this inequality to u; = my —m; and 4 = my —m for some fixed k. Then let
k — oo and use the fact that m; is a Cauchy sequence in .#), to obtain that ny — m
in .#),. This proves that .#,, is a Banach space. O

The following proposition summarizes some simple properties of multipliers.

Proposition 2.5.14. For allm € .#,, 1 < p < oo, x € R", and h > 0 we have

1=, = [l (25.14)
18" (), = lIm]lg, (2.5.15)
Ill.g, = llmll.s;,
e m] g, = lm]
HmOAH//[p = Hm”///p, A is an orthogonal matrix.
Proof. See Exercise 2.5.2. O

Example 2.5.15. We show that for —co<a<b< o we have H%[a,b] H//,, = HX[O,I] H///,,'
Indeed, using (2.5.14) we obtain that Hx[a-,b]H,///p = HX[O-,b—a]H,//p’ and the latter
is equal to Hx[()’l]H%p in view of (2.5.15). The fact that HX[OJ]H///p < oo for all
1 < p < oo is shown in Chapter 4.

We continue with the following interesting result.

Theorem 2.5.16. Suppose that m(&,n) € 4,(R"™™), where 1 < p < oo. Then for
almost every & € R" the function N — m(&,m) is in 4 ,(R™), with

Hm(éy')||,///p(km) = HmH.,//p(RH'")'

Proof. 1f mis only a measurable function, its restriction to lower-dimensional planes
is not defined. To avoid technical difficulties of this sort, we first assume that m is
continuous at every point. Fix f1, g in .(R") and f>, g, in .7 (R™). Let

ME) = [ mEmRMEmdn,  EeR,

m
JRrm
and observe that

~

/Rn (M()f) grdx

- | [ MOR @8 @]
| [ e ARG mEEE ) g an

- //Rner (mfifa)" g182dE dn’

< [lmll_g oy 71 o 2o 1810 2] -
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Since by duality we have

sup
<
gl <1

[d1() )|

/n (M()fl)vgldx )

=

it follows that M (&) is in .#,(R") with norm

11|, ery < lml]g s 2o 1821
p(R") p(RTH)

Since HMHL"“ < HMH///,, and m is continuous, we obtain that for all £ € R”",

[ .05 g2as] = W) < gy |l s 2 2510

which of course implies the required conclusion for m continuous. The passage
to a general m is achieved via a regularization argument. Define the family of
functions mg(&,m) = (2€)™" 7" (m * X|¢|<¢,)n|<e)- By Exercise 2.5.3 we have that
||mg || Ay (R < ||m|| Ay (R and clearly the m,’s are continuous functions. From
this observation and (2.5.16), it follows that

/mme(ii,n)fz(n)g?(n)d@ dT[‘ < Hm’|,///p(R'1+m)HfQHLPHgZHLP"

Now let € — 0 and use the Lebesgue dominated convergence theorem. The conclu-
sion follows. U

Example 2.5.17. (The cone multiplier) On R"*! define the function

2
24 ... 2
my (&1, 8n1) = (1512€n>

n+1

, A >0,
+

where the plus sign indicates that m) = 0 if the expression inside the parentheses is
negative. The multiplier m,, is called the cone multiplier with parameter A. If my is
in .,(R"*1), then the function b, (&) = (1 —|&[?*)* defined on R” is in ., (R").
Indeed, by Theorem 2.5.16 we have that for some &, = h, by (& /h,...,&,/h) is
in .#,(R") and hence so is by by property (2.5.15).

Exercises

2.5.1. Prove thatif f € LY(R") and 1 < g < oo, then

Hrh(f)+f||m - 21/q||f||m as [h| — co.
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2.5.2. Prove Proposition 2.5.14. Also prove that if 5;” is a dilation operator in the
Jjth variable (for instance 51}'1 () (x) = f(hix1,x2,...,x,)), then

1878 (m)[| , = Im]

253.Letme #,(R"), 1 < p <oo.
(a) If y is a function on R" whose inverse Fourier transform is an integrable func-
tion, then prove that

lwmll_ g, < 1" [l lmllg, -

(b) If w is in L' (R"), then prove that
lwsmll g, < N[l llmll g, -

2.5.4. Fix a multi-index 7.

(a) Prove that the map T (f) = f * d78 maps . continuously into ..

(b) Prove that when 1/p—1/q # |y|/n, T does not extend to an element of the space
AP

2.5.5. Let Ky(x) = [x| "7, where 0 < ¥ < n. Use Theorem 1.4.24 to show that the
operator

T’}’(f):f*K% feya
extends to a bounded operator in .#P4, where 1/p—1/q="7v/n, 1 < p < q < .
This provides an example of a nontrivial operator in .Z 7?7 when p < q.

2.5.6. (a) Use the ideas of the proof of Proposition 2.5.13 to show that if m; € .#,,
1 <p<oo, mj|| g <Cforall j=1,2,...,and m; — mae., thenm € M, and
P

Iml]. s, < timinf{|m; ] , <c.

(b) Suppose that for some 1 < p < oo, m; € .4, for all 0 <t < 0. Prove that

[l % <o = m@)= [ me? e

(c) Use part (a) to prove that if m € .#,, | < p < oo, then mg(x) = lim m(x/R) is

=1
R—oo

also in .7, and satisfies ||m0||‘//p < ||m||//[p

(d) If m € .#), has left and right limits at the origin, then prove that

Im]] ,, = max(lm(0+)],[m(0-)]).

2.5.7. Let 1 < p < co and suppose that m € .#,(R") has no zeros. Prove that the
operator T'(f) = (fm™~')" satisfies ||T(f)||,, > c,||/]

2.5.8. (a) Prove that if m € L (R") satisfies m" > 0, then for all 1 < p < oo we have

1> Where ¢, = HmHZP
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I

], = 1.

(b) (L. Colzani and E. Laeng ) Let mi (&) = —1 for & > 0 and m; (&) =1 for & < 0.
Let mp(&) = min(§ — 1,0) for & > 0 and m» (&) = max(& + 1,0) for & < 0. Prove
that

1l g, = lm2llg,

forall 1 < p < oo.

[Hint: Part (a): Use Exercise 1.2.9. Part (b): Use part (a) to show that ngmf1 H "=
My

1. Deduce that Hmz H//,, < Hm1 H//t,,' For the converse use Exercise 2.5.6(0).]

2.5.9. (de Leeuw [74]) Let 1 < p <ecoand 0 < A < . Prove that the following are
equivalent:

(a) The operator f +— Y,z amf(x —m) is bounded on L (R") with norm A.

(b) The .#,, norm of the function }_,,,cz» ape2Fm s exactly A.

(c) The operator given by convolution with the sequence {ay, } is bounded on ¢7(Z")
with norm A.

2.5.10. (Jodeit [141]) Let m(x) in .#,(R") be supported in [0, 1]". Then the peri-
odic extension of m in R",

M(x) = Z m(x—k),

kezn
is also in ., (R").

2.5.11. Suppose that u is a € function on R"\ {0} that is homogeneous of degree
—n+it, T € R. Prove that the operator given by convolution with « maps L>(R") to
L*(R").

2.5.12. (Hahn [117]) Letm; € L’ (R") and m; € L” (R") for some 2 < r < oo, Prove
that my xmy € .#,(R") when % —f=1land1<p<2,

[Hint: Prove that the trilinear operator (my,my, f)+ ((m;*my) f )" is bounded from
L?>xL*x L' — L"and L x L' x L?> — L?. Apply trilinear complex interpolation
(Exercise 1.4.17) to deduce the required conclusion for 1 < p < 2.]

2.6 Oscillatory Integrals

Oscillatory integrals have played an important role in harmonic analysis from its
outset. The Fourier transform is the prototype of oscillatory integrals and provides
the simplest example of a nontrivial phase, a linear function of the variable of in-
tegration. More complicated phases naturally appear in the subject; for instance,
Bessel functions provide examples of oscillatory integrals in which the phase is a
sinusoidal function.
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In this section we take a quick look at oscillatory integrals. We mostly concen-
trate on one-dimensional results, which already require some significant analysis.
We examine only a very simple higher-dimensional situation. Our analysis here is
far from adequate.

Definition 2.6.1. An oscillatory integral is an expression of the form
Iuyi/awmw@w, (2.6.1)

where A is a positive real number, ¢ is a real-valued function on R” called the
phase, and y is a complex-valued and smooth integrable function on R”, which is
often taken to have compact support.

2.6.1 Phases with No Critical Points

We begin by studying the simplest possible one-dimensional case. Suppose that ¢
and y are smooth functions on the real line such that supp v is a closed interval and

¢'(x)#20  forall x € supp y.

Since ¢’ has no zeros, it must be either strictly positive or strictly negative every-
where on the support of y. It follows that ¢ is monotonic on the support of ¥ and
we are allowed to change variables

u=o(x)

in (2.6.1). Then dx = (¢’ (x)) ~'du= (¢~")' (u) du, where ¢! is the inverse function
of ¢. We transform the integral in (2.6.1) into

e wio™ w)(e™) (w)du (2.62)

and we note that the function 6 (u) = (@' (1))(¢~")(u) is smooth and has com-
pact support on R. We therefore interpret the integral in (2.6.1) as 5(—1 /21), where
0 is the Fourier transform of 0. Since 6 is a smooth function with compact support,
it follows that the integral in (2.6.2) has rapid decay as A — oo.

A quick way to see that the expression 8(—2 /27) has decay of order A~V for
all N > 0 as A tends to oo is the following. Write

iAu _ ;ﬂ( i?Lu)
(iA)N duN

and integrate by parts N times to express the integral in (2.6.2) as
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(_])N i)LudNe(u>
(AN /Re a

from which the assertion follows. Hence
1(A)] = |6(=A/2m)| < CyA ™, (2.63)

where Cy = H o) || 11> Which depends on derivatives of ¢ and y.
We now turn to a higher-dimensional analogue of this situation.

Definition 2.6.2. We say that a point x is a critical point of a phase function ¢ if

Vo(xg) = (81 o(x0),. .- ,8,,(p(x0)) =0.

Example 2.6.3. Let § € R"\ {0}. Then the phase functions @;(x) = x-&, @ (x) =
¢ have no critical points, while the phase function @3(x) = |x|> —x- & has one
critical point at xo = 1&.

The next result concerns the behavior of oscillatory integrals whose phase func-
tions have no critical points.

Proposition 2.6.4. Suppose that y is a compactly supported smooth function on R"
and that @ is a real-valued €' function on R" that has no critical points on the
support of Y. Then the oscillatory integral

1) = / 00 yr(x) dx (2.6.4)
obeys a bound of the form [I(1)] < CyA™" for all A > 1 and all N > 0, where Cy

depends on N and on ¢ and .

Proof. Since the case n = 1 has already been discussed, we concentrate on dimen-
sions n > 2. For each y in the support of y there is a unit vector 6, such that

0y-Vo(y)=[Vo(y)|.

By the continuity of V¢ there is a small neighborhood B(y, ry) of y such that for all
x € B(y, ry) we have

1
6,-Vo(x) > §|V(p(y)\ >0.

Cover the support of ¥ by a finite number of balls B(y;,ry;), j = 1,...,m, and pick
¢ =min; 1[Vo(y;)|; we have

e.yj N V(P(.x) Z c > 0 (2.6.5)

forallx € B(y;,ry;) and j=1,...,m.

Next we find a smooth partition of unity of R” such that each member {; of the
partition is supported in some ball B(y;,r, ;) or lies outside the support of y. We
therefore write
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() = zk; / MY () () d, (2.6.6)

where the sum contains only a finite number of indices, since only a finite number
of the {;’s meet the support of y. It suffices to show that every term in the sum in
(2.6.6) has rapid decay in A as A — oo,

To this end, we fix a k and we pick a j such that the support of W is contained
in some ball B(y;,ry;). We find unit vectors 6y, 5,...,6y, ,, such that the system
{6y;,0y,2,...,0y; »} 1s an orthonormal basis of R". Let ¢; be the unit column vector
on R"” whose jth coordinate is one and whose remaining coordinates are zero. We
find an orthogonal matrix R such that Re; = Oyj and we introduce the change of
variables u = y; 4+ R(x — y;) in the integral

K3 = [ 0y G d.

The map x — u = (ui,...,u,) is a rotation that fixes y; and preserves the ball

B(yj,ry;). Defining @(x) = ¢?(u), y(x) = y’(u), &(x) = {(u), under this new
coordinate system we write

Ik(z):/K{/RefW’W)wa(ul,...,un)g;(ul,...,u,,)du]}duz--.dun, 2.6.7)

where K is a compact subset of R" !, Since R is an orthogonal matrix, R =R,
and the change of variables x = y; + R’ (u—y;) implies that

3u1

= first row of R' = first column of R = Gyj .

Thus for all x € B(y;,r;) we have

9¢°(u) _ dP(y;+R'(u—y))) _ ox
duy duy = Vol duy Vo) 8y 2 c>0

in view of condition (2.6.5). This lower estimate is valid for all u € B(y;, ry/.), and

therefore the inner integral inside the curly brackets in (2.6.7) is at most CyA " by
estimate (2.6.3). Integrating over K results in the same conclusion for /(1) defined
in (2.6.4). O

2.6.2 Sublevel Set Estimates and the Van der Corput Lemma

We discuss a sharp decay estimate for one-dimensional oscillatory integrals. This
estimate is obtained as a consequence of delicate size estimates for the Lebesgue
measures of the sublevel sets {|u| < o} for a function u. In what follows, u*) de-
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notes the kth derivative of a function u(¢) defined on R, and €* the space of all
functions whose kth derivative exists and is continuous.

Lemma 2.6.5. Let k > 1 and suppose that ay, . .. ,ay are distinct real numbers. Let
a=min(a,) and b=max(a;) and let f be a real-valued €*~" function on [a,b) that
is €% on (a,b). Then there exists a point y in (a,b) such that

k
Z Cmf(am) = f(k) (y)a
m=0

k
where ¢ = (—1)*k! T] (ay —an)~".
tm
Proof. Suppose we could find a polynomial py(x) = Zk-:o b jxj such that the function

o(x) = f(x) — pr(x) (2.6.8)

satisfies @(a,,) = 0 for all 0 < m < k. Since the a; are distinct, we apply Rolle’s
theorem k times to find a point y in (a,b) such that f*)(y) = k! b;.

The existence of a polynomial p; such that (2.6.8) is satisfied is equivalent to the
existence of a solution to the matrix equation

a{‘) alé ! ap by f(ao)
d a) ap 1| | br flar)
a11271 a]]:} coap 1 b flak—1)
alli a],fl a1 by flax)

The determinant of the square matrix on the left is called the Vandermonde determi-
nant and is equal to

-1 k
IT I1 (ac—aj)#o0.

k
=0 j=(+1

Since the a; are distinct, it follows that the system has a unique solution. Using
Cramer’s rule, we solve this system to obtain

1k
M1 II (ar—ay)

i (=0 j=(+1

l#£m” j4m
by = Z(_l)mf(am)]il H]f
m=0 [T 11 (ac—aj)
(=0 j={+1
k k
= ZO(*l)mf(am) ]_%(aé*am)_l(*l)k_”

7
l#m
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The required conclusion now follows with ¢;, as claimed. 0

Lemma 2.6.6. Let E be a measurable subset of R with finite nonzero Lebesgue mea-
sure and let k € 2. Then there exist ay, ... ,a; in E such that for all £ =0,1,...,k

we have
k

[Tlaj—arl > (1E|/2¢)". (2.69)
=0
J#t

Proof. Given a measurable set E with finite measure, pick a compact subset E’ of

E such that |[E \ E'| < 8, for some & > 0. For x € R define T (x) = |(—co,x) NE’|.
Then T enjoys the distance-decreasing property

T(x) =T ()| < x—yl

for all x,y € E'; consequently, by the intermediate value theorem, T is a surjective
map from E’ to [0,|E’[]. Let a; be points in E’ such that T(a;) = |E’| for j =
0,1,...,k. For k an even integer, we have

il k = r=5\2
> S R (COI
n|a, ar| > H!k —,[Uk 5|1 [T (=)=

g i#5

and it is easily shown that ((k/2)!)*k* > (2¢)*
For k an odd integer we have

J J k—|—1
H|a/—az|>H‘ £~ \ L
1# / j;é’f;—l
while the last product is at least
12 Sy2k+1 L
-2 2 U215 (2e)
{k Kk } 2w = %)

We have therefore proved (2.6.9) with E’ replacing E. Since |[E\E'| < d and § >0
is arbitrarily small, the required conclusion follows. 0

The following is the main result of this section.

Proposition 2.6.7. (a) Let u be a real-valued €* function, k € ZF, that satisfies
u®) (1) > 1 for all t € R. Then the following estimate is valid for all o > 0:

[{reR: |u(r)| < a}| < (2e)((k+ D)) Fat. (2.6.10)

(b) For all k > 2, for every real-valued €* function u on the line that satisfies
u® (1) > 1, for any —eo < a < b < oo, and every A > 0, the following is valid:
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b
/etku(t)dt

(c) If k=1, u'(t) is monotonic on (a,b), and u'(t) > 1 for all t € (a,b), then

< 12Kk|A| 7. 2.6.11)

b .
/ A ar <3\a7". (2.6.12)
a
Proof. Part (a): Let E = {r € R: |u(t)| < o}. If |E| is nonzero, then by Lemma
2.6.6 there exist ag,ay,...,a; in E such that for all £ we have
k

EI* < (2e)* T la;—arl - (2.6.13)

j=0

J#t

Lemma 2.6.5 implies that there exists y € (mina;, maxa;) such that

k k
u® (y) = (1) k1Y u(am) [T (ae—an)™" (2.6.14)
m=0 (=0
l#m

Using (2.6.13), we obtain that the expression on the right in (2.6.14) is in absolute
value at most

(k+1)! max |u(a;)| (2e)F|E|™* < (k+ 1)1 a (2e) |E|7F,
0<j<k

since a; € E. The bound u)(r) > 1 now implies
EfF < (k+1)!(2¢)* o

as claimed. This proves (2.6.10).
Part (b): We now take k > 2 and we split the interval (a,b) in (2.6.11) into the
sets

Ry = {te(ab): [ ()] < B},
Ry = {te(a,b): |u'(t)| > B},

for some parameter  to be chosen momentarily. The function v = ' satisfies
plk=1) >1land k—1 > 1. It follows from part (a) that

‘ / Ghut) gy
Ry

To obtain the corresponding estimate over R,, we note that if uk) > 1, then the set
{]u'| > B} is the union of at most 2k — 2 intervals on each of which ' is monotone.
Let (c,d) be one of these intervals on which «’ is monotone. Then «’ has a fixed sign

1 1

< |Ri| < 2e(K)FT BTT < 6kPTT.
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on (c,d) and we have

idu(t M,u
/c t) dt
idu(d) ilu(c)
llu )/dl’—f—lel _el
2 W@ W
7/ I )
P 70 wﬁ
1 /
1 u’(t ) W[B
1 1 1 ‘ 3
7@ Tl A ST

where we use the monotonicity of 1/u/(r) in moving the absolute value from inside
the integral to outside. It follows that
< -

z)Lu()
/Rz R

Choosing f = |M’<k’1)/ k to optimize and adding the corresponding estimates for
R; and R,, we deduce the claimed estimate (2.6.11).

Part (c): Repeat the argument in part (b) setting § = 1 and replacing the interval
(c,d) by (a,b). O

6k

Corollary 2.6.8. Let (a,b), u(t), A > 0, and k be as in Proposition 2.6.7. Then for
any function y on (a,b) with an integrable derivative and k > 2, we have

b,
/ezlu(t)w(t)dt

<1262 o))+ [ 1w )las].

We also have

b
/ezlu(t)w(t)dt

a

b
<3 v+ [ v)las
a
when k=1 and u' is monotonic on (a,b).

Proof. Set

and use integration by parts to write

[ Oyteya= Py - [ Fovoa.

The conclusion easily follows. ([
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Example 2.6.9. The Bessel function of order m is defined as

In(r) = i/zﬂeirsinee—ime 40
m = 27 o .

Here we take both » and m to be real numbers, and we suppose that m > — %; we refer
to Appendix B for an introduction to Bessel functions and their basic properties.

We use Corollary 2.6.8 to calculate the decay of the Bessel function J,,(r) as
r — oo, Set

¢(6) = sin(6)
and note that ¢’(6) vanishes only at 6 = /2 and 377/2 inside the interval [0, 27] and
that ¢”(m/2) = —1, while ¢”(3m/2) = 1. We now write 1 = y; + Y, + Y3, where
Y is smooth and compactly supported in a small neighborhood of 7/2, and v, is

smooth and compactly supported in a small neighborhood of 37 /2. For j = 1,2,
Corollary 2.6.8 yields

2T .
/ etrsm(@) (Wj<9)e—tm6)de < Cmr_1/2
0

for some constant C, while the corresponding integral containing Y3 has arbitrary
decay in r in view of estimate (2.6.3) (or Proposition 2.6.4 when n = 1).
Exercises

2.6.1. Suppose that u is a €* function on the line that satisfies [u*)(¢)| > co > 0 for
some k > 2 and all 7 € (a,b). Prove that for A > 0 we have

b
/ Shut) gy
a

and that the same conclusion is valid when k = 1, provided ' is monotonic.

<12k (Aco)~V/*

2.6.2. Show that if ' is not monotonic in part (c) of Proposition 2.6.7, then the
conclusion may fail.

[Hint: Let ¢(r) be a smooth function on the real line that is equal to 10z on intervals
[2mk +€,2m(k+ %) — €] and equal to ¢ on intervals [27(k+ ) +€,2m(k+ 1) — €].
Show that the imaginary part of the oscillatory integral in question may tend to
infinity over the union of several such intervals.]

2.6.3. Prove that the dependence on k of the constant in part (b) of Proposition 2.6.7
is indeed linear.
[Hint: Take u(t) = t*/k! over the interval (0,k!).]

2.6.4. Follow the steps below to give an alternative proof of part (b) of Proposition
2.6.7. Assume that the statement is known for some k > 2 and some constant C(k)
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for all intervals [a,b] and all €* functions satisfying u*) > 1 on [a,b]. Let ¢ be the
unique point at which the function #(¥) attains its minimum in [a, b].

(a) If u¥)(c) = 0, then for all § > 0 we have u¥)(r) > § in the complement of the
interval (¢ — 0,c¢+ &) and derive the bound

b
/ Ghut) gy

(b) If u®) () # 0, then we must have ¢ € {a,b}. Obtain the bound

b
/ Shult) gy
a

(c) Choose a suitable d to optimize and deduce the validity of the statement for k+ 1
with C(k+1) =2C(k) +2 = 5-2F — 2. (Note that C(1) = 3.)

<2C(k)(A8) "k 425,

<Ck)(A8) k48,

2.6.5. (a) Prove that for some constant C and all A € R and € € (0, 1) we have

o, dt
/ ellt - S C
e<|t|<1 t

(b) Prove that for some €' < oo, all A € R, k>0, and € € (0, 1) we have

Ak dt
/ ez)u:tt ob
e<|r|<1 t

(c) Show that there is a constant C” such that for any 0 < € < N < oo, for all &1, &,
in R, and for all integers k > 2, we have

/ Gi(Eistesh) 45
e<|s|<N N

[Hint: Part (a): For |A| small use the inequality e — 1) < |Ar]. If |A] is large,
split the domains of integration into the regions |t| < [A|~' and |¢| > |A|~! and use
integration by parts in the second case. Part (b): Write

<C'.

< C//

k .k .

At++1%) 1 e e 1 ezkt
=e

t t t

el

and use part (a). Part (c): When & = & = 0 it is trivial. If & = 0, &; # 0, change
variables 7 = ;s and then split the domain of integration into the sets |f] < 1 and
|f| > 1. In the interval over the set |¢| < 1 apply part (b) and over the set |¢| > 1 use
integration by parts. In the case & # 0, change variables 7 = |&|'/Xs and split the
domain of integration into the sets |¢| > 1 and [¢| < 1. When [¢| < 1 use part (b) and
in the case || > 1 use Corollary 2.6.8, noting that 7dk(§1|52‘d;1/ktitk) =k!>1]

2.6.6. (a) Show that for all @ > 1 and A > 0 the following is valid:
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/ eil log? dr
[f|<aA

(b) Prove that there is a constant ¢ > 0 such that for all b > A > 10 we have

b
iktlogtdt < ¢ )
/0 ¢ ’ ~ AlogA

[Hint: Part (b): Consider the intervals (0,6) and [8,b) for some 8. Apply Propo-
sition 2.6.7 with k = 1 on one of these intervals and with k = 2 on the other. Then
optimize over §.]

< 6a.

2.6.7. Show that there is a constant C < oo such that for all nonintegers ¥ > 1 and
C
< —

all A,b > 1 we have
b
irt?
dt .
/0 R ¥

[Hint: On the interval (0,8) apply Proposition 2.6.7 with k = [y] + 1 and on the
interval (8,b) with k = [y]. Then optimize by choosing § = 1~!/7.]

HISTORICAL NOTES

The one-dimensional maximal function originated in the work of Hardy and Littlewood [123].
Its n-dimensional analogue was introduced by Wiener [291], who used Lemma 2.1.5, a variant
of the Vitali covering lemma, to derive its L” boundedness. One may consult the books of de
Guzman [72], [73] for extensions and other variants of such covering lemmas. The actual covering
lemma proved by Vitali [285] says that if a family of closed cubes in R” has the property that
for every point x € A C R” there exists a sequence of cubes in the family that tends to x, then it
is always possible to extract a sequence of pairwise disjoint cubes E; from the family such that
|[A\U; Ej| = 0. We refer to Saks [233] for details and extensions of this theorem.

The class Llog L was introduced by Zygmund to give a sufficient condition on the local integra-
bility of the Hardy—Littlewood maximal operator. The necessity of this condition was observed by
Stein [255]. Stein [259] also showed that the L (R") norm of the centered Hardy-Littlewood maxi-
mal operator M is bounded above by some dimension-free constant; see also Stein and Stromberg
[262]. Analogous results for maximal operators associated with convex bodies are contained in
Bourgain [29], Carbery [42], and Miiller [204]. The situation for the uncentered maximal operator
M is different, since given any 1 < p < oo there exists Cj, > 1 such that || M|| 1y (re)—r(re) > C}, (see
Exercise 2.1.8 for a value of such a constant C,, and also the article of Grafakos and Montgomery-
Smith [109] for a larger value). The centered maximal function M, with respect to a general inner
regular locally finite positive measure i on R” is bounded on L”(R", ) without the additional
hypothesis that the measure is doubling; see Fefferman [93]. The proof of this result requires the
following covering lemma, obtained by Besicovitch [23]: Given any family of closed balls whose
centers form a bounded subset of R”, there exists an at most countable subfamily of balls that
covers the set of centers and has bounded overlap, i.e., no point in R” belongs to more than a finite
number (depending on the dimension) of the balls in the subfamily. A similar version of this lemma
was obtained independently by Morse [202]. See also Ziemer [300] for an alternative formulation.
The uncentered maximal operator M, of Exercise 2.1.1 may not be weak type (1,1) if the mea-
sure it is nondoubling, as shown by Sjogren [243]; related positive weak type (1, 1) results are
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contained in the article of Vargas [283]. The precise value of the operator norm of the uncentered
Hardy-Littlewood maximal function on L”(R) was shown by Grafakos and Montgomery-Smith
[109] to be the unique positive solution of the equation (p — 1)x” — px’~! —1 = 0. This con-
stant raised to the power 7 is the operator norm of the strong maximal function My on L? (R") for
1 < p < co. The best weak type (1, 1) constant for the centered Hardy—Littlewood maximal opera-
tor was shown by Melas [193] to be the largest root of the quadratic equation 12x> —22x+5 = 0.
The strong maximal operator M is not weak type (1,1), but it satisfies the substitute inequality
dy,(p)(@) <C Jgn @(1 +log® Lj”)”*' dx. This result is due to Jessen, Marcinkiewicz, and
Zygmund [140], but a geometric proof of it was obtained by Cérdoba and Fefferman [58].

The basic facts about the Fourier transform go back to Fourier [95]. The definition of distribu-
tions used here is due to Schwartz [235]. For a concise introduction to the theory of distributions
we refer to Hormander [130] and Yosida [296]. Homogeneous distributions were considered by
Riesz [222] in the study of the Cauchy problem in partial differential equations, although some
earlier accounts are found in the work of Hadamard. They were later systematically studied by
Gelfand and Silov [100], [101]. References on the uncertainty principle include the articles of
Fefferman [90] and Folland and Sitaram [94]. The best possible constant B), in the Hausdorff—

Young inequality ||f|

7 (R7) < BprHL,,(Rn) when 1 < p <2 was shown by Beckner [16] to be

B, = (p'/1’(p’)*1/1’/)”/2. This best constant was previously obtained by Babenko [13] in the case
when p’ is an even integer.

A nice treatise of the spaces .#" is found in Hérmander [129]. This reference also contains
Theorem 2.5.6, which is due to him. Theorem 2.5.16 is due to de Leeuw [74], but the proof pre-
sented here is taken from Jodeit [142]. De Leeuw’s result in Exercise 2.5.9 says that periodic
elements of .#,(R") can be isometrically identified with elements of . (T"), the latter being the
space of all multipliers on ¢7(Z").

Parts (b) and (c) of Proposition 2.6.7 are due to van der Corput [282] and are referred to in the
literature as van der Corput’s lemma. The refinenment in part (a) was subsequently obtained by
Arhipov, Karachuba, and Cubarikov [6]. The treatment of these results in the text is based on the
article of Carbery, Christ, and Wright [44], which also investigates higher-dimensional analogues
of the theory. Precise asymptotics can be obtained for a variety of oscillatory integrals via the
method of stationary phase; see Hormander [130]. References on oscillatory integrals include the
books of Titchmarsh [280], Erdélyi [83], Zygmund [303], [304], Stein [261], and Sogge [248]. The
latter provides a treatment of Fourier integral operators.



Chapter 3
Fourier Analysis on the Torus

Principles of Fourier series go back to ancient times. The attempts of the Pythagorean
school to explain musical harmony in terms of whole numbers embrace early ele-
ments of a trigonometric nature. The theory of epicycles in the Almagest of Ptolemy,
based on work related to the circles of Appolonius, contains ideas of astronomical
periodicities that we would interpret today as harmonic analysis. Early studies of
acoustical and optical phenomena, as well as periodic astronomical and geophysical
occurrences, provided a stimulus of the physical sciences to the rigorous study of
expansions of periodic functions. This study is carefully pursued in this chapter.

The modern theory of Fourier series begins with attempts to solve boundary value
problems using trigonometric functions. The work of d’ Alembert, Bernoulli, Euler,
and Clairaut on the vibrating string led to the belief that it might be possible to rep-
resent arbitrary periodic functions as sums of sines and cosines. Fourier announced
belief in this possibility in his solution of the problem of heat distribution in spatial
bodies (in particular, for the cube T3) by expanding an arbitrary function of three
variables as a triple sine series. Fourier’s approach, although heuristic, was appeal-
ing and eventually attracted attention. It was carefully studied and further developed
by many scientists, but most notably by Laplace and Dirichlet, who were the first
to investigate the validity of the representation of a function in terms of its Fourier
series. This is the main topic of study in this chapter.

3.1 Fourier Coefficients

We discuss some basic facts of Fourier analysis on the torus T”. Throughout this
chapter, n denotes the dimension, i.e., a fixed positive integer.

L. Grafakos, Classical Fourier Analysis, Second Edition, 161
DOI: 10.1007/978-0-387-09432-8 3, © Springer Science+Business Media, LLC 2008
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3.1.1 The n-Torus T"

The n-torus T” is the cube [0, 1]" with opposite sides identified. This means that
the points (xi,...,0,...,x,) and (xy,...,1,...,x,) are identified whenever 0 and 1
appear in the same coordinate. A more precise definition can be given as follows:
For x,y in R", we say that

X=y (3.1.1)

if x—y € Z". Here Z" is the additive subgroup of all points in R” with integer
coordinates. If (3.1.1) holds, then we write x =y (mod 1). It is a simple fact that =
is an equivalence relation that partitions R" into equivalence classes. The n-torus T”
is then defined as the set R”/Z" of all such equivalence classes. When n = 1, this
set can be geometrically viewed as a circle by bending the line segment [0, 1] so that
its endpoints are brought together. When n = 2, the identification brings together
the left and right sides of the unit square [0, 1]?> and then the top and bottom sides as
well. The resulting figure is a two-dimensional manifold embedded in R? that looks
like a donut. See Figure 3.1.

S

»xz

Fig. 3.1 The graph of the
two-dimensional torus TZ.

The n-torus is an additive group, and zero is the identity element of the group,
which of course coincides with every ¢; = (0,...,0,1,0,...,0). To avoid multiple
appearances of the identity element in the group, we often think of the n-torus as the
set [—1/2,1/2]". Since the group T” is additive, the inverse of an element x € T"
is denoted by —x. For example, —(1/3,1/4) = (2/3,3/4) on T2, or, equivalently,
—(1/3,1/4) =(2/3,3/4) (mod 1).

The n-torus T” can also be thought of as the following subset of C",

{(e™1 . Py € € (xy,.. %) €0,1]") (3.1.2)

in a way analogous to which the unit interval [0, 1] can be thought of as the unit
circle in C once 1 and O are identified.
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Functions on T" are functions f on R” that satisfy f(x+m) = f(x) for all x € R”
and m € Z". Such functions are called 1-periodic in every coordinate. Haar measure
on the n-torus is the restriction of n-dimensional Lebesgue measure to the set T" =
[0,1]". This measure is still denoted by dx, while the measure of a set A C T” is
denoted by |A|. Translation invariance of the Lebesgue measure and the periodicity
of functions on T” imply that for all f on T", we have

/n f(x) dx = /[71/2,1/2]" f(x) de = /[a|,1+u1]><~-~><[a,l.l+an] f(X) da (313

for any real numbers ay, ..., a,. The L? spaces on T" are nested and L' contains all
L? spaces for p > 1.

Elements of Z" are denoted by m = (my,...,my,). For m € Z", we define the rotal
size of m to be the number |m| = (m? + - - +m2)'/2. Recall that for x = (x1,...,x,)
andy = (yi,...,yn) in R",

x.y:x1y1+...+xnyn

denotes the usual dot product. Finally, for x € T", |x| denotes the usual Euclidean
norm of x. If we identify T with [—1/2,1/2]", then |x| can be interpreted as the
distance of the element x from the origin, and then we have that 0 < |x| < /n/2 for
allx € T".

3.1.2 Fourier Coefficients

Definition 3.1.1. For a complex-valued function f in L' (T") and m in Z", we define

~

Flm) = || flxe " dx. (3.14)

~ o~

We call f(m) the mth Fourier coefficient of f. We note that f(m) is not defined for
& e R"\ Z", since the function x — e 2 is not 1-periodic in every coordinate
and therefore not well defined on T".

The Fourier series of f at x € T" is the series

Y f(m)e*mim=, (3.1.5)

meZn

It is not clear at present in which sense and for which x € T" (3.1.5) converges. The
study of convergence of Fourier series is the main topic of study in this chapter.
We quickly recall the notation we introduced in Chapter 2. We denote by f the
complex conjugate of the function f, by f the function f(x) = f(—x), and by 7(f)
the function 77 (f)(x) = f(x—y) for all y € T". We mention some elementary prop-

erties of Fourier coefficients.
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Proposition 3.1.2. Let f, g be in L' (T"). Then for all m,k € Z", A € C, y € T", and
all multi-indices @ we have

(1) F+g(m)=Flm)+g(m),
(2) Af(m)=Af(m),
(3) F(m)=F(~m),

(4) 7 (m)=F(=m),

(5) ©(f)(m) = f(m)e2mmy,
(6) (2™ ) (m) = f(m—k),
7) F0)= | fldx,

8 f < 1 ny »
(8) nfggnlf(m)l < Al s oy

(9) frg(m)= f(m)g(m),

(10) ﬁf(m) = (2mim)® f(m), whenever f € €“.

Proof. The proof of Proposition 3.1.2 is obvious and is left to the reader. We only
sketch the proof of (9). We have

Fram = [ | fle=y)g(e 2 ee 2 dyax = Fm)gim),

where the interchange of integrals is justified by the absolute convergence of the
integrals and Fubini’s theorem. 0

Remark 3.1.3. The Fourier coefficients have the following property. For a function
/1 on T™ and a function f, on T"2, the tensor function

(1@ f2)(x1,x2) = fi(x1) f2(x2)

is a periodic function on T"! "2 whose Fourier coefficients are

~ ~

F1@ falmy,ma) = fi(my) fo(ma), (3.1.6)
forall m; € Z" and my € Z/*2.

Definition 3.1.4. A trigonometric polynomial on T" is a function of the form

P(x)=Y ane’™m, (3.1.7)

meZl



3.1 Fourier Coefficients 165

where {a, } mezn is a finitely supported sequence in Z". The degree of P is the largest
number |g|+ - - - +|¢x| such that a, is nonzero, where ¢ = (q1,...,¢x»).

Example 3.1.5. A trigonometric monomial is a function of the form

P(x) = a i@t tnm)

for some ¢ = (q1,...,q,) € Z" and a € C. Observe that P(q) = a and P(m) = 0 for
m+#q.

Let P(x) = Y <y ame*™™* be a trigonometric polynomial and let f be in
L'(T"). Exercise 3.1.1 gives that (f * P)(x) = Z|m‘§Namf(m)e2”im'x. This implies

~

that the partial sums ), <y f (m)e*™m=~ of the Fourier series of f given in (3.1.5)
can be obtained by convolving f with the functions

Dy(x)= Y &mm=, (3.1.8)

|m|<N

These expressions are named after Dirichlet, as the following definition indicates.

3.1.3 The Dirichlet and Fejér Kernels

Definition 3.1.6. Let 0 < R < oo. The square Dirichlet kernel on T" is the function

D(n,R)(x)= Y &7m. (3.1.9)

meZ"
[mj|<R

The circular (or spherical) Dirichlet kernel on T" is the function

D(n,R)(x)= Y &™m~. (3.1.10)

meZ’
Im|<R

In dimension 1, the function D(1,R) = D(1,R) (for R > 0) is called the Dirichlet
kernel and is denoted by Dg as in (3.1.8). The function Ds is plotted in Figure 3.2.

Both the square and circular (or spherical) Dirichlet kernels are trigonomet-
ric polynomials. The square Dirichlet kernel on T" is equal to a product of one-
dimensional Dirichlet kernels, that is,

D(n,R)(x1,...,%;) = Dg(x1)---Dgr(xy). (3.1.11)
We have the following two equivalent ways to write the Dirichlet kernel Dy:

sin((2N + 1) 7x)

Dy() = X e = sin(7mx)

|m|<N

, x€[0,1]. (3.1.12)
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L\

\/0.2 0.4

To verify the validity of (3.1.12), sum the geometric series on the left in (3.1.12) to
obtain

Fig. 3.2 The graph of the
Dirichlet kernel D5 plotted on
the interval [—1/2,1/2].

Nk eZm’(ZNJrl)x -1 eZm‘(N+l)x — o~ 2miNx sin((2N+ 1)71?)6)
e _

P N e sin(7x)

It follows that for R € Rt U{0} we have

It is reasonable to ask whether the family {Dg}g~( forms an approximate identity
as R — oo. Using (3.1.12) we see that each Dy is integrable over [—1/2,1/2] with
integral equal to 1. But we can easily obtain from (3.1.12) that for all 6 > 0 there is
a constant cg > 0 such that

/ Dr(x)|dx > cs
122>

for all R > 0. Therefore the family {Dg}g~o does not satisfy property (iii) in Def-
inition 1.2.15. More important, it follows from Exercise 3.1.8 that ||Dg||,, ~ logR
as R — oo, and therefore property (i) in Definition 1.2.15 also fails for Dg. We con-
clude that the family {Dg}g~o is not an approximate identity on T', a fact that
significantly complicates the study of Fourier series. It follows immediately that the
family {D(n,R)}r~0 does not form an approximate identity on T". The same is true
for the family of circular (or spherical) Dirichlet kernels {D(n, R) } g~0, although this
is harder to prove. It will be a consequence of the results in Section 3.4.

A typical situation encountered in analysis is that the mean of a sequence behaves
better than the original sequence. This fact led Cesaro and independently Fejér to
consider the arithmetic means of the Dirichlet kernel in dimension 1, that is, the
expressions

1

Fv(x) = 55 [Do(x) + D1 (x) + D2 (x) +- -+ Dy (x)]. (3.1.14)
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It can be checked (see Exercise 3.1.3) that (3.1.14) is in fact equal to the Fejér kernel
given in Example 1.2.18, that is,

B = Y (1_|j>ezmjx_ 1 (sin(nam)x)){ GL1s)

=y N+1 CON+1 sin(7x)

whenever N is a nonnegative integer. Identity (3.1.15) implies that the mth Fourier
|m|

coefficient of Fy is (1 — 37 ) if [m| < N and zero otherwise.

Definition 3.1.7. Let N be a nonnegative integer. The Fejér kernel F(n,N) on T"
is defined as the average of the product of the Dirichlet kernels in each variable,
precisely,

N N
~ T Z Z Dkl(xl)"'Dkn(xn)
=0 kn=0

=
+

So F(n,N) is equal to the product of the Fejér kernels in each variable. Note that
F(n,N) is a trigonometric polynomial of degree nN.

Remark 3.1.8. Using the first expression for Fy in (3.1.15), we can write

_ ‘m1| |mn‘ 27im-x
F(n,N)(x)= ) <1—N+1>---<1—N+1)e (3.1.16)

meZ
Imj|<N

for N > 0 an integer. Observe that F'(n,0)(x) = 1 for all x € T".

Remark 3.1.9. To verify that the Fejér kernel F (n,N) is an approximate identity on
T", we use the second expression for F(1,N) in (3.1.15) to obtain

1 A sin(m(N+Dx) )2
F(n,N)(x1,...,x,) = (N+1)"]Hl< (7)) ) ) (3.1.17)

Properties (i) and (iii) of approximate identities (see Definition 1.2.15) can be
proved using the identity (3.1.17), while property (ii) follows from identity (3.1.16).
See Exercise 3.1.3 for details.

Having introduced the Fejér kernel, let us see how we can use it to obtain some
interesting results.
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3.1.4 Reproduction of Functions from Their Fourier Coefficients

Proposition 3.1.10. The set of trigonometric polynomials is dense in LP(T") for
1 <p<ono.

Proof. Given f in LP(T") for 1 < p < o, consider f x F(n,N). Because of Exercise
3.1.1, fxF(n,N) is also a trigonometric polynomial. In view of Theorem 1.2.19 (1),
f*F(n,N) converges to f in L as N — oo, O

Corollary 3.1.11. (Weierstrass approximation theorem for trigonometric polyno-
mials) Every continuous function on the torus is a uniform limit of trigonometric
polynomials.

Proof. Since f is continuous on T” and T” is a compact set, Theorem 1.2.19 (2)
gives that f « F(n,N) converges uniformly to f as N — oo. Since f * F(n,N) is a
trigonometric polynomial, we conclude that every continuous function on T” can be
uniformly approximated by trigonometric polynomials. U

We now define partial sums of Fourier series.

Definition 3.1.12. For R > 0 the expressions

(f*D(n,R))(x) = Z f(m)e%rim»x
mEZn
Im;|<R

are called the square partial sums of the Fourier series of f, and the expressions

(f * 5(117R))(x) = Z f/\(m)ezn'im-x
meZ"
Im[<R

are called the circular (or spherical) partial sums of the Fourier series of f. Simi-
larly, for N € Z* U {0} the expressions

FereN) W = L (1) (1 ey ) Feme

mj|<N

are called the square Cesaro means (or square Fejér means) of f. Finally, for R > 0
the expressions

- |m| n 2Tim-x
«F(n,R))(x) = 1—— m)e
(fF(n, R)) (2 |ZZ< R)ﬂ )

are called the circular Cesaro means (or circular Fejér means) of f.

Observe that f F (n,R) is equal to the average of the expressions f *5(n,R)
from O to R in the following sense:
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(f*F(n,R))( R/ D(n,r)* f)(x)dr.

This is analogous to the fact that the Fejér kernel Fjy is the average of the Dirichlet
kernels Dy, Dy, ...,Dy. Also observe that f * F(n,R) can also be defined for R > 0,
but it would be constant on intervals of the form [a,a+ 1), where a € Z.

A fundamental problem is in what sense the partial sums of the Fourier series
converge back to the function as N — co. This problem is of central importance in
harmonic analysis and is partly investigated in this chapter.

We now ask the question whether the Fourier coefficients uniquely determine the
function. The answer is affirmative and simple.

Proposition 3.1.13. If f, g € L' (T") satisfy f(m) =g(m)forallminZ", then f =g
a.e.

Proof. By linearity of the problem, it suffices to assume that g = 0. If f(m) =0 for
all m € Z", Exercise 3.1.1 implies that F (n,N)* f = 0 for all N € Z". The sequence
{F(n,N)}nez~+ is an approximate identity as N — oo. Therefore,

|f = F(nN) s f =0
as N — oo; hence HfHL1 =0, from which we conclude that f =0 a.e. O
A useful consequence of the result just proved is the following.

Proposition 3.1.14. (Fourier inversion) Suppose that f € L' (T") and that

Y |fm)| <o

meZn

Then N ‘
=Y fme™ ™ ae, (3.1.18)

meZl

and therefore f is almost everywhere equal to a continuous function.

Proof. 1t is straightforward to check that both functions in (3.1.18) are well defined
and have the same Fourier coefficients. Therefore, they must be almost everywhere
equal by Proposition 3.1.13. Moreover, the function on the right in (3.1.18) is ev-
erywhere continuous. O

We continue with a short discussion of Fourier series of square summable func-
tions.

Let H be a separable Hilbert space with complex inner product (- | -). Recall that
a subset E of H is called orthonormal if (f|g) =0 forall f, g in E with f # g, while
(f|fy=1forall fin E. A complete orthonormal system is a subset of H having
the additional property that the only vector orthogonal to all of its elements is the
zero vector. We refer to Rudin [229] for the relevant definitions and theorems and in
particular for the proof of the following proposition:
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Proposition 3.1.15. Let H be a separable Hilbert space and let { @y }xez, be an or-
thonormal system in H. Then the following are equivalent:

(1) { @k }kez is a complete orthonormal system.

(2) For every f € H we have

15 = X 1¢F 1o

keZ

(3) For every f € H we have

f= lim Y (Flewer,

— iy
where the series converges in H.

Now consider the Hilbert space space L?(T") with inner product

(flg)= [ Fwstar

Let @, be the sequence of functions & — ¢2*"¢ indexed by m € Z". The orthonor-
mality of the sequence {¢,,} is a consequence of the following simple but powerful
identity:

/ 627Fi’"'X627rik~x dx =
[0,1]"

1 whenm =k,
0 whenm #k.

The completeness of the sequence {;,} is also evident. Since (f|@,) = F(m) for
all f € L*(T"), it follows from Proposition 3.1.13 that if (| ¢,,) = 0 for all m € Z",
then f =0 a.e.

The next result is a consequence of Proposition 3.1.15.

Proposition 3.1.16. The following are valid for f,g € L*(T"):
(1) (Plancherel’s identity)

IFl2= X 1Fm)P.

meZ

(2) The function f(t) is a.e. equal to the L*(T") limit of the sequence

lim flm)e?mmt.
M—co \m\SM

(3) (Parseval’s relation)

fWg)yde =Y fm)gim).
™ meZ

(4) The map f — {f(m)}mezr is an isometry from L*(T") onto (2.
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(5) For all k € 7" we have

= Y fmgk—m)=Y Flk—m)g(m).

meZ meZl

Proof. (1) and (2) follow from the corresponding statements in Proposition 3.1.15.
Parseval’s relation (3) follows from polarization. First replace f by f+ g in (1)
and expand the squares. We obtain that the real parts of the expressions in (3) are
equal. Next replace f by f+ig in (1) and expand the squares. We obtain that the
imaginary parts of the expressions in (3) are equal. Thus (3) holds. Next we prove
(4). We already know that the map f +— {f(m)}mez» is an injective isometry. It
remains to show that it is onto. Given a square summable sequence {a;, }mezn of
complex numbers, define

_ Z ameme-t.

|m|<N

Observe that fy is a Cauchy sequence in L?(T") and it therefore converges to some
f € L*>(T"). Then we have f(m) = a,, for all m € Z". Finally, (5) is a consequence
of (3) and Proposition 3.1.2 (6) and (3). O

3.1.5 The Poisson Summation Formula

We end this section with a useful result that connects Fourier analysis on the torus
with Fourier analysis on R". Suppose that f is an integrable function on R" and let
f be its Fourier transform. Restrict f on Z"* and form the “Fourier series” (assuming

that it converges)
Z f(m)eZHim-x.
meZl

What does this series represent? Since the preceding function is 1-periodic in every
variable, it follows that it cannot be equal to f, unless it is identically zero. However,
it should not come as a surprise that in many cases it is equal to the periodization of
f on R". More precisely, we have the following.

Theorem 3.1.17. (Poisson summation formula) Suppose that f, f € L' (R") satisfy

F@I+F )] < C1+ )™
for some C,8 > 0. Then f and fare both continuous, and for all x € R" we have

Y Fm)em =Y fx+m), (3.1.19)

meZ" meZ"

and in particular 'Y, f(m): Y f(m).

mezZn meZ
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Proof. Since ]?is integrable on R”, inversion holds and f can be identified with a
continuous function. Define a 1-periodic function on T” by setting

=) flxtm).

meZ"
It is straightforward to verify that F € L' (T"). The calculation
F( ) F( ) —2mim-x g Z / n 727rim-xdx _ f(m)
ez’ [=7:31"=

gives that the sequence of the Fourier coefficients of F coincides with the restriction
of the Fourier transform of f on Z". Since we have that

~ N 1
[F(m)|= ), [f(m)][<C ) ——ms <eo,
mGZZ” MGZZ” mé" (1 + |m|)n+5
Proposition 3.1.14 implies conclusion (3.1.19). 0

Example 3.1.18. We have seen earlier (see Exercise 2.2.11) that the following iden-
tity gives the Fourier transform of the Poisson kernel in R":

RNV G
(e (8) = —F T
oz (1+]8%) 2
The Poisson summation formula yields the identity
r M) € )
2 —27elk| ,—2mik-
ey ¢ 2melkl g 2mikex (3.1.20)

n+l T
2

T2 kezr (€2+ |k +x[?) keZn

It follows that

L
1 1 ( 2 Z —2melk| 1 )
25 e\ (), ’

kezm o} (€2 +[k|?) ez
from which we obtain the identity

Z 1 ~im 1 ( 7["451 Z —2melk| _ ) (3.1.21)
vezmqoy k1" [k™+1 " e=oe \ I (251) 5,

The limit in (3.1.21) can be calculated easily in dimension 1, since the sum inside
the parentheses in (3.1.21) is a geometric series. Carrying out the calculation, we

obtain
Zlflz
K23

k0
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Example 3.1.19. Let 11 and g be as in Example 2.4.9. Let 0 < Re @ < n and let

X € [—%, %)" The Poisson summation formula gives

eZn’im-x B n (m)eZnim~x

meZ"\{0} ‘m|a meZn

=g+ ) glxt+m).
meZ"\ {0}

It was shown in Example 2.4.9 that g(&) decays faster than the reciprocal of any
polynomial at infinity and is equal to ﬂ“’%F(%)F(%)’I [E|*™" +h(&), where h
is a smooth function on R". Then, for x € [—%, %)", the function

g(x+m)
meZmM {0}

is also smooth, and we conclude that

2mim-x n-af%l—' n—a
T T e ).
meZ"\ {0} [m] (3)

where /1 (x) is a € function on [—3, $)".

For other applications of the Poisson summation formula related to lattice points,
see Exercises 3.1.12 and 3.1.13.

Exercises

3.1.1. LetPbea trigOIlOAmetlric polynomial on T".
(a) Prove that P(x) = ZP(m)gMim-X_
(b) Let f be in L' (T"). Prove that (f % P)(x) = Y. P(m) f (m)e*™~,

3.1.2. On T' let P be a trigonometric polynomial of degree N > 0. Show that P has
at most 2N zeros. Construct a trigonometric polynomial with exactly 2N zeros.

3.1.3. Prove the identities (3.1.15), (3.1.16), and (3.1.17) about the Fejér kernel
F(n,N) on T". Deduce from them that the family {Fy }y is an approximate identity
as N — oo,

[Hint: Express the functions sin?(7rx) and sin® (7 (N + 1)x) in terms of exponentials.

3.1.4. (de la Vallée Poussin kernel). On T' define
VN()C) = 2F2N+1 (x) —FN(}C) .

(a) Show that the sequence Vy is an approximate identity.
(b) Prove that Viy(m) = 1 when |m| <N + 1, and Viy(m) = 0 when |m| > 2N + 2.
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3.1.5. (Hausdorff~Young inequality ) Prove that when f € LP, 1 < p <2, the se-
quence of Fourier coefficients of f is in /7 and

(X 1Fml)" <1f]]

meZl
Also observe that 1 is the best constant in the preceding inequality.

3.1.6. Use without proof that there exists a constant C > 0 such that for all € R
we have

iklogk ,ikt < C\/IV, N=234,...,

to construct an example of a continuous function g on T! with

Y, [8(m)|? =

meZ

for all ¢ < 2. Thus the Hausdorff—Young inequality of Exercise 3.1.5 fails for p > 2.
[Hint: Consider g(x) = Y, ﬁez’”’“. For a proof of the previous estimate,

see Zygmund [303, Theorem (4.7) p. 199].]

3.1.7. The Poisson kernel on T” is the function

_ [y [mu| 2mim-x
By (%) = Z ry orn €

meZ"

and is defined for O < ry,...,r, < 1. Prove that P, ,, can be written as

1+r; 62”’x1> n 1 —rjz
P, x 5. Re - )
Flyeeestn \A1 H ( 27ix II;II 1— 2,.]_ COS(27L')Cj) + r?
and conclude that P, __,(x) is an approximate identity as r T 1.

3.1.8. Let Dy = D(1,N) be the Dirichlet kernel on T'. Prove that
4 %1 4 %1
2y <yl <2 Sy
L PR

Conclude that the numbers HDNH 1 grow logarithmically as N — oo and therefore
the family {Dy}y is not an approximate identity on T'. The numbers HDNH e
N=1,2,...,are called the Lebesgue constants.

[Hint: Use that | — LI <Z when |x| < 1]

§1n x

3.1.9. Let Dy be the Dirichlet kernel on T'. Prove that for all 1 < p < oo there exist
two constants Cp,c, > 0 such that

¢y CN+1D)VP < ||Dy ||, < C, 2N+ 1)VP.
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[Hint: Consider the two closest zeros of Dy near the origin and split the integral
into the intervals thus obtained.]

3.1.10. (S. Bernstein) Let P(x) be a trigonometric polynomial of degree N on T!.
Prove that HP’HLN < 47CNHPHL°°'
[Hint: Prove first that P'(x) /27iN is equal to

((8727151'N(-)P)>|< Ey_i ) (x) eZﬂiNx _ ((627171'N(~)P)>’< FNfl)()C) 67277:1'Nx
and then take L™ norms. |

3.1.11. (Fejér and F. Riesz) Let P(E) = YN, ape*™*S be a trigonometric poly-
nomial on T' of degree N such that P(E) > 0 for all &. Prove that there exists a
trigonometric polynomial Q(&) of the form Y¥_ bre?®*s such that P(€) = |Q(&)]?.
[Hint: Note that N zeros of the polynomial R(z) = ):iv:_ v axZ N lie inside the unit
circle and the other N lie outside.]

3.1.12. (Landau [167]) Points in Z"" are called lattice points. Follow the following
steps to obtain the number of lattice points N(R) inside a closed ball of radius R
in R". Let B be the closed unit ball in R”, yp its characteristic function, and v, its
volume.

(a) Using the results in Appendices B.6 and B.7, observe that there is a constant C,
such that for all & € R" we have

T(E)| < Cu(1+]E)"F .

(b) For0 < & < % let ¢ = x(lig)B * C¢, where Cg(x)siné(%) and § is a smooth
function that is supported in |x| < 4 and has integral equal to 1. Also let ¥¢ =

Xi:8)p* {e. Prove that

®df(x)=1 when x| <1—¢ and &F(x) =0 when |x| > 1,
PE(x) =1 when |x] <1 and W&(x)=0 when |x| > 1+¢,

and also that

n+l
2

|2 (8)|+ |PE(E)| < Cun(1+[E]) 5 (1 +elg]) Y

for every & € R" and N a large positive number.
(c) Use the result in (b) and the Poisson summation formula to obtain

Y (2> Y @F(2)=R'®0)+ Y R'E(Rm)
mezZr mezZr meZ"\{0}

> v(1—€)"~Cuy Y, R'(1+Rim)~" (1+€R|m|)7".
meZm\ {0}
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Now use (1 —¢€)" > 1 —ne and pick € such that eR" = £~"7" to deduce the estimate
N(R) > v,R"+ O(R" %) as R — co. Argue similarly with ¥¥¢ to obtain the identity
N(R) = v,R" + O(R"i7),

as R — oo.

3.1.13. (Minkowski) Let S be an open convex symmetric set in R” and assume that
the Fourier transform of its characteristic function satisfies the decay estimate

(&) <c+]E) "

(This is the case if the boundary of S has nonzero Gaussian curvature.) Assume that

|S| > 2". Prove that S contains at least one lattice point other than the origin.

[Hint: Assume the contrary, set f = Y1¢* X1, and apply the Poisson summation
2 2

formula to f to prove that £(0) > £(0).]

3.2 Decay of Fourier Coefficients

In this section we investigate the interplay between the smoothness of a function
and the decay of its Fourier coefficients.

3.2.1 Decay of Fourier Coefficients of Arbitrary Integrable
Functions

We begin with the classical result asserting that the Fourier coefficients of any inte-
grable function tend to zero at infinity. One should compare the following proposi-
tion with Proposition 2.2.17.

Proposition 3.2.1. (Riemann—Lebesgue lemma) Let f be in L' (T"). Then | f(m)| —
0 as |m| — eo.

Proof. Given f € L'(T") and & > 0, let P be a trigonometric polynomial such that
||f—P||L1 < &.1If |m| > degree (P), then P(m) = 0 and thus

[Fm)] = |Fom) —B(m)| < [|7 ~ P[], <e.

~

This proves that | f(m)| — 0 as |m| — oo. O

Several questions are naturally raised. How fast may the Fourier coefficients of
an L' function tend to zero? Does additional smoothness of the function imply faster
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decay of the Fourier coefficients? Can such a decay be quantitatively expressed in
terms of the smoothness of the function?

We answer the first question. Fourier coefficients of an L' function can tend to
zero arbitrarily slowly, that is, more slowly than any given rate of decay.

Theorem 3.2.2. Let (dyy)mezn be a sequence of positive real numbers with d,, — 0
as |m| — oo. Then there exists a g € L'(T") such that |g(m)| > d,, for allm € Z". In
other words, given any rate of decay, there exists an integrable function on the torus
whose Fourier coefficients have slower rate of decay.

We first prove this theorem when n = 1 and then extend it to higher dimensions.
We need the following two lemmas.

Lemma 3.2.3. Given a sequence of positive real numbers {a,,}_ that tends to
zero as m — oo, there exists a sequence {cp}_ that satisfies

Cm = Ay, el 0, and  cpya+om > 2emet

forallm=0,1,.... We call such sequences convex.

Lemma 3.2.4. Given a convex decreasing sequence {cy },_ of positive real num-
bers satisfying lim,, . ¢;, = 0 and a fixed integer s > 0, we have that

=

Z(r+1)(Cr+s—|—cr+s+2—2cr+5+|) = Cg. (321)
r=0

We first prove Lemma 3.2.3.

Proof. Let kg = 0 and suppose that a,, < M for all m > 0. Find k; > k¢ such that
for m > k; we have a,, < M/2. Now find ky > kj + kl;k" such that for m > k, we

have a,, < M /4. Next find k3 > k, + kz;kl such that for m > k3 we have a,, < M/8.
Continue inductively in this way and construct a subsequence kg < k; < kp < --- of
the integers such that for m > k; we have a,, <27/M and kj41 > k; + % for
J > 1. Join the points (ko,2M), (ki,M), (k2,M/2), (k3,M/4),... by straight lines
and note that by the choice of the subsequence {; }7:0 the resulting piecewise linear
function & is convex on [0,c0). Define ¢,, = h(m) and observe that the sequence
{cm}im_ satisfies the required properties. See also Exercise 3.2.1 for an alternative

proof. U

We now prove Lemma 3.2.4. The proof appears more natural after one has solved
Exercise 3.2.3(a).

Proof. We have that
N
r+1)(crs+c —2c
r;()( )( +s r+s+2 r+s+l) (3.2.2)

=cs— (N+1)(Ccornt1 = CsiN+2) — CsiNt1 -
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To show that the last expression tends to ¢y as N — oo, we take M = [%] and we use
convexity (CX+M+ T Co M4 j41 = Csp M+ j+-1—Cs+-M+ j+2) to obtain

Cs+M+1 — Cs+N+2 = Cs+M+1 — Cs+M+2
+ CsM+2 — Cs+M+3
T+ CsN+1 — CstN+2
> (N—=M+1)(cssn+1— Csin+2)

N+l
> T+(CS+N+1 —Coin42) > 0.

The preceding calculation implies that (N + 1)(cstn4+1 — Cs1n+2) tends to zero as
N — oo and thus the expression in (3.2.2) converges to ¢y as N — oo. 0

We now continue with the proof of Theorem 3.2.2 when n = 1.

Proof. We are given a sequence of positive numbers {a,, } ez that converges to zero
as |m| — oo and we would like to find an integrable function on T' with | f(m)| > a
for all m € Z. Apply Lemma 3.2.3 to the sequence {a,; + a_m } m>0 to find a convex
sequence {cy, }m>0 that dominates {a,, +a_, }m>0 and decreases to zero as m — .
Extend ¢, for m < 0 by setting ¢, = ¢}, Now define

oo

f) =Y (j+1)(cj+cjpr—2cj41)F(x), (3.2.3)
j=0

where Fj is the (one-dimensional) Fejér kernel. The convexity of the sequence c,,
and the positivity of the Fejér kernel imply that f > 0. Lemma 3.2.4 with s = 0 gives
that

Z JH+D(cj+cin—2ci1)||Fj|| 1 = co < oo, (3.2.4)

since HFjHU =1 for all j. Therefore (3.2.3) defines an integrable function f on T'.
We now compute the Fourier coefficients of f. Since the series in (3.2.3) converges
in L', for m € Z we have

Y (j+D)(ej+ejra—2¢j51)Fy(m)

I
Mz

f(m)

~.

I
D o

(jJrl)(CjJerJrz*ZCjJr]) <1]T_|1> (3.2.5)

m|

J

I
gk

(r+ 1)(Cr+‘m| +Cr+‘m|+2 — 26r+‘m|+1) = Clm‘ =cm,
r=0

where we used Lemma 3.2.4 with s = |m)|.
Let us now extend this result on T". Let (d,,)mezn be a positive sequence with
dn — 0 as |m| — co. By Exercise 3.2.2, there exists a positive sequence (a;) jez With
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Ay Ay > iy, and aj — 0 as | j| — oo. Let

g(xlv"'wx’l) :f(xl)"'f(xn)7

where f is the function previously constructed when n = 1. It can be seen easily
using (3.1.6) that g(m) > d,. O

3.2.2 Decay of Fourier Coefficients of Smooth Functions

We next study the decay of the Fourier coefficients of functions that possess a certain
amount of smoothness. In this section we see that the decay of the Fourier coeffi-
cients reflects the smoothness of the function in a rather precise quantitative way.
Conversely, if the Fourier coefficients of an integrable function have polynomial de-
cay faster than the dimension, then a certain amount of smoothness can be inferred
about the function.

Definition 3.2.5. For 0 < y < 1 define

Hf” = sup |f(x+h) — f(x)]
Ay

x,heTn Ih | 4

and .
A(T") = {f : T" — C with [|f]|; < eo}.

We call A,,(T”) the homogeneous Lipschitz space of order y on the torus. Functions
f on T" with H f H Ay < oo are called homogeneous Lipschitz functions of order 7.

Some remarks are in order.

Remark 3.2.6. A,(T") is called the homogeneous Lipschitz space of order y on T",
in contrast to the space A, (T"), which is called the Lipschitz space of order y. The
latter space is defined as

A(T") = {f:T" — Cwith ||f]|, <e},

where

114, = 1l + 1115,

Remark 3.2.7. The positive functional H - satisfies the triangle inequality, but it

rs
does not satisfy the property H f H A= 0 = f =0 a.e. required to be a norm. It
is therefore a seminorm on Ay (T"). However, if we identify functions whose differ-
ence is a constant, we form the space of all equivalence classes Ay(T")/{constants}
(defined for 0 < y < 1) on which the functional f — || f || A is a norm.
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Remark 3.2.8. Homogeneous Lipschitz functions of order ¥ = 0 are bounded and
of order y € (0, 1) are continuous and thus bounded. Therefore, Ay(T") C L™(T")
set-theoretically. However, the norm inequality || f||,.. < C||f|| 4, fails for any con-

stant C independent of all functions f. Take, for example, f = N + sin(27x) on T!
with N — oo to obtain a counterexample. Nevertheless, under the identification of
functions whose difference is a constant, the space Ay(T") embeds in L(T"). T

achieve this, fix a point fyp € T" and define an embedding

fr=f=f()

from A, (T") to L*(T"). The kernel of this map is the space of all constant functions
on T", and thus Ay/{constants} can be identified with a subspace of L™ for all
0<y<l1.

The following theorem clearly indicates how the smoothness of a function is
reflected by the decay of its Fourier coefficients.

Theorem 3.2.9. Let s € Z with s > 0.
(a) Suppose that 0% f exist and are integrable for all |o.| < 's. Then

sup (377 (m)
Vi lal=s
o< (L) = om0 G20

and thus | f(m)|(1+ |m|*) — 0 as |m| — oo.
(b) Suppose that 9 f exist for all |ot| < s and whenever || =s, 9% f are in Ay(T")
for some 0 <y < 1. Then

(V) Jals 1971,

|f(m )I,( TR P m# 0. (32.7)

Proof. Fix m € Z"\ {0} and pick a j such that |m;| = sup;;, [m|. Then clearly
m; # 0. Integrating by parts s times with respect to the variable x;, we obtain

e—2mx~m

Flm) = [ e memax= -1y [ @310 dr, (328
T : (

—inmj)s

where the boundary terms all vanish because of the periodicity of the integrand.
Taking absolute values and using |m| < \/n|m;|, we obtain assertion (3 2.6).

We now turn to the second part of the theorem. Let e; = (0,...,1,...,0) be the
element of the torus T" whose jth coordinate is one and all the others are zero. A
simple change of variables together with the fact that ™ = —1 gives that

| @@ mar—— [ @) e,

which implies that



3.2 Decay of Fourier Coefficients 181

/”(8}f)(x)e’2”"“”dx: %/T [(951)(x) = (9} f)(x—m)]e’z’”""”dx.

Now use the estimate
1957114
93 2 f < 7y
|(97)(x) = (97.1) (x = 5| < Cm
and identity (3.2.8) to conclude the proof of (3.2.7). O
The following is an immediate consequence.

Corollary 3.2.10. Let s € Z with s > 0.
(a) Suppose that d* f exist and are integrable for all |¢t| < s. Then for some constant
Cps We have

max (|| £]] .1 5up|g s [9% (m))
(1+|m|)® :

(b) Suppose that d* f exist for all |a| < s and whenever |a| =s, 9% f are in Ay (T")
for some 0 <y < 1. Then for some constant ci,ﬁs we have

(3.2.9)

|f(m)| < Cns

max ([[]],1,supjai= [9£1l,)

[f(m)| < ¢y TT . (3.2.10)

Remark 3.2.11. The conclusions of Theorem 3.2.9 and Corollary 3.2.10 are also
valid when y = 1. In this case the spaces Ay should be replaced by the space Lip 1
equipped with the seminorm

_ |fx+h) — f(x)]
HfHLipl _x;‘g;n 14| :

There is a slight lack of uniformity in the notation here, since in the theory of Lips-
chitz spaces the notation A; is usually reserved for the space with seminorm

HfH — s |f(x+h)—|—f(x—h)—2f(x)|
A .

cher i

The following proposition provides a partial converse to Theorem 3.2.9. We de-
note below by [[s]] the largest integer strictly less than a given real number s.

Proposition 3.2.12. Let s > 0 and suppose that f is an integrable function on the
torus with N
|f(m)| < C(1+[m[)=>""

for all m € Z"". Then f has partial derivatives of all orders |a| < [[s]], and for
0 <y<s—[s]], d%f € Ay for all multi-indices o satisfying |ot| = [[s]].

Proof. Since f has an absolutely convergent Fourier series, Proposition 3.1.14 gives
that
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f@) =Y flmemm, (3.2.11)
meZn
for almost all x € T".
The series in (3.2.11) can be differentiated with respect to %, where |a| = [[s]],
since
Z f(m)(;aeﬂrix-m _ Z f 27'L'lm o 27rix-m
meZ" meZ"

and the last series converges absolutely in view of the decay assumptions on the
Fourier coefficients of f. Moreover, we have

Z f 27'Elm o 27rix~m

mezZn

for all multi-indices (o, ..., 0;,) with |ot| = [[s]]. Now suppose that 0 < y < s — [[s]].
Then

|(a(xf) (x+h) ‘ _ | Z zn.lm)(erﬂ:ix-m (827rim~h o 1) |
meZn
: Y]
<2 Tr) Y o)
L M T
- C;/ns|h|y7

where we used that [[s]] +7—s < 0 to obtain the convergence of the integral and the
fact that _
|e2™imh 1| < min(2,27|m| |h]) < 2'77(2nr)|m|?|h|".

O

We have seen that if a function on T' has an integrable derivative, then its Fourier
coefficients tend to zero when divided by |m|~!. In this case we say that the Fourier
coefficients of f are o(|m|~") as |m| — . We denote by L} the class of all functions
on T! whose derivative is also in L'. Next we introduce a slightly larger class of
functions on T! whose Fourier coefficients decay like |m|~! as |m| — oo.

Definition 3.2.13. A measurable function f on T' is said to be of bounded variation
if it is defined everywhere and

M
Var(f):sup{z|f(xj)—f(xj_1)|: 0=uxp<x] <~--<xM:1} < o0,

where the supremum is taken over all partitions of the interval [0, 1]. The expression
Var(f) is called the total variation of f. The class of functions of bounded variation
is denoted by BV.

The following result concerns functions of bounded variation.

Proposition 3.2.14. If f is in BV (T"), then
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S < Var(f)
Flm)l < S

whenever m # Q.

Proof. If f is a function of bounded variation, then the Lebesgue—Stieltjes integral
with respect to f is well defined. Integration by parts gives

—2mimx

f(m) :A' Fx)e™2mime gy — / df,

Jrl —27mim

where the boundary terms vanish because of periodicity. The conclusion follows
from the fact that the norm of the measure df is the total variation of f. O

~

For the sequences of Fourier coefficients { f(m)},, of functions f in the spaces
L{(T") CBV(T") C L™(T"),
we have derived the following rate of decay, respectively,
o(|m|™"), O(jm|™"), o(1),

as |m| — oo.

3.2.3 Functions with Absolutely Summable Fourier Coefficients

Decay for the Fourier coefficients can also be indirectly deduced from a certain
knowledge about the summability of these coefficients. The simplest such kind of
summability is in the sense of £!. It is therefore natural to consider the class of func-
tions on the torus whose Fourier coefficients form an absolutely summable series.

Definition 3.2.15. An integrable function f on the torus is said to have an absolutely
convergent Fourier series if

Y 1fm)] < teo.

meZl

We denote by A(T") the space of all integrable functions on the torus T" whose
Fourier series are absolutely convergent. We then introduce a norm on A(T") by

setting R
HfHA(T") = Z% |f(m)].
meZ"

It is straightforward that every function in A(T") must be bounded. The following
theorem gives us a sufficient condition for a function to be in A(T").
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Theorem 3.2.16. Let s be a nonnegative integer and let 0 < @ < 1. Assume that f is
a function defined on T" all of whose partial derivatives of order s lie in the space
Ag. Suppose that s+ a > n/2. Then f € A(T") and

||f||A ™) = C‘S‘rg HaﬁfHAa

where C depends on n, o, and s.

Proof. For 1< j<n,lete; be the element of R" with zero entries except for the jth
coordinate, which is 1. Let [ be a positive integer and let /; = 2712 |

Then for a multi-index m = (my,...,m,) satisfying 2! < |m| < 2/*! and for j in
{1,...,n} chosen such that |m | = sup, |m;| we have
mjl o dm| 1

PRSIV

We use the elementary fact that |t| < 7 = e — 1| > 2[t|/7 to obtain

2mimh; | omimp2 12 2 2wm;|  |my] 1
R R A [P R
T 20 2! vn
h [27xm ;| < hich is al t . [270m ;| < 22l +1 <
whenever S < &, which is always true since S < - <7

We now have

(Y Fm)<( X B % fmp)

20 < |m|<2!+1 20 <|m|<2!+1 2! <|m|<2!+1

n
<2y Y [fm)f
j=1 zlg‘m‘<21+l
|m j|=supy |m|

<c2"y Y [T 1P f(m)]

j=1 21§‘m‘<2/+]
|m j|=supy |my|

< Cn’s21<n_23) Z Z |e2m’m»hj _ 1|2|5Js7-(m)‘2

j=lmeZn"

7Cn‘21n 25) Z’Has]c as )||iz

J

2 |27ij|25
|27wm ;|>5

—

< C/ 21 n—2s) (2 l+3 sup ||aﬁf||Aa

|Bl=s

Taking square roots, summing over all positive integers /, and using that s+ a > n/2,
we obtain the desired conclusion. O
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Exercises

3.2.1. Given a sequence {ay,}; _ of positive numbers such that a, — 0 as n — oo,
find a nonnegative integrable function 4 on [0, 1] such that

1
/ h(t)™ dt > apy,.
0

Use this result to deduce a different proof of Lemma 3.2.3.

[Hint: Tryh=e ¥, (supa;— sup aj)(k+2)x[m 1].]
k=0 j>k >k+1 k+2:

J

3.2.2. Prove that given a positive sequence {dy }mezr With dy, — 0 as [m| — oo,
there exists a positive sequence {a;} jcz With a,, - - a, > d(m, anda; — 0 as
[J] = eo.

~,~~~~,mn)

3.2.3. (a) Use the idea of the proof of Lemma 3.2.4 to prove that if a twice contin-
uously differentiable function f > 0 is defined on (0,c0) and satisfies f(x) <0 and
S (x) >0 for all x > 0, then lim,_.exf’(x) = 0.

(b) Suppose that a twice continuously differentiable function g is defined on (0,o0)
and satisfies g > 0, ¢’ <0, and [;” g(x) dx < +oo. Prove that

lim xg(x) = 0.

X—r00
3.2.4. Prove that for 0 <y < § < 1 we have ||f||/-\y <Cuys ||f||A5 for all functions
f and thus Ay is a subspace of Ay.

3.2.5. Prove the inclusions L} (T') C BV(T') C L*(T") as follows.
(a) If f € L(T"), then Var(f) < ||f/|,.-
(b) If f € BV(T"), then || f||,.. < Var(f)+|f(0).

3.2.6. Suppose that f is a differentiable function on T! whose derivative f is in
L*(T"). Prove that f € A(T') and that
1 on1/2
1 ey < W1l + 54 € ;)1 i P[P
J

3.2.7. (a) Prove that the product of two functions in A(T") is also in A(T") and that

HngA(T”) = HfHA(T”) gHA(T”)'

(b) Prove that the convolution of two square integrable functions on T" always gives
a function in A(T").
3.2.8. Fix 0 < o < 1 and define f on T! by setting

=

f(x) _ Z Zfake2m'2kx.

k=0
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Prove that f € Aq. Conclude that the decay |f(m)| < C|m|~® is best possible for
f € Aq.

3.2.9. Use without proof that there exists a constant C > 0 such that

N
sup Zelklogkelkt
teR | =2

<CVN, N=2734,...,

to prove that the function

is in A, /Z(Tl) but not in A(T"). Conclude that the restriction s > 1/2 in Theorem
3.2.16 is sharp.

3.2.10. Use a result from functional analysis to show that there exist sequences
{am }mezn that tend to zero as |m| — oo for which there do not exist functions f in
L(T") with f(m) = a,, for all m.

3.3 Pointwise Convergence of Fourier Series

In this section we are concerned with the pointwise convergence of the square partial
sums and the Fejér means of a function defined on the torus.

3.3.1 Pointwise Convergence of the Fejér Means

We saw in Section 3.1 that the Fejér kernel is an approximate identity. This implies
that the Fejér (or Cesaro) means of an L? function f on T” converge to it in L” for
any 1 < p < eo. Moreover, if f is continuous at xp, then the means (F(n,N) * f)(xo)
converge to f(xg) as N — oo in view of Theorem 1.2.19 (2). Although this is a
satisfactory result, it is restrictive, since it applies only to continuous functions. It is
natural to ask what happens for more general functions.

Using properties of the Fejér kernel, we obtain the following one-dimensional
result regarding the convergence of the Fejér means:

Theorem 3.3.1. (Fejér) If a function f in L' (T') has left and right limits at a point
Xo, denoted by f(xo—) and f(xo+), respectively, then

(FN*f)(xo)—>%(f(xo+)+f(xo—)) as N — oo, (33.1)

In particular, this is the case for functions of bounded variation.
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Proof. Let us identify T' with [—1/2,1/2]. Given & > 0, find § > 0 (§ < 1/2) such
that
fo+)+fxo—1)  flxot)+f(xo—)

0<t<é6 = 5 - > <E. (3.3.2)

Using the second expression for Fy in (3.1.15), we can find an Ny > 0 such that for
N > Ny we have

sup Fy(t) <e. (3.3.3)
r€[5.1/2)

We now have
(P £)(0) = £ o) = [ Bo(=0)(£(x0-+1) = f(o+) dr,
(Fi * f)(x0) — f(x0—) = ./Tl Fy(t)(f(xo —1) = f(xo—)) dt .
Averaging these two identities and using that the integrand is even, we obtain

(i f)oxy) — L2007

I/ZFN(I) <f(xo +1)+flxo—1) f(x0+)+f(xO)) Y (3.3.4)

=2

0 2 2

We split the integral in (3.3.4) into two pieces, the integral over [0, 8) and the integral
over [0,1/2]. By (3.3.2), the integral over [0, 8) is controlled by € [;1 Fy(t)dt = €.
Also (3.3.3) gives that for N > Ny

’./(;I/ZFN(t)(f(xo—t);f(xo—%t) B f(xo—);f(xo-F)) dr

< S = £ + 1 = £ ) = ee(fi0),

where ¢(f,xo) is a constant depending on f and xo. We have now proved that given
€ > 0 there exists an Ny such that for N > Ny the second expression in (3.3.4) is
bounded by 2¢ (¢(f,x0) + 1). This proves the required conclusion.

Functions of bounded variation can be written as differences of increasing func-
tions, and since increasing functions have left and right limits everywhere, (3.3.1)
holds for these functions. 0

We continue with an elementary but very useful proposition. We refer to Exercise
3.3.2 for some of its applications.

Proposition 3.3.2. (a) Let f be in L' (T"). If xy is a point of continuity of f and
the square partial sums of the Fourier series of | converge at xy, then they must
converge to f(xp).

(b) In dimension 1, if f(x) has left and right limits as x — xo and the partial sums of
the Fourier series of f converge, then they must converge to %( Ffxo+)+f (xo—)).
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Proof. (a) We observed before that if f € L!(T") is continuous at x, then

(F(n,N)* f)(x0) — [ (x0)

as N — oo If (D(n,N) * f)(x9) — A(x0) as N — oo, then the arithmetic means of this
sequence must converge to the same number as the sequence. Therefore,

(F(n,N)* f)(x0) — A(x0)

as N — oo and thus A(xp) = f(xo). Part (b) is proved using the same argument and
the result of Theorem 3.3.1. O

3.3.2 Almost Everywhere Convergence of the Fejér Means

We have seen that the Fejér means of a relatively nice function (such as of bounded
variation) converge everywhere. What can we say about the Fejér means of a general
integrable function? Since the Fejér kernel is a well-behaved approximate identity,
the following result should not come as a surprise.

Theorem 3.3.3. (a) For f € L' (T"), let
H(f) = sup |f*F(n,N)|.

NeZ+

Then 7 maps L' (T") to L' (T") and LP (T") to itself for 1 < p < oo
(b) For any function f € L'(T"), we have

(F(n,N)* f)(x) = f(x)

as N — oo for almost all x € T".

Proof. Tt is an elementary fact that [t| < 2 = |sint| > 2||; see Appendix E.
Using this fact and the expression (3.1.15) we obtain for all ¢ in [—%, %],

1 2

TN+
N+1
4

sin(mw(N + 1)1)
sin(7r)
sin(mw(N + 1)r)
(N+1)t

N+1 . ) 1

< — T, ——5%
-4 mm( ’(N+1)2t2)
2 N+1
<.

T2 1+ (N+1)2t)?

[Fv ()]

2

For t € R let us set (1) = (1+[¢|*)~" and ¢¢(t) = L¢(%) for € > 0. For x =
(x1,..-,%;) € R" and € > 0 we also set
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D(x) = @(x1) - @(xn)

and @ (x) = &P (e~ 'x). Then for |t| <  we have |Fy(r)| < %Z(pg(t) with € =

(N+1)~!, and for y € [}, 1]" we have

2

F(nN)(0)| < (5)" @e(y),  with = (N+1)"".

Now let f be an integrable function on T” and let f; denote its periodic extension

on R". For x € [— 1, 1]" we have

H(f)(x) < sup

N>0

[ PN 0)f =) dy

< (Z)"sup (D¢ ()] | fox — )| dy
>0 |

L1
22

(3.3.5)
<S"sup | | @:(y)] |(foxo)(x—y)|dy
e>0/R"

=5"9(foxo) (%),
where Q is the cube [—1,1]" and ¢ is the operator

& (h) = sup |h|* Dg.

>0

If we can show that & maps L' (R") to L' (R"), the corresponding conclusion for
2 on T" would follow from the fact 72 (f) < 5"9(foxo) proved in (3.3.5) and the
sequence of inequalities

H%(f)HLL”(T") < San(fOXQ)HLl-“’(R")
< 5'C| ol
:C/HfHLl(T")'

Moreover, the L” conclusion about .7 follows from the weak type (1, 1) result and
the trivial L™ inequality, in view of the Marcinkiewicz interpolation theorem (Theo-
rem 1.3.2). The required weak type (1,1) estimate for & on R” is a consequence of
Lemma 3.3.4. This completes the proof of the statement in part (a) of the theorem.
To prove the statement in part (b) observe that for f € €*(T"), which is a dense
subspace of L!, we have F(n,N)* f — f uniformly on T" as N — oo, since the
sequence {Fy}y is an approximate identity. Since by part (a), # maps L'(T") to
L'*(T"), Theorem 2.1.14 applies and gives that for all f € L' (T"), F(n,N)* f — f
a.e. g

We now prove the weak type (1,1) boundedness of ¢ used earlier.

Lemma 3.3.4. Let ®(x1,...,x,) = (14 |x1|) 7 - (14 |x,>) " and for € > 0 let
D, (x) = £7"®P (e~ 'x). Then the maximal operator
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G(f) = sup|f]+ Pe

>0
maps L' (R") to L' (R").

Proof. Letly=[—1,1]and [, = {t € R: 2k-1 <|¢| < 2%} for k = 1,2,.... Also, let
Z( be the convex hull of /;, that is, the interval [72]‘, 2"]. For ay,...,a, fixed positive
numbers, let My, .. 4, be the maximal operator obtained by averaging a function on
R” over all products of closed intervals J; x --- X J, containing a given point with

1| =290 = - = 2%/,

In view of Exercise 2.1.9(c), we have that M,, ., maps L' to L' with some
constant independent of the a;’s. (This is due to the nice doubling property of this
family of rectangles.) For a fixed € > 0 we need to estimate the expression

B |f(—€y)|dy
(ng*|f\)(0)—/Rn (1)) (14y2)

Split R" into n! of regions of the form |y; | > --- > |yj,|, where {ji,...,j,} is a
permutation of the set {1,...,n}. By the symmetry of the problem, let us look at the
region % where |y;| > -+ > |y,|. Then for some constant C > 0 we have

— d 0 n
/%( \fg ey)|dy cy Z Zz (2K -+ 2ky) / .../Ikn|f(_gy)|dy7

1+y1)"'(1+)’n ki =0ky— Iy,

and the last expression can be trivially controlled by the corresponding expression,
where the /;’s are replaced by the I;’s. This, in turn, is controlled by

o ki kn—1
Y Y Y T IM ok, (£)(0). (3.3.6)
k1=0ky=0  k,=0

Now set s = k| —ka,...,s, = k; —k,, observe that s; > 0, use that

2—<k1+'~'+kn) S 2—/{1/22—5‘2/2" . 2—sn/2n ,

and change the indices of summation to estimate the expression in (3.3.6) by

c’ Z Z Z 2~ k]/22 sp/2n S”/anSL ,sn(f)(o)~

=0s5,=0 sp=0

Argue similarly for the remaining regions [y;, | > --- > |yj,| and translate to an arbi-
trary point x to obtain the estimate

|(Pe * f) (x |<c"nvz ZZW"-- M () ().

=0 s5,=
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Now take the supremum over all € > 0 and use the fact that the maximal functions
M, .. s, map L'toLb™ uniformly in s, ..., s, as well as the result of Exercise 1.4.10
to obtain the desired conclusion for ¥. ]

3.3.3 Pointwise Divergence of the Dirichlet Means

We now pass to the more difficult question of convergence of the square partial sums
of a Fourier series. It is natural to start our investigation with the class of continuous
functions. Do the partial sums of the Fourier series of continuous functions converge
pointwise? The following simple proposition gives us a certain warning about the
behavior of partial sums.

Proposition 3.3.5. (duBois Reymond) There exist a continuous function f on T"
and an xy € T" such that the sequence

(D(n,N) * f)(x0) = Z F(m)e2mixom
meZ
[mj|<N

satisfies
limsup |(D(n,N) * f)(xg)]| = 0.
N—oo
In other words, the square partial sums of a continuous function may diverge at a
point.

Proof. 1t suffices to prove the proposition when n = 1. The one-dimensional ex-
ample f can be easily transferred to n dimensions by considering the function
F(x1,...,x,) = f(x1), which actually diverges on an (n — 1)-dimensional plane.

We give a functional-analytic proof. For a constructive proof, see Exercise 3.3.6.
Let C(T') be the Banach space of all continuous functions on the circle equipped
with the L™ norm. Consider the continuous linear functionals

f—=In(f) = (D= f)(0)

on C(T!) for N =1,2,.... We show that the norms of the 7y’s on C(T"') converge to
infinity as N — oo. To see this, given any integer N > 100, let ¢ (x) be a continuous
even function on [—3,1] that is bounded by 1 and is equal to the sign of Dy(x)

except at small intervals of length (2N + 1)~2 around the 2N + 1 zeros of Dy. Call
the union of all these intervals By and set Ay = [—1, 3]\ By. Then

/ |DN(x)|dx—|—'/ on (X)Dy(x)dx| <2|By|(2N+1) =2.
By By

Using this estimate we obtain
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5w = (o] = [, Du(-pv(x) s

> /AN Dy (x)| dx — ‘/BNDN<X)¢N(x)dx

— /Tl | Dy ()] dx — ‘/BNDN(X)(PN(X)dx

4 N
>y -2,
—n2,§1k

_/BN Dy (x)| dx

It follows that the norms of the linear functionals 7y are not uniformly bounded.
The uniform boundedness principle now implies the existence of an f € C(T!) and
of a sequence N; — oo such that |7y, (f)| — oo as j — . The Fourier series of this
f diverges at x = 0. 0

3.3.4 Pointwise Convergence of the Dirichlet Means

We have seen that continuous functions may have divergent Fourier series. How
about Lipschitz continuous functions? As it turns out, there is a more general con-
dition due to Dini that implies convergence for the Fourier series of functions that
satisfy a certain integrability condition.

Theorem 3.3.6. (Dini (n = 1), Tonelli (n > 2)) Let f be an integrable function on
T" and let a = (ay,...,a,) € T". If

/ / If (x) = f(a)] dx < oo, (3.3.7)
b —ar <% Pn—an| <3 X1 —ar] - |xn — an|

then we have (D(n,N) * f)(a) — f(a).

Proof. Replacing f(x) by f(x+a)— f(a), we may assume that a = 0 and f(a) = 0.
Using identities (3.1.12) and (3.1.11), we can write

0N+ 1O) = [ -0T] ((ZN(;”)”) dx (338)

j=1
U (sin(ZNnxj)cos(nxj)

= [ f(0]]

Tﬂ

2Nrmxj) | dx.
1 sin(7x,) +cos( x,)) X
Expanding out the product, we obtain a sum of terms each of which contains a factor
of cos(2N7x;) or sin(2N7x;) and a term of the form

cos(7mx;)

f(—x)Hm, (3.3.9)

Jel
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where I is a subset of {1,2,...,n}. The function in (3.3.9) is integrable on [—1, 1]
except possibly in a neighborhood of the origin. But condition (3.3.7) with a = 0
guarantees that any function of the form (3.3.9) is also integrable in a neighborhood
of the origin. It is now a consequence of the Riemann-Lebesgue lemma (Lemma

3.2.1) that the expression in (3.3.8) tends to zero as N — oo, ]
The following are consequences of Dini’s test.

Corollary 3.3.7. (Riemann’s principle of localization) Let f € L' (T') and assume
that f vanishes on an open interval I. Then Dy * f converges to zero on the ball I.

Proof. Simply observe that (3.3.7) holds in this case. U

Corollary 3.3.8. Let a € T" and suppose that f € L' (T") satisfies
(0 = fl@)] < Clar —ar|* -+ [xy — an|™

for some C,8; > 0. (When n = 1, this is saying that f is Lipschitz continuous.) Then
the square partial sums (D(n,N) x f)(a) converge to f(a).

Proof. Note that condition (3.3.7) holds. O

Corollary 3.3.9. (Dirichlet) If f is defined on T' and is a differentiable function at
a point a in T', then (Dy  f)(a) — f(a).

Proof. There exists a § > 0 (say less than 1/2) such that |f(x) — f(a)|/|x —a is

bounded by |f'(a)| + 1 for |x—a| < 8. Also |f(x) — f(a)|/|x — a| is bounded by
|f(x) — f(a)|/0 when |x —a| > &. It follows that condition (3.3.7) holds. O

Exercises

3.3.1. Identify T' with [~1/2,1/2) and fix 0 < b < 1/2. Prove the following:

(a) The mth Fourier coefficient of the function x is i (;;r)nm when m # 0 and zero
when m = 0.

(b) The mth Fourier coefficient of the function Y| ) is w
02
(¢) The mth Fourier coefficient of the function (1 — %) Lis S";m(fgn ),
. . . . —1)"
(d) The mth Fourier coefficient of the function |x| is — 2m;n2 + émzzt > when m # 0

and % when m = 0.

(—1)m 1
Py Whenm;ﬁOand 1

(e) The mth Fourier coefficient of the function X2 is

when m = 0. o

(f) The mth Fourier coefficient of the function cosh(27x) is 21312 51“7?”
im(—=1)" sinhz

1+m? T

(2) The mth Fourier coefficient of the function sinh(27x) is
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3.3.2. Use Exercise 3.3.1 and Proposition 3.3.2 to prove that

1 n? 1 x?
Loer 4 E ey
(=pt y R
keZ\{0} k2 6 G+l et

3.3.3. Let M > N be given positive integers.
(a) For f € L'(T"), prove the following identity:

M+1 N+1

Ty B 1)) = 2 (B )
+

1 ( |l )A. omij
Ml WL fgpermie,
N nF<m M+1

(b) (G. H. Hardy) Suppose that a function f on T' satisfies the following condition:
there exists an a > 0 such that for any € > 0 there is a kg > 0 such that for all k > kg

we have R
Y fim)<e

k<|m|<|ak]

Use part (a) to prove that if (Fy * f)(x) converges to A(x) as N — oo, then (Dy * f) (x)
also converges to A(x) as N — oo.

3.3.4. Use Exercise 3.3.3 to prove that if f is a function of bounded variation on
T!, then

(Dy* £)(0) = 3 (F(x+0) + f(x-0))

for every t € T'. Apply this result to the function X[-bp) of Exercise 3.3.1(b) to

obtain that

. 1
2mwibm
=~ —2b.
mm ¢ 2

N .
27h
lim sin(27wbm)
N~>oom:7 N
3.3.5. (a) Prove that the Riemann-Lebesgue lemma holds uniformly on compact

subsets of L!(T"). This means that given any compact subset of L!(T") and & > 0

there exists an N > 0 such that for |m| > Ny we have | f(m)| < & for all f € K.

(b) Use part (a) to prove the following sharpening of the localization theorem. If f
vanishes on an open ball B in T”, then D(n,N) * f converges to zero uniformly on
compact subsets of B.

3.3.6. Follow the steps given to obtain a constructive proof of a continuous function
whose Fourier series diverges at a point. On T! let g(x) = —27i(x — 1/2).

(a) Prove that g(m) = 1 /m when m # 0 and zero otherwise.

(b) Prove that for all nonnegative integers M and N we have
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((eZMN(-)(g % DN)) * DM) ()C) _ eZme Z 7627rlrx
<<y’

when M > 2N and

. ; 1 .
((e2mN(~)(g *DN)) *DM) (X) _ eZme Z 7e2mrx
—N<r<M—-NT
r#0
when M < 2N. Conclude that there exists a constant C > 0 such that for all M, N,
and x # 0 we have

| (&™) (g D) * Dyg) ()] < 7

c
|

(c) Show that there exists a constant C; > 0 such that

1,
sup sup ’(g*DN)(x)’ = sup sup Z —?T| <€) < oo,
N>0 xeT! N>0 xeT! |1<|r<n ©
(d) Let A = 1 +¢*. Define
=1,
[ =Y kjé’z” M (g% Dy, ) ()

and prove that f is continuous on T! and that its Fourier series converges at every

x # 0, but limsupy,_.. [(f * D) (0)] = oo.
[Hint: Take M = ¢ with m — oo.}

3.4 Divergence of Fourier Series and Bochner—Riesz
Summability

We saw in the previous section that the Fourier series of a continuous function may
diverge at a point. As expected, the situation can only get worse as the functions
get worse. In this section we present an example, due to A. N. Kolmogorov, of an
integrable function on T'! whose Fourier series diverges almost everywhere. Using
this example, we may construct integrable functions on T” whose square Dirichlet
means diverge a.e.; see Exercise 3.4.1.

3.4.1 Motivation for Bochner—Riesz Summability

We now consider an analogous question for the circular Dirichlet means of inte-
grable functions on T”. In dimension 1 we saw that the Fejér means of integrable
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functions are better behaved than their Dirichlet means. We investigate whether
there is a similar phenomenon in higher dimensions. Recall that the circular (or
spherical) partial sums of the Fourier series of f are given by

(f+D(mR)(x) = Y. Flm)e™™,
meZ"
[m|<R

where R > 0. Taking the averages of these expressions, we obtain

%/()R(f*ﬁ(n,r))(x)drz Y (1

meZ”
|m|<R

o~

( ) 27nmx

and we call these expressions the circular Cesaro means (or circular Fejér means)
of f.1It turns out that the circular Cesaro means of integrable functions on T? always
converge in L', but in dimension 3, this may fail. Theorem 3.4.6 gives an example of
an integrable function f on T3 whose circular Cesaro means diverge a.e. However,
we show that this is not the case if the circular Cesaro means of a function f in
L' (T?) are replaced by the only slightly different-looking means

¥ (1-%) Fmes,

for some € > 0. The previous discussion suggests that the preceding expressions
behave better as € increases, but for a fixed € they get worse as the dimension in-
creases. To study this situation more carefully, we define the family of operators for
which the exponent 1 + € is replaced by a general nonnegative index o > 0.

Definition 3.4.1. Let o > 0. The Bochner—Riesz means of order & of an integrable
function f on T”" are defined as follows:

BN =Y ( *%)af(m)ez”"m*- (3.4.1)
meZ’
[m|<R

This family of operators forms a natural “spherical” analogue of the Cesaro—Fejér
sums. It turns out that there is no different behavior of the means if the expression
(1 — ‘%2)“ in (3.4.1) is replaced by the expression (1 — %) % See Exercise 3.6.1, on
the equivalence of means generated by these two expressions. The advantage of the
quadratic expression in (3.4.1) is that it has an easily computable kernel. Moreover,
the appearance of the quadratic term in the definition of the Bochner—Riesz means

is responsible for the following reproducing formula:

BR(f) = (azrﬁa+;+l / < )a g 1<R2)ﬁ+%B§(f)dr, (3.4.2)
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which precisely quantifies the way in which Bf is smoother than Bg when a > .
Identity (3.4.2) also says that when o > f3, the operator B (f) is an average of the

operators BE (f), 0 < r < R, with respect to a certain density.

Note that the Bochner—Riesz means of order zero coincide with the circular (or
spherical) Dirichlet means, and as we have seen, these converge in L>(T"). We now
indicate why the Bochner-Riesz means B%(f) converge to f in L'(T") as R — oo
when & > (n— 1) /2. Consider the function

ma(§) = (1-161)%
defined for £ in R”. Using an identity proved in Appendix B.5, we have that

T(o+1)J31a(27]x])
e

(ma)" (x) = K%(x) = : (3.4.3)

where J), is the Bessel function of order A. The estimates in Appendices B.6 and
B.7 yield that if o > (n— 1) /2, then the function K% obeys the inequality

IK®(3)| < Cra(14 )@= 7, (3.4.4)

and hence it is in L! (R"). Using the Poisson summation formula, we write

BE()(x) = Y ma(L)F(1)e*m ">

lezn

Z (f* (K*)1/p) (x+1)

ez

= (f* (L5 r)(x),

where L%(x) = Yez» K*(x + k) and gy /z(x) = R"g(Rx). Using (3.4.4), we show
easily that the function L% is an integrable 1-periodic function on T". Moreover,

L(t)dt = | K*(x)dx=mgy(0)=1.
™ R"

This fact suggests that when o > ”—51, the family {(L%)¢}e~0 is an approximate

identity on T" as € — 0. To see this we need only to verify the third property in
Definition 1.2.15. For 6 < % using (3.4.4) we have

1

en
" J 52|28

n- 1
|L*(x/€)|dx < Cn,a&‘a_Tl [ —dx— 0

%2|x,-\25 Lezn |x+€|n+a77
as € — 0, since the sum over ¢ converges uniformly inx € [—1/2,1/2]"\ [-8,d]".
Using Theorem 1.2.19, we obtain these conclusions for o > (n—1)/2:

(a) For f € LP(T"), 1 < p < oo, B¥(f) converge to f in L” as R — oo.
(b) For f continuous on T", B (f) converge to f uniformly as R — co.
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One may wonder whether there are analogous results for & < (n—1)/2. Theorem
3.4.6 warns that the Bochner—Riesz means may diverge in L' when o = (n—1)/2.
For this reason, the number o« = (n— 1)/2 is referred to as the crifical index. The
question of determining the range of «’s for which the Bochner—Riesz means of
order a converge in LP(T") when | < p < o is investigated in Chapter 10.

3.4.2 Divergence of Fourier Series of Integrable Functions

It is natural to start our investigation with the case n = 1. We begin with the follow-
ing important result:

Theorem 3.4.2. There exists an integrable function on the circle T' whose Fourier
series diverges almost everywhere.

Proof. The proof of this theorem is a bit involved, and we need a sequence of lem-
mas, which we prove first.

Lemma 3.4.3. (Kronecker) Suppose that n € " and
{xlax2, <o Xns 1}

is a linearly independent set over the rationals. Then for any € > 0 and any complex
numbers 21,22, ...z, with |zj| = 1, there exists an integer m € Z such that

|ezmmi —zjl<e forall 1< j<n.

Proof. 1dentifying T" with the set {(e*™"1 ... ¢*™in) : 0 < t; < 1}, the required
conclusion is a consequence of the fact that for a fixed x = (xy,...,x,) the set {mx :
m € Z} is dense in T”. If this were not the case, then there would exist an open set
U in T” that contains no elements of the set {mx : m € Z}. Pick a smooth, nonzero,
and nonnegative function f on T" supported in U. Then f(mx) = 0 for all m € Z,
but

f(O):(/”f(x)dx>O.

Then we have

L R 2 1Y 2l mx
0= 5 L sim) =5 X ( T )
_ Z fA(l) <1N_le2m'm(l~x)>
lezn Nm=0

Y 70(3 Sarr ) +70
= — ) + f(0).
1m0} N e2mi(lx)
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In the last identity we used the fact that 2mill) # 1, since by assumption the

set {x1,x2,...,x,, 1} is linearly independent over the rationals. But the expression
inside the parentheses above is bounded by 1 and tends to 0 as N — oo. Since

[FD < C(fam) L+ 1,

taking limits as N — oo and using the Lebesgue dominated convergence theorem,
we obtain that

) N 1 eZniN(l~x) 1 =R

T®1ezn\{0}
= 1(0),
which contradicts our assumption on f. U

Lemma 3.4.4. Let N be a large positive integer. Then there exists a positive measure
wy on T with uy(T') = 1 such that

L
Y @(k)ez’”’“‘ > clogN (3.4.5)
k=—L

sup | (i * Dr) (x)| = sup
L>1 L>1

for almost all x € T' (c is a fixed constant).

Proof. We choose points 0 < x; < xp < --- <xy < 1 such that

1<j<N, (3.4.6)

1
7§|xj+l_xj|gﬁa <j<

2N
where we defined xy+1 = x1 + 1, and such that the set
{xl,.. - XN, 1}
is linearly independent over the rationals. Let

Ey={x€[0,1]: {x—xi,...,x—xy,1} is linearly independent over Q}

and observe that almost all! x in T' belong to Ey.
Next, we define the probability measure

1 N
AU“N:NZIa\’jv
Jj=

where ij are Dirac delta masses at the points x;. For this measure we have

! Every x in [0,1]\ Q[x1, ..., xy] belongs to Ey. Here Q[xy,...,xy] denotes the field extension of
Q obtained by attaching to it the linearly independent elements {xi,...,xy}.
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L o~ .

Z .uN(k)eZﬂlkx

k=—L k
1
N
|1
N
1
N
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(3.4.7)

sin(2mw(L+ %)(X—xj)) ‘
sin(7r(x —x;))
Im [eZFi(LJr%)(x*"j)] sgn(sin(7(x—x;)))

= [sin(z(x—x;))]

)

where the signum function is defined as sgna = 1 for a > 0, —1 for a < 0, and zero
if a = 0. By Lemma 3.4.3, for all x € Ey there exists an L € Z such that

|82ﬂ:iL(x—xJ-) e

—zm%(x—Xj)Sgn(sin(ﬂ(x ij'))) ’ < % ’

which can be equivalently written as

i(L+ L
|62m(L+ 3

It follows from (3.4.8) that

Im [ezm(L+%)(x*xf)]sgn(sin(n(x—xj))) > 1

Combining this with the res

L

Z H;/ (k)eZm'kx
k=—L

)("_Xi)sgn(sin(ﬂ(xij))) fi} < % (3.4.8)

2

ult of the calculation in (3.4.7), we obtain that

_ 1 i 1
2N = [sin(m(x —x;))| |x — xj|

But for every x € [0, 1] there exists a jo such that x € [xj,,xj,+1). It follows from

(3.4.6) that |x —x;| < C(|j—

Thus for every x € Ey there

which proves the required ¢

jo| +1)N~! and thus

Z

> c'NlogN.
Jx — x]|

exists an L € Z™ such that

L .
Z .L/L;(k)e%nkx

k=L

> clogN,

onclusion. [l

Lemma 3.4.5. For each 0 < M < oo there exists a trigonometric polynomial gy and

a measurable subset Ay of T' with measure |Ay| > 1 —

2~M such that HgMHU =1,
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and such that

>2M, (3.4.9)

inf sup|(Dp*gy)(x)| = inf sup Z g1 (k)e*™ik

xXEAN L>1 xXEAN L>1

Proof. Givenan M with 0 <M < oo, we pick an integer N (M) such that clog N (M) >
2M+2 where ¢ is as in (3.4.5), and we also pick the measure M (). Which satisfies
(3.4.5). By Fatou’s lemma we have

:’{xele lim sup |(Dj * iy ) ( )|>2MHH

L~>oo1<

gliininf|{x€T1: sup \(D * Uy (a)) (X )|>2M+1}|
e 1<

and thus we can find a positive integer L(M) such that the set

AM:{xETl: sup  |(Dj* ) (%)] >2M+1}
1<j<L(M)

has measure greater than 1 —2~™. We pick a positive integer K(M) such that

sup ||Fiquy #Dj = Dj| ;- <1,
1<j<L(M)

where Fg is the Fejér kernel. This is possible, since the Fejér kernel is an approxi-
mate identity and {D i 1<j< L} is a finite family of continuous functions. Then
we define gy = Hn(ar) * Fx(ar)- SInce Uy py) is a probability measure, we obtain

(D gum) (x) = (D * iy ) ()| < ||Dj* Fieay = D oo < 1
forallx € [0,1] and 1 < j < L. It follows that for x € Ay; and 1 < j < L we have
|(Dj*gm) (x)] = (D) tyany) (x)] — 1 2 2442 —1 > 24+

Therefore, (3.4.9) is satisfied for this g5 and Ayy. Since [y is a probability measure
and Fi (y) is nonnegative and has L' norm 1, we have that

HgMHLl = H“N(M) *FK<M)||Ll = H“N(M)H///HFK(M)HL' =1
O

We now have the tools needed to construct an example of a function whose
Fourier series diverges almost everywhere. The example is given as a series of func-
tions each of which has a behavior that worsens as its index becomes bigger. The
function we wish to construct is a sum of the form

g=Y &gu;, (3.4.10)
=1
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for a choice of sequences €; — 0 and M; — oo, where gjs are as in Lemma 3.4.5.
Let us be specific. We set &y = My = dyp = 1. Assume that we have defined &},
M;, and d; for all 0 < j < N. We first set

ey =2"3dy 1) (3.4.11)
Then we pick My such that
en2Mv >N Ly 1. (3.4.12)
Finally, we set
dn = lrgnsagx}vdegree (em,)s (3.4.13)

where gy is the trigonometric polynomial of Lemma 3.4.5. This defines &y, My,
and dy for a given N, provided these numbers are known for all j < N. By induction
we define €y, My, and dy for all natural numbers N.

We observe that the selections of €; and M; force the inequalities €; < 27/ and
dj <dj forall j > 0. Since each gM; has L! norm 1 and g < 2~/ the function g
in (3.4.10) is integrable and has L! norm at most 1.

For a given j > 0 and x € AM]., by Lemma 3.4.5 there exists an L > 1 such that
|(Dp, * gMj)(x)| >2Mj . Set k = k(x) = min(L,d;). Then we have

|[(Dicx ) ()| = €| (D +gu,) (%)) - Y. &l (Dicrgu,) ()] — Y| (D gua,) (x)]
<s<j 5>

We make the following observations:
(i) (D gut,) ()] = | (DL % 830, ()] > 2.
(i) |(Dx*gum,) (¥)] = | (Prmin(dy &) * 814,) (%) < || Dimin(ay 1) || 1= < 3ds, when s < j.
(iid) [(Dx *8m,) (%) = |(Dmin(a, &) * 81,)(%)] < || Dumin(a; 1 || = < 3, when s > .

In these estimates we have used that k = min(L,d;), <2m+1<3m, and

that

Du| -

Dr *ng = Dmin(r.,dS) *ng )
which follows easily by examining the corresponding Fourier coefficients.
Using the estimates in (i), (ii), and (iii), for this x in Ay; and k = k(x) we obtain
(Drxg)(x)| > €2"i =3 Y ed,—3) &d,. (3.4.14)
I<s<j 5>
Our selection of &; and M; now ensures that (3.4.14) is a large number. In fact, we

have
3Y ed; <Y 27di(dimy) <Y 2 <1

5> §>J §>j
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and
3 ) &di<3dji1 ), &<di1 ), 27°(di1) ! <djy.

1<s<y 1<s<j 1<s<j
Therefore, the expression in (3.4.14) is at least £,2M/ —d;_; — 1 > 2/. It follows that
for every j > 0 and every x € Ay; there exists a k = k(x) such that
|(Di*g)(x)| > 2. (3.4.15)

We conclude that for every j > 0 and x € AMj we have

sup |(Dy xg)(x)| > 2.
k>1

Thus, for all x in the set A = (| |J Ay, we have
J=0r=j

sup |(Dg x g)(x)| = eo. (3.4.16)
k>1

But A is a countable intersection of subsets of T! of full measure. Therefore, A has
measure | and the required conclusion follows. 0

3.4.3 Divergence of Bochner—Riesz Means of Integrable Functions

‘We now turn to the corresponding n-dimensional problem for spherical summability

of Fourier series. The situation here is quite similar at the critical index o = %

Theorem 3.4.6. Let n > 1. There exists an integrable function f on T" such that

o~

Z ( o \1;1%2) %f(m)ebrimx — o

meZ
|m|<R

n1
limsup |Bg* (f)(x)| = limsup

R—so0 R—c0

for almost all x € T". Furthermore, such a function can be constructed such that it
is supported in an arbitrarily small given neighborhood of the origin.

Proof. We start by defining the set
S={xeR": {|x—m|: meZ"}is linearly independent over Q} .
We show that S has full measure in R". Indeed, if x € R"\ S, then there existk € Z™,

my,...my € Z", and a,,, .. .,a,, nonzero rational numbers such that

k
Y aw,lx—mj|=0. (3.4.17)
j=1
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Since the function
k
t— Z am; [t —mj|
j=1

is nonzero and real analytic on R"\ Z", it must vanish only on a set of Lebesgue
measure zero. Therefore, there exists a set A,,,l,,_,,mkﬂmI el of Lebesgue measure
zero such that (3.4.17) holds exactly when x is in this set. Then

R”\SCU U U Animistimg otimg »

k=1my,....meZ" Ay 5oty €Q
from which it follows that R" \ S has Lebesgue measure zero.
Let us set 5 _
i)=Y, (1) e,
m|<R
We need the following lemma regarding K5

Lemma 3.4.7. For eachx € SN'T", n > 2, we have

hmsup\K%( )| =oo.

R—oo

It is noteworthy to compare the result of this lemma with the analogous one-
dimensional statement
limsup [Dg(x)| = oo

R—sc0
for the Dirichlet kernel Wthh holds exactly when x = 0. Thus the uniform ill be-
havior of the kernel K, 2 reflects in some sense its lack of localization.

Proof. Using (3.4.3) and the Poisson summation formula (Theorem 3.1.17), we ob-
tain the identity

I'a+1)
n'a

Iy (27R]x—m])

R**OC

Kg (x) = , (3.4.18)

wern Px—m|3te

which is valid for all x € T"\ Z". Because of the asymptotics in Appendix B.7, the
sum (3.4.18) converges for o0 > % The same asymptotics imply that for x ¢ Z"
and R > 1 we have

2miRlx—m| ,—i 5 (5+a)—i% + e~ 2miRlx—m| 4i 5 (5 +o)+i%

T\/R|x—m|

+O((Rjx—m|)~?)

Uy s 2nRIx—m]) =

for all o > 0. It is not possible to let o¢ — "5—1 in (3.4.18), since the series on the

right of that identity diverges for this value of . It is a remarkable fact, however,
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that if we average over R first, we obtain an oscillatory factor that allows us to let
o= % in the previous identity. Now for x ¢ Z" and T > 1 we obtain

1 /7 -
—/ K& (x)e?™ AR 4R
I

— (i) —iZL T
ra+1) e B T/ ATRA+e—m|) p"5t —a yp

m mezn |x— m|n+l+a
+F((X+1) e iZ(5+a)+if l ZﬂlR(l |x—m]) ——(de
o = |x m‘”“Jra T
I'la+1
+(:)ZO< — ) /R P e R,
T mezn ‘)C m| o
We now let o — ”;21 in the preceding expression. Then we have
T/ K% QAR g (3.4.19)
1 iz 2n—1y_ ;7
_1" %) Z e 7 (5 )—if I/TeZR'iR(lJr‘xideR
ﬂ'%] meZn |)C m‘" T )
i 2n—1 ;T .
F(%) ez (P +g l r 2miR(A—|x—m|) gp
nr L 7 ‘
T2 meZr |xim‘ T )
n—1 n+l ’
T2 meZn |x—m| r'Ji R

and the wonderful fact is that the first two sums converge because of the appearance
of the oscillatory factors. See Exercise 3.4.8(c). It follows from the previous identity
that if A > 0 and A # |x — mg| for any mg € Z", then the expression in (3.4.19)
converges to zero as T — oo, while it converges to

F(%) eii(%(MH’ ) F n;l) et
T x—mpol" x'T fx—mol"

if A = 4|x — my| for some mg € Z". We now fix xo € SNT" and we set
A ={lxo—m|: meZ"} ={A, A2, A3,... },

where 0 < A1 < A, < A3 < ---. Observe that

> ]
) /17 = oo. (3.4.20)

=

We have shown that
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n+1 i n
i e S T R
_ ) T 2 J
Jim T/ KT (x)?™* di = 0 A £4+A, (342D
e n+1 _;mn
KRlel ita=-,
Y

Since xo € SNT”, the A; are linearly independent and thus no expression of the form
+A;, £--- £ A, is equal to any other A;. It follows from (3.4.21) that

n—1 e—l7f2'leZ7r1},t+eTe—2ﬂtlt F(M) N
hm—/ K, % (x0) {14— dt = —2 —.
Suppose that for xg € SN'T" we had
sup |K% (x0)| <Ay, < oo.
R>1
Then it would follow from the previous identity that
F(u) N 1 TN { e—i%ezmljz +ei%e—2ni)tjt
—= — <Ay lim — 1+ dt
Axy s

which contradicts (3.4.20). We deduce that supg- |Ky 7 (x0)| = oo for every point
Xp € SN'T" and this concludes the proof of Lemma 3.4.7. O

We now proceed with the proof of Theorem 3.4.6. This part of the proof is similar

to the proof of Theorem 3.4.2. Lemma 3.4.7 says that the means B (50)( ), where
0o is the Dirac mass at 0, do not converge for almost all x € T" Our goal is to
replace this Dirac mass by a series of integrable functions on T" that have a peak at
the origin. R

Let us fix a nonnegative 4™ radial function @ on R” that is supported in the unit
ball |£| < 1 and has integral equal to 1. We now set

Pe(x)= Y Lo =Y @(em)em

meZ" meZ"

where the identity is valid because of the Poisson summation formula. It follows
that the mth Fourier coefficient of ¢, is ®(em). Therefore, we have the estimate

n=1 c (o
sup sup [Bp* (@e)(x)] < |P(em)| < s < —
X€T" R>0 e mezz’n mezz’n (14glm|)n1 = gn

(3.4.22)
For any j > 1, we construct measurable subsets E; of T" that satisfy |E j| >1-1
a sequence of positive numbers 0 < Ry < Ry < ---, and two sequences of positive
numbers £; < §; such that
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su B% 2 x’>' forx € E;. 3423
sup [By (Z (90— 5)) (¥)| = J j (3.4.23)

We pick E; =0, Ry =1, and & = §; = 1. Let k > 1 and suppose that we have
selected £}, R;, 5/-, and g; for all 1 < j < k—1 such that (3.4.23) is satisfied. We
construct Ey, Ry, &, and & such that (3.4.23) is satisfied with j = k. We begin by
choosing J. Let B be a constant such that

|P(x) — P(y)| < Blx—y|
for all x,y € R". Pick & small enough that

B Y |m<1. (3.4.24)

Im|<Ry_y

Then we let

k—1
Ac=C27* 8"+ G Y 277(g;"+ 68,7,
=1

where C,, is the constant in (3.4.22), and observe that in view of (3.4.22) we have

n—1

k—1
sup sup| B (=25, + Y277 (g, — 95,) ) (x)| <A (3.425)
x€T" R>0 j=1

Let Jy be the Dirac mass at the origin in T”. Since by Fatou’s lemma and Lemma
3.4.7 we have

timinf | {xeT": sup ‘B% &) (x )’>Ak+k+2}‘:
e 0<R<N

there exists an R; > Rj_; such that the set

n—1
E = {xe T": sup |Bg’ (50)(x)‘ >Ak+k+2}
0<R<Ry

has measure at least 1 — % We now choose g, < & such that

sup [B (8)()— B (9)(0] < ¥ (1-2)"F [1-ggm)| < 1.

xeT” |m| <Ry

This is possible, since the preceding expression in the middle tends to zero as & — 0.
Then for x € E;, we have

inf sup 2~ k‘B% () (x)] > Ap+k+1. (3.4.26)
xEEkR<R

Observe that the construction of & gives the estimate
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sup sup [BpY (0o —05) (1) < Y |D(em) — D(Gum)

XET" R<Ry— Im| <Ry
<B(&-&) Y |m (3.4.27)
Im|<Ry_y
<B§ ), Im[<1
[m| <Ry

using (3.4.24). The inductive selection of the parameters can be described schemat-
ically as follows:

01,R1.E|,6f = & — Ay =— Ry, E, — & — & — etc.

Let us now prove (3.4.23) for j = k. Write

B (B2 re0)) =5 (<2705 + L2 g0

In view of (3.4.25), (3.4.26), and (3.4.27) for all x € E, we obtain

B (X200 90) 0] 2

sup
R<Ry_;

which clearly implies (3.4.23) (with j = k), since Ry > Ry_. Setting

=

=Y. 27(0e, —95,) € LI(T")

s=1

we have now proved that supg-( |B;? (f) (x)‘ = oo for all x in

Since the latter set has full measure in T”, the required conclusion follows.
By taking € arbitrarily small (instead of picking € = 1), we force f to be sup-
ported in an arbitrarily small neighborhood of the origin. g

The previous argument shows that the Bochner-Riesz means Bj are badly be-
1

haved on L'(T") when a = “>=. It follows that the “rougher” spherical Dirichlet
means D(n,N) % f (which correspond to & = 0) are also ill behaved on L'(T").
See Exercise 3.4.5. In Chapter 10 we establish the stronger negative result that the

spherical Dirichlet means of L? functions may also diverge in L” when p # 2.
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Exercises

3.4.1. Prove that if f € L'(T"') satisfies limsupy_.. |(Dy * f) (x)| = o for almost all
x € TL, then the function
F(xi,...,x,) = f(x1)

on T" satisfies limsupy_.. | (D(n,N) x F)(x)| = e for almost all x € T".

3.4.2. (H. Weyl) A sequence {ax};_, with values in T" is called equidistributed if
for every square Q in T" we have

. #{k:0<k<N-1, a €0}
lim
N—oo N

=10l

Show that the following are equivalent:
(a) The sequence {a};_ is equidistributed.
(b) For every smooth function f on T" we have that

) 1 N—1
Jim ];)f(ak) —/Tnf(X)d%
(c) For every m € Z""\ {0} we have

1 N—1 )
lim — Y &2 =0,
N*}OON =0

[Hint: Prove that (a) = (b) => (c) => (b) => (a). In proving (a) <> (b),
approximate f by step functions. In proving (¢) = (b), use Fourier inversion.]

3.4.3. Suppose that x = (x1,...,x,) € T" and m - x is irrational for all m € Z" \ {0}.
Use Exercise 3.4.2 to show that the sequence {([kxi],...,[kx,])}7_, is equidis-
tributed. (In dimension 1 the hypothesis is satisfied if x is irrational.)

3.4.4. The beta function is defined in Appendix A.2. Derive the identity

a__ b a1 g
’_B(a—ﬁ,ﬁ+1)/o(’ TS

2 .
and show that the function Kg (x) = ¥,y <g (1 — l%) % e2mim satisfies (3.4.2).
r2_|m|2
R2

2
[Hint: Take t =1 — % and change variables s =

in the previous beta func-
tion identity. |

3.4.5. Use Exercise 3.4.4 to obtain that if for some xy € T" we have

limsup |[Kg (x0)| < oo,

R—o0

then for all B > o we have
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Kb
sup [Kg (x0)] < ee.
R>0

Conclude that the circular (spherical) Dirichlet means of the function f constructed
in the proof of Theorem 3.4.6 diverge a.e. The same conclusion is true for the
Bochner-Riesz means of f of every order @ < %

3.4.6. For 7 € [0,0) let
N@it)=#{meZ": |m| <t}.

Let 0 =ry <r;y <ry <--- be the sequence all of numbers r for which there exist
m € Z" such that |m| = r.

(a) Observe that N is right continuous and constant on intervals of the form [rj,7j11).
(b) Show that the distributional derivative of N is the measure

we)=#{me z": m =1},
defined via the identity (1, @) = Y7 (#H{m € Z" : [m| =r;} @(r;).

34.7. Let f € €'([0,0)) and 0 < a < b < o not equal to any r; as defined in
Exercise 3.4.6. Derive the useful identity

¥ ()= fON )~ faNia) - [ NG,
meZn a
a<|m|<b

3.4.8. (a) Let 0 < A < e and fix a transcendental number ¥ in (0, 1). Prove that for
k € Z we have

Z eilml _ —i @,y e 1HY) iy oilk+7) +0(k—l+(n—1)—%)
S mr T (ke 1p D) (k) A () :
k+y<|m|<k-+1+y

as k — oo, where ®,_; is the volume of S"~!.

(b) Use part (a) to show that if L < n—1, the limit

eilml
P
meZ"\{0}
|m|<R

lim

R—o0

does not exist.
(c) Show that if A > n— =L the following series converges:

n+1°
eilm|
Y

meZm {0}
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where the infinite sum is interpreted as the limit in part (b).
[Hint: Part (a): One may need Exercises 3.4.7 and 3 1.12. Part (b): Suppose the

i(k+1+7y) — eilk+ i|m|
—iw,_ 1€ [ P

limit exists and let B = Kty D (k+y)l o1+ If the series Y70 (0} T
converged, then we would have B — 0 as k — co. But then k*~("~1) B, would also

tend to zero, which gives a contradiction.]

3.4.9. (Pinsky, Stanton, and Trapa [214]) Prove that the spherical partial sums of
the Fourier series of the characteristic function of the ball B(O 57 ) in T" diverges at
x=0whenn > 3.

[Hmt Use the idea of Exercise 3.4.8 with A = %}

3.5 The Conjugate Function and Convergence in Norm

In this section we address the following fundamental question: Do Fourier series
converge in norm? We begin with some abstract necessary and sufficient conditions
that guarantee such a convergence. In one dimension, we are able to reduce matters
to the study of the so-called conjugate function on the circle, a sister operator of
the Hilbert transform, which is the center of study of the next chapter. In higher
dimensions the situation is more complicated, but we are able to give a positive
answer in the case of square summability.

3.5.1 Equivalent Formulations of Convergence in Norm

The question we pose is for which 1 < p < co we have

| D(n,N) = f— f]

pam =0 asN e, (3.5.1)

and similarly for the circular Dirichlet kernel D(n,N). We tackle this question by
looking at an equivalent formulation of it.

Theorem 3.5.1. Fix 1 < p <eoand {a,,} in ((Z"). For eachR >0, let {a,,(R) } mezr
be a compactly supported sequence (whose support depends on R) that satisfies
limg e ap(R) = ay. For f € LP(T") define

o~

Sr(f)(x) = Y an(R)f(m)e*™™*

meZ

and for h € €= (T") define

Ah)(x) =Y ayh(m)e*™m=.

meZ
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Then for all f € LP(T") the sequence Sg(f) converges in L as R — oo if and only if
there exists a constant K < oo such that

sup S|, <K. (35.2)

Furthermore, if (3.5.2) holds, then for the same constant K we have

w140y

<K, (3.5.3)
ozhee= ||kl

and then A extends to a bounded operator A Sfrom LP(T") to itself; moreover, for
every f € LP(T") we have that Sg(f) — A(f) in L” as R — oo.

Proof. If Sg(f) converges in L?, then ||Sz(f) HLP < Cy for some constant Cy that
depends on f. The uniform boundedness theorem now gives that the operator norms
of Sg from L? to L? are bounded uniformly in R. This proves (3.5.2).

Conversely, assume (3.5.2). For h € €*°(T") Fatou’s lemma gives

A = || Jim Sr(h)[|,» < timinf[|Se(A)[|,» < K|[2]],

R—oo R—oo

hence (3.5.3) holds. Thus A extends to a bounded operatorg on L”(T") by density.
We show that for all f € LP(T") we have Sg(f) — A(f) in L” as R — oo. Fix f
in LP”(T") and let € > 0 be given. Pick a trigonometric polynomial P satisfying
Hf— PHLI, < &. Let d be the degree of P. Then

I1Sr(P) =AP)]|,, < [[S&(P) = A(P)]| -

< Y lan(R)—an|[P(m)| <e,
- <

provided R > Ry, since a,,(R) — a,, for every m with |m;|+---+ |m,| < d. Then

HSR(f)fAv(f)HLP < HSR(f)st(P)HLp + HSR(P)iAV(P)HLp + HAV(P)iAV(f)’
<Ke+e+Ke=(2K+1)e

Ly

for R > Ry. This proves that Sg(f) converges to A(f) in L” as R — oo, O

The most interesting situation arises, of course, when a,,(R) — a,, = 1 for all
m € Z". In this case we expect the operators Sg(f) to converge back to f as R — co.
We should keep in mind the following three examples:
(a) the sequence a,,(R) = 1 when max;<;<,|m;| < R and zero otherwise, in which
case the operator Sg of Theorem 3.5.1 is

Sg(f) = f*D(n,R); (3.5.4)

(b) the sequence a,,(R) = 1 when |m| < R and zero otherwise, in which case the Sg
of Theorem 3.5.1 is
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Sk(f) = f*D(n,R); (3.5.5)
(c) the sequence a,(R) = (1— %—‘;) i, in which case Sg = Bf.

Corollary 3.5.2. Let 1 < p < o and o > 0. Let Sg and §R be as in (3.5.4) and
(3.5.5), respectively, and let B§ be the Bochner—Riesz means as defined in (3.4.1).
Then

VfEL!(T"), D(nR)xf—f  inLP <= sup||Sgl||,,_,, <.
R>0

Y feLP(TY), D(n,R)xf — f in L <= sup ||Sg||,,_,, <.
R>0

HLP—>L1’ < oo

VfeLl (T, BE(f)— f in LP < sup||B}
R>0
Example 3.5.3. We investigate the one-dimensional case in some detail. We take
n =1 and we define a,,(N) =1 for all =N < m < N and zero otherwise. Then
Sn(f) = Sn(f) = Dy * f, where Dy is the Dirichlet kernel. Clearly, the expressions
||SN 1p_pp Can be estimated from above by the L' norm of Dy, but this estimate
is quite rough as it yields a bound that blows up as N — co. We later show, via a
more delicate argument, that the expressions HSNH 1p_.1p are uniformly bounded in
N when 1 < p < oo,
This reasoning, however, allows us to deduce that for some function g € L (Tl),
Sy(g) may not converge in L'. This is also a consequence of the proof of Theorem
3.4.2; see (3.4.16). Note that since the Fejér kernel Fj; has L' norm 1, we have

ISwllps .z = lim [|Dy Pl o = (| D]
This implies that the expressions ||S NH 111 are not uniformly bounded in N, and

therefore Corollary 3.5.2 gives that for some f € L'(T"'), Sy(f) does not converge
to f (nor to any other integrable function) in L.

Although convergence of the partial sums of Fourier series fail in L', it is a con-
sequence of Plancherel’s theorem that it holds in L. More precisely, if f € L*(T"),
then B R

1D+ f=fl2= Y If(m)—0
|m|>N
as N — oo and the same result is true for Dy. The following question is therefore
naturally raised. Does L” convergence hold for p # 2? This question was answered
in the affirmative by M. Riesz in dimension 1. In higher dimensions a certain in-
teresting dichotomy appears. Although it is a consequence of the one-dimensional
result that the square partial sums D(n,N) » f converge to f in LP(T"), this is not the
case for the circular partial sums, since there exists f € L”(T") such that D(n,N) x f
do not converge in L? if 1 < p # 2 < co. We study this issue in Chapter 10.
We begin the discussion with the one-dimensional situation.
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Definition 3.5.4. For f € ¢ (T") define the conjugate function f by
x)=—i Y sgn(m)f(m)e*™",
mez!

where sgn(m) = 1 form > 0, —1 for m < 0, and 0 for m = 0. Also define the Riesz
projections Py and P_ by

Po(f)(x) = i f(m)e?mim (3.5.6)
m=1
—1 . )
P_(f)(x) = ; f(m)e¥™imx. (3.5.7)

Observe that f = P, (f) +P_(f) + f(0), while f = —iP(f) +iP_(f), when f
is in = (T"). The following is a consequence of Theorem 3.5.1.

Proposition 3.5.5. Let 1 < p < co. Then the expressions Sy(f) = Dy * f converge
to f in LP(T") as N — oo if and only if there exists a constant Cp > 0 such that for

all smooth f we have HfHUJ(T]) < CprHU<T1).

Proof. Observe that
1 ~ 1=
P(f) = E(f‘Hf)—Ef(O)

and therefore the L” boundedness of the operator f — fis equivalent to that of the
operator f +— P (f).
Next, note the validity of the identity

2N

o 2TiNx Z (f( Je 27N (- )) p2imx _ Z f 277:imx.

m=0 m=—N

Since multiplication by exponentials does not affect L” norms, this identity implies
that the norm of the operator Sy (f) = Dy * f from L? to L? is equal to that of the
operator

2N '
x) _ Z g;(m)EZanx
m=0

from L? to L”. Therefore,

sup HSNHU,HU, < oo &> sup HS}\,HU,HU, < oo, (3.5.8)

N>0 N>0
Suppose now that for all f € LP(T!), Sy(f) — f in LP as N — 0. Corollary 3.5.2
yields supy~ ||SN||L,,HL,, <o and thus supy~ HS}V ||L,,HL,, < oo by (3.5.8). Theorem

3.5.1 applied to the sequence a,,(R) = 1 for 0 < m < R and a,,(R) = 0 otherwise
gives that the operator A(f) = P, (f) + £(0) is bounded on L”(T"). Hence so is Py.
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Conversely, suppose that P, extends to a bounded operator from L (T") to itself.
For all f smooth we can write

S;\/(f)(x) _ Z f 2mmx Z f 271:imx
m=0 m=2N+1
_ Z A(m)EZﬂTimx 7627171'(2N)x Z f(m+2N)€2ﬂim
m=0 m=1

~

)(x) _ eZni(ZN)xP+ (67271:1'(2N)(~)f) +f(0) )

I
+
<

The previous identity implies that

o < QP DL (3.5.9)

sup [|Sy (/)]
N>0

for all f smooth, and by density for all f € LP(T'). (Note that Sy is well defined
on LP(T").) In view of (3.5.8), estimate (3.5.9) also holds for Sy. Theorem 3.5.1
applied again gives that Sy(f) — f in L? for all f € LP(T"). O

3.5.2 The L? Boundedness of the Conjugate Function

‘We know now that convergence of Fourier series in L? is equivalent to the L” bound-
edness of the conjugate function or either of the two Riesz projections. It is natural
to ask whether these operators are L” bounded.

Theorem 3.5.6. Given 1 < p < oo, there is a constant A, > 0 such that for all f in
€= (T") we have

11l = Apll 1] (3.5.10)
Consequently, the Fourier series of LP functions on the circle converge back to the
functions in LP for 1 < p < co.

Proof. We present a relatively short proof of this theorem due to S. Bochner. Let
f(¢) be a trigonometric polynomial on T! with coefficients ¢ 7. We write

N N P N P

.. ci+c_; .. Ci—C_; ..

_ 2mijt J J 2mijt . J J 2mijt

1) = E cje ™ = E e ]—l—l[ E ——e
=N =N =N

and we note that the expressions inside the square brackets are real-valued trigono-
metric polynomials. We may therefore assume that f is real-valued and by subtract-
ing a constant we can assume that f(0) = 0. Since f is real-valued, we have that

F(=m) = f(m) for all m, and since f(0) = 0, we may write

f(t) =—i Z f(m)eZnimt +i Z f(i e 2mimt _ope | Z f p2mimt ’

m>0 m>0 m>0
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which implies that fis also real-valued (see also Exercise 3.5.4(b)). Therefore the
polynomial f +if contains only positive frequencies. Thus for k € Z* we have

[ @+ ifo)*a—o.

Expanding the 2k power and taking real parts, we obtain

L0 () f e rerao.

where we used that f is real-valued. Therefore,

k

171 < 2() BORORL

k

< X (5 IFES i

by applying Holder’s inequality with exponents 2k/(2k — 2 ) and 2k/(2j) to the jth
term of the sum. Dividing the last inequality by H f Hi’;k, we obtain

R* < Z < )RZk 2 (3.5.11)

where R = ||f~HL2k/||fHL2k. It is an elementary fact that if R > 0 satisfies (3.5.11),
then there exists a positive constant Cy; such that R < Cy;. We conclude that

Il <Collfll,,  when p =2k (3.5.12)

We can now remove the assumption that f(0) = 0. Apply (3.5.12) to f — f(0), ob-
serve that the conjugate function of a constant is zero, and use the triangle inequality
and the fact that | £(0)] < 171l < £]],, to obtain HfHU, <2G,||f]|,» when p =2k
and f is a real-valued trigonometric polynomial. Since a general trigonometric poly-
nomial can be written as P+ iQ, where P and Q are real-valued trigonometric poly-
nomials, we obtain the inequality || f | 1 <46 || f || 1 for all trigonometric polyno-
mials f when p = 2k. Since trigonometric polynomials are dense in L?, it follows
that (3.5.10) holds for all smooth functions when p = 2k. It also follows that the con-
jugate function has a bounded extension on L”(T'!) when p = 2k and in particular,
this extension is well defined for simple functions.

Every real number p > 2 lies in an interval of the form [2k,2k + 2], for some
k € Z7. Theorem 1.3.4 gives that

171

w <AL (3.5.13)
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for some A, > 0 and all 2 < p < oo when f is a simple function. By density the
same result is valid for all L? functlons when p > 2. Finally, we observe that the
adjoint operator of f — f is f—— f By duality, estimate (3.5.13) is also valid for
1 < p <2 with constant A,y = A,. ]

We extend the preceding result to higher dimensions.

Theorem 3.5.7. Let 1 < p < ooand f € LP(T"). Then D(n,N) = f converges to f in
L? as N — oo,

Proof. Let us prove this theorem in dimension n = 2. The same proof can be ad-
justed to work in every dimension. In view of Corollary 3.5.2, it suffices to prove
that for all £ smooth on T? we have

sup / /
N>0

For fixed f € €~ (T?), N > 0, and x, € [0,1], define a trigonometric polynomial
gn.x, on T! by setting

R p
2m (myx1+maxy) f(ml,mQ) dx;dx, < szHfHZp(TZ

\m1|<N\m2\<N

Z eznimzxzf(mbmg) = gT\’;z (ml)
[mo| <N

for all m; € Z. Then we have

(D *gnm) (1) 2 M g (my)
11N

and also

g (x) =Y, ezmmm{ Y AT f(my, mz)} = (Dn* fr,)(x2),

[ma| <N myEL

where fy, is the function defined by fy, (y) = f(x1,y). We have

LhLE

P
27ri(m1x1+m2x2)f/\(ml ,m2) dx; dxs

|my \<N\mz|<N
p

(DN *8gNx,)(x1)| dxidxs

1o
SK”/O /o N2, (x1)|” dx1 dx;

:Kp/ol/o'l ‘(DN*fxl)(xz) ’

1 1
SKZ‘D/O /0 |fx] (x2)|pdx2dx1

= K| 22

d)CQ dx1
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We used twice the fact that the one-dimensional partial sums are uniformly bounded
in L” when 1 < p < oo, a consequence of Corollary 3.5.2, Proposition 3.5.5, and
Theorem 3.5.6. U

Exercises

3.5.1.If f € €=(T"), then show that D(n,N) = f and D(n,N) * f converge to f
uniformly and in L? for 1 < p < co.

3.5.2. Prove that the norms of the Riesz projections on L?(T") are at most 1, while
the operation of conjugation f — f is an isometry on L>(T").

3.5.3. Let —o0 < a; < b; < oo for 1 < j <n. Consider the rectangular projection
operator defined on ¢*°(T") by

P(f)(x) = Z f(m)32”i<m1x1+"-+m,,x,,) )

ajSijbj

Prove that when 1 < p < oo, P extends to a bounded operator from L?(T") to itself
with bounds independent of the a;,b;.
[Hint: Express P in terms of the Riesz projection P+.]

3.5.4. Let P,(t) be the Poisson kernel on T' as defined in Exercise 3.1.7. For 0 <
r < 1, define the conjugate Poisson kernel Q,(t) on the circle by

Q,(t)=—i Y sgn(m) plml g2mimt
m—=—oo
(a) For 0 < r < 1, prove the identity

B 2rsin(2mr)
~ 1—2rcos(2mt) + 72"

0:(1)
(b) Prove that () = lim,_ (Q,  f)(r) whenever f is smooth. Conclude that if f is
real-valued, then so is f.
(c) Let f € L'(T"). Prove that the functions z — (P, * f)(t) and z — (Q, * f)(t) are

harmonic functions of z = re?™" in the region |z| < 1.
(d) Let f € L'(T"). Prove that the function

2= (B f)(0) +i(Qr+ £)(1)

is analytic in z = re*™ and thus (P, % f)(¢) and (Q, * f)(t) are conjugate harmonic
functions.

3.5.5. Let f be in Ag(T") for some 0 < a < 1. Prove that the conjugate function f
is well defined and can be written as
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f(x) = lim f(x—1)cot(mt)dt
e—=0Je<)t|<1/2

= (f(x—1) = f(x)) cot(mt)dt.

[r]<1/2

[Hint: Use part (b) of Exercise 3.5.4 and the fact that Q, has integral zero over
the circle to write (f*Q,)(x) = ((f — f(x)) * Q,) (x), allowing use of the Lebesgue
dominated convergence theorem.

3.5.6. Suppose that f is a real-valued function on T! with |f| < 1and 0 < A < 7/2.

(a) Prove that
7 1
AF() gy <
/rl s cos(A)

(b) Conclude that for 0 < A < 7/2 we have

7 2
MOl gy < — =
/rle dt_cos(l)'

[Hint: Part (a): Consider the analytic function F(z) on the disk |z| < 1 defined by
F(z) = —i(P.% £)(0) + (O, * £)(0), where z = re*™®_ Then Re (%) is harmonic
and its average over the circle |z| = r is equal to its value at the origin, which is
cos(A£(0)) < 1.Letr 1 1 and use that for z = ¢>™" on the circle we have Re e} (2) >

A0 cos(2).]
3.5.7. Prove that for 0 < o < 1 there is a constant Cy, such that

171 grr) = Call Al

[Hint: Using Exercise 3.5.5, for |h| < 1/10 write fx+h)— f(x) as
/M<5\h| (fOe=1) = fa+ 1) cot(m(r +h)) dr
/ —1) = f(x)) cot(mt) dt
\f\<5\h\
/\h\<|t\<1/z - t) B f(x)) (COt(n(t +h)) - COt(ﬂ?l‘)) dt
+(F0 - fe+m) [ cot((t 4 h)d.

Sll<k|<1/2
You may use the fact that cot(mr) = % + b(t), where b(r) is a bounded function
when [r| < 1/2. The case || > 1/10 is easy. |

3.5.8. (a) Show that for M, N positive integers we have

Fu(x) forM <N,

(B DN)(X) = § Fyy(x) + e lng\klez”"’“ for M > N.
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(b) Prove that for some constant ¢ > 0 we have
/ Z | k| 2mikx
T!
as N — oo,

k=N
[Hint: Part (b): Show that for x € [—1, 1] we have

Y k[ = (N + 1)(Dy(x) = Fn(x)

k<N

dx > cNlogN

and use the result of Exercise 3.1.8.]

3.5.9. Show that the Fourier series of the integrable functions

W=Y 27 ).  A@=Y
j=0

=17

1
—F

1
222, xeT,

do not converge in Ll_ (Th).

[Hint: Let M; = 22 or M = 2% depending on the situation. For fixed N let jy
be the least integer j such that M; > N. Then for j > jy + 1 we have M; > MJZ-N >

N?>2N+1, hence AA{,’;]Y >
Jj < jn. Conclude that || f; *DNHLI and || f2 *DNHU tend to infinity as N — oo using

Exercise 3.5.8.]

%. Split the summation indices into the sets j > jy and

3.5.10. (Stein [251]) Note that if & > 0, then BY are bounded on L?(T") uniformly
in R > 0. Show that if @ > %5=, then Bf are bounded on L!'(T") uniformly in R > 0.
Use complex interpolation to prove that for o0 > “5= ‘ ~—5 { the B are bounded on
LP(T") uniformly in R > 0. Compare this problem w1th Exercise 1.3.5.

3.6 Multipliers, Transference, and Almost Everywhere
Convergence

In Chapter 2 we saw that bounded operators from L?(R") to L?(R") that commute
with translations are given by convolution with tempered distributions on R". In par-
ticular, when p = ¢, these tempered distributions have bounded Fourier transforms,
called Fourier multipliers. Convolution operators that commute with translations
can also be defined on the torus. These lead to Fourier multipliers on the torus.
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3.6.1 Multipliers on the Torus

In analogy with the nonperiodic case, we could identify convolution operators on
T" with appropriate distributions on the torus; see Exercise 3.6.2 for an introduction
to this topic. However, it is simpler to avoid this point of view and consider the mul-
tipliers directly, bypassing the discussion of distributions on the torus. The reason
for this is the following theorem.

Theorem 3.6.1. Suppose that T is a linear operator that commutes with translations
and maps LP(T") to L1(T") for some 1 < p,q < eo. Then there exists a bounded
sequence {am fmezr such that

T(f)x) =Y anf(m)e?™™* (3.6.1)

meZn
forall f € €=(T"). Moreover, we have H{am}Hé* < HTHU,_)M.

Proof. Consider the functions e, (x) = e?™" defined on T" for m in Z". Since T is
translation invariant for all 7 € T", we have

T(em)(x—h) = T(2"(em))(x) = € """ () (x)

for every x € F,, where Fj, is a set of full measure on T". For x € T" define D(x) =
[{h € T": x € F,}|. Then D(x) < 1 for all x and by Fubini’s theorem D has integral
1 on T”. Therefore there exists an xo € T" such that D(xg) = 1. It follows that for
almost all 1 € T” (i.e., for all & in the set {h € T" : xo € F;,}) we have T (e;,)(xo —
h) = e~ 2"™hT (e,)(xo). Replacing xo — h by x, we obtain

T (em)(x) = pAmimx (e—zmm-xoT(em)(xo)) = amem(x) (3.6.2)

for almost all x € T", where we set a, = e 2#"™%T (e,,)(x), for m € Z". Tak-
ing L9 norms in (3.6.2), we deduce |a,,| = HT(em)HLq < HTHU,_M, and thus a,, is
bounded. Moreover, since T (e,) = ajpey, for all m in Z", it follows that (3.6.1) holds
for all trigonometric polynomials. By density this extends to all f € € (T") and the
theorem is proved. 0

Definition 3.6.2. Let 1 < p,g < . We call a bounded sequence {a }mczn an
(LP,LY) multiplier if the corresponding operator given by (3.6.1) maps LP(T")
to LI(T"). If p = ¢, (L?,L?) multipliers are called simply LP multipliers. When
1 < p < oo, the space of all L” multipliers on T" is denoted by .#,(Z"). This no-

-~

tation follows the convention that .#,(G) denote the space of L” multipliers on
L?(G), where G is a locally compact group and G is its dual group. The norm of
an element {a,,} in .#,(Z") is the norm of the operator T given by (3.6.1) from
LP(T") to itself. This norm is denoted by || {am}H%p.

We now examine some special cases. We begin with the case p = g = 2. As
expected, it turns out that %5 (Z") = (=(Z").
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Theorem 3.6.3. A linear operator T that commutes with translations maps L*(T")
to itself if and only if there exists a sequence {ap }mezn in {7 such that

T(f)x) = Y anf(m)e?™m* (3.6.3)

meZl
forall f € €=(T"). Moreover, in this case we have ||T||L2HL2 = ||{am}H£m.

Proof. The existence of such a sequence is guaranteed by Theorem 3.6.1, which also
gives ||{am}H o S ||TH 22+ Conversely, any operator given by the form (3.6.3)

satisfies N . 2 -~
1Tl = X, lanfon)P < [[{an} 2 ¥ 1F0m)P,
meZ meZ
and thus [ 7]|2_» < [[{em} o -

We continue with the case p = ¢ = 1. Recall the definition of a finite Borel mea-
sure on T". Given such a measure U, its Fourier coefficients are defined by

w(m) = / e~ gy (x), meZ".

Clearly all the Fourier coefficients of the measure t are bounded by the total vari-
ation ||u|| of u. See Exercise 3.6.3 for basic properties of Fourier transforms of
distributions on the torus.

Theorem 3.6.4. A linear operator T that commutes with translations maps L' (T")
to itself if and only if there exists a finite Borel measure L on the torus such that

T(f)(x) = Y fm)fm)e (3.6.4)
meZ"
for all f € €=(T"). Moreover, in this case we have HTHLIHLI = H,uH In other

words, M1(Z") is the set of all sequences given by Fourier coefficients of finite
Borel measures on T".

—

Proof. Fix f € L'(T").1f (3.6.4) is valid, then T'(f) (m) = f(m)fi(m) for all m € Z".
But Exercise 3.6.3 gives that f*\/.t(m) = f(m)fi(m) for all m € Z"; therefore, the
integrable functions f * 1 and T'(f) have the same Fourier coefficients and they
must be equal. Thus T(f) = f * i, which implies that T is bounded on L' and
1701 < 7]

To prove the converse direction, we suppose that 7 commutes with translations
and maps L' (T") to itself. We recall the following identity obtained in (3.1.20):

. IB M) e
Pe(x)= Y e 2mlmlepamims — —~ 2 — >0 (365
meZn T2 mezr (1 + |xtﬁm‘2)7

for all x € T". Integrating the second series in (3.6.5) over [—1/2,1/2]", expressing
the result as an integral over R”, and using the fact that the Poisson kernel on R” has
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integral one (cf. Example 2.1.13), we conclude that HPg = 1. It follows that

||L1(T”)

|7 (e

)g HT||L1—>Ll

)HLI(T"

for all € > 0. The Banach—Alaoglu theorem gives that there exist a sequence €; | 0
and a finite Borel measure (t on T” such that T(ng) tends to u weakly as j — co.
This means that for all continuous functions g on T we have

lim [ g(T (Pey)(x)d = /T g(x)du(). (3.6.6)

Jj—oo Jn

It follows from (3.6.6) that for all g continuous on T we have

|, g®)dut

< sup [Tyl gl = U7l

Since by the Riesz representation theorem we have that the norm of the linear func-
tional

g [ sdu)

on C(T") is ||u , it follows that

el < 11Tl (3.6.7)

It remains to prove that T has the form given in (3.6.4). By Theorem 3.6.1 we have
that there exists a bounded sequence {am} on Z" such that (3.6.1) is satisfied. Taking
g(x) = e~ 2™k in (3.6.6) and using the representation for 7 in (3.6.1), we obtain

fi(k) :/ Ry () = Tim [ T2 Y g o2l 2minx g g

J—ee J T mezn

This proves assertion (3.6.4). It follows from (3.6.4) that T(f) = f * u and thus
|7 |l,i_,1 < |/te]| This fact combined with (3.6.7) gives ||T||,, i = ||u|- O

Remark 3.6.5. It is not hard to see that most basic properties of the space .#,(R")
of L? Fourier multipliers on R”" are also valid for .#,(Z"). In particular, .#,(Z")
is a closed subspace of ¢ and thus a Banach space itself. Moreover, sums, scalar
multiples, and products of elements of .#),(Z") are also in .#,(Z"), which makes
this space a Banach algebra. As in the nonperiodic case, we also have .#),(Z") =
My (L") when 1 < p < oo,

3.6.2 Transference of Multipliers

It is clear by now that multipliers on L' (T") and L' (R") are very similar, and the
same is true for L?(T") and L?(R"). These similarities became obvious when we
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characterized L' and L? multipliers on both R” and T”. So far, there is no known
nontrivial characterization of .#,(R"), but we might ask whether this space is re-
lated to .#,(Z"). There are several connections of this type and there are general
ways to produce multipliers on the torus from multipliers on R"” and vice versa.
General methods of this sort are called transference of multipliers.

We begin with a useful definition.

Definition 3.6.6. Let 7y € R". A bounded function » on R” is called regulated at the
point ty if
1
fim 7/\| (b(to—1) — b(to)) dr = 0. (3.6.8)
t|<e

e—0 &N

The function b is called regulated if it is regulated at every 15 € R".

Condition (3.6.8) says that the point 7 is a Lebesgue point of b. This is certainly
the case if the function b is continuous at #p € R". If b(zp) = 0, condition (3.6.8) also
holds when b(fy —t) = —b(fy +t) whenever |¢| < & for some € > 0.

The first transference result we discuss is the following.

Theorem 3.6.7. Suppose that b is a regulated function that lies in .#,(R") for some
1 < p < co. Then the sequence {b(m)}mezr is in M, (Z") and moreover,

H{b(m)}H//,,(zn) = HbH///,,(R”)'
Also, for all R > 0, the sequences {b(m/R)} ez are in M ,(Z") and we have

sup 1008} g 1 < 1] -

The second conclusion of the theorem is a consequence of the first conclusion
(R = 1), since the functions b(§/R) and b(&) have the same norm in .#,(R").
Before we begin the proof, we state the following lemma, which we derive after the
proof of Theorem 3.6.7.

Lemma 3.6.8. Let T be the operator on R" whose multiplier is b(§), and let S
be the operator on T" whose multiplier is the sequence {b(m)}mczn. Assume that
b(&) is regulated at every point m € Z". Suppose that P and Q are trigonometric
polynomials on T" and let L¢(x) = e mel? forx € R" and € > 0. Then the following
identity is valid whenever o, >0 and o+ 3 = 1:

lim ¢ / T(PLe) (1) Q) Lep (1) dx = /T S(P)(x)Q0) d. (3.6.9)
Proof. We give the proof of Theorem 3.6.7. The case p = 1 can be proved easily
using Theorems 2.5.8, 3.6.4, and Exercise 3.6.4 and is left to the reader. Let us
therefore consider the case 1 < p < co. We are assuming that 7" maps L?(R") to
itself and we need to show that S maps L?(T") to itself. We prove this using duality.
For P and Q trigonometric polynomials, using Lemma 3.6.8, we have
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S(P)(x)Q(x) dx

T

lim ¢ / T(PLe)y) (x) Q) Le () dx

LP(R™) QLS/p’”LP’(R")

Loy limsup (83 /R P(x)l”e‘f“'zdx> ’(e'é / 10(x)|Pe ek dx)
£ n

14 % p/ ?
:HT||LP—>LP /I‘" |P(x)[" dx /]‘n'Q(x)‘ dx |

provided for all continuous (periodic) functions g on T” we have that

= HTHLPHLP lims:)lpsi ||PL€/P|
E—

=|I7]

lime3 g(x)e*g”‘xl2 dx= | g(x)dx. (3.6.10)
e—0 R” ™
Assuming (3.6.10) for the moment, we take the supremum over all trigonometric
polynomials Q on T” with L” norm at most 1 to obtain that S maps L”(T") to itself
with norm at most HT| 110> yielding the required conclusion.

We now prove (3.6.10). Use the Poisson summation formula to write the left-
hand side of (3.6.10) as

e’ Z / g(x—k)efsn‘xfklzdx = / )e? Z e €Tk g

kezn /" ez

x) Z e*ﬂ\k\ /SeZJ'Ctx-kdx
le

= g(x)dx+Ag,
T)‘l
where )
[Ae| < Jlgl]= Y e —
[k]>1
as € — 0. This completes the proof of Theorem 3.6.7. 0

We now turn to the proof of Lemma 3.6.8.

Proof. Tt suffices to prove the required assertion for P(x) = XM and Q(x) =
e2kx | m e 2, since the general case follows from this case by linearity. In view
of Parseval’s relation (Proposition 3.1.16 (3)), we have

S(P)(x)Q(x)dx =Y b(r)P(r)O(r) =

" reZn

{b(m) when k = m, 3.6.11)

0 when k # m.

On the other hand, using the identity in Theorem 2.2.14 (3), we obtain
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0 -
e [ bE)ea) te T (ep) B A d
Rn
n |E—m®  _ \5*1‘\2
:(eaﬁ)*z/ b(E)e ™ e e " dE. (3.6.12)
Rn
Now if m = k, since @ + 3 = 1, the expression in (3.6.12) is equal to
n o \é—m\z
(eap) !t [ bE)e ™ dE, (3613
Rn

: e . . . 0 gl
which tends to b(m) if b is continuous at m, since the family €~ 2e™ "¢ is an ap-

proximate identity as € — 0. If b is not continuous at i but satisfies condition (3.6.8)
with 7y = m, then still the expression in (3.6.13) tends to b(m) as € — 0 in view of
the result of Exercise 3.6.6.

We now consider the case m # k in (3.6.12). If |m — k| > 1, then every £ in R”
must satisfy either |§ —m| > 1/2 or | — k| > 1/2. Therefore, the expression in
(3.6.12) is controlled by

eapy 5( [ p@e e g [ b Fe i a ),

1
|&—k|>75

which is in turn controlled by
6], (-t e 1 p=te 7).

which tends to zero as € — 0. This proves that the expression in (3.6.11) is equal to
the limit of the expression in (3.6.12) as € — 0. This completes the proof of Lemma
3.6.8 0

We now obtain a converse of Theorem 3.6.7. If b(§) is a bounded function on
R" and the sequence {b(m)}mezr is in 4, (Z"), then we cannot necessarily obtain
that b is in .#),(R"), since such a conclusion would have to depend on all the values
of b and not on the values of b on a set of measure zero such as the integer lattice.
However, a converse can be formulated if we assume that for all R > 0, the se-
quences {b(Rm)}ezn are in .#,(Z") uniformly in R. Then we obtain that b(RE) is
in .#,(R") uniformly in R > 0, which is equivalent to saying that b € .#,(R"), since
dilations of multipliers on R” do not affect their norms (see Proposition 2.5.14).
These remarks can be precisely expressed in the following theorem.

Theorem 3.6.9. Suppose that b(&) is a bounded Riemann integrable function on
R" and that the sequences {b(%§)}mez» are in .M, (Z") uniformly in R > 0 for some
1 < p <oo. Thenbis in .#,(R") and we have
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HbH%(R,, <sup||{b my }mezn”%(zn). (3.6.14)

Proof. Suppose that f and g are smooth functions with compact support on R".
Then there is an Ry > 0 such that for R > Ry, the functions x — f(Rx) and x — g(Rx)
are supported in [—1/2,1/2]". We define periodic functions

= Z f(R(x—k)) and Gg(x Z g(R

keZ! keZr

on T". Observe that the mth Fourier coefficient of Fy is Fg(m) = R~"f(m/R) and
that of Gg is Ggr(m) = R™"g(m/R). Set

Cy = sup||{b(m/R) }mezr
R>0

AMp(2")

Now for R > Ry we have

Z b(m/R) (m/R)g (m/R)Volume([ﬂ '"Tf]]")

R’
meZ

(3.6.15)

— R X o/ R Gl

mezZl

R / ( y b(m/R)?;(m)ezmm> Gr(x) dx

meZ
< R"[[{b(m/R)}n|
<G R HFRHLP(R”)

= Col |1l gy

My (Z) FRHLI’ ™) GRHLI’ (")

Gr ‘ !LP’ (R")

8l o (3.6.16)

Since the function b is continuous and bgunded, it is Riemann integrable over R”
and the same is true for the function b(&) f(&)g(&). The expressions in (3.6.15) tend

to
[, roremEa

as R — oo by the definition of the Riemann integral. We deduce that

[ HOFOFEE = [ (BF) (x)gl)dx

R”

is controlled in absolute value by the expression in (3.6.16). This implies the con-
clusion of the theorem. U
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3.6.3 Applications of Transference

Having established two main transference theorems, we turn to an application.
Corollary 3.6.10. Ler | < p <o, f € LP(T"), and o0 > 0. Then
(a) HD(mR) *f_fHLP(T") — 0as R — oo ifand only if x_y 1j» € #(R").
(b) HD(mR) *f_fHLP(T") — 0as R — o ifand only if xp(o,1) € #,(R").
() | BES) ~ | pan) — O as R — oo if and only if (1 — | )% € ., (R?).

Proof. First observe that in view of Corollary 3.5.2, the first statements in (a), (b),
and (c) are equivalent to the statements

SupHD(n’R)*f”LP(T") <Gyl f]
R>0

sup HB(n,R) *f|
R>0

Ll’(T”) Y

wrirny < Copllflloeam)

Is?lg()) HBI%(f)HLp(Tn) < CPHfHLP(T”) ’

for some constant 0 < C), < e and all f in LP(T"). Now define

1 when [x| < 1,
Xs0.1)(X) =< 1/2  when [x| =L,
0 when [x| > 1,
and
1 when all |x;| < 1,

- 1/2 when some but not all |x;| =1,
=110 (X5, X0) = n '

1/2"  whenall x| =1,

0 when some [x;| > 1.

It is not difficult to see that the functions 7(3(0.1) and i[_lql]n are regulated and Rie-
mann integrable; see Exercise 3.6.7. The function (1 — |£|?)% is continuous and
therefore it is both regulated and Riemann integrable. Theorems 3.6.7 and 3.6.9 im-
ply that the uniform (in R > 0) boundedness of the operators D(n,R), D(n,R), and
B on LP(T") is equivalent to the statements that the functions Yp( 1), X[1,1]»
and (1 — |E*)% are in .#,(R"), respectively. Since -1, = X[-1,1» ae. and
X O

XB(0.1) = XB(0,1) @-€., the required conclusion follows.

3.6.4 Transference of Maximal Multipliers

We now prove a theorem concerning maximal multipliers analogous to Theorems
3.6.7 and 3.6.9. This enables us to reduce problems related to almost everywhere
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convergence of Fourier series on the torus to problems of boundedness of maximal
operators on R".

Let b be a bounded, regulated, and Riemann integrable function defined on all
of R". Suppose that b € .#,(R") for some 1 < p < 0. For R > 0, we introduce
multiplier operators

Spr(F)(x) = Y F(m)b(m/R)e*™™*, (3.6.17)
meZ
Tor(f /f b(E /R)TEGE (3.6.18)

initially defined for smooth functions with compact support f on R” and smooth
functions F on T".

In view of Theorems 3.6.7 and 3.6.9, S, x admits a bounded extension on L”(T")
and 7}, g admits a bounded extension on L”(R"). These extensions are denoted in
the same way. We introduce maximal operators

My (F)(x) = sup |S6R(F)(x)], (3.6.19)
Np(f)(x) = sup |Thr(f)(x), (3.6.20)

and we have the following result concerning them:

Theorem 3.6.11. Suppose that b(E) is a bounded, regulated, and Riemann inte-
grable function defined for all & € R". Let 1 < p < oo, and suppose that b lies in
M, (R"). Let My, and N, be as in (3.6.19) and (3.6.20). Then the following assertions
are equivalent for some finite constant Cy:

||Mb(F)||U,(Tn <C ||F|L,, ™ F € LP(T"), (3.6.21)
HNb(f)HLP(R") SCPHfHLP(R")’ feLP(R). (3.6.22)

Proof. Using Exercise 3.6.9, it suffices to prove the required equivalences for the
maximal operators

My (F)(x) = sup [Sy;(F)(x)],

<<ty

b

NJ(F)(x) = sup [Ty, (f)(x)

1 <<ty

uniformly in the choice of the finite subset

={n,....ix}

of R™. Then M;, 7 may be viewed as an operator defined on L”(T") and taking values
in LP(T", I (.7 )) and N;” defined on L”(R") with values in LP(R",/*(.%)). Using
this reduction and duality, estimates (3.6.21) and (3.6.22) are equivalent to the pair
of inequalities
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H Z (1) e ngHi|Fj|HLp,<Tn), (3.6.23)

= 1meZ"
HZ/ fJ b(&/t)) e

where f; are functions on R”", and F; are functions on T". In proving the equiv-
alence of (3.6.23) and (3.6.24), by density, we may work with smooth functions
with compact support f; and trigonometric polynomials F;. Suppose that (3.6.23)
holds and let fi,..., fx,g be smooth functions with compact support on R"”. Then
for R > Ry we have that the functions Fj g(x) = fj(Rx) and Gg(x) = g(Rx) are sup-
ported in [—1/2,1/2]" and they can be viewed as functions on T" once they are
periodized. As before, the mth Fourier coefficient of Fj g is R_"fj(m /R) and that of
Gris R™"g(m/R). Set

<c H Z 3l ey (3.6.24)

L P Rn

Cb::228H{b0"/R)}mez"HJ@426'

As in the proof of Theorem 3.6.9, for R > Ry we have

k

Y. Y b(m/Re;)fi(m/R)g(m/R) Volume (|2, 11"

j=lmezr

(3.6.25)

- R”/ (zk: Y b(m/R)fj;(m)ezmm'x) Gr(x)dx

T\ =1 mezr

<CbRn Z|F/R|H (")
<C,R" ;|F<_’ L (R,,)HGR|L1’(R”)
k
] P o L e

—1
Set 8 (b)(&) =b(& /t;). Using that b is Riemann integrable, and realizing the limit
of the partial sums in (3.6.25) when R — o as a Riemann integral, we obtain

k 1 R L
fo 20 015 G as
j:

Taking the supremum over all smooth functions with compact support g whose L?
norm is at most 1, we deduce (3.6.24).

We now turn to the converse. Assume that (3.6.24) holds. Let Py, ..., P, and Q be
trigonometric polynomials on T". Set L¢ (x) = e~ ™ P Since b is regulated at every
point in R”, Lemma 3.6.8 gives

k
<G| L1
gl .

Lp<Rn) N
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(Z Y Pj(m)b(m/Rt))e Q”i’”')‘)Q(x)dx

j=lmeZn

— |lime? /R ,1 (Z /R PE)Lesp ()b (g/Rtj)eW?'wg)Q(x)LE/p(x)dx

£—0
; |PjL8/p’ ‘

<C, lir;l j(l)lp {8 2 OLe/y HLP(R" )}

L' (R")

1

Z ‘P ‘Ls/p L7 (RY) (82 |Q )peenx|2dx)p]

=G, l1msup {821’

| %7
j=1

Ol rn):

Lr (R")

where we used (3.6.10) in the last equality. Taking the supremum over all trigono-
metric polynomials Q with L” norm 1, we obtain (3.6.23), and this completes the
proof of the theorem. 0

Remark 3.6.12. Under the hypotheses of Theorem 3.6.11, the following two in-
equalities are also equivalent:

1Mo (F)| ey < CollF oy FELP(T, (3.626)
(") (")

1No )| sy < CollF Il ey fEL(R). (3.6.27)

Indeed, Exercise 1.4.12 gives that the pair of inequalities (3.6.26) and (3.6.27) is
equivalent to the pair of inequalities

an (3.6.28)

HZ m/t) 27im-x

Jj=1 mEZ”

L'y —

H Z Jb(& /1))

Rn

wan =6 HZIfJIH iy G629

where L"! is the Lorentz space.

Now (3.6.29) follows from (3.6.28) in exactly the same way that (3.6.24) fol-
lows from (3.6.23). Conversely, assuming (3.6.29), in order to prove (3.6.28) it will
suffice to know that

n_
lim g2/
£—0

. (3.6.30)

k k
L1 tar ]y = 1P

For this we refer to Exercise 3.6.8.
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3.6.5 Transference and Almost Everywhere Convergence

Next we consider the issue of almost everywhere convergence of Fourier series of
functions on T'. The following results are valid.

Theorem 3.6.13. There exists a constant C > 0 such that for any function F in
L*(T") we have
Isup |F «Dyl || o < C|[F]| -
N>0

Consequently, for any function F € L*(T"), we have

. = 27mimx __
1\1/1530 Z F(m)e =F(x)

|m|<N

for almost every x € [0,1].
This theorem can be extended to L? functions on T for 1 < p < oo,

Theorem 3.6.14. For every 1 < p < oo there exists a finite constant Cj, such that for
all F € LP(T') we have

oo, <61

Consequently, for any F € LP(T"), we have

li 2 2mimx __
dim. Z F(m)e F(x)
|m| <N

Sor almost every x € [0, 1].

The proofs of Theorems 3.6.13 and 3.6.14 are lengthy and involved. They are
consequences of Theorems 11.1.1 and 11.2.1, respectively. We discuss the relation-
ship between the aforementioned pairs of theorems.

Consider the following function defined on R:

1 when |x| < 1,
b(x)(x) =< 1/2  when x| =1, (3.6.31)
0 when [x| > 1.

Then b is easily seen to be regulated. Let {Dg } g~0 be the family of Dirichlet kernels
as defined in (3.1.13). Since Dg = Dg.e whenever 0 < € < 1, for all F € LP(T"),
1 < p < oo, we have

S0 £ D[ iy = s1p [[F*Dwlyrr) < GpllFllrer) (3.632)

where the last estimate follows from Theorem 3.5.1, Proposition 3.5.5, and Theorem
3.5.6. (The constant C,, naturally depends only on p.)
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Let S, ¢ be as in (3.6.17). For an integrable function F" on T! we have
Spr(F) =F xDgp+Qr(F),
where

LF(R)e*™ R + JF(~R)e ™R whenR € Z*,

Or(F)(x) = {2

0 when R € R\ ZT.

Since Qg is bounded on L (T') with norm 1, using (3.6.32) we conclude that

Zlil())||5b,R(F)’ LP(T!) <(Cp+ 1)HF”LP(Tl)

for all F in LP(T'). Appealing to Theorem 3.6.9, we deduce that the function b
defined in (3.6.31) lies in .#,(R) (i.e., it is an L” Fourier multiplier).

Next we discuss the boundedness of the corresponding maximal multipliers. If
M, is as in (3.6.19), then

My (F)(x) = ;li%\(F +*Dg)(x) + Or(F)(x)],

whenever F is a function on T' and

Ny(f)(x) = sup
R>0

[ i@ /et as| s [

Rf(&)ez’”""? dé’

for f in LP(R), 1 < p < . Both integrals may not be absolutely convergent for
all f € LP(R), but they should be interpreted as the quantity 7;, g(f)(x), which of
course coincides with them for nice f. (The operator 7}, r is defined in (3.6.18).)

Since the sublinear operator F — supg.|Or(F)(x)| is clearly bounded on
LP(T"), it follows from Theorem 3.6.11 that the boundedness of the maximal oper-
ator M, on LP(T") is equivalent to that of the maximal operator N, on L”(R). (The
operator Nj, is defined in (3.6.20) and is associated with the function b in (3.6.31).)

The maximal operator N, is called the Carleson operator and is denoted by % .
Then

%(f)(x) = sup

R>0

[ F@etay)

The boundedness of this operator on L”(R) is obtained in Chapter 11.
The extension of Theorem 3.6.14 to higher dimensions is a rather straightforward
consequence of the one-dimensional result.

Theorem 3.6.15. For every 1 < p < oo, there exists a finite constant Cy, , such that
forall f € LP(T") we have

H sup |D(n,N) « H < Con| (3.6.33)
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and consequently

lim Y fm)e ™ = f(x)
meZ”
Imj|<N

Sfor almost every x € T".

Proof. We prove Theorem 3.6.15 when n = 2. Fix a p with 1 < p < co. Since the
Riesz projection Py is bounded on L”(T"), transference gives that the function X(0,%0)
isin .#,(R). It follows that the characteristic function of any half-space of the form
x; > 01in R? is in .#,(R?). (These functions have to be suitably defined on the line
x; = 0 to be regulated.) Since rotations of multipliers do not affect their norms, it
follows that the characteristic function of the half-space x, > xj is in .#,(R?). The
product of two multipliers is a multiplier; thus the characteristic function of the trun-
cated cone |x1| < |xz| < Lis also in .#,(R?). Transference gives that the sequence
{am, my }m, m, defined by @, m, = 1 when |m;| < |m| < L and zero otherwise is in
M ,(Z?) with norm independent of L > 0. This means that for some constant B, we
have the following inequality for all f in L”(T?):

e

where the constant B), is independent of L > 0. Now let 1 < p < oo and suppose that
f € LP(T?). For fixed x; € T! define a function f;, on T! as follows:

Z Z f m],mz) 27rt(mlx1+m2x2)

myel m €L
[ma | <L |y |<[ms]

dxydxy < B f]|7

(1) (3.6.34)

fxl (XZ) = Z Z |:]/C\(m1,l’)12)6‘2mm1x1:| eZn’imzxz_

my€Z ||my|<L m €L
|y |<|m;|

Then f,, € LP(T") and its Fourier coefficients are zero for |m,| > L and equal to

Fam)= Y flmy,m)e¥mm

[my|<[mo|

p

for |my| < L. We now have
Z J/c\ ml 7m2)62ﬂim1x1627rim2x2 dx2 dx]

/1/1
TJT 0<N<L \m1\<N\m2|<N
Z f(ml ,m2)62mm1x1:| emezxz

<2/1/1 sup [
T ITO<N<L iy [ < Ly <[y

:2/ / sup ‘DN*fX1 x2| dx) dx;
T! JT! 0<nN<L

p
dX2 dxl

<ocp [ [ 1)l dxadn
<208B2| 1|5

LP(T2)?



3.6 Multipliers, Transference, and A.E. Convergence 235

where we used Theorem 3.6.14 in the penultimate inequality and estimate (3.6.34)
in the last inequality. Since the last estimate we obtained is independent of L > 0,
letting L — oo and applying Fatou’s lemma, we obtain the conclusion (3.6.33) for
n = 2. The case of a general dimension n > 3 presents no additional difficulties. [J

Exercises

3.6.1. Let & > 0. Prove that the function (1 —|£[*)% is in .#,(R") if and only if
the function (1 —|&|)% is in ., (R").
[Hint: Use that smooth functions with compact support lie in .#, ,,.]

3.6.2. The purpose of this exercise is to introduce distributions on the torus. The
set of test functions on the torus is €~ (T") equipped with the following topology.
Given fj, f in € (T"), we say that f; — f in €>(T") if

HaafjiaafHLw(Tn) —0 asj— oo, Y .

Under this notion of convergence, 4 (T") is a topological vector space with topol-
ogy induced by the family of seminorms py (@) = sup,cp |(d*f)(x)|, where a
ranges over all multi-indices. The dual space of ¢~ (T") under this topology is the
set of all distributions on T” and is denoted by 2’(T"). The definition implies that
for u; and u in Z'(T") we have u; — u in 2’(T") if and only if

<uj,f> — <u,f> as j — oo forall f € €7 (T").

The following operations can be defined on elements of 2’ (T"): differentiation (as
in Definition 2.3.6), translation and reflection (as in Definition 2.3.11), convolution
with a ¢ function (as in Definition 2.3.13), multiplication by a €* function (as
in Definition 2.3.15), the support of a distribution (as in Definition 2.3.16). Use the
same ideas as in R” to prove the following:

(a) Prove that if u € 2'(T") and f € €=(T"), then f*u is the €* function x —
(u,7(f))-

(b) In contrast to the situation in R”, the convolution of two distributions on the
torus can be defined. For u,v € 2'(T") and f € €= (T") define

<u>|<v,f> :<u,f>|<17>.

Check that convolution of distributions on 2'(T") is associative, commutative, and
distributive.
(¢) Prove the analogue of Proposition 2.3.23: ¥(T") is dense in 2'(T").

3.6.3. For u € 2'(T") and m € Z" define the Fourier coefficient #(m) by

u(m) = u(efzm'"'(')) = <u,e*2”i’"'(')>.
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Prove properties (1), (2), (4), (5), (6), (8), (9), (11), and (12) of Proposition 2.3.22
regarding the Fourier coefficients of distributions on the circle. Moreover, prove that
for any u, v in 2'(T") we have (u*v)(m) = u(m)v(m). In particular, this is valid
for finite Borel measures.

3.6.4. Let u be a finite Borel measure on R” and let v be the periodization of u,
that is, v is a measure on T” defined by

va)= Y uA+m)

meZ’

for all measurable subsets A of T”. Prove that the restriction of the Fourier transform
of 1 on Z" coincides with the sequence of the Fourier coefficients of the measure v.

3.6.5. Let T be an operator that commutes with translations and maps L”(T") to
L(T") for some 1 < p,q < 0. Prove that there exists a distribution u on T" such
that T(f) = f*u.

3.6.6. (G. Weiss ) Suppose that the function b on R” is regulated at the point xg in

the sense that 1

m— /m<e (b(xo — 1) — b(xp)) dr = 0.

li
e—0 &N

Let Ke(x) = e e~/ for & > 0. Prove that (bxKg)(xo) — b(xo) as € — 0.
[Hint: Prove that for all 6 > 0 we have

(ke (o) ~b(xo)| <2[pll,e [ e ay
[y[>é8/e
571 _ 2 /02
1P (8)] e n8? /e
xg R
21 sup |FX0(r)|/0 P g

0<r<é

where F,)(8) = & / (b(xo — 1) — b(xp)) dt.]

|r|<é

3.6.7. Let v, be the volume of the unit ball in R” and e¢; = (1,0,...,0). Prove that

1 1
lim / dx — —.
e—0 Vp€" Jix—e)|<e Ari<1 2

Conclude that the function

1 when [x| < 1,
XB0,1)(x) = 1/2  when |x| =1,
0 when |x| > 1

is regulated.
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2 . . .
3.6.8. Let Le(x) = e ™R for & > 0. Given a continuous function g on T”, prove
that

(cl:%87q||ng/q|‘Lq~l(R") = HgHLqA,I(T”
forall 1 < g < eo.

3.6.9. Suppose that { f; };cr is a family of measurable functions on a measure space
X that satisfies

HSUp‘ft” p Sbh<ee
teF

for every finite subset F' of R. Prove that for any ¢ there is a measurable function ﬁ
on X that is a.e. equal to f; such that

£l <.
Jsupl 7, <

[Hint: Let a = supy. || sup,r | /i 1» < b, where the supremum is taken over all finite
subsets F of R. Pick a sequence of sets F;, such that || sup,cp, | fil HLP —aasn— oo,

Let g = sup,, sup,cf, | fi| and note that HgHLp = a. Then for any s € R we have

| sup(112], sup suplfiD)|  <a.

1<k<nteF;

This implies || max(|f;],g)| pSa= HgHU so that |f;| < g a.e. for all s € R. This
means that g is an a.e. upper bound for all f,.]

3.6.10. (E. Prestini) Let p > 2 and k > 0. Show that for f € L”(T?) we have that

Y, flmy,my)emmatm) £ x)
[y |<N
|y | <N

for almost all (x1,x,) in T2,
[Hint: It suffices to take p = 2. Use the splitting f(m;,m;) = Fm1,2) Xy <y e
f(ml ,mg)x|m2‘>‘ml i and apply the idea of the proof of Theorem 3.6.15.]

3.7 Lacunary Series

In this section we take a quick look at lacunary series. These series provide examples
of functions that possess some remarkable properties.
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3.7.1 Definition and Basic Properties of Lacunary Series

We begin by defining lacunary sequences.

Definition 3.7.1. A sequence of positive integers {A;};_, is called lacunary if there
exists a constant A > 1 such that 44| > AA; forall k € ZT.

Examples of lacunary sequences are provided by exponential sequences, such as
A = 2K 3K 4K . Observe that polynomial sequences such as A, = 1+ k> are not
lacunary. Note that lacunary sequences tend to infinity as k — oo.

We begin with the following result.

Proposition 3.7.2. Ler A be a lacunary sequence and let f be an integrable function
on the circle that is differentiable at a point and has Fourier coefficients

—~ {am when m = A, G7.1)

0 when m # Ay

Then we have

o~

Jm f(A)de=0.
Proof. Applying translation, we may assume that the point at which f is differen-
tiable is the origin. Replacing f by
it
2i

elt _’_efll ell

2

~

we may assume that £(0) = f/(0) = 0. (We have g(m) = f(m) for |m| > 2 and thus
the final conclusion for f is equivalent to that for g.)
Using condition and (3.7.1), we obtain that

g(t) = f(t) = f(0)cos(r) — f'(0) sin(r) = f(r) - f(0) —f(0)

1< m—2] <min(A—1,1—A~Y4 = f(m)=0. (37.2)

Given € > 0, pick a positive integer ko such that if [min(A—1,1—A"") A, ] = 2N,
then N(;z < g, and

sup ‘f(x)' <E. 3.7.3)
1 X

|x|<N,
The expression in (3.7.3) can be made arbitrarily small, since f is differentiable at
the origin. Now take an integer k with k > ko and set 2N = [min(A — 1,1 —A~1) ],
which is of course at least 2Ny. Using (3.7.2), we obtain that for any trigonometric
polynomial Ky of degree 2N with Ky (0) = 1 we have

Flh) = / TR (e sy, (3.7.4)
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We take Ky = (FN/HFNHLz)Q, where Fy is the Fejér kernel. Using (3.1.15), we ob-
tain first the identity

N . 2
2 Il IN@N+1) N
F = l—-—— =1+—= > — 3.7.5
1Fi]z- jZN< N+1> 3TN 3 (37.9)
and also the estimate )
1 1
Fy(x)?< [ ——— 3.7.6
N (x) _<N+14x2) ) ( )
which is valid for |x| < 1/2. In view of (3.7.5) and (3.7.6), we have the estimate
311
K < ——=—. 3.7.7
N(x) < 6N & (3.7.7)

We now use (3.7.4) to obtain

IO =2 [ FRN (e A dx = 1} 4+ 1+ 1},

[x[<3

where
I :Ak/ F() Ky (x)e 274 dx
Jlx|<N!

I,f :lk/ 1 f(x)KN(x)efzmkkxdx,
N-l<|x|<N™ 4

P =x / L Ky (x)e 2 g,
N d<x|<t
Since HKNHLI =1, it follows that

)

X

(2N+1)e

Ak
<2t
el <5 sup = min(A_1,1-A-DN’

[x|<N—1

which can be made arbitrarily small if € is small. Also, using (3.7.7), we obtain

f(x) / dx _ 3N f)

A R G

~ 16N3 Su]il X .N*1<\x\§N7% x> = 16N Sulil X
Ix|<N~ 4 [x|<N"3

7l < M

)

which, as observed, is bounded by a constant multiple of €. Finally, using again
(3.7.7), we obtain

3 1 3 3e
] < 6N N} /}v,%<‘x‘§% |f(x)]dx < WHJCHLI < T6||fHL1 '

It follows that for all k > ky we have
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A f ()| < 11+ ||+ 1] < C(f) e

for some fixed constant C(f). This proves the required conclusion. 0

2

1
1

0.5

M Al
—ofa Y o2 AR 0.2 0.4

-1
-2

Fig. 3.3 The graph of the real and imaginary parts of the function f (1) = Y7 2k 2mi3tt,

Corollary 3.7.3. (Weierstrass ) There exists a continuous function on the circle that
is nowhere differentiable.

Proof. Consider the 1-periodic function

1) = Z ok izt
k=0

Since this series converges absolutely and uniformly, f is a continuous function.
If f were differentiable at a point, then by Proposition 3.7.2 we would have that
3% £(3%) tends to zero as k — oo. Since f(3%) = 2% for k > 0, this is not the case.
Therefore, f is nowhere differentiable. The real and imaginary parts of this function
are displayed in Figure 3.3. U

3.7.2 Equivalence of L” Norms of Lacunary Series

We now turn to one of the most important properties of lacunary series, equivalence
of their norms. It is a remarkable result that lacunary Fourier series have comparable
L? norms for 1 < p < eo. More precisely, we have the following theorem:

Theorem 3.7.4. Let 0 < A} < Ay < A3 < -+ be a lacunary sequence with constant
A>1.8et A ={N: k€ Z"}. Then forall 1 < p < oo there exists a constant C),(A)

such that for all f € L'(T") with f(k) = 0 when k € Z\ A we have

171

ey < oA (3.7.8)

Note that the converse inequality to (3.7.8) is trivial. Therefore, LP norms of lacu-
nary Fourier series are all equivalent for 1 < p < oo,
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Proof. We suppose first that f € L*(T') and we define

) =Y,

J=1

(Aj)ePmihix. (3.7.9)

Given a 2 < p < oo, we pick an integer m with 2m > p and we also pick a positive
integer r such that A” > m. Then we can write fy as a sum of r functions ¢y, s =
1,2,...,r, where each ¢ has Fourier coefficients that vanish except possibly on the
lacunary set

{lkr-k—s: k€Z+U{0}} = {#15.”“27.“’35"'}'

It is a simple fact that the sequence { i }, is lacunary with constant A”. Then we
have

1
/ |5 (x)| " dx = Y Os(1jy) - s (W) s (Wi, ) -~ P (i, ) -
0 lgjl1'“7jm~,kl~,“‘~,km§N
By e B =Hiey +- gy

We claim that if u; +---+u;,, = M, +-- -+ U, then

max(“jl yeee v.ujm) = max(“‘kl sy M)

Indeed, if max(u;,,..., 1), ) > max (U, ..., t, ), then

max(ﬂj17---7l~1j,,,) < lJ'k| ++“km < mmax(ukp"'»“km)'
But since
A’max(/,tkl,...7ukm) gmax(uj“...,,ujm),

it would follow that A” < m, which contradicts our choice of r. Likewise, we elimi-
nate the case max(i;, ,...,M;,) < max(Uy,,...,H,). We conclude that these num-
bers are equal. We can now continue the same reasoning by induction to conclude
that if pj, +- -+ W, = e + -+ + Ly, then

{.ukla"w.ukm} = {"lj]vnu]m}
Using this fact in the evaluation of the previous multiple sum, we obtain
: 2 o o 2 2 2 \m
/0 Q)P dx= Y o ¥ 16 (u) P 165 () P = (1)
j|:1 jm:l

which implies that || 0} = H s HL2 forall s € {1,2,...,r}. Thus we have

||L2m

1fllp < ]l o < W(; lesln)” = ﬁ(; ledlz:)” = vl vl
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since the functions ¢, are orthogonal on L2. Since r can be chosen to be [log, m] + 1
and m can be taken to be [5] + 1, we have now established the inequality

A5l ey < Co@ vl 2y: P =2, (3.7.10)

with C,( \/ 1+ [logs ([5]+1)] forall fy that have the form (3.7.9). To extend

(3.7.10) to all fe LZ(T') we observe that fy — f in L? and some subsequence of
them fy; tends to f a.e. Then Fatou’s lemma gives

1 1
[ 1ferax = [ timinf| i, (017 dx
0 0 J—o ’

1
< timinf [ |y, (97 dx
J—= JO
= Cp(A)plin_lglf||fNj||i2
)PIIA1Iz

which proves (3.7.10) for all f € L>. We now turn our attention to (3.7.8) in the case
1 < p < 2. By interpolation we obtain for 1 < p < 2
1.2
3

171 < DR < (oa3+ 1) S 11 11

This implies that for 1 < p < 2 we have

||fHLP T = HfHL2 (T1) < ([logy 3]+ 1)Hf||L1 (T!)
Combining this with (3.7.10), which now holds for all f & 12, yields (3.7.8). ]

Theorem 3.7.4 describes the equivalence of the L” norms of lacunary Fourier
series for p < oo. The question that remains is whether there is a similar character-
ization of the L™ norms of lacunary Fourier series. Such a characterization is given
in Theorem 3.7.6. Before we state and prove this theorem, we need a classical tool,
referred to as a Riesz product.

Definition 3.7.5. A Riesz product is a function of the form
N
=[] (1+ajcos(2nAjx+2my;)), (3.7.11)
Jj=1

where N is a positive integer, A} < Ay < -+ < Ay is a lacunary sequence of integers,
a;j are complex numbers, and y; € [0,1].

We make a few observations about Riesz products. A simple calculation gives
that if Py j(x) = 1 +ajcos(2wA;x+27y;), then
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1 when m = 0,
1. .2miy; — .
_ a;e*™i whenm =24
Py i(m)={2%" ” 3.7.12
. (m) %a.,e’z’m’! when m = -1, ( )
0 whenm§é {07)~j,—)~j}.

Assume that the constant A associated with the lacunary sequence A; <A <--- <Ay
is at least 3. Then each integer m has at most one representation as a sum

m=gA+---+evly,

where €; € {—1,1,0}. See Exercise 3.7.1. We now calculate the Fourier coefficients
of the Riesz product defined in (3.7.11). For a fixed integer b, let us denote by &, the
sequence of integers that is equal to 1 at » and zero otherwise. Then, using (3.7.12),
we obtain that

171\/\] =+ %ajezmyf 51]. + %aje—Ziriy/ 5,1]. ,

and thus Py is the N-fold convolution of these functions. Using that 8, * 6, = 815,
we obtain

1 when m =0,
Py(m) = 1]\/ 13 la ?™EY  when m = leyzl 8jlj and le\;l |£j‘ >0,
0 otherwise.

It follows that ﬁ;(lj) = %ajezmyf for 1 < j < N and that f’;(lj) =0forj>N+1,
since each A; can be written uniquely as a sum of Ax’sas 0-A;+---+0-4;_1+1-4;.
See Exercise 3.7.1.

We recall the space A(T!) of all functions with absolutely summable Fourier
coefficients with norm the ¢! norm of the coefficients.

Theorem 3.7.6. Let 0 < A} < Ay < A3 < -+ be a lacunary sequence of integers with
constant A > 1. Set A = { A : k € Z*}. Then there exists a constant C(A) such that

for all f € L=(T") with f(k) = 0 when k € Z\ A we have

£ lLaerry = X 1F RN < CANf ] o) - (3.7.13)
keA

Proof. Let us assume first that A > 3. Also fix f € L*(T!). We consider the Riesz

product
N

(1+cos(2mAjx +27Y;)) ,
]:l
where y; is defined via the identity |f(7LJ)| = ezmyif(lj). Then Py > 0 and since
Py(0) = 1, it follows that HPNH ;1 = 1. By Parseval’s relation we obtain
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5 o | [ o

meZz

x| < ||l (3.7.14)

and the sum in (3.7.14) isA finite, since the Fourier cge\fﬁcients of 1/3; form a finitely
supported sequence. But f(m) =0 for m ¢ A, while Py(A;) = 1¢*™% for 1 < j <N.
Moreover, f’;(l ;) =0for j > N+ 1, as observed earlier. Thus (3.7.14) reduces to

S 317 -

N

L 3 70)| < 1,--

N \
[\J

Letting N — oo, we obtain that Z] | ]f ‘ < 2HfHL°°’ which proves (3.7.13) when
A>3

To prove the theorem for 1 < A < 3, we pick a positive integer » with A” > 3
(take r = [log, 3] + 1). We now consider the sequences

{/lerrs}k 3 ke Z+ U {0}7

and we observe that each such sequence is lacunary with constant A”. The preceding
construction gives

‘Zl ’f(ljr+s)| < ZHfHL“"
j=

Summing over s in the set {1,2,...,r}, we obtain the required conclusion with
C(A) =2r =2[log, 3]+ 2. O

It follows from Theorem 3.7.6 that if A = {lk k € Z*} is a lacunary set and f
is a bounded function on the circle that satisfies f ( ) =0 when k € Z\ A, then we

have R _
x) _ Z f(k)eZka.
keA

This is a consequence of the inversion result in Proposition 3.1.14.
Given a subset A of the integers, we denote by C, the space of all continuous
functions on T such that

meZ\A = f(m)=0. (3.7.15)

It is straightforward that C, is a closed subspace of all bounded functions on the
circle T! with the standard L norm.

Definition 3.7.7. A set of integers A is called a Sidon set if every function in C4 has
an absolutely convergent Fourier series.

Example 3.7.8. Every lacunary set is a Sidon set. Indeed, if f satisfies (3.7.15), then
Theorem 3.7.6 gives that

L 1Fm)] < CAI |

meA



3.7 Lacunary Series 245
hence f has an absolutely convergent Fourier series.

Example 3.7.9. There exist subsets of R that are not Sidon. For example, Z\ {0} is
not a Sidon set. See Exercise 3.7.2.

Exercises

3.7.1. Suppose that 0 < A; < A, < --- < Ay is a lacunary sequence of integers with
lacunarity constant A > 3. Prove that for every integer m there exists at most one
N-tuple (¢&i,...,&y) with each €; € {—1,1,0} such that

m=geM+--+evly.

[Hint: Suppose there exist two such N-tuples. Pick the largest k such that the coef-
ficients of Ay are different.]

3.7.2. Consider the 1-periodic continuous function A(¢) = cos(27xt). Then we have
h(0) = 0, but show that Y | (k)| = e. Thus Z \ {0} is not a Sidon set.

3.7.3. Suppose that 0 < A; < A, < --- is alacunary sequence and let f be a bounded
function on the circle that satisfies f(m) = 0 whenever m € Z\ {11, 2,... }. Suppose

also that
ap /0= 1(0)

=B<
ST ~

for some 0 < & < 1. N

(a) Prove that there is a constant C such that | f(A;)| < CBA,* forall k > 1.

(b) Prove that f € Ay (T").

[Hint: Let 2N = [min(A—1,1—A~") 4] and let Ky be as in the proof of Proposition
3.7.2. Write

~

) = /|x‘<N71(f(x)_f(o))e_zmthN(x)dx
- /N—l ey SIS (0))e 24 Ky (x) dx

Use that HKN || 0= 1 and also the estimate (3.7.6). Part (b): Use the estimate in part
(a).]

3.7.4. Let f be an integrable function on the circle whose Fourier coefficients vanish
outside a lacunary set A = {11,242, 3,... }. Suppose that f vanishes identically in a
small neighborhood of the origin. Show that f is in € (T").

[Hint: Let 2N = [min(A—1,1—A~")A] and let Ky be as in the proof of Proposition
3.7.2. Write

o~

fA) = (x)e MKy (x) dx

|
Ixl<3
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and use estimate (3.7.6) to obtain that f is in €?. Continue by induction.]

3.7.5. Let 1 < a,b < o. Consider the 1-periodic function

oo

flx) = Zafke%cibkx.

k=0

Prove that the following statements are equivalent:
(a) f is differentiable at a point.

(b)b<a.

(c) f is differentiable everywhere.

3.7.6. Let A be a subset of the integers such that for any sequence of complex
numbers {d) } 54 With |dy | = 1 there is a finite Borel measure i on T' such that

1

) -dil < 5

for all A € A. Show that A is a Sidon set.

3.7.7. Let A C Z*. Suppose that there is a constant A < oo such that for any n €
A U{0} the number of elements in the set

m
{(81,...,8m) e{-1,1}": n= Z&‘jnj,nl < e <nm,nj€A}
=1

is at most A™. Show that A is a Sidon set.
[Hint: Construct a suitable measure {1 and use Exercise 3.7.6.]

3.7.8. Show that the set
(377 43 o<k<2m ! m>1)

is a Sidon set.
[Hint: Use Exercise 3.7.7.]

HISTORICAL NOTES

Trigonometric series in one dimension were first considered in the study of the vibrating string
problem and are implicitly contained in the work of d’ Alembert, D. Bernoulli, Clairaut, and Euler.
The analogous problem for vibrating higher-dimensional bodies naturally suggested the use of
multiple trigonometric series. However, it was the work of Fourier on steady-state heat conduction
that incited the subsequent systematic development of such series. Fourier announced his results in
1811, although his classical book Théorie de la chaleur was published in 1822. This book contains
several examples of heuristic use of trigonometric expansions and motivated other mathematicians
to carefully study such expansions.
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The fact that the Fourier series of a continuous function can diverge was first observed by
DuBois Reymond in 1876. The Riemann-Lebesgue lemma was first proved by Riemann in his
memoir on trigonometric series (appeared between 1850 and 1860). It carries Lebesgue’s name
today because Lebesgue later extended it to his notion of integral. The rebuilding of the theory
of Fourier series based on Lebesgue’s integral was mainly achieved by de la Vallée-Poussin and
Fatou.

Theorem 3.2.16 was obtained by S. Bernstein in dimension n = 1. Higher-dimensional ana-
logues of the Hardy—Littlewood series of Exercise 3.2.9 were studied by Wainger [287]. These
series can be used to produce examples indicating that the restriction s > o +n/2 in Bernstein’s
theorem is sharp even in higher dimensions. Part (b) of Theorem 3.3.3 is due to Lebesgue when
n =1 and Marcinkiewicz and Zygmund [190] when n = 2. Marcinkiewicz and Zygmund’s proof
also extends to higher dimensions. The proof given here is based on Lemma 3.3.4 proved by Stein
[260] in a different context. The proof of Lemma 3.3.4 presented here was suggested by T. Tao.

The development of the complex methods in the study of Fourier series was pioneered by
the Russian school, especially Luzin and his students Kolmogorov, Menshov, and Privalov. The
existence of an integrable function on T! whose Fourier series diverges almost everywhere (The-
orem 3.4.2) is due to Kolmogorov [156]. An example of an integrable function whose Fourier
series diverges everywhere was also produced by Kolmogorov [159] three years later. Localiza-
tion of the Bochner—Riesz means at the critical exponent ¢o¢ = % fails for L' functions on T”
(see Bochner [25]) but holds for functions f such that | f|log™ | f| is integrable over T" (see Stein
[252]). The latter article also contains the Li’ bolundedness of the maximal Bochner—Riesz operator

SUPg~o |Bg (f)| for 1 < p <o when o > |E — 5. Theorem 3.4.6 is also due to Stein [254]. The

technique that involves the points for which the set {|x—m|: m € Z"} is linearly independent over
the rationals was introduced by Bochner [25].

The boundedness of the conjugate function on the circle (Theorem 3.5.6) and hence the L”
convergence of one-dimensional Fourier series was announced by Riesz in [219], but its proof
appeared a little later in [220]. Luzin’s conjecture [182] on almost everywhere convergence of
the Fourier series of continuous functions was announced in 1913 and settled by Carleson [45]
in 1965 for the more general class of square summable functions (Theorem 3.6.13). Carleson’s
theorem was later extended by Hunt [135] for the class of L? functions for all 1 < p < oo (Theorem
3.6.14). Sjolin [245] sharpened this result by showing that the Fourier series of functions f with
|f|(log™ | f])(log™ log™ | £]) integrable over T! converge almost everywhere. Antonov [3] improved
Sjolin’s result by extending it to functions f with |f|(log" |f])(log" log™ log™ |f|) integrable over
T!. One should also consult the related results of Soria [250] and Arias de Reyna [7]. The book
[8] of Arias de Reyna contains a historically motivated comprehensive study of topics related to
the Carleson—Hunt theorem. Counterexamples due to Konyagin [161] show that Fourier series of

functions f with | f|(log™ |f])Z (log" log" | f|)~2 ¢ integrable over T' may diverge when & > 0.
Examples of continuous functions whose Fourier series diverge exactly on given sets of measure
zero are given in Katznelson [152] and Kahane and Katznelson [145].

The extension of the Carleson—Hunt theorem to higher dimensions for square summability of
Fourier series (Theorem 3.6.15) is a rather straightforward consequence of the one-dimensional
result and was independently obtained by Fefferman [88], Sjolin [245], and Tevzadze [277]. An
example showing that the circular partial sums of a Fourier series may not converge in L”(T")
for n > 2 and p # 2 was obtained by Fefferman [89]. This example also shows that there exist L”
functions on T" for n > 2 whose circular partial sums do not converge almost everywhere when
1 < p < 2. Indeed, if the opposite happened, then the maximal operator f — supysq |D(n,N) * f]|
would have to be finite a.e. for all f € LP(T"), and by Stein’s theorem [254] it would have to be
of weak type (p, p) for some 1 < p < 2. But this would contradict Fefferman’s counterexample on
LP! for some p < p; < 2. On the other hand, almost everywhere is valid for the square partial sums
of functions f with |f|(log™ |f])"(log™ logt log™ |f|) integrable over T", as shown by Antonov
[4]; see also Sj6lin and Soria [247].

Transference of regulated multipliers originated in the article of de Leeuw [74]. The methods
of transference in Section 3.6 were beautifully placed into the framework of a general theory by
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Coifman and Weiss [55]. Transference of maximal multipliers (Theorem 3.6.11) was first obtained
by Kenig and Tomas [154] and later elaborated by Asmar, Berkson, and Gillespie [11], [12].

The main references for trigonometric series are the books of Bary [15] and Zygmund [303],
[304]. Other references for one-dimensional Fourier series include the books of Edwards [82],
Dym and McKean [81], Katznelson [153], Korner [162], and the first eight chapters in Torchinsky
[281]. The reader may also consult the book of Krantz [163] for a historical introduction to the
subject of Fourier series.

A classical treatment of multiple Fourier series can be found in the last chapter of Bochner’s
book [26] and in parts of his other book [27]. Other references include the last chapter in Zygmund
[304], the books of Yanushauskas [295] (in Russian) and Zhizhiashvili [299], the last chapter in
Stein and Weiss [265], and the article of Alimov, Ashurov, and Pulatov in [2]. A brief survey article
on the subject was written by Ash [10]. More extensive expositions were written by Shapiro [240],
Igari [136], and Zhizhiashvili [298]. A short note on the history of Fourier series was written by
Zygmund [305].



Chapter 4
Singular Integrals of Convolution Type

In this chapter we take up the one of the fundamental topics covered in this book,
that of singular integrals. This topic is motivated by its intimate connection with
some of the most important problems in Fourier analysis, such as convergence of
Fourier series. As we have seen, the L” boundedness of the conjugate function on
the circle is equivalent to the L” convergence of Fourier series of L” functions. And
since the Hilbert transform on the line is just a version of the conjugate function,
it plays the same role in the convergence of Fourier integrals on the line as the
conjugate function does on the circle.

The Hilbert transform is the prototype of all singular integrals, and a careful
study of it provides the insight and inspiration for subsequent development of the
subject. Historically, the theory of the Hilbert transform depended on techniques
of complex analysis. With the development of the Calderén—Zygmund school, real-
variable methods slowly replaced complex analysis, and this led to the introduction
of singular integrals in other areas of mathematics. Singular integrals are nowa-
days intimately connected with partial differential equations, operator theory, sev-
eral complex variables, and other fields. There are two kinds of singular integral
operators: those of convolution type and those of nonconvolution type. In this chap-
ter we study singular integrals of convolution type.

4.1 The Hilbert Transform and the Riesz Transforms

We begin the investigation of singular integrals with a careful study of the Hilbert
transform. This study provides a great model for the development of the theory of
singular integrals, presented in the remaining sections and in Chapter 8.

L. Grafakos, Classical Fourier Analysis, Second Edition, 249
DOI: 10.1007/978-0-387-09432-8 4, © Springer Science+Business Media, LLC 2008
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4.1.1 Definition and Basic Properties of the Hilbert Transform

There are several equivalent ways to introduce the Hilbert transform; in this ex-
position we first define it as a convolution operator with a certain principal value
distribution, but we later discuss other equivalent definitions.

We begin by defining a distribution W, in .%’(R) as follows:

1y o0 L[ e
<W0,(p>f lim dx+ /IX|21 dx, “4.1.1)

T e—0 e<lx|[<1 X T X

for ¢ in .(R). The function 1/x integrated over [—1,—¢€|J[g, 1] has mean value
zero, and we may replace ¢(x) by ¢(x) — @(0) in the first integral in (4.1.1). Since
(@(x) — 9(0))x~" is controlled by ||¢/||,... it follows that the limit in (4.1.1) exists.
To see that Wy is indeed in .%’(R), we go an extra step in the previous reasoning
and obtain the estimate

2 2
[(Wo.0)] < Z9']l,- + 2 sup ()] 4.12)

This guarantees that Wy € .7’ (R).

Definition 4.1.1. The truncated Hilbert transform of f € . (R) (at height €) is de-
fined by

HO(w=1 [ T, 1 T0) 4y 413
L ﬂ/IH‘ZM_y y (4.1.3)
The Hilbert transform of f € . (R) is defined by

H)() = Wo £)(x) = lim () (x). (4.1.4)

The integral

oo _
/700 f(Xy y) dy

does not converge absolutely but is defined as a limit of the absolutely convergent
integrals

flx—=y) dy.,
[y[>e y

as € — 0. Such limits are called principal value integrals and are denoted by the
letters p.v. Using this notation, the Hilbert transform is

H(f)(x):lp.v./derdy:%p.v./.m@dy. (4.1.5)

T J —oo y J—oo X—Y

Remark 4.1.2. Note that for given x € R, H(f)(x) is defined for all integrable func-
tions f on R that satisfy a Holder condition near the point x, that is,
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|f(x) = fF(y)| < Culx—y[*

for some C, > 0 and &, > 0 whenever |y — x| < d,. Indeed, suppose that this is the
case. Then we write

Honw -1 [ ol [ DBy

T _
e<|x—y|< b [x—y[>8x
1 — f(x 1
1 IO -F0 L[S,
T xX—y T xX—y
e<|x—y|< 8y [x—y|>6x

Both integrals converge absolutely; hence the limit of H(€)(f)(x) exists as € — 0.
Therefore, the Hilbert transform of a piecewise smooth integrable function is well
defined at all points of Holder—Lipschitz continuity of the function. On the other
hand, observe that H(€) (f) is well defined for all f € LP, 1 < p < e, which follows
from Holder’s inequality, since 1/x is integrable to the power p’ on the set |x| > €.

Fig. 4.1 The graph of the
function H()g) when E is
a union of three disjoint
intervals J; UJy U J3.

Example 4.1.3. Consider the characteristic function (, ) of an interval [a,b]. It is
a simple calculation to show that

1 |x —al

H(Xjap))(x) = —log b’ (4.1.6)

o

Let us verify this identity. Pick € < min(|x — al, |x — b|). To show (4.1.6) consider
the three cases 0 < x—b, x —a < 0, and x — b < 0 < x — a. In the first two cases,
(4.1.6) follows immediately. In the third case we have
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x—al

1. €
Hita) ) = 1 lim (tog % iog 2 ). @.17)

which gives (4.1.6). It is crucial to observe how the cancellation of the odd kernel
1/x is manifested in (4.1.7). Note that H (x|, )(x) blows up logarithmically in x

near the points ¢ and b and decays like |x|~! as x — co. See Figure 4.1.

Example 4.1.4. Let log" x = logx when x > 1 and zero otherwise. Observe that the
calculation in the previous example actually gives

1 |x —al
—logt ——— h b,
7% max(e, [x— b)) when x>
1 x—b

H(S)(x[a,b])(x): _ﬂ10g+ma1x|(8x—a|) when x < a,
1 — 1 —b
—log+M——log+M when a < x < b.
b € T

We now give an alternative characterization of the Hilbert transform using the
Fourier transform. To achieve this we need to compute the Fourier transform of the
distribution Wj defined in (4.1.1). Fix a Schwartz function ¢ on R. Then

_ R 1. . dE
p— pu— 71 —_—
<W07 (P> <W07(p> Tend |E|>e g

1 : d&
— 1 —2mix& dx =2
neli%/ézmze/kw(x)e TE

. 1 —2mixé dé]

it R(p(x) Lr/,!:>|5>ee g >

. —i . dE

lim [ ¢(x) [ﬂ/é>5>esm(27rx§) 7 ]dx. (4.1.8)

e—0JR

Now use the results (a) and (b) of Exercise 4.1.1 to deduce that the expressions
inside the square brackets in (4.1.8) are uniformly bounded by 8 and converge as
e—0to

dE T when x > 0,
lim sin(2wx€)—= = wsgnx =< 0 when x =0, (4.1.9)

—0/1
¢ e 2lbl=¢ s - whenx <0.

The Lebesgue dominated convergence theorem and these facts allow us to pass the
limit inside the integral in (4.1.8) to obtain that

(Wo, ) = /R(p(x)(fisgn(x))dx. (4.1.10)
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This implies that .
Wo(&) = —isgné&. (4.1.11)

In particular, identity (4.1.11) says that V/V\o is a (bounded) function.
We now use identity (4.1.11) to write

H(f)(x) = (F(&)(~isgn&))" (x). (4.1.12)

This formula can be used to give an alternative definition of the Hilbert transform.
An immediate consequence of (4.1.12) is that

that is, H is an isometry on L?(R). Moreover, H satisfies
H?>=HH=-1, (4.1.14)

where [ is the identity operator. Equation (4.1.14) is a simple consequence of the
fact that (—isgn&)? = —1. The adjoint operator H* of H is uniquely defined via the
identity

(1HE) = [ SHE = [ H'(n7de=(H'(1)]g).

and we can easily obtain that H* has multiplier —i sgn‘g' = isgn&. We conclude that
H* = —H. Likewise, we obtain H' = —H.

4.1.2 Connections with Analytic Functions

We now investigate connections of the Hilbert transform with the Poisson kernel.
Recall the definition of the Poisson kernel P, given in Example 1.2.17. Then for
f€LP(R), 1 < p < oo, we have

_y [
P, — I, 4.1.15
Benw=2[ — +y @.1.15)

and the integral in (4.1.15) converges absolutely by Holder’s inequality, since the
function £ — ((x—1)2+y*)~!is in L (R) whenever y > 0.

Let Re z and Im z denote the real and imaginary parts of a complex number z.
Observe that

(P % f)(x) = Re (;/:mxjt(:)_iydt) — Re (; :mf(_t)tdt> :

where z = x+iy. The function
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i +m&dl‘

Fre)=2

defined on
R: ={z=x+iy: y>0}

is analytic, since its d /dZ derivative is zero. The real part of Fy(x+iy) is (P, * f)(x).
The imaginary part of Fy(x -+ iy) is

Im (i/+°°]‘(t)dt> = l/+wmdt:(f*Qy)(x),

TTJoow x—t+iy T )w (x—1)2+)2
where Q, is called the conjugate Poisson kernel and is given by

1 x

=—. 4.1.16
mx2+y? ( )

Oy (x)

The function us + ivy is analytic and thus uy(x+iy) = (f *P,)(x) and vy (x +iy) =
(f * Qy)(x) are conjugate harmonic functions. Since the family P,, y > 0, is an ap-
proximate identity, it follows from Theorem 1.2.19 that P, x f — f in LP(R) as
vy — 0. The following question therefore arises: What is the limit of £+ Q) as y — 07
As we show next, this limit has to be H(f).

Theorem 4.1.5. Let 1 < p < oo, For any f € LP(R) we have
f#Qe—H®(f) =0 (4.1.17)

in L? and almost everywhere as € — 0.

Proof. We see that

N+ [ T a = Loy,

. t|>¢ t

where W, (x) = £ 'y(e x) and

t 1
—— ——  when [t| > 1,
v(t) = {f2+1 ! 1= (4.1.18)

Pt when [t] < 1.

Note that y has integral zero. Furthermore, the integrable function

1
- hen |t| > 1,
Y1) = {’2“ when |r| = (4.1.19)

1 when 7] < 1,
is aradially decreasing majorant of y. It follows from Theorem 1.2.21 and Corollary
2.1.19 (with a = 0) that f* W, — 0 in L? and almost everywhere as € — 0. O

Remark 4.1.6. For f € .7 (R) we know that limg_o H'€) (f) = H(f), and we there-
fore conclude from (4.1.17) that
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Oe x f — H(f) a.e.

as € — 0. This convergence is also valid for general functions f € LP(R). This is a
consequence of the result of Theorem 4.1.12, estimate (4.1.31), and Theorem 2.1.14.

4.1.3 L? Boundedness of the Hilbert Transform

As a consequence of the result in Exercise 4.1.4 and of the fact that
x< %(ex _eix)v

we obtain that

[{x: \H(xE)(x)|>a}|§%%, o >0, (4.1.20)
for all subsets E of the real line of finite measure. Theorem 1.4.19 with pg = ¢go =1
and p; = g1 = 2 now implies that H is bounded on L” for 1 < p < 2. Duality gives
that H* = —H is bounded on L? for 2 < p < e and hence so is H.

We give another proof of the boundedness of the Hilbert transform H on L”(R),
which has the advantage that it gives the best possible constant in the resulting norm
inequality when p is a power of 2.

Theorem 4.1.7. For all 1 < p < oo, there exists a positive constant Cp, such that

1E o < ol £l

for all f in .7(R). Moreover, the constant C, satisfies C,, < 2p for 2 < p < e
and C, <2p/(p—1) for 1 < p < 2. Therefore, the Hilbert transform H admits an
extension to a bounded operator on LP (R) when 1 < p < oo,

Proof. The proof we give is based on the interesting identity

H(f)* = f*+2H(fH(f)), (4.1.21)

valid whenever f is a real-valued Schwartz function. Before we prove (4.1.21), we
discuss its origin. The function f + iH(f) has a holomorphic extension on Ri and
therefore so does its square

(f+iH(f))* = f*—H(f)*+i2fH(f).

Then f? — H(f)? has a harmonic extension u on the upper half-space whose
conjugate harmonic function v must have boundary values H(f> — H(f)?). Thus
H(f>—H(f)*) = 2fH(f), which implies (4.1.21) as H> = —I.

To give an alternative proof of (4.1.21) we take Fourier transforms. Let

m(§) = —isgng
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be the symbol of the Hilbert transform. We have

F2E) +2AH(FH(F))I(E)

= (F* P)E)+2m(E)(FH())(E)
/f

(M) F(E—n)dn+2m(& /f FE—mmmydn  (4.122)

F(E—n)dn +2m(E /f —n)m(E —n)dn. (4.1.23)

Averaging (4.1.22) and (4.1.23) we obtain

P +2HHNIE) = [ F)F(E=m)[1-+m(E) (m(m) +m(E =) an.

But the last displayed expression is equal to

J F7E = mm(mm(& ~m)dn = (H(F) + HT))(E)
in view of the identity

m(mm(& —n) = 1+m(&)m(n) +m(c)m(§ —n),

which is valid for the function m(&) = —isgné.

Having established (4.1.21), we can easily obtain L? bounds for H when p = 2%
is a power of 2. We already know that H is bounded on L? with norm one when
p=2%and k = 1. Suppose that H is bounded on L? with bound c, for p = 2* for
some k € Z". Then

1

= [HG)Z < (2], + [RHGHED],,)?
< (|| £1720 + 26, || FHA)]] )2

<
< (I llzze + 2l 1l 2o |G 20) %

2
(HH(f)Hsz) Y M—l <o0.
||f||L2p HfHLZP

||H(f)||sz

‘We obtain that

If follows that
1 ()] 20

11220

and from this we conclude that H is bounded on L% with bound

cop Scptafei 1. (4.1.24)

Scptafei+l,
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This completes the induction. We have proved that H maps L? to L” when p = 2%,
k= 1,2,.... Interpolation now gives that H maps L? to L? for all p > 2. Since
H* = —H, duality gives that H is also bounded on L? for 1 < p <2.

The previous proof of the boundedness of the Hilbert transform provides us with
some useful information about the norm of this operator on L”(R). Let us begin
with the identity

X 2
cotE =cotx+ v/ 1+cotx,

valid for 0 <x < §.If ¢, < cot %, then (4.1.24) gives that

5 T , T T
cop < cp+ cp+1§cot5+ 14 cot 5_C0t2-2p’

and since 1 = cot§ = cot 55, we obtain by induction that the numbers cot% are

indeed bounds for the norm of H on L? when p = 2% k = 1,2,.... Duality now
gives that the numbers cot 2%, = tan % are bounds for the norm of H on L” when

p= 2,3—:, k=1,2,.... These bounds allow us to derive good estimates for the norm
HHHU,_U as p — 1 and p — oo. Indeed, since cot% < p when p > 2, the Riesz—

Thorin interpolation theorem gives that HH H 1r—pp < 2pfor2 < p <eoand by du-

ality ||H|[,, ., < pszl for 1 < p < 2. This completes the proof of this theorem. It
is worth comparing this proof with the one given in Theorem 3.5.6. 0
Remark 4.1.8. The numbers cot% for 2 < p < = and tan% for 1 < p <2 are

indeed equal to the norms of the Hilbert transform H on LP(R). This requires a
more delicate argument; see Exercise 4.1.12.

Remark 4.1.9. We may wonder what happens when p = 1 or p = c. The Hilbert
transform of Y, ;) computed in Example 4.1.3 is easily seen to be unbounded and
not integrable, since it behaves like 1/|x| as x — oo. This behavior near infinity
suggests that the Hilbert transform may map L' to L. This is indeed the case, but
this will not be shown until Section 4.3.

‘We now introduce the maximal Hilbert transform.

Definition 4.1.10. The maximal Hilbert transform is the operator

H®(f)(x) = sup

>0

HO () () ) (4.1.25)

defined forall f in L”, 1 < p < oo, For such f, H(®) (f) is well defined as a convergent
integral by Holder’s inequality. Hence H (+) (f) makes sense for f € L”(R), although
for some values of x, H*)(f)(x) may be infinite.

Example 4.1.11. Using the result of Example 4.1.4, we obtain that

x—al
[ —b|

. (4.1.26)

i 1
HO) (o)) () = —log
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We see that in general, H*)(f)(x) # |H(f)(x)| by taking f to be the characteristic
function of the union of two disjoint closed intervals.

The definition of H yields that H(€)( f) converges pointwise to H(f) whenever f
is a smooth function with compact support. If we have the estimate ||H (+) ) H w <
C, ||f||Lp for f € LP(R), Theorem 2.1.14 yields that H(€) () converges to H(f) a.e.
as € — 0 for any f € LP. This almost everywhere limit provides a way to describe
H(f) for general f € L”(R). Note that Theorem 4.1.7 implies only that H has a
(unique) bounded extension on L?, but it does not provide a way to describe H(f)
when f is a general L? function.

The next theorem is a simple consequence of these ideas.

Theorem 4.1.12. There exists a constant C such that for all 1 < p < oo we have

O], < Cmax (5.0 1)) 1], @.1.27)
Moreover, for all f in LP(R), H®)(f) converges to H(f) a.e. and in L.

Proof. The following proof yields the slightly weaker bound Cmax (p,(p —1)72).
Another proof of this theorem with the asserted bound in (4.1.27) is given in Theo-
rem 8.2.3.

Recall the kernels P; and Q¢ defined in (4.1.15) and (4.1.16). Fix 1 < p < o0 and
suppose momentarily that

f*Qe =H(f)*P;, £>0, (4.1.28)

holds whenever f is an L? function. Then we have

HE () =H® (f) = f Qe+ H(f) % Pe. (4.1.29)
Using the identity
1
H® () (x) = (£ % Qe)(x) = _E/ fx—1)we(t)dr, (4.1.30)
R
where v is as in (4.1.18), and applying Corollary 2.1.12, we obtain the estimate
1
sup|[H'(f)(x) = (£ Qe) ()] < Z[|¥[|M(£)(x). (4.131)

where ¥ is as in (4.1.19) and M is the Hardy—Littlewood maximal function. In view
of (4.1.29) and (4.1.31), we obtain for f € L?(R") that

HY () @) < P[] M (f) () + MH(f)) (). (4.1.32)

It follows immediately from (4.1.32) that H (*) is L” bounded with norm at most
C max (p, (p— 1)_2).
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It suffices therefore to establish (4.1.28). In the proof of (4.1.28), we might as
well assume that f is a Schwartz function. Taking Fourier transforms, we see that
(4.1.28) is a consequence of the identity

1 x

((—isgn&)e 2N (x) = =

X1

(4.1.33)

Writing the inverse Fourier transform as an integral from —eo to 4o and then chang-
ing this to an integral from 0 to co, we obtain that (4.1.33) is equivalent to the identity

. . —2n€ 2mixé —2mix€ _ l X
1/0 e e e ]dé_ﬂxz—l—l’
which can be easily checked using integration by parts twice.

The statement in the theorem about the almost everywhere convergence of
H@(f) to H(f) is a consequence of (4.1.27), of the fact that the alleged conver-
gence holds for Schwartz functions, and of Theorem 2.1.14. Finally, the L? con-
vergence follows from the almost everywhere convergence and the Lebesgue domi-
nated convergence theorem in view of the validity of (4.1.32). 0

4.1.4 The Riesz Transforms

We now study an n-dimensional analogue of the Hilbert transform. It turns out that
there exist n operators in R”, called the Riesz transforms, with properties analogous
to those of the Hilbert transform on R.

To define the Riesz transforms, we first introduce tempered distributions W; on
R”, for 1 < j < n, as follows. For ¢ € . (R"), let

(et .
(Wi, ) = (nfl i L
x'r =0 yze "t

o (v)dy.
One should check that indeed W; € .#”(R"). Observe that the normalization of W;
is similar to that of the Poisson kernel.

Definition 4.1.13. For 1 < j < n, the jth Riesz transform of f is given by convolu-
tion with the distribution W, that is,

(e v
Ri(f)(x) = (f +W))(x) = ;2 ) p /R ) %ﬂy)dy, (4.1.34)

for all f € . (R"). Definition 4.1.13 makes sense for any integrable function f that
has the property that for all x there exist Cy > 0, & > 0, and &, > 0 such that for
y satisfying |y — x| < &, we have |f(x) — f(y)| < Cyx|x —y|®. The principal value
integral in (4.1.34) is as in Definition 4.1.1.
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We now give a characterization of R; using the Fourier transform. For this we
need to compute the Fourier transform of W;.

Proposition 4.1.14. The jth Riesz transform R; is given on the Fourier transform
side by multiplication by the function —i&;/|E|. That is, for any f in .7 (R") we
have

i&;

13

Proof. The proof is essentially a reprise of the corresponding proof for the Hilbert
transform, but it involves a few technical difficulties. Fix a Schwartz function ¢ on
R”. Then for 1 < j < n we have

(W, 0) =(W;,9) (4.1.36)

_F(%). &
o m/ébe(’)(é)lé\"“ a5
r*

P ea0/>\§|>g/n xlijl"*‘ ¢

Ri(F)0) = (- 27©) . (4.135)

(et ) .
= lim (x ( — )/ il i -d& | dx
e=0/rr n'T Szl &I
(=) r
— lim <p(x)[ 2 / / 2wt 1 a1y, de} dx
e—0 /R T Sn—1
e<r<g
L il) dr
= o(x) | —i (n+21 / / sin(2zrx- 0) —9 de
R" n 2 Jsl
()
- o(x) 715 e /Snilsgn(xﬂ)ejde dx
= - (P( )‘X‘

where in the penultimate equality we used the identity [, %dr = g, for which we
refer to Exercise 4.1.1, while in the last equality we used the identity

n+1
G
2

/ 1sgn(x-e)ejde =i (4.1.37)
S)l*

. Xj
x|
which needs to be established. The passage of the limit inside the integral in the

previous calculation is a consequence of the Lebesgue dominated convergence the-
orem, which is justified from the fact that

/1/8 sin(27r6)
£

r

dr| <4 (4.1.38)
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for all € > 0. For a proof of (4.1.38) we again refer to Exercise 4.1.1. 0

It remains to establish (4.1.37). Let us recall that O(n) is the set of all orthogonal
n X n matrices with real entries. An invertible matrix A is called orthogonal if its
transpose A’ is equal to its inverse A~!, that is, AA’ = A’/A =I.

Lemma 4.1.15. The following identity is valid for all £ € R"\ {0}:

n—1

2rr ¢

/S'n_1 sgn(&-e)ejdezr(%) ot (4.1.39)
Therefore (4.1.37) holds.
Proof. We begin with the identity
0 if k+#j,
/s."*' sgn (6)0;d6 = (4.1.40)

/SH 16,16 if k=,

which can be proved by noting that for k # j, sgn(6;) has a constant sign on the
hemispheres 6; > 0 and 6 < 0, on either of which the function 6 +— 6; has integral
Zero.

It suffices to prove (4.1.39) for a unit vector &. Given & € 8”1, pick an orthog-
onal n x n matrix A = (ag)x; such that Ae; = &. Then the jth column of the matrix
A is the vector (&1,&,...,&,)". We have

/ sgn(g-e)ejde:/ sgn(Ae;-0)8;d6
Snfl Snfl

= lsgn(ej~A’9)(AA’9)jdG
S)l*

= /Sn_l sgn(e;-0)(A0);do

= sgn(Gj)(ajlel+"'+§j9j+"'+ajn9n)d9

Snfl
=¢; - sgn (0;) 6;d0 + Z 0
S 1<m#j<n
&
= == 0;1d6.
] Jorer 19

Next, for all j € {1,2,...,n}, we compute the value of the integral

[ 160 = [ 1oilae.
Sn—1 Sn—1

which is obviously independent of j by symmetry. In view of the result of Appendix
D.2, we write
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1 ds
0,/do :/ dp ———-
/SH| !l —1|S| V/1-s28n-2 (P(l—sz)%

1 .
_ mn,z/ I5/(1— 82" ds
-1

having used the expression for @,_» in Appendix A.3. This proves (4.1.39). The
proof of the lemma and hence that of Proposition 4.1.14 is complete. U

Proposition 4.1.16. The Riesz transforms satisfy
n
~1=Y R}, (4.1.41)
j=1

where I is the identity operator.

Proof. Use the Fourier transform and the identity }.}_, (—i&;/|& )2 = —1 to obtain
that Y7, R?( f) = —f for any f in the Schwartz class. O

Next we discuss a use of the Riesz transforms to partial differential equations.

Example 4.1.17. Suppose that f is a given Schwartz function on R” and that « is a
distribution that solves Laplace’s equation

Alu)=f.

Then we can express all second-order derivatives of u in terms of the Riesz trans-
forms of f. First we note that

(—4m?|EP)a(g) = £(§).
It follows that for all 1 < j,k < n we have
d;0ku = [<2ni§/)(2ﬂi5k>ﬁ(€)]v
= [(Zﬂiéj)(mik) _i;ffﬁ;p}v

—RjR(f),
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and in particular, we conclude that a,&ku are functions.

Thus the Riesz transforms provide an explicit way to recover second-order
derivatives in terms of the Laplacian. Such representations are useful in controlling
quantitative expressions (such as norms) of second-order derivatives in terms of the
corresponding expressions for the Laplacian. For instance, this is the case with the
L? norm; the L” boundedness of the Riesz transforms is one of the main results of
the next section. We refer to Exercises 4.2.9 and 4.2.10 for similar applications.

Exercises

4.1.1. (a) Show that for all 0 < a < b < o we have

b o
Simx
—dx| <4.
a X

(b) For a > 0 define
=, e

and show that /(a) is continuous at zero. Differentiate in ¢ and look at the behavior
of I(a) as a — oo to obtain the identity

I(a) = g —arctan(a).
Deduce that /(0) = 7 and also derive the following identity used in (4.1.9):

oo
/ de = nsgn(b).
X

(c) Argue as in part (b) to prove for a > 0 the identity

< 1—cosx _, T
———e¢ Pdx=— —arct 1
/0 2 ¢ x= 5 —arc an(a) + alog

a
Vitar

[Hint: Part (a): Consider the cases b < 1,a <1 < b, 1 <a. When a > 1, integrate
by parts.]

4.1.2. (a) Let @ be a compactly supported ¢! function on R for some m in
Z+J{0}. Prove that if @™ is the mth derivative of ¢, then

H(9") (x)] < G (14 [x]) ™!

for some G, > 0.
(b) Let ¢ be a compactly supported ! function on R” for some m € Z*. Show
that
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Rj(0%9) ()] < Cmp (14 1x]) ™"

for some Cy, jn,p > 0 and all multi-indices o with |o| =

(c) Let I be an interval on the line and assume that a function 4 is equal to 1 on the
left half of 7, is equal to —1 on the right half of 7, and vanishes outside /. Prove that
for x ¢ 31 we have

|H (h)(x)| < 4[I*|x — center(I)| >
[Hint: Use that when |¢| < 1 we have log(1+1) =1+ R;(t), where |R; (t)| < 2|¢|*.]
4.1.3. (a) In view of identity (4.1.12) one may define H(f) as an element of ./ (R)

for bounded functions f on the line whose Fourier transform vanishes in a neigh-
borhood of the origin. Using this interpretation, prove that

H(e") =

H(cosx) = sinx,
H (sinx)
H(sin(nx)/nx) =

= —cosx,
(cos(mx) —1)/mx.

(b) Show that the operators given by convolution with the smooth function sin(z) /¢
and the distribution p.v. cos(z)/f are bounded on L”(R) whenever | < p < co.

4.1.4. (Stein and Weiss [264]) Show that the distribution function of the Hilbert
transform of a characteristic function of a measurable subset £ of R of finite measure
is

4|E|

dH(XE)((X) = om0 _ p—Ta’ «>0.

[Hint: First take E = Ul}le (aj,bj), where bj < ajyi. Show that the equation
H(xE)(x) = ma has exactly one root p; in each open interval (a;,b;) for 1 < j <N
and exactly one root r; in each interval (bj,ajyr) for 1 < j <N, (ay41 = o). Then
HxeR: H(xe)(x) > rma}|= ] \r ley:1 pj, and this can be expressed in terms
of Z?':l a;jand ZFI b;. Argue 51m1larly forthe set {x e R: H(xg)(x) < —ma}. For
a general measurable set E, find sets E,, such that each E,, is a finite union of intervals
and that Y, — xg in L. Then H(yg, ) — H(x£) in measure; thus H(xE,, ) — H(XE)
a.e. for some subsequence 7. The Lebesgue dominated convergence theorem gives
dH(yg, ) = dH(yg)- See Figure 4.1
k

4.1.5. Let 1 < p < oo. Suppose that there exists a constant C > 0 such that for all
f € (R) with L? norm one we have

{x: IH() )] > 1} <C.

Using only this inequality, prove that H maps L?(R) to L”*(R). Here H is the
Hilbert transform. State properties for a general operator such that the same conclu-
sion is valid.

[Hint: Try functions of the form 2~1/7 f(27'x).]



4.1 The Hilbert Transform and the Riesz Transforms 265

4.1.6. Let ¢ be in . (R). Prove that

2N
lim p.V./ o(x)dx = @(0)mi,
R

N—oo X
eZn’iNx
lim p.v. / o(x)dx = — @(0)i.
N——o0 R X

4.1.7. Let Ty, o € R, be the operator given by convolution with the distribution
whose Fourier transform is the function

ua(E) = o miasgng
(a) Show that the Ty,’s are isometries on L?(R) that satisfy
(Te) ' =T a-
(b) Express Ty in terms of the identity operator and the Hilbert transform.

4.1.8. Let Qﬁj ) be the Jth conjugate Poisson kernel of P, defined by

n+1

() U
Q (x) = n n :
' (50 (2 +y2)"s

Xj

Prove that (ngj) (&) = —i&je ™8l /|E. Conclude that R;(P,) = Qy) and that for
fin L?(R") we have R;(f) P, = f * Qﬁj). These results are analogous to the state-
ments Q,(§) = —isgn(S)Py(§), H(Py) = Oy, and H(f) # Py = f Q.

4.1.9. Let fy, f1, ..., f, all belong to L? (R") and let u; = P, f; be their correspond-

ing Poisson integrals for 0 < j < n. Show that a necessary and sufficient condition
for

fj:Rj(fO)a j:17"'an7

is that the following system of generalized Cauchy-Riemann equations holds:

Ui _y,
j:Oaxj
314/ auk

I o J#k, Xp =y
4.1.10. Prove the distributional identity

aj‘x‘irH»l = (1 —n)pV W .

Then take Fourier transforms of both sides and use Theorem 2.4.6 to obtain another
proof of Proposition 4.1.14.
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4.1.11. (a) Prove that if T is a bounded linear operator on L*>(R) that commutes

with translations and dilations and anticommutes with the reflection f(x) — f(x) =
f(=x), then T is a constant multiple of the Hilbert transform.

(b) Prove that if T is a bounded operator on L?(R) that commutes with translations
and dilations and vanishes when applied to functions whose Fourier transform is
supported in [0,00), then 7 is a constant multiple of the operator f — ( f X(fw,o])v-

4.1.12. (Pichorides [213]) Fix 1 < p <2.
(a) Show that the function (x,y) — Re (|x| +iy)? is subharmonic on R2.
(b) Prove that for f in €;°(R) we have

[ Re (1700 i (1) ()" dx > 0.

(c) Prove that for all a and b reals we have

TN\P

Ib|P < (tan—) la|? — D, Re (|a| + ib)?

2p

for some D), > 0. Then use part (b) to conclude that
T
[Lcal Py tanﬂ :

(d) To deduce that this constant is sharp, take /2p’ <y < m/2p and let f,(x) =
(x+ 1) x4 12Y/%|x — 1|72/ cos y. Then

2y/m
)ﬁ}fjﬂ v siny  when [x] > 1,
H(fy)(x) = 1277
—wmino siny when x| < 1.

[Hint: Part (b): Let Cg be the circle of radius R centered at (0,R) in RZ. Use that the
integral of the subharmonic function

(,y) = Re (|(By+ ) (x)| +i(Qy + ) (x))"

over Cpg is at least 2rRRe (|(Pr * f)(0)| +i(Qr * f)(0))? and let R — oo. Part (d):
This is best seen by considering the restriction of the analytic function

i\ 21"
z—1

F(z) = (z+1)'<

on R x {0}.]
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4.2 Homogeneous Singular Integrals and the Method of
Rotations

So far we have introduced the Hilbert and the Riesz transforms and we have de-
rived the L” boundedness of the former. The boundedness properties of the Riesz
transforms on L spaces are consequences of the results discussed in this section.

4.2.1 Homogeneous Singular and Maximal Singular Integrals

We introduce singular integral operators on R” that appropriately generalize the
Riesz transforms on R". Here is the setup. We fix 2 to be an integrable function of
the unit sphere S"~! with mean value zero. Observe that the kernel
Q
Ko(x) = M, x#0, 4.2.1)

|x|n

is homogeneous of degree —n just like the functions x;/|x|"*!. Since Kq is not in
L'(R"), convolution with Ko cannot be defined as an operation on Schwartz func-
tions on R”. For this reason we introduce a distribution W, in .”/(R") by setting

(Wa,@) = lim Ko (x)@(x)dx = lim Ko(x)p(x)dx  (4.2.2)

£=0J|x|>e £—0Je<|x|<e !

for ¢ € .7 (R"). Using the fact that Q has mean value zero, we can easily see that
Wq, is a well defined tempered distribution on R". Indeed, since K has integral zero
over all annuli centered at the origin, we have

- Q(x/|x|) Q(x/|x|)
114 = |1 —_— —¢(0))d d
|< -Q’(P>| gglg)/8§|x‘§] ‘X‘” ((P()C) (P( )) x+. =1 |x|n (P()C) X
[20x/|x])] [2(x/|x])]
< ||V N/\ —————dx+ su dx
Vel <t yeRRl o)l NS

<Cil|Vel=[@] +C | ‘Zﬂ lox[l - |2,
ajs

for suitable C; and C,, where we used (2.2.2) in the last estimate. Note that the
distribution W, coincides with the function Ko on R\ {0}.

The Hilbert transform and the Riesz transforms are examples of these general
operators T . For instance, the function Q(0) = % = %sgn 0 defined on the unit

sphere S = {—1,1} C R gives rise to the Hilbert transform, while the function

F(M) 9;
0= 2w ol
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defined on §"~! C R” gives rise to the jth Riesz transform.

Definition 4.2.1. Let Q be integrable on the sphere 8"~! with mean value zero. For
0<ée<Nand f €U <, L?(R") we define the truncated singular integral

(e.N) _ Q/Iyl)
e = [ e TR . (423)

Note that for f € L7 (R") we have

1S )l <1121 102N /) (|1 e

which implies that (4.2.3) is finite a.e. and therefore well defined. We denote by T
the singular integral operator whose kernel is the distribution W, that is,

To(£)(x) = (F*Wa)(x) = lim 75" () (@),

N—oo

defined for f € .(R"). The associated maximal singular integral is defined by

T57(f) = sup sup [TV (7). (4.2.4)

0<N<eo0<e<N

We note that if €2 is bounded, there is no need to use the upper truncations in

the definition of Tég"N) given in (4.2.3). In this case the maximal singular integrals
could be defined as
76" (f) = sup |57 ()] (4.2.5)

>0

where for f € U <)< L’ (R), € >0, and x € R", T_((;)(f) (x) is defined in terms of
the absolutely convergent integral

10 = [ ey

vl>e [
To examine the relationship between T_((;) and T!g**) for Q € L=(S"!), notice that

Q €
<N T IO e
e<y|<N | 0<N<oo

Then for f € LP(R"), 1 < p < oo, we let N — oo on the left in (4.2.6) and we note
that the limit exists in view of the absolute convergence of the integral. Then we
take the supremum over € > 0 to deduce that T_((;) is pointwise bounded by Tg*).
Since Tézg’N) = Tf(;> - T[(ZN), it also follows that T_é**) < 2T_((;); thus T_((;) and T_((;*)
are pointwise comparable when  lies in L*(S"~!). This is the case with the Hilbert
transform, that is, H () ig comparable to H (*); likewise with the Riesz transforms.
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A certain class of multipliers can be realized as singular integral operators of the
kind discussed. Recall from Proposition 2.4.7 that if m is homogeneous of degree 0
and infinitely differentiable on the sphere, then m" is given by

m' = c8&+Wo,

for some complex constant ¢ and some smooth £ on §"~! with mean value zero.
Therefore, all convolution operators whose multipliers are homogeneous of degree
zero smooth functions on §”~! can be realized as a constant multiple of the identity
plus an operator of the form 7.

Example 4.2.2. Let P(§) = ¥4/~ ba&* be a homogeneous polynomial of degree
k in R” that vanishes only at the origin. Let o be a multi-index of order k. Then the
function £

"= g

is infinitely differentiable on the sphere and homogeneous of degree zero. The oper-
ator given by multiplication on the Fourier transform by m(&) is a constant multiple
of the identity plus an operator given by convolution with a distribution of the form
W for some Q in €*(S""!) with mean value zero. In this section we establish
the L? boundedness of such operators when {2 has appropriate smoothness on the
sphere. This, in particular, implies that m(£) defined by (4.2.7) lies in the space
A, (R"), defined in Section 2.5, for 1 < p < oo

4.2.7)

4.2.2 L? Boundedness of Homogeneous Singular Integrals

Next we would like to compute the Fourier transform of Wq. This provides infor-
mation as to whether the operator given by convolution with K is L? bounded. We
have the following result.

Proposition 4.2.3. Let n > 2 and Q € L' (S"™') have mean value zero. Then the
Fourier transform of Wq, is a (finite a.e.) function given by the formula

o g):/sn_lfz(e)(log|g 9 '2 sgn (5-6)) 6.  (42.8)

Remark 4.2.4. We need to show that the function of & on the right in (4.2.8) is
well defined and finite for almost all £ in R”. Write £ = |E|E’ where £ € 8"~ ! and
decompose log ﬁ as log ‘%—I + log ﬁ. Since £ has mean value zero, the term

log % multiplied by Q(0) vanishes when integrated over the sphere.
We need to show that

/w' G )|log|é,, 740 (4.2.9)
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for almost all &’ € S"~!. Integrate (4.2.9) over &’ € S"~! and apply Fubini’s theorem
to obtain

1
Q6 / log—— d&' do
L@ g|§,.9| :

log—d&d6
1o [, ey
+1 1 5\ =3
:wn,z/ \_Q(Q)|/ log— ) (1—52)"7 dsd®
§n—1 —~1 ‘s|
:CHH-QHLI(SH) <,

since we are assuming that n > 2. (The second-to-last identity follows from the
identity in Appendix D.2.) We conclude that (4.2.9) holds for almost all &’ € 8",

Since the function of & on the right in (4.2.8) is homogeneous of degree zero, it
follows that it is a locally integrable function on R”.

Before we return to the proof of Proposition 4.2.3, we discuss the following
lemma:

Lemma 4.2.5. Let a be a nonzero real number. Then for 0 < € < N < oo we have

lim [ S8 =eos(r) e 1 (4.2.10)
e—0 Jge r |Cl|’ -
N—oo
N — 1
/ Mdr < 2‘10gﬂ‘ forallN >¢ >0, (4.2.11)
€ r a
N ,—ira __ 1
lim ﬂdr = log — —zEsgn a, (4.2.12)
£—0 r |a| 2
N—oo
N ,—ira __
/ wd,ﬂ < 2‘10g ‘—|—4 forallN >¢e>0. (42.13)
e r

Proof. We first prove (4.2.10) and (4.2.11). By the fundamental theorem of calculus
we can write

N cos(ra) —cos(r) , " cos(rla]) —cos(r)
/5 dr / dr

r r

€
N rlal
—/ / sin(tr)dtdr
Je J1
la| N
f/ / sin(¢r) drdt
1 €

lal Nla|
_ _/ cos(€t) dt+/ cos(t) dr
1 t N t

and from this expression, we clearly obtain (4.2.11). But the first integral of the same
expression converges to —log|a| as € — 0 while the second integral converges to
zero as N — oo by an integration by parts. This proves (4.2.10).
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To prove (4.2.12) and (4.2.13) we need to know that the expressions

tend to § as € — 0 and N — oo and are bounded by 4. Both statements follow from
Exercise 4.1.1. O

r

Nla| 3
/ “lsin(r) , (4.2.14)

Jela) T

Let us now prove Proposition 4.2.3.

Proof. Letus set &' = & /|&|. We have the following:

(Wa,0) =(Wa.9)
i [ QD o
ot /\X\Ze (P( )d

e—0 ‘X‘n
— lim (P(é) / (x/\x|) —2ﬂ1x§d d&
8~>0 R” |x|”
e<|x|<N
o.ed
e<r<N

im [ 9@) [ o0 | (efzﬂr\él*’-i’—cos(zm|5|))?ded§

1\81390 RY s e<r<N
71r0-§ _
— lim [ o) [ () / e =eosln) g ar
e—0 JRn §n—1 r
N 78 <7< 520

Lo@ [ a0 >(1og§, a 2sgn<é~e>)d6dé,

by the Lebesgue dominated convergence theorem, Lemma 4.2.5, and Remark 4.2.4.
We were able to subtract cos(27r|&|) from the r integral in the previous calcula-
tion, since 2 has mean value zero over the sphere. Also, the use of the dominated
convergence theorem is justified from the fact that the function

(e,é)H|Q(9)|I<p(5>|(10g‘§/ 0] )

lies in L' (S"~! x R™). O

Corollary 4.2.6. Let Q € L' (S"~!) have mean value zero. Then for almost all &' in
S"~! the integral

/SH Q(0)log —— |5, 9| (4.2.15)

converges absolutely. Moreover, the associated operator Tg maps LZ(R") to itself if
and only if
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ess.sup 4.2.16)

é:/esn—l

Q(0)lo
[ (0108 g0

Proof. To obtain the absolute convergence of the integral in (4.2.15) we integrate
over £’ € 8"~! and we apply Fubini’s theorem. The assertion concerning the bound-
edness of T on L? is an immediate consequence of Proposition 4.2.3 and Theorem
2.5.10. 0

There exist functions 2 in L' (S"~!) with mean value zero such that the expres-
sions in (4.2.16) are equal to infinity; consequently, not all such £ give rise to
bounded operators on LZ(R”). Observe, however, that for Q odd (i.e., Q(—0) =
—Q(0) for all @ € S"~1), (4.2.16) trivially holds, since logﬁ is even and its

product against an odd function must have integral zero over 8"~'. We conclude
that singular integrals T, with odd  are always L> bounded.

4.2.3 The Method of Rotations

Having settled the issue of L? boundedness for singular integrals of the form T
with © odd, we turn our attention to their L” boundedness. A simple procedure
called the method of rotations plays a crucial role in the study of operators T, when
£ is an odd function.

Theorem 4.2.7. If Q is odd and integrable over S"~', then To and T_((;> are LP
bounded for all 1 < p < oo. More precisely, Tg initially defined on Schwartz func-
tions has a bounded extension on LP(R") (which is also denoted by Tg,).

Proof. We introduce the directional Hilbert transforms. Fix a unit vector 6 in R”.
For a Schwartz function f on R” let

Ao = Epv [ o) ®

We call % (f) the directional Hilbert transform of f in the direction 6. Let ¢; be
the usual unit vectors in 8"~!. Then J;, is simply obtained by applying the Hilbert
transform in the first variable followed by the identity operator in the remaining
variables. Clearly, 77, is bounded on L”(R") with norm equal to that of the Hilbert
transform on L” (R). Next observe that the following identity is valid for all matrices
A€ 0(n):

H(en) () x) = A2, (foA) A 'x). (4.2.17)

This implies that the L” boundedness of 7 can be reduced to that of J7;,. We
conclude that 7% is L? bounded for 1 < p < e with norm bounded by the norm of
the Hilbert transform on L”(R) for every 8 € 8",

Likewise, we define the directional maximal Hilbert transforms. For a function
finUj<pewl?(R") and 0 < & < N < oo we let
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%(EvN)(f)(x):% / f(x—t@)?7

e<|t|<N

AL (f)(x) = sup

0<E<N<oo

AN () )]

We observe that for any fixed 0 < € <N < o0 and f € LP(R"), %(S’N) (f) is well
defined almost everywhere. Indeed, by Minkowski’s integral inequality we obtain

(.N) 2
14 ) oy < =

N
LP(R") S 7Hf‘ >10gg <o,

LP(R”

which implies that %(SM (f)(x) is finite for almost all x € R". Thus %”9(**)( f)is
well defined a.e. for f in U, <o L”(R").

Identity (4.2.17) is also valid for %(E’N) and %(**). Consequently, %”9(**) is
bounded on L”(R") for 1 < p < oo with norm at most that of H*) on L”(R).

Next we realize a general singular integral T, with Q odd as an average of the
directional Hilbert transforms #5. We start with f in [J;<,..L”(R") and the fol-
lowing identities:

Q/l)

N dr
LS‘}"SNWf(x_y)dy =+ SnilQ(Q)/rzgf(x—rG)TdG

N dr
=— .(2(9)/ fx+rB)—do,
Sn—1 r=¢e r

where the first follows by switching to polar coordinates and the second one is a
consequence of the first one and the fact that  is odd via the change variables
0 — —0. Averaging the two identities, we obtain

QO/) 4
/SSMSN |y|" =)y

1 Q(0) N f(x—r9)—f(x+r6)drd9 4.2.18)

B E Sn—1 r=¢e r
T
=5 L Q(0) AN (f)(x)d6.

It follows from the identity in (4.2.18) that

/ Mf(x—y)dyzz‘ Q0). 4N () (x)do,  (42.19)
Jespln " 2 Jsn-t

from which we conclude that

T (N <7 [ 120)1 (1)x)d6. (4.2.20)
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Using the Lebesgue dominated convergence theorem, we see that for f in ' (R"),
we can pass the limits as € — 0 and N — oo inside the integral in (4.2.19), concluding

that
T

Ta(NW =7 [ Q0)Aa(r)(x)do. (4.221)
for f € #(R"). The L? boundedness of T and T!(;*) for  odd are then trivial
consequences of (4.2.21) and (4.2.20) via Minkowski’s integral inequality. ]

(*)

Corollary 4.2.8. The Riesz transforms R; and the maximal Riesz transforms R i

are bounded on LP(R") for 1 < p < es.
Proof. The Riesz transforms have odd kernels. 0

Remark 4.2.9. It follows from the proof of Theorem 4.2.7 and from Theorems 4.1.7
and 4.1.12 that whenever Q is an odd function on S*~1, we have

ap when p > 2,
||T.QHLPHU7 = HQHL' {a(p— D' whenl<p<2,

. ap when p > 2,
175 <l {20 ez

for some a > 0 independent of p and the dimension.

4.2.4 Singular Integrals with Even Kernels

Since a general integrable function £ on 8"~! with mean value zero can be written
as a sum of an odd and an even function, it suffices to study singular integral opera-
tors T with even kernels. For the rest of this section, fix an integrable even function
Q on 8"~! with mean value zero. The following idea is fundamental in the study of
such singular integrals. Proposition 4.1.16 implies that

n
To=—-Y RRTo. (4.2.22)
j=1

If RjTo were another singular integral operator of the form Tq; for some odd £2;,
then the boundedness of T, would follow from that of To, via the identity (4.2.22)
and Theorem 4.2.7. It turns out that R;T; does have an odd kernel, but it may not be
integrable on S"~! unless Q itself possesses an additional amount of integrability.
The amount of extra integrability needed is logarithmic, more precisely of this sort:

co :/ 192(0)|10g" |22(6)]d6 < co. (4.2.23)
S”*

Observe that
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HQHLI <co+20,-1 <Cylco+1),

which says that the norm HQH ;1 is always controlled by a dimensional constant
multiple of cqg + 1. The following theorem is the main result of this section.

Theorem 4.2.10. Let n > 2 and let Q be an even integrable function on "' with
mean value zero that satisfies (4.2.23). Then the corresponding singular integral
Tq is bounded on LP(R"), 1 < p < eo, with norm at most a dimensional constant
multiple of the quantity max ((p—1)72,p?) (cq +1).

If the operator Tg in Theorem 4.2.10 is weak type (1,1), then the estimate on the
LP operator norm of T can be improved to HTQ HU,HU, <Cip—1)lasp—1.
This is indeed the case; see the historical comments at the end of this chapter.

Proof. Let W be the distributional kernel of 7. Using Proposition 4.2.3 and the
fact that Q is an even function, we obtain the formula

Wa(&)= [ >log|5 a0 (42.24)

which implies that W_Q is itself an even function. Now, using Exercise 4.2.3 and
condition (4.2.23), we conclude that WQ is a bounded function. Therefore, T is L?
bounded. To obtain the L” boundedness of T, we use the idea mentioned earlier
involving the Riesz transforms. In view of (4.1.41), we have that

- Y RiT;, (4.2.25)
=1

where T; = R;Tq . Equality (4.2.25) makes sense as an operator identity on LZ(R"),
since T and each R; are well defined and bounded on L?(R").
The kernel of the operator 7; is the inverse Fourier transform of the distribu-

tion —i é—"@(é), which we denote by K;. At this point we know only that K; is

a tempered distribution whose Fourier transform is the function —i é—’l@ (&). Our

first goal is to show that K; coincides with an integrable function on an annulus. To
prove this assertion we write

Wo = W3 +Wh+wg,

where Wg is a distribution and Wé ,Wg are functions defined by

<W3,(p> - gl—{r(l) e<|x|< (SC{HXD(P( ).
Wslz(x) = <|);|/n|X|)X <|x[<2°
Q(x/|x])

WE;(.X) = |X|n x2<|x‘ .
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We now fix a j € {1,2,...,n} and we write

0 1

where
K) = (—igwg(9)",
K} = (—igWa(8)",

KT = (—iZwg(e))”.

Define the annulus
A={xeR": 2/3<|x| <3/2}.

For x € A, the convolution of Wg with the kernel of the Riesz transform R; can be
written as the convergent integral inside the absolute value:

n+l . v
r¢s), / xj—y; L0/, (4.2.26)
e<lyl<

2 en0 Jecyl<d o—y[t Ty

Xj—Yj X\ L0/ ,
1 _yln+l n+1 n Yy
T <z lx =y |x]| Iy

Q
</ 1Cn|y|| G/ 4,
MSQ

_res)

ntl
2

- |y["
=Glle|.,

where we used the fact that Q(y/|y|)|y| " has integral zero over annuli of the form
e<lyl < %, the mean value theorem applied to the function x| ~(n+1) "and the fact
that |x —y| > 1/6 for x in the annulus A. We conclude that on A, K? coincides with
the bounded function inside the absolute value in (4.2.26).

Likewise, for x € A we have

b>2 =yt |y
(et 1|0
< ("5 )/ nl (y/r\lyI)Idy
T M2 =yl |yl

ol

2

<—2 / Qy/Iy])dy
ntl ‘y|>2 |y|2n| ( /‘ | |

rsh
1

T2

)
:CHQHL17

from which it follows that on the annulus A, K}"’ coincides with the bounded function
inside the absolute value in (4.2.27).
Now observe that condition (4.2.23) gives that the function W}) satisfies
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[y WA )] tog WA (o)

rn

2
< [ 2 og (o)) a1
1/2Jsn-1 r
< (log4) [n(logZ)HQHU +cq] <eo.

Since the Riesz transform R; maps L? to L” with norm at most 4(p —1)~! for
1 < p <2, it follows from Exercise 1.3.7 that K} = R;(W}) is integrable over the
ball |x| < 3/2 and moreover, it satisfies

[kl wlax < 6| [ wawog Wawax-1
A [x|<2
< Gylea+1).

We have proved that K is a distribution that coincides with an integrable function
on the annulus A. Furthermore, since 7(\] is homogeneous of degree zero, we have
that K; is a homogeneous distribution of degree —n (Exercise 2.3.9). This means
that for all test functions ¢ and all A > 0 we have

(Kj,8"(9)) = (K}, ).

But then for ¢ supported in the annulus 3/4 < |x| < 4/3 and for A in (8/9,9/8) we
have that §* () is supported in A and thus

./Kj(x)go(lx)dx — (K;.5"(9)) = (K. 0) = /l*"Kj()flx)(p(x)dx.

From this we conclude that Kj(x) = A "K;(1~'x) for 3/4 < |x| < 4/3 and 8/9 <
A < 9/8. Thus for 8/9 < |x| < 9/8 we have

Kj(x) = x| K e/ x]) = x[ 7250/ ), (4.2.28)

where we defined £; to be the restriction of K; over S"~1. The integrability of K g
over the annulus 8,/9 < |x| < 9/8 implies the integrability (and hence finiteness a.e.)
of Q; over S" 1 via (4.2.28).

Pick a nonnegative, radial, smooth, and nonzero function y on R” supported in
8/9 < |x| <9/8.Lete; = (1,0,...,0). Switching to polar coordinates, we obtain

(Kj,w) = /,lww(x)dm (/828 w(rel)dr) /S,lflﬂj(f’)d@»

e[ r

(Kyov) = (K. = [ e Wal@)WE)dE ~c), [, | o Wa(0)do ~o

1 76]

since by (4.2.24), %ﬁ’@(&) is an odd function. We conclude that £; has mean

value zero over S"~!. We are now in a position to define the distribution Wo,. We
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claim that
K;= W_Qj . (4.2.29)

To establish the claim, we use (4.2.28) to obtain that the homogeneous distributions
K; and Wo, agree on the open set 8/9 < [x| < 9/8, and thus they must agree ev-
erywhere on R"\ {0} (check that (K, @) = (Wq,, @) for all ¢ € 65" (R"\ {0}) by
dilating and translating their support). Therefore, K; —Wq, is supported at the ori-
gin, and since it is homogeneous of degree —n, it must be equal to bdy, a constant
multiple of the Dirac mass. But 7(7 is an odd function and hence K; is also odd. It
follows that Wo, is an odd function on R"\ {0}, which implies that ; is an odd
function. Defining odd distributions in the natural way, we obtain that K; — ng is
an odd distribution, and thus the previous multiple of the Dirac mass must be an
odd distribution. But if 58 is odd, then b = 0. We conclude that for each j there
exists an odd integrable function £2; on S ! with H.Q i || 1 controlled by a constant
multiple of cg + 1 such that (4.2.29) holds.
Then we use (4.2.25) and (4.2.29) to write

n
To=-) RiTq,,
=1

and appealing to the boundedness of each To; (Theorem 4.2.7) and to that of the
Riesz transforms, we obtain the required L” boundedness for Tg,. OJ

We note that Theorem 4.2.10 holds for all 2 € L!(S"~!) that satisfy (4.2.23), not
necessarily even . Simply write Q = Q, + Q,, where €, is even and €2, is odd,
and check that condition (4.2.23) holds for £,.

4.2.5 Maximal Singular Integrals with Even Kernels

We have the corresponding theorem for maximal singular integrals.

Theorem 4.2.11. Let Q be an even integrable function on "' with mean value

zero that satisfies (4.2.23). Then the corresponding maximal singular integral Tf(;*),
defined in (4.2.4), is bounded on LP (R") for 1 < p < e with norm at most a dimen-
sional constant multiple of max(p®,(p —1)"2)(cq +1).

Proof. For f € L. (R"), define the maximal function of f in the direction 6 by

setting o
1
Mo (f)(x) :Supf/H< |[f(x—=r8)|dr. (4.2.30)

a>0 2a
In view of Exercise 4.2.6(a) we have that My is bounded on L”(R") with norm at
most 3p(p—1)~1.
Fix ¢ a smooth radial function such that ¢(x) = 0 for |x| < 1/4, ®(x) =1 for
|x| >3/4,and 0 < ®(x) < 1 forall xin R”. For f € LP(R") and 0 < € < N < oo we
introduce the smoothly truncated singular integral
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Q( = )
+(e,N — —y _
79(5’ )(f)(x) = /n 4|x ‘xyy|l, (<p (xs*}) - (xNy) )f(y) dy

and the corresponding maximal singular integral operator

757 (f) = sup  sup [TEN (1)

0<N<eo0<e<N

For f in LP(R") (for some 1 < p < o), we have

sup |75 (1)) — TN () )|
0<e<N<oo
(77)
- | [ @ e
£<|yl<e
/ Q%)@ N d
a | (N)f(X—Y) y
T<yl<N
12(57) ()]
< sup [ T ey dy + ] |f<x—y>|dy]
0<e<N<eo §<|y/<8 Iyl ’X<4g1v y]
4 r¢€ 4 [N
<o / 2()]|; Ji st ropiars 3 . (a=r6)l ] a0
<16 [ |192(6)|Ma(f)(x)d6.

Using the result of Exercise 4.2.6(a) we conclude that

175 (1) =TS (1)), < 96]|€2]|,) max(p, (p— 1)) |||

||L” L

This implies that it suffices to obtain the required L” bound for the smoothly trun-
cated maximal singular integral operator T_((;*).
Let K, £, and T} be as in the previous theorem, and let F; be the Riesz transform

of the function Q (x/|x|) @ (x)|x|~". Let f € L (R"). A calculation yields the identity

1 2(x/Ix)
Nn ‘)’|n

(&) = () |+ Ry (D) ),

7 - | o3| 7t yyay

I
|
/N
e
il
%~
o
—

where in the last step we used Proposition 4.1.16. Therefore we may write
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[ [ (2) = 09 R0y
4.2.31)
(e:N)

1
= AN @) +AEY () @) + ATV () (),

- ): T Fi (F) Ri(£) () dy,

AV = X [ (e (B 52 K (52))

J=1

— 3w {F (59) = K3 (579} | Ri(h) 0) dy,

ALY = ZI/R [ eK (52) = e o () [ R (1) 0)

It follows from the definitions of F; and K that

) 2(y/Iy)) 2=y
Fi(z)—Ki(z) = 2 lim/ P (p(y)—1)—L—L g
e N
1—* n+l) y/|y Zi—y; Zi
= n2| / 3 A /n| I) (4’()7)—1){ - nj—l o nj+1 }dy
T2 <3 [yl lz—yl |2

whenever |z| > 1. But using the mean value theorem, the last expression is easily
seen to be bounded by

Q/Iy)) 1yl , e
G [ RO b e,
p<d oyt fzrt Y || ||L1\Z|

whenever |z| > 1. Using this estimate, we obtain that the jth term in Age’N) (N (x)is
bounded by

2], RNy _ . 2[12[l. [ IR ()G)Idy
G 8"L / (|xj—y|/8)"+1 =G 2_"8'1: R/ (1i|_|xiv\)"+1'
x—y|>¢€ €

It follows that for functions f in L? we have

sup AV () <@ MER;(f)),

0<e<N <o

in view of Theorem 2.1.10. (M here is the Hardy-Littlewood maximal operator.)
By Theorem 2.1.6, M maps L”(R") to itself with norm bounded by a dimensional
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constant multiple of max (1, (p—1)~"). Since by Remark 4.2.9 the norm ||R}| [T

is controlled by a dimensional constant multiple of max(p, (p—1)~'), it follows that

| swp WY@, <Gl mate (-0, @23

0<e<N<oo

Next, recall that in the proof of Theorem 4.2.10 we showed that

where Q; are integrable functions on S"~! that satisfy
1921, < Calca +1). (4.2.33)

Consequently, for functions f in L”(R") we have

(e,N ! (**
sup Ay Z

0<e<N<oo

and by Remark 4.2.9 this last expression has L” norm at most a dimensional constant
multiple of ||2; ||, max(p, (p— 1)~ ")||R;(f)|| - It follows that

Finally, we turn our attention to the term A<18’N) (f)- To prove the required esti-
mate, we first show that there exist nonnegative homogeneous of degree zero func-
tions G; on R" that satisfy

ey

sup AT (f IH

0<e<N<oo

< Cumax(p*,(p—1) ) (ca+ V|| fll,,- 4234

Fj(x)] < Gj(x) when |x| < 1 (4.2.35)

and
|, 16/(@)la6 <Cy(ca-+1). (42.36)

FM)

To prove (4.2.35), first note that if |x| < 1/8, then
2
ntl

_ I Q@/lyl) Vi
L T e

Q
cc.[ 10,
y[>4

ly[?

<cjlel,

We now fix an x satisfying 1/8 < |x| < 1 and we write
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[Fj(0)] < @0)[Kj ()] +|Fj(x) = P(x)K;(x)]

VIR NG o I PP R ¥ o) 20701
< [K;(x)[ + = Lo/‘ybg PR (@() - P(x)) o dy‘
res)
= |K;(x)| + e (P1(x) + P2 (x) + P3(x))
where
X;j—yj X; Q
bl = /\y\ <L <|xj_y|3z}5rl - |x|nj+1>(¢()’)‘p(x))(|yy/,|ly|)dy ;
hax) = /]S)YSZM@(),)@(X))‘W@ ’
X:i—V; Q
&uw—ﬁﬁx;ﬁ;@@>¢m>$ﬂ”@y

But since 1/8 < |x| < I, we see that

byl 1Q0G/DI )
P <G, ———dy<C, | Q2
1(x) < -/\y\él PR y< G|
and that 20/
Yy /
P <C/ —=——dy<C, |2, .
3(x) < Gy w2 P v <Gl ||L1
For P, (x) we use the estimate |®(y) — @ (x)| < C|x —y| to obtain
C Q
ho < | _ 120/l
f<bl<z =yl [
cacf, | ol
G<bI<2 fx— ylr—T]y|"2

1Q(y/Iy])]

<4c | UL
RY x —y[ =ty

Recall that K;(x) = Q;(x/|x|)|x|". We now set
X _3 Q d
Gj(x):Cn<H-Q||L1+‘-Qj(>‘+|x|n 2/ 180/bDldy. yl) (4.2.37)
b R fv =yt 2

and we observe that G; is a homogeneous of degree zero function, it satisfies
(4.2.35), and it is integrable over the annulus % < |x| < 2. To verify the last as-
sertion, we split up the double integral

Qy/|d
17/ / _1RG/yDldy x
p<bi<2 JR | yfn=t|yjrd
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into the pieces 1/4 <|y| <4, |y| >4, and |y| < 1/4. The part of ] where 1 /4 < |y| <4
is pointwise bounded by a constant multiple of

Q d d

/ ’ (y)‘ / — T dy< / ‘.Q(y)’ / _
— y|n—1 — -1

| I, =2 1 I v —x]

asbist 2<hi<2 J<hi<s x=y]<6

which is pointwise controlled by a constant multiple of || Q|| 1. In the part of / where
ly| > 4 we use that |x —y| "1 < (|y|/2)""! to obtain rapid decay in y and hence
a bound by a constant multiple of ||£]|,:. Finally, in the part of I where |y| < 1/4
we use that |x —y|™"*! < (1/4)7"*!, and then we also obtain a similar bound. It
follows from (4.2.37) and (4.2.33) that

sy G < G20+ 1+ 21]) < Colea-+1).
2SS

Since G is homogeneous of degree zero, we deduce (4.2.36).
To complete the proof, we argue as follows:

sup AN () ()]

0<e<N<oo

<25upz / @R (f)(x—2)| dz
e>OJ 1€ Jlz<e

<25up n/ / Fi(rO)|IR;(f)(x—r0)| "' dodr
>0 j= 1€ Jr=0Js-1

<23 [ 16O s 7 R0 ar o
=18t e>0 €1 Jr=0

<4 [ 16,(®)Mo(R,(1)(x)d6.
=1

Using (4.2.36) together with the L” boundedness of the Riesz transforms and of My
we obtain

Combining (4.2.38), (4.2.32), and (4.2.34), we obtain the required conclusion. [

sup 1AM (p)]|

0<e<N<oo

< Cumax(p,(p—1))(ca+D||f]|,. (4238)

The following corollary is a consequence of Theorem 4.2.11.

Corollary 4.2.12. Let Q2 be as in Theorem 4.2.11. Then for 1 < p < oo and f in
L?(R") the functions T_((;’N) (f) converge to To(f) in LP and almost everywhere as
€ —0and N — oo,

Proof. The a.e. convergence is a consequence of Theorem 2.1.14. The L? conver-
gence is a consequence of the Lebesgue dominated convergence theorem since for
£ € LP(R") we have that [T ()] < TS (£) and TS (f) s in L2 (R7). O
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Exercises

4.2.1. Show that the directional Hilbert transform 7% is given by convolution with
the distribution wg in ./(R") defined by

1 T 0(10)

(wo, @) = by = dt.

Compute the Fourier transform of wg and prove that 7% maps L' (R") to L'*(R").

4.2.2. Extend the definitions of W and T, to Q2 = du a finite signed Borel measure
on 8"~ ! with mean value zero. Compute the Fourier transform of such W, and find
a necessary and sufficient condition on measures Q = du so that T is L? bounded.

4.2.3. Use the inequality AB < AlogA + 8 for A > 1 and B > 0 to prove that if
Q satisfies (4.2.23) then it must satisfy (4.2.16). Conclude that if |2 |log™ |Q] is in
L'(S"~1), then Tg is L? bounded.

[Hint: Use that [y, 1]& - 6]~*d6 converges when o < 1. See Appendix D.3.]

4.2.4. Let Q be a nonzero integrable function on S"~! with mean value zero. Let
f > 0 be nonzero and integrable over R”. Prove that T (f) in not in L' (R").

o —

[Hint: Show that T (f) cannot be continuous at zero. |

4.2.5. Use the idea of the boundedness of % to show that My maps LP(R") to
itself with the same norm as the norm of the centered Hardy—Littlewood maximal
operator on L”(R).

4.2.6. (a) Let 8 € S" !, Use an identity similar to (4.2.17) to show that the maximal
operators

1
sup —

a>04a

/a|f(x—r9)|dr, supi/+a|f(x—r9)|dr
0 —a

a>0 2a

are LP(R") bounded for 1 < p < oo with norm at most 3 p (p—1)~1.
(b) For Q € L'(S"!) and f locally integrable on R”, define

Ma(N0) =sup [ 100/DIS(x—y)lay

R>0 Van B
Apply the method of rotations to prove that Mo maps L? (R") to itself for 1 < p < eo.

4.2.7. Let Q(x,0) be a function on R" x §"~! satisfying
(a) Q(x,—0) = —Q(x,0) for all x and 6.
(b) / ©(x,0)d0 =0 forall x € R".
Jsn—
(c) sup, |Q2(x,0)|is in L' (S"1).
Use the method of rotations to prove that
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Q(x,y/lyl)

Ta(f)x) =p [ =7

fx—y)dy

is bounded on LP(R") for 1 < p < co.

4.2.8. Let 2 € L'(S"!) have mean value zero. Prove that if To maps L”(R") to
L1(R"), then p =gq.
[Hint: Use dilations.}

4.2.9. Prove that for all 1 < p < o there exists a constant A, > 0 such that for every
complex-valued %(R?) function f with compact support we have the bound

195,11l .p + (1952 < Apll O £+ 00 ] -

4.2.10. (a) Let A = Z?:l 8)621, be the usual Laplacian on R”. Prove that for all 1 <

p < oo there exists a constant A, > 0 such that for all % functions f with compact
support we have the bound

15,0 £1

w <Al AN

m times

e N .
(b) Let A™ = Ao---0A. Show that for any 1 < p < o there exists a C, > 0 such
that for all f of class ¥ with compact support and all differential monomials ¥
of order |&| = 2m we have

197 [l.» < Cplla™ ()]

4.2.11. Use the same idea as in Lemma 4.2.5 to show that if f is continuous on
[0,00), differentiable in (0,c0), and satisfies

W)

Lr:

li ——~du=0
N—oo /N u
for all a > 0, then
N f(at)— f(t 1
lim / Md, = £(0)log —.
ghde z

4.2.12. Let £, be an odd integrable function on S"~! and Q, an even function on
S"~! that satisfies (4.2.23). Let f be a function supported in a ball B in R”. Prove
that

(a) If | f|log™ | f] is integrable over a ball B, then Tg, (f) and T_ét*) (f) are integrable
over B.

(b) If | f|(log™ | f])? is integrable over a ball B, then Tq, (f) and Tg:*)( f) are inte-
grable over B.

[Hint: Use Exercise 1.3.7.]
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4.2.13. (Sjogren and Soria [244]) Let Q be integrable on §"~! with mean value
zero. Use Jensen’s inequality to show that for some C > 0 and every radial function
f € L*(R") we have

1T (|2 < €Iz

This inequality subsumes that T is well defined for f radial.

4.3 The Calderén-Zygmund Decomposition and Singular
Integrals

The behavior of singular integral operators on L!(R") is a more subtle issue than
that on L” for 1 < p < oo, It turns out that singular integrals are not bounded from
L' to L'. See Example 4.1.3 and also Exercise 4.2.4. In this section we see that
singular integrals map L' into the larger space L'*. This result strengthens their L?
boundedness.

4.3.1 The Calderéon-Zygmund Decomposition

To make some advances in the theory of singular integrals, we need to introduce
the Calder6n—Zygmund decomposition. This is a powerful stopping-time construc-
tion that has many other interesting applications. We have already encountered an
example of a stopping-time argument in Section 2.1.

Recall that a dyadic cube in R” is the set

[2%my, 28 (my +1)) x - x [26my,, 25 (m, + 1)),
where k,my,...,m, € Z. Two dyadic cubes are either disjoint or related by inclusion.

Theorem 4.3.1. Let f € L'(R") and o > 0. Then there exist functions g and b on
R” such that

(1) f=g+b.
2) lsllys = 1711 and 8] < 2"

(3) b=Y;bj, where each bj is supported in a dyadic cube Q. Furthermore, the
cubes Qy and Q; are disjoint when j # k.

4 bi(x)dx=0.
4 /Q () dx
(5) Hb.,-||Ll <2mtlg|Q;l.

6) ¥;10jl <o ' £
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Remark 4.3.2. This decomposition is called the Calderon—Zygmund decomposition
of f at height ¢. The function g is called the good function of the decomposition,
since it is both integrable and bounded; hence the letter g. The function b is called
the bad function, since it contains the singular part of f (hence the letter ), but it
is carefully chosen to have mean value zero. It follows from (1) and (2) that the bad
function b is integrable and satisfies

el < A1l + sl < 201,

By (2) the good function is integrable and bounded; hence it lies in all the L” spaces
for 1 < p <. More specifically, we have the following estimate:

1

2’1 . 4.3.1)

1 -1 l] -1 n 1
v < lellillell-" <7 @) =27 ar[|f

ls]

Proof. Decompose R” into a mesh of disjoint dyadic cubes of the same size such
that

1
EIR

for every cube Q in the mesh. Call these cubes of zero generation. Subdivide each
cube of zero generation into 2" congruent cubes by bisecting each of its sides. We
now have a new mesh of dyadic cubes, which we call of generation one. Select a
cube Q of generation one if

1
o /Q ()] dx > a. 43.2)

Let S() be the set of all selected cubes of generation one. Now subdivide each
nonselected cube of generation one into 2" congruent subcubes by bisecting each
side and call these cubes of generation two. Then select all cubes Q of generation
two if (4.3.2) holds. Let S be the set of all selected cubes of generation two.
Repeat this procedure indefinitely.

The set of all selected cubes |J>_; S is countable and is exactly the set of the
cubes Q; proclaimed in the proposition. Note that in some instances this set may
be empty, in which case » = 0 and g = f. Let us observe that the selected cubes
are disjoint, for otherwise some Qy would be a proper subset of some Q;, which is
impossible since the selected cube Q; was never subdivided. Now define

.
bi= (f o) ./Q,-f ‘”‘) xe;.

b=Y;bj,andg= f—b.

For a selected cube Q; there exists a unique nonselected cube Q' with twice its
side length that contains Q;. Let us call this cube the parent of Q;. Since the parent
Q' of Q; was not selected, we have [Q'| ™" [, | f|dx < c. Then
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2}’[
dx <2"
|Q/| Q/|f |Qj|/ /() |Q/|/Q,|f(x)| x<2%x

Consequently,

[ Wilax< [ irlax+1o; <2 [ |flax<2"alg),
Qj 9; Qj

1
— d
|Qj|/Q_,.f ¥

which proves (5). To prove (6), simply observe that
Yiolso ¥ [ iflav== [ flavs |7,
J &5 Jo; & Ju;Q; @

Next we need to obtain the estimates concerning g. We obviously have

f on R"\U; Qj,

8= 1 )
|Qj|/ijdx on Q;.

(4.3.3)

On the cube Q;, g is equal to the constant |Q;|~! fQ fdx, and this is bounded by
2"a. It suffices to show that g is bounded outside the union of the Q;’s. Indeed, for
each x e R"\ |J; ;Qj and for each k = 0,1,2,... there exists a unique nonselected

dyadic cube Q)(Ck> of generation k that contains x. Then for each k > 0, we have

1 1
’|Q(k)| /Q(xk)f(y)dy‘ < |Q(k)|/Q,(xk> [f()]dy < o

The intersection of the closures of the cubes Q)((k) is the singleton {x}. Using a ver-
sion of Corollary 2.1.16 where the balls are replaced with cubes, we deduce that for
almost all x € R"\ J; Q; we have

. 1

Since these averages are at most o, we conclude that |f| < a a.e. on R"\ U, 0},

hence |g| < o a.e. on this set. Finally, it follows from (4.3.3) that HgHLl < HfHLl'
This finishes the proof of the theorem. U

We now apply the Calderén—Zygmund decomposition to obtain weak type (1,1)
bounds for a wide class of singular integral operators that includes the operators T
we studied in the previous section.
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4.3.2 General Singular Integrals

Let K be a measurable function defined on R\ {0} that satisfies the size condition

sup/ K(x)|dx = A} < oo. 4.3.4)
R>0JR<|x|<2R

This condition is less restrictive than the standard size estimate

sup |x|"|K(x)| < oo, (4.3.5)

xeR”

but it is strong enough to capture size properties of kernels K(x) = Q(x/|x|)
where Q € L'(S"~!). We also note that condition (4.3.4) is equivalent to

up — |K(x)] [x] dx < oo. (4.3.6)
rR>0 R [x|[<R

See Exercise 4.3.1.
The size condition (4.3.4) is sufficient to make K a tempered distribution away
from the origin. Indeed, for ¢ € .(R") we have

(1 + )V o))
/\x|21| (x)@(x)|dx < Z/’"“>\x|>2m TT o dx

< ¥tz (1) o

3
xeR”

and the latter is controlled by a finite sum of Schwartz seminorms of ¢.
We are interested in tempered distributions W on R” that extend the function K
defined on R”\ {0} and that have the form

W(9) = lim K(x)@(x)dx, ¢ €. (RY), 4.3.7)

j=oJ1x>8;

for some sequence §; | 0 as j — co. It is not hard to see that there exists a tempered
distribution W satisfying (4.3.7) for all ¢ € .(R") if and only if

lim K(x)dx=L (4.3.8)

J=o J1>|x]>8;

exists. See Exercise 4.3.2. If such a distribution W exists it may not be unique, since
it depends on the choice of the sequence J;. Two different sequences tending to zero
may give two different tempered distributions W of the form (4.3.7), both coinciding
with the function K on R"\ {0}. See Example 4.4.2 and Remark 4.4.3. Furthermore,
not all functions K on R"\ {0} give rise to distributions W defined by (4.3.7); take,
for example, K(x) = |x|~".

If condition (4.3.8) is satisfied, we can define
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W(ep) = lim K(x)o(x)dx (4.3.9)

J7eoJ j>|x[>6;

and the limit exists as j — oo for all ¢ € .(R") and is equal to

W)= [ K0)(@w)—00)drtoOLt+ [  Kx)p()dx.

Juj<t Sz

Moreover, the previous calculations show that W is an element of .’ (R").

Next we assume that the given function K on R"\ {0} satisfies a certain smooth-
ness condition. There are three kinds of smoothness conditions that we encounter:
first, the gradient condition

VK@) <Al "1 x#0; 43.10)
next, the weaker Lipschitz condition,

é
|K(x—y) —K(x)]| §A2| |yn|+5 , whenever |x| > 2|y|; (4.3.11)
x

and finally the even weaker smoothness condition
sup/ |K(x—y)—K(x)|dx=A,, (4.3.12)
y#£0 /x| >2]y|

for some A, < co. One should verify that (4.3.12) is a weaker condition than (4.3.11),
which in turn is weaker than (4.3.10). Condition (4.3.12) is often referred to as
Hormander’s condition.

4.3.3 L" Boundedness Implies Weak Type (1,1) Boundedness

This next theorem provides a very classical application of the Calder6n—Zygmund
decomposition.

Theorem 4.3.3. Assume that K is defined on R"\ {0} and satisfies (4.3.12) for some
Ay < oo Let W € ' (R") be as in (4.3.7) coinciding with K on R"\ {0}. Suppose
that the operator T given by convolution with W maps L"(R") to itself with norm B
for some 1 < r < oo, Then T has an extension that maps L' (R") to L' (R") with
norm

T |l1 e < Ca(A2+B), (4.3.13)

and T also extends to a bounded operator from LP (R") to itself for 1 < p < oo with
norm
I7]

1 < Cpmax (p,(p—1)7") (A2 +B), (4.3.14)

where C,,C), are constants that depend on the dimension but not on r or p.
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Proof. We first explain the idea of the proof. We write f = g + b; hence

T(f)=T()+T(b).

The function 7'(g) is in L and thus it satisfies a weak type L" estimate. The bad part
of f is a sum of functions with mean value zero. Cancellation is used to subtract a
suitable term from every piece of the bad function that allows us to use Hérmander’s
condition (4.3.12). Let us proceed with the details. We work out the case r < o and
we refer to Exercise 4.3.7 for the case r = oo.

Fix o > 0 and let f be in L' (R"). We assume that f is in the Schwartz class since
T (f) may not be a priori defined for f € L' (R"). Once (4.3.13) is obtained for f in
.7 (R™), a density argument gives that 7 admits an extension on L' that also satisfies
(4.3.13). Apply the Calderén—Zygmund decomposition to f at height ya, where y
is a positive constant to be chosen later. That is, write the function f as the sum

f=g+0b,

where conditions (1)—(6) of Theorem 4.3.1 are satisfied with the constant & replaced
by ya. We denote by £(Q) the side length of a cube Q. Let Q7 be the unique cube
with sides parallel to the axes having the same center as Q; and having side length

Q) =2v/nt().
We have
H{xeR":T(f)(x)| > a}|

< ’{xeR“: IT(g)(x)] > %}‘+‘{xeR”: IT(b)(x)| > %}]

{X¢LJJQ§: TB)WI > 2}

L,+2|Q| /(U]Q*) IT(b) ()] dx

or

< —Bng

2r flin
22T ()|l + vy | ”L +2Y /(Q*)CIT(bj)(x)\dx
J J

(e Y 2y o

It suffices to show that the last sum is bounded by some constant multiple of the
L' norm of f. It is here where we use the fact that b ; has mean value zero and
Hormander’s condition (4.3.12).

Let y; be the center of the cube Q;. We have
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N IMUOTCIEEED o
) ;/< o, "1V
<L, b0l “|K(X—y)—K(x—yj)\dxdy
a Z/ |b |/ K(x—(y— )’j)) K(x)|dxdy
< ; Qj|bj(y)|/‘x‘22‘y7yj‘ IK(x—(y—y;)) — K(x)|dxdy
<A ) |1bill,

J

<2 f]

K(x— ydy’d

K(x—y)—K(x—yj))dy‘ dx

where we used the fact that if x € —y; + (Q7) then |x| > %é(Q}‘) =/nl(Q;). But

since y —y; € —y;j+ Qj, we have [y —y;| < @E(Qj), thus [x| > 2|y —y;|. Here we
used the fact that the diameter of a cube is equal to \/n times its side length. See
Figure 4.2.

ALY

Fig. 4.2 The cubes —y; + Qj and —y; + Q5. —y+0*

Choosing y = 2~ "*1)B~!, we deduce the weak type (1, 1) estimate (4.3.13) for
T with C, = 2421 (2y/n)" +2"+2.

In view of Exercise 1.3.2, we have that 7 maps L” to LP with bound at most
C (A2 +B)(p—1)'/P whenever 1 < p < r. This proves (4.3.14) for I < p <r. To
obtain a similar conclusion for r < p < « we use duality. Notice that the adjoint
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operator T* of T, defined by

(T(f)|g)={fIT"(g)),

has a kernel that coincides with the function K*(x) = K(—x) on R"\ {0}. Next we
notice that since K satisfies (4.3.12), then so does K* and with the same bound.
Therefore, 7%, which maps L’ to L’/, has a kernel that satisfies Hormander’s con-
dition. It must therefore map L' to L' and L” to L? for 1 < p/ < ¥ with norm at
most C(A; +B)(p' —1)~!, by the argument just shown. It follows that T maps L”
to LP with norm at most C},(Ay + B)p for r < p < o, and this proves (4.3.14). [

4.3.4 Discussion on Maximal Singular Integrals

In this subsection we introduce maximal singular integrals and we derive their
boundedness under certain smoothness conditions on the kernels, assuming bound-
edness of the associated linear operator.

Suppose that K is a kernel on R\ {0} that satisfies the size condition

K (x)] < Aqlx|™" (4.3.15)

for x # 0. Then for any & > 0 the function K(®)(x) = X[ 7" X|x|z¢ lies in L’ (R")
(with norm c,,’,,s_"/ Py for all 1 < p < oo. Consequently, by Holder’s inequality, the
integral

(Fek @ = [ Fe-nKG)ay

converges absolutely for all x € R" and all f € LP(R"), when 1 < p < 0.
Let f € Uj<p<e LF (R"). We define the truncated singular integrals T€)(f) asso-
ciated with the kernel K by setting

TE(f) = f+K®)

we also define the maximal truncated singular integral operator associated with K
by setting
TO(f) = sup (7 +K©)] = sup| T (/)]
e>0
This operator is well defined, but possibly infinite, for certain points in R".

We now consider the situation in which the kernel K satisfies an integrability
condition over concentric annuli centered at the origin, a condition that is certainly
a weaker condition than (4.3.15). Precisely, suppose that K is a function on R"\ {0}
for which there is a constant A} < o such that

sup/ IK(x)|dx < Ay < oo. (4.3.16)
R>0JR<|x|<2R
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Such kernels may not be integrable to the power p’ > 1 over the region |x| > €.
For this reason, it is not possible to define 7€) as an absolutely convergent integral.
To overcome this difficulty, we consider double truncations. We define the doubly
truncated kernel K(¢V) by setting

KEN) (x) = K(X)ng\x\gN(x)~ 4.3.17)

A repeated application of (4.3.16) yields that

N
/ |KEN (x)|dx < A, ([logz E} + 1) :
which implies that K(&V) is integrable over concentric annuli centered at the origin.
Next, we define the doubly truncated singular integrals 7 (¢V) by setting

TEN () = 4K,

and we observe that these operators are well defined when f in L?, for 1 < p < oo,
Indeed, Theorem 1.2.10 yields that

[T, <11 [ KD )l dx <o
for functions f in L?, 1 < p < co. Consequently, for almost every x € R” we have
ITEN () (x)] < oo

For functions in {J; < <., L” (R") we define the doubly truncated maximal singular
integral operator T**) associated with K by setting

T (f) = sup |TEV(f)]. (4.3.18)

0<eE<N<oo

For such functions and for almost all x € R, T*)(f)(x) is well defined, but poten-
tially infinite.

One observation is that under condition (4.3.16), one can also define T(*>(g)
for general integrable functions g with compact support. In this case, say that the
ball B(0,R) contains the support of g. Let x € B(0,M) and N = M + R. Then
1T (g)(x)| < |g| *|K®N|(x), which is finite a.e. as the convolution of two L!
functions; consequently, the integral defining T(¢)(g)(x) converges absolutely for
all x € B(0,R). Since R > 0 is arbitrary, T(¢)(g)(x) is defined and finite for almost
allx € R™.

Obviously T™) and T™*) are related. If K satisfies condition (4.3.15), then

Flx—)K0) dy‘ < sup
N>0

| Sa=K)dy).
e<pl<N

e<ly|

which implies that
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T (f) <TUI(f)
forall f € Uj<pewl?. Also, TEN () = TE (f) = TN (f); hence
T (f) <27 (f).

Therefore, for kernels satisfying (4.3.15), 7**) and T*) are comparable and the
boudnedness properties of 7**) and 7*) are equivalent

Theorem 4.3.4. (Cotlar’s inequality.) Ler 0 < Aj,A3,A3 < oo and suppose that K
is defined on R"\ {0} and satisfies the size condition,

|K(x)|dx <Aylx|™", x#0, (4.3.19)
the smoothness condition
K (x—y) = K(x)| < Aaly|®[x] "2, (4.3.20)

whenever |x| > 2|y| > 0, and the cancellation condition

/ K(x)dx
r<|x|<R

Let W be any tempered distribution on R" that coincides with K on R"\ {0} and let
T be the operator given by convolution with W. Then there is a constant C, 5 such
that the following inequality is valid:

sup
0<r<R<eo

< As. 4.321)

T (f) < M(T(f)) +Cp5 (A1 +Az+A3) M(f), (43.22)

forall f € LP, 1 < p < oo, where M is the Hardy-Littlewood maximal operator. Thus
the LP boundedness of T for 1 < p < oo can be deduced from that of T.

Proof. Let ¢ be a radially decreasing smooth function with integral 1 supported
in the ball B(0,1/2). For a function g and € > 0 we use the notation g¢(x) =
£ "g(e~x). For a distribution W we define W, analogously, i.e. as the unique dis-
tribution with the property (We,y) = & (W, y,1). We begin by observing that
K1 (x) = €"K(&x) satisfies (4.3.19), (4.3.20), and (4.3.21) uniformly in € > 0.

Set, as before, K(&) (x) = K(x)X|x|>¢- Fix f € LP(R") for some 1 < p < oo. Obvi-
ously we have

K = fa (K )V), = fxWar e+ f5 (Ke)V =W 50),. (43.23)
Next we prove the following estimate for all € > O:
[(Ke- 1) = W1 % 9) (x)| < C(A1 +A2) (1 +|x) "2 (4.3.24)

for all x € R”. Indeed, for |x| > 1 we express the left-hand side in (4.3.24) as
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[ (Ker @) =Ker(x=3) () dy).

Since ¢ is supported in |y| < 1/2, we have |x| > 2|y|, and condition (4.3.20) yields
that the expression on the left-hand side of (4.3.24) is bounded by

A / s A
2 dy<e—2

which proves (4.3.24) in the case |x| > 1. When |x| < 1, the left-hand side of (4.3.24)
can be written as

(We1 x@)(x) = lim Ko 1i(x—y)o(y)dy (4.3.25)
8j=0/|x—y|>9;

for some sequence 6j 1 0; see the discussion in Section 4.3.2. The expression in
(4.3.25) is equal to
L+b+1,

where

B=p@fm [ Keray.
In I} we have 1/8 <|x—y| < 1+1/2=3/2; hence I is bounded by a multiple of
Aj. Since |@(x) — @(y)| < c|x —y|, the same is valid for L. Finally, I3 is bounded
by a multiple of A3. Combining these facts yields the proof of (4.3.24) in the case
|x| < 1 as well.

Use Corollary 2.1.12 to deduce that

sup | f ((stl)(') —Ko1%0), | <c(A1+Ay+A3)M(f).

>0

Finally, take the supremum over € > 0 in (4.3.23) and use (4.3.24) and Corollary
2.1.12 one more time to deduce the estimate

T(*)(f) <M(f+«W)+C(A+Ar+A3)M(f),

where C depends on n and &, thus concluding the proof of (4.3.22). 0
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4.3.5 Boundedness for Maximal Singular Integrals Implies Weak
Type (1,1) Boundedness

We now state and prove a result analogous to that in Theorem 4.3.3 for maximal
singular integrals.

Theorem 4.3.5. Let K(x) be function on R"\ {0} satisfying (4.3.4) with constant
A1 < oo and Hormander’s condition (4.3.12) with constant Ay < oo. Suppose that the
operator T™**) as defined in (4.3.18) maps L? (R") 10 itself with norm B. Then 70
maps L' (R") to L' (R") with norm

T e < GulAr +42+B),

where C,, is some dimensional constant.

Proof. The proof of this theorem is only a little more involved than the proof of
Theorem 4.3.3. We fix an L'(R") function f. We apply the Calderén-Zygmund
decomposition of f at height yor for some ¥, o > 0. We then write f = g+ b, where
b =1Y;bj and each b; is supported in some cube Q;. We define Q; as the cube
with the same center as Q; and with sides parallel to the sides of Q; having length
£(Q3) = 5y/nt(Q;). This is only a minor change compared with the definition of Q;
in Theorem 4.3.3. The main change in the proof is in the treatment of the term

er (UQ;%)C: 764 () ()] > %H (4.3.26)
J
We show that for all ¥ < (2"75A;)~! we have
Hx e (UQ}‘.)C T (b) ()] > %H <2mt84, Hf(ﬂ” (43.27)
]

Let us conclude the proof of the theorem assuming for the moment the validity of
(4.3.27). As in the proof of Theorem 4.3.3, we can show that

(04

{rerr: 1)) > 7| +\L]JQ§ < (22py+ “@”)HfHu,

Combining this estimate with (4.3.27) and choosing
y=(2"5 (A +A,+B))!,
we obtain the required estimate

|{x€ R": |T(**)(f)(x)\ > OCH < G4y —i—z‘\2—|—3)||];|C|LI

with C, = 273 + (5/n)"2"+5 4 27+8,
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It remains to prove (4.3.27). This estimate will be a consequence of the fact that
forx e (U j Q*) we have the key inequality

T4 (b)(x) < 4E) (x) + 2" 2 ayEsr (x) + 2" P ayA, (4.3.28)

where

Z IKx y) = K(x—=yj)llb;(y)|dy,
=;/Qj|1<<x—y>—1<<x—y,~>|dy7

and y; is the center of Q;.
If we had (4.3.28), then we could easily derive (4.3.27). Indeed, fix a y satisfying
¥ < (2""A;)~!. Then we have 2" ayA; < %, and using (4.3.28), we obtain

fee (Uo) moian > 2
<lfee (Uar) om0 &)
J

(4.3.29)
* € ont2 ﬁ ‘
+er (L]JQ]) L 22 qyEs (x) > 12}
48 n+6
< —/ E (x)dx+2"""y E>(x)dx,
o J(U;05)¢ ;5
since § = § + {5 + 5. We have
/ E;(x)dx
(U; 03
<Y [ [ 1K= y) = K(x-y,)|dxdy
J Qj (Qj)C
(4.3.30)
<Z |b )] [K(x—y) = K(x—y;)|dxdy
b=y |=>2[y—y,l

) /Q 1bi)ldy = A L lbjll <402 1]
Jj s J

where we used the fact that if x € (Q7)¢, then |x —y;| > %E(Q;‘) = 3/nt(Q;). But
since [y—y;| < % £(Qj), this implies that |x—y;| > 2|y—y;|. Here we used the fact
that the diameter of a cube is equal to /n times its side length. Likewise, we obtain

that
iy

E, <A <A 4331
/<u,-Q;> (x) dx Z\Q| 4331)
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Combining (4.3.30) and (4.3.31) with (4.3.29) yields (4.3.27).

9

Fig. 4.3 The cubes Q; and Q7.

Therefore, the main task of the proof is to prove (4.3.28). Since b =}, j bj, to
estimate 7*) (b), it suffices to estimate each |TN)(b;)| uniformly in & and N. To
achieve this we use the estimate

IT(S.N) (bj)| < |T(8) (bj)| + |T(N) (bj)| ) (4.3.32)

noting that the truncated singular integrals 7€) (b;) are well defined. Indeed, say x
lies in a compact set Ky. Pick M such that Ko — Q; is contained in a ball B(0,M).
Then

17 (b)) (x)] < [bj|+ KM (x),

which is finite a.e. as the convolution of two L' functions; thus the integral defining
T(®)(b;)(x) converges absolutely and the expression 7€) (b;)(x) is well defined for
almost all x.

We work with 7€) and we note that 7(") can be treated similarly. Fix x ¢ |J ;05
and € > 0 and define

Ji(x,€) ={j: Vye Q; wehave [x—y| <&},
Jr(x,€) ={j: Vye Q; wehave [x—y| > €},
J3(x,€) ={j: Iy € Q; wehave |[x—y| =€}

Note that
7 (b;)(x) =0
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whenever x ¢ {J; Qjand j €, (x,€). Also note that
K®(x—y) = K(x—y)
whenever x ¢ {J; Q5. jeh (x,€) and y € Q;. Therefore,

22%\T<8)(b)(x)|§8up| Y, T)))|+sup| Y Tt 2e) ()],

€20 jer(xe) €>0 jers(xe)
but since
sup| ), T(by)()| <Y [T(b))(x)] < Eix), (4.3.33)
€20 je(xe) j

it suffices to estimate the term

sup‘ Z T(bj%\xfwzts)(x)‘-

€207 jeJs(x.e)

We now make some geometric observations; see Figure 4.3. Fix € > 0 and a cube
Q; with j € J3(x, €); recall that x lies in (U; @})¢. Then we have

e> 1 (HQ) ~10) = 5(5Va-DIQ) 2 2/al(Q). (4334

Since j € J3(x, €), there exists a yp € Q; with
|x—yo| =€.

Using (4.3.34), we obtain that for any y € Q; we have

&
3 S€- Vnl(Q;) < |x—yo| — |y —yo| < [x—yl,
3e

lx—y| < |x—yo|+[y—yo| < e+vnl(Q;) < 5

Therefore, we have proved that

U @SB F)\B(x.5).

JEJ3(x)

Letting

cj(€) ) Xy ze (V) dy s

1
=— b
|Qj | Q;
we note that in view of property (5) of the Calderén—Zygmund decomposition (The-
orem 4.3.1), the estimate |c;(€)| < 2"* !y holds. Then
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sl T [ K- yb0te )]
e>01 jeys(xe)’ Qi
< sup / K(x—y)(bj(y)xxy>e(y)—c/(8))dy‘
e>01 jeys(xe)’ Qi
+ sup / K(x—y dy’
£>0 /613 X,E)
< sup /Q (K(x—y) =K(x—=y)) (bj(3) Xpx—y|>e (V) _Cj(e))d)"
&> i

JEJ3(x,€)

+ 2" oy sup , [K(x—y)|dy
£>0/B(x,%)\B(x,§)

;/Qj|K(x—y)_K(x—yj)|(bj(y)|+2n+1a,y)dy

IA

+2"  arysup [K(x—y)|dy

e>0J §<[x—y|<3E

< E(x)+ 2" ayEsy (x) + 2" L ay(241) .

The last estimate, together with (4.3.33), with (4.3.32), and with the analogous esti-
mate for supy-o|7T™)(b;)(x)| (which is similarly obtained), yields (4.3.28). O

The value of the previous theorem lies in the following: Since we know that for
some sequences €; | 0, N; | oo the pointwise limit T(EN))(f) exists a.e. for all fina
dense subclass of L', then Theorem 4.3.5 allows us to deduce that 7€/ () exists
a.e. forall fin L' (R").

If the singular integrals have kernels of the form Q(x/|x|)|x|™" with £ in L™,
such as the Hilbert transform and the Riesz transforms, then the upper truncations
are not needed for K in (4.3.17). In this case

is well defined for f € Uj<pco LP (R") by Holder’s inequality and is equal to
Q
o/bD)

lim x—y)———2dy.
N—eo, ESMSNf( 2 Iyl Y

Corollary 4.3.6. The maximal Hilbert transform H"*) and the maximal Riesz trans-

forms R;*) are weak type (1,1). Secondly, limg_oH'€) (f) and limg_>oR5.€)(g) exist

a.e. forall f € L'(R) and g € L'(R"), as € — 0.

Proof. Since the kernels 1/x on R and x;/|x|" on R” satisfy (4.3.10), the first state-
ment in the corollary is an immediate consequence of Theorem 4.3.5. The second
statement follows from Theorem 2.1.14 and Corollary 4.2.8, since these limits exist
for Schwartz functions. O
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Corollary 4.3.7. Under the hypotheses of Theorem 4.3.5, T"*) maps LP(R") to it-
self for 1 < p < 2 with norm

Cn(Al +A2 +B)

(%)
7] -

)

LP—Lp =

where C,, is some dimensional constant.

Exercises

4.3.1. Let A| be defined in (4.3.4). Prove that

1 1
—A; <sup— |K(x)||x|dx <2Ay;
2 r>0 R Jlx|<r

thus the expressions in (4.3.6) and (4.3.4) are equivalent.

4.3.2. Suppose that K is a locally integrable function on R"\ {0} that satisfies
(4.3.4). Suppose that §; | 0. Prove that the principal value operation

W(ep) = lim K(x)o(x)dx

J—eJ§i<|x|<1

defines a distribution in .#”/(R") if and only if the following limit exists:

lim K(x)dx.
JoeJ§i<lx <1

4.3.3. Suppose that a function K on R"\ {0} satisfies condition (4.3.4) with con-
stant A and condition (4.3.12) with constant Aj.

(a) Show that the functions K(x)|y > also satisfy condition (4.3.12) uniformly in
€ > 0 with constant A + A».

(b) Obtain the same conclusion for the upper truncations K (x) Xlx|<n-

(c) Deduce a similar conclusion for the double truncations K ¢) (x) = K (x) Xe<|x|<N-

4.3.4. Modify the proof of Theorem 4.3.5 to prove that if T+) maps L" to L" for
some 1 < r < oo, and K satisfies condition (4.3.12), then 7(**) maps L' to L.

4.3.5. Assume that T is a linear operator acting on measurable functions on R"
such that whenever a function f is supported in a cube Q, then T'(f) is supported in
a fixed multiple of Q.

(a) Suppose that 7 maps L? to itself for some 1 < p < co with norm B. Prove that T’
extends to a bounded operator from L' to L with norm a constant multiple of B.
(b) Suppose that T maps L? to L? for some 1 < g < p < o with norm B. Prove that
T extends to a bounded operator from L' to L** with norm a multiple of B, where
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4.3.6. (a) Prove that the good function g in the Calder6n—Zygmund decomposition
of f = g+ b at height & lies in the Lorentz space L% for 1 < g < . Moreover, for
some dimensional constant C,, we have HgHLq’1 < Cnoc'/‘/ HfHLl'
(b) Using this result, prove the following generalization of Theorem 4.3.3: If T maps
L% to L9 with norm B for some 1 < g < oo, then T is weak type (1,1) with norm
at most a multiple of A + B.
(c) When 1 < g < oo, use the results of Exercise 1.1.12 and Exercise 1.4.7 to prove
that if .

e 1T () ()| > @) < B2
for all subsets E of R” with finite measure, then T is weak type (1, 1) with norm at
most a multiple of A, + B.

4.3.7. Let K satisfy (4.3.12) for some A, >0, let W € .#/(R") be an extension of K

on R" as in (4.3.7), and let 7' be the operator given by convolution with W. Obtain
the case r = o in Theorem 4.3.3. Precisely, prove that if 7 maps L”(R") to itself
with constant B, then 7 has an extension on L' + L™ that satisfies

|71 < Ch(A2 4 B),
and for 1 < p < o it satisfies

I
<Cp——
(p—1)»

LP—LP =

1]

(A2 +B),

where C,,,C,, are constants that depend only on the dimension.
[Hint: Apply the Calderon—Zygmund decomposition f = g+ b at height oy, where
y=(2""'B)~!. Since |g| < 2"ay, observe that

o TN > e} < [{x: |T(B)(x)] > a/2}].
For the interpolation use the result of Exercise 1.3.2.}

4.3.8. (Calderén—Zygmund decomposition on L?) Fix a function f € LY(R") for
some 1 < g < oo and let & > 0. Then there exist functions g and b on R” such that

(1) f=g+b.
@ |80 < /10 and [lg] - <270

B3)b=Y, j b;, where each b is supported in a cube Q;. Furthermore, the cubes Oy
and Q; have disjoint interiors when j # k.

@ [lb;zq < 2" 1a%]0)].

%) fQj bj(x)dx=0.
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(©6) ;101 < | £][7,.

ntq
) [[ell <27 [1£]] and o]l < 2009 17,

[Hint: Imitate the basic idea of the proof of Theorem 4.3.1, but select a cube Q if
(ﬁ Jolf(x)]4dx) 4 - 0. Define g and b as in the proof of Theorem 4.3.1.]

4.3.9. Let f € L'(R"). Then for any o > 0, prove that there exist disjoint cubes Q j
in R” such that the set Eq = {x € R" : M.(f)(x) > a} is contained in {J;3Q; and
¥ <tgrlo,lf@0]dr < %

[Hint: For given a > 0, select all maximal dyadic cubes Q; () such that the average
of f over them is bigger than a. Given x € E, pick a cube R that contains x such
that the average of | f| over R is bigger than & and find a dyadic cube Q such that
27"|Q| < |R| < |Q| and that [p-,|f|dx > 27"a|R|. Conclude that Q is contained
in some Q(4 ") and thus R is contained in 30 (4 "a). The collection of all
Qj=0j(4"a) is the required one. |

4.3.10. Let K(x) be a function on R"\ {0} that satisfies |K(x)| < A|x|~". Let n(x)
be a smooth function that is equal to 1 when |x| > 2 and vanishes when |x| < 1. For
feLP, 1< p< oo, define truncated singular integral operators

TE(f)(x) = / K)f(x=y)dy,

lyl>e

190 = [ n0/eKOfx-y)dy.

Show that the truncated maximal singular integral T(*)(f) = sup- |7 € (f)| is L?
bounded for 1 < p < oo if and only if the smoothly truncated maximal singular in-

tegral TTg*) (f) = supg=g |TT§£) (f)| is L? bounded. Formulate an analogous statement
forp=1.

4.3.11. (M. Mastylo) Let 1 < p < oo. Suppose that T; are linear operators defined
on L (R") such that for all f € LP(R") we have |T¢(f)| <Ae~||f]|,, for some
0 < a,A < o. Also suppose that there is a constant C < oo such that the maximal
operator T..(f) = sup-q |Te(f)| satisfies ||7.(h)||,, < C||h’ for all h € 7 (R").
Prove that the same inequality is valid for all f € LP(R").

[Hint: For a fixed 8 > 0 define S5 (f) = supg~ s |Te(f)|.
tional on L?(R"). For a fixed fy € L”(R") define a linear space Xo = {A fp: A € C}
and a linear functional Tp on Xy by setting To(A fo) = ASs(fo). By the Hahn—
Banach theorem there is an extension Ty of Ty that satisfies |To(f)| < Sg(f) for
all f € LP(R"). Since S is L? is bounded on Schwartz functions with norm at most
C, then so is Tp. But Tj is linear and by density it is bounded on LP(R") with norm

at most C; consequently, |S5(f0)HM = HTO(fO)HLP = Hﬁ)(fo)”u’ < CHfOHU' The
required conclusion for 7, follows by Fatou’s lemma.}

Ly
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4.4 Sufficient Conditions for L” Boundedness

We have used the Calder6n—Zygmund decomposition to prove weak type (1,1)
boundedness for singular integral and maximal singular integral operators, assum-
ing that these operators are already L> bounded. It is therefore natural to ask for
sufficient conditions that imply L? boundedness for such operators. Precisely, what
are sufficient conditions on functions K on R"\ {0} so that the corresponding sin-
gular and maximal singular integral operators associated with K are L? bounded?
We saw in Section 4.2 that if K has the special form K(x) = Q(x/|x|)/|x|" for some
Q € L'(S"!) with mean value zero, then condition (4.2.16) is necessary and suf-
ficient for the L? boundedness of T, while the L2 boundedness of T*) requires the
stronger smoothness condition (4.2.23).

For the general K considered in this section (for which the corresponding op-
erator does not necessarily commute with dilations), we only give some sufficient
conditions for L? boundedness of T and T %),

Throughout this section K denotes a locally integrable function on R" \ {0} that
satisfies the “size” condition

sup/ |K(x)|dx=A) < oo, (4.4.1)
R>0J/R<|x|<2R

the “smoothness” condition
sup / IK(x—y) — K(x)|dx = Ay < oo, 4.4.2)
y7#0 J [x|=2[y

and the “cancellation” condition

K(x)dx

R <|x|<R,

sup
0<R|<Rp<oo

:A3 < oo, (4.4.3)

for some Aj,A,,A3 > 0. As mentioned earlier, condition (4.4.2) is often referred to
as Hormander’s condition. In this section we show that these three conditions give
rise to convolution operators that are bounded on L?.

4.4.1 Sufficient Conditions for LP Boundedness of Singular
Integrals

We first note that under conditions (4.4.1), (4.4.2), and (4.4.3), there exists a tem-
pered distribution W that coincides with K on R”\ {0}. Indeed, condition (4.4.3)
implies that there exists a sequence §; | 0 such that

lim K(x)dx=L
= J8j<x|<1
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exists. Using (4.3.8), we conclude that there exists such a tempered distribution W.
Note that we must have |L| < A3.

We observe that the difference of two distributions W and W' that coincide with
K on R"\ {0} must be supported at the origin.

Theorem 4.4.1. Assume that K satisfies (4.4.1), (4.4.2), and (4.4.3), and let W be a
tempered distribution that coincides with K on R"\ {0}. Then we have

sup  sup |(Kxe<|.|<n) (&)| < 15(A1 + A2 +A3). (4.4.4)
0<e<N<eo £E£0

Thus the operator given by convolution with W maps LZ(R”) to itself with norm at
most 15(A} + A, +A3). Consequently, it also maps L' (R") to L'*(R") with bound
at most a dimensional constant multiple of A| + Az + Az and LP(R") to itself with
bound at most Cymax(p, (p—1)~') (A1 + Az +A3), for some dimensional constant
Cp, whenever 1 < p < oo,

Proof. Let us set KN (x) = K(x X)Xe<|xj<n- If we prove (4.4.4), then for all f in
- (R") we will have the estimate

7« KO | < 15(A1+ 42 +43)]| 1]
uniformly in j. Using this, (4.3.9), and Fatou’s lemma, we obtain that
17 Wl,2 < 15(A1+A2 + A3)]|f] 2

thus proving the second conclusion of the theorem.

Let us now fix a & with € < |£|~! < N and prove (4.4.4). Write K(&N)(£) =
L(E)+L(§), where

WE) = [ Kweiar,
e<lx|<|§|!

b(E) = / K(x)e 27 .
€]~ <lx|<N

‘We now have

nE) = / g K / g KOEE s @4

It follows that

(&) <As+2mlg] | e Il [K(x)[dx < A3 +27(24,)

uniformly in €. Let us now examine L (&). Let z = zé—‘z so that ¢2™<% = —1 and

2|z| = |E|~!. By changing variables x = x’ — z, rewrite I as
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-/
L&) = _/ K( —z)e 2™ 5 ay;
[E]-T<|x! —z|<N

hence averaging gives

307

1 omixé 1 / omixE
I == K dx— = K(x— dx.
2(e) 2/\&\’1<\x|<N (®)e P2 et egen (e=2)e )

Now use that

/Fdx—/de:/(F—G)dx+ Fdx— Fdx
Ja B B JA\B JB\A

to write ,(§) = J1(§) +/2(6) +3(8) +Ja(§) +J5(5), where

1 )
N(8) = +3 (K(x) — K(x—z))e 2" dx,
[E]7T<|x—z|<N
h(&) = Jr% / K(x) e~ 2ming dx,
&~ <|x|<N
le—z|<|g| !
1 .
K@) =+5 [ Kwetax,
&7 <[x| <N
[x—z|>N
1 )
Ji(&) = — > K(x)e 2™ dx
|&] 7 <|x—z]<N
[x[<|&] !
J5(€) = f% K(x)e 2%*¢ g
|E|7 < |x—z]<N
[x|>N

(4.4.6)

4.4.7)

(4.4.8)

(4.4.9)

(4.4.10)

(4.4.11)

Since 2z| = |£[~!, J; (&) is bounded in absolute value by 1A, in view of (4.4.2).
Next observe that [£|~! < [x[ < 3|&|7! in (4.4.8), while 3|&|~! < |x] < |€]7!

in (4.4.10); hence both of these terms are bounded by %A]. Finally, we have %N <

x| < N in (4.4.9) (since [x| > N — 1[&|~1), and similarly we have N < |x| < 3N in

(4.4.11). Thus both J3 and J5 are bounded above by %Al.

We are left to consider the cases ¢ <N < |£|~! and |£|~! < & < N. In the first

case we estimate

/ K(x)e 2™ dx
e<|x|<N

by adapting the previous argument for the term /;, while in the second case we run

the argument used for the term /, to complete the proof.

O
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4.4.2 An Example

We now give an example of a distribution that satisfies conditions (4.4.1), (4.4.2),
and (4.4.3).

Example 4.4.2. Let T be a nonzero real number and let K(x) = T I” - defined for
x € R"\ {0}. For a sequence & | 0 and ¢ a Schwartz function on R", define

' dx
W, — 4.4.12
(W.p)=fim [ 00) i (44.12)

whenever the limit exists. We claim that for some choices of sequences &, W is a
well defined tempered distribution on R". Take, for example, & = e 27/ For this
sequence O, observe that

_ (,—27mk/T\—iT
/ %dx:a)nill(e—.):(),
F<hl<t X" —it
and thus
dx dx
W, @)= —0(0) ——— / —_— 4.4.13
W.o)= [ _ (@000 prt [ ormm, @Ay

which implies that W € .’ (R"), since
[(W. o) < ClIVe = + || K (] ] -
If ¢ is supported in R"\ {0}, then
(W.0) = [ K(x)o(x)dx.

Therefore W coincides with the function K away from the origin. Moreover, (4.4.1)
and (4.4.2) are clearly satisfied for K, while (4.4.3) is also satisfied, since

—iT —iT
Rl — R2
—iT

2wn—1
4

= Wy—1

——dx
-/Rl<|x|<Rz e[ ’

Remark 4.4.3. It is important to emphasize that the limit in (4.4.12) may not exist
for all sequences & — 0. For example, the limit in (4.4.12) does not exist if & =
e~ /T Moreover, for a different choice of a sequence & for which the limit in

m(2k+1)/ ), we obtain a different distribution W,
—n—it

(4.4.12) exists (for example, 6 = e~
that coincides with the function K (x) = |x|

We discuss a point of caution. We can directly check that the distributions W
defined by (4.4.12) are not homogeneous distributions of degree —n — it. In fact,
the only homogeneous distribution of degree —n — iT that coincides with the func-
tion |x| "~ away from zero is a multiple of the distribution u_, ;;, where u, is
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defined in (2.4.6). Let us investigate the relationship between u_,_;r and W defined
in (4.4.13). Recall that (2.4.7) gives

<M7n7i’c7 (P> = /|x\21 (P(x) 1_‘7(1::17%) |x|*n7irdx
ALV S
+‘/‘x (90— 9O gy et S s0(0).

Using (4.4.13), we conclude that u_,,_;; —c{W = ¢, & for suitable nonzero constants
c1 and c,. Since the Dirac mass at the origin is not a homogeneous distribution of
degree —n —i7, it follows that neither is W.

Since i_,_;; = ujr = c3|E|', the identity u_, ;jz —c1W = 28 can be used to
obtain a formula for the Fourier transform of W and thus produce a different proof
that convolution with W is a bounded operator on L?(R™).

4.4.3 Necessity of the Cancellation Condition

Although conditions (4.4.1), (4.4.2), and (4.4.3) are sufficient for L? boundedness,
they are not necessary. However, (4.4.3) is also necessary. We have the following:

Proposition 4.4.4. Suppose that K is a function on R"\ {0} that satisfies (4.4.1). Let
W be a tempered distribution on R" extending K given by (4.3.7). If the operator

T(f) = f *W maps L*(R") to itself (equivalently lfW is an L™ function), then the
Sfunction K must satisfy (4.4.3).

Proof. Pick a radial € function ¢ supported in the ball |x| <2 with 0 < @ < 1,
and @(x) = 1 when |x| < 1. For R > 0 let ¢®(x) = ¢(x/R). Fourier inversion for
distributions gives the second equality,

o~

W ¢")(0) = (W.9%) = (W, %) = | WERDRE)dE,
and the preceding identity implies that

W5 0) O] < Wl [9ll =17l 22 11l

uniformly in R > 0. Fix 0 < R; < Ry < co. If Ry < 2Rj, we have

K(x)dx| < / K(x)|dx < Ay,

R1<‘X‘<R2 R1<‘X‘<2R1

which implies the required conclusion. We may therefore assume that 2R; < R;.
Since the part of the integral in (4.4.3) over the set R; < |x| < 2R; is controlled by
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Ay, it suffices to control the integral of K(x) over the set 2R| < |x| < R,. Since the
function @®2 — @1 is supported away from the origin, the action of the distribution
W on it can be written as integration against the function K. We have

K(x)(9™ (x) — 9™ (x)) dx
R)L

= / x)dx+ / ))dx + / (x)dx.

2R1<|x|<R2 R1<|X‘<2R1 R2<‘X|<2R2

The sum of the last two integrals is bounded by 3A; (since 0 < ¢ < 1), while the
first integral is equal to

(W% 9"2)(0) — (W x ¢™1)(0)

and is therefore bounded by 2HTH 1212 H(ﬁ H - We conclude that the function K
must satisfy (4.4.3) with constant

A3 <34 +2H¢HL1 HTHLZHLZ < C(Al + HTHHHLZ) :

4.4.4 Sufficient Conditions for LP Boundedness of Maximal
Singular Integrals

We now discuss the analogous result to Theorem 4.4.1 for the maximal singular
integral operator 7).

Theorem 4.4.5. Suppose that K satisfies (4.4.1), (4.4.2), and (4.4.3) and let T**)
be as in (4.3.18). Then T"™*) is bounded on LP(R"), 1 < p < oo, with norm

| 70| < Cumax(p, (p—1)71)(A1 +A2 +43),

LP—LP

where C,, is a dimensional constant.

Proof. We first define an operator T associated with K that satisfies (4.4.1), (4.4.2),
and (4.4.3). Because of condition (4.4.3), there exists a sequence 5j 1 0 such that

lim K(x)dx
= J8j<lx<1

exists. Therefore, for ¢ € ./(R") we can define a tempered distribution

(W, ) = lim K(x)p(x)dx

J=J8i<|x|<
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and an operator T given by T (f) = f*W for f € #(R"). In view of Theorems 4.4.1
and 4.3.3, T admits an L” bounded extension (1 < p < o) with

1]

Lo < cnmax(p, (p—1)" 1) (A1 +A2 +A3) (4.4.14)

and is weak type (1, 1). This extension is still denoted by 7.
Fix 1 < p <eoand f € LP(R")NL*(R") with compact support. We have

TEN(f)(x)
- /\ e KENS Dy = TE(f)(x) - TV (f)(x)

_/ K(x—y)f(y)dy— K(x—y)f(y)dy

e<|x—y| N<|r—y]

= [ K K ) 0)dy + / ) dy
e<[x—y|

~ [ KG-y)-K@-f0dy - [ K@) )y
N<|x—yl N<|x—y|

— /8<‘X_y‘(l<(x—y) —K(zi =) f0)dy+T(f)(21) = T(fApr—. <) (21)

o (KOG Kl ) 0)dy =T () e2) 4 T () 2),

where z; and z; are arbitrary points in R” that satisfy |z; —x| < £ and |z, — x| < %
We used that f has compact support in order to be able to write 7(¢)(f)(x) and
TW)(£)(x) as convergent integrals for almost every x.

At this point we take absolute values, average over |21 —x| < § and |zp — x| < %,
and we apply Holder’s inequality in two terms. We obtain the estimate

TEN () ()

2
<l<€> z —x|<§ x)|>8\K(x—y)—K(Z1—y)||f(y)|dyd21

2
— 21)|dz
(6) \mfo% ) 1)| :

1 /2
V<8) |Z] x\g%' (fx‘x* <€)(Zl)|pd21>

) K=~ K =] 70| vy

1

1

( (;) \zz—x\g%| (f X <N)(Z2)”dzz>p,
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where v, is the volume of the unit ball in R"”. Applying condition (4.4.2) and esti-
mate (4.4.14), we obtain for f in L”(R") N L*(R") with compact support that

TN () ()]
< i(i) ~/|zl—x<E|T(f)(Zl)|dZ1+Vln<]%f> /zZ_x|<§|T(f)(ZZ)dZ2

2

+C”<2Aj> max(p: (p = 1)1)(\; (z>n/z1x<g |f(11)|pd21)117

J=1

+cn(i1“j> max(p, (p—1)"") (vln (Ifl)n./nxm, |f(z2)|pdz2>’17

j=1
+ 242 f]] -

We now use density to remove the compact support condition on f and obtain the
last displayed estimate for all functions f in L (R")NL*(R"). Taking the supremum
over all 0 < € < N and over all N > 0, we deduce that for all f in L?(R") NL*(R")
we have the estimate

T (F)(x) < 24| f]| - +Sp (F) (%), (4.4.15)

where S, is the sublinear operator defined by

Sp()(x) = 2M(T(£))(x) +3" e (ZA)max — 1) )M f17) )7

and M is the Hardy-Littlewood maximal operator.

Recalling that M maps L' to L'* with bound at most 3" and also L? to LP* with
bound at most 2 - 3"/? for 1 < p < o (Exercise 2.1.4), we conclude that S, maps
LP(R") to LP>*(R") with norm at most

IS5

where ¢, is another dimensional constant.
Now write f = fo + f*, where

rppe < En(A1 A2+ As)max(p, (p—1)7"), (4.4.16)

fa=fApicason,y — and = fX 0064y
The function fg is in L NL? and % is in L'NLP. Moreover, we see that

1% < (1642 /0007 1117, (4.4.17)

Apply the Calderén—Zygmund decomposition (Theorem 4.3.1) to the function f¢
at height oy to write f* = g% 4 b%, where g% is the good function and % is the bad
function of this decomposition. Using (4.3.1), we obtain
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%]l < 277 (@) 7 | £ 147 <209 (a7 | £ 418)
We now use (4.4.15) to get
HxeR": T () (x) > al| < bi+by+bs, (4.4.19)
where

by = {x €R": 24| fu| - + Sp(fo) (x) > /43,
b, =|{xeR": 2A2Hgo‘||Lm+Sp(g“)(x) >a/4}|,
by = |[{xeR": T (%) (x) > a/2}].

Observe that 2A2Hfa HLN < a/8. Selecting y =2"""3(A; +A;) ! and using prop-

erty (2) in Theorem 4.3.1, we obtain
a ntl 4«
245||8%]| - < A2 oy < a2 <3

and therefore

by <[{x € R": 5p(fa)(x) > a/8},

4.4.20
by < |[{x€R": §,(g%)(x) > a/8}]. (4420

Since y < (2"3A;) "L, it follows from (4.3.27) that

+2n+8A2 HfaHLl < (Sﬁ)n +2n+8A2 ||JCO{HL1
o - Y o

)

baﬁ‘UQ}F’
J

and using (4.4.17), we obtain
by < Ca(Ar +A2)Pa " || £][7,
Using Chebyshev’s inequality in (4.4.20) and (4.4.16), we finally obtain that
b +by < (8/0)” (&) (A1+As+A3) max(p, (p— 1)) (|l £]17, +[|s*|%)-
Combining the estimates for b1, b,, and b3 and using (4.4.18), we deduce

[T (f)]] e < CalA1 + A2 +A3)max(p, (p—1)71)| £

R (4.4.21)
Finally, we need to obtain a similar estimate to (4.4.21), in which the weak L” norm
on the left is replaced by the L” norm. This is a consequence of Theorem 1.3.2 via
interpolation between the estimates L5 S L5 = and 122 — [2P= for 2 <p<o
and between the estimates L?” — L?”> and L' — L' for 1 < p < 2. The latter
estimate follows from Theorem 4.3.5. See also Corollary 4.3.7. 0
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Exercises

4.4.1. Suppose that T is a convolution operator that is L> bounded. Suppose that
f € L'(R")NL*(R") has vanishing integral and that T(f) is integrable. Prove that
T(f) also has vanishing integral.

4.4.2. Let K satisfy (4.4.1), (4.4.2), and (4.4.3) and let W € .’ be an extension of
K on R". Let f be a Schwartz function on R” with mean value zero. Prove that the
function f*W is in L' (R").

4.4.3. Suppose K is a function on R"\ {0} that satisfies (4.4.1), (4.4.2), and (4.4.3).
Let KN (x) = K(x) e<|x|<n for 0 < & <N < oo and let T(¢:V) be the operator given
by convolution with K(&V), Use Theorem 4.4.5 to prove that T(&:N)( £) converges to
T(f) in LP(R") and almost everywhere whenever | < p < e and f € LP(R") as
€ —0and N — oo,

4.4.4. (a) Prove that for all x,y € R” that satisfy |x| > 2|y| we have

xX—y x Iyl

x|

=yl

(b) Let Q be an integrable function with mean value zero on the sphere $"~!. Sup-
pose that Q satisfies a Lipschitz (Holder) condition of order 0 < o < 1 on 8",
This means that

|2(61) —Q2(6,)| < Bo|6; — 6:]*

for all 8;,6, € S"~!. Prove that K(x) = Q(x/|x|)/|x|" satisfies Hormander’s condi-
tion with constant at most a multiple of By + H.Q || =

4.4.5. Let Q be an L' function on S"~! with mean value zero.

() Let (1) = sup{|Q(6;) — 2(6,)|: 61,6, € S""!, |6, — 6| <t} and suppose
that the following Dini condition holds:

L dt
/ 0u() 2 < oo
0 t

Prove that the function K (x) = (x/|x|)|x| ™" satisfies Hsrmander’s condition.
(b) (A. Calderén and A. Zygmund ) For A € O(n), let

|A]| = sup{|6 —A(6)|: 6 €S"'}.

Suppose that €2 satisfies the more general Dini-type condition

1 dt
/ ) (t)— < oo,
0 t

where
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w (1) = sup 12(A(6)) —Q(6)[d6.
A€O(n)/S"!
llAll<t
Prove the same conclusion as in part (a).
[Hint: Part (b): Use the result in part (a) of Exercise 4.4.4 and switch to polar
coordinates. |

4.5 Vector-Valued Inequalities

Certain nonlinear expressions that appear in Fourier analysis, such as maximal func-
tions and square functions, can be viewed as linear quantities taking values in some
Banach space. This point of view provides the motivation for a systematic study of
Banach-valued operators. Let us illustrate this line of thinking via an example. Let
T be a linear operator acting on L” of some measure space (X, () and taking values
in the set of measurable functions of another measure space (¥, V). The seemingly
nonlinear inequality

4.5.1)
Lp

|(Zree)'], <l (Zur)’

can be transformed to a linear one with only a slight change of view. Let us denote
by LP(X,¢?) the Banach space of all sequences {f;}; of measurable functions on X
that satisfy

||{fj}jHLp(X‘fZ) = (/X (Z|fj|2>2d“)P < oo, 4.5.2)
J

Define a linear operator acting on such sequences by setting

T({fi})) ={T(f)};- (4.5.3)

Then (4.5.1) is equivalent to the inequality
||T({f1}/) ||LP(Y,£2) < CﬂH{fi}jHLp(x,eZ) ) (4.5.4)

in which 7 is thought of as a linear operator acting on the L” space of />-valued
functions on X. This is the basic idea of vector-valued inequalities. A nonlinear
inequality such as (4.5.1) can be viewed as a linear norm estimate for an operator
acting and taking values in suitable Banach spaces.
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4.5.1 (*>-Valued Extensions of Linear Operators

The following result is classical and fundamental in the subject of vector-valued
inequalities.

Theorem 4.5.1. Let 0 < p,q < o and let (X, 1) and (Y, V) be two measure spaces.
The following are valid:

(a) Suppose that T is a bounded linear operator from LP(X) to L1(Y) with norm A.
Then T has an (*-valued extension, that is, for all complex-valued functions f jin
LP(X) we have

(4.5.5)

I(ZreR)’|, <ca|(TiR)],

for some constant C, , that depends only on p and q. Moreover, the constant Cy 4
satisfies Cp g = 1if p < gq.

(b) Suppose that T is a bounded linear operator from LP (X) to LY*(Y) with norm
A. Then T has an ¢*-valued extension, that is,

1 1
2)\2 22
. < .
|2 P . < 2ot [ (Z15E), (45.6)
for some constant D), , that depends only on p and q.
To prove this theorem, we need the following identities.
Lemma 4.5.2. For any 0 < r < oo, define constants
(s rE+1)\"
A= <(,fl )) and B, — <(2,. )) . @S
T2 T2
Then for any A1, Ay, ..., Ay € R we have
1
(/ Aixy + -+ +,1nxn|fe—“2dx> = A (A2 4+ A2, (4.5.8)
RH
and for all wi,wa,...,w, € C we have
1
</ lwizi+--- +wnzn|’e_”|22dz> =B, (w1 +--+ \w,,|2)% . (4.5.9)
Cn

Proof. Dividing both sides of (4.5.8) by (A2 +---+ lnz)% we reduce things to the
situation in which A2 +--- + A2 = 1. Let ¢; = (1,0,...,0)" be the standard basis
column unit vector on R” and find an orthogonal n x n matrix A € O(n) (orthogonal
means a real matrix satisfying A’ = A=) such that A='e; = (41,...,4,)". Then the
first coordinate of Ax is
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(Ax); =Ax-e; =x-Ale =x-A ey =Mxy o+ Ay

Now change variables y = Ax in the integral in (4.5.8) and use the fact that |[Ax| = |x]
to obtain

1 1
2 r 2 r
( ARy dx) = ( [ e dy)
1

which proves (4.5.8).
The proof of (4.5.9) is almost identical. We normalize by assuming that

IW1|2+~~~+\wn|2:1,

and we let & be the column vector of C" having 1 in the first entry and zero
elsewhere. We find a unitary n x n matrix ./ such that o/ ~'e; = (wy,...,w,)".
Unitary means 7 ~' = .&/*, where .&/* is the conjugate transpose matrix of .27,
i.e., the matrix whose entries are the complex conjugates of <7’ and that satis-
fies u-.o/v = o/ *u-v for all u,v € C". Then (27z); = w121 + --- + w2, and also
|/ z| = |z|; therefore, changing variables { = 477 in the integral in (4.5.9), we can
rewrite that integral as

(L |z:1|fe—”'“dc)l ~(

= (ZE/()mtre_mztdt> '
(
B

Let us now continue with the proof of Theorem 4.5.1.

Proof. If T maps real-valued functions to real-valued functions, then we may use
conclusion (4.5.8) of Lemma 4.5.2. In general, T maps complex-valued functions
to complex-valued functions, and we use conclusion (4.5.9).
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Part (a): Assume first that ¢ < p and let B, be as in (4.5.7). We may assume
that the sequence {f;}; is indexed by Z*. Use successively identity (4.5.9), the
boundedness of T, Holder’s inequality with exponents p/q and (p/q)’ with respect

to the measure e‘”‘z‘zdz, and identity (4.5.9) again to deduce for n € zp

[(Ere)];

=) [ [T ) a T (e dzd
Ly YyJcr
*"/C /|T(Z1f1+-~-+znfn)|"dVe’”|Z‘2dz
nJy
%
< (B,) A /C ( /X IZ1f1+'~~+znfn|pdu) P g

< (Bq)_qu</cn/X|Z1f1 +"'+ann|pdl~ie_“|2dz>z

= (B)7A7 (Bﬁ / (Z 1) gdu)g

:(Bqul)quH(iIW)i q
=

LX)

Now, letting n — oo in the previous inequality, we obtain the required conclusion
with C,, = B,B, . Note that C,, = 1 if p=g.
We now turn to the case g > p. Using similar reasoning, we obtain

(TR

= (Bq)fq/;/cn ‘ZIT(fl)+"'+ZnT(fn)|q67”‘Z‘2dzdv

L‘{

7{1/ /‘T(Zlfl“""""ann)‘qdveiﬂz‘zdz

<(AB,! / </|11f1+ +znfn|"du> e ™ gz

q/p

alR VTR R R

{/H|z1f1+ +ann|p‘ o sz) #}p
o [ ([ aismie =)
= (AB," {/ (Z\fj )% }Z

A1
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Note that we made use of Minkowski’s integral inequality (Exercise 1.1.6) in the
last inequality.

Part (b): Inequality (4.5.6) will be a consequence of (4.5.5) and of the following
result of Exercise 1.4.3 (see also Exercise 1.1.12):

1 1
l*% r " q T
lello- < s vieyi=( [larav) < (;4)

where 0 < r < g and the supremum is taken over all subsets E of Y of finite measure.
Using (4.5.10), we obtain

[(Zirer)],.
< sup v(E)él</E(Z )| )5 >;

(4.5.10)

0<V(E)<eo j
1
1_1 3 r
= sup V(E)4 ’(/(ZUCETfj )2 )
0<V(E)<eo
1
1 4
< sup V(E)i ,,,(/ (Z\f] ) du) @45.11)
0<V(E)<ee

where Ty is defined by Tg(f) = xg T (f). Since for any function f in L” (X ) we have

o2 L) I = (25 4l

it follows that for any measurable set E of finite measure the estimate

1

V(E)i

Te(f)

Lo

1
-

<( q )%A (4.5.12)

1
vE) ey < (51

Tx |

is valid. Inserting (4.5.12) in (4.5.11), we obtain the required conclusion. ]

4.5.2 Applications and ("-Valued Extensions of Linear Operators

Here is an application of Theorem 4.5.1:

Example 4.5.3. On the real line consider the intervals /; = [b;,0) for j € Z. Let T;
be the operator given by multiplication on the Fourier transform by the characteristic
function of /;. Then we have the following two inequalities:
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1

H(jezz|7;-<fj>2)2 B scpH(jEZZijf . *45.13)
H(jEZij(fj)F)é o= py ok (4.5.14)

for 1 < p < eo. To prove these, first observe that the operator 7 = %(1 +iH) is given
on the Fourier transform by multiplication by the characteristic function of the half-
axis [0,00) [precisely, the Fourier multiplier of 7' is equal to 1 on the set (0,0)
and 1/2 at the origin; this function is almost everywhere equal to the characteristic
function of the half-axis [0,0)]. Moreover, each 7j is given by

() x) = 0T (2700 1) (1)

and thus with g;(x) = e 2™* f(x), (4.5.13) and (4.5.14) can be written respectively
as

1

I(g s, =el(g e
(g )l <el(ger)

Theorem 4.5.1 gives that both of the previous estimates are valid by in view of the
boundedness of T = %(I +iH) from L? to L” and from L' — L'*. For a slight
generalization and an extension to higher dimensions, see Exercise 4.6.1.

'

L

We have now seen that bounded operators from L? to L? (or to L?*) always
admit ¢>-valued extensions. It is natural to ask whether they also admit ¢-valued
extensions for some r # 2. For some values of » we may answer this question. Here
is a straightforward corollary of Theorem 4.5.1.

Corollary 4.5.4. Suppose that T is a linear bounded operator from LP (X) to LP(Y')
with norm A for some 1 < p < oo, Let r be a number between p and 2. Then we have

Iz, <al(gry

Proof. The endpoint case r = 2 is a consequence of Theorem 4.5.1, while the end-
point case r = p is trivial. Interpolation (see Exercise 4.5.2) gives the required con-
clusion for r between p and 2. O

(4.5.15)

i

We note that Exercise 4.5.2 and Corollary 4.5.4 are also valid for indices less
than 1.

Example 4.5.5. The result of Corollary 4.5.4 may fail if  does not lie in the interval
with endpoints p and 2. Let us take, for example, 1 < p < 2 and consider an r < p.
Take X =Y = R and define a linear operator T by setting
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T(£)(x) = F() 20,1 (%).

Then T is LP bounded, since ||T(f)

= HT(f)HLP/ < HfHLP' Now take f; =

X[j-1, for j=1,...,N. A simple calculation gives
N 1 1 —2mix __ 1
T i I’) ' = N7 )
(L ——— o)

while

(Z|f] ) ON]

It follows that N'/” < CN'/? for all N > 1, and hence (4.5.15) cannot hold if p > r.

We have now seen that ¢"-valued extensions for r # 2 may fail in general. But do
they fail for some specific operators of interest in Fourier analysis? For instance, is

the inequality 1
l(g )], <el(gar)

true for the Hilbert transform H whenever 1 < p,r < o? The answer to this question
is affirmative. Inequality (4.5.16) is indeed valid and was first proved using complex
function theory. In the next section we plan to study inequalities such as (4.5.16)
for general singular integrals using the Calderén—Zygmund theory of the previous
section applied to the context of Banach-valued functions.

(4.5.16)

Lr

4.5.3 General Banach-Valued Extensions

We now set up the background required to state the main results of this section.
Although the Banach spaces of most interest to us are /" for 1 < r < oo, we introduce
the basic notions we need in general.

> and
let % be its dual (with norm H '%*). A function F defined on a o-finite measure
space (X, ) and taking values in Z is called %-measurable if there exists a mea-
surable subset Xj of X such that 1 (X \ Xp) =0, F[Xp] is contained in some separable
subspace A of A, and for every u* € %* the complex-valued map

x— (u",F(x))

is measurable. A consequence of this definition is that the positive function x
||F (x)H% on X is measurable; to see this, use the relevant result in Yosida [296,
p-131].

For 0 < p < oo, denote by L” (X, %) the space of all Z-measurable functions F
on X satisfying




322 4 Singular Integrals of Convolution Type

(LlFel,

with the obvious modification when p = . Similarly define P> (X, %) as the space
of all #8-measurable functions F on X satisfying

1
1(x ) < o, (4.5.17)

< oo, (4.5.18)

H 1) LP=(x)

Then L7 (X, ) (respectively, L"*(X,2)) is called the L? (respectively, L"*) space
of functions on X with values in Z. Similarly, we can define other Lorentz spaces of
AB-valued functions. The quantity in (4.5.17) (respectively, in (4.5.18)) is the norm
of F in LP (X, %) (respectively, in L7 (X, %)).

We denote by LP(X) the space L”(X,C). Let L”(X) ® 2 be the set of all finite
linear combinations of elements of % with coefficients in L?(X), that is, elements
of the form

F = fiuy + -+ finttm, (4.5.19)

where fj € LP(X),uj € B,andm e Z".
If F is an element of L! ® % given as in (4.5.19), we define its integral (which is
an element of %) by setting

| F@du </f, x) du (x >

Observe that for every F € L' ® % we have

| [ Fedue

_, — Sup
flu | 5+ <1

*? 3 d .

<M ng (/Xf] IJ) MJ>

= sup *, s f” d“‘
[l* || g <1 /X<u Z’ J j>

</x sup ‘(u Zf]uj |du

[l || <1

= ||F||L1(X,<@)'
Thus the linear operator

Frolp = /XF(x)du(x)

is bounded from L' (X) ® 4 into 8. Since every element of L'(X, %) is a (norm)
limit of a sequence of elements in L' (X ) ® 2, by continuity, the operator F — I has
a unique extension on L' (X, %) that we call the Bochner integral of F and denote

by
[ Fdue)
X
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It is not difficult to show that the Bochner integral of F is the only element of %

that satisfies
(u. [ Foaue)) = [ P duto)

Proposition 4.5.6. Let 9 be a Banach space. Then the set of functions of the form
Zj | XE; uj, where u; € 2, {E; } ', are pairwise disjoint subsets of R" with finite
measure, is dense in LP (R", %) whenever 0 < p < oo. For p = oo, the set of functions
of the form ):7’:1 XE; uj, where u; € % and {Ej};":] is a partition of R", is dense in
L*(R", AB).

for all u™ € A*.

Proof. If F € LP(R", %) for 0 < p < oo, then F is #-measurable; thus there exists
Ko C R” satisfying |R"\ Ko| = 0 and F[Ky] C Aoy, where % is some separable
subspace of Z. Choose a countable dense sequence {uj};":l of %.

First assume that p < co. For any € > 0, there exists a bounded subset K| of K

such that
F
o 1709

Setting B(uj, &) = {u€ By : |u—ujl|z < e(3|K, \)_%} we have % C U7 B(uj,¢).
Let A} = B(u;,€) and A= E(uj,e) \ (U{;ll B(u;,€)) for j > 2.1t is easily seen that
{A;}7., are pairwise disjoint and J7_;A; = U‘;-"ZIE(MJ-,S). Set Xj =A;NF[K{]
and E; = Ffl[gj]. Then Ky = U7, E; and {E;}7, are pairwise disjoint. Since
|Ki| = X571 |Ej| < oo, it follows that |E;| < e and also that for some m € Z7,

epr
p

. eP
/ I dx < S (4.5.20)
;'o:mﬁ»l J
Moreover, one can easily verify that Z;f‘:, XE;uj is Z-measurable. Notice that
|F(x) —uj|lz < €(3|Ki|)~"/? for any x € E; and j € {1,...,m}. This fact com-
bined with (4.5.20) and the mutual disjointness of {E; }’;’:1 yields that

m p
~ Yoy dx = [ F@| G [ PG a
=1 B R™M\K; m1Ej
P
+/ x)—uj]|| dx
Ujmi £ %
epr P »
< 3 + 3 + 3 =€

Now consider the case p = . Obviously we have % C U7 B(u;,€), where
B(uj,e) ={uec By :||lu—ujllz < e} Let Ay = B(uy,€) and for j > 2 define sets
Aj=B(uj, &)\ (U B(ui,€)). Let E; = F~'[A;] for j > 1 and Eg = R"\ (U7, E)).
As in the proof of the case p < oo, we have that {E j}f}ozo are pairwise disjoint and
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Ko C U7y E;. Notice that Y77 x;u; is #-measurable. Since ||F(x) —u;l|z < €
for any x € E; and j > 0, we have

HFZ%E/.M]' Z%E (F <E,
j=0 L=(R", ) =0 L= (R", )
which completes the proof in the case p = oo as well. 0

Proposition 4.5.7. Let % be a Banach space.
(a) For any F € LP (R", B) with 1 < p < oo we have

(G(x),F(x))dx]| .

IF Lo (re, ) = sup
<1

R”
161 e =

(b) The space LP (R", ) isometrically embeds in (Lp/(R”,%*))* when 1 < p < oo,

Proof. Obviously (b) is a consequence of (a), thus we concentrate on (a). Holder’s
inequality yields that the right-hand side of (a) is controlled by its left-hand side. It
remains to establish the reverse inequality.

For F € LP(R", %) and € > 0, by Proposition 4.5.6, there is F¢ (x) =Y | x£; (x)u;
with m € Z* or m = oo (when p = o) such that ||F — F”LP(R”,%) < &/2, where
{E;}7., are pairwise disjoint subsets of R" and u; € . Since F; € L’(R", %), we
choose a nonnegative function 4 satisfying Hh” 7 (R") < 1 such that

) < [ ol

When 1 < p < oo, we can further choose i € L (R") to be a function with bounded
support, which ensures that it is integrable. For given u; € %, there exists u; € B
satisfying ||} %+ = 1 and

(x)

£
el 1o (o, = ( . |pax+. @s2n

€

= (4.5.22)
4([1Allr gy + 1)

ujllz < (uj,u;) +

Set G(x) = L7L h(x) xg,; (x)u. Clearly G is #"-measurable and HG||LP/(R,, @) < 1.
It follows from (4.5.21) and (4.5.22) that

[ (6@ Rw)ar = [ e )Y 26, ()

j=1
il €
h(x llujll 2 — XE; (x)dx
> [ 10 X (Wl = ey ) 2
= ||F8|U’(R” B) 5'

Hence, for any € > 0, we have
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HFHLP(R".,%) = sup n(G(x),F(x))dx +Ee.
' IG,pt g, g <! R
Letting € — 0 implies the desired inequality, which completes the proof. g

Definition 4.5.8. Let T be a linear operator that maps L”(R") to L(R") (respec-
tively, L?(R") to L?*(R")) for some 0 < p,g < eo. We define another operator 7'
acting on L” ® A by setting

T( )y fj”j) =) T(fj)uj-
=1 =1

If 7' happens to have a bounded extension from L?(R", %) to L1(R", %) (respec-
tively from L”(R", #) to LY (R", A)), then we say that T has a bounded B-valued
extension. In this case we also denote by T the Z-valued extension of 7.

Example 4.5.9. Let % = (" for some 1 < r < . Then a measurable function
F: X — A is just a sequence {f;}; of measurable functions f; : X — C. The
space LP(X,{") consists of all measurable complex-valued sequences {f;}; on X
that satisfy

< oo,
LP(X)

H{fj}jHLp(X/r> = H (;|fj|r>l

The space LP(X) ® ¢" is the set of all finite sums

M=

(ajl7aj27aj3a"')gj7

j=1

where g; € LP(X) and (aj1,aj0,aj3,...) € £", j=1,...,m. This is certainly a sub-
space of LP (X, ("). Now given (fi, f2,...) € LP(X,0"), let F,, = e1 fi+ - + emfms
where e; is the infinite sequence with zeros everywhere except at the jth entry,
where it has 1. Then F;, € L?(X) ® ¢" and approximates f in the norm of L7 (X, (").
This shows the density of L”(X) ® ¢" in LP (X, £").

If T is a linear operator bounded from L”(X) to L4(Y), then T is defined by

T{fi}) ={T(/))}-
According to Definition 4.5.8, T has a bounded ¢ -extension if and only if the in-

equality
L =el(z)

1 1
r r

|(E )

is valid.

A linear operator T acting on measurable functions is called positive if it satisfies
f>0 = T(f)>0. Itis straightforward to verify that positive operators satisfy
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[<g=T(f)<T(g),
TOI<T(f), (4.5.23)
sup [T (f;)| < T (suplfyl),

J J

for all f, g, fj measurable functions. We have the following result regarding vector-
valued extensions of positive operators:

Proposition 4.5.10. Let 0 < p,q < oo and (X, ), (Y, V) be two measure spaces. Let
T be a positive linear operator mapping LP(X) to L1(Y) (respectively, to L9 (Y))
with norm A. Let % be a Banach space. Then T has a $B-valued extension T that
maps LP (X, B) to L1(Y,B) (respectively, to L1 (Y, 9B)) with the same norm.

Proof. Let us first understand this theorem when % = ¢" for 1 < r < o, The two end-
point cases r = 1 and r = o can be checked easily using the properties in (4.5.23).
For instance, for »r = 1 we have

|z, <|Tras
J J

(s, =4l

'
while for r = oo we have

[supir ], < [7suplin],, <allsulsl

Ly~

The required inequality for 1 < r < o,

l(zrer)], <al(zinr)

follows from the Riesz—Thorin interpolation theorem (see Exercise 4.5.2).
The result for a general Banach space 2 can be proved using the following in-
equality:

’

—

I7(F)(x)

2= (IIF]l5) @, xeX, (4.5.24)

by simply taking L7 norms. To prove (4.5.24), let us take F' = Z’}: 1 fjuj. Then

HT(F)(X)H,QZHilT(fj)(x)”j L= s [ YT () @)

Z o wllge< Jj=1
n

7] Zlf 2)@=T(|F|.,) @,
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where the inequality makes use of the fact that 7' is a positive operator. 0
We end this section with a simple extension of Theorem 4.5.1.

Proposition 4.5.11. Let 77 be a Hilbert space and let 0 < p < oo. Then every
bounded linear operator T from LP(R") to L?(R") has an ¢ -valued extension.
In particular, for all measurable families of functions {f;},.ga and for all positive

measures |1 on R? the following estimate is valid:
%
( / fiPdu()
R4

([ imRau)’

Proof. 1f the Hilbert space /7 is finite-dimensional, then it is isometrically isomor-
phic to £2({1,2,...,N}) for some positive integer N. If 7 is infinite-dimensional
and separable, then it is isometrically isomorphic to ¢?(Z). By Theorem 4.5.1, the
linear operator 7" has an (2-valued extension, and in view of the isometry with 77, it
must also have an 77-valued extension. If the Hilbert space .7 is not separable, we
obtain a vector-valued extension of T for all separable subspaces of .7# with norm
independent of the subspace. 0

LP(R”) S HTHUHLP LP(R").

Exercises

4.5.1. Let & be a Banach space. Prove that
(a) forany G € L? (R", %#*), | < p < o, one has

||GHL17/<R’1,3'€*) = sup n<G(x),F(X)>dx .
1FllLp e, 2)<1 R

(b) the space L”/(R",%*) isometrically embeds in (LP(R",2))* when 1 < p < oo,

4.5.2. Prove the following version of the Riesz—Thorin interpolation theorem. Let
1< P0,490,,P1,91,10,50,71,51 <o and0< 6 <1 SatiSfy

1-6 6 1 1-6 6 1
+— =—, +— = -,

Po P1 p 40 q1 q
1-6 06 1 1-6 6 1
—i——:—’ —_ = -

ro 1 r ) S1 N

Suppose that 7' is a linear operator that maps L0 (R”,£70) to L9 (R", £*0) with norm
Ap and LP1(R", ") to L9 (R",£°2) with norm A;. Prove that 7 maps L”(R",¢") to
L7(R", %) with norm at most A(')*GA?.

4.5.3. (a) Prove the following version of the Marcinkiewicz interpolation theorem.
LetO0< pg<p<p; <ccand0 < O < 1 satisfy
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1-6 6 1
+

po PP
Suppose that T is a sublinear operator, that is, it satisfies

|7 (F+G <||IT(F)|

%JrHT(G)

)H%z %2,

for all F and G. Assume that 7' maps L (R", %) to L (R",%,) with norm A
and LP1 (R", %) to LP1*°(R", %, ) with norm A;. Show that 7' maps L”(R", %)) to

1
p(RN : P P 2 Al—0 40
L (R", %,) with ngrm at most 2(—1)7170 +35 717) PAy VAT
(b) Let po = 1. If T is linear and maps L' (R", %) to L'*(R",%,) with norm A
and LPL(R", %)) to L1 (R", %,) with norm A;, show that the constant in part (a)

can be improved to 8(p — 1) 7]/pA(1)76A?; see also Exercise 1.3.2.

4.5.4. Suppose that all x € R”, K(x) is a bounded linear operator from %, to %,
and let T'(F)(x) = [go K(x—y)F(y)dy be the vector-valued operator given by con-
volution with K.

(a) Suppose that K satisfies

e

Prove that the operator 7'(F) maps L? (R", %)) to L?(R", %,) with norm at most C
for 1 < p <o,
(b) (Young’s inequality ) Suppose that K satisfies

(e

Prove that 7 (F) maps L”(R", %) to L1(R",%,) with norm at most C whenever
1<p,gs<eandl/qg+1=1/s+1/p.
(c) (Young’s inequality for weak type spaces) Suppose that K satisfies

K(JC)H(@IH!@2 dx=C < co.

1/s
s
K(x)H,@lﬁ%dx) =C < oo.

HHK<)H%1~>@2 L5 oo

Prove that 7 (F) maps L” (R", %)) to L1(R", %, ) whenever | < p < oo, 1 < p,s < oo,
and 1/g+1=1/s+1/p.

4.5.5. Prove the following (slight) generalization of the Exercise 4.5.4 when p = 1.
Suppose that K satisfies

K(x)u

2, dx < Cllull 4,
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for all u € ). Then T maps L' (R", %) to L' (R", %,) with norm at most C. Show,
however, that the preceding condition is not strong enough to imply L” boundedness
for T for 1 < p < e,

4.5.6. Use the inequality for the Rademacher functions in Appendix C.2 instead of
Lemma 4.5.2 to prove part (a) of Theorem 4.5.1 in the special case p = q.

4.5.7. Prove the following extension of Theorem 4.4.1. If T is a bounded linear
operator from L? to the Lorentz space L%, then it has an £>-valued extension. Here
0<p,q,s <oo.

4.5.8. Let T;(f)(x) = f(x—j) and fj(x) = x|—j1—j for j = 1,2,...,N. Use these
functions and operators to show that the inequality

[OxCATAIRR BEH [V D%

Lr

may be false in general although the linear operators 7} are uniformly bounded from
L?(R) to LP(R).

4.5.9. Suppose that T is a linear operator that takes real-valued functions to real-
valued functions. Prove that

IOl 70

sup LR
f real-valued | | S | | L f complex-valued | | f | | )92
f#0 f#0

[Hint: Use Theorem 4.5.1 (a) with p = ¢.]

4.6 Vector-Valued Singular Integrals

We now discuss some results about vector-valued singular integrals. By this we
mean singular integral operators taking values in Banach spaces. At this point we
restrict our attention to the situation in which X =Y = R”.

4.6.1 Banach-Valued Singular Integral Operators

We consider a kernel K defined on R”\ {0} that takes values in the space L(%;, %)
of all bounded linear operators from % to %,. In other words, for all x € R"\ {0},
K (x) is a bounded linear operator from %) to %,, whose norm we denote by
HI? (x) 2,2, We assume that K(x) is L(%),%>)-measurable and locally inte-
grable away from the origin, so that the integral
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T(F)(x) = | Kx=y)F()dy (4.6.1)

is well defined as an element of %, for all F € L*(R", %) with compact support
when x lies outside the support of F'.
We assume that the kernel K satisfies Hormander’s condition,

[ IR -&
[x|>21y|

c@}_}ﬂzdng<w, y € R"\ {0}, (4.6.2)
which is a certain form of regularity familiar to us from the scalar case.

The following vector-valued extension of Theorem 4.3.3 is the main result of this
section.

Theorem 4.6.1. Let %) and %> be Banach spaces. Suppose that T given by (4.6.1)
is a bounded linear operator from L"(R", %) to L"(R",%,) with norm B = B(r)
for some 1 < r < oo, Assume that K satisfies Hormander’s condition (4.6.2) for
some A > 0. Then T has well defined extensions on LP(R", %)) for all 1 < p < oo,
Moreover, there exist dimensional constants C, and C), such that

1T )= e ) < A+ By e (4.63)
forall F in L'(R*, %) and

1T (F)| o o, < Comax (p, (p—1)"") (A +B)||F| (4.6.4)

LP(R", %)
whenever 1 < p < eoand F is in LP(R", %)).

Proof. We prove the weak type estimate (4.6.3) by applying the Calder6n—Zygmund
decomposition just as in the scalar case to the function x — HF (x) H , defined on R".
The proof of Theorem 4.3.3 is directly applicable here, and an identical repetition of
the arguments given in the scalar case with suitable norms replacing absolute values
yields (4.6.3).

Next we interpolate between the estimates 7 : L'(R", %) — L'*(R", %,) and
T: L' (R", %)) — L' (R",%,). Using Exercise 4.5.3, we obtain for 1 < p < r,

HT‘(F)HLP(R,,%) < Cnmax(l,(p—])*l)(A—i—B)HFHLp(RHﬂl), (4.6.5)

where C, is independent of r, p, %, and %, (and depends only on n).

We obtain (4.6.4) for p > r via duality. Since K(x) is an operator from %) to
P, its adjoint K*(x) is an operator from %} to ;. Let T* be the Banach-valued
operator with kernel K*. Obviously K*(x —y) — K*(x) and K (x —y) — K (x) have the
same norm. Therefore, Hormander’s condition (4.6.2) also holds for T*, since it can
be written as

sup / K (x—y) =K' (x)|| e dx=A < co. 4.66)
yeR™M\ {0}/ [x[>2[y| H ||ﬁ2 B,
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The assumption on 7" gives that 7* is bounded from L I(R”,%’i‘) to L (R", 7).
Indeed, to see this, we fix F € L (R", %5) and use Exercise 4.5.1(a). We have

’/R )7G(x)>dx‘

<F(x),7‘(G)(x)>dx‘

—

17*(F)

L (R B T
HGIIme <1

= sup

Gllu‘(Rnwl)q’ R

< sup /n F(x) 25 |T(G) (x) 2, 4%
IGllzr rn 2,) <1
= Sup | (R, 3) 7(6)| L (R", %))
IGller rn ;) <1
SBHFHL"(RW,H;)'
Combining these facts, we obtain that (4.6.3) holds for T*, that is,
HT*(F)||LL°°(RH,,%7) = C”(A+B)||F||L1(R”,,@§)'
Consequently, we obtain by interpolation for 1 < p’ < r/ the estimate
|7 (F)|| (Rz71) < G max(1,p—1)(A+B)||F||,, 7 (Re23) 4.6.7)

since (p' —1)"'=p—1.
We now fix r < p < oo, Let F lie in some dense subspace of L?(R", %), such

that HT(F) ||L,,(Rn By) < We use Proposition 4.5.7(a) to write

P mny € w0 | [ (G0 FE@)d
161 gy <1 R
= sup (T*(G)(x),F(x))dx
||GH P (R, A§)<1 R"
< sup ||T*(G)||LPI(R",3€1*) F| o ro )
161, 1)<
SCnmaX(Lp) HFHLp R, %))

:CnmaX(l,p)(A HFHLP(R”J’ZI)7

where we used (4.6.7). Since F lies in some dense subspace of LP(R", %)), the
required conclusion follows. This combined with (4.6.5) implies the required con-
clusion whenever 1 < r < co. Observe that the case r = o is easier and requires only
Exercise 4.3.7 adapted to the Banach-valued setting. ]
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4.6.2 Applications

We proceed with some applications. An important consequence of Theorem 4.6.1 is
the following:

Corollary 4.6.2. Let W; be a sequence of tempered distributions on R" whose

pose that each W; coincides with some locally integrable function K; on R"\ {0}
that satisfies

/ sup |K;(x — y) — K;(x)| dx < A, yER"\ {0}, (4.6.8)
W22h

Then there are constants C,,C,, > 0 such that for all 1 < p,r < e we have
1
|(Tiwisil)

J
|(Zwesr)

where c¢(p,r) = max(p,(p— 1) max(r,(r— 1) 1).

L S Comax(r (r—1)"! (A+B)H<Z|f,»|’)%

L’

<Getpia | (£

)

Ly Lr

Proof. Let T; be the operator given by convolution with the distribution W;. It fol-
lows from Theorem 4.3.3 that the 7;’s are of weak type (1,1) and also bounded on
L" with bounds at most a dlmenswnal constant multiple of max(r, (r—1)"!)(A+B),
uniformly in j. Naturally, set #| = %, = ¢" and define

T({fi}) ={W;* [}

for {f;}; € L"(R",¢"). Summing gives that T maps L" (R”,@’ ) to itself with norm at
most a dimensional constant multiple of max(r, (r—1)"')(A +B).
The operator T has the form

T(F)(x) = | Kx=y)F()dy

for F € L' (R",¢") with compact support and x ¢ support(F), where K (x) in L(¢", (")
is the following operator:

K(x)({t;})) = {K; (@)1}, {t;j} el

Clearly,
1B (x—y) - R (x)

i <SP (x ) — K ()]
J

and therefore Hormander’s condition holds for K as a consequence of (4.6.8). The
desired conclusion follows from Theorem 4.6.1. U
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If all the W;’s are equal, we obtain the following corollary, which contains in
particular the result (4.5.16) mentioned earlier.

Corollary 4.6.3. Let W be an element of ' (R") whose Fourier transform is a func-
tion bounded in absolute value by some B > 0. Suppose that W coincides with some
locally integrable function K on R"\ {0} that satisfies Hormander’s condition:

/ K(x—y) — K(x)| dx < A, ye R\ {0}. (4.6.9)
x[>2y]

Let T be the operator given by convolution with W. Then there exist constants
C,,C), > 0 such that for all 1 < p,r < e we have that

H(ZIT(fj)I’)%‘
l(zirwr)

)

L SChmax(r (1) (A—i—B)H(Z\ij)%
J

L!

) o’

<Gl (a+B)| (L IAI)
J

where c(p,r) =max(p,(p—1)"")max(r,(r—1)~1). In particular, these inequalities
are valid for the Hilbert transform and the Riesz transforms.

Interestingly enough, we can use the very statement of Theorem 4.6.1 to obtain
its corresponding vector-valued version.

Proposition 4.6.4. Let let 1 < p,r < o and let $) and 5B, be two Banach spaces.
Suppose that T given by (4.6.1) is a bounded linear operator from L' (R", %)) to
L"(R",%,) with norm B = B(r). Also assume that for all x € R"\ {0}, K(x) is
a bounded linear operator from %\ to %, that satisfies Hormander’s condition
(4.6.2) for some A > 0. Then there exist positive constants C,,C), such that for all
SB1-valued functions F; we have
1
)L

[(zire,)
[(Zli7e) M)

where ¢(p) = max(p, (p—1)"").

<cn)|(
J

Li=(RY) LR’
1

< Cu(A+B)c H(

)

Ly (R") Lp R"

Proof. Let us denote by ¢(%) the Banach space of all %-valued sequences {¢;};

that satisfy
1
r(B) = (ZH;,H%I)' <
J
Now consider the operator S defined by

SUF})) ={T(F)};.

{27}
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It is obvious that § maps L"(R",¢"(%1)) to L"(R",{"(%,)) with norm at most B.
Moreover, S has kernel K (x) € L(¢"(%1),¢" (%)) given by

K(x)({t;};) = {K (@)1},

where K is the kernel of 7'. It is not hard to see that the operator norms of K and K
coincide and therefore

|K (x—y) = K(x)]

= ||K(x—y) = K(x)

B\ — % U(B)— (%)

We conclude that K satisfies the hypotheses of Theorem 4.6.1. The conclusions of
Theorem 4.6.1 for S are the desired inequalities for T'. 0

4.6.3 Vector-Valued Estimates for Maximal Functions

Next, we discuss applications of vector-valued inequalities to some nonlinear opera-
tors. We fix an integrable function @ on R” and for ¢ > 0 define &, (x) =1 "® (¢t 'x).
We suppose that @ satisfies the following regularity condition:

/‘ Sup|®y(x—y) — B ()| dx=Ap <o, yER'N{0}.  (4.6.10)

x|>2[y[ >0

We consider the maximal operator

Mo (f)(x) = sup |(f * @) (x)]|

>0

defined for f in L' + L™. We are interested in obtaining L? estimates for M. It is
reasonable to start with p = oo, which yields the easiest of all the L” estimates for
Mg, the trivial estimate

1Mo ()l - < @l ll ] - (46.11)

We think of Mg as a linear operator taking values in a Banach space. Indeed, it
is natural to set
B =C and :@ZZLN(R+)

and view M as the linear operator f — { f * @g } 5 that maps %, -valued functions
to %>-valued functions.
To do this precisely, we define a %,-valued kernel

Ko (x) = {®5(x)} ser

and a %, -valued linear operator

Mo(f) = f+Ko = {f*Ps}scr+
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acting on complex-valued functions on R”. We know that Mg maps L* (R, %) =
L™(R") to L™ (R", %) with norm at most || P || 11~ Clearly (4.6.10) implies condition

(4.6.2) for the kernel K. Applying Theorem 4.6.1, we obtain for I < p < oo,
’W‘P(f)HLp(Rn,z ) < Gumax(p, (p - (A¢+Hq’HL1>HfHLp(Rn)’ (4.6.12)

which can be immediately improved to

Mo (f)

—1
ey < Comax (L, (r= 1)) (Ae +[| @ ) Il ey 4:6.13)
via interpolation with estimate (4.6.11) for all 1 < r < oo,

Next we use estimate (4.6.13) to obtain vector-valued estimates for the sublinear

operator Me.

Corollary 4.6.5. Let @ be an integrable function on R" that satisfies (4.6.10). Then
there exist dimensional constants C, and C), such that for all 1 < p,r < e the fol-
lowing vector-valued inequalities are valid:

[(Ttat) )], <Cretr)ha+@]),) |(Z1 Vo @sa
J
where ¢(r) = 1+ (r—1)71, and
H( Mo (f;)] )H < Cue(p,r) (Ao +||®],1) H(me)r Lo (4615)

where e(p.r) = (1+ (=1 (p+ (1))

Proof. We set ) = C and %, = L*(R"). We use estimate (4.6.13) as a start-
ing point in Proposition 4.6.4, which immediately yields the required conclusions
(4.6.14) and (4.6.15). O

Similar estimates hold for the Hardy-Littlewood maximal operator.

Theorem 4.6.6. For 1 < p,r < o the Hardy-Littlewood maximal function M satis-
fies the vector-valued inequalities

|(zmr) |, <cii+o—1 Iz ol
J

[(zmery],, gc,,cW)H(Wy
J J

where ¢(p,r) = (1+(r=1)"") (p+(p—=1)7").

Proof. Letus fix a positive radial symmetrically decreasing Schwartz function @ on
R” that satisfies @(x) > 1 when |x| < 1. Then the Hardy-Littlewood maximal func-
tion M (f) is pointwise controlled by a constant multiple of the function Mg (| f|). In

, (4.6.16)

, (4.6.17)

Lp
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view of Corollary 4.6.5, it suffices to check that for such a @, (4.6.10) holds. First
observe that in view of the decreasing character of @, we have

sup|f|* Dy < Mo(|f]) < 2" sup|f]+ Dy,
J J

and for this reason we choose to work with the easier dyadic maximal operator
d
Mg (f) = sup|f+ Py
J

We observe the validity of the simple inequalties
27" M(f) < M(f) < Ma(|f]) <2"Mg(If]). (4.6.18)

If we can show that

/ Sup | By (x — y) — By ()| dox = Cp < o0, (4.6.19)

yeR"\{O} [x[=2ly| jez

then (4.6.14) and (4.6.15) are satisfied with M‘é replacing M. We therefore turn
our attention to (4.6.19). We have

[ supl@y(x—y) - @y(@)dn
[x|>2[y| jez

<Y [ @ulay) - By()ldx
jez [x|>2]y]

Y [Ve (52| ~
/\x\>2\y\7dx+ L /\x\ o PN Py ()] dx

- 27>y 20+1) 2i <)yl

| Cyd
- zgy/"”y e S(1+]2 ’](Vxx9y zr;y/x o PN
- 2’§’y/x>2‘ 2('11'1 (1+|2C[>/ LN " +22]§|,y/|x>2jy|47(x)|dx
=YX /\x\>2 il |2y!|(1+C|x|)d +2 ) v

27>y 2i<y|

<Cy Z +c =2Cy,

2’>\y\

where Cy > 0 depends on N > n, 6 € [0, 1], and |x — 0y| > |x|/2 when |x| > 2]y|.
Now apply (4.6.14) and (4.6.15) to Mg, and use (4.6.18) to obtain the desired
vector-valued inequalities. 0

Remark 4.6.7. Observe that (4.6.16) and (4.6.17) also hold for » = . These end-
point estimates can be proved directly by observing that
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supM(f;) < M(sup|f;|).
J J

The same is true for estimates (4.6.14) and (4.6.15). Finally, estimates (4.6.17) and
(4.6.15) also hold for p = co.

Exercises

4.6.1. (a) For all j € Z, let I; be an interval in R and let T} be the operator given
on the Fourier transform by multiplication by the characteristic function of /;. Prove
that there exists a constant C > 0 such that for all 1 < p,r < o and for all integrable
functions f; on R we have

(T Y
H(Z\Tj<f,~>|r)7

'

. (Zmrf
Lo SCmax(r(r H(Df, )

L’

where ¢(p,r) = max (r,(r—1)"") max (p,(p—1)7").

(b) Let R; be arbitrary rectangles on R" with sides parallel to the axes and let S; be
the operators given on the Fourier transform by multiplication by the characteristic
functions of R;. Prove that there exists a dimensional constant C,, < oo such that for
all indices 1 < p,r < oo and for all functions f; in L”(R") we have

(i), <cewrr|(Zir) ],

L’

where c¢(p, r) is as in part (a).

[Hint: Use Theorem 4.5.1 and the fact that the operator whose multiplier 18 %, )
is equal to £ (MHM~* — MPHM "), where M%(f)(x) = f(x)e*™* and H is the
Hilbert transform. |

4.6.2. For every t € R, let R(t) be a rectangle with sides parallel to the axes in
R” such that the map ¢ — R(r) is measurable. Then there is a constant C, > 0 such
that for all 1 < p < oo, for all o-finite measures (& on RY, and for all families of

measurable functions f; on R” we have
( [ 1P du) ) H

([ ann) |, <ce
where ¢(p) = max(p, (p—1)71).

[Hint: Reduce this estimate to Proposition 4.5.11. Observe that when d = 1, this
provides a continuous version of the result of Exercise 4.6.1.]
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4.6.3. (a) Let @ be a radially decreasing function on R” that satisfies

[ o=y —owlar<ne). [ |@wldr<n®),

J|x|>R

for all R > 1, where 1] is an increasing function with 17(0) = 0 such that

1
/Mdt<°°.
0 1

Prove that (4.6.19) holds.

[Hint: Modify the calculation in the proof of Theorem 4.6.6.}

(b) Use Theorem 4.6.1 with r = oo to conclude that the maximal function f +—
sup jez | f * @,;| maps LF(R") to itself for 1 < p < oo,

4.6.4. (a) On R, take f; = Xpi-14) to prove that inequality (4.6.17) fails when
p=ocand | <r <oo,

(b) Againon R, take N > 2 and f; zx[,q for j=1,2,...,N to prove that (4.6.17)

4
fails when 1 < p < and r = 1.

4.6.5. Prove that the vector-valued inequality

H (Z’U{*f"'q)é S CMH (;|fj|q>}1

J

)7y

may fail in general when ¢ < 1 when the operator f — f* K is L” bounded.
[Hint: Take K = y;_y j and fj = X g for1<j< N.]
N °'N

4.6.6. Let {Q;}; be a countable collection of cubes in R" with disjoint interiors.
Let c; be the center of the cube Q; and d; its diameter. For € > 0, define the
Marcinkiewicz function associated with the family {Q;}; as follows:

d{l+£
J
X) = .
W=L e

M,

Prove that for some constants C,, ¢ , and C, ¢ one has

1
[Mel|,, <Cnﬁe7p(;|Qj|)p, p>nj_£,

n+ée

[Mel e < Gue(E Qi) *
J

and consequently

/ Me(x)dx < Cpe Y105
R" J

[Hint: Verify that
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d(lJre

J n+e
x— e+ e < CM(20;)(x) ™
J

and use Corollary 4.6.5.]

HISTORICAL NOTES

The L? boundedness of the conjugate function on the circle was announced in 1924 by Riesz
[219], but its first proof appeared three years later in [221]. In view of the identification of the
Hilbert transform with the conjugate function, the L” boundedness of the Hilbert transform is also
attributed to M. Riesz. Riesz’s proof was first given for p = 2k, k € Z'*, via an argument similar to
that in the proof of Theorem 3.5.6. For p # 2k this proof relied on interpolation and was completed
with the simultaneous publication of Riesz’s article on interpolation of bilinear forms [220]. The
weak type (1,1) property of the Hilbert transform is due to Kolmogorov [158]. Additional proofs
of the boundedness of the Hilbert transform have been obtained by Stein [267], Loomis [177], and
Calderdn [33]. The proof of Theorem 4.1.7, based on identity (4.1.21), is a refinement of a proof
given by Cotlar [60].

The norm of the conjugate function on LP(T'), and consequently that of the Hilbert trans-
form on LP(R), was shown by Gohberg and Krupnik [102] to be cot(r/2p) when p is a power
of 2. Duality gives that this norm is tan(z/2p) for 1 < p <2 whenever p’ is a power of 2. Pi-
chorides [213] extended this result to all 1 < p < oo by refining Calderén’s proof of Riesz’s theorem.
This result was also independently obtained by B. Cole (unpublished). The direct and simplified
proof for the Hilbert transform given in Exercise 4.1.12 is in Grafakos [103]. The norm of the
operators % (I £iH) for real-valued functions was found to be 1 [min(cos(/2p),sin(7/2p))] -
by Verbitsky [284] and later independently by Essén [84]. The norm of the same operators for
complex-valued functions was shown to be equal to [sin(z/p)]~! by Hollenbeck and Verbitsky
[128]. The best constant in the weak type (1,1) estimate for the Hilbert transform is equal to
(1+ 3% + 5i2 +-) (1= 3% + 5% —---)7! as shown by Davis [71] using Brownian motion; an al-
ternative proof was later obtained by Baernstein [14]. Iwaniec and Martin [138] showed that the
norms of the Riesz transforms on L (R") coincide with that of the Hilbert transform on L? (R).

Operators of the kind T as well as the stopping-time decomposition of Theorem 4.3.1 were
introduced by Calderén and Zygmund [37]. In the same article, Calderén and Zygmund used this
decomposition to prove Theorem 4.3.3 for operators of the form T when Q satisfies a certain
weak smoothness condition. The more general condition (4.3.12) first appeared in Hérmander’s
article [129]. A more flexible condition sufficient to yield weak type (1,1) bounds is contained
in the article of Duong and M€Intosh [80]. Theorems 4.2.10 and 4.2.11 are also due to Calderén
and Zygmund [39]. The latter article contains the method of rotations. Algebras of operators of the
form T were studied in [40]. For more information on algebras of singular integrals see the article
of Calderdn [36]. Theorem 4.4.1 is due to Benedek, Calderén, and Panzone [18], while Example
4.4.2 is taken from Muckenhoupt [203]. Theorem 4.4.5 is due to Riviere [223]. A weaker version
of this theorem, applicable for smoother singular integrals such as the maximal Hilbert transform,
was obtained by Cotlar [60] (Theorem 4.3.4). Improvements of the main inequality in Theorem
4.3.4 for homogeneous singular integrals were obtained by Mateu and Verdera [191] and Mateu,
Orobitg, and Verdera [192]. For a general overview of singular integrals and their applications, one
may consult the expository article of Calderdn [35].

Part (a) of Theorem 4.5.1 is due to Marcinkiewicz and Zygmund [189], although the case p = ¢
was proved earlier by Paley [209] with a larger constant. The values of r for which a general linear
operator of weak or strong type (p,q) admits bounded ¢" extensions are described in Rubio de
Francia and Torrea [227]. The L” and weak L” spaces in Theorem 4.5.1 can be replaced by general
Banach lattices, as shown by Krivine [164] using Grothendieck’s inequality. Hilbert-space-valued
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estimates for singular integrals were obtained by Benedek, Calder6n, and Panzone [18]. Other
operator-valued singular integral operators were studied by Rubio de Francia, Ruiz, and Torrea
[228]. Banach-valued singular integrals are studied in great detail in the book of Garcia-Cuerva
and Rubio de Francia [98], which provides an excellent presentation of the subject. The ¢"-valued
estimates (4.5.16) for the Hilbert transform were first obtained by Boas and Bochner [24]. The
corresponding vector-valued estimates for the Hardy—Littlewood maximal function in Theorem
4.6.6 are due to Fefferman and Stein [91]. Conditions of the form (4.6.10) have been applied to
several situations and can be traced in Zo [301].

The sharpness of the logarithmic condition (4.2.23) was indicated by Weiss and Zygmund
[289], who constructed an example of an integrable function £ with vanishing integral on S'

satisfying g, 1 [2(6)[log™ [2(6)](log(2 +log(2 + |Q(9)|)))76 dB = oo for all § >0 and of a
continuous function in L”(R?) for all 1 < p < co such that limsup,_, |T£<2£) (f)(x)| = o for almost
all x € R%. The proofs of Theorems 4.2.10 and 4.2.11 can be modified to give that if € is in the
Hardy space H' of 8"~ then T and T!(;) map L to L? for 1 < p < 0. For T, this fact was proved

by Connett [57] and independently by Ricci and Weiss [216]; for T_é*) this was proved by Fan and
Pan [86] and independently by Grafakos and Stefanov [110]. The latter authors [111] also obtained
that the logarithmic condition ess.supj¢|_; fgi-1 [€2(6)|(log ﬁ N1F*d6 < oo, a > 0, implies L?

boundedness for T and T!(;) for some p # 2. See also Fan, Guo, and Pan [85] as well as Ryabogin
and Rubin [231] for extensions. Examples of functions £ for which Tp maps L to L? for a certain
range of p’s but not for other ranges of p’s is given in Grafakos, Honzik, and Ryabogin [104].
The relatively weak condition |2 |log™ Q| € L'(S""!) also implies weak type (1,1) bound-
edness for operators Tg. This was obtained by Seeger [239] and later extended by Tao [273] to
situations in which there is no Fourier transform structure. Earlier partial results are in Christ and
Rubio de Francia [52] and in the simultaneous work of Hofmann [127], both inspired by the work
of Christ [50]. Soria and Sjogren [244] showed that for arbitrary Q in L' (S"~1), T is weak type
(1,1) when restricted to radial functions. Examples due to Christ (published in [110]) indicate
that even for bounded functions Q on §"~!, T may not map the endpoint Hardy space H'(R")
to L'(R"). However, Tao and Seeger [275] have showed that T, always maps the Hardy space
H'(R") to the Lorentz space L'>(R") when |Q|(log" |Q|)? is integrable over S"~!. This result
is sharp in the sense that for such , T may not map H'(R") to L'“4(R") when ¢ < 2 in gen-
eral. If To maps H 1 (R") to itself, Daly and Phillips [67] (in dimension n = 2) and Daly [66] (in
dimensions n > 3) showed that 2 must lie in the Hardy space H'(S"~!). There are also results con-
cerning the singular maximal operator Mg (f)(x) = sup, L”% Jyj<r [F(x=¥)[12(y)| dy, where

is an integrable function on S"~! of not necessarily vanishing integral. Such operators were stud-
ied by Fefferman [92], Christ [50], and Hudson [132]. An excellent treatment of several kinds of
singular integral operators with rough kernels is contained in the book of Lu, Ding, and Yan [181].



Chapter 5
Littlewood—Paley Theory and Multipliers

In this chapter we are concerned with orthogonality properties of the Fourier trans-
form. This orthogonality is easily understood on L?, but at this point it is not clear
how it manifests itself on other spaces. Square functions introduce a way to express
and quantify orthogonality of the Fourier transform on L? and other function spaces.
The introduction of square functions in this setting was pioneered by Littlewood and
Paley, and the theory that subsequently developed is named after them. The extent
to which Littlewood—Paley theory characterizes function spaces is remarkable. This
topic is investigated Chapter 6.

Historically, Littlewood—Paley theory first appeared in the context of one-dimen-
sional Fourier series and depended on complex function theory. With the devel-
opment of real-variable methods, the whole theory became independent of complex
methods and was extended to R”. This is the approach that we follow in this chapter.
It turns out that the Littlewood—Paley theory is intimately related to the Calderén—
Zygmund theory introduced in the previous chapter. This connection is deep and
far-reaching, and its central feature is that one is able to derive the main results of
one theory from the other.

The thrust and power of the Littlewood—Paley theory become apparent in some of
the applications we discuss in this chapter. Such applications include the derivation
of certain multiplier theorems, that is, theorems that yield sufficient conditions for
bounded functions to be L” multipliers. As a consequence of Littlewood—Paley the-
ory we also prove that the lacunary partial Fourier integrals [z v f (E)e2minE gE
converge almost everywhere to an L? function f on R".

5.1 Littlewood-Paley Theory

We begin by examining more closely what we mean by orthogonality of the Fourier
transform. If the functions f; defined on R" have Fourier transforms f; supported in
disjoint sets, then they are orthogonal in the sense that

L. Grafakos, Classical Fourier Analysis, Second Edition, 341
DOI: 10.1007/978-0-387-09432-8 5, © Springer Science+Business Media, LLC 2008
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IS A = Al o
J J

Unfortunately, when 2 is replaced by some p # 2 in (5.1.1), the previous quanti-
ties may not even be comparable, as we show in Examples 5.1.8 and 5.1.9. The
Littlewood—Paley theorem provides a substitute inequality to (5.1.1) expressing the
fact that certain orthogonality considerations are also valid in L” (R").

5.1.1 The Littlewood—Paley Theorem

The orthogonality we are searching for is best seen in the context of one-dimensional
Fourier series (which was the setting in which Littlewood and Paley formulated
2mi2kx

their result). The primary observation is that the exponential e oscillates half

iyk+1 . . .
as much as ¢2%2"'% and is therefore nearly constant in each period of the latter.
This observation was instrumental in the proof of Theorem 3.7.4, which implied in

particular that for all 1 < p < e we have

HZ“ i (ZW' ) (5.12)

k=

In other words, we can calculate the L” norm of Y} lakezmkx in almost a pre-
cise fashion to obtain (modulo multiplicative constants) the same answer as in the
L? case. Similar calculations are valid for more general blocks of exponentials in
the dyadic range {2 +1,...,2¥*1 — 1}, since the exponentials in each such block
behave independently from those in each previous block. In particular, the L inte-
grability of a function on T' is not affected by the randomization of the sign of its
Fourier coefficients in the previous dyadic blocks. This is the intuition behind the
Littlewood—Paley theorem.

Motivated by this discussion, we introduce the Littlewood—Paley operators in the
continuous setting.

Definition 5.1.1. Let ¥ be an integrable function on R" and j € Z. We define the
Littlewood—Paley operator A; associated with ¥ by

Ai(f) =[x,

where ¥, ;(x) = 2/"¥(2/x) for all x in R". Thus we have

¥ (8)=¥(27¢)
for all £ in R". We note that whenever ¥ is a Schwartz function and f is a tempered
distribution, the quantity A;(f) is a well defined function.

These operators depend on the choice of the function ¥; in most applications
we choose ¥ to be a smooth function with compactly supported Fourier transform.
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Observe that if ¥ is supported in some annulus 0 < ¢; < |€| < ¢z < oo, then the
Fourier transform of A; is supported in the annulus ¢;2/ < |&| < ¢22/; in other
words, it is localized near the frequency |&| ~ 2/. Thus the purpose of A j is to
isolate the part of frequency of a function concentrated near || ~ 2/.

The square function associated with the Littlewood—Paley operators A; is defined

as
1

f= (X 1ane)"

JEZ

It turns out that this quadratic expression captures crucial orthogonality information
about the function f. Precisely, we have the following theorem.

Theorem 5.1.2. (Littlewood—Paley theorem) Suppose that W is an integrable €'
Sfunction on R™ with mean value zero that satisfies

P (x)] + V¥ ()| < B(1+]x]) " (5.1.3)

Then there exists a constant C,, < oo such that for all 1 < p < e and all f in LP(R")
we have

[(Z1a00R)’

jez

iy = CoBmax (0, (0= /ey 514

There also exists a C), < o such that for all f in L' (R") we have

(g,

Jjez

(R CIBHfHL' (R1)" (5.1.5)

Conversely, let ¥ be a Schwartz function such that either ';F\’(O) =0and

Y PP =1, £ cR"\ {0}, (5.1.6)

JEZ
or ¥ is compactly supported away from the origin and

Y w2 iE) =1, & eR"\ {0}. (5.1.7)

jez

1
Then given a tempered distribution f such that the function (¥ ;cz|A;( AP)? is
in LP(R") for some 1 < p < oo, there exists a unique polynomial Q such that the
tempered distribution f — Q coincides with an LP function, and we have

£ - QHU - < CBmax (p, (p H(ZM )

b (5.1.8)

for some constant C = C, w.
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Proof. We first prove (5.1.4) when p = 2. Using Plancherel’s theorem, we see that
(5.1.4) is a consequence of the inequality

Y P2 E)P<c,B (5.1.9)
;

for some C,, < . Because of (5.1.3), Fourier inversion holds for ¥'. Furthermore,
Y has mean value zero and we may write

@(g):/ ne*Z”iX'ilf'(x)dx: / (e 2™ — 1Y (x)dx, (5.1.10)

n

from which we obtain the estimate

P(E) < \/47r|€\/Rn 1x|2 |¥(x)|dx < C,BE|? . (5.1.11)

For & = (&1,...,&,) #0, let j be such that |§;| > & forallk € {1,...,n}. Integrate
by parts with respect to d; in (5.1.10) to obtain

P(E) = - [ (-2mig) e (0 () d,
from which we deduce the estimate
D&)< Valgl ! [ VP )]dx < CBIEI (5.1.12)

We now break up the sum in (5.1.9) into the parts where 27/|€| < 1 and 27/|&| >
1 and use (5.1.11) and (5.1.12), respectively, to obtain (5.1.9). (See also Exercise
5.1.2.) This proves (5.1.4) when p = 2.

We now turn our attention to the case p # 2 in (5.1.4). We view (5.1.4) and (5.1.5)
as vector-valued inequalities in the spirit of Section 4.5. Define an operator T acting
on functions on R” as follows:

—

T(£)x) ={4,(Hx)};-

The inequalities (5.1.4) and (5.1.5) we wish to prove say simply that T is a bounded
operator from L”(R",C) to L”(R",¢?) and from L' (R",C) to L"=*(R", £?). We just
proved that this statement is true when p = 2, and therefore the first hypothesis of
Theorem 4.6.1 is satisfied. We now observe that the operator T can be written in the
form

10 = { [ e} = [ Ra—n)r0)ay
J

where for each x € R”, K (x) is a bounded linear operator from C to £ given by

K(x)(a) = {¥;(x)a};. (5.1.13)
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, I
We clearly have that | K(x) || . = (X;|%-;(x)[*)2. and to be able to apply The-

orem 4.6.1 we need to know that
/||>2| |’|I?(x—y)—I?(x)HC_)ﬁdngnB’ y#0. (5.1.14)
x|>2]y

Since ¥ is a "' function, for |x| > 2|y| we have
|¥5-i(x—y) =¥ (x)]
< 2(n+1)j‘vlp(21(x_ o)1yl for some 6 € [0, 1],
< Bo(nt1)j (1+2/|x—9y|) (n+1) |y|
< g2(nth)j (1 42/ l\x\) (n+1) \y| since |x — Qy| > %|x|

(5.1.15)

This estimate implies that
|- (x—y) = ¥os ()| < B2 Dy (5.1.16)
We also have that
[H-j(x —y) = ¥o-i ()|
<2V (2 (x— )|+ 27 (2x)]
< B2 (1427 |x|) ") 4 p2in (1427 ) Y
<282 (1+2/ ") """,

(5.1.17)

Taking the geometric mean of (5.1.15) and (5.1.17), we obtain
@ (r—y) — B (x)] < 2BJy|F20 27 (14277 [x]) "D (5.1.18)

We now use estimate (5.1.16) when 2/ < \%I and (5.1.18) when 2/ > % We obtain

1

[K(x—y) = K()|[c_pp = (Z‘il%j(x—y) - 'f’zj(X)\z)z
j€

<Y [Wi(x—y)—¥(x)|
JEZL
SzB(M Z 2"+]>j+|y|% Z 2”+%>J-(2(i*1)|x|)*(n+l))

2/ 2i>2
<H

=M
Cne 1ol
<GByl ™"+ 2 2)
whenever |x| > 2|y|. Using this bound, we easily deduce (5.1.14) by integrating over

the region |x| > 2|y|. Finally, using Theorem 4.6.1 we conclude the proofs of (5.1.4)
and (5.1.5), which establishes one direction of the theorem.



346 5 Littlewood—Paley Theory and Multipliers

We now turn to the converse direction. Let A;f be the adjoint operator of A;

given by A/j\*f = fA‘IZ?, Let f be in .#/(R"). Then the series Y jcz A7A;(f) con-
verges in ./ (R"). To see this, it suffices to show that the sequence of partial sums
uy = Y|jl<nA;A i(f) converges in .. This means that if we test this sequence
against a Schwartz function g, then it is a Cauchy sequence and hence it converges as
N — 0. But an easy argument using duality and the Cauchy—Schwarz and Holder’s
inequalities shows that for M > N we have

osh =t < (S0P (£ Iar)’

N<jl<M

Lr '’

and this can be made small by picking M > N > Ny(g). Since the sequence (uy,g) is
Cauchy, it converges to some A (g). Now it remains to show that the map g — A(g)
is a tempered distribution. Obviously A (g) is a linear functional. Also,

H(w (Eia02),
c|(Zian B2l -

IN

[A )]

| /\

and since [[g||,,» is controlled by a finite number of Schwartz seminorms of g, it
follows that A is in .. The distribution A is the limit of the series ¥ i A;fAj.
Under hypothesis (5.1.6), the Fourier transform of the tempered distribution f —
YjczAjA; (f) is supported at the origin. This implies that there exists a polynomial
QOsuchthat f -0 =1} jcz A;‘Aj(f). Now let g be a Schwartz function. We have

[(f=0.3)| = (X 474,().3)]

JEL
=1 L (440 3)l
=1Y (A;().4,(2))|
JEZL
R" je7 (5.1.19)
: Ny
/(,;Zm )(,;Zm ()F)" dx

1

<|( )y A0k
<[(gawr)’

JEL

(jezzm,(g)ﬁ)z

L

L, CuBmax (p'(p' = 1)7") ]| -
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having used the definition of the adjoint (Section 2.5.2), the Cauchy—Schwarz in-
equality, Holder’s inequality, and (5.1.4). Taking the supremum over all g in LY
with norm at most one, we obtain that the tempered distribution f — Q is a bounded
linear functional on L” . By the Riesz representation theorem, f — Q coincides with
an L? function whose norm satisfies the estimate

|f—0ll,, <CiBmax (p,(p—1)"") H (jGZiMf(f)P)é L

We now show uniqueness. If Q; is another polynomial, with f — Q; € L?, then
O — Q1 must be an L? function; but the only polynomial that lies in L? is the zero
polynomial. This completes the proof of the converse of the theorem under hypoth-
esis (5.1.6).

To obtain the same conclusion under the hypothesis (5.1.7) we argue in a similar
way but we leave the details as an exercise. (One may adapt the argument in the
proof of Corollary 5.1.7 to this setting.) 0

Remark 5.1.3. We make some observations. If ¥ is real-valued, then the operators
A; are self-adjoint. Indeed,

| aitnzax= [ FHozag = [ FBgas= [ AR

Moreover, if ¥ is a radial function, we see that the operators A; are self-transpose,
that is, they satisfy

./nAj(f)gdx:l/l;anj(g)dx.

Assume now that ¥ is both radial and has a real-valued Fourier transform. Suppose
also that ¥ satisfies (5.1.3) and that it has mean value zero. Then the inequality

is true for sequences of functions {f;};. To see this we use duality. Let T(f) =
{Aj(f)};. Then T‘*({gj}j) =Y ;A;(g;). Inequality (5.1.4) says that the operator T
maps L”(R",C) to L (R",¢2), and its dual statement is that 7* maps L” (R", %) to
LPI(R”,C). This is exactly the statement in (5.1.20) if p is replaced by p’. Since p
is any number in (1,00), (5.1.20) is proved.

(5.1.20)

)3 Aj(fj)HLp < CuBmax (p,(p—1)7") H ( -Zz|fj|2)é
JE

jez

Ly

5.1.2 Vector-Valued Analogues

We now obtain a vector-valued extension of Theorem 5.1.2. We have the following.
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Proposition 5.1.4. Let ¥ be an integrable € function on R" with mean value zero
that satisfies (5.1.3) and let A; be the Littlewood—Paley operator associated with ‘.
Then there exists a constant C, < oo such that for all 1 < p,r < o and all sequences
of L? functions f; we have

(5, (L))

jEZ keZ

< C,BC,
720 1

(L ’)’

n

where (,N’W =max(p,(p—1)"YYmax(r,(r — 1)~1). Moreover, for some C,, > 0 and
all sequences of L' functions f; ' we have

|(X (2 ar)y

< C,Bmax(r,(r—1)" H(Zm’)r

ieZ Nkez, Lh=(R") iz LR
In particular,
1
A ) <C,BC ( -ﬁ’ . 5.1.21
H ( Z 14,5l 720 0 I jezim‘ LP(R") ( )

Proof. As in the proof of Theorem 5.1.2, we introduce Banach spaces % = C and
%, = ¢* and for f € LP(R") define an operator

T(f) = {A(f) ez -

In the proof of Theorem 5.1.2 we showed that T has a kernel K that satisfies con-
dition (5.1.14). Furthermore, 7 obviously maps L' (R",C) to L"(R",¢"). Applying
Proposition 4.6.4, we obtain the first two statements of the proposition. Restricting
to k = j yields (5.1.21). ]

5.1.3 L? Estimates for Square Functions Associated with Dyadic
Sums

Let us pick a Schwartz function ¥ whose Fourier transform is compactly supported
in the annulus 27! < |&| < 22 such that (5.1.6) is satisfied. (Clearly (5.1.6) has
no chance of being satisfied if ¥ is supported only in the annulus 1 < |E| <2.) The
Littlewood—Paley operation f — A;( f) represents the smoothly truncated frequency
localization of a function f near the dyadic annulus |€| ~ 2/. Theorem 5.1.2 says
that the square function formed by these localizations has L” norm comparable to
that of the original function. In other words, this square function characterizes the
L? norm of a function. This is the main feature of Littlewood—Paley theory.

One may ask whether Theorem 5.1.2 still holds if the Littlewood—Paley operators
A; are replaced by their nonsmooth versions
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fe (Xz/g\g|<2.i+lf(§))v(x)- (5.1.22)

This question has a surprising answer that already signals that there may be some
fundamental differences between one-dimensional and higher-dimensional Fourier
analysis. The square function formed by the operators in (5.1.22) can be used to
characterize L”(R) in the same way A; did, but not L”(R") when n > 1 and p # 2.
The problem lies in the fact that the characteristic function of the unit disk is not
an L? multiplier on R” when n > 2 unless p = 2; this fact is discussed in detail in
Section 10.1. The one-dimensional result we alluded to earlier is the following.
For j € Z we introduce the one-dimensional operator

AN ) = (Fa)" (), (5.1.23)

where o A ‘
lj= [2172J+1)U(_2]+17_2J]7
and A? is a version of the operator A; in which the characteristic function of the set

2i < |€| < 271! replaces the function ¥(27/§).

Theorem 5.1.5. There exists a constant Cy such that for all 1 < p < e and all f in
L?(R) we have

C}M@ ‘KZM )

Proof. Pick a Schwartz function y on the line whose Fourier transform is supported
in the set 27! < |&| <22 and is equal to 1 on the set 1 < |€] < 2. Let A; be the

Littlewood—Paley operator associated with y. Observe that A jAjb» = A?A i = A;,

<G+ 5P (5.1.24)

since ¥ is equal to one on the support of Ajb( F). We now use Exercise 4.6.1(a)
to obtain

|(Z 125}

jez

=H<J.2'A?Af<f>v>% ,

< Cmax(p,(p H(ZM )

<CBmax(p,(p—1)""?|| £,

where the last inequality follows from Theorem 5.1.2. The reverse inequality for
1 < p < oo follows just like the reverse inequality (5.1.8) of Theorem 5.1.2 by simply
replacing the A;’s by the A;?’s and setting the polynomial Q equal to zero. (There is
no need to use the Riesz representation theorem here, just the fact that the L” norm
of f can be realized as the supremum of expressions |< f, g>| where g has L” norm
at most 1.)
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There is a higher-dimensional version of Theorem 5.1.5 with dyadic rectan-
gles replacing the dyadic intervals. As has already been pointed out, the higher-
dimensional version with dyadic annuli replacing the dyadic intervals is false.

Let us introduce some notation. For j € Z, we denote by /; the dyadic set
[27,2/41)(J(—2/*", —2/] as in the statement of Theorem 5.1.5. For ji,...,j, € Z
define a dyadic rectangle

Rjy.jjy =1jy X%

in R". Actually R;, . ;, is not a rectangle but a union of 2" rectangles; with some
abuse of language we still call it a rectangle. For notational convenience we write

Ri=Rj ., where j = (ji,...,ju) € Z".

Observe that for different j, /' € Z" the rectangles R; and R # have disjoint interiors
and that the union of all the R;’s is equal to R"\ {0}. In other words, the family of
R;’s, where j € Z", forms a tiling of R", which we call the dyadic decomposition of
R”. We now introduce operators

AN = (Far,)" (), (5.1.25)
and we have the following n-dimensional extension of Theorem 5.1.5.

Theorem 5.1.6. For a Schwartz function y on the line with integral zero we define
the operator

Ai(A)E) = (P& 2 ENF(E) (), (5.126)
where j = (j1,...,jn) € Z". Then there is a dimensional constant C, such that
1
(X 1aP) | <o+l (5.1.27)
jezr Lr p

Let Alk]’- be the operators defined in (5.1.25). Then there exists a positive constant C,
such that for all 1 < p < e and all f € LP(R") we have

””“MgH(Z|Mowﬁ5

Cy (P + ﬁ) jezn Lr

<G(p+5)"| /|

e (5.128)

Proof. We first prove (5.1.27). Note that if j = (ji,...,j,) € Z", then the operator
Aj is equal to

Aj(f) = AV A (p),

T Jn

where the A](rj’) are one-dimensional operators given on the Fourier transform

by multiplication by W(27/r&,), with the remaining variables fixed. Inequality in
(5.1.27) is a consequence of the one-dimensional case. For instance, we discuss the
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case n = 2. Using Proposition 5.1.4, we obtain
3P
Ai()P)
H<jeZZ:2| i)l LP(R?)

- LT, E a2 ) o]

NNEZ jp€Z
<crmas(p.(p= 1) [ | [ (L 14200 mP) an
J2€
=C’max(p,(p—1)" )/R{/R(.ZZ|AJ(.22)(f)(x1,xz)|2>gdxz}dxl

<C2Pmax( ,(p —1) / {/ |f xl,xz)pdxz}dxl
= C* max(p, (p— 2prHL/' R2)’
where we also used Theorem 5.1.2 in the calculation. Higher-dimensional versions
of this estimate may easily be obtained by induction.
We now turn to the upper inequality in (5.1.28). We pick a Schwartz function y

whose Fourier transform is supported in the union [—4, —1/2]{J[1/2,4] and is equal
to 1 on [—2,—1]U[2, —4]. Then we clearly have

b Ab AL
Al =AA;,

since W(27/1&;)- - y(27/&,) is equal to 1 on the rectangle R;. We now use Exer-
cise 4.6.1(b) and estimate (5.1.27) to obtain

(g o), = (g mawme)

€ n

Lr

(X 1a0p)’

JEZN

<Cmax(p,(p—1)"")"

Lr

< CcBmax(p,(p—1)"")*"||f|l,, -

The lower inequality in (5.1.28) for 1 < p < o= is proved like inequality (5.1.8) in
Theorem 5.1.2. The fundamental ingredient in the proof is that f =Y ;cz» A;Al*]’- (f)
for all Schwartz functions f, where the sum is interpreted as the L-limit of the se-
quence of partial sums. Thus the series converges in .¥”’, and pairing with a Schwartz
function g, we obtain the lower inequality in (5.1.28) for Schwartz functions, by ap-
plying the steps in (5.1.19) (with Q = 0). To prove the lower inequality in (5.1.28)
for a general function f € LP(R") we approximate an L? function by a sequence
of Schwartz functions in the L” norm. Then both sides of the lower inequality in
(5.1.28) for the approximating sequence converge to the corresponding sides of the
lower inequality in (5.1.28) for f; the convergence of the sequence of L” norms of
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the square functions requires the upper inequality in (5.1.28) that was previously
established. This concludes the proof of the theorem. g

Next we observe that if the Schwartz function y is suitably chosen, then the
reverse inequality in estimate (5.1.27) also holds. More precisely, suppose (&) is
an even smooth real-valued function supported in the set 17 < |§] < 21 in R that
satisfies

Y v /é) =1, EeR\{0o}h (5.1.29)

JjeZ
then we have the following.

Corollary 5.1.7. Suppose that y satisfies (5.1.29) and let A; be as in (5.1.26). Let

1
f be an LP function on R" such that the function (¥ ;czn |A;(f)|*)? is in LP(R").
Then there is a constant C,, that depends only on the dimension and W such that the

lower estimate || | 1
f p 2

o =I(E a0P)
Ca(p+557 f=7 Lr

(5.1.30)

holds.

Proof. If wehad ey |@(277E)|> = 1 instead of (5.1.29), then we could apply the
method used in the lower estimate of Theorem 5.1.2 to obtain the required conclu-
sion. In this case we provide another argument that is very similar in spirit.

We first prove (5.1.30) for Schwartz functions f. Then the series ¥ jczn A;(f)
converges in L? (and hence in .%’) to f. Now let g be another Schwartz function.
We express the inner product < f 7§> as the action of the distribution -z A;(f) on
the test function g:

(2] =[( L 4().5)

jezn

=| ¥ @n.3)]

]‘GZ"

-y ¥ @4

JEL! kre{jrflyjryjr+l}

LY X (anladea

n . , L.
JEL kpe{ jr—1,jr,jr+1}

IN

1

<3 /R (% 30P) (L aP) e
(L 10P) |, I E laor)’

JEZ"

/

L

(m BEN

< C, ' max (p (r'—=1" HgHLP
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where we used the fact that A;(f) and Ai(g) are orthogonal operators unless every
coordinate of k is within 1 unit of the corresponding coordinate of j; this is an easy
consequence of the support properties of . We now take the supremum over all g
in L”" with norm at most 1, to obtain (5.1.30) for Schwartz functions f.

To extend this estimate to general L” functions f, we use the density argument
described in the last paragraph in the proof of Theorem 5.1.6. O

5.1.4 Lack of Orthogonality on L?

We discuss two examples indicating why (5.1.1) cannot hold if the exponent 2 is re-
placed by some other exponent g # 2. More precisely, we show that if the functions
f; have Fourier transforms supported in disjoint sets, then the inequality

H;ffH; SCP;Hfijp (5.1.31)

cannot hold if p > 2, and similarly, the inequality

Y5l < Lo
J J

(5.1.32)
Ly

cannot hold if p < 2. In both (5.1.31) and (5.1.32) the constants C}, are supposed to
be independent of the functions f;.

Example 5.1.8. Pick a Schwartz function { whose Fourier transform is positive
and supported in the interval |§| < 1/4. Let N be a large integer and let fj(x) =

e*™x¢ (x). Then f,(é) = Z(é — j) and the fj’s have disjoint Fourier transforms. We
obviously have

Z 155117, = v+ DI
On the other hand, we have the estimate
= 12 g
. (N+1)P|x|P
- L/X<1'0(N+1) 1S W) dx

=Ce(N+1)PT,

since { does not vanish in a neighborhood of zero. We conclude that (5.1.31) cannot
hold for this choice of f;’s for p > 2.

Example 5.1.9. We now indicate why (5.1.32) cannot hold for p < 2. We pick a

smooth function ¥ on the line whose Fourier transform ¥ is supported in [% %7]
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is nonnegative, is equal to 1 on [%, %] , and satisfies

Y w2iE)? =1, E>0.

jez

Extend 'IA’ to be an even function on the whole line and let A; be the Littlewood—

Paley operator associated with ¥. Also pick a nonzero Schwartz function ¢ on the

real line whose Fourier transform is nonnegative and supported in the set [%, %]

Fix N a large positive integer and let

£i(x) = M5 (x), (5.1.33)
for j =1,2,...,N. Then the function fj(é) (= %2«’) is supported in the set
[+ 1227 134 122/] which is contained in [§2/,432/] for j > 3. In other words,
@(2’1 &) is equal to 1 on the support of fj This implies that

This observation combined with (5.1.20) gives for N > 3,
N N N ) !
|2l = [ 22w, =a] (L)

j=3 j=3 j=3
where 1 < p < oo. On the other hand, (5.1.33) trivially yields that

N 1

p p
(ZHfjHLP> :H(P‘

Jj=3

Letting N — oo we see that (5.1.32) cannot hold for p < 2 even when the f;’s have
Fourier transforms supported in disjoint sets.

L :CPH‘PHLP(N*z)%’

1
p(N=2)r.

Example 5.1.10. A similar idea illustrates the necessity of the ¢> norm in (5.1.4).
To see this, let ¥ and A; be as in Example 5.1.9. Let us fix 1 < p < o and g < 2.
We show that the inequality

(g ey

cannot hold. Take f = ):1}/:3 fj» where the f; are as in (5.1.33) and N > 3. Then the
left-hand side of (5.1.34) is bounded from below by ||¢|| (N — 2)!/4, while the

right-hand side is bounded above by H(p” (N — 2)1/2 Letting N — oo, we deduce
that (5.1.34) is impossible when ¢ < 2.

<Cpyll £l (5.1.34)

Ly

Example 5.1.11. For 1 < p < e and 2 < g < oo, the inequality
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It (5.1.35)

Lr

b <G ( )y a1

cannot hold even under assumption (5.1.6) on ¥. Let A; be as in Example 5.1.9.
Let us suppose that (5.1.35) did hold for some g > 2 for these A;’s. Then the self-
adjointness of the A;’s and duality would give

|(Zae)?

keZ 7
= sup /n ZAk(g)]kadx
1 3ella ][ <2 R k2
<llelly s | E A,
[1dalea ||t k€2
1
<Cllell Sup H(Z Aj(ZAk(hk))‘q)qH by (5.1.35)
||H{hk}k”(‘7||1ﬁ§1 JEZ keZ Lr
! 1
<Cllello sup { )y H(ZlAjAj+l(hj)|q)q Lp}
Hll{hk}kaHLPSI I=—1" " jeZ
1
< C//||g| 14 sup H ( Z |hj|q>q L :C”||g| >
1 dela]] <t €2

where the next-to-last inequality follows from (5.1.21) applied twice, while the one
before that follows from support considerations. But since ¢’ < 2, this exactly proves
(5.1.34), previously shown to be false, a contradiction.

We conclude that if both assertions (5.1.4) and (5.1.8) of Theorem 5.1.2 were to
hold, then the ¢> norm inside the L” norm could not be replaced by an £¢ norm for
some ¢ # 2. Exercise 5.1.6 indicates the crucial use of the fact that /% is a Hilbert
space in the converse inequality (5.1.8) of Theorem 5.1.2.

Exercises

5.1.1. Construct a Schwartz function ¥ that satisfies (5.1.6) and whose Fourier
transform is supported in the annulus g <l|x < 3.

[Hint: Set P(E)=n(&) (Liezn(2758)) ! where 1 is a suitable smooth bump. |

5.1.2. Suppose that a function ¥ satisfies |¥(€)| < B min(||%,|E|€) for some
€,0 > 0. Show that for some dimensional constant C,, < o we have
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Y [®P(277E) <C,B.
JEZ

5.1.3. Let ¥ be an integrable function on R” with mean value zero that satisfies

PO <BR [ e—y) — Wl dr < B

for some B, € > 0 and all y # 0. .
(a) Prove that |¥(&)| < Bmin (||2,|£|7¢) and conclude that (5.1.4) holds for

p=2.

(b) Prove that if K is defined by (5.1.13), then (5.1.14) holds and therefore deduce
the validity of (5.1.4) and (5.1.5).
[Hint: Part (a): Write

BE) = [T ds = — [ )

where y = %% when |€] > 1. For |€] < 1 use the mean value property of ¥'. Part
(b): Split the sum

Y [y [ ) = s (0]
JEZ X

into the parts 3 5; -1 and } ;- -1 ]

5.1.4. Under the hypotheses of Theorem 5.1.2, prove the following continuous ver-
sions of its conclusions: Show that there exist constants C,,C,, such that for all
1 < p <eoand forall f € LP(R") we have

I e

and also for all f € L'(R") we have

([ it

Under the additional hypothesis that [ |fﬁ(l§)|2% > 0, prove the validity of the
converse inequality

LP(R") < G Bmax( ( _] HfHLI’ R")

<G|,

Ll

HfHLpRn < C,Bmax(p,(p—1)" )H(/ \f*lp|2dt)

LP(R")

forall f € LP(R").

5.1.5. Prove the following generalization of Theorem 5.1.2. Suppose that {K|}; is
a sequence of tempered distributions on R” that coincide with locally integrable
functions away from the origin that satisfy
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1
2

sup / Ki(x—y) — K;(0)]2) dx < A < oo
yeR™\ {0} [x|>2[y] (; ’ / )

If the Fourier transforms of K are functions satisfying

Y IKi(&)]? < B,

jez

then the operator

Bol—

£ (L IK+f1)

Jjez
maps L”(R") to itself and is weak type (1,1).

5.1.6. Suppose that .77 is a Hilbert space with inner product <-, >  and that an

operator T : L>(R") — L*(R", ) is a multiple of an isometry, that is,
1Tl 2w ey = Al 2 e

for all f. Then the inequality HT(f)HL,,(R,,,%) < Cpr|
and some p € (1,e0) implies

Lo (R for all f € LP(R")

< CyA7?|T(

HfHLp’(Rn) f)HU"(R",J“i”)

for all f in L” (R").
[Hint: Use the inner product structure and polarization to obtain
A2

[ festadx

/n<T(f)(X)7T(g)(x)> dx

and then argue as in the proof of inequality (5.1 .8).}

5.1.7. Suppose that {m;} jcz is a sequence of bounded functions supported in the

intervals [2/,2/%1). Let T;(f) = (fm;)" be the corresponding operators. Assume
that for all sequences of functions { f;}; the vector-valued inequality

H (;m(fj)'z); L SA”H (;|f/’2)£

L

is valid for some 1 < p < oo. Prove there is a Cj, > 0 such that for all finite subsets S
of Z we have ‘
J

Yol <G
cs Ay

Hint: Use that (¥;esTi(f),8) = Ljes (A)T(f),A%(g)) ]
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5.1.8. Let m be a bounded function on R” that is supported in the annulus
1 <|&| <2 and define T;(f) = (f(é) (2~ /5)) Suppose that the square func-

tion f — (X;ez |Ti()?) 1/2 is bounded on L?(R") for some 1 < p < eo. Show that
for every finite subset S of the integers we have

|5m], <ol

for some constant C), , independent of S.

5.1.9. Fix a nonzero Schwartz function 4 on the line whose Fourier transform is
supported in the interval [ 8, 8] For {a;} a sequence of numbers, set

i 271712/xh

Prove that for all 1 < p < oo there exists a constant C,, such that

HfHLP = (Z|aj|)2HhHLp'

J

[Hint: Write f = Yi4(a; 2’”lzj<'>h) where A; is given by convolution with ¢,-;
for some ¢ whose Fourier transform is supported in the interval [9 %] and is equal

to 1 on [8’ 8] Then use (5.1. 20)]

5.1.10. Let ¥ be a Schwartz function whose Fourier transform is supported in the
annulus % < |&| < 2 and that satisfies (5.1.7). Define a Schwartz function @ by
setting

B(&) = {?qu(z]g) XEZEE "o

Let Sy be the operator given by convolution with @.
(a) Prove that for all f € ./(R") we have

N
So(f)+ Y, A;i(f)— f
j=1

in ' (R").
(a) Prove that for all f € ./(R")/% we have

N
Y Aif)—
J=N

in.7' (R 2.
[Hint: Use Exercise 2.3.12.]
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5.1.11. Let A; and Sy be as in Exercise 5.1.10. Then for 1 < p < oo we have

111 ot + | i 40F)?

l}”

with the following interpretations: for L” functions f, the right-hand side is con-
trolled by a multiple of the left-hand side; a tempered distribution f with finite
right-hand side can be identified with a function whose L” norm is controlled by a
multiple of this quantity.

[Hint: Use Theorem 5.1.2 (do not re-prove it), together with the identity Sop +
Y71 Aj = I, which holds in .’ (R") by Exercise 5.1.10.]

5.2 Two Multiplier Theorems

We now return to the spaces .#,, introduced in Section 2.5. We seek sufficient con-
ditions on L* functions defined on R" to be elements of .#),. In this section we are
concerned with two fundamental theorems that provide such sufficient conditions.
These are the Marcinkiewicz and the Hormander—Mihlin multiplier theorems. Both
multiplier theorems are consequences of the Littlewood—Paley theory discussed in
the previous section.

Using the dyadic decomposition of R”, we can write any L™ function m as the
sum

m= Z myr i
j€zn

where j = (ji,...,jn)s Rj =1I;, x --- x I;,, and I = [2K, 28+ 1) |J(—2%+1 —2*]. For
J€Z" we set mj = myg;. A consequence of the ideas developed so far is the fol-
lowing characterization of .#,(R") in terms of a vector-valued inequality.

Proposition 5.2.1. Let m € L™(R") and let mj = myg,. Then m lies in .#,(R"), that
is, for some c, we have

1Fm) N < epllfllsr feL?®Y,

if and only if for some Cj, > 0 we have

H( )3 |(J?jmj)v|2>% . gCPH( y |fj|2)%

jezn jezn

(5.2.1)

Ly

for all sequences of functions fj in LP (R").

Proof. Suppose that m € .#,(R"). Exercise 4.6.1 gives the first inequality below

(% 1w B, <6l (% tend )], = ( 3 1)’

'
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while the second inequality follows from Theorem 4.5.1. (Observe that when p = ¢
in Theorem 4.5.1, then C,, , = 1.) Conversely, suppose that (5.2.1) holds for all se-

quences of functions f;. Fix a function f and apply (5.2.1) to the sequence (foj)V,
where R} is the dyadic rectangle indexed by j = (ji,...,j.) € Z". We obtain

|( % 1))

jezr

<6 (jezzn (P )}

I

Using Theorem 5.1.6, we obtain that the previous inequality is equivalent to the
inequality R

[Fm) || < epll £l s
which implies that m € .#),(R"). O

5.2.1 The Marcinkiewicz Multiplier Theorem on R

Proposition 5.2.1 suggests that the behavior of m on each dyadic rectangle R; should
play a crucial role in determining whether m is an L” multiplier. The Marcinkiewicz
multiplier theorem provides such sufficient conditions on m restricted to any dyadic
rectangle R;. Before stating this theorem, we illustrate its main idea via the follow-
ing example. Suppose that m is a bounded function that vanishes near —oo, that is
differentiable at every point, and whose derivative is integrable. Then we may write

2 oo
m@) = [~ wl@dr= [ gy @m0,

— oo —

from which it follows that for a Schwartz function f we have
(F)* = [ (Ftgem) i (0.

Since the operators f — (J?X[;,m) )¥ map L?(R) to itself independently of ¢, it follows
that

1)y < Cpllm 11

thus yielding that m is in .#),(R). The next multiplier theorem is an improvement
of this result and is based on the Littlewood—Paley theorem. We begin with the one-
dimensional case, which already captures the main ideas.

Theorem 5.2.2. (Marcinkiewicz multiplier theorem) Let m : R — R be a bounded
function that is €' in every dyadic set (27,2771)|J(—2/*1, =27 for j € Z. Assume
that the derivative m' of m satisfies

[ @l [ mierag| <a<e 622

J
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Then for all 1 < p < oo we have that m € #,(R) and for some C > 0 we have

ml] ) < Cmax (p, (p=1)7") (||| - +4). (5.2.3)

Proof. Since the function m has an integrable derivative on (2/,2/*1), it has bounded
variation in this interval and hence it is a difference of two increasing functions.
Therefore, m has left and right limits at the points 2/ and 2/, and by redefining m
at these points we may assume that m is right continuous at the points 2/ and left
continuous at the points —2/.

Set I; = [2/,2/t1)J(=2/*1, =2/] and I} = [2/,2/"") whenever j € Z. Given
an interval / in R, we introduce an operator A; defined by A;(f) = (f);)". With
this notation A 1t (f) is “half” of the operator Ag introduced in the previous section.
Given m as in the statement of the theorem, we write m(§) = my (&) + m—(§),
where m. (&) =m(§)xe>o and m_(§) = m(&) xe . We show that both m, and m
are LP multipliers. Since m’ is integrable over all intervals of the form [2/,&] when
2/ < & < 2/*! the fundamental theorem of calculus gives

. ¢ ‘ .
m(E)=m@)+ [ m(e)d,  for) <& <2,
27
from which it follows that for a Schwartz function f on the real line we have

N o 2
m(EF(©);: () =m@) 1 ©)+ | F 21 (B (1)
We therefore obtain the identity
R =N ) 2J+1
(Pam)” = (Fmag)Y =m@NAy (1)+ [ Ay (F)mi (1),
which implies that

1

. 27+l 2
(G| < Il 042 ([ 4y (DP i 0lar)

using the hypothesis (5.2.2). Taking £2(Z) norms we obtain

(X1 B < - (X las (0P’
JEZ JEZ

1 ~ b 20 2
A ([ 8008y I I 0] )

Exercise 4.6.2 gives
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oo 1
([ 1y 0P @)

< Cmax(p,(p—1)"")A?

1

Az

Lr

([ ey DL )1 ar)’

’
while the hypothesis on m’ implies the inequality
1
2
(g Jay 0 AL Nar)' | <ad|(EiasnR),
D j J Lp
Using Theorem 5.1.5 we obtain that
5 A v
|(Z1a: (1), = €' max(p. (p= 1™ (Fiow) [
T
and the latter is at most a constant multiple of max(p,(p —1)~')3||f|| - Putting
things together we deduce that
(21 P, = st o= 1) 0 )l 52

from which we obtain the estimate

[(Fm) ]l < Cmax(p. (p = 1)) (A+ m]| <) 17|

using the lower estimate of Theorem 5.1.5. This proves (5.2.3) for m,. A similar
argument also works for m_, and this concludes the proof by summing the corre-
sponding estimates for m, and m_. U

We remark that the same proof applies under the more general assumption that
m is a function of bounded variation on every interval [2/,2/+1] and [-2/*!, —2/].
In this case the measure |m/(¢)|dt should be replaced by the total variation |dm(t)|
of the Lebesgue—Stieltjes measure dm(t).

Example 5.2.3. Any bounded function that is constant on dyadic intervals is an L”
multiplier. Also, the function

m(€) = |E[2 Toe2 5]

is an L multiplier on R for 1 < p < co.
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5.2.2 The Marcinkiewicz Multiplier Theorem on R"

We now extend this theorem on R". As usual we denote the coordinates of a point
& e R" by (&1,...,&,). We recall the notation I; = (—2/1,—2/](J[2/,2/*) and
Rj=1; x---xI; whenever j = (ji,...,jn) € Z".

Theorem 5.2.4. Let m be a bounded function on R”" that is 6" in all regions R;
(i.e., d%m are continuous up to the boundary of R; for all |a| < n). Assume that
there is a constant A such that for all k € {1,...,n}, all ji,...,jr € {1,2,...,n}, all
Liys...,lj, €Z, and all & € I, for s € {1,...,n} \{Jj1,..., jx} we have

| 1@ oum @ 8| gy dEy <4 <o, (5.25)
I L

Then mis in #,(R") whenever 1 < p < e and there is a constant C, < oo such that
I g, oy < ol + =) max (. o= D)™, 6526

Proof. We prove this theorem only in dimension n = 2, since the general case
presents no substantial differences but only some notational inconvenience. We de-
compose the given function m as

m(G) =my i (§) +m—y (&) +my(G)+m—(§),

where each of the last four terms is supported in one of the four quadrants. For
instance, the function m, _(&,&;) is supported in the quadrant £ > 0 and &, < 0.
As in the one-dimensional case, we work with each of these pieces separately. By
symmetry we choose to work with m_ . in the following argument.

Using the fundamental theorem of calculus, we obtain the following simple iden-
tity, valid for 2/1 < & < 2/1+1 and 272 < &, < 272+1:

o & .
m(&&) = m(2127)+ [ @m)(,27) dn

1< .
+ [ (@m0 0)dn (5.2.7)

212

/ (d10om)(t1,02) dty dt; .
271 J2)2

We introduce operators Al(r), r € {1,2}, acting in the rth variable (with the other

variable remaining fixed) given by multiplication on the Fourier transform side by
the characteristic function of the interval /. Likewise, we introduce operators A;(r),
r € {1,2} (also acting in the rth variable), given by multiplication on the Fourier
transform side by the characteristic function of the set (—2/*1,—2/]{J[2/,2/*1).

For notational convenience, for a given Schwartz function f we write
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S+ = (fAX(o,w)2)v7

and likewise we define f,_, f_,and f__.

Multiplying both sides of (5.2.7) by the function foj X(0,00)2 and taking inverse
Fourier transforms yields

(J?ZR_,-’"++) = m(zh 2]2) 1 (f++)
Ji+
3 22 A}“-f)AéfL)A}“-.‘”(ﬁg<alm><n,zf2>dn
202+l o(1) ) b(2) ‘ (5.2.8)
+ i A A[t YOO)A,'Z (fi+) (dam) (2", 1) dtr
Qi1+l it @
/2 /2 [fl o0) Jl A[t2 (f++) (81 82m) (l],tz)dtz dty.

We apply the Cauchy—Schwarz inequality in the last three terms of (5.2.8) with re-

spect to the measures |(9ym)(t1,272)|dt;, |(dam) (271, 12)|dta, |(d)Irm)(t1,12)| dtrdty
and we use hypothesis (5.2.5) to deduce

|(Farym)| < |lm]]| a0 AP (710
1 2711 W b(l) 5 } 1

+42 /2,-] |A A yAiy (Fro)|"1(Qm)(11,272) | dry
L b(1) 4 (2)  4(2) 2 i

+A2 /2_,-2 |4}, AIRRVAYA (fr0)|"1(dam) (27 ,12) | d1>

2! ZJZH 2 h(2 2 %
4 (L L 808 8 e (@) ) )
21 ok 270

Both sides of the preceding inequality are sequences indexed by j € Z*. We apply
¢2(Z?) norms and use Minkowski’s inequality to deduce the pointwise estimate

=

1

(X Gamme VY < Il X 47050

1
b 2
(/ ) A A () [@m) 1,202 anav( m)

1
2
1
(/ / ’A [logztl] [log2t2] f++ | | 82m 2[ *£2h) 1) |dV tl dl‘z)

1
L2201 (2) (o) 45(2) 2 2
A2< /0 /0 [ A 0By ) Aogy 1) Aogy ) (F++ )| |<3132m)(’1’t2)|d’1df2) ’

where v is the counting measure ¥ ;cz &,; defined by v(A) =#{j € Z: 2/ € A}
for subsets A of (0,0). We now take L”(R?) norms and we estimate separately the
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contribution of each of the four terms on the right side. Using Exercise 4.6.2 we
obtain

(% 1GzmerPY|

jez?

(T 43P’

jez?

< ]

)7y

+C2A2max( J(p—1" )

1

T T2 b o 2
XN(AA\%%w%%wﬂnm@mmgwﬁwmwmﬂ

1

T 0 b 2 2
L 18 8 @m0 ] vy a )

1
T (1) 46(2) 2 2
+H</0 /0 [Aogs 114 0gs ) (4] ’(9192m)(f1’f2)!df1df2> U)}-

o(1) A(2)
But the functions (¢1,%,) — Altog, 11 10gy 1]

vals of the form [2/1,2/1%1) x [2/2, 2/2%1); hence using hypothesis (5.2.5) again we
deduce the estimate

(£ 1z

jez?

P

p

( f++) are constant on products of inter-

LP(R?)
1

I (T sl

jez?
< Cz(HmHLw +A) max (I% (p— 1)—1)4”(]?%(0700)2)\/‘
<Co(|Jm] . +4) max (p, (p— 1)~")°| /]

<Gl +A) max (p, (p— 1)

LP(R2)

LP(R2)

L])(RZ) 9

where the penultimate estimate follows from Theorem 5.1.6 and the last estimate
by the boundedness of the Hilbert transform (Theorem 4.1.7). We now appeal to
the lower estimate of Theorem 5.1.6, which yields the required estimate for m . .
A similar argument also works for the remaining parts of m, and this concludes the
proof of (5.2.6).

The analogous estimate on R” is

H( Z |(fXij++)\/{2>% )

) <Gl + Ay max (p, (0 1)) | ]| e
JEZ"

(R")

for some dimensional constant C,, < oo and is obtained in a similar fashion. ]

We now give a condition that implies (5.2.5) and is well suited for a variety of
applications.

Corollary 5.2.5. Let m be a bounded function defined away from the coordinate
axes on R" that is € in that region. Assume furthermore that for all k € {1,...,n},
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all ji,...,je€{1,2,...,n},and all & € R forr & {j1,..., jx} we have

9y~ jem) (&1, &) SANG, 17"+ [85 7" (5.2.9)
Then m satisfies (5.2.6).
Proof. Simply observe that condition (5.2.9) implies (5.2.5). O

Example 5.2.6. The following are examples of functions that satisfy the hypotheses
of Corollary 5.2.5:
S

CGiE )

B (11 S (i
m8) = g aan

where oy +0p + -+ 0, = o, aj >0,

mi (&)

_ £ &2
& +E+&

The functions m; and my are defined on R" and m3 on R3.

The previous examples and many other examples that satisfy the hypothesis
(5.2.9) of Corollary 5.2.5 are invariant under a set of dilations in the following sense:
suppose that there exist ki,...,k, € R™ and s € R such that the smooth function m
on R"\ {0} satisfies

mAKE . ARE ) = ABm(E,. .. &)

for all &1,...,&, € Rand A > 0. Then m satisfies condition (5.2.9). Indeed, differ-
entiation gives

m3 (&)

Aok o (AR e ARE) = AFI%m(E, .., &)

for every multi-index o = (@i, ..., 0,). Now for every & € R"\ {0} pick the unique
Ag > 0 such that (Ag‘él,...,lé"én) € 8"!. Then lg-ia" < |&j|7%, and it follows
that

9 8 < | sup 9% | A <
N

5.2.3 The Hormander—Mihlin Multiplier Theorem on R"

We now discuss a second multiplier theorem.
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Theorem 5.2.7. Let m(&) be a complex-valued bounded function on R"\ {0} that
satisfies either
(a) Mihlin’s condition

|0gm(E)| < AJg|1 (5.2.10)

for all multi-indices || < [5]+1,
or (b) Hormander’s condition

sup R~ 210l |9gm(&)[PdE < A% < oo (5.2.11)
R>0 R<|&|<2R

for all multi-indices |a| < [n/2]+ 1.

Then for all 1 < p < eo, m lies in .#,(R") and the following estimate is valid:

HmH///p < Cymax(p,(p— 1)) (A+|m||,-) - (5.2.12)

Moreover, the operator f +— (fm)v maps L' (R") to L' (R") with norm at most a
dimensional constant multiple of A + HmH =

Proof. First we observe that condition (5.2.11) is a generalization of (5.2.10) and
therefore it suffices to assume (5.2.11).

Since m is a bounded function, the operator given by convolution with W = m" is
bounded on L?(R"). To prove that this operator maps L' (R") to L'**(R"), it suffices
to prove that the distribution W coincides with a function K on R"\ {0} that satisfies
Hormander’s condition.

Let { be a smooth function supported in the annulus 1 < |&| < 2 such that

Y (27E) =1, when & #£0.
jeZ

~

Set m;(&) = m(&)L(277E) for j € Z and K; = m]v We begin by observing that
YNy K; converges to W in .’ (R"). Indeed, for all ¢ € .7 (R") we have
N

(£ o) =( £ mor) - mer= o)

We set ng = [5] + 1. We claim that there is a constant C, such that

. 1 ~
sup [ |K;(x)] (1+2/|) ¥ dx < CoA, (5.2.13)
jez JRY
sup 2*1'/ VK ()| (142 dx < GoA. (5.2.14)
JEZL R”

To prove (5.2.13) we multiply and divide the integrand in (5.2.13) by the expression
(1427]x])"™. Applying the Cauchy—Schwarz inequality to |K;(x)| (1 +2/|x|)" and
(1+2/ |x|)*”0+%, we control the integral in (5.2.13) by the product



368 5 Littlewood—Paley Theory and Multipliers

1 1
. 2
(/ K;(x 1+2f|x|)2”0dx) (/ (1+2J|x)2"0+5dx) . (5.2.15)
Rll

We now note that —2ng + % < —n, and hence the second expression in (5.2.15) is

equal to a constant multiple of 27/*/2 To estimate the first integral in (5.2.15) we
use the simple fact that

(1+27x) <C(n) Y [(27x)7

[vI<ng

We now have that the expression inside the supremum in (5.2.13) is controlled by

1

C'(m2 2y (/ K j(x |222”||x72dx> : (5.2.16)
[YI<no
which, by Plancherel’s theorem, is equal to

1

n/2 | 2 :
272y cz”(/ 1(97m;)(€)| a’é) (5.2.17)

lv|<ng

for some constants Cy.

For multi-indices § = (6y,...,8,) and Y= (¥1,...,¥:) We introduce the notation
0 <ytomean §; < y;forall j=1,...,n.Forany |y| <ng we use Leibniz’s rule to
obtain
[ 1@m)@PdE < ¥ Cs [ L D)@ E) 0im) E)]
IR 5<y
< C22i1712jl8] 24
- azgly ’ 21 <|E|<at] S de
< Z C82—2]|Y\22j\5\2A221"2—2/|5\
5<y

_ EnAZZj"Z_ZjM 7

which is all we need to obtain (5.2.13). To obtain (5.2.14) we repeat the same ar-
gument for every derivative d,K;. Since the Fourier transform of (d,K;)(x)x? is
equal to a constant multiple of 8V(§,m(5)5(2’j &)). we observe that the extra fac-
tor 27/ in (5.2.14) can be combined with &, to write 2_187’(§rm(§)2(2_j§)) as

87(m(§)AC§(2’j &)), where 5(E) = E.L(&). The previous calculation with ¢, re-

placing { can then be used to complete the proof of (5.2.14).
We now show that for all x # 0, the series } jcz K (x) converges to a function,
which we denote by K(x). Indeed, it is trivial to see that for all x € R" we have

‘Kj(x” < anjnHmHLw’
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which shows that the function ¥ ;< |K;(x)| is bounded. Moreover, as a consequence
of (5.2.13) we have that

(1+2f'5)%/ IK;(x)] dx < CoAh |

[x|>6

for any 6 > 0, which implies that the function ) ;- [Kj(x)| is integrable away from
the origin and thus finite almost everywhere. We conclude that the series Y. ;cz K;(x)
represents a well defined function K (x) away from the origin that coincides with the
distribution W = m".

We now prove that the function K = ¥ ;.7 K; (defined on R"\ {0}) satisfies

Hormander’s condition. It suffices to prove that for all y # 0 we have

y / IK(x—) —K;(x)|dx <2CA. (5.2.18)
JEZ |x\>2|y\

Fix ay € R"\ {0} and pick a k € Z such that 2% < [y| <27**1. The part of the sum
in (5.2.18) where j > k is bounded by

Z/\xm\y\'K( x—y)|+|K;(x)|dx <22/

j>k j>k |)“>‘V
. 1
14+2/|x|)2
<2y | |K-<x>\ﬂdx
Rt (142i[x))3
2C,A
T S (+21ly)
2C,A
Sy 26A oy
]>k 1+2/2 )

where we used (5.2.13). The part of the sum in (5.2.18) where j < k is bounded by

J;’C/XE%’I K (x =) —Kj(x)|dx

1
<Y [ 1=y a—ey)aax
<k’ x=2ly[ /O

< [TE 2 [ vk 0]+ 27k o) haxan

J<k

< / Y 2741G,42740 < CA
0 j<k

using (5.2.14). Hérmander’s condition is satisfied for K, and we appeal to Theorem
4.3.3 to complete the proof of (5.2.12). 0
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Corollary 5.2.8. Let {my }scz be bounded functions on R" whose L norms are uni-
formly controlled by a constant A. Suppose that

supR-"+21] Z/ 0¢my(E)PdE <A>  forall |a < [4]+1.
R>0 rez,/R<IE|<2R

Then for some C,, < o and for all functions f; we have

| (% 1Gomiy <l (-1 AH(Zlﬂl)

Proof. Write each K¢ = m/ =Y j KJ/: as in the proof of Theorem 5.2.7. Using the
hypothesis, we can prove that

(5.2.19)

SUP/ YK/ () (1+27]x)) T dx < CoA, (5.2.20)
Jj€Z IRy

sup2™/ [ Y |VK] ()] (1+2/]xl) Hx < G (5.221)
ez R

These estimates are proved just like those in (5.2.13) and (5.2.14) with the extra
summation on ¢ carried through. Using (5.2.20) and (5.2.21), we now derive that

/‘ sup| K (x—y) — K'(x |dx<Z/ YK (x—y) — K' ()] dx < 0

x[>2[y] ¢ Ix[=>2[y 77

as we did in the proof of Theorem 5.2.7. This is Hormander condition needed in this
setting, which allows the use of Corollary 4.6.2. The proof of (5.2.19) follows. [J

Example 5.2.9. Suppose that 7 is a real number. Then the function |&|'¥ is in M,
for all 1 < p < oo, since condition (5.2.10) is satisfied.

We end this section by comparing Theorems 5.2.2/5.2.4 and 5.2.7. It is obvious
that in dimension n = 1, Theorem 5.2.2 is stronger than Theorem 5.2.7. But in higher
dimensions neither theorem includes the other. Condition (5.2.10) for all |ot| < n is
less restrictive than condition (5.2.9). Thus for functions that are 4" away from the
origin and satisfy condition (5.2.10) for all |a| < n, it is better to use Theorem 5.2.4.
However, in Theorem 5.2.7 the function m is assumed only to be €"/2*! | requiring
almost half the amount of differentiability required by condition (5.2.9).

It should be noted that both theorems have their shortcomings. In particular, they
are not L? sensitive, i.e., delicate enough to detect whether m is bounded on some
L? but not on some other L9.
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Exercises

5.2.1. Let 1 <k < n. Use the same idea as in the proof of Proposition 5.2.1 to prove
that m € .#,(R") if and only if (5.2.1) is satisfied with m; replaced by

mj(§) =m(E)y(27 &) y(27Ey),

where W(&) is a smooth compactly supported function equal to 1 on the interval
[271,4] that satisfies

Y w(2ig) =1, E+#0.

JEZ

5.2.2. (Calderon reproducing formula) Let ¥ and @ be radial Schwartz functions
whose Fourier transforms are real-valued and compactly supported away from the

origin and satisfy N o .
Y PQE)BRTIE) =1
JEZL

for all & # 0. Prove that for every function f in . (R") we have

Y feW iy =1,

jez
where the series converges in .7 (R"). Conclude that the identity

YAD _
Y AfAY =1
jez

holds in the sense of ./ (R")/ 2. Here A;-P is the operator given by convolution
with ¥, ;, and A;p is defined likewise.
5.2.3. Consider the differential operators

L =0 7822+8§,

L, =0, +822+832

Prove that for every 1 < p < oo there exists a constant C, < oo such that for all
Schwartz functions f on R? we have

19235111 < CollL (D],
191 1lzs < CollLa(F)],r-

[Hint.' Use Corollary 5.2.5. What is the relevance of multipliers m; and m3 in Ex-
ample 5.2.67|

5.2.4. (a) Suppose that m(&) is real-valued and satisfies |[0%m(&)| < Cy|& H“' for
all multi-indices o satisfying |a| < [5] 41 and all & € R"\ {0}. Prove that ™8 is
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in #,(R") for 1 < p < oo,
(b) Suppose that m(&) is real-valued and satisfies (5.2.9). Prove that &) is in
AMp(R") for 1 < p < oo,

5.2.5. Suppose that ¢(&) is a smooth function on R” that vanishes in a neighbor-
hood of the origin and is equal to 1 in a neighborhood of infinity. Prove that the

function e’léi\érl(p(é) isin .Z,(R") for 1 < p < oo,

5.2.6. Let 7,7y,...,T, be real numbers and py,...,p, be even natural numbers.
Prove that the following functions are L” multipliers on R” for 1 < p < oe:
|€l |”:l T |§n|”n ’

(1&11Pr o (&l )
(&P + 18P

5.2.7. Let {(&) be a smooth function on the line that is supported in a compact
set that does not contain the origin and let a; be a bounded sequence of complex
numbers. Prove that the function

m(&) =Y a;C(277¢)
JEZL

isin .#,(R) forall 1 < p < co.

—~ o~

5.2.8. Let £ be as in Exercise 5.2.7 and let Ajg (f) = (f(&) (Z_j’g'))v. Show that

the operator
f—sup| ¥ A7)
N>0" ;<N

is bounded on L”(R) when 1 < p < oo A
[Hint: Pick a Schwartz function ¢ satisfying ¥ ;cz ®(27/&) = 1 on R"\ {0} with ¢

compactly supported. Then A,:” Ajg =0if |j — k| < cp and we have
¢ _ ¢ ¢ _ [ ¢ ¢ ¢

ZAj_ Y A 2Aj_ Y AkZAj— Y A ZAj,

Jj<N k<N+-cqp J<N k<N+cq J k<N+-cq Jj>N
which is a finite sum plus a term controlled by a multiple of the operator

FeM(L AL (),
J€Z

where M is the Hardy-Littlewood maximal function.}

5.2.9. Let ¥ be a Schwartz function whose Fourier transform is real-valued, sup-
ported in a compact set that does not contain the origin, and satisfies

Y P2 E)=1  when& #0.

JEZ
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Let A; be the Littlewood—Paley operator associated with ¥'. Prove that

H Z Aj(g) _gHU’ —0
lil<N

as N — oo for all functions g € ./(R"). Deduce that Schwartz functions whose
Fourier transforms have compact supports that do not contain the origin are dense
in LP(R") for 1 < p < oo

[Hint: Use the result of Exercise 5.2.8 and the Lebesgue dominated convergerce
theorem. |

5.3 Applications of Littlewood—Paley Theory

We now turn our attention to some important applications of Littlewood—Paley the-
ory. We are interested in obtaining bounds for singular and maximal operators.
These bounds are obtained by controlling the corresponding operators by quadratic
expressions.

5.3.1 Estimates for Maximal Operators

One way to control the maximal operator supy |7;(f)| is by introducing a good av-
eraging function ¢ and using the majorization

Sl/:P|Tk(f)| < S‘/:P|Tk(f) =[x 0y +Slip|f* ®y|
(5.3.1)

IN

(Em() =15 0) "+ Com0)

for some constant C, depending on ¢. We apply this idea to prove the following
theorem.

Theorem 5.3.1. Let m be a bounded function on R" that is €' in a neighborhood
of the origin and satisfies m(0) = 1 and |m(§)| < C|&|¢ for some C,e > 0 and
all & # 0. For each k € Z define To(f)(x) = (F(£)m(27*&))Y (x). Then there is a
constant C,, such that for all L? functions f on R" we have

[[sup |Te(A)]| 2 < Call£| - (532)
keZ

Proof. Select a Schwartz function ¢ such that ¢(0) = 1. Then there are positive
constants Cy and C; such that [m(&) — @(&)| < Cy|&| ¢ for |£| away from zero and
m(&) — @(&)| < C,|&| for |€] near zero. These two inequalities imply that
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Y Im(278) 927 E))P < 5 < oo,
k

from which the L?> boundedness of the operator

F= (LT = Froa)'?

k

follows easily. Using estimate (5.3.1) and the well-known L? estimate for the Hardy—
Littlewood maximal function, we obtain (5.3.2). O

If m(&) is the characteristic function of a rectangle with sides parallel to the axes,
this result can be extended to L”.

Theorem 5.3.2. Let 1 < p < oo and let U be the characteristic function of a product
of open intervals in R" that contain the origin. For each k € Z define Ti(f)(x) =
(F(E)qu (27%E))Y (x). Then there is a constant Cpn such that for all L? functions f
on R" we have

H :‘GJIZ’ |Tk(f)|H[ﬁ(R") < Cpm HfHU(R">'

Proof. Let us fix an open annulus A whose interior contains the boundary of U and
take a smooth function with compact support ¥ that vanishes in a neighborhood of
zero and a neighborhood of infinity and is equal to 1 on the annulus A. Then the
function ¢ = (1 — ¥)yy is Schwartz. Since xy = Xy ¥ + 9, it follows that for all
f € LP(R") we have

Ti(f) =Ti(f) = f* ok + [ Pri = Ti(f ¥ YWoit) + f 5 Py

Taking the supremum over k and using Corollary 2.1.12 we obtain

sup [T()| < (L IT(f) — froP) P CoM(y). (53.3)
k

The operator Ti(f) — f * ¢, « is given by multiplication on the Fourier transform
side by the multiplier

w278 —9(27) = x (27 E)Y(2TE) = 2y (E)W(27FE).

Since {2" U }kez is a measurable family of rectangles with sides parallel to the axes,
Exercise 4.6.1(b) yields the following inequality:

(X I+ yoil?)?

kel

|CE 1m05)— £00eP)?| (534)

kel

T < Cp,n

7

Since f* Y, = A;’/( f), estimate (5.1.4) of Theorem 5.1.2 yields that the expres-
sion on the right in (5.3.4) is controlled by a multiple of H f H 1+ Taking L” norms in
(5.3.3) and using the L? estimate for the square function yields the required conclu-
sion. U
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The following lacunary version of the Carleson—Hunt theorem is yet another in-
dication of the powerful techniques of Littlewood—Paley theory.

Corollary 5.3.3. (a) Let f be in L*(R") and let Q be an open set that contains the
origin in R". Then

lim | f(£)FCdE = f(x)

k—o0 J2k Q)
Sfor almost all x € R".
(b) Let f be in LP(R") for some 1 < p < co. Then

lim [, F(E)2™4 dE = f(x)

k—so0

&l <2t
for almost all x € R".

Proof. Both limits exist everywhere for functions f in the Schwartz class. To obtain
almost everywhere convergence for general f in LP we appeal to Theorem 2.1.14.
The required control of the corresponding maximal operator is a consequence of
Theorem 5.3.1 in case (a) and Theorem 5.3.2 in case (b). ]

5.3.2 Estimates for Singular Integrals with Rough Kernels

We now turn to another application of the Littlewood—Paley theory involving singu-
lar integrals.

Theorem 5.3.4. Suppose that L is a finite Borel measure on R" with compact sup-
port that satisfies |[[L(§)| < Bmin (|§|?,|&|?) for some b > 0 and all & # 0. Define
measures W by setting [1;(&) = W(27/&). Then the operator

Tu(f)(x) = ) (f %)) (x)

jez
is bounded on LP (R") for all 1 < p < oo,

Proof. 1t is natural to begin with the L? boundedness of T,. The estimate on [
implies that

Y ja@7e)< Y Bmin (277E°,[277E| ") < CpB < oo. (5.3.5)
JEZL JEL

The L? boundedness of Ty, is an immediate consequence of (5.3.5).

We now turn to the L? boundedness of 7, for 1 < p < eo. We fix a radial Schwartz
function y whose Fourier transform is supported in the annulus % < |€] < 2 that
satisfies

Y w2ig) =1 (5.3.6)

JEZ
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whenever & # 0. We let y,—(x) = 2Ky(2%x), so that y,—(§) = y(27%&), and we
observe that the identity

Hj= ) W% Vs
keZ

is valid by taking Fourier transforms and using (5.3.6). We now define operators S
by setting

Sk(f) = Y Hjx Wk f =Y (B* i)y % f .

JEZ JEZL
Then for nice f we have that

Tu(f) =Y wixf=Y Y wixyjuxf=Y S(f).

JEZ JEZkEZ keZ

It suffices therefore to obtain L” boundedness for the sum of the S;’s. We begin
by investigating the L? boundedness of each S;. Since the product ‘V/Tf\*"‘m is
nonzero only when j' € {j—1,j,j+ 1}, it follows that

Is«Ol: < X X [ (@ ©ue 4 ope)Ife)Ra

JEL j €L
j+1
<aY Y[ mOGEIEr
jEZjl:jflmngk
<aY [ Bmin(2UEl R g RGP
TN
<cp 2y [f)Pae
T g e

_ a2,
We have therefore obtained that for all k € Z and f € .(R") we have

1Sk (F)| 2 < CsB27PH|£]] 2 - (5.3.7)

Next we show that the kernel of each S satisfies Hormander’s condition with con-
stant at most a multiple of (14 |k|). Fix y # 0. Then

/MZM

y ((u Vo) i y) = (* Yok )a <x>) dx

JEZ

<X [ 2w @ 20y) - ey )2 d
jez [x|>2[y|

=Y 1ix(y),

JEZ
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where

B0V = [ B9 2) = () ()

We observe that I; x(y) < C4||,u.||' - To obtain a more delicate estimate for 7;(y)
we argue as follows:

Lix(y) <

=27+

(x—2y—2) — Wy (x—z)‘d,u(z)dx

= /o 2k / |y (2fx — 2kz — 27ky) — y(2fx — 2%2) | dxdpu(z)
x|=27+1
<Cs / / 2001+ y(25x — 22 — 0)| dpa (2) dx
Rn
x| =271y
gc621'+’</R / 29y (14|25 — 2*2— 60]) " dxdu(z)
[x[>2/+ |y
:c621+k|y|/ / (14— 2%z~ 6]) " 2dxdu(2),
ity

where |6 < 2/**|y|. Note that 6 depends on j,k, and y. From this and from /; ; (y) <
Cy||u|| , we obtain

Lixk(y) < Cr ||u]_, min (1,277]y]), (53.8)

which is valid for all j,k, and y # 0. To estimate the last double integral even more
delicately, we consider the following two cases: |x| > 25+2|z| and |x| < 2K*2|z|. In
the first case we have |x — 2%z — 6| > I|x|, given the fact that |x| > 2/T%+1|y|. In
the second case we have that |x| < 25*2R, where B(0,R) contains the support of
. Applying these observations in the last double integral, we obtain the following
estimate:

Lix(y) < Cg2/+k|)’|/ { / ]‘ ) o T / dx] dp(z)

‘x|>2j+k+l‘ | | |22j+k+l ‘.Vl
x| >2K+2 ] [x|<2k2R

; 1
@bl {ww*o}

= Co(@ )|,

IN

provided 2/[y| > 2R. Combining this estimate with (5.3.8), we obtain

min (1,277*]y[)  forall j,k and y,

I; <C ‘ . 5.3.9
k() < 10“””/// {(2]+k|y|)1 when 2/|y| > 2R. ( )
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We now estimate ¥ /; ¢(v). When 2¢ > (2R)~" we use (5.3.9) to obtain

Y140 < C10||NH///[ Y 2tpy+ Y 1+ )Y 2J+k|y|)*1}
i M#ly\ Z%Mgzjg% 2/7‘2‘1‘e

<Cn HH|“//,(|10gR| + k).

Also when 2X < (2R)~! we again use (5.3.9) to obtain

Vi) <Collul, | X 2+ ¥ @] <Cunful,
J

i< L 2i>_1_
=2k =2k

since in the second sum 2/[y| > 2% > 2R, which justifies use of the corresponding
estimate in (5.3.9). This gives

Y 1ia(y) < Cus|mf] , (1+ kD), (5.3.10)
J

where the constant Ci3 depends on the dimension and on R. We now use esti-
mates (5.3.7) and (5.3.10) and Theorem 4.3.3 to obtain that each S; maps L! (R") to
L'*(R") with constant at most

G 1+ kD], < G-+ k) ],

It follows from the Marcinkiewicz interpolation theorem (Theorem 1.3.2) that Sy
maps L”(R") to itself for 1 < p < 2 with bound at most C,, ,2~ "I (1 + |k[)! =,
whendi =% 41— 6,. Summing over all k € Z, we obtain that 7, maps L”(R") to
itself for 1 < p < 2. The boundedness of 7, for p > 2 follows by duality. 0

An immediate consequence of the previous result is the following.

Corollary 5.3.5. Let 1 be as in the previous theorem. Then the square function

-(¢ |uj*f\2)% (5.3.11)

JEZ

maps LP (R") to itself whenever 1 < p < oo,
Proof. To obtain the boundedness of the square function in (5.3.11) we use the
Rademacher functions r;(t), introduced in Appendix C.1, reindexed so that their
index set is the set of all integers (not the set of nonnegative integers). For each t we
introduce the operators

Z T 1)(f * .uj

JEL

Next we observe that for each 7 in [0, 1] the operators 7,; map L”(R") to itself with
the same constant as the operator 7, which is in particular independent of ¢. Using
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that the square function in (5.3.11) raised to the power p is controlled by a multiple
of the quantity

a fact stated in Appendix C.2, we obtain the required conclusion by integrating over
R O

er f*.u/’ dt,

JEZ

5.3.3 An Almost Orthogonality Principle on L?

Suppose that 7; are multiplier operators given by T;(f) = (fm )V, for some multi-
pliers m;. If the functions m; have disjoint supports and they are bounded uniformly
in j, then the operator
T=)T
J

is bounded on L2. The following theorem gives an L” analogue of this result.

Theorem 5.3.6. Suppose that 1 < p <2 < g < oo. Let mj be Schwartz functions

supported in the annuli 27~" <|&| <2/ and let Tj(f) = (fmj)v. Suppose that the
T;’s are uniformly bounded operators from LP(R") to L1(R"), i.e

Sl;p”jwj”lﬁﬁLq =A <o,

Then for each f € LP(R"), the series

converges in the LY norm and there exists a constant Cp, 4, < oo such that

1]

< CpgnA. (5.3.12)

LP—IL4

Proof. Fix aradial Schwartz function ¢ whose Fourier transform  is real, equal to
one on the annulus %_S |€| <2, and vanishes outside the annulus % <€l < 4. We
set @, j(x) =2/"¢(2/x), so that @, is equal to 1 on the support of each m;. Setting
Aj(f) = f*@,-j, we observe that

Tj=AjT;Aj
for all j € Z. For a positive integer N we set

= ) A;TiA;.

ljI<N

Fix f € LP(R"). Clearly for every N, TV (f) is in L(R"). Using (5.1.20) we obtain
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1Tl = H‘Z AT ()] 1o

(Y IT54,(f

JEZ

Y 14,01

JEZ
1

SC;(Z |imasor],,.)"

=G (X Imar HLq) :

JEL

<cll(

1
2

o
_Cq

L4/2

where we used Minkowski’s inequality, since ¢/2 > 1. Using the uniform bounded-
ness of the 7;’s from L? to L?, we deduce that

G Imalk) <ca(Zlavl)

C (ZHM )l ||LP/2>
SC;A(HJ;M,/(]C) ’ U,/z)%

ZCZIAH(;ZIAJ'(J‘)IZ)% .

< GG Al o

where we used the result of Exercise 1.1.5(b), since p < 2, and Theorem 5.1.2. We
conclude that the operators TV are uniformly bounded from L?(R") to L4(R").

If 1 is compactly supported in a subset of R” \ {0}, then the sequence TV (h)
becomes independent of N for N large enough and hence it is Cauchy in L?. But in
view of Exercise 5.2.9, the set of all such # is dense in LP(R"). Combining these
two results with the uniform boundedness of the 7V’s from L to L4, a simple £
argument gives that for all f € L” the sequence TV (f) is Cauchy in L9. Therefore,
for all f € L the sequence {T"(f)}y converges in L9 to some T (f). Fatou’s lemma
gives

17Dz = G oAl

which proves (5.3.12). O
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Exercises
. resh t .
5.3.1. (The g-function) Let P;(x) = —2~ ———_—1 be the Poisson kernel.
T2 (2+?) T
(a) Use Exercise 5.1.4 with ¥ (x) = %P,(x) ‘ ,_, to obtain that the operator

1/2

= ([ nela)

is L? bounded for 1 < p < oo,
(b)) Use Exercise 5.1.3 with ¥(x) = diP; (x) to obtain that the operator

£ ([ peopar)”

is L bounded for 1 < p < co.
(c) Conclude that the g-function

1) = ([ Hvatreppar)

is L? bounded for 1 < p < co.

5.3.2. Suppose that 1 is a finite Borel measure on R” with compact support that sat-
isfies (0) =0 and |£(&)| < C|E]~“ for some a > 0 and all & # 0. Define measures
W by setting f1;(§) = [1(27/&). Show that the operator

Tu(f)(x) = ) (f*py) (x)

jez

is bounded on L? for all 1 < p < oo,
[Hint: Use Theorem 5.3.4}

5.3.3. (Calderon [41]/Coifman and Weiss [56] ) (a) Suppose that u is a finite Borel
measure with compact support that satisfies |1(€)| < C|€|“ for some a > 0 and all
& # 0. Then the maximal function

fx=27y)du(y)
Rﬂ

Ay (f)(x) = sup

&4

is bounded on L? for all 1 < p < oo,

(b) Let u be the surface measure on the sphere S"~! when n > 2. Conclude that
the dyadic spherical maximal function .#), is bounded on L? (R") forall 1 < p < eo
whenever n > 2.

[Hint.' Pick ¢ a compactly supported smooth function on R” with ¢(0) = 1. Then
the measure 0 = p — 1(0)@ satisfies the hypotheses of Corollary 5.3.5. But it is
straightforward that
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12
(N < (Lo N@PR) T+ ROIMA)),
J

from which it follows that .2, is bounded on L”(R") whenever 1 < p < co. Now let
i = do be surface measure on 8"~ ! It follows from the results in Appendices B.4

n—1

and B.7 that |do (&)| < C|E| "7 ]

5.3.4. Let Q be in L9(S" ") for some 1 < g < o and define the absolutely continu-

ous measure
Q(x/|x)

e
Show that for all @ < 1/¢’ we have that |1£(&)] < C|&|~“. Under the additional hy-
pothesis that £2 has mean value zero, conclude that the singular integral operator

Q(y/lyl)
|y|

du(x) = Xl<|xj<2dx.

To(H@ =p. | fa=ydy =Y feuy

is L? bounded for all 1 < p < o. This provides an alternative proof of Theorem
4.2.10 under the hypothesis that Q € LI(S"1).

5.3.5. For a function F on R define

o0 1/2
u(F)(x)z(/O |F(x+t)—|—F(x—t)—2F(x)|2f3t) .

Given f € L} (R) we denote by F the indefinite integral of £, that is,

loc

X
Flx) = / F(0)dr.
0
Prove that for all 1 < p < oo there exist constants ¢, and C,, such that

Cp”ﬂ

S HM(F)HLI' < CPHfHLP'

[Hint: Let @ = x1_1 o) — X[o,1]- Then

(0 F)&) = 7 (F ) 4 F(x—1) ~2F ()

and you may use Exercise 5.1.4.}

—

5.3.6. Let m € .#,(R"). Define an operator 7; by setting T;(f)(§) = F(E)m(tE).
Show that the maximal operator
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maps L?(R") to itself for all | < p < co.
[Hint: Majorize this maximal operator by a constant multiple of the sum

M@+ ([ 100 - e PT)’
for a suitable function ¢.]

5.3.7. (Nazarov and Seeger [206]) Let 0 < 8 < 1 and py = (1 —/2)!. Suppose
that {f;} ez are L? functions on the line with norm at most 1 that are supported in
possibly different intervals of length 1. Assume that the f;’s satisfy the orthogonality
relation |(f; | fi)| < (1+|j—k|)7P forall j,k € Z.

(a) Let 1 & Z be such that for all j € I the functions f; are supported in a fixed
interval of length 3. Show that for all p satisfying 0 < p <2 there is C,, g < e such
that

Y &ifi
Jel

whenever €; are complex numbers with |g;| < 1.
(b) Under the same hypothesis as in part (a), prove that for all 0 < p < pg there is a
constant C’p p < oo such that

for all complex-valued sequences {c;}; in ¢7.

(c) Derive the conclusion of part (b) without the assumption that the f; are supported
in a fixed interval of length 3.

[Hint: Part (a): Pass from L” to L? and use the hypothesis. Part (b): Assume
Yjezlcj|P =1.Foreachk=0,1,...,setfy ={j € Z: 2% <|c;| <27*}. Write
H Yjezcifi HLP <Yio 2”‘” Yjel, (cj2k)fj HLP, use part (b), Holder’s inequality, and
the fact that Y7 (27 *7|I;| < 27. Part (c): Write ¥ ;c7.¢;fj = Lnez Fi» Where Fy, is
the sum of c; f; over all j such that the support of f; meets the interval [m,m+ 1].
These F,,’s are supported in [m — 1,m + 2] and are almost orthogonal.]

B
Lr Scp’ﬁ ‘I| :

==

Y cifi

jel

L <Cp(Xlel)
JeZ

5.4 The Haar System, Conditional Expectation, and Martingales

There is a very strong connection between the Littlewood—Paley operators and cer-
tain notions from probability, such as conditional expectation and martingale differ-
ence operators. The conditional expectation we are concerned with is with respect
to the increasing c-algebra of all dyadic cubes on R”.
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5.4.1 Conditional Expectation and Dyadic Martingale Differences

We recall the definition of dyadic cubes.

Definition 5.4.1. A dyadic interval in R is an interval of the form
[m2*, (m+1)27%)

where m, k are integers. A dyadic cube in R" is a product of dyadic intervals of the
same length. That is, a dyadic cube is a set of the form

n

[ [m27* (m;+1)27F)
J=1

for some integers my,...,my,k.

We defined dyadic intervals to be closed on the left and open on the right, so that
different dyadic intervals of the same length are always disjoint sets.

Given a cube Q in R” we denote by |Q] its Lebesgue measure and by £(Q) its
side length. We clearly have |Q| = ¢(Q)". We introduce some more notation.

Definition 5.4.2. For k € Z we denote by 7 the set of all dyadic cubes in R" whose
side length is 2%, We also denote by Z the set of all dyadic cubes in R". Then we
have
P = U 7%
keZ
and moreover, the c-algebra o(%) of measurable subsets of R” formed by count-
able unions and complements of elements of Z is increasing as k increases.

We observe the fundamental property of dyadic cubes, which clearly justifies
their usefulness. Any two dyadic intervals of the same side length either are disjoint
or coincide. Moreover, either two given dyadic intervals are disjoint, or one contains
the other. Similarly, either two dyadic cubes are disjoint, or one contains the other.

Definition 5.4.3. Given a locally integrable function f on R”, we let
1 3
Avgf=-— / f(r)dr
0 10l Jo

denote the average of f over a cube Q.
The conditional expectation of a locally integrable function f on R"” with respect
to the increasing family of c-algebras (%)) generated by % is defined as

Ei(f)(x) = ). (Avgf)xo(x),

(IS4 (@)

for all k € Z. We also define the dyadic martingale difference operator Dy, as fol-
lows:
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Di(f) = Ex(f) — Ex—1(f),
also for k € Z.
Next we introduce the family of Haar functions.

Definition 5.4.4. For a dyadic interval I = [m27% (m + 1)27%) we define I; =
M2, (m+1)27%) and Ig = [(m+ £)27%, (m+1)27) to be the left and right parts
of I, respectively. The function

_1 _1
hu () = W72 o0, = 112 o
is called the Haar function associated with the interval I.

We remark that Haar functions are constructed in such a way that they have
L? norm equal to 1. Moreover, the Haar functions have the following fundamental
orthogonality property:

0 whenl#T/1,
h hp(x)dx = 54.1
/R 1)y () dx {1 whenl =1 ( )

To see this, observe that the Haar functions have L? norm equal to 1 by construction.
Moreover, if I # I, then I and I’ must have different lengths, say we have |I'| < |I|.
If 7 and I’ are not disjoint, then I’ is contained either in the left or in the right half of
I, on either of which A; is constant. Thus (5.4.1) follows.

We recall the notation

(f:8) = [ Fx)glo)dn

valid for square integrable functions. Under this notation, (5.4.1) can be rewritten as
<h1,h1/> = Oy, where the latter is 1 when / = I” and zero otherwise.

5.4.2 Relation Between Dyadic Martingale Differences and Haar
Functions

We have the following result relating the Haar functions to the dyadic martingale
difference operators.

Proposition 5.4.5. For every locally integrable function f on R and for all k € Z we
have the identity

Di(f)="Y (f-hi)h (5.4.2)
1€y
and also , ,
1Dz = X [F)]™ (5.4.3)

1€P)
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Proof. We observe that every interval J in % is either an Iz, or an I for some unique
I € Z_,. Thus we can write

E(f) = Y, (Avgf)

JeDy J
(5.4.4)
= Z (I f( )dt)XIL <I / f dt)XIR]
16@](,1 | | I | |
But we also have
E1(f) = ) (Avef)u
1€ 1
1 (5.4.5)
- fars o [ 70t (ot ).
1€Y,_ 1(|1|/ ‘1| Ig ( t R)
Now taking the difference between (5.4.4) and (5.4.5) we obtain
1€
+( L f(t)dt>x ( ! / o))
T Ig =\ 777 I | »
\1| Ir ¥ |1\ I, :
which is easily checked to be equal to
< [ £om dt) =Y (fh)h
169/( 1 169;(,1
Finally, (5.4.3) is a consequence of (5.4.1). ]
Theorem 5.4.6. Every function f € L*>(R") can be written as
f=Y Dilf), (5.4.6)
kEZ
where the series converges almost everywhere and in L*. We also have
2 2
1122 = X 1D - (54.7)
keZ
Moreover, when n = 1 we have the representation
=Y (fohi)h, (5.4.8)

(S

where the sum converges a.e. and in L* and also

HinZ(R) =Y [(fh)]. (5.4.9)
1e9
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Proof. In view of the Lebesgue differentiation theorem, the analogue of Corollary
2.1.16 for cubes, given a function f € L?(R") there is a set Ny of measure zero on
R” such that for all x € R" \ Ny we have that

Avg f — f(x)

Qj

whenever Q; is a sequence of decreasing cubes such that ();Q; = {x}. Given x
in R"\ Ny there exists a unique sequence of dyadic cubes Q;(x) € Z; such that

N7 Q)(x Q;(x) = {x}. Then for all x € R"\ Ny we have

lim E;(f)(x) = lim ) (Avgf)xo(x) :}ggoAvgf:f(x)~

I 7% 0eg; Q Q;(x)

From this we conclude that E;(f) — f a.e. as j — co. We also observe that since
|E;(f)| < M.(f), where M. denotes the uncentered maximal function with respect
to cubes, we have that |E;(f) — f| < 2M.(f), which allows us to obtain from the
Lebesgue dominated convergence theorem that E;(f) — f in L?as j — oo,

Next we study convergence of E;(f) as j — —eoo. For a given x € R" and Q;(x)
as before we have that

Ei(£)00) = [ Ave /] < (IQ,()I o0

1

2 in
VOO
which tends to zero as j — —oo, since the side length of each Q;(x) is 277, Since
|Ej(f)| < M.(f), the Lebesgue dominated convergence theorem allows us to con-
clude that E;(f) — 0in L? as j — —oo. To obtain the conclusion asserted in (5.4.6)
we simply observe that

Di(f) =EN(f) —Eu—1(f) — f

T
L=

in L? and almost everywhere as N — oo and M — —oo,
To prove (5.4.7) we first observe that we can rewrite Dy (f) as

Di(f) = Y, (Avefxo— Y (Al‘e’gf)XR

Q€Y 9] ReZy

-y |x (Avgf)xQ—(Ang)xR}
RED_; Locg, @ R

QCR

1

- Y | T wnze- g ¥ tvenil
ReZy QE_@]{ Q (IS8 0

OCR OCR
= Y Y (Avgf)(xo—2"xr)- (5.4.10)
ReZ)_1 Q€D 9]

OCR
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Using this identity we obtain that for given integers k' > k we have

Di(f)(x) Dy (f)(x) dx

R”

= Y Ywen ¥ ¥ (ven) [ (to-2 ") (o ~2 ") dx.
RED_1 0D, @ ReDy_Qeay @
OCR O'CR

Since k' > k, the last integral may be nonzero only when R’ ; R. If this is the case,
then R’ C Qg for some dyadic cube Qg € Z; with Qp/ ; R. See Figure 5.1.

Fig. 5.1 Picture of the cubes R, R’, and Q.

Then the function )y — 27" g is supported in the cube Qp and the function
Xo — 2 " xr is constant on any dyadic subcube Q of R (of half its side length) and
in particular is constant on Qg/. Then

Y (we) [z -2 medi= E (aver) (2127181 0.

Q'c “@k’ Q'c _@k/ o
0'CR QCR

since [R'| = 2"|Q'|. We conclude that (Di(f),Dy/(f)) = 0 whenever k # K, from
which we easily derive (5.4.7).

Now observe that (5.4.8) is a direct consequence of (5.4.2), and (5.4.9) is a direct
consequence of (5.4.3). ]

5.4.3 The Dyadic Martingale Square Function

As a consequence of identity (5.4.7), proved in the previous subsection, we obtain

that |
(X Ipe)F)

keZ

(5.4.11)

ey = Ml
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which says that the dyadic martingale square function

1

st = (L ID(HP)

keZ

is L? bounded. It is natural to ask whether there exist L” analogues of this result,
and this is the purpose of the following theorem.

Theorem 5.4.7. For any 1 < p < oo there exists a constant ¢y, such that for every
function f in L? (R") we have

1
CPTHJCHLP(R") = HS(f)’ LP(R™) = Cl’v"HfHLP(R")' (5.4.12)

The lower inequality subsumes the fact that if HS(f)|
L? function.

(R < oo, then f must be an

Proof. Let {r;}; be the Rademacher functions (see Appendix C.1) enumerated in
such a way that their index set is the set of integers. We rewrite the upper estimate
in (5.4.12) as

1 p
/ / Y. (@D dxdo <3 rlls,. (5.4.13)
0 JR"liez
We prove a stronger estimate than (5.4.13), namely that for all @ € [0, 1] we have

/RnIT“’(f>(x)’pdx§C5}|f|’€p’ (5.4.14)

where
To(f)(x) = ) (@) De(f) (x).
kez

In view of the L2 estimate (5.4.11), we have that the operator Ty, is L? bounded with
norm 1. We show that Ty, is weak type (1,1).

To show that T, is of weak type (1,1) we fix a function f € L' and & > 0. We
apply the Calderén—Zygmund decomposition (Theorem 4.3.1) to f at height o to
write

J J

where Q; are dyadic cubes that satisfy Y |Q;| < L||f||,; and g has L? norm at most

(2”(x|| f H Ll )% see (4.3.1). To achieve this decomposition, we apply the proof of
Theorem 4.3.1 starting with a dyadic mesh of large cubes such that |Q| > éHfHL,
for all Q in the mesh. Then we subdivide each Q in the mesh by halving each side,
and we select those cubes for which the average of f over them is bigger than o (and
thus at most 2" ). Since the original mesh consists of dyadic cubes, the stopping-
time argument of Theorem 4.3.1 ensures that each selected cube is dyadic.
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We observe (and this is the key observation) that T, (b) is supported in |J ;0;. To
see this, we use identity (5.4.10) to write T, (D) as

Y Y Yy Y AVg[(f*AQng)%Q,-] (xo—27"xr)|. (5415
k J

j ReZ_1 Q€D (@)
OCR

We consider the following three cases for the cubes Q that appear in the inner sum
in (5.4.15): (i) Q; C O, (ii)) O;NQ = 0, and (iii) Q g Q;. It is simple to see that
in cases (i) and (ii) we have Avg,|[(f — Avgy. f )X0,] = 0. Therefore the inner sum
in (5.4.15) is taken over all Q that satisfy Q g Q;. But then we must have that the
unique dyadic parent R of Q is also contained in Q;. It follows that the expression
inside the square brackets in (5.4.15) is supported in R and therefore in Q;. We
conclude that T, (b) is supported in |J ;Q;. Using Exercise 4.3.5(a) we obtain that
T is weak type (1, 1) with norm at most

a{IT(9) > §}[+aU; 0] _ ador 2 sl p2 + ||

< <2241,
(K 171,

We have now established that T, is weak type (1,1). Since Ty, is L*> bounded with
norm 1, it follows by interpolation that 7, is L” bounded for all 1 < p < 2. The
L? boundedness of Ty, for the remaining p > 2 follows by duality. (Note that the
operators Dy and Ej are self-transpose.) We conclude the validity of (5.4.14), which
implies that of (5.4.13). As observed, this is equivalent to the upper estimate in
(5.4.12).

Finally, we notice that the lower estimate in (5.4.12) is a consequence of the
upper estimate as in the case of the Littlewood—Paley operators A ;. Indeed, we need
to observe that in view of (5.4.6) we have

[(f.8)] :|<§,Dk(f),ZDk/(g)>|
g
= ‘;;<Dk(f)al)k’(g)>’
= ‘Z<Dk(f),Dk(g)>' (Exercise 5.4.6(a))
k

< J ZIPN@IIP) ]

< / S(f)(x)S(g)(x)dx (Cauchy—Schwarz inequality)
Rﬂ

<|ISOIl, 15| (Holder’s inequality)

< ISl eprnllsllr -

Taking the supremum over all functions g on R" with L”' norm at most 1, we obtain
. . . . / .
that f gives rise to a bounded linear functional on L? . It follows by the Riesz repre-
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sentation theorem that f must be an L” function that satisfies the lower estimate in
(5.4.12). g

5.4.4 Almost Orthogonality Between the Littlewood—Paley
Operators and the Dyadic Martingale Difference Operators

Next, we discuss connections between the Littlewood—Paley operators A; and the
dyadic martingale difference operators Dy. It turns out that these operators are al-
most orthogonal in the sense that the L?> operator norm of the composition DA j
decays exponentially as the indices j and k get farther away from each other.

For the purposes of the next theorem we define the Littlewood—Paley operators
A; as convolution operators with the function ;- ;, where

P(E) = D(E) - D(28)

and @ is a fixed radial Schwartz function whose Fourier transform @ is real-valued,
supported in the ball |&| < 2, and equal to 1 on the ball |£] < 1. In this case we
clearly have the identity

Y Peie) =1, E#0.

JEZ
Then we have the following theorem.

Theorem 5.4.8. There exists a constant C such that for every k, j in Z the following
estimate on the operator norm of DyA; : L*(R") — L*(R") is valid:

HDkAJ'HL2~>L2 = HAJ'DkHUHLZ = Czi% . (5.4.16)

Proof. Since ¥ is a radial function, it follows that A; is equal to its transpose oper-
ator on L?. Moreover, the operator Dy, is also equal to its transpose. Thus

(DrAj)' = AjDy
and it therefore suffices to prove only that
4 — 3=k
|DrAj| 22 < C27207H (5.4.17)

By a simple dilation argument it suffices to prove (5.4.17) when k = 0. In this
case we have the estimate

’|D0AjHL2~>L2 = HEOAJ'_E71A1‘||L2HL2
< ||Eod; = Ajl| oo +|E=14) = Ajl| o2

and since the Dy’s and A;’s are self-transposes, we have
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1DoA |22 = [[4D0ll 2z = [|47E0 = AjE—| 2o
< [14jE0 ~ Eol| 2 p2 +[|14jE-1 ~ Eol| o2
Estimate (5.4.17) when k = 0 will be a consequence of the pair of inequalities
|Eodj — Ajl| 22 + | E-14; = Aj| 2,2 < €27 for j <0, (5.4.18)

|4;E0—Eol| oo+ | AJE-1 —Eo|| 2, <C27 % for j>0.  (54.19)

||L2~>L

We start by proving (5.4.18). We consider only the term EgA; — A, since the term
E_1A;—Ajis similar. Let f € L*(R"). Then

Eoa; (1) = 472

Z Hf*lpz j—AVg(f*le J HLZ
7

< L [0t - (et e

E 3Q€Z%/Q/Q (/WQ f<y>||%f(x—y>|dy)2drdx
L L (/5 ﬁQ|f<y>|a"2-.f<r—y>dy)zdtdx

+3Q690/ / (/5 (5RO ORIV (2 (& — >>|dy)2drdx,

where &, lies on the line segment between x and ¢. It is a simple fact that the sum
of the last three expressions is bounded by

: 2 f)]dy
2dy+Cy2% /(/ B A A N
Qezéo/S\/ﬁQUc(y)| Y M Qezéo 0 R (1 +21\x—y|)M

which is clearly controlled by €22/ H f ||i2 This estimate is useful when j < 0.

We now turn to the proof of (5.4.19). We set §; =} 1< ;A;. Since A; is the differ-
ence of two §;’s, it suffices to prove (5.4.19), where A; is replaced by S;. We work
only with the term S ;Eq — Ey, since the other term can be treated similarly. We have

C22jn

2
I8iE0(H) ~Eo(Nll72 = | L (Aver)(@ys 20 20)| ,
0ezy @ t
2
<2‘ Y (Avef) (P, % X0 — Xo)
0c9y @
2
+2’ (Ave f) (Prs * 20) X(s oy |,

(IS (@]



5.4 Haar System, Conditional Expectation, and Martingales 393

Since the functions appearing inside the sum in the first term have supports with
bounded overlap, we obtain

and the crucial observation is that

2
Y (Avef)( @0~ 20) ks io|| , SC Y (Avel )| @220 — ol
0c7y @ 0cg, @

Hd’z—./ * X0 _XQHiz <c2,

a consequence of Plancherel’s identity and the fact that |1 — (2 &)< Xje|>2i-
Putting these observations together, we deduce

2 . .
| & (Ave ) (#5720~ xotse],, <€ B (Avel 27 <27l
0%, 07y @

and the required conclusion will be proved if we can show that

We prove (5.4.20) by using an estimate based purely on size. Let cg be the center of
the dyadic cube Q. For x ¢ 30 we have the estimate

2 .
L <A (5.4.20)

Y (Avef) (Pr-i * x0) X 30y
(S o

Cy2)" Cy2)" 1
(1427 x—co)™ = (142/)M/2 (14 |x —co|)M/2’

(P % 20) (¥)| <

since both 2/ > 1, and |x — cg| > 1. We now control the left-hand side of (5.4.20) by

. CM dx
20 T Y (avelf)(avelf) [ 7
0c%2Q'e2y @ o R (1+|X_CQ|) 2 (1+|X_CQ,|)

(Avg|f])(Avg|fl)
< 2j(2n—M) 0 o' Cuy dx

= M M M
4

0czy0cry (1+|eg —cgl)+ TR (1+|x—col) 4 (I+|x—cg|)

D T et WAL NIl

07, 0'ca, (1+]co —corl)
< 2/ My /\f (y)|*dy
(S0
= G

M
2

By taking M large enough, we obtain (5.4.20) and thus (5.4.19). U
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Exercises

5.4.1. (a) Prove that no dyadic cube in R” contains the point O in its interior.

(b) Prove that every interval in R is contained in the union of two dyadic intervals
of at most its length.

(c) Prove that every cube in R" is contained in the union of 2" dyadic cubes of at
most its side length.

5.4.2. Show that the set [m27%, (m+2)27*) is a dyadic interval if and only if m is
an even integer. More generally, the set [m2 7, (m 4 5)27%) is a dyadic interval if
and only if s is a power of 2 and m is an integer multiple of s.

5.4.3. Let X be the set of all 6 = (07,...,0,) that satisfy o; € {0, 1, %} for all j.
Show that every cube Q in R” is contained in a cube of the form ¢ + R, where © is
in X and R is dyadic and has side length comparable to that of Q.

5.4.4. Show that the martingale maximal function f — sup, |Ex(f)| is weak type
(1,1) with constant at most 1.

5.4.5. (a) Show that Ey(f) — f a.e.as N — oo for all f € L} (R").
(b) Prove that Ex(f) — fin L” as N — oo for all f € L (R") whenever 1 < p < .

5.4.6. (a) Show that for functions f and g, if k # k’, then we have

(Di(f). Dy (g)) =0.

(b) Conclude that for functions f; we have
2\2
|00, = (Zlsll:)
J j

(c) Use Theorem 5.4.8 to show that

D e

5.4.7. (Grafakos and Kalton [106] ) Let D;, A; be as in Exercise 5.4.6.
(a) Prove that the operator

V=Y DjAj.,
Jet

is L? bounded with norm at most a multiple of 2~ 3,

(b) Show that V;. is L” bounded for all 1 < p < oo with a constant depending only on
p and n.

(c) Conclude that for each 1 < p < oo there is a constant ¢, > 0 such that V, is
bounded on L”(R") with norm at most a multiple of 2~ eplrl,

[Hmt Part (a): Write A; = A; A j» Where A is another family of Littlewood—Paley
operators and use Exer01se 5. 4 6(b). Part (b) Use duality and (5.1.20). ]
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5.5 The Spherical Maximal Function

In this section we discuss yet another consequence of the Littlewood—Paley theory,
the boundedness of the spherical maximal operator.

5.5.1 Introduction of the Spherical Maximal Function

We denote throughout this section by do the normalized Lebesgue measure on the
sphere §"~!. For f in LP(R"), 1 < p < oo, we define the maximal operator

A (f)(x) = sup

t>0

(x—10)do () (5.5.1)

Sn—1

and we observe that by Minkowski’s integral inequality each expression inside the
supremum in (5.5.1) is well defined for f € L? for almost all x € R". The operator
M is called the spherical maximal function. It is unclear at this point for which
functions f we have .# (f) < oo a.e. and for which values of p < e the maximal
inequality

-7 ()]

holds for all functions f € L(R").
Spherical averages often make their appearance as solutions of partial differential
equations. For instance, the spherical average

LP(R") = Cﬂ||f|

L) (5.5.2)

u(x, 1) = %/Sztf(xfty)do(y) (5.5.3)

is a solution of the wave equation

2”
M) = 22 (),
u(x,0) =0,

du
5,0) =100,

in R?. The introduction of the spherical maximal function is motivated by the fact
that the related spherical average

i) = o= [ x=1)do() (5.54)

solves Darboux’s equation
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9? 20
Aw)(r) = 53 () + T 50,
M(X,O) :f(x)a
du
E(x,()) :0,

in R3. It is rather remarkable that the Fourier transform can be used to study almost
everywhere convergence for several kinds of maximal averaging operators such as
the spherical averages in (5.5.4). This is achieved via the boundedness of the cor-
responding maximal operator; the maximal operator controlling the averages over
S"~1is given in (5.5.1).

Before we begin the analysis of the spherical maximal function, we recall that

21
mTTQJ%@”\éD»

as shown in Appendix B.4. Using the estimates in Appendices B.6 and B.7 and the
identity

do (&) =

d 1

(1) = 5 (Fyei (1) = Ty (1)

derived in Appendix B.2, we deduce the crucial estimate

G
o Enilc
(1+18D) >

Theorem 5.5.1. Let n > 3. For each # < p < oo, there is a constant Cy, such that

do(&)|+|Vdo(£)] < (55.5)

- (Do ey < Coll 1] o e (55.6)

holds for all f in LP(R"). It follows that for all "5 < p <o and f € LP(R") we
have

lim
t—0 a)n71 §n—1

(x—10)do(0) = f(x) (5.5.7)

for almost all x € R". Here we set @, = |S""!].

The proof of this theorem is presented in the rest of this section. We set m(&) =
do(&). Obviously m(&) is a ¢ function. To study the maximal multiplier operator

sup| (F(&)m(t&))"|

>0

we decompose the multiplier m(&) into radial pieces as follows: We fix a radial €™
function @y in R” such that @y(§) = 1 when |&] < 1 and @y(§) = 0 when |&] > 2.
For j > 1 we let

0i(&) =(2778) —g(2'7/E) (5.5.8)

and we observe that @;(&) is localized near |£| ~ 2/. Then we have
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Set m; = @;m for all j > 0. The m;’s are 6" functions that satisty

j=0

Also, the following estimate is valid:

where R y
MG(f)(x) ZSUIg!(f(i)mj(ti)) (x)] -
1>
Since the function myg is %;°, we have that .# maps L” to itself for all 1 < p < oo,

(See Exercise 5.5.1.)
We define g-functions associated with m; as follows:

pir=([ )

where A, (f)(x) = (F(&)m;(1€))" (x).

5.5.2 The First Key Lemma

We have the following lemma:

Lemma 5.5.2. There is a constant C = C(n) < oo such that for any j > 1 we have
the estimate

1_nt)
152 < 222V £ 2
for all functions f in L*(R™).

Proof. We define a function
mj(§) =¢&-Vm;(&),
we let A, (f)(x) = (F(&)m;(t&))" (x), and we let

- ([t

be the associated g-function. For f € L?>(R"), the identity
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dA;, .
s (f) = Au(h)

is clearly valid for all j and s. Since A js(f) = f*(m})s and m has integral zero
for j > 1 (here (m})(x) =s "my( x)), it follows from Corollary 2.1.19 that

mA;s(f)(x) =0

5§—

for all x € R"\ E, where E is some set of Lebesgue measure zero. By the fundamen-
tal theorem of calculus for x € R"\ E we deduce that

.td

AuDE@P = [ @) ds
=2 [ 402 (0 &

4 _ = ds

from which we obtain the estimate
i ~ d
AW <2 [ 4] )] S (55.9)

Taking the supremum over all # > 0 on the left-hand side in (5.5.9) and integrating
over R”, we obtain the estimate

” ~ ds |?
AL (DAL S| dx

<2G;(N|| 211G ()] 2

2|3 <

where the last inequality follows by applying the Cauchy—Schwarz inequality twice.
Next we claim that as a consequence of (5.5.5) we have for some ¢, ¢ < oo,

||mj||Lw§C27j% and Hm]HLwSCZJ(I nly

Using these facts together with the facts that the functions m; and m; are sup-

ported in the annuli 2/-! < |E| < 2/*!, we obtain that the g-functions G; and G;
. . .. in—1

are L? bounded with norms at most a constant multiple of the quantities 27772 and

2/(1="3) , respectively; see Exercise 5.5.2. Note that since n > 3, both exponents are
negative. We conclude that

|25,z < 22| 1] 2.

which is what we needed to prove. 0
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5.5.3 The Second Key Lemma

Next we need the following lemma.

Lemma 5.5.3. There exists a constant C = C(n) < oo such that for all j > 1 and for
all f in L'(R") we have

15| = < €21l
Proof. Let KY) = (¢;)" *do = ®,_; do, where @ is a Schwartz function. Setting
(KD () =KD ()

we have that _
//fj(f)zsugl(K(”)t*f\- (5.5.10)
>

The proof of the lemma is based on the estimate:
M(F) <CVM(Y) (5.1

and the weak type (1,1) boundedness of the Hardy-Littlewood maximal operator
M (Theorem 2.1.6). To establish (5.5.11), it suffices to show that for any M > n
there is a constant Cy; < oo such that

K@) = [(by +do) ()] < M2

| < T (5.5.12)

Then Theorem 2.1.10 yields (5.5.11) and hence the required conclusion.
Using the fact that @ is a Schwartz function, we have for every N > 0,

2" do(y)
D, < 1 L2y — v N~
|( 2 I*d(y)('x)| _CN‘/S’171 (1+2]|x_y|)N

We pick an N to depend on M (5.5.12); in fact, any N > M suffices for our purposes.
We split the last integral into the regions

S (x)=8""n{yeR": 2x—y| <1}
and for r > 0,
S(x)=8"'n{yeR": 2" <2/|x—y| <2},

The key observation is that whenever B = B(x,R) is a ball in R”, then the spherical
measure of the set S"~! N B(x, R) is at most a dimensional constant multiple of R"~!.
This implies that the spherical measure of each S, (x) is at most ¢, 20 *1=)(=1) "an
estimate that is useful only when » < j. Using this observation, together with the
fact that for y € S,(x) we have |x| <2717/ 41, we obtain the following estimate
for the expression | (@, ;j xdo)(x)|:
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i/ Cn2Y do(y) Z/ _Cv2Ydo(y)
o s (T2 =)V & (T+27]x—y¥

ni /, do(S »(%)) XB(0,3) (%) - dG(S,(x))13(072,-+17,—+1)(x)
SC]/Vz j|: Z] 2rN + Z'Jrl 2rN :|
r=— r=j

T Cn2(7+1*j)("*1)xB(0 3) (%) = On—1 Xp(o2r+2-)) (%)
< CI,VQ' ! |: Zl 2N + Z_tH orN ]
r=— r=J

+2r+2 ])

<Cnnl|2/ +2n

Nn|: XBO:" r;rlzﬂv 1+‘XD

2/ o A(r—j)(M-N)

<c, - -
7CM,n(1+|x|)M |:l+ 2Jj(N+1-n) ]

Cy 20
T (LM

r=j+1

where we used that N > M > n. This establishes (5.5.12). O

5.5.4 Completion of the Proof

It remains to combine the previous ingredients to complete the proof of the theorem.
Interpolating between the L> — L? and L! — L' estimates obtained in Lemmas
5.5.2 and 5.5.3, we obtain

\|-;(f) < sz(%_(n_l))ijHu(Rn)

e e
< = 2G==D)J converges and we
conclude that .Z is L bounded for these p’s. The boundedness of .# on L? for
p > 2 follows by interpolation between LY for ¢ < 2 and the estimate .Z : L — L*.

Exercises

5.5.1. (a) Let m be in L' (R") N L= (R") that satisfies [m" (x)] < C(1+ |x|)~"9 for
some 6 > 0. Show that the maximal multiplier

M (f)(x) = sup |(F(&)m(t&))" (x))|

is L? bounded for all 1 < p < oo,
(b) Obtain the same conclusion when &%m(&) is in L' (R") for all multi-indices o
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with [er| < [5]+ 1.
[Hmt. Control .7, by the Hardy-Littlewood maximal operator.}

5.5.2. Suppose that the function m is supported in the annulus R < |&| < 2R and is
bounded by A. Show that the g-function

a0 ( [ lmeerze )

t
maps L*(R") to L?(R") with bound at most A+/Tog2.

5.5.3. (Rubio de Francia [226]) Use the idea of Lemma 5.5.2 to show that if m(&)
satisfies |m(&)| < (14 |E])~* and [Vm(E)| < (1+|&|)™” and @+ b > 1, then the

maximal operator N y
AMn(f)(x) = sup |(F(&)m(r&)) " (x)]|
>
is bounded from L?(R") to itself.
[Hint: Use that
%m < Z %m,j )
=0

where .7, ; corresponds to the multiplier ¢;m; here @; is as in (5.5.8). Show that

a+b)

etz < gz s | 1] < €275

where m(§) =& -Vm(&).]

5.5.4. (Rubio de Francia [226]) Observe that the proof of Theorem 5.5.1 gives
the following more general result: If m(&) is the Fourier transform of a compactly
supported Borel measure and satisfies [m(&)| < (1+|&|)™¢ for some a > 0 and all

£ € R", then the maximal operator of Exercise 5.5.3 maps L”(R") to itself when

2a+1
p> 2a

1122+

5.5.5. Show that Theorem 5.5.1 is false when n = 1, that is, show that the maximal
operator

%l(f)(-x) :fgg ‘f(x—’—t)_;f(x_t”

is unbounded on L?(R) for all p < eo.

5.5.6.

[Hint: Choose a compactly supported and radial function equal to |y| 1=n(_log|y|)~!
when |y| < 1/2.]
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5.6 Wavelets

We are concerned with orthonormal bases of L?>(R) generated by translations and
dilations of a single function such as the Haar functions we encountered in Section
5.4. The Haar functions are generated by integer translations and dyadic dilations
of the single function X, - X 1) This function is not smooth, and the main
question addressed in this section is whether there exist smooth analogues of the
Haar functions.

Definition 5.6.1. A square integrable function ¢ on R”" is called a wavelet if the
family of functions

Pvi(x) =27 9(2"x—k),

where Vv ranges over Z and k over Z", is an orthonormal basis of L?(R"). Note that
the Fourier transform of @, ; is given by

Pui(E) =277 9(27VE)e M2 EE, (5.6.1)

Rephrasing the question posed earlier, the main issue addressed in this section is
whether smooth wavelets actually exist. Before we embark on this topic, we recall
that we have already encountered examples of nonsmooth wavelets.

Example 5.6.2. (The Haar wavelet) Recall the family of functions

1

hl(x) = |1\_2(X1L _XIR)’

where [ ranges over Z (the set of all dyadic intervals) and Iy, is the left part of / and
Iy is the right part of I. Note that if I = [27Vk,27(k+ 1)), then

hy(x) =23 @(2x—k),

where
@) =201y~ X11)- (5.6.2)

2

The single function ¢ in (5.6.2) therefore generates the Haar basis by taking trans-
lations and dilations. Moreover, we observed in Section 5.4 that the family {A;}; is
orthonormal. In Theorem 5.4.6 we obtained the representation

f=Y {f hi)h inL?,

S

which proves the completeness of the system {/;};c in L>(R).
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5.6.1 Some Preliminary Facts
Before we look at more examples, we make some observations. We begin with the
following useful fact.
Proposition 5.6.3. Let g € L' (R"). Then

gm)=0  forallmeZ"\ {0}

if and only if .
Y sl = [ ew)dr

kezn R
for almost all x € T".

Proof. We define the periodized function

G(x)= ) g(x+k),

keZn

which is easily shown to be in L' (T"). Moreover, we have

G(m) = g(m)

for all m € Z", where G(m) denotes the mth Fourier coefficient of G and g(m) de-
notes the Fourier transform of g at §& = m. If g(m) = 0 for all m € Z"\ {0}, then
all the Fourier coefficients of G (except for m = 0) vanish, which means that the
sequence {G},czn lies in ¢! (Z") and hence Fourier inversion applies. We conclude
that for almost all x € T" we have

Gl = L Gm™™ =6(0)=g0)= | s()ar

Conversely, if G is a constant, then G(m) = 0 for all m € Z"\ {0}, and so the same
holds for g. U

A consequence of the previous proposition is the following.

Proposition 5.6.4. Let ¢ € L>(R"). Then the sequence

{o(x—k) }rezn (5.6.3)

forms an orthonormal set in L*(R") if and only if

Y 19 +hPP=1 (5.6.4)

keZ"

for almost all & € R".
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Proof. Observe that either (5.6.4) or the hypothesis that the sequence in (5.6.3) is
orthonormal implies that H (pH ;2 = 1. Also the orthonormality condition

1 when j=k,

—J —k)dx =
Rn(p(x Do —k)dx {0 when j #£k,

is equivalent to

1 when j =k,

/ng*Z”ik'é @(g)mdé = (‘@‘Z)A(k_j) = {() when j £k

in view of Parseval’s identity. Proposition 5.6.3 gives that the latter is equivalent to
Y 19E+0P= [ 190)Fdr=1

kezn

for almost all & € R”. O

Corollary 5.6.5. Let ¢ € L' (R") and suppose that the sequence

{o(x—k) brezn (5.6.5)

forms an orthonormal set in LZ(R”). Then the measure of the support of @ is at least
1, that is,
[supp@| > 1. (5.6.6)

If |supp @| = 1, then |@(&)| = 1 for almost all € € supp @.
Proof. Tt follows from (5.6.4) that |@| < 1 for almost all & € R”". Therefore,

suppl > [ [B(E)PAE= [ T [BE+RPdE= [ 1a5=1.

keZn

It follows from the previous series of inequalities that if equality holds in (5.6.6),
then |@(&)| = 1 for almost all & in supp @. O

5.6.2 Construction of a Nonsmooth Wavelet

Having established these preliminary facts, we now start searching for examples of
wavelets. It follows from Corollary 5.6.5 that the support of the Fourier transform of
a wavelet must have measure at least 1. It is reasonable to ask whether this support
can have measure exactly 1. Example 5.6.6 indicates that this can indeed happen. As
dictated by the same corollary, the Fourier transform of such a wavelet must satisfy
|@(&)| =1 for almost all & € supp @, so it is natural to look for a wavelet @ such
that ¢ = y4 for some set A. We can start by asking whether the function
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azl[,l

2

]

Bl—

on R is an appropriate Fourier transform of a wavelet, but a moment’s thought shows
that the functions ¢ o and @y, o cannot be orthogonal to each other when u # 0.
The problem here is that the Fourier transforms of the functions ¢ ; cluster near
the origin and do not allow for the needed orthogonality. We can fix this problem
by considering a function whose Fourier transform vanishes near the origin. Among
such functions, a natural candidate is

X[,]},%)‘FX[%_]]V (5.6.7)

which is indeed the Fourier transform of a wavelet.

Example 5.6.6. Let A = [—1,—4)U[4. 1) and define a function ¢ on R” by setting

a = XAn" -
Then we assert that the family of functions
{2"20(2"x— ) }rezr vez

is an orthonormal basis of L?(R") (i.e., the function ¢ is a wavelet). This is an
example of a wavelet with minimally supported frequency.

To see this assertion, first note that {@07k} rezn 18 an orthonormal set, since (5.6.4)
is easily seen to hold. Dilating by 2", it follows that {¢y i }xcz» is also an orthonor-
mal set for every fixed v € Z. Second, observe that if 1 # v, then

Supp @y« Nsupp @y = 0. (5.6.8)

This implies that the family {2""/2(2"x — k) }rczn vez is also orthonormal.
Finally, we need to show completeness. Here we use Exercise 5.6.2 to write

(@rv 5 fYE) =27 ¥ (@rv x )~ )™ Eeam, (569

keZ"

where the series converges in L?(A"). Next we observe that the following identity

holds for @:
Y 92" =1,  &#0. (5.6.10)

veZ
This implies that for all f in . (R") we have

\

F=Y orvxorvif=1Y @rv(@vsf)]| (5.6.11)

veZ veZ

where the series converges in L2. Inserting in (5.6.11) the value of (¢, v * f)” given
in identity (5.6.9), we obtain
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f(x) —)—vn Z Z (‘szv*f)(_ziv)[@(é)ez’”zivé]v(x)

veZkeZl"

=2 Y Y (9 ()0 v+ )

veZkeZ"

= Z Z <fa(Pv,k>(Pv,k(x)a

veZ kel

where the double series converges in L(R"). This shows that every Schwartz func-
tion can be written as an L? sum of Oy «’s, and by density the same is true for every
square integrable f.

5.6.3 Construction of a Smooth Wavelet

The wavelet basis of L?(R") constructed in Example 5.6.6 is forced to have slow
decay at infinity, since the Fourier transforms of the elements of the basis are non-
smooth. Smoothing out the function ¢ but still expecting ¢ to be wavelet is a bit
tricky, since property (5.6.8) may be violated when u # v, and moreover, (5.6.4)
may be destroyed. These two obstacles are overcome by the careful construction of
the next theorem.

Theorem 5.6.7. There exists a Schwartz function @ on the real line that is a wavelet,
that is, the collection of functions {Qy j }x vez With @y x(x) = 2%(p(2"x —k) is an
orthonormal basis of L>(R). Moreover, the function ¢ can be constructed so that its
Fourier transform satisfies

suppp € [—3,—5]U[5,3]. (5.6.12)

Note that in view of condition (5.6.12), the function ¢ must have vanishing mo-
ments of all orders.

Proof. We start with an odd smooth real-valued function ® on the real line such that
O(t) =% fort > % —107!% and such that © is increasing on the interval [ — %, %]
We set
o(r) =sin(O(r)+ 1), B(t) =cos(O(t) + %),
and we observe that
a(t) +B(1)* =1

and that
a(~1) = B(1)

for all real . Next we introduce the smooth function ® defined via



5.6 Wavelets 407
B(-t-1=a whent € [—3,-3],
o) = a(—t—% Whente[—%,—%],
alt—1) whent € [%,%],
Bls—1) when € [3,4],
on the interval [ 3,—%] U [% %] Note that @ is an even function. Finally we define

the function ¢ by letting
p(5) =¢ ™ 0(E),

and we note that

o(x) = [ @) Vg =2 [ (&) cos (2n(r—1)E) dE

It follows that the function ¢ is symmetric about the number %, that is, we have

o(x)=o(1 —x)

for all x € R. Note that ¢ is a Schwartz function whose Fourier transform is sup-
ported in the set [ — 3, — 4] U [35.3].

Having defined ¢, we proceed by showing that it is a wavelet. In view of identity
(5.6.1) we have that @, 4 is supported in the set %2" <&l < %2", while @, ; is
supported in the set %2“ <€ < %2”. The intersection of these sets has measure
zero when |u — v| > 2, which implies that such wavelets are orthogonal to each
other. Therefore, it suffices to verify orthogonality between adjacent scales (i.e.,
whenv=pgandv=pu—+1).

We begin with the case v = u, which, by a simple dilation, is reduced to the case
v = u = 0. Thus to obtain the orthogonality of the functions @g «(x) = @(x — k) and
©o,;(x) = @(x— j), in view of Proposition 5.6.4, it suffices to show that

Y 19 +h))=1. (5.6.13)
keZ

Since the sum in (5.6.13) is 1-periodic, we check that is equal to 1 only for & in
[3, 3] First for £ € [3, 3] the sum in (5.6.13) is equal to

9P +19E -1 =08 +a(E 1)
a3 +B(E 1)+
1

)2

=

from the definition of @. A similar argument also holds for & € [3, 3] and this
completes the proof of (5.6.13). As a consequence of this identity we also obtain
that the functions ¢ ; have L? norm equal to 1, and thus so have the functions Oy ks
via a change of variables.

Next we prove the orthogonality of the functions @y ; and ¢y, ; for general
V,k, j € Z. We begin by observing the validity of the following identity:
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—mé/Zﬁ(

< s _ — 1y when 2 < <§,
9(8)(5) = {_m%é 7) j<és

4
2 5.6.14
BE+D) when t<g<-2 OO

Indeed, from the definition of ¢, it follows that

PEIP(3) =¢ ™ a(E)a3).
This function is supported in
{feR: p<fl<fin{EeR: 3<[E[<3}={fcR: F<|§| <5},

and on this set it is equal to

o Wit /2 {ﬁ(§ - %)a(% —3) when3<&<3,
§ . 1\g(s
2 2 2

by the definition of w. This establishes (5.6.14).
We now turn to the orthogonality of the functions @y ; and @y ; for general
v,k,j € Z. Using (5.6.1) and (5.6.14) we have

<‘ka | (pV+l,j> = </\k | <Pv+1,j>

R
1 [ o o S B —omit (ki
= — [ #(6)a(5)e 0D ag
R
1 /3 gl d )
T e et
-3
1 3 ComiE(k—d 4]
b [ o DB - hemsitehag
3
:O,

where the last identity follows from the change of variables & = &’ — 2 in the second-
to-last integral, which transforms its range of integration to [3 5] and its integrand
to the negative of that of the last displayed integral.

Our final task is to show that the orthonormal system {(Pv,k}v,kez is complete.
We show this by proving that whenever a square-integrable function f satisfies

(flovi)=0 (5.6.15)

for all v,k € Z, then f must be zero. Suppose that (5.6.15) holds. Plancherel’s iden-
tity yields

/f 2 v(g) —2mi2~ Vl;kdé 0
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for all v,k and thus
[ FRre)p(E) dg = (72 () ) (—4) = 0 (5.6.16)
for all v,k € Z. It follows from Proposition 5.6.3 and (5.6.16) (with k = 0) that

Y 7@ E+)9E+0 = [ 7276 8(6)dE = (F2*())#) (0) =0

keZ
forall v € Z.
Next, we show that the identity
Y FRYE+R)PE+k) =0 (5.6.17)
keZ

for all v € Z implies that f is 1dent1ca11y equal to zero. Suppose that <é< 2 .In
this case the support properties of ¢ imply that the only terms in the sum in (5. 6 17)
that do not vanish are k = 0 and k = —1. Thus for 1 7<¢ <2 5 the identity in (5.6.17)
reduces to

hence
—fRYE-)BE-H+fREaE-5) =0, §<E<F. (5618

Next we observe that when % < & < %, only the terms with k = 0 and k = —2 survive
in the identity in (5.6.17). This is because when k= —1, E + k=& —1 € [— 1, 1]
and this interval has null intersection with the support of @. Therefore, (5.6.17)
reduces to

hence
FY(E—2))a( — 1 WEBE-Ly=0, 2<E<t 5.6.19
FRYE-2)a(3 - H+F2"E)B(5 -1 =0, F<E<i. (5.6.19)
Replacing first v by v — 1 and then % by & in (5.6.19), we obtain

FRUE-D))a(E -3 +FREBE-3) =0, $<E<F. (5620

Now consider the 2 x 2 system of equations given by (5.6.18) and (5.6.20) with
unknown f(2Y(€ —1)) and f(2"&). The determinant of the system is
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BE-1/2) aE—1/2)\
d"*( a(E—1/2) /3(6—1/2)>_ 170.

Therefore, the system has the unique solution
RV E-1) =728 =0,

which is valid for all v € Z and all £ € [4,2]. We conclude that F(&) =0 for all
¢ € R and thus f = 0. This proves the completeness of the system {¢, ;}. We
conclude that the function ¢ is a wavelet. 0

5.6.4 A Sampling Theorem

We end this section by discussing how one can recover a band-limited function by
its values at a countable number of points.

Definition 5.6.8. An integrable function on R”" is called band limited if its Fourier
transform has compact support.

For every band-limited function there is a B > 0 such that its Fourier transform
is supported in the cube [—B,B]". In such a case we say that the function is band
limited on the cube [—B, B]".

It is an interesting observation that such functions are completely determined by
their values at the points x = k/2B, where k € Z". We have the following result.

Theorem 5.6.9. Let f be band limited on the cube [—B,B]". Then f can be sampled
by its values at the points x = k/2B, where k € Z". In particular, we have

sin(2nBx; — 7k;)
flxi,.. f( ) ] ) (5.6.21)
kzzn 2B ITI 2nBx; — 7k
Sforall x € R".

Proof. Since the function fis supported in [—B, B]", we use Exercise 5.6.2 to obtain

7(®) = g L 7 (35)%°

=
_ 1 kN oridse
—<zB>nk§,lf(—zB)”w -

Inserting this identity in the inversion formula
=] feentag,
[-B,B]"

which holds since fis continuous and therefore integrable over [—B, B]", we obtain
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I

T

™
~

kN1 2mi( f )&
ZB) (ZB) /[—B,B]" e dé

7) H sin(2mBx; + k)
2B 27Bx; + 7k

I
g
~

This is exactly (5.6.21) when we change k to —k. 0

Remark 5.6.10. Identity (5.6.21) holds for any B’ > B. In particular, we have
sin(2mBx;j — ( ) sin(2wB'x; — mk;)

Z f(2B> H 27Bx; — 7rk Z f 2B H 2nB'x; — 7k,

keZ" =1 keZ" =1

for all x € R” whenever f is band-limited in [—B, B]". In particular, band-limited
functions in [—B,B]" can be sampled by their values at the points k/2B’ for any
B > B.

However, band-limited functions in [—B,B]" cannot be sampled by the points
k/2B' for any B’ < B, as the following example indicates.

Example 5.6.11. For 0 < B’ < B, let f(x) = g(x) sin(27wB'x), where g is supported
in the interval [—(B — B’),B — B']. Then f is band limited in [—B, B], but it cannot
be sampled by its values at the points k/2B’, since it vanishes at these points and f
is not identically zero if g is not the zero function.

Exercises

5.6.1. (a) Let A = [-1,—3)U[4,1). Show that the family {€*""},c7 is an or-
thonormal basis of L%(A).

(b) Obtain the same conclusion for the family {e>*"*},,czn in L?(A").

[Hint: To show completeness given f € L*(A), define /2 on [0, 1] by settlng h(x) =
f(x—1) forx € [0,4) and h(x) = f(x) for x € [1,1). Observe that h(m) = f(m) for
allm € Z and expand h in Fourier series. }

5.6.2. (a) Suppose that g is supported in [—b,b]" for some b > 0 and that the se-
quence {g(k/2b)}rezn lies in ¢>(Z"). Show that

_ ~ ik .
glx)=(2b)™" ) g(55)e™ 5
keZn

when x € [—b,b]", where the series converges in L?(R").
(b) Suppose that g is supported in [0,5]" for some b > 0 and that the sequence
{g(k/b)}rezn lies in ¢2(Z"). Show that
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- k 2mk x
=b"" ) g()e™
kezn

for x € [0,b]", where the series converges in L?(R").

(c) When n = 1, obtain the same as the conclusion in part (b) for x € [—b, —g) U[g ,b),
provided g is supported in this set.

[Hint: All the results follow by dilations. Part (c): Use the result in Exercise 5.6.2.]

5.6.3. Show that the sequence of functions

o 4 sin (7T(2Bx; —k;))
H, = (2B)2
k(x]a 7xﬂ) ( ) jl;[l E(ZBX]—]C]) )

keZ",

is orthonormal in L*(R").
[Hint: Interpret the functions Hy as the Fourier transforms of known functions.]

5.6.4. Prove the following spherical multidimensional version of Theorem 5.6.9.
Suppose that f is supported in the ball || < R. Show that

1 Jn (27r|Rx+2|)

keZ"

)

+417
where J, is the Bessel function of order a.

5.6.5. Let {ay }rezn be in €7 for some 1 < p < co. Show that the sum

sin(2nBx; — k)

Z kH 2nBx; — 7k

kezn  j=1

converges in .#'(R") to an L” function A on R” that is band limited in [—B, B]".
Moreover, the L” norm of A is controlled by a constant multiple of the /7 norm of

{ak}k.

5.6.6. (a) Suppose that f is a tempered distribution on R” whose Fourier transform
is supported in the ball B(0, (1 — 8)%) for some € > 0. Show that for all 0 < p < oo
there is a constant C, , ¢ such that

HfHLP(R") < CV!~P~,£H{f<k)}ngp(Zn)~

In particular, if the values { f(k)}rczn form an ¢7 sequence, then f must coincide
with an L? function.

(b) Consider functions of the form sin(7x) /(7x) on R to construct a counterexample
to the statement in part (a) when € = 0.

[Hint: Take a Schwartz function @ whose Fourier transform is supported in B(0, %)

and that is identically equal to 1 on the support of f Then f = f*®. Apply Theorem
5.6.9 to the function f % @ and use the rapid decay of @ to sum the series.}
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5.6.7. (a) Let w(x) be a nonzero continuous integrable function on R that satisfies

Jrv¥(x)dx=0and
400 |17 2
Cw=27r/ |W|(;|>| dt < oo,

Define the wavelet transform of f in L*(R) by setting

W(f:a,b)(x) = IW [ rww(0) ax

when a # 0 and W (f;0,b) = 0. Show that for any f € L?(R) the following inversion
formula holds:

flx) = Clw/:j/_:mmﬁéy/(xb)W(f;a,b)de?.

a

(b) State and prove an analogous wavelet transform inversion property on R”.
[Hint: Apply Theorem 2.2.14 (5) in the b-integral to reduce matters to Fourier
inversion.

5.6.8. (P. Casazza) On R" let e; be the vector whose coordinates are zero every-
where except for the jth entry, whichis 1. Setg; =e; — %22:1 exforl < j<nand
also g, = ﬁ Y i ex. Prove that

n+l1

Y lg;-xl =[x
j=1

for all x € R”". This provides an example of a tight frame on R".

HISTORICAL NOTES

An early account of square functions in the context of Fourier series appears in the work of Kol-
mogorov [157], who proved the almost everywhere convergence of lacunary partial sums of Fourier
series of periodic square-integrable functions. This result was systematically studied and extended
to LP functions, 1 < p < oo, by Littlewood and Paley [174], [175], [176] using complex-analysis
techniques. The real-variable treatment of the Littlewood and Paley theorem was pioneered by
Stein [253] and allowed the higher-dimensional extension of the theory. The use of vector-valued
inequalities in the proof of Theorem 5.1.2 is contained in Benedek, Calderén, and Panzone [18]. A
Littlewood—Paley theorem for lacunary sectors in R? was obtained by Nagel, Stein, and Wainger
[205].

An interesting Littlewood—Paley estimate holds for 2 < p < oo: There exists a constant C), such
that for all families of disjoint open intervals /; in R the estimate || (X, \(fx,j )Y |2)% | < C,,Hf| I
holds for all functions f € LP(R). This was proved by Rubio de Francia [225], but the special case
in which I; = (j, j+1) was previously obtained by Carleson [46]. An alternative proof of Rubio de
Francia’s theorem was obtained by Bourgain [28]. A higher-dimensional analogue of this estimate
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for arbitrary disjoint open rectangles in R” with sides parallel to the axes was obtained by Journé
[144]. Easier proofs of the higher-dimensional result were subsequently obtained by Sj6lin [246],
Soria [249], and Sato [234].

Part (a) of Theorem 5.2.7 is due to Mihlin [199] and the generalization in part (b) to Hormander
[129]. Theorem 5.2.2 can be found in Marcinkiewicz’s article [188] in the context of one-
dimensional Fourier series. The power 6 in estimate (5.2.3) that appears in the statement of The-
orem 5.2.2 is not optimal. Tao and Wright [276] proved that the best power of (p —1)~! in this
theorem is % as p — 1. An improvement of the Marcinkiewicz multiplier theorem in one dimen-
sion was obtained by Coifman, Rubio de Francia, and Semmes [54]. Weighted norm estimates for
Hormander—-Mihlin multipliers were obtained by Kurtz and Wheeden [166] and for Marcinkiwiecz
multipliers by Kurtz [165]. Nazarov and Seeger [206] have obtained a very elegant characteriza-
tion of radial L” multipliers in large dimensions; precisely, they showed that for dimensions n > 5
and 1 < p <2(n* —2n—3)/(n> —5), a radial function m on R” is an L” Fourier multiplier if and
only if there exists a nonzero Schwartz function 1 such that sup,. o#"/? [|m(m (e ))V} 1 < oo
This characterization builds on and extends a previously obtained simple characterization by Gar-
rigds and Seeger [99] of radial multipliers on the invariant subspace of radial L? functions when
l<p< nz%

The method of proof of Theorem 5.3.4 is adapted from Duoandikoetxea and Rubio de Francia
[78]. The method in this article is rather general and can be used to obtain L” boundedness for a
variety of rough singular integrals. A version of Theorem 5.3.6 was used by Christ [49] to obtain
L? smoothing estimates for Cantor—Lebesgue measures. When p = g # 2, Theorem 5.3.6 is false
in general, but it is true for all r satisfying \% — %| < \% - %\ under the additional assumption that
the m;’s are Lipschitz functions uniformly at all scales. This result was independently obtained by
Carbery [43] and Seeger [238].

The probabilistic notions of conditional expectations and martingales have a strong connection
with the Littlewood—Paley theory discussed in this chapter. For the purposes of this exposition we
considered only the case of the sequence of o-algebras generated by the dyadic cubes of side length
2% in R”. The L” boundedness of the maximal conditional expectation (Doob [76]) is analogous
to the L” boundedness of the dyadic maximal function; likewise with the corresponding weak type
(1,1) estimate. The L? boundedness of the dyadic martingale square function (Burkholder [31])
is analogous to Theorem 5.1.2. Moreover, the estimate || sup; |Ex(f)] HU, ~ HS(f)HL,,, 0< p<oo,
obtained by Burkholder and Gundy [32] and also by Davis [70] is analogous to the square-function
characterization of the H” norm discussed in Chapter 6. For an exposition on the different and
unifying aspects of Littlewood—Paley theory we refer to Stein [256]. The proof of Theorem 5.4.8,
which quantitatively expresses the almost orthogonality of the Littlewood—Paley and the dyadic
martingale difference operators, is taken from Grafakos and Kalton [106].

The use of quadratic expressions in the study of certain maximal operators has a long history.
We refer to the article of Stein [258] for a historical survey. Theorem 5.5.1 was first proved by Stein
[257]. The proof in the text is taken from an article of Rubio de Francia [226]. Another proof when
n > 3 is due to Cowling and Mauceri [61]. The more difficult case n = 2 was settled by Bourgain
[30] about 10 years later. Alternative proofs when n = 2 were given by Mockenhaupt, Seeger,
and Sogge [200] as well as Schlag [236]. Weighted norm inequalities for the spherical maximal
operator were obtained by Duoandikoetxea and Vega [79]. The discrete spherical maximal function
was studied by Magyar, Stein, and Wainger [184].

Much of the theory of square functions and the ideas associated with them has analogues in the
dyadic setting. A dyadic analogue of the theory discussed here can be obtained. For an introduction
to the area of dyadic harmonic analysis, we refer to Pereyra [212].

The idea of expressing (or reproducing) a signal as a weighted average of translations and
dilations of a single function appeared in early work of Calder6n [34]. This idea is in some sense a
forerunner of wavelets. An early example of a wavelet was constructed by Stromberg [270] in his
search for unconditional bases for Hardy spaces. Another example of a wavelet basis was obtained
by Meyer [194]. The construction of an orthonormal wavelet presented in Theorem 5.6.7 is in
Lemarié and Meyer [171]. A compactly supported wavelet was constructed by Daubechies [68].
Mallat [185] introduced the notion of multiresolution analysis, which led to a systematic production
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of wavelets. The area of wavelets has taken off significantly since its inception, spurred by these
early results. A general theory of wavelets and its use in Fourier analysis was carefully developed
in the two-volume monograph of Meyer [195], [196] and its successor Meyer and Coifman [197].
For further study and a complete account on the recent developments on the subject we refer to
the books of Daubechies [69], Chui [53], Wickerhauser [292], Kaiser [146], Benedetto and Frazier
[19], Hérnandez and Weiss [124], Wojtaszczyk [293], Mallat [186], Meyer [198], Frazier [96],
Grochenig [115], and the references therein.



Appendix A
Gamma and Beta Functions

A.1 A Useful Formula

The following formula is valid:
/ ey = (ﬁ)n

This is an immediate consequence of the corresponding one-dimensional identity

—oo

tee o
/ e Vdx=T,

which is usually proved from its two-dimensional version by switching to polar

coordinates:
400 poo 5 P oo 5
I? :/ / e e dydx:Zn/ re" dr=m.
oo oo 0

A.2 Definitions of I'(z) and B(z,w)

For a complex number z with Rez > 0 define

F(z):/ e ldr.
0

I'(z) is called the gamma function. It follows from its definition that I"(z) is analytic
on the right half-plane Rez > 0.
Two fundamental properties of the gamma function are that

I'(z+1)=z(2) and I'(n)=(n-1)!,

where z is a complex number with positive real part and n € Z™". Indeed, integration
by parts yields

JaE rre 1T 1  —t 1
F(z)z/ et dt = +7/ tte”'dt =-I'(z+1).
Jo z ]y zJo z

Since I'(1) = 1, the property I'(n) = (n—1)! for n € Z* follows by induction.
Another important fact is that

417
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This follows easily from the identity
F(%) :/ t_%e_tdt:2/ e du = V.
0 0

Next we define the beta function. Fix z and w complex numbers with positive
real parts. We define

1 1
B(z,w) = / =) tar = / 1= ar
0 0
We have the following relationship between the gamma and the beta functions:

r)rw)

B(z,w) = Ttw)

b

when z and w have positive real parts.
The proof of this fact is as follows:

1
F(Z+W)B(Z7W) :F(Z—I—W)/ Z‘W*l(l_t)zfldt

0
] +w
—rn) [0 () (= /(1 +u)
1 +w
= / < > Vi leVdvdu
1+u
_ / w—1 W= 1 7v(u+l)dsdu S:V/(1+M)

/ " Ye™" duds

e (w)ds

I
’1\\\\

A.3 Volume of the Unit Ball and Surface of the Unit Sphere

We denote by v, the volume of the unit ball in R” and by @,_; the surface area of
the unit sphere §"~!. We have the following:

and



A.4 Computation of Integrals Using Gamma Functions

n

W1 212 @
n nl(5) L(5+1)
The easy proofs are based on the formula in Appendix A.1. We have

(va)'= [

by switching to polar coordinates. Now change variables t = r> to obtain that

Vyp =

2 ® 2o

e W dx:a)n,]/ e dr,
n 0

1wy [T _1 o

7 — Y1 2 n—1 n

T s /Oe 12 dr =250 (%)

This proves the formula for the surface area of the unit sphere in R".
To compute v,,, write again using polar coordinates

1 1
vn:|B(0,1)|:/ ldx:/ / " ldrde = - w, .
[x|<1 Sn=1.J0 n

419

Here is another way to relate the volume to the surface area. Let B(0,R) be the
ball in R" of radius R > 0 centered at the origin. Then the volume of the shell
B(0,R+ h) \ B(0,R) divided by h tends to the surface area of B(0,R) as h — 0. In
other words, the derivative of the volume of B(0,R) with respect to the radius R is
equal to the surface area of B(0,R). Since the volume of B(0,R) is v,R", it follows
that the surface area of B(0,R) is nv,R" . Taking R = 1, we deduce @, | = nv,.

A.4 Computation of Integrals Using Gamma Functions
Let ky,...,k, be nonnegative even integers. The integral

ke anan =T ey =TI (%57)

expressed in polar coordinates is equal to

* 2
</ 19f1-~'9,/f"d9>/ PRtk n=1o=r"qp
Sn— 0

where 6 = (0,...,6,). This leads to the identity

ki kg k4
k kn _ 1
[, ool —ar (St (),

Another classical integral that can be computed using gamma functions is the

following:
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/2 1 F(i) (i)
sin@)?(cos )P do = 7#,
/0 (sing)*(cos@)”dep = 5 F (&5
whenever a and b are complex numbers with Rea > —1 and Reb > —1.
Indeed, change variables u = (sin ¢)?; then du = 2(sin ¢)(cos ¢ )d ¢, and the pre-
ceding integral becomes

atlyr bl
L = L (e oy ITCERCE)
2 2 2 F“z )

A.5 Meromorphic Extensions of B(z,w) and I'(z7)

Using the identity I'(z+ 1) = zI'(z), we can easily define a meromorphic exten-
sion of the gamma function on the whole complex plane starting from its known
values on the right half-plane. We give an explicit description of the meromorphic
extension of I'(z) on the whole plane. First write

1 oo
F(z):/ tzfle*’dwr/ e dt
0 1

and observe that the second integral is an analytic function of z for all z € C. Write
the first integral as

1zfl eff_N( j al J/]'
R O N T

The last integral converges when Rez > —N — 1, since the expression inside the
curly brackets is O(#N*1) as ¢ — 0. It follows that the gamma function can be de-
fined to be an analytic function on Rez > —N — 1 except at the points z = —j,
j=0,1,... N, at which it has simple poles with residues = i e . Since N was arbi-
trary, it follows that the gamma function has a meromorphic extension on the whole
plane.
In view of the identity

L) (w)
B(z,w) = ———,

(z,w) I(z+w)

the definition of B(z, w) can be extended to C x C. It follows that B(z,w) is a mero-
morphic function in each argument.

A.6 Asymptotics of I"(x) as x — oo

We now derive Stirling’s formula:
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I'x+1)

li()\/i

1.

First change variables t = x 4 sx\/g to obtain

F(x—i—l):/owe’txdt:( ) \/ﬂ/ L\[)xd&

254/x/2

Setting y = /3, we obtain

X = (1 %y »

To show that the last integral converges to /7 as y — oo, we need the following:

(1) The fact that
. ((1 —l—s/y)y)zy 2
lim (| ———— —e ",

y—ro0 e’

which follows easily by taking logarithms and applying L'Hopital’s rule twice.
(2) The estimate, valid fory > 1,

1 2
(H_;)y 2y ﬂ when s > 0,
es -
e’“2 when —y <5 <0,

which can be easily checked using calculus. Using these facts, the Lebesgue dom-
inated convergence theorem, the trivial fact that y_y.5<cc — 1 as y — oo, and the
identity in Appendix A.1, we obtain that

s\Y\ 2y
. I(x+1 e ()
LH;M = Jim | < A=y (8) s

teo o
:/ e ds

3

A.7 Euler’s Limit Formula for the Gamma Function

For n a positive integer and Rez > 0 we consider the functions
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L) :/0" (1= 1)

Ia(z) = 2(z+1)--(z+n)

and we obtain Euler’s limit formula for the gamma function

‘We show that

lim I;,(z) =TI'(z).

n—o0

We write I'(z) — I,(z) = 11 (z) + I2(z) + I3(z), where

Ii(z) = /nme*’zzfldt,
L(z) = /nl/12 (e’ - (1 - ;)n) r#dr,
L(z) = /On/2 <e" - (1 — ;)n>tz_1dt.

Obviously I (z) tends to zero as n — 0. For I, and I3 we have that 0 <7 < n, and by
the Taylor expansion of the logarithm we obtain

t\" t
log(l—f) :nlog(l—f):—t—L7
n n

where

L_t2<l+lt+1t2+ )
T n\2 3n 4n? '

It follows that fon
O<e’ — (1—7) —e'—ele <o,
n

and thus /»(z) tends to zero as n — oc. For I3 we have 7/n < 1/2, which implies that

Consequently, for 7/n < 1/2 we have

t n
0§e"—<1—7> —e'(l—eb)<e'L<e'—.
n

Plugging this estimate into /3, we deduce that
c
I(z)| < EF(Rez—i-Z),

which certainly tends to zero as n — oo,
Next, n integrations by parts give
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n n—1 n-2 1 / I n!n®
nzn(z+1)n(z+2) n(z+n—1) Jo Wz+1)--(z4n)

I(z) =

This can be written as

1:Fn(z)zexp{z(l—&-%—ké—&----—k%—logn)}fl(l+%)e*2/".

k=1

Taking limits as n — oo, we obtain an infinite product form of Euler’s limit formula,

1 :F(z)ze”ﬁ (1 +£)e’z/",

k=1

where Rez > 0 and 7y is Euler’s constant

y=lim 1+ = ! + = ! +-- —|—l—logn
n—oo 2 3
The infinite product converges uniformly on compact subsets of the complex plane
that excludes z=0,—1,—2,..., and thus it represents a holomorphic function in this
domain. This holomorphic function multiplied by I'(z) ze?* is equal to 1 on Rez > 0
and by analytic continuation it must be equal to 1 on C\ {0,—1,-2,...}. ButI'(z)
has simple poles, while the infinite product vanishes to order one at the nonpositive
integers. We conclude that Euler’s limit formula holds for all complex numbers z;
consequently, I'(z) has no zeros and I"(z) ! is entire.
An immediate consequence of Euler’s limit formula is the identity

1
\F(x+iy)|2 |2H< k—|—x )

which holds for x and y real with x ¢ {0,—1,—2,...}. As a consequence we have
that
I (x+iy)| < [(x)]

and also that

! U cwnp
< DI
\C(x+iy)| = |T'(x)]

where

oo

[\)

whenever x € R\ {0,—1,-2,...} andy €R.
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A.8 Reflection and Duplication Formulas for the Gamma
Function

The reflection formula relates the values of the gamma function of a complex num-
ber z and its reflection about the point 1/2 in the following way:

sin(mz) 1 1

n  TI'(x(1-z)°

The duplication formula relates the entire functions I"(2z) ' and I'(z) " as follows:

1
1 T2 22z71

r(r+i)  I'(2)

Both of these could be proved using Euler’s limit formula. The reflection formula

also uses the identity
oo 2

I-I<17]z72):sin(7rz)7

k=1 7z

while the duplication formula makes use of the fact that

2~2n+1
lim M —o7l/?
n—e (2n)!nl/2

These and other facts related to the gamma function can be found in Olver [208].



Appendix B
Bessel Functions

B.1 Definition

We survey some basics from the theory of Bessel functions J, of complex order
v with Rev > —1/2. We define the Bessel function J,, of order v by its Poisson
representation formula

\Vv 1. r
Jv(l): (2) )/41— eztS(l_SZ)v d

riv+4Hr VI’
where Rev > —1/2 and ¢ > 0. Although this definition is also valid when ¢ is a

complex number, for the applications we have in mind, it suffices to consider the
case that ¢ is real and nonnegative; in this case Jy (¢) is also a real number.

B.2 Some Basic Properties

Let us summarize a few properties of Bessel functions. We take # > 0.
(1) We have the following recurrence formula:

d
E(fvjv(t)) =t Ty (1), Rev > —1/2.

(2) We also have the companion recurrence formula:

d
E(t"Jv(t)) =t"Jy_1(1), Rev > 1/2.

(3) Jy (¢) satisfies the differential equation:

2

IZ%(JV(I)) Jrl%(lv(t)) (2= V) (1) =0.

(4) If v € Z, then we have the following identity, which was taken by Bessel as the
definition of Jy for integer v:

1

Jv(t) = o

2w . . 1 e
/ oltsin® ,—ive jg ﬂ/ cos(tsinefve)de'
0 0

425
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(5) For Rev > —1/2 we have the following identity:

1 /1\V& ; TGi+3)
Jy(t) = m@ L (1) F(j+vil> @)t

1
2 Jj=0

(6) For Re v > 1/2 the identity below is valid:

L0 (0) = 3 (v ()~ dor1).

We first verify property (1). We have

d i L |
— (VI (2 Z—/ se”s l—s2 V=2 ds
a0 2L (v+5)I(3) /1 (=5
i /1 it its(lfsz)v-i_%d
= e ———————ds
2C(v+Hr) /-2 V+3
= _tivJV+1(t)7

where we integrated by parts and used the fact that I"(x+ 1) = xI"(x). Property (2)
can be proved similarly.

We proceed with the proof of property (3). A calculation using the definition of
the Bessel function gives that the left-hand side of (3) is equal to

zie /+1 "S’((l ) +2i (V+1))(1 )" 2d
- e - is 5 - §,

rv+Hra) /- :

which in turn is equal to
27 Vvl td .
—iﬁ/ —(e”’(l—sz)"*%)ds:o.

L(v4+3)L(5) /-1 ds
Property (4) can be derived directly from (1). Define

1

2 0 —ive
:7/ eltsm e*lv de’
27 Jo

Gy(1)

forv=0,1,2,... and r > 0. We can show easily that Gy = Jy. If we had

d

o (t7VGy(1)) = =t Gyya (1), t>0,

for v € Z™, we would immediately conclude that G, = J,, for v € Z*. We have
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de
Gy(t t
t dt ()>

2
— v 4 zz’nensineeqve _ % (jteitsin())eivé) 46
0

=V 2n g [ eitsin6—ive o )
_ﬂ/‘ lde([) —i—(COSG—iSinG)ellsmGeilvedQ
0

=V 2T . X
_ _ eltsmeeﬂ(erl)G 4o
2

= =1 VGy4 (7).

d
E(t Gy(1))

I
|
N\
<
N
| <
<
|

For ¢ real, the identity in (5) can be derived by inserting the expression

i(—l)i (t )2: +isin(ts)

its

for ¢ in the definition of the Bessel function Jy (¢) in Appendix B.1. Algebraic
manipulations yield

t/2 d 1 1% Lo v-l
Jy(t) = Z \/—f—é)(2j)!2/o sPH 1 =52V " 25ds
t/2 = 1 2 T(j+Hr(v+1)
5 LV R T rG v
r/z > ; TG+3) ¥
2_: ]+v42rl) )

To derive property (6) we first multiply (1) by ¥ and (2) by #~"; then we use the
product rule for differentiation and we add the resulting expressions.

For further identities on Bessel functions, one may consult Watson’s monograph
[288].

B.3 An Interesting Identity

Let Rep > —%, Rev > —1, and ¢t > 0. Then the following identity is valid:

! r'(v+1)2Y
/o Tu(ts)st (1 =)V ds = (ﬂ%fwvﬂ(ﬁ-

To prove this identity we use formula (5) in Appendix B.2. We have
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()" & E)rG+HA v
; /0 ZF(]+H+])( 2! (1= 5%) s ds
1 o ()C(j+5) v
EF(I)ZOF(JHLH)( 2))! /0 W= du

(—)/T(j+3) ™ T(u+j+ DI (v+1)
r(j+u+1)2)) F(u+v+j+2)

Jj=0
_2rv+n () i 1T (j+ %)%
1V rG) Sri+p+v+2)2))!
r(v+1)2Y

B.4 The Fourier Transform of Surface Measure on S" !

Let do denote surface measure on S~ ! for n > 2. Then the following is true:

2w
n2]n2 é .
e (27[&])

2
To see this, use the result in Appendix D.3 to write

Fo(e) = [0
Sn—

n—1
_ 22 /+1672m‘|§\3(1_s2)% ds
re=) /-1 V1-s2
n—1 —
e re e hro)
- n—1 n 2 Jﬁ(2”|§|>
r) (=)= ’

21
n2Jn2 2 é
N (27|Gl) .

do(&) :/ e 04 =
N

B.5 The Fourier Transform of a Radial Function on R”

Let f(x) = fo(]x|) be a radial function defined on R”, where fj is defined on [0, o).
Then the Fourier transform of f is given by the formula
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Ju 1(2mr| & ridr.
|§| (27r|E])

To obtain this formula, use polar coordinates to write
F&) = [ e dx

_ / / —27‘5!5 r@de e ldr
Sn—1

:/ fo(r)dc(ré)r"_ldr
= ———Ju2 (271 " ldr
/ r|e;| a2 (2rlE )

)y [ (2mr|E)r2 dr.
|5|
As an application we take f(x) = ¥(0,1), where B(0, 1) is the unit ball in R". We
obtain (27lE)
n Jn (21
(XBo0,1)) ( / Jy 1 2m|E|r)ridr = ——,
|§| &12

in view of the result in Appendix B.3. More generally, for ReA > —1, let

_Ja—gpt forlgl <1,
ml(g)_{o for |&] > 1.

Then

; T(A+1) Tz (27x])
Jy 1 (2m|x|r)r2(1— = = ,
my n 2 / 1 |x| ( r ) r 7_[2{ |x|7+}(

using again the identity in Appendix B.3.

B.6 Bessel Functions of Small Arguments

We seek the behavior of Ji(r) as r — 0+4. We fix a complex number v with Rev >
—%. Then we have the identity

v

M= ST

+Sy(r),

where

SV(V)Z (r/z)v )/Tl(e"”—l)(l—tz)"édt

L(v+3)I(;
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and S, satisfies
27Re ere v+1

(Rev+1)|I(v+3)|I'(3)

To prove this estimate we note that

1Sv(r)| <

r/2)Y 1 .
Jv(r) :F(v(+/12§F(1)/T (1—2)V"2dr + S, (r)
2 2 -
= r/2)" " in2 )"~ (sin r
_F(v+;)r(;)/o(s 9)" 2 (sin@)dd +5v(r)
(2 T(v+3I(3)
“Fwa L e TS0

where we evaluated the last integral using the result in Appendix A.4. Using that
e — 1| < r|t|, we deduce the assertion regarding the size of [Sy (r)|.

It follows from these facts and the estimate in Appendix A.7 that for 0 < r <1
and Rev > —1/2 we have

|Jv(")| <G eco|Imv\2 rRev,

where Cy and cq are constants depending only on Rev. Note that when Rev > 0,
the constant cp may be taken to be absolute (such as ¢y = 7).

B.7 Bessel Functions of Large Arguments

For r > 0 and complex numbers v with Rev > —1/2 we prove the identity

2 A% X oo X oo
Jv(r):(r/l)l{ie”/ e*”(t2+2it)vfédt—ie”/ e*”(t2—2it)vf%dt .
r(v+3)I(;) 0 0

Fix 0 < 6 < 1/10 < 10 < R < . We consider the region Q5 g in the complex
plane whose boundary is the set consisting of the interval [—1+ 6,1 — 8] union a
quarter circle centered at 1 of radius 8 from 1 — J to 1+ 0, union the line segments
from 1+4id to 1 +iR, from 1 +iR to —1 + iR, and from —1 + iR to —1 +i8, union
a quarter circle centered at —1 of radius 6 from —1+i8 to —1 4 J. This is a simply
connected region on the interior of which the holomorphic function (1 — z?) has no
zeros. Since Qg5 g is contained in the complement of the negative imaginary axis,
there is a holomorphic branch of the logarithm such that log(¢) is real, log(—t) =
log |t| + i, and log(it) = log|t| +im/2 for t > 0. Since the function log(1 — z?) is
well defined and holomorphic in 5 , we may define the holomorphic function

(1 7Z2)V—% _ e(v—%)log(l—zz)
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for z € Q; g. Since (1 — zz)"*% has no poles in &5 g, Cauchy’s theorem yields

R . . 1
i/é e"(H”)(z‘z—Zil‘)vffdt—l—/

—1+68

1-6 . 1
elr[(l _t2)v7§ dt

s .
+i/ I (2 4 0i)V= dr 4 E(8,R) = 0,
R

where E (8, R) is the sum of the integrals over the two small quarter-circles of radius
0 and the line segment from 1+ iR to —1 +iR. The first two of these integrals are
bounded by constants times &, the latter by a constant times R?R¢V~1e~"R; hence
E(8,R) — 0as 0 — 0 and R — . We deduce the identity

+1 oo oo
/ e’”(l—tz)v‘%dt:ie‘”/ e_”(tz—l—Zit)v_%dt—ie”/ e (2 —2if)V "2 dt .
—1 0 0

Estimating the two integrals on the right by putting absolute values inside and mul-
tiplying by the missing factor 72~V (I"(v+ 3)I"(3)) !, we obtain

7)ReV ,F[Imv|  reo 1
|]v(l")|§2<r/ ) le 1 / efrttReV*%( [2+4)Rev 2dt,

' (v+3)|I'(5) Jo
since the absolute value of the argument of #> -+ 2if is at most /2. When Re v > 1/2,
we use the inequality (v/#2 +4)Rev-% < QRev—3 (tRe"_% +2R°"_%) to get

1
+2RCVF<RCV+ E)

(r/2)Revezlmvl o 5 [[(2ReV)
v(r)] <2 2 R Revil

T rv+Ir(3)

1
When 1/2 > ReV > —1/2 we use that ( t2+4)Rev 2 < 1 to deduce that

()] <2 (r/2)ReV e3ImVI [(Rev 4 1)
.
TR DID)  Revid

These estimates yield that for Rev > —1/2 and r > 1 we have
|Jv(r)| < Co(Rev) e”lImVHﬂleImv\z 172

using the result in Appendix A.7. Here () is a constant that depends only on Re v.

B.8 Asymptotics of Bessel Functions

We obtain asymptotics for Jy(r) as r — e whenever Rev > —1/2. We have the
following identity for r > 0:
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—5 .V rco
Ry(r) = G e el A (Tl R
r'(v+3) 0 t
@n) 2 <r—%—%>/°°e—";vn[(1 N
F(V—FE) 0 t

and satisfies [Ry (r)| < Cy r—3/? whenever r > 1.
To see the validity of this identity we write

1

ie (2 4+2it)V "7 = (21)V " 2e T E) (1 — E)V*E

1 7r

2
:(Zt)v—jei(r—% z (1+tt)v

)

D=

—ie' (1> —2ir)V~

Inserting these expressions into the corresponding integrals in the formula proved
in Appendix B.7, adding and subtracting 1 from each term (1 + ’l)"’l and multi-
plying by the missing factor (r/2)" /I’ (v + %)I"(3), we obtain the claimed identity

It remains to estimate Ry (r). We begin by noting that for a,b real with a > —1
we have the pair of inequalities

atl

(1) — 1] <3 (|a| +[b]) (2T €31

Ny when0 <y <1,
|(144y)a TP — 1] < (142 )%e%Ib‘—H 2(2 %Ie%‘b‘)ya when 1 <y <oo.
The first inequality is proved by splitting into real and imaginary parts and applying

the mean value theorem in the real part. Taking v — % =a+ib,y=1/2, and inserting
these estimates into the integrals appearing in Ry, we obtain

IRevhl 1z
|Rv(r)‘g22R‘3V2462‘““V|FRev [3f|v|/ —rt Rev+3dt+2\f rttZRevdt:|.

Q@m) 2| (v + )] 2kev. :

It follows that for all » > 0 we have

Rv(r)| <2

1
22ReveF[Imy] [v [(Rev+3) rRev /mettZReth]
2r

ro+1) S f
2:ReveEImVI T [(Rev43)  2ReV [(2Rev)
IC(v+1)] 32 rReveer |7
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using that e =" < ¢~*/2¢~" for t > 2r. We conclude that for r > 1 and Rev > —1/2

we have

MY (v +1) Ly
v+ 3)]

where Cy is a constant that depends only on Rev. In view of the result in Ap-

pendix A.7, the last fraction is bounded by another constant depending on Rev
2 2
(1+[1mv])*

IRy (r)] < Co(Rev)

)

times e”



Appendix C
Rademacher Functions

C.1 Definition of the Rademacher Functions

The Rademacher functions are defined on [0, 1] as follows: ry(z) = 1; r1(t) = 1 for
0<tr<1/2andr(t)=—1for1/2<t<1;m()=1for0<r<1/4 r()=—1
for 1/4 <t <1/2, r(t)=1for 1/2 <t <3/4,and rp(r) = —1 for 3/4 <t < 1;
and so on. According to this definition, we have that r;(t) = sgn(sin(2/7t)) for
J=0,1,2,.... It is easy to check that the r;’s are mutually independent random
variables on [0, 1]. This means that for all functions f; we have

1 n I
/ Tss)ir=T]1 [ sy

To see the validity of this identity, we write its right-hand side as

fU(l)fIl/(;lfj(rj(t))dt =f0(1)ﬁM
=t

A 2
j=1

N N 701 )
Sc{1,2,..n} jES jés

and we observe that there is a one-to-one and onto correspondence between sub-
sets S of {1,2,...,n} and intervals I; = [2%, k;—,,l], k=0,1,...,2" — 1, such that the
restriction of the function [T}_, f;(r;(#)) on I is equal to

[15MW]H0.

=N JgS
It follows that the last of the three equal displayed expressions is

2"—1 ., n

fo(1) k;() '/ijI_Ilfj(rj(t))dt:/o g}fﬂw(ﬂ)dﬁ

C.2 Khintchine’s Inequalities

The following property of the Rademacher functions is of fundamental importance
and with far-reaching consequences in analysis:
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For any 0 < p < o and for any real-valued square summable sequences {a;} and
{b;} we have

1

2
<A a<+ib-2>
o (Zl +ib)

for some constants 0 < A,, B, < o that depend only on p.

These inequalities reflect the orthogonality of the Rademacher functions in L”
(especially when p # 2). Khintchine [155] was the first to prove a special form of
this inequality, and he used it to estimate the asymptotic behavior of certain ran-
dom walks. Later this inequality was systematically studied almost simultaneously
by Littlewood [173] and by Paley and Zygmund [210], who proved the more gen-
eral form stated previously. The foregoing inequalities are usually referred to by
Khintchine’s name.

1
2
Bp(ZIdj+ibj|2> < HZ(aj—Hbj)rj
J J

C.3 Derivation of Khintchine’s Inequalities

Both assertions in Appendix C.2 can be derived from an exponentially decaying
distributional inequality for the function

F(t) =Y (aj+ibj)r;(t), t€o,1],

J

when a;, b; are square summable real numbers.
We first obtain a distributional inequality for the above function F' under the
following three assumptions:

(a) The sequence {b,} is identically zero.
(b)All but finitely many terms of the sequence {a;} are zero.
(c) The sequence {a;} satisfies (¥, ]a;|*)!/? = 1.

Let p > 0. Under assumptions (a), (b), and (c), independence gives

1 1
/ ePLajri(t) gy — H/ P gy
0 b 0

epaj + eipaj
2

J
1,22 1,2y 2 1,2
Snezp T — P LA — o3P
J

b

. . 1.2 .
where we used the inequality % (e +e ) <ez* forall real x, which can be checked
using power series expansions. Since the same argument is also valid for — Y a;r;(t),
we obtain that



C.3 Derivation of Khintchine’s Inequalities 437

1
/ PIFOl gp < 20307
0

From this it follows that
1 F 1,2
P e0,1]: |F()| > a}| < / PIFOI gy < 2e3P
0
and hence we obtain the distributional inequality
dr(ar) = [{t €[0.1]: [F()] > a}| <2e7P" P =2¢7 2%

by picking p = &. The L? norm of F can now be computed easily. Formula (1.1.6)
gives

o 00 a2
1Fll = [ pordr(@ydacs [ part2e S da=28pr(p/2).
0 0
We have now proved that
1
1, <V2(pT(p/2)) " [|F]|,2
under assumptions (a), (b), and (c).
We now dispose of assumptions (a), (b), and (c). Assumption (b) can be easily

eliminated by a limiting argument and (c) by a scaling argument. To dispose of
assumption (a), let a; and b; be real numbers. We have

< H|Za/ﬁ|+’2b r/‘ ‘
< H;ajrj Lp-l—H;bjrj I
gﬁ(pl"(p/Z));«ZWJ' ) (Zw’lz)é)

<V2(pI(p/2) V2 (L laj+ib)

J

HZ a/—Hb rj

Let us now set A, = 2(pI'(p/2)) P when p > 2. Since we have the trivial esti-

mate ||F| w < ||F||L2 when 0 < p <2, we obtain the required inequality ||F||L,, <
Ap||F||,> with
1 when 0 < p <2,
P Zp%F(p/Z)% when 2 < p < oo,

Using Sterling’s formula in Appendix A.6, we see that A, is asymptotic to ,/p as

p — oo.
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We now discuss the converse inequality B,,HF || 2 < HF || - It is clear that
HFHL2 < HFHU, when p > 2 and we may therefore take B, = 1 for p > 2. Let
us now consider the case 0 < p < 2. Pickan s such that2 < s <eo.Finda0 < 0 < 1

such that
1 1-6 6

27 p s
Then

11l < 1Flls I < 1F 1L, A2 I 2

It follows that )
1F] - <A77 F

Lr-

We have now proved the inequality B, ||F||,, < ||F||,, with

1 when 2 < p < oo,
11
B,= -t
supAs 2 ° when 0 < p < 2.
§>2

1_1 1_1
Observe that the function s — A;(Eij)/(jﬁ) tends to zero as s — 2+ and as
s — oo. Hence it must attain its maximum for some s = s(p) in the interval (2,0).
We see that B, > 16-256~"/7 when p < 2 by taking s = 4.

It is worthwhile to mention that the best possible values of the constants A, and
B, in Khintchine’s inequality are known when b; = 0. In this case Szarek [271]
showed that the best possible value of B; is 1/v/2, and later Haagerup [116] found
that when b; = 0 the best possible values of A, and B), are the numbers

Ap:{ll 1 when 0 < p <2,

220 7 () when2 < p <o,
and O

227 p when 0 < p < po,

B, = 2%7t7ﬁ1"(1’2i1) when pg < p < 2,

1 when 2 < p < oo,

where pg = 1.84742... is the unique solution of the equation 2I" (pTH) = /7 in the

interval (1,2).

C.4 Khintchine’s Inequalities for Weak Type Spaces

We note that the following weak type estimates are valid:
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1 1

-1 12 2 . 12 2
4 17B127<;aj+lbj| ) gH;(Clj-i-lbj)}’j LPNSAP(;Wj‘i‘le )

forall 0 < p < oo.

Indeed, the upper estimate is a simple consequence of the fact that L” is a sub-
space of LP. For the converse inequality we use the fact that LP*°([0, 1]) is con-
tained in LP/?([0,1]) and we have (see Exercise 1.1.11)

1
1Pl <47 |F ] e

Since any Lorentz space LP4([0,1]) can be sandwiched between L?7([0,1]) and
LP/2([0,1]), similar inequalities hold for all Lorentz spaces L”4([0,1]), 0 < p < oo,
0<g<oo,

C.5 Extension to Several Variables

We first extend the inequality on the right in Appendix C.2 to several variables. For
a positive integer n we let

Fn(th" . 7tn) = Z ’ .chlv"'vjilrjl (tl) o -rjn(tn)7
J1 Jn

fort; € [0,1], where ¢ 1....ju 1S @ sequence of complex numbers and Fj, is a function
defined on [0, 1]".

For any 0 < p < oo and for any complex-valued square summable sequence of n
variables {c;,

! !
B L Thenaf) <l <45 (EEleril)
J1 Jn J1 Jn

where A, B,, are the constants in Appendix C.2. The norms are over [0, 1]".
The case n = 2 is indicative of the general case. For p > 2 we have

11 1 5
2
/0 /0 |F(t1,02)|P dty dry SAg/O (Z|2le7jzrj2(t2)| ) dt

12

1 2 g
SA?(Z </ |chl-,jzrjz(t2)|pdf2>p>
J1 0
3
SAI%"(ZZC;I,;”Z) :

J1 2

s
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where we used Minkowski’s integral inequality (with exponent p/2 > 1) in the sec-
ond inequality and the result in the case n = 1 twice.

The case p < 2 follows trivially from Holder’s inequality with constant A, = 1.
The reverse inequalities follow exactly as in the case of one variable. Replacing A,
by A, in the argument, giving the reverse inequality in the case n = 1, we obtain the
constant B,

Likewise one may extend the weak type inequalities of Appendix C.3 in several
variables.



Appendix D
Spherical Coordinates

D.1 Spherical Coordinate Formula

Switching integration from spherical coordinates to Cartesian is achieved via the
following identity:

[ sase=[* [T [T st R)d, s don

RSn—1

where

X1 = Rcosoy,

X, = Rsin@; cos @2,

X3 = Rsin@; sin @ cos @3,

Xp—1 = Rsin@q sin@, sin@z---sin@,_» cos @, ,
Xp = Rsin@; sin@ sin@s---sin@,_» sin@,_1,

and0<@,...,0, 2 <7, 0< @, | =0 <2,

x(q)) = (X1(<P1,-..,(Pn—1),...,xn((P1,...,(Pn—1)),

and
J(n,R, @) = R (sing, )"_2 -+« (sin (p,,,g)z(sin On—2)

is the Jacobian of the transformation.

D.2 A Useful Change of Variables Formula
The following formula is useful in computing integrals over the sphere "' when
n > 2. Let f be a function defined on §"~!. Then we have

' +R : Rds
/ f@asw=[ = [ s(s0)a0 V2
NI

To prove this formula, let ¢’ = (¢,,...,¢,_1) and
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X =X (¢") = (cos @y, sin @ cos @3,...,sin@y---sin@, 2sin@, ;).
Using the change of variables in Appendix D.1 we express
[ fwdo)
RSS!
as the iterated integral

Rd o

T T 2
R Rsi (¢ -1,1,0)d¢ | ———
L[ rreosoursine@un-1.1.9)a9] R0

¢1=0

and we can realize the expression inside the square brackets as

/sn—z f(RCOS o1, R sin ®1 x/)d0<x/) .

Consequently,
o,
/ fx)do(x) = / f(Reos o1, Rsin gy X')do(x )R (singy)"dg
RS- @ =0./8"2

and the change of variables

s =Rcos @, ¢ € (0,7),
ds=—Rsin@,d¢;, VR2 —s2 =Rsingy,
yields
R n—2 Rds
/ Fx)do(x) :/ { Fs VR 5 e)de} (VR — )t 2
RSn—1 _R sn—2 R2 — 52

Rescaling the sphere 8”2 to v/R2 — 528"~ yields the claimed identity.

D.3 Computation of an Integral over the Sphere

Let K be a function on the line. We use the result in Appendix D.2 to show that for
n > 2 we have

B 2717% +1 n—3
/SH K(x-e)de—r()/] KGsIx)(V1—s2)" " ds

n—1
2

when x € R"”\ {0}. Let X' = x/|x| and pick a matrix A € O(n) such that Ae; = X/,
where e¢; = (1,0,...,0). We have
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K(x-0)d0 = / (x| 0))d0
Sn— S

= [ K(x|(Ae1-0))do
S)l*

:/SnilK(|x|(e1-A’16))d9

/ K(|x|61)d6
Jsn—1
+1

n—2 ds
= [ Ko (V=)

=W, /fll K(s|x]) (V1 —sz)w3 ds,

S _
where @,_» =212 I'(%51) " is the surface area of $"2.

For example, we have

— = Oy ———(l=s) 2 ds= —————=~,
oo =2, et =)

and the integral converges only when Re ot < 1.

D.4 The Computation of Another Integral over the Sphere

We compute the following integral for n > 2:

/ de
§n—1 ‘e—el|a ’

where e¢; = (1,0,...,0). Applying the formula in Appendix D.2, we obtain

/ e /+1 / de ds
g1 |0 —el]*  Jo (Is—112+16]2)% V1—s2
0cy\/1—s2812
+1 -2 ds
o, (1-57)

-1 ((1—s)2—|—1—s2)% V1—s2

which converges exactly when Reot < n— 1.
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D.5 Integration over a General Surface

Suppose that S is a hypersurface in R” of the form S = {(u, ®(u)) : u € D}, where
D is an open subset of R”~! and @ is a continuously differentiable mapping from D
to R. Let o be the canonical surface measure on S. If g is a function on S, then we
have

Ag@wow)LLA%¢@DO+§U%¢@Wde

Specializing to the sphere, we obtain

fosorao= [ [ fi-lgmaefi-en] S

5/€Rn71
I§"<1

D.6 The Stereographic Projection

Define a map IT : R" — S" by the formula

2x 2x, x> —1 )

H(xy,....x,) = ,
-2 o) (1+uv AR

It is easy to see that IT is a one-to-one map from R” onto the sphere S” minus the
north pole ¢, = (0,...,0,1). Its inverse is given by the formula

— 91 6n
m'(6,...,6,:1)= o :
( 1, ) n+1) (1_9n+17 71_6n+1)
The Jacobian of the map is verified to be
2 n
= (25)"
H(x) ( 1+ ‘x|2
and the following change of variables formulas are valid:
F(0)do = | F(II(x))J(x)dx
S)l Rn
and
F(x)dx= | F(IT"'(0))Jz-1(8)d6,
R)‘l Sn
where

Iy (8) =

1 104 0P = 0P
T (I1(8)) A= 61 '
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Another interesting formula about the stereographic projection IT is
[TT(x) = I (v)] = 2= y|(L+ |x*) 72 (1 [y 772,

for all x, y in R".



Appendix E
Some Trigonometric Identities and Inequalities

The following inequalities are valid for ¢ real:

T
0<t<5 = sin(r) <r < tan(r),

T 2 sin(t
0<|t|<—:>—<ﬁ<1,
2 T t

—oo <t < 4oo = |sin(r)| < 1],

o2

—00 <t < 400 = |1—cos(t)|§7,
—oo <1< 4oo = |[1—¢| <t
T . 2t
<= = [sin(t)| > —
=3 [sin(r)] > ==,

2t)?

|t|§ﬂ$ |1—COS(t)|2?7

o 2t
f|<nm = |1—e”|2|7‘.

The following sum to product formulas are valid:

sin(a) +sin(b) = 2 sin <a42—b> cos (a—b

b
sin(a) —sin(b) =2 cos (a+

cos(a) +cos(b) =2 cos (a—;—b) cos (a

cos(a) —cos(b) = —2sin(a;b) sin( 3 )

The following identities are also easily proved:

N 1 sin((N+1)x)
kg’lcos(kx) = —E+T(%2),
N sin(ke ~cos(3) —cos((N+ 3)x)
k; (k) = 2sin(3) ’
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Appendix F
Summation by Parts

Let {ax}o. {bx}r be two sequences of complex numbers. Then for N > 1 we

have
N—1

v _
Y awbi =Anby — Y A(brr — by),
k=0 k=0

where
k
Ak = Z aj.
Jj=0
More generally we have

N—1

N -
Z arby = ANbNy —Ap—1by — Z Ak(bk+1 - bk) s
k=M k=M

whenever 0 <M < N, where A_; = 0 and

k
A= Zaj
=0

for k > 0.
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Appendix G
Basic Functional Analysis

A quasinorm is a nonnegative functional || - || on a vector space X that satisfies
[lx+yllx < K(||x|]|x + ||y|]lx) for some K > 0 and all x,y € X and also ||Ax|[xy =
|A]]]x||x for all scalars A. When K = 1, the quasinorm is called a norm. A quasi-
Banach space is a quasinormed space that is complete with respect to the topology
generated by the quasinorm. The proofs of the following theorems can be found in
several books including Albiac and Kalton [1], Kalton Peck and Roberts [150], and
Rudin [230].

The Hahn-Banach theorem. Let X be a normed space and Xy a subspace. Every
bounded linear functional Ay on X; has a bounded extension A on X with the same
norm. In addition, if Ag is subordinate to a positively homogeneous subadditive
functional P, then A may be chosen to have the same property.

Banach-Alaoglou theorem. Let X be a quasi-Banach space and let X* be the
space of all bounded linear functionals on X. Then the unit ball of X* is weak*
compact.

Open mapping theorem. Suppose that X and Y are quasi-Banach spaces and
T is a bounded surjective linear map from X onto Y. Then there exists a constant
K < oo such that for all x € X we have

[Ixllx < K[|T(x)]]y -
Closed graph theorem. Suppose that X and Y are quasi-Banach spaces and 7' is
a linear map from X to Y whose graph is a closed set, i.e., whenever x;,x € X and

(%, T (xx)) +— (x,y) in X x Y for some y € Y, then T'(x) = y. Then T is a bounded
linear map from X to Y.

Uniform boundedness principle. Suppose that X is a quasi-Banach space, Y is
a quasinormed space and (Ty)qes is a family of bounded linear maps from X to ¥
such that for all x € X there exists a Cy < o such that
sup [| 7o, (x) [y < G
ael

Then there exists a constant K < o such that

sup||Tollx—y <K.
ael
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Appendix H
The Minimax Lemma

Minimax type results are used in the theory of games and have their origin in the
work of Von Neumann [286]. Much of the theory in this subject is based on convex
analysis techniques. For instance, this is the case with the next proposition, which
is needed in the “difficult” inequality in the proof of the minimax lemma. We refer
to Fan [87] for a general account of minimax results. The following exposition is
based on the simple presentation in Appendix A2 of [98].

Minimax Lemma. LerA, B be convex subsets of certain vector spaces. Assume that
a topology is defined in B for which it is a compact Hausdorff space and assume that
there is a function @ : A x B — R|J{+eo} that satisfies the following:

(a) ®(.,b) is a concave function on A for each b € B,

(b) ®(a, .) is a convex function on B for each a € A,

(c) @(a, .) is lower semicontinuous on B for each a € A.

Then the following identity holds:

i P(a,b) = in®(a,b).
g (o) =i @le.)

To prove the lemma we need the following proposition:

Proposition. Let B be a convex compact subset of a vector space and suppose that
gj:B— RU{+e}, j=1,2,...,n, are convex and lower semicontinuous. If

i(b) >0 Il beB
11;1;1;(ﬂg,()> fora €B,

then there exist nonnegative numbers Ay, Az, ..., A, such that

Mgi(b) +A2ga(b) + -+ Augn(b) >0 forall beB.

Proof. We first consider the case n = 2. Define subsets of B
Bi={beB: g(b) <0}, By={beB: g(b) <0}.

If By =0, we take A; = 1 and A, = 0, and we similarly deal with the case B, = 0. If
Bj and B, are nonempty, then they are closed and thus compact. The hypothesis of
the proposition implies that g>(b) > 0 > g1 () for all b € B). Therefore, the function
—21(b)/g2(b) is well defined and upper semicontinuous on B; and thus attains its
maximum. The same is true for —g»(b)/g1(b) defined on B,. We set
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—g1(b) —g2(b)
= max >0, = max
b= o) = b= )

>0.

We need to find A > 0 such that Ag;(b) + g2(b) > 0 for all b € B. This is clearly
satisfied if b & By |UB,, while for b; € By and b, € B, we have

Agi1(b1) +g2(b1) = (1—Aw)ga(br),
Agi1(b2) +g2(b2) > (A —12)g1(b2).

Therefore, it suffices to find a A > 0 such that 1 — Ay >0 and A — pp > 0. Such a
A exists if and only if i, < 1. To prove that y; up < 1, we can assume that u; # 0
and uy # 0. Then we take by € B and b, € By, for which the maxima py; and p; are
attained, respectively. Then we have

g1(b1) +ga(br) =0,
1
g1(b2) +—g2(b2) =0.
I25)
But g;(b1) <0 < g1(b2); thus taking bg = 0b; + (1 — 6)b, for some 6 in (0, 1), we
have
81(be) < 6g1(b1) + (1= 6)g1(b2) = 0.

Considering the same convex combination of the last displayed equations and using
this identity, we obtain that

H126082(b1) + (1 —6)g2(b2) =0.
The hypothesis of the proposition implies that g»(bg) > 0 and the convexity of g»:
ng(bl) + (1 - G)gz(bz) > 0.

Since g2(b1) > 0, we must have U lrg2(b1) < g2(b1), which gives ujup < 1. This
proves the required claim and completes the case n = 2.

We now use induction to prove the proposition for arbitrary n. Assume that the
result has been proved for n — 1 functions. Consider the subset of B

By={beB: g.(b) <0}.

If B, =0, we choose Ay = A, =---=A, 1 =0 and A, = 1. If B, is not empty,
then it is compact and convex and we can restrict g1, g2,...,8:,—1 to B,. Using the
induction hypothesis, we can find Ay, A2, ..., 4,1 > 0 such that

20(b) = A1g1(b) +A2g2(b) + -+ Ap_18n-1(b) >0

for all b € B,,. Then g and g, are convex lower semicontinuous functions on B, and
max(go(b),gn (b)) > 0 for all b € B. Using the case n = 2, which was first proved,
we can find Ay, A, > 0 such that for all b € B we have
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0 < Ago(b) + Angn(b)
= AoAig1(b) + 202282 (D) + -+ AoAn-18n-1(D) + Angn (D).
This establishes the case of n functions and concludes the proof of the induction and

hence of the proposition. 0
We now turn to the proof of the minimax lemma.

Proof. The fact that the left-hand side in the required conclusion of the minimax
lemma is at least as big as the right-hand side is obvious. We can therefore concen-
trate on the converse inequality. In doing this we may assume that the right-hand side
is finite. Without loss of generality we can subtract a finite constant from ®(a,b),
and so we can also assume that

in®(a,b) =0.
it

Then, by hypothesis (c¢) of the minimax lemma, the subsets
B,={be€B: ®(a,b) <0}, acA

of B are closed and nonempty, and we show that they satisfy the finite intersection
property. Indeed, suppose that

Bay N By N---NBy, =0

for some ay,az,...,a, € A. We write g;(b) = ®(a;,b), j=1,2,...,n, and we ob-
serve that the conditions of the previous proposition are satisfied. Therefore we can
find A41,A,,...,A, > 0 such that for all b € B we have

)q(P(al,b) —|—l2¢>(a2,b) +- -~—|—kn<1>(an,b) >0.

For simplicity we normalize the A;’s by setting A + 24>+ --- + 4, = 1. If we set
ap = May + Aay + - - - + Ayay, the concavity hypothesis (a) gives

(P(a(),b) >0

for all b € B, contradicting the fact that sup,, minpeg ®(a,b) = 0. Therefore, the
family of closed subsets {B, },ca of B satisfies the finite intersection property. The
compactness of B now implies (),c4 Ba # 0. Take by € (e Ba- Then @ (a,by) <0
for every a € A, and therefore

minsup @(a,b) < supP(a,by) <0
bEB 4cA acA

as required. O



Appendix I
The Schur Lemma

Schur’s lemma provides sufficient conditions for linear operators to be bounded
on L”. Moreover, for positive operators it provides necessary and sufficient such
conditions. We discuss these situations.

I.1 The Classical Schur Lemma

We begin with an easy situation. Suppose that K (x,y) is a locally integrable function
on a product of two o-finite measure spaces (X, 1) x (¥, V), and let T be a linear
operator given by

T = | Ky f0)dve)

when f is bounded and compactly supported. It is a simple consequence of Fubini’s
theorem that for almost all x € X the integral defining T converges absolutely. The
following lemma provides a sufficient criterion for the L” boundedness of 7.

Lemma. Suppose that a locally integrable function K (x,y) satisfies

sup | [K(x,y)|dVv(y) = A <o,
xex JY

sup [ [K(x,y)dp(x) = B < o,
yey JX
Then the operator T extends to a bounded operator from LP(Y') to LP (X) with norm
1 1
AVIBY for 1 < p< oo,
Proof. The second condition gives that 7 maps L' to L! with bound B, while the first
condition gives that 7 maps L™ to L™ with bound A. It follows by the Riesz—Thorin
1 1
interpolation theorem that 7 maps L? to L? with bound A"rBY. 0

This lemma can be improved significantly when the operators are assumed to be
positive.

1.2 Schur’s Lemma for Positive Operators

We have the following necessary and sufficient condition for the L” boundedness of
positive operators.
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Lemma. Let (X, 1) and (Y, V) be two G-finite measure spaces, where [L and v are
positive measures, and suppose that K(x,y) is a nonnegative measurable function
onX xY. Let1 < p<ooand <A <oo. Let T be the linear operator

0= [ K@) 0)ave)
0) = [ Klx)elx)du(x).

To avoid trivialities, we assume that there is a compactly supported, bounded, and
positive V-a.e. function hy on Y such that T (hy) > 0 p-a.e. Then the following are
equivalent:

(i) T maps LP(Y) to LP(X) with norm at most A.

(ii) For all B > A there is a measurable function h on Y that satisfies 0 < h < oo
v-a.e., 0 < T(h) < e U-a.e., and such that

and T' its transpose operator

=

T'(T(h)") < BhY |

(iii) For all B > A there are measurable functions u on X and v on Y such that
0<u<oop-ae,0<v<oov-ae., and such that

T(u”/) < BV,
T'(W’) < BuP.

Proof. First we assume (ii) and we prove (iii). Define u,v by the equations W=

T(h) and u?’ = Bh and observe that (iii) holds for this choice of u and v. Moreover,

observe that 0 < u,v < oo a.e. with respect to the measures i and v, respectively.
Next we assume (iii) and we prove (i). For g in LY (X) we have

[ rtnmetduco = [ [ k)00 2 4 avo) duc),

We now apply Holder’s inequality with exponents p and p’ to the functions

u(y)
v(x)

with respect to the measure K (x,y)dv(y)du(x) on X x Y. Since

([ fror s n ke autay <>>’1’SB%Hf||W

and g(x)

and
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(. st ™0 s yavivyanco)

~ |

1
<B" HgHLP'(X)’

we conclude that

1,1
< BPJFPI ”fHLI’(Y)HgHLp’(X)

| T )

Taking the supremum over all g with L7 (X) norm 1, we obtain

1T o) < Bl oy

Since B was any number greater than A, we conclude that

1]

(r)-rrx) S 4
which proves (i).

We finally assume (i) and we prove (ii). Without loss of generality, take here
A=1and B> 1.Defineamap S: LP(Y) — LP(Y) by setting

S(H) = (T(T()7))7 ()

We observe two things. First, f; < f» implies S(f1) < S(f2), which is an easy con-
sequence of the fact that the same monotonicity is valid for 7. Next, we observe that
|| f | 1p» < 1 implies that HS (f )| < 1 as a consequence of the boundedness of 7 on
LP (with norm at most 1).

Construct a sequence h,, n = 1,2,..., by induction as follows. Pick #; > 0 on
Y as in the hypothesis of the theorem such that 7T (k) > 0 p-a.e. and such that
||h1 || < B 7 (B” —1). (The last condition can be obtained by multiplying & by a
small constant.) Assuming that %, has been defined, we define

r
)’

|LP

1
/’ln+] - l’l] + ﬁS(hn)
We check easily by induction that we have the monotonicity property s, < h, 1 and
the fact that Hh"HLﬁ < 1. We now define

h(x) = SLrllph,,(x) = lim A, (x).

n—oo

Fatou’s lemma gives that ||hH 1r < 1, from which it follows that & < o v-a.e. Since
h > hy > 0 v-a.e., we also obtain that 2 > 0 v-a.e.

Next we use the Lebesgue dominated convergence theorem to obtain that s, — h
in LP(Y). Since T is bounded on L7, it follows that T'(h,) — T(h) in LP(X). It

L2 L / /
follows that T'(h,) 7" — T (h) Y in L (X). Our hypothesis gives that 7" maps L” (X)
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» »

to L (Y) with norm at most 1. It follows T (T (h,)?" ) — T*(T(h)?") in L' (Y).

Raising to the power %/, we obtain that S(h,) — S(h) in LP(Y).

It follows that for some subsequence 7 of the integers we have S(4,, ) — S(h) a.e.
in Y. Since the sequence S(%,) is increasing, we conclude that the entire sequence
S(hy) converges almost everywhere to S(h). We use this information in conjunction
with i1, = hy + = Bp S(hy). Indeed, letting n — oo in this identity, we obtain

1
h=hi+ 2 S(h).

Since hy > 0 v-a.e. it follows that S(h) < B h v-a.e., which proves the required
estimate in (ii).

It remains to prove that 0 < T(h) < e p-a.e. Since |||, <1 and T is LP
bounded, it follows that ||T(h)||,, < 1, which implies that T'(h) < e u-a.e. We

Ly =
also have T(h) > T (hy) > 0 u-a.e. O
1.3 An Example
Consider the Hilbert operator
=S
T(f)(x)= —dy,
(hew=[ 2

where x € (0,e0). The operator T takes measurable functions on (0,e0) to measurable
functions on (0, ). We claim that 7 maps L? (0, ) to itself for 1 < p < oo; precisely,
we have the estimate

/ T d HfHLP HgHLP/(O

sm(fc/p

To see this we use Schur’s lemma. We take

‘We have that

i L — B(L, L))

where B is the usual beta function and the last identity follows from the change of
variables s = (1+¢)~!. Now an easy calculation yields

T
B(ﬁ?%)ZW7
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so the lemma in Appendix 1.2 gives that HTH popr < m The sharpness of this

constant follows by considering the sequence of functions

x_l%% when x < 1,
he (x) = S
x P when x > 1,
which satisfies
T )| 0 ) 7
lim = — .
£—0 ||h£||Lp<07w) sin(m/p)

We make some comments related to the history of Schur’s lemma. Schur [237]
first proved a matrix version of the lemma in Appendix I.1 when p = 2. Precisely,
Schur’s original version was the following: If K(x,y) is a positive decreasing func-
tion in both variables and satisfies

sup Y K (m,n)+sup ) K(m,n) < oo,
m n

then
Y Y amnK (m,n)byn < Cllal| 2| 2 -
m n

Hardy-Littlewood and Pélya [121] extended this result to L” for 1 < p < e and
disposed of the condition that K be a decreasing function. Aronszajn, Mulla, and
Szeptycki [9] proved that (iii) implies (i) in the lemma of Appendix 1.2. Gagliardo
in [97] proved the converse direction that (i) implies (iii) in the same lemma. The
case p = 2 was previously obtained by Karlin [151]. Condition (ii) was introduced
by Howard and Schep [131], who showed that it is equivalent to (i) and (iii). A multi-
linear analogue of the lemma in Appendix 1.2 was obtained by Grafakos and Torres
[113]; the easy direction (iii) implies (i) was independently observed by Bekollé,
Bonami, Peloso, and Ricci [17]. See also Cwikel and Kerman [65] for an alternative
multilinear formulation of the Schur lemma.

The case p = p’ =2 of the application in Appendix 1.3 is a continuous version of
Hilbert’s double series theorem. The discrete version was first proved by Hilbert in
his lectures on integral equations (published by Weyl [290]) without a determination
of the exact constant. This exact constant turns out to be 7, as discovered by Schur
[237]. The extension to other p’s (with sharp constants) is due to Hardy and M.
Riesz and published by Hardy [120].



Appendix J
The Whitney Decomposition of Open Sets in R”

An arbitrary open set in R” can be decomposed as a union of disjoint cubes whose
lengths are proportional to their distance from the boundary of the open set. See, for
instance, Figure J.1 when the open set is the unit disk in R?. For a given cube Q in
R”, we denote by ¢(Q) its length.

Proposition. Let Q be an open nonempty proper subset of R". Then there exists a
family of closed cubes {Q;} ; such that

(a) U; Qj = Q and the Q;’s have disjoint interiors.

(b) /nl(Q)) < dist(Q;,2°) < 4y/nl(Q)).
(c) If the boundaries of two cubes Q; and Qy touch, then

1 (0))
=0y

(d) For a given Q; there exist at most 12" Qy’s that touch it.

<4.

B~

T
TTTITIT

Fig. J.1 The Whitney decomposition of the unit disk.
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464 J The Whitney Decomposition of Open Sets in R”
Proof. Let % be the collection of all dyadic cubes of the form
—k —k
{(xr,.c %) €R":m27" <xj < (mj+1)27"},

where m; € Z. Observe that each cube in & gives rise to 2" cubes in Z4; by
bisecting each side.
Write the set €2 as the union of the sets

Q= {xe Q: 2y/n27* < dist(x, Q) <4v/n27*}

over all k € Z. Let .%’ be the set of all cubes Q in Z for some k € Z such that
QN # 0. We show that the collection .%’ satisfies property (b). Let Q € .%’ and
pick x € ;N Q for some k € Z. Observe that

Vn27k < dist(x, Q°) — /nl(Q) < dist(Q, 2°) < dist(x, Q) < 4y/n27%,

which proves (b).
Next we observe that

U o=a.

Qe 7!

Indeed, every Q in .#’ is contained in  (since it has positive distance from its
complement) and every x € £ lies in some € and in some dyadic cube in Z.

The problem is that the cubes in the collection .’ may not be disjoint. We have
to refine the collection .%’ by eliminating those cubes that are contained in some
other cubes in the collection. Recall that two dyadic cubes have disjoint interiors
or else one contains the other. For every cube Q in .%#’ we can therefore consider
the unique maximal cube Q™ in .#' that contains it. Two different such maximal
cubes must have disjoint interiors by maximality. Now set % = {Q™*: Q € F'}.

The collection of cubes {Q;} ; = .Z clearly satisfies (a) and (b), and we now turn
our attention to the proof of (c). Observe that if Q; and Qy in .# touch then

Vnl(Q;) < dist(Q;, Q) < dist(Q;, Q) +dist(Qx, Q) < 0+4vnl(Qy),

which proves (c). To prove (d), observe that any cube Q in % is touched by exactly
3" — 1 other cubes in Z. But each cube Q in & can contain at most 4" cubes of .7
of length at least one-quarter of the length of Q. This fact combined with (c) yields
(d). O

The following observation is a consequence of the result just proved: Let .% =
{Q,}; be the Whitney decomposition of a proper open subset £ of R". Fix 0 <
€ < 1/4 and denote by Q; the cube with the same center as Oy but with side length
(1+€) times that of Qy. Then Oy and Q; touch if and only if O} and Q; intersect.
Consequently, every point in £2 is contained in at most 12" cubes Q;.



Appendix K
Smoothness and Vanishing Moments

K.1 The Case of No Cancellation

Leta,b € R", u,v € R,and M,N > n. Set

oun ovn
I(a, 1, M:b,v,N) =
(@ )= oo T2 a7 7250

Ndx.

Then we have

2min(/4,v)n
I(a,u,M;b,v,N) < Co

(1 +2miﬂ(l1-,v)|a7b|)min(M’N) )

M4y NaM
Co=v, +

where

M—n N-—n

and v,, is the volume of the unit ball in R".
To prove this estimate, first observe that

/‘ dx - VM
Jre (T4 x| = M—n"

Without loss of generality, assume that v < u. Consider the cases 2"|a — b| < 1 and
2V]a—b| > 1. In the case 2" |a — b| < 1 we use the estimate

ovn 2v;12min(M ,N)
vn

— 2" L -
(14+2V|x—a))N — = (142" |a— b[)min(MN)

and the result is a consequence of the estimate

I(a,pt,M;b,v,N) <

2vn2min(M,N) oun
/n ( 7 dx.

(142" ]a—b)™ 07N Juo (14 24x—a])

In the case 2¥|a — b| > 1 let H, and H, be the two half-spaces, containing the points
a and b, respectively, formed by the hyperplane perpendicular to the line segment
[a,b] at its midpoint. Split the integral over R" as the integral over H, and the integral
over H,,. For x € H, use that [x — b| > J|a — b|. For x € H}, use a similar inequality
and the fact that 2¥|a — b| > 1 to obtain
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466 K Smoothness and Vanishing Moments

oun oun 4M2(v7u)(M7n)2vn
< < .
(I+20x—a)™ = (2t dja—b)M = (1+2Y]a—b|)M

The required estimate follows.

K.2 The Case of Cancellation

Let a,b € R", M,N > 0, and L a nonnegative integer. Suppose that ¢, and ¢, are
two functions on R” that satisfy

Ag 2Hn oHL
o e e for all =L,
Q900 < g Torallal
BZV"
D —
|¢V(x)| = (1+2V‘X—XVDN7
for some A, and B positive, and

oy (x)xP dx =0 forall |B| <L—1,

R”

where the last condition is supposed to be vacuous when L = 0. Suppose that N >
M + L+ n and that v > . Then we have

J c ouny—(v—p)L
X x)dx| < )
e I R) | < Co
where

oo, N-L-M Ag

0= N LM —n al

lot|=L

To prove this statement, we subtract the Taylor polynomial of order L — 1 of ¢y
at the point x, from the function ¢, (x) and use the remainder theorem to control the
required integral by

Ag ‘x—xv|L2N"2ML ovn
oy ol R (142818, —xu [P (1+2Y|x —xy )

v dx,

for some &, on the segment joining x, to x. Using v > 1 and the triangle inequality,
we obtain
1 142Y]x —xy]
T4+2H1E —xp| = 14 2H |y —xy|
We insert this estimate in the last integral and we use that N > L+ M + n to deduce
the required conclusion.
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K.3 The Case of Three Factors

Given three numbers a, b, ¢ we denote by med (a, b, ¢) the number with the property
min(a,b,c) < med(a,b,c) < max(a,b,c).

Let xy,xyu,x3 € R". Suppose that vy, yy, ¥, are functions defined on R" such
that for all N > n sufficiently large there exist constants Ay, Ay, A, < oo such that

ovn/2
(142 |x —xy| )N’

s zun/Z

< -

‘WH(XH — ﬂ(]+2“|x_xu|)N7
2An/2

(1424 x—x;, )V’

lyy (x)| <Ay

(W (x)] <Ay

for all x € R". Then the following estimate is valid:

[ vl vl [y (9]
CNnAvA;LAl 2—max(u,v,l)n/2 Zmed(u,v,l)n/Z 2min(u,v,7t)n/2
< —— - -
= [+ 20y~ {1+ 27008 g, =3 1+ 2700, — 5, )Y

for some constant Cy ,, > 0 independent of the remaining parameters.

Analogous estimates hold if some of these factors are assumed to have cancella-
tion and the others vanishing moments. See the article of Grafakos and Torres [114]
for precise statements of these results and applications. Similar estimates with m
factors, m € Z, are studied in Bényi and Tzirakis [21].



Glossary

n 1 f

A is a subset of B (not necessarily a proper subset)
A is a proper subset of B

the complement of a set A

the characteristic function of the set £

the distribution function of a function f

the decreasing rearrangement of a function f
fn increases monotonically to a function f
the set of all integers

the set of all positive integers {1,2,3,...}

the n-fold product of the integers

the set of real numbers

the set of positive real numbers

the Euclidean n-space

the set of rationals

the set of n-tuples with rational coordinates
the set of complex numbers

the n-fold product of complex numbers

the unit circle identified with the interval [0, 1]
the n-dimensional torus [0, 1]"

‘xl|2+...+|xn|2 WhGIl)C:(xla-“axn) €R”

the unit sphere {x e R": |x| =1}
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ej the vector (0,...,0,1,0,...,0) with 1 in the jth entry and O elsewhere
logt? the logarithm with base e of # > 0
log,t the logarithm with base a of t > 0 (1 #a > 0)
log™ ¢ max(0,log?) fort >0
7] the integer part of the real number ¢
x-y the quantity 37, x;y; when x = (x1,---,x0) and y = (y1,...,¥n)
B(x,R) the ball of radius R centered at x in R”
W,—1 the surface area of the unit sphere Sr-l
Vn the volume of the unit ball {x e R": |x| < 1}
|A| the Lebesgue measure of the set A C R"
dx Lebesgue measure

Avgpf the average \]7\ Jp f(x)dx of f over the set B

(f.8) the real inner product [g. f(x)g(x)dx

(flg) the complex inner product [g. f(x)g(x) dx

(u, f) the action of a distribution « on a function f

P the number p/(p — 1), whenever 0 < p # 1 < o0
1 the number oo

oo the number 1

f=0(g) means|f(x)| <M|g(x)| for some M for x near xo

f=olg) means [f(x)[[g(x)| "' — 0 asx—xy

Al the transpose of the matrix A

A* the conjugate transpose of a complex matrix A
A7l the inverse of the matrix A

O(n) the space of real matrices satisfying A~ = A’

|IT||lx—y  the norm of the (bounded) operator T : X — Y

A~B means that there exists a ¢ > 0 such that ¢~ < % <c

|ex| indicates the size |ot| + - - - + | o, | of a multi-index o = (@, ..., 0)
aIf the mth partial derivative of f(xi,...,x,) with respect to x;

2%f oo f

¢* the space of functions f with % f continuous for all |a| < k
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6o the space of continuous functions with compact support
%00 the space of continuous functions that vanish at infinity
ty the space of smooth functions with compact support

9 the space of smooth functions with compact support

5 the space of Schwartz functions

¢ the space of smooth functions | Ji_; €*

7'(R") the space of distributions on R"

' (R")  the space of tempered distributions on R”

&'(R") the space of distributions with compact support on R”

& the set of all complex-valued polynomials of # real variables
' (R")/ P the space of tempered distributions on R” modulo polynomials
Q) the side length of a cube Q in R”

a0 the boundary of a cube Q in R”

LP(X,u) the Lebesgue space over the measure space (X, 1)

LP(R") the space LP(R",|-])

LP9(X,u) the Lorentz space over the measure space (X, (L)

LP (R")  the space of functions that lie in L”(K) for any compact set K in R”
|du| the total variation of a finite Borel measure pt on R”

A (R") the space of all finite Borel measures on R”

A(R")  the space of L” Fourier multipliers, 1 < p < oo

AP4(R") the space of translation-invariant operators that map L”(R") to L4(R")

| H/// Jre |d | the norm of a finite Borel measure pt on R”

M the centered Hardy—Littlewood maximal operator with respect to balls
M the uncentered Hardy—Littlewood maximal operator with respect to balls
M. the centered Hardy—Littlewood maximal operator with respect to cubes
M, the uncentered Hardy—Littlewood maximal operator with respect to cubes
My the centered maximal operator with respect to a measure [

My the uncentered maximal operator with respect to a measure [

M the strong maximal operator

My the dyadic maximal operator
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