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Preface

The great response to the publication of the book Classical and Modern Fourier
Analysis has been very gratifying. I am delighted that Springer has offered to publish
the second edition of this book in two volumes: Classical Fourier Analysis, 2nd
Edition, and Modern Fourier Analysis, 2nd Edition.

These volumes are mainly addressed to graduate students who wish to study
Fourier analysis. This first volume is intended to serve as a text for a one-semester
course in the subject. The prerequisite for understanding the material herein is satis-
factory completion of courses in measure theory, Lebesgue integration, and complex
variables.

The details included in the proofs make the exposition longer. Although it will
behoove many readers to skim through the more technical aspects of the presenta-
tion and concentrate on the flow of ideas, the fact that details are present will be
comforting to some. The exercises at the end of each section enrich the material
of the corresponding section and provide an opportunity to develop additional intu-
ition and deeper comprehension. The historical notes of each chapter are intended to
provide an account of past research but also to suggest directions for further investi-
gation. The appendix includes miscellaneous auxiliary material needed throughout
the text.

A web site for the book is maintained at

http://math.missouri.edu/∼loukas/FourierAnalysis.html

I am solely responsible for any misprints, mistakes, and historical omissions in
this book. Please contact me directly (loukas@math.missouri.edu) if you have cor-
rections, comments, suggestions for improvements, or questions.

Columbia, Missouri, Loukas Grafakos
April 2008
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George Lobell, Xiaochun Li, José Marı́a Martell, Antonios Melas, Keith Mers-
man, Stephen Montgomety-Smith, Andrea Nahmod, Nguyen Cong Phuc, Krzysztof
Oleszkiewicz, Cristina Pereyra, Carlos Pérez, Daniel Redmond, Jorge Rivera-Nori-
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Chapter 1
Lp Spaces and Interpolation

Many quantitative properties of functions are expressed in terms of their integra-
bility to a power. For this reason it is desirable to acquire a good understanding
of spaces of functions whose modulus to a power p is integrable. These are called
Lebesgue spaces and are denoted by Lp. Although an in-depth study of Lebesgue
spaces falls outside the scope of this book, it seems appropriate to devote a chapter
to reviewing some of their fundamental properties.

The emphasis of this review is basic interpolation between Lebesgue spaces.
Many problems in Fourier analysis concern boundedness of operators on Lebesgue
spaces, and interpolation provides a framework that often simplifies this study. For
instance, in order to show that a linear operator maps Lp to itself for all 1 < p < ∞,
it is sufficient to show that it maps the (smaller) Lorentz space Lp,1 into the (larger)
Lorentz space Lp,∞ for the same range of p’s. Moreover, some further reductions can
be made in terms of the Lorentz space Lp,1. This and other considerations indicate
that interpolation is a powerful tool in the study of boundedness of operators.

Although we are mainly concerned with Lp subspaces of Euclidean spaces, we
discuss in this chapter Lp spaces of arbitrary measure spaces, since they represent a
useful general setting. Many results in the text require working with general mea-
sures instead of Lebesgue measure.

1.1 Lp and Weak Lp

Let X be a measure space and let µ be a positive, not necessarily finite, measure
on X . For 0 < p < ∞, Lp(X ,µ) denotes the set of all complex-valued µ-measurable
functions on X whose modulus to the pth power is integrable. L∞(X ,µ) is the set
of all complex-valued µ-measurable functions f on X such that for some B > 0, the
set {x : | f (x)|> B} has µ-measure zero. Two functions in Lp(X ,µ) are considered
equal if they are equal µ-almost everywhere. The notation Lp(Rn) is reserved for
the space Lp(Rn, | · |), where | · | denotes n-dimensional Lebesgue measure. Lebesgue
measure on Rn is also denoted by dx. Within context and in the absence of ambi-

1L. Grafakos, Classical Fourier Analysis, Second Edition, 
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2 1 Lp Spaces and Interpolation

guity, Lp(X ,µ) is simply written as Lp. The space Lp(Z) equipped with counting
measure is denoted by `p(Z) or simply `p.

For 0 < p < ∞, we define the Lp quasinorm of a function f by

∥∥ f
∥∥

Lp(X ,µ) =
(∫

X
| f (x)|p dµ(x)

) 1
p

(1.1.1)

and for p = ∞ by∥∥ f
∥∥

L∞(X ,µ) = ess.sup | f |= inf
{

B > 0 : µ({x : | f (x)|> B}) = 0
}

. (1.1.2)

It is well known that Minkowski’s (or the triangle) inequality∥∥ f +g
∥∥

Lp(X ,µ) ≤
∥∥ f
∥∥

Lp(X ,µ) +
∥∥g
∥∥

Lp(X ,µ) (1.1.3)

holds for all f , g in Lp = Lp(X ,µ), whenever 1 ≤ p ≤ ∞. Since in addition∥∥ f
∥∥

Lp(X ,µ) = 0 implies that f = 0 (µ-a.e.), the Lp spaces are normed linear spaces
for 1≤ p≤∞. For 0 < p < 1, inequality (1.1.3) is reversed when f ,g≥ 0. However,
the following substitute of (1.1.3) holds:∥∥ f +g

∥∥
Lp(X ,µ) ≤ 2(1−p)/p(∥∥ f

∥∥
Lp(X ,µ) +

∥∥g
∥∥

Lp(X ,µ)

)
, (1.1.4)

and thus Lp(X ,µ) is a quasinormed linear space. See also Exercise 1.1.5. For all
0 < p ≤ ∞, it can be shown that every Cauchy sequence in Lp(X ,µ) is convergent,
and hence the spaces Lp(X ,µ) are complete. For the case 0 < p < 1 we refer to
Exercise 1.1.8. Therefore, the Lp spaces are Banach spaces for 1≤ p≤∞ and quasi-
Banach spaces for 0 < p < 1. For any p∈ (0,∞)\{1} we use the notation p′ = p

p−1 .
Moreover, we set 1′ = ∞ and ∞′ = 1, so that p′′ = p for all p ∈ (0,∞]. Hölder’s
inequality says that for all p ∈ [1,∞] and all measurable functions f ,g on (X ,µ) we
have ∥∥ f g

∥∥
L1 ≤

∥∥ f
∥∥

Lp

∥∥g
∥∥

Lp′ .

It is a well-known fact that the dual (Lp)∗ of Lp is isometric to Lp′ for all 1≤ p < ∞.
Furthermore, the Lp norm of a function can be obtained via duality when 1≤ p≤∞

as follows: ∥∥ f
∥∥

Lp = sup
‖g‖

Lp′=1

∣∣∣∣∫X
f gdµ

∣∣∣∣ .
For the endpoint cases p = 1, p = ∞, see Exercise 1.4.12(a), (b).

1.1.1 The Distribution Function

Definition 1.1.1. For f a measurable function on X , the distribution function of f is
the function d f defined on [0,∞) as follows:
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d f (α) = µ({x ∈ X : | f (x)|> α}) . (1.1.5)

The distribution function d f provides information about the size of f but not
about the behavior of f itself near any given point. For instance, a function on Rn and
each of its translates have the same distribution function. It follows from Definition
1.1.1 that d f is a decreasing function of α (not necessarily strictly).

f(x)

a3

a2

a1

E3 E1

B1

B2

B3

E2 x a1a2a30 0

αf (  )

α

d

.

.

.

.

Fig. 1.1 The graph of a simple function f =∑
3
k=1 akχEk and its distribution function d f (α). Here

B j =∑
j
k=1 µ(Ek).

Example 1.1.2. Recall that simple functions are finite linear combinations of char-
acteristic functions of sets of finite measure. For pedagogical reasons we compute
the distribution function d f of a nonnegative simple function

f (x) =
N

∑
j=1

a jχE j(x) ,

where the sets E j are pairwise disjoint and a1 > · · ·> aN > 0. If α ≥ a1, then clearly
d f (α) = 0. However, if a2 ≤ α < a1 then | f (x)|> α precisely when x ∈ E1, and in
general, if a j+1 ≤ α < a j, then | f (x)|> α precisely when x ∈ E1∪·· ·∪E j. Setting

B j =
j

∑
k=1

µ(Ek) ,

we have

d f (α) =
N

∑
j=0

B jχ[a j+1,a j)(α) ,

where a0 = ∞ and B0 = aN+1 = 0. Figure 1.1 illustrates this example when N = 3.

We now state a few simple facts about the distribution function d f .
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Proposition 1.1.3. Let f and g be measurable functions on (X ,µ). Then for all
α,β > 0 we have

(1) |g| ≤ | f | µ-a.e. implies that dg ≤ d f ;

(2) dc f (α) = d f (α/|c|), for all c ∈ C\{0};

(3) d f +g(α +β )≤ d f (α)+dg(β );

(4) d f g(αβ )≤ d f (α)+dg(β ).

Proof. The simple proofs are left to the reader. �

Knowledge of the distribution function d f provides sufficient information to eval-
uate the Lp norm of a function f precisely. We state and prove the following impor-
tant description of the Lp norm in terms of the distribution function.

Proposition 1.1.4. For f in Lp(X ,µ), 0 < p < ∞, we have∥∥ f
∥∥p

Lp = p
∫

∞

0
α

p−1d f (α)dα . (1.1.6)

Proof. Indeed, we have

p
∫

∞

0
α

p−1d f (α)dα = p
∫

∞

0
α

p−1
∫

X
χ{x: | f (x)|>α} dµ(x)dα

=
∫

X

∫ | f (x)|

0
pα

p−1 dα dµ(x)

=
∫

X
| f (x)|p dµ(x)

=
∥∥ f
∥∥p

Lp ,

where we used Fubini’s theorem in the second equality. This proves (1.1.6). �

Notice that the same argument yields the more general fact that for any increasing
continuously differentiable function ϕ on [0,∞) with ϕ(0) = 0 we have∫

X
ϕ(| f |)dµ =

∫
∞

0
ϕ
′(α)d f (α)dα . (1.1.7)

Definition 1.1.5. For 0 < p < ∞, the space weak Lp(X ,µ) is defined as the set of
all µ-measurable functions f such that∥∥ f

∥∥
Lp,∞ = inf

{
C > 0 : d f (α)≤ Cp

α p for all α > 0
}

(1.1.8)

= sup
{

γ d f (γ)1/p : γ > 0
}

(1.1.9)

is finite. The space weak-L∞(X ,µ) is by definition L∞(X ,µ).

The reader should check that (1.1.9) and (1.1.8) are in fact equal. The weak Lp

spaces are denoted by Lp,∞(X ,µ). Two functions in Lp,∞(X ,µ) are considered equal



1.1 Lp and Weak Lp 5

if they are equal µ-a.e. The notation Lp,∞(Rn) is reserved for Lp,∞(Rn, | · |). Using
Proposition 1.1.3 (2), we can easily show that∥∥k f

∥∥
Lp,∞ = |k|

∥∥ f
∥∥

Lp,∞ , (1.1.10)

for any complex nonzero constant k. The analogue of (1.1.3) is∥∥ f +g
∥∥

Lp,∞ ≤ cp
(∥∥ f

∥∥
Lp,∞ +

∥∥g
∥∥

Lp,∞

)
, (1.1.11)

where cp = max(2,21/p), a fact that follows from Proposition 1.1.3 (3), taking both
α and β equal to α/2. We also have that∥∥ f

∥∥
Lp,∞(X ,µ) = 0⇒ f = 0 µ-a.e. (1.1.12)

In view of (1.1.10), (1.1.11), and (1.1.12), Lp,∞ is a quasinormed linear space for
0 < p < ∞.

The weak Lp spaces are larger than the usual Lp spaces. We have the following:

Proposition 1.1.6. For any 0 < p < ∞ and any f in Lp(X ,µ) we have
∥∥ f
∥∥

Lp,∞ ≤∥∥ f
∥∥

Lp ; hence Lp(X ,µ)⊆ Lp,∞(X ,µ).

Proof. This is just a trivial consequence of Chebyshev’s inequality:

α
pd f (α)≤

∫
{x: | f (x)|>α}

| f (x)|p dµ(x) . (1.1.13)

The integral in (1.1.13) is at most
∥∥ f
∥∥p

Lp and using (1.1.9) we obtain that
∥∥ f
∥∥

Lp,∞ ≤∥∥ f
∥∥

Lp . �

The inclusion Lp ⊆ Lp,∞ is strict. For example, on Rn with the usual Lebesgue
measure, let h(x) = |x|−

n
p . Obviously, h is not in Lp(Rn) but h is in Lp,∞(Rn) with∥∥h

∥∥
Lp,∞(Rn) = vn, where vn is the measure of the unit ball of Rn.

It is not immediate from their definition that the weak Lp spaces are complete
with respect to the quasinorm

∥∥ ·∥∥Lp,∞ . The completeness of these spaces is proved
in Theorem 1.4.11, but it is also a consequence of Theorem 1.1.13, proved in this
section.

1.1.2 Convergence in Measure

Next we discuss some convergence notions. The following notion is important in
probability theory.

Definition 1.1.7. Let f , fn, n = 1,2, . . . , be measurable functions on the measure
space (X ,µ). The sequence fn is said to converge in measure to f if for all ε > 0
there exists an n0 ∈ Z+ such that
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n > n0 =⇒ µ({x ∈ X : | fn(x)− f (x)|> ε}) < ε . (1.1.14)

Remark 1.1.8. The preceding definition is equivalent to the following statement:

For all ε > 0 lim
n→∞

µ({x ∈ X : | fn(x)− f (x)|> ε}) = 0 . (1.1.15)

Clearly (1.1.15) implies (1.1.14). To see the converse given ε > 0, pick 0 < δ < ε

and apply (1.1.14) for this δ . There exists an n0 ∈ Z+ such that

µ({x ∈ X : | fn(x)− f (x)|> δ}) < δ

holds for n > n0. Since

µ({x ∈ X : | fn(x)− f (x)|> ε})≤ µ({x ∈ X : | fn(x)− f (x)|> δ}) ,

we conclude that
µ({x ∈ X : | fn(x)− f (x)|> ε}) < δ

for all n > n0. Let n→ ∞ to deduce that

limsup
n→∞

µ({x ∈ X : | fn(x)− f (x)|> ε})≤ δ . (1.1.16)

Since (1.1.16) holds for all 0 < δ < ε , (1.1.15) follows by letting δ → 0.
Convergence in measure is a weaker notion than convergence in either Lp or Lp,∞,

0 < p≤ ∞, as the following proposition indicates:

Proposition 1.1.9. Let 0 < p≤ ∞ and fn, f be in Lp,∞(X ,µ).

(1) If fn, f are in Lp and fn → f in Lp, then fn → f in Lp,∞.
(2) If fn → f in Lp,∞, then fn converges to f in measure.

Proof. Fix 0 < p < ∞. Proposition 1.1.6 gives that for all ε > 0 we have

µ({x ∈ X : | fn(x)− f (x)|> ε})≤ 1
ε p

∫
X
| fn− f |p dµ .

This shows that convergence in Lp implies convergence in weak Lp. The case p = ∞

is tautological.
Given ε > 0 find an n0 such that for n > n0, we have∥∥ fn− f

∥∥
Lp,∞ = sup

α>0
αµ({x ∈ X : | fn(x)− f (x)|> α})

1
p < ε

1
p +1 .

Taking α = ε , we conclude that convergence in Lp,∞ implies convergence in mea-
sure. �

Example 1.1.10. Fix 0 < p < ∞. On [0,1] define the functions

fk, j = k1/p
χ( j−1

k , j
k ), k ≥ 1, 1≤ j ≤ k.
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Consider the sequence { f1,1, f2,1, f2,2, f3,1, f3,2, f3,3, . . .}. Observe that

|{x : fk, j(x) > 0}|= 1/k .

Therefore, fk, j converges to 0 in measure. Likewise, observe that

∥∥ fk, j
∥∥

Lp,∞ = sup
α>0

α|{x : fk, j(x) > α}|1/p ≥ sup
k≥1

(k−1/k)1/p

k1/p = 1 ,

which implies that fk, j does not converge to 0 in Lp,∞.

It turns out that every sequence convergent in Lp(X ,µ) or in Lp,∞(X ,µ) has a
subsequence that converges a.e. to the same limit.

Theorem 1.1.11. Let fn and f be complex-valued measurable functions on a mea-
sure space (X ,µ) and suppose that fn converges to f in measure. Then some subse-
quence of fn converges to f µ-a.e.

Proof. For all k = 1,2, . . . choose inductively nk such that

µ({x ∈ X : | fnk(x)− f (x)|> 2−k}) < 2−k (1.1.17)

and such that n1 < n2 < · · ·< nk < · · · . Define the sets

Ak = {x ∈ X : | fnk(x)− f (x)|> 2−k} .

Equation (1.1.17) implies that

µ

( ∞⋃
k=m

Ak

)
≤

∞

∑
k=m

µ(Ak)≤
∞

∑
k=m

2−k = 21−m (1.1.18)

for all m = 1,2,3, . . . . It follows from (1.1.18) that

µ

( ∞⋃
k=1

Ak

)
≤ 1 < ∞ . (1.1.19)

Using (1.1.18) and (1.1.19), we conclude that the sequence of the measures of the
sets {

⋃
∞
k=m Ak}∞

m=1 converges as m→ ∞ to

µ

( ∞⋂
m=1

∞⋃
k=m

Ak

)
= 0 . (1.1.20)

To finish the proof, observe that the null set in (1.1.20) contains the set of all x ∈ X
for which fnk(x) does not converge to f (x). �

In many situations we are given a sequence of functions and we would like to
extract a convergent subsequence. One way to achieve this is via the next theorem,
which is a useful variant of Theorem 1.1.11. We first give a relevant definition.
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Definition 1.1.12. We say that a sequence of measurable functions { fn} on the mea-
sure space (X ,µ) is Cauchy in measure if for every ε > 0, there exists an n0 ∈ Z+

such that for n,m > n0 we have

µ({x ∈ X : | fm(x)− fn(x)|> ε}) < ε.

Theorem 1.1.13. Let (X ,µ) be a measure space and let { fn} be a complex-valued
sequence on X that is Cauchy in measure. Then some subsequence of fn converges
µ-a.e.

Proof. The proof is very similar to that of Theorem 1.1.11. For all k = 1,2, . . .
choose nk inductively such that

µ({x ∈ X : | fnk(x)− fnk+1(x)|> 2−k}) < 2−k (1.1.21)

and such that n1 < n2 < · · ·< nk < nk+1 < · · · . Define

Ak = {x ∈ X : | fnk(x)− fnk+1(x)|> 2−k} .

As shown in the proof of Theorem 1.1.11, (1.1.21) implies that

µ

( ∞⋂
m=1

∞⋃
k=m

Ak

)
= 0 . (1.1.22)

For x /∈
⋃

∞
k=m Ak and i≥ j ≥ j0 ≥ m (and j0 large enough) we have

| fni(x)− fn j(x)| ≤
i−1

∑
l= j
| fnl (x)− fnl+1(x)| ≤

i−1

∑
l= j

2−l ≤ 21− j ≤ 21− j0 .

This implies that the sequence { fni(x)}i is Cauchy for every x in the set (
⋃

∞
k=m Ak)c

and therefore converges for all such x. We define a function

f (x) =

 lim
j→∞

fn j(x) when x /∈
⋂

∞
m=1

⋃
∞
k=m Ak ,

0 when x ∈
⋂

∞
m=1

⋃
∞
k=m Ak .

Then fn j → f almost everywhere. �

1.1.3 A First Glimpse at Interpolation

It is a useful fact that if a function f is in Lp(X ,µ) and in Lq(X ,µ), then it also lies
in Lr(X ,µ) for all p < r < q. The usefulness of the spaces Lp,∞ can be seen from
the following sharpening of this statement:

Proposition 1.1.14. Let 0 < p < q ≤ ∞ and let f in Lp,∞(X ,µ)∩Lq,∞(X ,µ). Then
f is in Lr(X ,µ) for all p < r < q and
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∥∥ f
∥∥

Lr ≤
(

r
r− p

+
r

q− r

)1
r ∥∥ f
∥∥ 1

r −
1
q

1
p−

1
q

Lp,∞

∥∥ f
∥∥ 1

p−
1
r

1
p−

1
q

Lq,∞ , (1.1.23)

with the suitable interpretation when q = ∞.

Proof. Let us take first q < ∞. We know that

d f (α)≤min
(∥∥ f

∥∥p
Lp,∞

α p ,

∥∥ f
∥∥q

Lq,∞

αq

)
. (1.1.24)

Set

B =
(∥∥ f

∥∥q
Lq,∞∥∥ f
∥∥p

Lp,∞

) 1
q−p

. (1.1.25)

We now estimate the Lr norm of f . By (1.1.24), (1.1.25), and Proposition 1.1.4 we
have ∥∥ f

∥∥r
Lr(X ,µ) = r

∫
∞

0
α

r−1d f (α)dα

≤ r
∫

∞

0
α

r−1 min
(∥∥ f

∥∥p
Lp,∞

α p ,

∥∥ f
∥∥q

Lq,∞

αq

)
dα

= r
∫ B

0
α

r−1−p∥∥ f
∥∥p

Lp,∞ dα + r
∫

∞

B
α

r−1−q∥∥ f
∥∥q

Lq,∞ dα

=
r

r− p

∥∥ f
∥∥p

Lp,∞Br−p +
r

q− r

∥∥ f
∥∥q

Lq,∞Br−q

=
(

r
r− p

+
r

q− r

)(∥∥ f
∥∥p

Lp,∞

) q−r
q−p
(∥∥ f

∥∥q
Lq,∞

) r−p
q−p .

(1.1.26)

Observe that the integrals converge, since r− p > 0 and r−q < 0.
The case q = ∞ is easier. Since d f (α) = 0 for α >

∥∥ f
∥∥

L∞ we need to use only
the inequality d f (α)≤ α−p

∥∥ f
∥∥p

Lp,∞ for α ≤
∥∥ f
∥∥

L∞ in estimating the first integral in
(1.1.26). We obtain ∥∥ f

∥∥r
Lr ≤

r
r− p

∥∥ f
∥∥p

Lp,∞

∥∥ f
∥∥r−p

L∞ ,

which is nothing other than (1.1.23) when q = ∞. This completes the proof. �

Note that (1.1.23) holds with constant 1 if Lp,∞ and Lq,∞ are replaced by Lp and
Lq, respectively. It is often convenient to work with functions that are only locally
in some Lp space. This leads to the following definition.

Definition 1.1.15. For 0 < p < ∞, the space Lp
loc(R

n, | · |) or simply Lp
loc(R

n) is the
set of all Lebesgue-measurable functions f on Rn that satisfy∫

K
| f (x)|p dx < ∞ (1.1.27)



10 1 Lp Spaces and Interpolation

for any compact subset K of Rn. Functions that satisfy (1.1.27) with p = 1 are called
locally integrable functions on Rn.

The union of all Lp(Rn) spaces for 1 ≤ p ≤ ∞ is contained in L1
loc(R

n). More
generally, for 0 < p < q < ∞ we have the following:

Lq(Rn)⊆ Lq
loc(R

n)⊆ Lp
loc(R

n) .

Functions in Lp(Rn) for 0 < p < 1 may not be locally integrable. For example, take
f (x) = |x|−n−α χ|x|≤1, which is in Lp(Rn) when p < n/(n + α), and observe that f
is not integrable over any open set in Rn containing the origin.

Exercises

1.1.1. Suppose f and fn are measurable functions on (X ,µ). Prove that
(a) d f is right continuous on [0,∞).
(b) If | f | ≤ liminfn→∞ | fn| µ-a.e., then d f ≤ liminfn→∞ d fn .
(c) If | fn| ↑ | f |, then d fn ↑ d f .[
Hint: Part (a): Let tn be a decreasing sequence of positive numbers that tends to

zero. Show that d f (α0 + tn) ↑ d f (α0) using a convergence theorem. Part (b): Let
E = {x ∈ X : | f (x)|> α} and En = {x ∈ X : | fn(x)|> α}. Use that µ

(⋂
∞
n=m En

)
≤

liminf
n→∞

µ(En) and E ⊆
⋃

∞
m=1

⋂
∞
n=m En µ-a.e.

]
1.1.2. (Hölder’s inequality ) Let 0 < p, p1, . . . , pk ≤∞, where k≥ 2, and let f j be in
Lp j = Lp j(X ,µ). Assume that

1
p

=
1
p1

+ · · ·+ 1
pk

.

(a) Show that the product f1 · · · fk is in Lp and that∥∥ f1 · · · fk
∥∥

Lp ≤
∥∥ f1
∥∥

Lp1 · · ·
∥∥ fk
∥∥

Lpk .

(b) When no p j is infinite, show that if equality holds in part (a), then it must be the
case that c1| f1|p1 = · · ·= ck| fk|pk a.e. for some c j ≥ 0.
(c) Let 0 < q < 1. For r < 0 and g > 0 almost everywhere, let

∥∥g
∥∥

Lr =
∥∥g−1

∥∥−1
L|r| .

Show that for f ≥ 0, g > 0 a.e. we have∥∥ f g
∥∥

L1 ≥
∥∥ f
∥∥

Lq

∥∥g
∥∥

Lq′ .

1.1.3. Let (X ,µ) be a measure space.
(a) If f is in Lp0(X ,µ) for some p0 < ∞, prove that

lim
p→∞

∥∥ f
∥∥

Lp =
∥∥ f
∥∥

L∞ .
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(b) (Jensen’s inequality ) Suppose that µ(X) = 1. Show that

∥∥ f
∥∥

Lp ≥ exp
(∫

X
log | f (x)|dµ(x)

)
for all 0 < p < ∞.
(c) If µ(X) = 1 and f is in some Lp0(X ,µ) for some p0 > 0, then

lim
p→0

∥∥ f
∥∥

Lp = exp
(∫

X
log | f (x)|dµ(x)

)
with the interpretation e−∞ = 0.[
Hint: Part (a): Given 0 < ε < ‖ f‖L∞ , find a measurable set E ⊆ X of positive mea-

sure such that | f (x)| ≥ ‖ f‖L∞ − ε for all x ∈ E. Then ‖ f‖Lp ≥ (‖ f‖L∞ − ε)µ(E)1/p

and thus liminfp→∞ ‖ f‖Lp ≥ ‖ f‖L∞ −ε . Part (b) is a direct consequence of Jensen’s
inequality

∫
X log |h|dµ ≤ log

(∫
X |h|dµ

)
. Part (c): Fix a sequence 0 < pn < p0 such

that pn ↓ 0 and define

hn(x) =
1
p0

(| f (x)|p0 −1)− 1
pn

(| f (x)|pn −1).

Use that 1
p (t p−1) ↓ log t as p ↓ 0 for all t > 0. The Lebesgue monotone convergence

theorem yields
∫

X hn dµ ↑
∫

X hdµ , hence
∫

X
1
pn

(| f |pn −1)dµ ↓
∫

X log | f |dµ , where
the latter could be −∞. Use

exp
(∫

X
log | f |dµ

)
≤
(∫

X
| f |pn dµ

) 1
pn
≤ exp

(∫
X

1
pn

(| f |pn −1)dµ

)
to complete the proof.

]
1.1.4. Let a j be a sequence of positive reals. Show that
(a)
(

∑
∞
j=1 a j

)θ ≤ ∑
∞
j=1 aθ

j , for any 0≤ θ ≤ 1.

(b) ∑
∞
j=1 aθ

j ≤
(

∑
∞
j=1 a j

)θ
, for any 1≤ θ < ∞.

(c)
(

∑
N
j=1 a j

)θ ≤ Nθ−1
∑

N
j=1 aθ

j , when 1≤ θ < ∞.

(d) ∑
N
j=1 aθ

j ≤ N1−θ
(

∑
N
j=1 a j

)θ , when 0≤ θ ≤ 1.

1.1.5. Let { f j}N
j=1 be a sequence of Lp(X ,µ) functions.

(a) (Minkowski’s inequality ) For 1≤ p≤ ∞ show that

∥∥ N

∑
j=1

f j
∥∥

Lp ≤
N

∑
j=1

∥∥ f j
∥∥

Lp .

(b) (Minkowski’s inequality ) For 0 < p < 1 and f j ≥ 0 prove that
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N

∑
j=1

∥∥ f j
∥∥

Lp ≤
∥∥ N

∑
j=1

f j
∥∥

Lp .

(c) For 0 < p < 1 show that

∥∥ N

∑
j=1

f j
∥∥

Lp ≤ N
1−p

p
N

∑
j=1

∥∥ f j
∥∥

Lp .

(d) The constant N
1−p

p in part (c) is best possible.[
Hint: Part (c): Use Exercise 1.1.4(c). Part (d): Take { f j}N

j=1 to be characteristic
functions of disjoint sets with the same measure.

]
1.1.6. (Minkowski’s integral inequality ) Let 1 ≤ p < ∞. Let F be a measurable
function on the product space (X ,µ)× (T,ν), where µ,ν are σ -finite. Show that[∫

T

(∫
X
|F(x, t)|dµ(x)

)p

dν(t)
] 1

p

≤
∫

X

[∫
T

∣∣F(x, t)
∣∣p dν(t)

] 1
p

dµ(x) .

Moreover, prove that when 0 < p < 1, then the preceding inequality is reversed.

1.1.7. Let f1, . . . , fN be in Lp,∞(X ,µ).
(a) Prove that for 1≤ p < ∞ we have

∥∥ N

∑
j=1

f j
∥∥

Lp,∞ ≤ N
N

∑
j=1

∥∥ f j
∥∥

Lp,∞ .

(b) Show that for 0 < p < 1 we have

∥∥ N

∑
j=1

f j
∥∥

Lp,∞ ≤ N
1
p

N

∑
j=1

∥∥ f j
∥∥

Lp,∞ .

[
Hint: Use that µ({| f1 + · · ·+ fN | > α}) ≤ ∑

N
j=1 µ({| f j| > α/N}) and Exercise

1.1.4(a) and (c).
]

1.1.8. Let 0 < p < ∞. Prove that Lp(X ,µ) is a complete quasinormed space. This
means that every quasinorm Cauchy sequence is quasinorm convergent.[
Hint: Let fn be a Cauchy sequence in Lp. Pass to a subsequence {ni}i such that
‖ fni+1 − fni‖Lp ≤ 2−i. Then the series f = fn1 +∑

∞
i=1( fni+1 − fni) converges in Lp.

]
1.1.9. Let (X ,µ) be a measure space with µ(X) < ∞. Suppose that a sequence of
measurable functions fn on X converges to f µ-a.e. Prove that fn converges to f in
measure.[
Hint: For ε > 0,

{
x ∈ X : fn(x)→ f (x)}j

∞⋃
m=1

∞⋂
n=m

{x ∈ X : | fn(x)− f (x)|< ε
}
.
]
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1.1.10. Given a measurable function f on (X ,µ) and γ > 0, define fγ = f χ| f |>γ and
f γ = f − fγ = f χ| f |≤γ .
(a) Prove that

d fγ (α) =

{
d f (α) when α > γ,

d f (γ) when α ≤ γ,

d f γ (α) =

{
0 when α ≥ γ,

d f (α)−d f (γ) when α < γ.

(b) If f ∈ Lp(X ,µ) then∥∥ fγ

∥∥p
Lp = p

∫
∞

γ

α
p−1d f (α)dα + γ

pd f (γ),∥∥ f γ
∥∥p

Lp = p
∫

γ

0
α

p−1d f (α)dα− γ
pd f (γ),∫

γ<| f |≤δ

| f |p dµ = p
∫

δ

γ

d f (α)α p−1 dα−δ
pd f (δ )+ γ

pd f (γ).

(c) If f is in Lp,∞(X ,µ) prove that f γ is in Lq(X ,µ) for any q > p and fγ is in
Lq(X ,µ) for any q < p. Thus Lp,∞ ⊆ Lp0 +Lp1 when 0 < p0 < p < p1 ≤ ∞.

1.1.11. Let (X ,µ) be a measure space and let E be a subset of X with µ(E) < ∞.
Assume that f is in Lp,∞(X ,µ) for some 0 < p < ∞.
(a) Show that for 0 < q < p we have∫

E
| f (x)|q dµ(x)≤ p

p−q
µ(E)1− q

p
∥∥ f
∥∥q

Lp,∞ .

(b) Conclude that if µ(X) < ∞ and 0 < q < p, then

Lp(X ,µ)⊆ Lp,∞(X ,µ)⊆ Lq(X ,µ).[
Hint: Part (a): Use µ

(
E ∩{| f |> α}

)
≤min

(
µ(E),α−p

∥∥ f
∥∥p

Lp,∞

)
.
]

1.1.12. (Normability of weak Lp for p > 1 ) Let (X ,µ) be a measure space and let
0 < p < ∞. Pick 0 < r < p and define

 f


Lp,∞ = sup
0<µ(E)<∞

µ(E)−
1
r + 1

p

(∫
E
| f |rdµ

) 1
r

,

where the supremum is taken over all measurable subsets E of X of finite measure.
(a) Use Exercise 1.1.11 with q = r to conclude that

 f


Lp,∞ ≤
(

p
p− r

) 1
r ∥∥ f
∥∥

Lp,∞
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for all f in Lp,∞(X ,µ).
(b) Take E = {| f |> α} to deduce that

∥∥ f
∥∥

Lp,∞ ≤
 f


Lp,∞ for all f in Lp,∞(X ,µ).

(c) Show that Lp,∞(X ,µ) is metrizable for all 0 < p < ∞ and normable when p > 1
(by picking r = 1).
(d) Use the characterization of the weak Lp quasinorm obtained in parts (a) and (b)
to prove Fatou’s theorem for this space: For all measurable functions gn on X we
have ∥∥ liminf

n→∞
|gn|
∥∥

Lp,∞ ≤Cp liminf
n→∞

∥∥gn
∥∥

Lp,∞

for some constant Cp that depends only on p ∈ (0,∞).

1.1.13. Consider the N! functions on the line

fσ =
N

∑
j=1

N
σ( j)

χ[ j−1
N , j

N ) ,

where σ is a permutation of the set {1,2, . . . ,N}.
(a) Show that each fσ satisfies

∥∥ fσ

∥∥
L1,∞ = 1.

(b) Show that
∥∥∑σ∈SN fσ

∥∥
L1,∞ = N!

(
1+ 1

2 + · · ·+ 1
N

)
.

(c) Conclude that the space L1,∞(R) is not normable.
(d) Use a similar argument to prove that L1,∞(Rn) is not normable by considering
the functions

fσ (x1, . . . ,xn) =
N

∑
j1=1

· · ·
N

∑
jn=1

Nn

σ(τ( j1, . . . , jn))
χ

[ j1−1
N ,

j1
N )

(x1) · · ·χ[ jn−1
N , jn

N )(xn) ,

where σ is a permutation of the set {1,2, . . . ,Nn} and τ is a fixed injective map
from the set of all n-tuples of integers with coordinates 1 ≤ j ≤ N onto the set
{1,2, . . . ,Nn}. One may take

τ( j1, . . . , jn) = j1 +N( j2−1)+N2( j3−1)+ · · ·+Nn−1( jn−1),

for instance.

1.1.14. Let 0 < p < 1, 0 < s < ∞ and let (X ,µ) be a measure space.
(a) Let f be a measurable function on X . Show that∫

| f |≤s
| f |dµ ≤ s1−p

1− p

∥∥ f
∥∥p

Lp,∞ .

(b) Let f j, 1≤ j ≤ m, be measurable functions on X . Show that∥∥∥ max
1≤ j≤m

| f j|
∥∥∥p

Lp,∞
≤

m

∑
j=1

∥∥ f j
∥∥p

Lp,∞ .

(c) Conclude that
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∥∥p

Lp,∞ ≤
2− p
1− p

m

∑
j=1

∥∥ f j
∥∥p

Lp,∞ .

The latter estimate is referred to as the p-normability of weak Lp for p < 1.[
Hint: Part (c): First obtain the estimate

d f1+···+ fm(α) ≤ µ({| f1+· · ·+ fm|>α,max | f j|≤α})+dmax | f j |(α)

for all α > 0.
]

1.1.15. (Hölder’s inequality for weak spaces ) Let f j be in Lp j ,∞ of a measure space
X where 0 < p j < ∞ and 1≤ j ≤ k. Let

1
p

=
1
p1

+ · · ·+ 1
pk

.

Prove that ∥∥ f1 · · · fk
∥∥

Lp,∞ ≤ p−
1
p

k

∏
j=1

p
1
p j
j

k

∏
j=1

∥∥ f j
∥∥

Lp j ,∞ .

[
Hint: Take ‖ f j‖Lp j ,∞ = 1 for all j. Control d f1··· fk(α) by

µ({| f1|>α/s1})+ · · ·+ µ({| fk−1|>sk−2/sk−1})+ µ({| fk|>sk−1})
≤ (s1/α)p1 +(s2/s1)p2 + · · ·+(sk−1/sk−2)pk−1 +(1/sk−1)pk .

Set x1 = s1/α , x2 = s2/s1, . . . ,xk = 1/sk−1. Minimize xp1
1 + · · ·+ xpk

k subject to the
constraint x1 · · ·xk = 1/α .

]
1.1.16. Let 0 < p0 < p < p1 ≤ ∞ and let 1

p = 1−θ

p0
+ θ

p1
for some θ ∈ [0,1]. Prove

the following: ∥∥ f
∥∥

Lp ≤
∥∥ f
∥∥1−θ

Lp0

∥∥ f
∥∥θ

Lp1 ,∥∥ f
∥∥

Lp,∞ ≤
∥∥ f
∥∥1−θ

Lp0,∞

∥∥ f
∥∥θ

Lp1,∞ .

1.1.17. (Loomis and Whitney [178] ) Follow the steps below to prove the isoperi-
metric inequality. For n ≥ 2 and 1 ≤ j ≤ n define the projection maps π j : Rn →
Rn−1 by setting for x = (x1, . . . ,xn),

π j(x) = (x1, . . . ,x j−1,x j+1, . . . ,xn) ,

with the obvious interpretations when j = 1 or j = n.
(a) For maps f j : Rn−1 → C prove that

Λ( f1, . . . , fn) =
∫

Rn

n

∏
j=1

∣∣ f j ◦π j
∣∣dx ≤

n

∏
j=1

∥∥ f j
∥∥

Ln−1(Rn−1) .
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(b) Let Ω be a compact set with a rectifiable boundary in Rn where n ≥ 2. Show
that there is a constant cn independent of Ω such that

|Ω | ≤ cn|∂Ω |
n

n−1 ,

where the expression |∂Ω | denotes the (n−1)-dimensional surface measure of the
boundary of Ω .[
Hint: Part (a): Use induction starting with n = 2. Then write

Λ( f1, . . . , fn) ≤
∫

Rn−1
P(x1, . . . ,xn−1)| fn(πn(x))|dx1 · · ·dxn−1

≤
∥∥P
∥∥

L
n−1
n−2 (Rn−1)

∥∥ fn ◦πn
∥∥

Ln−1(Rn−1) ,

where P(x1, . . . ,xn−1) =
∫

R | f1(π1(x)) · · · fn−1(πn−1(x))|dxn, and apply the induc-
tion hypothesis to the n−1 functions[∫

R
f j(π j(x))n−1 dxn

] 1
n−2

,

for j = 1, . . . ,n−1, to obtain the required conclusion. Part (b): Specialize part (a) to
the case f j = χπ j [Ω ] to obtain

|Ω | ≤ |π1[Ω ]|
1

n−1 · · · |πn[Ω ]|
1

n−1

and then use that |π j[Ω ]| ≤ 1
2 |∂Ω |.

]

1.2 Convolution and Approximate Identities

The notion of convolution can be defined on measure spaces endowed with a group
structure. It turns out that the most natural environment to define convolution is the
context of topological groups. Although the focus of this book is harmonic analysis
on Euclidean spaces, we develop the notion of convolution on general groups. This
allows us to study this concept on Rn, Zn, and Tn, in a unified way. Moreover,
since the basic properties of convolutions and approximate identities do not require
commutativity of the group operation, we may assume that the underlying groups
are not necessarily abelian. Thus, the results in this section can be also applied to
nonabelian structures such as the Heisenberg group.

1.2.1 Examples of Topological Groups

A topological group G is a Hausdorff topological space that is also a group with law



1.2 Convolution and Approximate Identities 17

(x,y) 7→ xy (1.2.1)

such that the maps (x,y) 7→ xy and x 7→ x−1 are continuous.

Example 1.2.1. The standard examples are provided by the spaces Rn and Zn with
the usual topology and the usual addition of n-tuples. Another example is the space
Tn defined as follows:

Tn = [0,1]×·· ·× [0,1]︸ ︷︷ ︸
n times

with the usual topology and group law addition of n-tuples mod1, that is,

(x1, . . . ,xn)+(y1, . . . ,yn) = ((x1 + y1) mod1, . . . ,(xn + yn) mod1).

Let G be a locally compact group. It is known that G possesses a positive measure
λ on the Borel sets that is nonzero on all nonempty open sets and is left invariant,
meaning that

λ (tA) = λ (A), (1.2.2)

for all measurable sets A and all t ∈ G. Such a measure λ is called a (left) Haar
measure on G. For a constructive proof of the existence of Haar measure we refer
to Lang [168, §16.3]. Furthermore, Haar measure is unique up to positive multi-
plicative constants. If G is abelian then any left Haar measure on G is a constant
multiple of any given right Haar measure on G, the latter meaning right invariant
[i.e., λ (At) = λ (A), for all measurable A⊆ G and t ∈ G].

Example 1.2.2. Let G = R∗ = R\{0} with group law the usual multiplication. It is
easy to verify that the measure λ = dx/|x| is invariant under multiplicative transla-
tions, that is, ∫

∞

−∞

f (tx)
dx
|x|

=
∫

∞

−∞

f (x)
dx
|x|

,

for all f in L1(G,µ) and all t ∈ R∗. Therefore, dx/|x| is a Haar measure. [Taking
f = χA gives λ (tA) = λ (A).]

Example 1.2.3. Similarly, on the multiplicative group G = R+, a Haar measure is
dx/x.

Example 1.2.4. Counting measure is a Haar measure on the group Zn with group
operation the usual addition.

Example 1.2.5. The Heisenberg group Hn is the set Cn×R with the group operation

(z1, . . . ,zn, t)(w1, . . . ,wn,s) =
(

z1 +w1, . . . ,zn +wn, t + s+2Im
n

∑
j=1

z jw j

)
.

It can easily be seen that the identity element e of this group is 0 ∈ Cn ×R and
(z1, . . . ,zn, t)−1 = (−z1, . . . ,−zn,−t). Topologically the Heisenberg group is identi-
fied with Cn×R, and both left and right Haar measure on Hn is Lebesgue measure.
The norm
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|(z1, . . . ,zn, t)|=
[( n

∑
j=1

|z j|2
)2

+ t2
] 1

4

introduces balls Br(x) = {y∈Hn : |y−1x|< r} on the Heisenberg group that are quite
different from Euclidean balls. For x close to the origin, the balls Br(x) are not far
from being Euclidean, but for x far away from e = 0 they look like slanted truncated
cylinders. The Heisenberg group can be naturally identified as the boundary of the
unit ball in Cn and plays an important role in quantum mechanics.

1.2.2 Convolution

Throughout the rest of this section, fix a locally compact group G and a left invariant
Haar measure λ on G. The spaces Lp(G,λ ) and Lp,∞(G,λ ) are simply denoted by
Lp(G) and Lp,∞(G).

Left invariance of λ is equivalent to the fact that for all t ∈ G and all f ∈ L1(G),∫
G

f (tx)dλ (x) =
∫

G
f (x)dλ (x) . (1.2.3)

Equation (1.2.3) is a restatement of (1.2.2) if f is a characteristic function. For a
general f ∈ L1(G) it follows by linearity and approximation.

We are now ready to define the operation of convolution.

Definition 1.2.6. Let f , g be in L1(G). Define the convolution f ∗g by

( f ∗g)(x) =
∫

G
f (y)g(y−1x)dλ (y) . (1.2.4)

For instance, if G = Rn with the usual additive structure, then y−1 = −y and the
integral in (1.2.4) is written as

( f ∗g)(x) =
∫

Rn
f (y)g(x− y)dy .

Remark 1.2.7. The right-hand side of (1.2.4) is defined a.e., since the following
double integral converges absolutely:∫

G

∫
G
| f (y)||g(y−1x)|dλ (y)dλ (x)

=
∫

G

∫
G
| f (y)||g(y−1x)|dλ (x)dλ (y)

=
∫

G
| f (y)|

∫
G
|g(y−1x)|dλ (x)dλ (y)

=
∫

G
| f (y)|

∫
G
|g(x)|dλ (x)dλ (y) by (1.2.2)

=
∥∥ f
∥∥

L1(G)

∥∥g
∥∥

L1(G) < +∞ .
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The change of variables z = x−1y yields that (1.2.4) is in fact equal to

( f ∗g)(x) =
∫

G
f (xz)g(z−1)dλ (z) , (1.2.5)

where the substitution of dλ (y) by dλ (z) is justified by left invariance.

Example 1.2.8. On R let f (x) = 1 when −1 ≤ x ≤ 1 and zero otherwise. We see
that ( f ∗ f )(x) is equal to the length of the intersection of the intervals [−1,1] and
[x− 1,x + 1]. It follows that ( f ∗ f )(x) = 2− |x| for |x| ≤ 2 and zero otherwise.
Observe that f ∗ f is a smoother function than f . Similarly, we obtain that f ∗ f ∗ f
is a smoother function than f ∗ f .

There is an analogous calculation when g is the characteristic function of the unit
disk B(0,1) in R2. A simple computation gives

(g∗g)(x) =
∣∣B(0,1

)
∩B
(
x,1
)∣∣= ∫ +

√
1− 1

4 |x|2

−
√

1− 1
4 |x|2

(
2
√

1− t2−|x|
)

dt

= 2arcsin
(√

1− 1
4 |x|2

)
−|x|

√
1− 1

4 |x|2

when x = (x1,x2) in R2 satisfies |x| ≤ 2, while (g∗g)(x) = 0 if |x| ≥ 2.

A calculation similar to that in Remark 1.2.7 yields that∥∥ f ∗g
∥∥

L1(G) ≤
∥∥ f
∥∥

L1(G)

∥∥g
∥∥

L1(G) , (1.2.6)

that is, the convolution of two integrable functions is also an integrable function
with L1 norm less than or equal to the product of the L1 norms.

Proposition 1.2.9. For all f , g, h in L1(G), the following properties are valid:

(1) f ∗ (g∗h) = ( f ∗g)∗h (associativity)
(2) f ∗ (g+h) = f ∗g+ f ∗h and ( f +g)∗h = f ∗h+g∗h (distributivity)

Proof. The easy proofs are omitted. �

Proposition 1.2.9 implies that L1(G) is a (not necessarily commutative) Banach
algebra under the convolution product.

1.2.3 Basic Convolution Inequalities

The most fundamental inequality involving convolutions is the following.

Theorem 1.2.10. (Minkowski’s inequality) Let 1≤ p≤∞. For f in Lp(G) and g in
L1(G) we have ∥∥g∗ f

∥∥
Lp(G) ≤

∥∥g
∥∥

L1(G)

∥∥ f
∥∥

Lp(G) . (1.2.7)
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Proof. Estimate (1.2.7) follows directly from Exercise 1.1.6. Here we give a direct
proof. We may assume that 1 < p < ∞, since the cases p = 1 and p = ∞ are simple.
Clearly, we have

|(g∗ f )(x)| ≤
∫

G
| f (y−1x)| |g(y)|dλ (y) . (1.2.8)

Apply Hölder’s inequality in (1.2.8) with respect to the measure |g(y)|dλ (y) to the
functions y 7→ f (y−1x) and 1 with exponents p and p′ = p/(p−1), respectively. We
obtain

|(g∗ f )(x)| ≤
(∫

G
| f (y−1x)|p|g(y)|dλ (y)

)1
p
(∫

G
|g(y)|dλ (y)

)1
p′

. (1.2.9)

Taking Lp norms of both sides of (1.2.9) we deduce

∥∥g∗ f
∥∥

Lp ≤
(∥∥g

∥∥p−1
L1

∫
G

∫
G
| f (y−1x)|p|g(y)|dλ (y)dλ (x)

)1
p

=
(∥∥g

∥∥p−1
L1

∫
G

∫
G
| f (y−1x)|p dλ (x)|g(y)|dλ (y)

)1
p

=
(∥∥g

∥∥p−1
L1

∫
G

∫
G
| f (x)|p dλ (x)|g(y)|dλ (y)

)1
p

by (1.2.3)

=
(∥∥ f

∥∥p
Lp

∥∥g
∥∥

L1

∥∥g
∥∥p−1

L1

)1
p

=
∥∥ f
∥∥

Lp

∥∥g
∥∥

L1 ,

where the second equality follows by Fubini’s theorem. The proof is complete. �

Remark 1.2.11. Theorem 1.2.10 may fail for nonabelian groups if g∗ f is replaced
by f ∗g in (1.2.7). Note, however, that if∥∥g

∥∥
L1 =

∥∥g̃
∥∥

L1 , (1.2.10)

where g̃(x) = g(x−1), then (1.2.7) holds when the quantity
∥∥g∗ f

∥∥
Lp(G) is replaced

by
∥∥ f ∗ g

∥∥
Lp(G). To see this, observe that if (1.2.10) holds, then we can use (1.2.5)

to conclude that if f in Lp(G) and g in L1(G), then∥∥ f ∗g
∥∥

Lp(G) ≤
∥∥g
∥∥

L1(G)

∥∥ f
∥∥

Lp(G) . (1.2.11)

If the left Haar measure satisfies

λ (A) = λ (A−1) (1.2.12)

for all measurable A ⊆ G, then (1.2.10) holds and thus (1.2.11) is satisfied for all g
in L1(G). This is, for instance, the case for the Heisenberg group Hn.

Minkowski’s inequality (1.2.11) is only a special case of Young’s inequality in
which the function g can be in any space Lr(G) for 1≤ r ≤ ∞.
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Theorem 1.2.12. (Young’s inequality) Let 1≤ p,q,r ≤ ∞ satisfy

1
q

+1 =
1
p

+
1
r

. (1.2.13)

Then for all f in Lp(G) and all g in Lr(G) satisfying
∥∥g
∥∥

Lr(G) =
∥∥g̃
∥∥

Lr(G) we have∥∥ f ∗g
∥∥

Lq(G) ≤
∥∥g
∥∥

Lr(G)

∥∥ f
∥∥

Lp(G) . (1.2.14)

Proof. Young’s inequality is proved in a way similar to Minkowski’s inequality. We
do a suitable splitting of the product | f (y)||g(y−1x)| and apply Hölder’s inequality.
Observe that when r < ∞, the hypotheses on the indices imply that

1
r′

+
1
q

+
1
p′

= 1 ,
p
q

+
p
r′

= 1 ,
r
q

+
r
p′

= 1 .

Using Hölder’s inequality with exponents r′, q, and p′, we obtain

|( f ∗g)(x)| ≤
∫

G
| f (y)| |g(y−1x)|dλ (y)

≤
∫

G
| f (y)|

p
r′
(
| f (y)|

p
q |g(y−1x)|

r
q
)
|g(y−1x)|

r
p′ dλ (y)

≤
∥∥ f
∥∥ p

r′
Lp

(∫
G
| f (y)|p|g(y−1x)|r dλ (y)

)1
q
(∫

G
|g(y−1x)|r dλ (y)

) 1
p′

=
∥∥ f
∥∥ p

r′
Lp

(∫
G
| f (y)|p|g(y−1x)|r dλ (y)

)1
q
(∫

G
|g̃(x−1y)|r dλ (y)

) 1
p′

=
(∫

G
| f (y)|p|g(y−1x)|r dλ (y)

) 1
q ∥∥ f

∥∥ p
r′
Lp

∥∥g̃
∥∥ r

p′
Lr ,

where we used left invariance. Now take Lq norms (in x) and apply Fubini’s theorem
to deduce that

∥∥ f ∗g
∥∥

Lq ≤
∥∥ f
∥∥ p

r′
Lp

∥∥g̃
∥∥ r

p′
Lr

(∫
G

∫
G
| f (y)|p|g(y−1x)|r dλ (x)dλ (y)

)1
q

=
∥∥ f
∥∥ p

r′
Lp

∥∥g̃
∥∥ r

p′
Lr

∥∥ f
∥∥ p

q
Lp

∥∥g
∥∥ r

q
Lr

=
∥∥g
∥∥

Lr

∥∥ f
∥∥

Lp ,

using the hypothesis on g. Finally, note that if r = ∞, the assumptions on p and q
imply that p = 1 and q = ∞, in which case the required inequality trivially holds. �

We now give a version of Theorem 1.2.12 for weak Lp spaces. Theorem 1.2.13
is improved in Section 1.4.

Theorem 1.2.13. (Young’s inequality for weak type spaces) Let G be a locally com-
pact group with left Haar measure λ that satisfies (1.2.12). Let 1 ≤ p < ∞ and
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1 < q,r < ∞ satisfy
1
q

+1 =
1
p

+
1
r

. (1.2.15)

Then there exists a constant Cp,q,r > 0 such that for all f in Lp(G) and g in Lr,∞(G)
we have ∥∥ f ∗g

∥∥
Lq,∞(G) ≤Cp,q,r

∥∥g
∥∥

Lr,∞(G)

∥∥ f
∥∥

Lp(G) . (1.2.16)

Proof. The proof is based on a suitable splitting of the function g. Let M be a posi-
tive real number to be chosen later. Define g1 = gχ|g|≤M and g2 = gχ|g|>M . In view
of Exercise 1.1.10(a) we have

dg1(α) =

{
0 if α ≥M,

dg(α)−dg(M) if α < M,
(1.2.17)

dg2(α) =

{
dg(α) if α > M,

dg(M) if α ≤M.
(1.2.18)

Proposition 1.1.3 gives

d f∗g(α)≤ d f∗g1(α/2)+d f∗g2(α/2) , (1.2.19)

and thus it suffices to estimate the distribution functions of f ∗g1 and f ∗g2. Since
g1 is the “small” part of g, it is in Ls for any s > r. In fact, we have∫

G
|g1(x)|s dλ (x) = s

∫
∞

0
α

s−1dg1(α)dα

= s
∫ M

0
α

s−1(dg(α)−dg(M))dα

≤ s
∫ M

0
α

s−1−r∥∥g
∥∥r

Lr,∞ dα− s
∫ M

0
α

s−1dg(M)dα

=
s

s− r
Ms−r∥∥g

∥∥r
Lr,∞ −Msdg(M) ,

(1.2.20)

when s < ∞.
Similarly, since g2 is the “large” part of g, it is in Lt for any t < r, and∫

G
|g2(x)|t dλ (x) = t

∫
∞

0
α

t−1dg2(α)dα

= t
∫ M

0
α

t−1dg(M)dα + t
∫

∞

M
α

t−1dg(α)dα

≤Mtdg(M)+ t
∫

∞

M
α

t−1−r∥∥g
∥∥r

Lr,∞ dα

≤Mt−r∥∥g
∥∥r

Lr,∞ +
t

r− t
Mt−r∥∥g

∥∥r
Lr,∞

=
r

r− t
Mt−r∥∥g

∥∥r
Lr,∞ . (1.2.21)
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Since 1/r = 1/p′ + 1/q, it follows that 1 < r < p′. Select t = 1 and s = p′.
Hölder’s inequality and (1.2.20) give

|( f ∗g1)(x)| ≤
∥∥ f
∥∥

Lp

∥∥g1
∥∥

Lp′ ≤
∥∥ f
∥∥

Lp

(
p′

p′− r
Mp′−r∥∥g

∥∥r
Lr,∞

) 1
p′

, (1.2.22)

when p′ < ∞, while
|( f ∗g1)(x)| ≤

∥∥ f
∥∥

LpM (1.2.23)

if p′ = ∞. Choose an M such that the right-hand side of (1.2.22) if p′ < ∞, or (1.2.23)
if p′ = ∞, is equal to α/2. For instance, choose

M = (α p′2−p′rq−1‖ f‖−p′
Lp ‖g‖−r

Lr,∞)1/(p′−r)

if p′ < ∞ and M = α/(2‖ f‖L1) if p′ = ∞. For this choice of M we have that

d f∗g1(α/2) = 0.

Next by Theorem 1.2.10 and (1.2.21) with t = 1 we obtain∥∥ f ∗g2
∥∥

Lp ≤
∥∥ f
∥∥

Lp

∥∥g2
∥∥

L1 ≤
∥∥ f
∥∥

Lp
r

r−1
M1−r∥∥g

∥∥r
Lr,∞ . (1.2.24)

For the value of M chosen, using (1.2.24) and Chebyshev’s inequality, we obtain

d f∗g(α) ≤ d f∗g2(α/2)

≤ (2
∥∥ f ∗g2

∥∥
Lpα

−1)p

≤ (2r
∥∥ f
∥∥

LpM1−r∥∥g
∥∥r

Lr,∞(r−1)−1
α
−1)p

= Cq
p,q,rα

−q∥∥ f
∥∥q

Lp

∥∥g
∥∥q

Lr,∞ ,

(1.2.25)

which is the required inequality. This proof gives that the constant Cp,q,r blows up
like (r−1)−p/q as r → 1. �

Example 1.2.14. Theorem 1.2.13 may fail at some endpoints:

(1) r = 1 and 1≤ p = q≤∞. On R take g(x) = 1/|x| and f = χ[0,1]. Clearly, g is in
L1,∞ and f in Lp for all 1≤ p≤∞, but the convolution of f and g is identically
equal to infinity on the interval [0,1]. Therefore, (1.2.16) fails in this case.

(2) q = ∞ and 1 < r = p′ < ∞. On R let f (x) = (|x|1/p log |x|)−1 for |x| ≥ 2 and zero
otherwise, and also let g(x) = |x|−1/r. We see that ( f ∗ g)(x) = ∞ for |x| ≤ 1.
Thus (1.2.16) fails in this case also.

(3) r = q = ∞ and p = 1. Then inequality (1.2.16) trivially holds.
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1.2.4 Approximate Identities

We now introduce the notion of approximate identities. The Banach algebra L1(G)
may not have a unit element, that is, an element f0 such that

f0 ∗ f = f = f ∗ f0 (1.2.26)

for all f ∈ L1(G). In particular, this is the case when G = R; in fact, the only f0 that
satisfies (1.2.26) for all f ∈ L1(R) is not a function but the Dirac delta distribution,
introduced in Chapter 2. It is reasonable therefore to introduce the notion of approx-
imate unit or identity, a family of functions kε with the property kε ∗ f → f in L1 as
ε → 0.

Definition 1.2.15. An approximate identity (as ε → 0) is a family of L1(G) functions
kε with the following three properties:

(i) There exists a constant c > 0 such that
∥∥kε

∥∥
L1(G) ≤ c for all ε > 0.

(ii)
∫

G kε(x)dλ (x) = 1 for all ε > 0.
(iii) For any neighborhood V of the identity element e of the group G we have∫

V c |kε(x)|dλ (x)→ 0 as ε → 0.

The construction of approximate identities on general locally compact groups G
is beyond the scope of this book and is omitted. We refer to Hewitt and Ross [125]
for details. In this book we are interested only in groups with Euclidean structure,
where approximate identities exist in abundance. See the following examples.

Sometimes we think of approximate identities as sequences {kn}n. In this case
property (iii) holds as n → ∞. It is best to visualize approximate identities as se-
quences of positive functions kn that spike near 0 in such a way that the signed area
under the graph of each function remains constant (equal to one) but the support
shrinks to zero. See Figure 1.2.

Example 1.2.16. On Rn let k(x) be an integrable function with integral one. Let
kε(x) = ε−nk(ε−1x). It is straightforward to see that kε(x) is an approximate identity.
Property (iii) follows from the fact that∫

|x|≥δ/ε

|k(x)|dx → 0

as ε → 0 for δ fixed.

Example 1.2.17. On R let P(x) = (π(x2 +1))−1 and Pε(x) = ε−1P(ε−1x) for ε > 0.
Since Pε and P have the same L1 norm and∫ +∞

−∞

1
x2 +1

dx = lim
x→+∞

[
arctan(x)− arctan(−x)

]
= (π/2)− (−π/2) = π ,

property (ii) is satisfied. Property (iii) follows from the fact that
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Fig. 1.2 The Fejér kernel
F5 plotted on the interval
[− 1

2 , 1
2 ].

1
π

∫
|x|≥δ

1
ε

1
(x/ε)2 +1

dx = 1− 2
π

arctan(δ/ε)→ 0 as ε → 0,

for all δ > 0. The function Pε is called the Poisson kernel.

Example 1.2.18. On the circle group T1 let

FN(t) =
N

∑
j=−N

(
1− | j|

N +1

)
e2πi jt =

1
N +1

(
sin(π(N +1)t)

sin(πt)

)2

. (1.2.27)

To check the previous equality we use that

sin2(x) = (2− e2ix− e−2ix)/4 ,

and we carry out the calculation. FN is called the Fejér kernel. To see that the se-
quence {FN}N is an approximate identity, we check conditions (i), (ii), and (iii) in
Definition 1.2.15. Property (iii) follows from the expression giving FN in terms of
sines, while property (i) follows from the expression giving FN in terms of exponen-
tials. Property (ii) is identical to property (i), since FN is nonnegative.

Next comes the basic theorem concerning approximate identities.

Theorem 1.2.19. Let kε be an approximate identity on a locally compact group G
with left Haar measure λ .

(1) If f ∈ Lp(G) for 1≤ p < ∞, then
∥∥kε ∗ f − f

∥∥
Lp(G) → 0 as ε → 0.

(2) When p = ∞, the following is valid: If f is continuous in a neighborhood of a
a compact subset K of G, then

∥∥kε ∗ f − f
∥∥

L∞(K) → 0 as ε → 0.

Proof. We start with the case 1 ≤ p < ∞. We recall that continuous functions with
compact support are dense in Lp of locally compact Hausdorff spaces equipped
with measures arising from nonnegative linear functionals (see Hewitt and Ross
[125], Theorem 12.10). For a continuous function with compact support g we have
|g(h−1x)− g(x)|p ≤ (2

∥∥g
∥∥

L∞)p for h in a relatively compact neighborhood of the
origin e, and by the Lebesgue dominated convergence theorem we obtain

-0.4 -0.2 0.2 0.4

1

2

3

4
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G
|g(h−1x)−g(x)|p dλ (x)→ 0 (1.2.28)

as h→ e. Now approximate a given f in Lp(G) by a continuous function with com-
pact support g to deduce that∫

G
| f (h−1x)− f (x)|p dλ (x)→ 0 as h→ e . (1.2.29)

Because of (1.2.29), given a δ > 0 there exists a neighborhood V of e such that

h ∈V =⇒
∫

G
| f (h−1x)− f (x)|p dλ (x) <

(
δ

2c

)p

, (1.2.30)

where c is the constant that appears in Definition 1.2.15 (i). Since kε has integral
one for all ε > 0, we have

(kε ∗ f )(x)− f (x) = (kε ∗ f )(x)− f (x)
∫

G
kε(y)dλ (y)

=
∫

G
( f (y−1x)− f (x))kε(y)dλ (y)

=
∫

V
( f (y−1x)− f (x))kε(y)dλ (y)

+
∫

V c
( f (y−1x)− f (x))kε(y)dλ (y) .

(1.2.31)

Now take Lp norms in x in (1.2.31). In view of (1.2.30),∥∥∥∥∫V
( f (y−1x)− f (x))kε(y)dλ (y)

∥∥∥∥
Lp(G,dλ (x))

≤
∫

V

∥∥ f (y−1x)− f (x)
∥∥

Lp(G,dλ (x))|kε(y)|dλ (y)

≤
∫

V

δ

2c
|kε(y)|dλ (y) <

δ

2
,

(1.2.32)

while ∥∥∥∥∫V c
( f (y−1x)− f (x))kε(y)dλ (y)

∥∥∥∥
Lp(G,dλ (x))

≤
∫

V c
2
∥∥ f
∥∥

Lp(G)|kε(y)|dλ (y) <
δ

2
,

(1.2.33)

provided we have that ∫
V c
|kε(x)|dλ (x) <

δ

4
∥∥ f
∥∥

Lp

. (1.2.34)

Choose ε0 > 0 such that (1.2.34) is valid for ε < ε0 by property (iii). Now (1.2.32)
and (1.2.33) imply the required conclusion.
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The case p = ∞ follows similarly. Since f is uniformly continuous on K, given
δ > 0 find a neighborhood V of e ∈ G such that

h ∈V =⇒ | f (h−1x)− f (x)|< δ

2c
for all x ∈ K, (1.2.35)

where c is as in Definition 1.2.15(i), and then find an ε0 > 0 such that for 0 < ε < ε0
we have ∫

V c
|kε(y)|dλ (y) <

δ

4
∥∥ f
∥∥

L∞

. (1.2.36)

Using (1.2.35) and (1.2.36), we easily conclude that

sup
x∈K

|(kε ∗ f )(x)− f (x)|

≤
∫

V
|kε(y)|sup

x∈K
| f (y−1x)− f (x)|dλ (y)+

∫
V c
|kε(y)|sup

x∈K
| f (y−1x)− f (x)|dλ (y)

≤ δ

2
+

δ

2
= δ ,

which shows that kε ∗ f converges uniformly to f on K as ε → 0. �

Remark 1.2.20. Observe that if Haar measure satisfies (1.2.12), then the conclusion
of Theorem 1.2.19 also holds for f ∗ kε .

A simple modification in the proof of Theorem 1.2.19 yields the following vari-
ant.

Theorem 1.2.21. Let kε be a family of functions on a locally compact group G that
satisfies properties (i) and (iii) of Definition 1.2.15 and also∫

G
kε(x)dλ (x) = a ∈ C, for all ε > 0 .

Let f ∈ Lp(G) for some 1≤ p≤ ∞ .

(a) If 1≤ p < ∞, then
∥∥kε ∗ f −a f

∥∥
Lp(G) → 0 as ε → 0 .

(b) If p = ∞ and f is continuous on a compact K ⊆ G, then∥∥kε ∗ f −a f
∥∥

L∞(K) → 0

as ε → 0 .

Remark 1.2.22. With the notation of Theorem 1.2.21, if f is continuous and tends
to zero at infinity, then

∥∥kε ∗ f − a f
∥∥

L∞(G) → 0. To see this, simply observe that
outside a compact subset of G, both kε ∗ f , a f have small L∞ norm, while inside a
compact subset of G, uniform convergence holds.



28 1 Lp Spaces and Interpolation

Exercises

1.2.1. Let G be a locally compact group and let f ,g in L1(G) be supported in the
subsets A and B of G, respectively. Prove that f ∗ g is supported in the algebraic
product set AB.

1.2.2. For a function f on a locally compact group G and t ∈ G, let t f (x) = f (tx)
and f t(x) = f (xt). Show that

t f ∗g = t( f ∗g) and f ∗gt = ( f ∗g)t

whenever f ,g ∈ L1(G), equipped with left Haar measure.

1.2.3. Let G be a locally compact group with left Haar measure. Let f ∈ Lp(G)
and g̃ ∈ Lp′(G), where 1 < p < ∞; recall that g̃(x) = g(x−1). For t,x ∈ G, let
tg(x) = g(tx). Show that for any ε > 0 there exists a relatively compact symmet-
ric neighborhood of the origin U such that u ∈U implies

∥∥ug̃− g̃
∥∥

Lp′ (G) < ε and
therefore

|( f ∗g)(v)− ( f ∗g)(w)|<
∥∥ f
∥∥

Lp ε

whenever vw−1 ∈U .

1.2.4. Let G be a locally compact group and let 1 ≤ p ≤ ∞. Let f ∈ Lp(G) and µ

be a finite Borel measure on G with total variation
∥∥µ
∥∥. Define

(µ ∗ f )(x) =
∫

G
f (y−1x)dµ(y) .

Show that if µ is an absolutely continuous measure, then the preceding definition
extends (1.2.4). Prove that

∥∥µ ∗ f
∥∥

Lp(G) ≤
∥∥µ
∥∥∥∥ f

∥∥
Lp(G).

1.2.5. Show that a Haar measure λ for the multiplicative group of all positive real
numbers is

λ (A) =
∫

∞

0
χA(t)

dt
t

.

1.2.6. Let G = R2 \{(0,y) : y∈R} with group operation (x,y)(z,w) = (xz,xw+y).
[Think of G as the group of all 2× 2 matrices with bottom row (0,1) and nonzero
top left entry.] Show that a left Haar measure on G is

λ (A) =
∫ +∞

−∞

∫ +∞

−∞

χA(x,y)
dxdy

x2 ,

while a right Haar measure on G is

ρ(A) =
∫ +∞

−∞

∫ +∞

−∞

χA(x,y)
dxdy
|x|

.
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1.2.7. (Hardy [118], [119] ) Use Theorem 1.2.10 to prove that(∫
∞

0

(
1
x

∫ x

0
| f (t)|dt

)p

dx
)1

p

≤ p
p−1

∥∥ f
∥∥

Lp(0,∞),(∫
∞

0

(∫
∞

x
| f (t)|dt

)p

dx
)1

p

≤ p
(∫

∞

0
| f (t)|pt p dt

)1
p

,

when 1 < p < ∞.[
Hint: On the multiplicative group (R+, dt

t ) consider the convolution of the function

| f (x)|x
1
p with the function x−

1
p′ χ[1,∞) and the convolution of the function | f (x)|x1+ 1

p

with x
1
p χ(0,1].

]
1.2.8. (G. H. Hardy ) Let 0 < b < ∞ and 1≤ p < ∞. Prove that(∫

∞

0

(∫ x

0
| f (t)|dt

)p

x−b−1 dx
)1

p

≤ p
b

(∫
∞

0
| f (t)|pt p−b−1 dt

)1
p

,(∫
∞

0

(∫
∞

x
| f (t)|dt

)p

xb−1 dx
)1

p

≤ p
b

(∫
∞

0
| f (t)|pt p+b−1 dt

)1
p

.

[
Hint: On the multiplicative group (R+, dt

t ) consider the convolution of the function

| f (x)|x1− b
p with x−

b
p χ[1,∞) and of the function | f (x)|x1+ b

p with x
b
p χ(0,1].

]
1.2.9. On Rn let T ( f ) = f ∗K, where K is a positive L1 function and f is in Lp,
1≤ p≤ ∞. Prove that the operator norm of T : Lp → Lp is equal to

∥∥K
∥∥

L1 .[
Hint: Clearly, ‖T‖Lp→Lp ≤‖K‖L1 . Conversely, fix 0 < ε < 1 and let N be a positive

integer. Let χN = χB(0,N) and for any R > 0 let KR = KχB(0,R), where B(x,R) is the
ball of radius R centered at x. Observe that for |x| ≤ (1− ε)N, we have B(0,Nε)⊆
B(x,N); thus

∫
Rn χN(x− y)KNε(y)dy =

∫
Rn KNε(y)dy =

∥∥KNε

∥∥
L1 . Then∥∥K ∗χN

∥∥p
Lp

‖χN‖p
Lp

≥

∥∥KNε ∗χN
∥∥p

Lp(B(0,(1−ε)N)∥∥χN
∥∥p

Lp

≥
∥∥KNε

∥∥p
L1(1− ε)n .

Let N → ∞ first and then ε → 0.
]

1.2.10. On the multiplicative group (R+, dt
t ) let T ( f ) = f ∗K, where K is a positive

L1 function and f is in Lp, 1 ≤ p ≤ ∞. Prove that the operator norm of T : Lp → Lp

is equal to the L1 norm of K. Deduce that the constants p/(p−1) and p/b are sharp
in Exercises 1.2.7 and 1.2.8.[
Hint: Adapt the idea of Exercise 1.2.9 to this setting.

]
1.2.11. Let Q j(t) = c j(1− t2) j for t ∈ [−1,1] and zero elsewhere, where c j is cho-
sen such that

∫ 1
−1 Q j(t)dt = 1 for all j = 1,2, . . . .

(a) Show that c j <
√

j.
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(b) Use part (a) to show that {Q j} j is an approximate identity on R as j → ∞.
(c) Given a continuous function f on R that vanishes outside the interval [−1,1],
show that f ∗Q j converges to f uniformly on [−1,1].
(d) (Weierstrass ) Prove that every continuous function on [−1,1] can be approxi-
mated uniformly by polynomials.[
Hint: Part (a): Consider the integral

∫
|t|≤n−1/2 Q j(t)dt. Part (d): Consider the func-

tion g(t) = f (t)− f (−1)− t+1
2 ( f (1)− f (−1)).

]
1.2.12. (Christ and Grafakos [51]) Let F ≥ 0, G ≥ 0 be measurable functions on
the sphere Sn−1 and let K ≥ 0 be a measurable function on [−1,1]. Prove that∫

Sn−1

∫
Sn−1

F(θ)G(ϕ)K(θ ·ϕ)dϕ dθ ≤C
∥∥F
∥∥

Lp(Sn−1)

∥∥G
∥∥

Lp′ (Sn−1) ,

where 1≤ p≤∞, θ ·ϕ = ∑
n
j=1 θ jϕ j and C =

∫
Sn−1 K(θ ·ϕ)dϕ, which is independent

of θ . Moreover, show that C is the best possible constant in the preceding inequality.
Using duality, compute the norm of the linear operator

F(θ) 7→
∫

Sn−1
F(θ)K(θ ·ϕ)dϕ

from Lp(Sn−1) to itself.[
Hint: Observe that

∫
Sn−1

∫
Sn−1 F(θ)G(ϕ)K(θ ·ϕ)dϕ dθ is bounded by the quan-

tity
{∫

Sn−1
[∫

Sn−1 F(θ)K(θ ·ϕ)dθ
]p dϕ

} 1
p ‖G‖Lp′ (Sn−1). Apply Hölder’s inequality

to the functions F and 1 with respect to the measure K(θ ·ϕ)dθ to deduce that∫
Sn−1 F(θ)K(θ ·ϕ)dθ is controlled by(∫

Sn−1
F(θ)pK(θ ·ϕ)dθ

)1/p(∫
Sn−1

K(θ ·ϕ)dθ

)1/p′

.

Use Fubini’s theorem to bound the latter by

‖F‖Lp(Sn−1)‖G‖Lp′ (Sn−1)

∫
Sn−1

K(θ ·ϕ)dϕ.

Note that equality is attained if and only if both F and G are constants.
]

1.3 Interpolation

The theory of interpolation of operators is vast and extensive. In this section we
are mainly concerned with a couple of basic interpolation results that appear in a
variety of applications and constitute the foundation of the field. These results are
the Marcinkiewicz interpolation theorem and the Riesz–Thorin interpolation theo-
rem. These theorems are traditionally proved using real and complex variables tech-
niques, respectively. A byproduct of the Riesz–Thorin interpolation theorem, Stein’s
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theorem on interpolation of analytic families of operators, has also proved to be an
important and useful tool in many applications and is presented at the end of the
section.

We begin by setting up the background required to formulate the results of this
section. Let (X ,µ) and (Y,ν) be two measure spaces. Suppose we are given a linear
operator T , initially defined on the set of simple functions on X , such that for all f
simple on X , T ( f ) is a ν-measurable function on Y . Let 0 < p < ∞ and 0 < q < ∞.
If there exists a constant Cp,q > 0 such that for all simple functions f on X we have∥∥T ( f )

∥∥
Lq(Y,ν) ≤Cp,q

∥∥ f
∥∥

Lp(X ,µ) , (1.3.1)

then by density, T admits a unique bounded extension from Lp(X ,µ) to Lq(Y,ν).
This extension is also denoted by T . Operators that map Lp to Lq are called of strong
type (p,q) and operators that map Lp to Lq,∞ are called weak type (p,q).

1.3.1 Real Method: The Marcinkiewicz Interpolation Theorem

Definition 1.3.1. Let T be an operator defined on a linear space of complex-valued
measurable functions on a measure space (X ,µ) and taking values in the set of all
complex-valued finite almost everywhere measurable functions on a measure space
(Y,ν). Then T is called linear if for all f , g and all λ ∈ C, we have

T ( f +g) = T ( f )+T (g) and T (λ f ) = λT ( f ). (1.3.2)

T is called sublinear if for all f , g and all λ ∈ C, we have

|T ( f +g)| ≤ |T ( f )|+ |T (g)| and |T (λ f )|= |λ ||T ( f )|. (1.3.3)

T is called quasilinear if for all f , g and all λ ∈ C, we have

|T ( f +g)| ≤ K(|T ( f )|+ |T (g)|) and |T (λ f )|= |λ ||T ( f )| (1.3.4)

for some constant K > 0. Sublinearity is a special case of quasilinearity.

We begin with the first interpolation theorem.

Theorem 1.3.2. Let (X ,µ) and (Y,ν) be measure spaces and let 0 < p0 < p1 ≤ ∞.
Let T be a sublinear operator defined on the space Lp0(X)+Lp1(X) and taking val-
ues in the space of measurable functions on Y . Assume that there exist two positive
constants A0 and A1 such that∥∥T ( f )

∥∥
Lp0,∞(Y ) ≤ A0

∥∥ f
∥∥

Lp0 (X) for all f ∈ Lp0(X) , (1.3.5)∥∥T ( f )
∥∥

Lp1,∞(Y ) ≤ A1
∥∥ f
∥∥

Lp1 (X) for all f ∈ Lp1(X) . (1.3.6)

Then for all p0 < p < p1 and for all f in Lp(X) we have the estimate
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∥∥

Lp(Y ) ≤ A
∥∥ f
∥∥

Lp(X) , (1.3.7)

where

A = 2
(

p
p− p0

+
p

p1− p

)1
p

A

1
p−

1
p1

1
p0

− 1
p1

0 A

1
p0

− 1
p

1
p0

− 1
p1

1 . (1.3.8)

Proof. Assume first that p1 < ∞. Fix f a function in Lp(X) and α > 0. We split
f = f α

0 + f α
1 , where f α

0 is in Lp0 and f α
1 is in Lp1 . The splitting is obtained by

cutting | f | at height δα for some δ > 0 to be determined later. Set

f α
0 (x) =

{
f (x) for | f (x)|> δα,

0 for | f (x)| ≤ δα,

f α
1 (x) =

{
f (x) for | f (x)| ≤ δα,

0 for | f (x)|> δα.

It can be checked easily that f α
0 (the unbounded part of f ) is an Lp0 function and

that f α
1 (the bounded part of f ) is an Lp1 function. Indeed, since p0 < p, we have∥∥ f α

0
∥∥p0

Lp0 =
∫
| f |>δα

| f |p| f |p0−p dµ(x)≤ (δα)p0−p∥∥ f
∥∥p

Lp

and similarly, since p < p1,∥∥ f α
1
∥∥p1

Lp1 ≤ (δα)p1−p∥∥ f
∥∥p

Lp .

By the sublinearity property (1.3.3) we obtain that

|T ( f )| ≤ |T ( f α
0 )|+ |T ( f α

1 )| ,

which implies

{x : |T ( f )(x)|> α} ⊆ {x : |T ( f α
0 )(x)|> α/2}∪{x : |T ( f α

1 )(x)|> α/2} ,

and therefore
dT ( f )(α)≤ dT ( f α

0 )(α/2)+dT ( f α
1 )(α/2) . (1.3.9)

Hypotheses (1.3.5) and (1.3.6) together with (1.3.9) now give

dT ( f )(α)≤
Ap0

0
(α/2)p0

∫
| f |>δα

| f (x)|p0 dµ(x)+
Ap1

1
(α/2)p1

∫
| f |≤δα

| f (x)|p1 dµ(x).

In view of the last estimate and Proposition 1.1.4, we obtain that
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∥∥p

Lp ≤ p(2A0)p0

∫
∞

0
α

p−1
α
−p0

∫
| f |>δα

| f (x)|p0 dµ(x)dα

+ p(2A1)p1

∫
∞

0
α

p−1
α
−p1

∫
| f |≤δα

| f (x)|p1 dµ(x)dα

= p(2A0)p0

∫
X
| f (x)|p0

∫ 1
δ
| f (x)|

0
α

p−1−p0 dα dµ(x)

+ p(2A1)p1

∫
X
| f (x)|p1

∫
∞

1
δ
| f (x)|

α
p−1−p1 dα dµ(x)

=
p(2A0)p0

p− p0

1
δ p−p0

∫
X
| f (x)|p0 | f (x)|p−p0 dµ(x)

+
p(2A1)p1

p1− p
1

δ p−p1

∫
X
| f (x)|p1 | f (x)|p−p1 dµ(x)

= p
(

(2A0)p0

p− p0

1
δ p−p0

+
(2A1)p1

p1− p
δ

p1−p
)∥∥ f

∥∥p
Lp ,

and the convergence of the integrals in α is justified from p0 < p < p1. We pick
δ > 0 such that

(2A0)p0
1

δ p−p0
= (2A1)p1δ

p1−p ,

and observe that the last displayed constant is equal to the pth power of the constant
in (1.3.8). We have therefore proved the theorem when p1 < ∞.

We now consider the case p1 = ∞. Write f = f α
0 + f α

1 , where

f α
0 (x) =

{
f (x) for | f (x)|> γα,

0 for | f (x)| ≤ γα,

f α
1 (x) =

{
f (x) for | f (x)| ≤ γα,

0 for | f (x)|> γα.

We have ∥∥T ( f α
1 )
∥∥

L∞ ≤ A1
∥∥ f α

1
∥∥

L∞ ≤ A1γα = α/2 ,

provided we choose γ = (2A1)−1. It follows that the set {x : |T ( f α
1 )(x)|> α/2} has

measure zero. Therefore,

dT ( f )(α)≤ dT ( f α
0 )(α/2).

Since T maps Lp0 to Lp0,∞, it follows that

dT ( f α
0 )(α/2)≤

(2A0)p0
∥∥ f α

0

∥∥p0
Lp0

α p0
=

(2A0)p0

α p0

∫
| f |>γα

| f (x)|p0 dµ(x). (1.3.10)

Using (1.3.10) and Proposition 1.1.4, we obtain
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∥∥p

Lp = p
∫

∞

0
α

p−1dT ( f )(α)dα

≤ p
∫

∞

0
α

p−1dT ( f α
0 )(α/2)dα

≤ p
∫

∞

0
α

p−1 (2A0)p0

α p0

∫
| f |>α/(2A1)

| f (x)|p0 dµ(x)dα

= p(2A0)p0

∫
X
| f (x)|p0

∫ 2A1| f (x)|

0
α

p−p0−1 dα dµ(x)

=
p(2A1)p−p0(2A0)p0

p− p0

∫
X
| f (x)|p dµ(x) .

This proves the theorem with constant

A = 2
(

p
p− p0

) 1
p

A
1− p0

p
1 A

p0
p

0 . (1.3.11)

Observe that when p1 = ∞, the constant in (1.3.11) coincides with that in (1.3.8). �

Remark 1.3.3. If T is a linear operator (instead of sublinear), then we can relax
the hypotheses of Theorem 1.3.2 by assuming that (1.3.5) and (1.3.6) hold for all
simple functions f on X . Then the functions f α

0 and f α
1 constructed in the proof are

also simple, and we conclude that (1.3.7) holds for all simple functions f on X . By
density, T has a unique extension on Lp(X) that also satisfies (1.3.7).

1.3.2 Complex Method: The Riesz–Thorin Interpolation Theorem

The next interpolation theorem assumes stronger endpoint estimates, but yields a
more natural bound on the norm of the operator on the intermediate spaces. Unfor-
tunately, it is mostly applicable for linear operators and in some cases for sublinear
operators (often via a linearization process). It does not apply to quasilinear opera-
tors without some loss in the constant. A short history of this theorem is discussed
at the end of this chapter.

Theorem 1.3.4. Let (X ,µ) and (Y,ν) be two measure spaces. Let T be a linear
operator defined on the set of all simple functions on X and taking values in the set
of measurable functions on Y . Let 1≤ p0, p1,q0,q1 ≤ ∞ and assume that∥∥T ( f )

∥∥
Lq0 ≤M0

∥∥ f
∥∥

Lp0 ,∥∥T ( f )
∥∥

Lq1 ≤M1
∥∥ f
∥∥

Lp1 ,
(1.3.12)

for all simple functions f on X. Then for all 0 < θ < 1 we have∥∥T ( f )
∥∥

Lq ≤M1−θ

0 Mθ
1
∥∥ f
∥∥

Lp (1.3.13)
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for all simple functions f on X, where

1
p

=
1−θ

p0
+

θ

p1
and

1
q

=
1−θ

q0
+

θ

q1
. (1.3.14)

By density, T has a unique extension as a bounded operator from Lp(X ,µ) to
Lq(Y,ν) for all p and q as in (1.3.14).

We note that in many applications, T may be defined on Lp0 +Lp1 , in which case
hypothesis (1.3.12) and conclusion (1.3.13) can be stated in terms of functions in
the corresponding Lebesgue spaces.

Proof. Let

f =
m

∑
k=1

akeiαk χAk

be a simple function on X , where ak > 0, αk are real, and Ak are pairwise disjoint
subsets of X with finite measure.

We need to control∥∥T ( f )
∥∥

Lq(Y,ν) = sup
∣∣∣∣∫Y

T ( f )(x)g(x)dν(x)
∣∣∣∣ ,

where the supremum is taken over all simple functions g on Y with Lq′ norm less
than or equal to 1. Write

g =
n

∑
j=1

b jeiβ j χB j , (1.3.15)

where b j > 0, β j are real, and B j are pairwise disjoint subsets of Y with finite mea-
sure. Let

P(z) =
p
p0

(1− z)+
p
p1

z and Q(z) =
q′

q′0
(1− z)+

q′

q′1
z . (1.3.16)

For z in the closed strip S = {z ∈ C : 0 ≤ Rez≤ 1}, define

F(z) =
∫

Y
T ( fz)(x)gz(x)dν(x) ,

where

fz =
m

∑
k=1

aP(z)
k eiαk χAk , gz =

n

∑
j=1

bQ(z)
j eiβ j χB j . (1.3.17)

By linearity,

F(z) =
m

∑
k=1

n

∑
j=1

aP(z)
k bQ(z)

j eiαk eiβ j

∫
Y

T (χAk)(x)χB j(x)dν(x) ,

and hence F is analytic in z, since ak,b j > 0.
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Let us now consider a z ∈ S with Rez = 0. By the disjointness of the sets Ak we

have
∥∥ fz
∥∥p0

Lp0 =
∥∥ f
∥∥p

Lp , since |aP(z)
k |= a

p
p0
k . Similarly, by the disjointness of the sets

B j we have that
∥∥gz
∥∥q′0

Lq′0
=
∥∥g
∥∥q′

Lq′ , since |bQ(z)
j |= b

q′
q′0
j .

By the same token, when Rez = 1, we have
∥∥ fz
∥∥p1

Lp1 =
∥∥ f
∥∥p

Lp and
∥∥gz
∥∥q′1

Lq′1
=∥∥g

∥∥q′

Lq′ . Hölder’s inequality and the hypothesis now give

|F(z)| ≤
∥∥T ( fz)

∥∥
Lq0

∥∥gz
∥∥

Lq′0

≤M0
∥∥ fz
∥∥

Lp0

∥∥gz
∥∥

Lq′0
= M0

∥∥ f
∥∥ p

p0
Lp

∥∥g
∥∥ q′

q′0
Lq′ ,

(1.3.18)

when Rez = 0. Similarly, we obtain

|F(z)| ≤M1
∥∥ f
∥∥ p

p1
Lp

∥∥g
∥∥ q′

q′1
Lq′ , (1.3.19)

when Rez = 1.
We state the following lemma, known as Hadamard’s three lines lemma, whose

proof we postpone until the end of this section.

Lemma 1.3.5. Let F be analytic in the open strip S = {z ∈ C : 0 < Re z < 1},
continuous and bounded on its closure, such that |F(z)| ≤ B0 when Re z = 0 and
|F(z)| ≤ B1 when Re z = 1, where 0 < B0,B1 < ∞. Then |F(z)| ≤ B1−θ

0 Bθ
1 when

Re z = θ , for any 0≤ θ ≤ 1.

Returning to the proof of Theorem 1.3.4, we observe that F is analytic in the
open strip S and continuous on its closure. Also, F is bounded on the closed unit
strip (by some constant that depends on f and g). Therefore, (1.3.18), (1.3.19), and
Lemma 1.3.5 give

|F(z)| ≤
(

M0
∥∥ f
∥∥ p

p0
Lp

∥∥g
∥∥ q′

q′0
Lq′

)1−θ(
M1
∥∥ f
∥∥ p

p1
Lp

∥∥g
∥∥ q′

q′1
Lq′

)θ

= M1−θ

0 Mθ
1
∥∥ f
∥∥

Lp

∥∥g
∥∥

Lq′ ,

when Rez = θ . Observe that P(θ) = Q(θ) = 1 and hence

F(θ) =
∫

Y
T ( f )gdν .

Taking the supremum over all simple functions g on Y with Lq′ norm less than or
equal to one, we conclude the proof of the theorem. �

We now give an application of the theorem just proved.
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Example 1.3.6. One may prove Young’s inequality (Theorem 1.2.12) using the
Riesz–Thorin interpolation theorem (Theorem 1.3.4). Fix a function g in Lr and
let T ( f ) = f ∗g. Since T : L1 → Lr with norm at most

∥∥g
∥∥

Lr and T : Lr′ → L∞ with
norm at most

∥∥g
∥∥

Lr , Theorem 1.3.4 gives that T maps Lp to Lq with norm at most

the quantity
∥∥g
∥∥θ

Lr

∥∥g
∥∥1−θ

Lr =
∥∥g
∥∥

Lr , where

1
p

=
1−θ

1
+

θ

r′
and

1
q

=
1−θ

r
+

θ

∞
. (1.3.20)

Finally, observe that equations (1.3.20) give (1.2.13).

1.3.3 Interpolation of Analytic Families of Operators

Theorem 1.3.4 can now be extended to the case in which the interpolated operators
are allowed to vary. In particular, if a family of operators depends analytically on a
parameter z, then the proof of this theorem can be adapted to work in this setting.

We now describe the setup for this theorem. Let (X ,µ) and (Y,ν) be measure
spaces. Suppose that for every z in the closed strip S = {z ∈C : 0≤ Rez≤ 1} there
is an associated linear operator Tz defined on the space of simple functions on X and
taking values in the space of measurable functions on Y such that∫

Y
|Tz( f )g|dν < ∞ (1.3.21)

whenever f and g are simple functions on X and Y , respectively. The family {Tz}z
is said to be analytic if the function

z 7→
∫

Y
Tz( f )gdν (1.3.22)

is analytic in the open strip S = {z∈C : 0 < Rez < 1} and continuous on its closure.
Finally, the analytic family is of admissible growth if there is a constant a < π and
a constant C f ,g such that

e−a|Imz| log
∣∣∣∣∫Y

Tz( f )gdν

∣∣∣∣≤C f ,g < ∞ (1.3.23)

for all z satisfying 0 ≤ Rez ≤ 1. The extension of the Riesz–Thorin interpolation
theorem is now stated.

Theorem 1.3.7. Let Tz be an analytic family of linear operators of admissible
growth. Let 1≤ p0, p1,q0,q1 ≤∞ and suppose that M0 and M1 are positive functions
on the real line such that

sup
−∞<y<+∞

e−b|y| logM j(y) < ∞ (1.3.24)
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for j = 0,1 and some b < π . Let 0 < θ < 1 satisfy

1
p

=
1−θ

p0
+

θ

p1
and

1
q

=
1−θ

q0
+

θ

q1
. (1.3.25)

Suppose that ∥∥Tiy( f )
∥∥

Lq0 ≤M0(y)
∥∥ f
∥∥

Lp0 , (1.3.26)∥∥T1+iy( f )
∥∥

Lq1 ≤M1(y)
∥∥ f
∥∥

Lp1 , (1.3.27)

for all simple functions f on X. Then∥∥Tθ ( f )
∥∥

Lq ≤M(θ)
∥∥ f
∥∥

Lp when 0 < θ < 1 (1.3.28)

for all simple functions f on X, where for 0 < t < 1,

M(t) = exp
{

sin(πt)
2

∫
∞

−∞

[
logM0(y)

cosh(πy)−cos(πt)
+

logM1(y)
cosh(πy)+cos(πt)

]
dy
}

.

By density, Tθ has a unique extension as a bounded operator from Lp(X ,µ) to
Lq(Y,ν) for all p and q as in (1.3.25).

As expected, the proof of the previous theorem is based on an extension of
Lemma 1.3.5.

Lemma 1.3.8. Let F be analytic on the open strip S = {z ∈ C : 0 < Re z < 1} and
continuous on its closure such that

sup
z∈S

e−a|Im z| log |F(z)| ≤ A < ∞ (1.3.29)

for some fixed A and a < π . Then

|F(x)| ≤ exp
{

sin(πx)
2

∫
∞

−∞

[
log |F(iy)|

cosh(πy)−cos(πx)
+

log |F(1+ iy)|
cosh(πy)+cos(πx)

]
dy
}

whenever 0 < x < 1.

Assuming Lemma 1.3.8, we prove Theorem 1.3.7.

Proof. As in the proof of Theorem 1.3.4, we work with simple functions f on X
and g on Y . Fix 0 < θ < 1 and also fix simple functions f ,g such that

∥∥ f
∥∥

Lp = 1 =∥∥g
∥∥

Lq′ . Let

f =
m

∑
k=1

akeiαk χAk and g =
n

∑
j=1

b jeiβ j χB j ,

where ak > 0, b j > 0, αk, βk are real, Ak are pairwise disjoint subsets of X with finite
measure, and B j are pairwise disjoint subsets of Y with finite measure. Let fz and gz
be as in the proof of Theorem 1.3.4. Define
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F(z) =
∫

Y
Tz( fz)gz dν . (1.3.30)

It follows from the assumptions about {Tz}z that F(z) is an analytic function that
satisfies the hypotheses of Lemma 1.3.8. Moreover,∥∥ fiy

∥∥p0
Lp0 =

∥∥ f
∥∥p

Lp = 1 =
∥∥g
∥∥q′

Lq′ =
∥∥giy

∥∥q′0
Lq′0

when y ∈ R , (1.3.31)∥∥ f1+iy
∥∥p1

Lp1 =
∥∥ f
∥∥p

Lp = 1 =
∥∥g
∥∥q′

Lq′ =
∥∥g1+iy

∥∥q′1
Lq′1

when y ∈ R . (1.3.32)

Hölder’s inequality, (1.3.31), and the hypothesis (1.3.26) now give

|F(iy)| ≤
∥∥Tiy( fiy)

∥∥
Lq0

∥∥giy
∥∥

Lq′0

≤M0(y)
∥∥ fiy

∥∥
Lp0

∥∥giy
∥∥

Lq′0
= M0(y)

for all y real. Similarly, (1.3.32), and (1.3.27) imply

|F(1+ iy)| ≤
∥∥T1+iy( f1+iy)

∥∥
Lq1

∥∥g1+iy
∥∥

Lq′1

≤M1(y)
∥∥ f1+iy

∥∥
Lp1

∥∥g1+iy
∥∥

Lq′1
= M1(y) .

for all y ∈ R. Therefore, the hypotheses of Lemma 1.3.8 are satisfied. We conclude
that ∣∣∣∣∫Y

Tθ ( f )gdν

∣∣∣∣= |F(θ)| ≤M(θ) , (1.3.33)

where M(x) is the function given in the hypothesis of the theorem.
Taking the supremum over all simple functions g on Y with Lq′ norm equal to

one, we conclude the proof of the theorem. �

1.3.4 Proofs of Lemmas 1.3.5 and 1.3.8

Proof of Lemma 1.3.5. Define analytic functions

G(z) = F(z)(B1−z
0 Bz

1)
−1 and Gn(z) = G(z)e(z2−1)/n .

Since F is bounded on the closed unit strip and B1−z
0 Bz

1 is bounded from below,
we conclude that G is bounded by some constant M on the closed strip. Also, G is
bounded by one on its boundary. Since

|Gn(x+ iy)| ≤Me−y2/ne(x2−1)/n ≤Me−y2/n ,
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we deduce that Gn(x+ iy) converges to zero uniformly in 0≤ x≤ 1 as |y| → ∞. Se-
lect y(n) > 0 such that for |y| ≥ y(n), |Gn(x+ iy)| ≤ 1 uniformly in x ∈ [0,1]. By the
maximum principle we obtain that |Gn(z)| ≤ 1 in the rectangle [0,1]× [−y(n),y(n)];
hence |Gn(z)| ≤ 1 everywhere in the closed strip. Letting n → ∞, we conclude that
|G(z)| ≤ 1 in the closed strip.

�
Having disposed of the proof of Lemma 1.3.5, we end this section with a proof

of Lemma 1.3.8.

Proof of Lemma 1.3.8. Recall the Poisson integral formula

U(z) =
1

2π

∫ +π

−π

U(Reiϕ)
R2−ρ2

|Reiϕ −ρeiθ |2
dϕ , z = ρeiθ , (1.3.34)

which is valid for a harmonic function U defined on the unit disk D = {z : |z|< 1}
when |z|< R < 1. See Rudin [229, p. 258].

Consider now a subharmonic function u on D that is continuous on the circle
|ζ |= R < 1. When U = u, the right side of (1.3.34) defines a harmonic function on
the set {z ∈ C : |z|< R} that coincides with u on the circle |ζ |= R. The maximum
principle for subharmonic functions (Rudin [229, p. 362]) implies that for |z|< R <
1 we have

u(z)≤ 1
2π

∫ +π

−π

u(Reiϕ)
R2−ρ2

|Reiϕ −ρeiθ |2
dϕ , z = ρeiθ . (1.3.35)

This is valid for all subharmonic functions u on D that are continuous on the circle
|ζ |= R when ρ < R < 1.

It is not difficult to verify that

h(ζ ) =
1
πi

log
(

i
1+ζ

1−ζ

)
is a conformal map from D onto the strip S = (0,1)×R. Indeed, i(1 + ζ )/(1− ζ )
lies in the upper half-plane and the preceding complex logarithm is a well defined
holomorphic function that takes the upper half-plane onto the strip R×(0,π). Since
F ◦ h is a holomorphic function on D, log |F ◦ h| is a subharmonic function on D.
Applying (1.3.35) to the function z 7→ log |F(h(z))|, we obtain

log |F(h(z))| ≤ 1
2π

∫ +π

−π

log |F(h(Reiϕ))| R2−ρ2

R2−2ρRcos(θ −ϕ)+ρ2 dϕ (1.3.36)

when z = ρeiϕ and |z| = ρ < R. Observe that when |ζ | = 1 and ζ 6= ±1, h(ζ ) has
real part zero or one. It follows from the hypothesis that

log |F(h(ζ ))| ≤ Aea|Imh(ζ )| = Aea
∣∣∣Im 1

πi log
(

i 1+ζ

1−ζ

)∣∣∣ ≤ Ae
a
π

∣∣∣log | 1+ζ

1−ζ
|
∣∣∣
.
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Therefore, log |F(h(ζ ))| is bounded by a multiple of |1 + ζ |−a/π + |1− ζ |−a/π ,
which is integrable over the set |ζ |= 1, since a < π . Fix now z = ρeiθ with ρ < R
and let R→ 1 in (1.3.36). The Lebesgue dominated convergence theorem gives that

log |F(h(ρeiθ ))| ≤ 1
2π

∫ +π

−π

log |F(h(eiϕ))| 1−ρ2

1−2ρ cos(θ −ϕ)+ρ2 dϕ . (1.3.37)

Setting x = h(ρeiθ ), we obtain that

ρeiθ = h−1(x) =
eπix− i
eπix + i

=−i
cos(πx)

1+ sin(πx)
=
{

cos(πx)
1+ sin(πx)

}
e−i(π/2) ,

from which it follows that ρ = (cos(πx))/(1 + sin(πx)) and θ = −(π/2), when
0 < x ≤ 1

2 , while ρ =−(cos(πx))/(1+ sin(πx)) and θ = π/2, when 1
2 ≤ x < 1. In

either case we easily deduce that

1−ρ2

1−2ρ cos(θ −ϕ)+ρ2 =
sin(πx)

1+ cos(πx)sin(ϕ)
.

Using this we write (1.3.37) as

log |F(x)| ≤ 1
2π

∫
π

−π

sin(πx)
1+ cos(πx)sin(ϕ)

log |F(h(eiϕ))|dϕ . (1.3.38)

We now change variables. On the interval [−π,0) we use the change of variables
iy = h(eiϕ) or, equivalently, eiϕ =− tanh(πy)− isech(πy). Observe that as ϕ ranges
from −π to 0, y ranges from +∞ to −∞. Furthermore, dϕ = −π sech(πy)dy. We
have

1
2π

∫ 0

−π

sin(πx)
1+ cos(πx)sin(ϕ)

log |F(h(eiϕ))|dϕ

=
1
2

∫
∞

−∞

sin(πx)
cosh(πy)− cos(πx)

log |F(iy)|dy .

(1.3.39)

On the interval (0,π] we use the change of variables 1+ iy = h(eiϕ) or, equivalently,
eiϕ =− tanh(πy)+ isech(πy). Observe that as ϕ ranges from 0 to π , y ranges from
−∞ to +∞. Furthermore, dϕ = π sech(πy)dy. Similarly, we obtain

1
2π

∫
π

0

sin(πx)
1+ cos(πx)sin(ϕ)

log |F(h(eiϕ))|dϕ

=
1
2

∫ +∞

−∞

sin(πx)
cosh(πy)+ cos(πx)

log |F(1+ iy)|dy.
(1.3.40)

Now add (1.3.39) and (1.3.40) and use (1.3.38) to conclude the proof. �
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Exercises

1.3.1. Generalize Theorem 1.3.2 to the situation in which T is quasilinear, that is,
it satisfies for some K > 0,

|T (λ f )|= |λ | |T ( f )| and |T ( f +g)| ≤ K(|T ( f )|+ |T (g)|) ,

for all λ ∈ C, and all f , g in the domain of T . Prove that in this case, the constant A
in (1.3.7) can be taken to be K times the constant in (1.3.8).

1.3.2. Let 1 < p < r ≤ ∞ and suppose that T is a linear operator that maps L1 to
L1,∞ with norm A0 and Lr to Lr with norm A1. Prove that T maps Lp to Lp with norm
at most

8(p−1)−
1
p A

1
p−

1
r

1− 1
r

0 A

1− 1
p

1− 1
r

1 .[
Hint: First interpolate between L1 and Lr using Theorem 1.3.2 and then interpolate

between L
p+1

2 and Lr using Theorem 1.3.4.
]

1.3.3. Let 0 < p0 < p < p1 ≤ ∞ and let T be an operator as in Theorem 1.3.2 that
also satisfies

|T ( f )| ≤ T (| f |) ,

for all f ∈ Lp0 +Lp1 .
(a) If p0 = 1 and p1 = ∞, prove that T maps Lp to Lp with norm at most

p
p−1

A
1
p
0 A

1− 1
p

1 .

(b) More generally, if p0 < p < p1 = ∞, prove that the norm of T from Lp to Lp is
at most

p1+ 1
p

[
B(p0 +1, p− p0)
pp0

0 (p− p0)p−p0

] 1
p

A
p0
p

0 A
1− p0

p
1 ,

where B(s, t) =
∫ 1

0 xs−1(1− x)t−1 dx is the usual Beta function.
(c) When 0 < p0 < p1 < ∞, then the norm of T from Lp to Lp is at most

min
0<λ<1

p
1
p

(
B(p− p0, p0 +1)

(1−λ )p0
+

p1−p+1
p1−p

λ p1

) 1
p

A

1
p−

1
p1

1
p0

− 1
p1

0 A

1
p0

− 1
p

1
p0

− 1
p1

1 .

[
Hint: Parts (a), (b): The hypothesis |T ( f )| ≤ T (| f |) reduces matters to nonneg-

ative functions. For f ≥ 0 and for fixed α > 0 write f = f0 + f1, where f0 =
f − λα/A1 when f ≥ λα/A1 and zero otherwise for some 0 < λ < 1. Then we
have that |{|T ( f )|> α}| ≤ |{|T ( f0)|> (1−λ )α}|. When p1 < ∞ write f = f0 + f1,
where f0 = f − δα when f ≥ δα and zero otherwise. Use that |{|T ( f )| > α}| ≤
|{|T ( f0)|> (1−λ )α}|+ |{|T ( f1)|> λα}| and optimize over δ > 0.

]
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1.3.4. Let 0 < α,β < π . Let Tz be a family of linear operators defined on the strip
Sa,b = {z ∈ C : a ≤ Rez ≤ b} that is analytic on the interior of Sa,b, in the sense of
(1.3.22), continuous on its closure, and satisfies for all z ∈ Sa,b,

e−α|Imz|/(b−a) log
∣∣∣∣∫Y

Tz( f )gdν

∣∣∣∣≤C f ,g < ∞ .

Let 1 ≤ p0,q0, p1,q1 ≤ ∞. Suppose that Ta+iy maps Lp0(X) to Lq0(Y ) with bound
M0(y) and Tb+iy maps Lp1(X) to Lq1(Y ) with bound M1(y), where

sup
−∞<y<∞

e−β |y|/(b−a) logM j(y) < ∞ , j = 0,1.

Then for a < t < b, Tt maps Lp(X) to Lq(Y ), where

1
p

=
b−t
b−a

p0
+

t−a
b−a

p1
and

1
q

=
b−t
b−a

q0
+

t−a
b−a

q1
.

1.3.5. (Stein [251] ) On Rn let Kλ (x1, . . . ,xn) be the function

π
n−1

2 Γ (λ +1)
Γ (λ + n+1

2 )

∫ +1

−1
e2πis(x2

1+···+x2
n)1/2

(1− s2)λ+ n−1
2 ds ,

where λ is a complex number. Let Tλ be the operator given by convolution with Kλ .
Show that Tλ maps Lp(Rn) to itself for Reλ > (n−1)| 1

2 −
1
p |.[

Hint: Using the result in Appendix B.5, show that when Reλ = 0, Tλ maps L2(Rn)
to itself with norm 1. Using the estimates in Appendices B.6 and B.7, conclude that
Tλ maps L1(Rn) to itself with an appropriate constant when Re λ = (n− 1)/2 + δ

(for δ > 0) and then appeal to Theorem 1.3.7.
]

1.3.6. Under the same hypotheses as in Theorem 1.3.7, prove the stronger conclu-
sion ∥∥Tz( f )

∥∥
Lq ≤ B(z)

∥∥ f
∥∥

Lp

for z in the open strip S = (0,1)×R, where

B(t + is) = exp
{

sin(πt)
2

∫
∞

−∞

[
logM0(y)

cosh(π(y− s))− cos(πt)

+
logM1(y)

cosh(π(y− s))+ cos(πt)

]
dy
}

.

[
Hint: Apply Theorem 1.3.7 to the analytic family T̃z = Tz+is.

]
1.3.7. (Yano [294] ) Let (X ,µ) and (Y,ν) be two measure spaces with µ(X) < ∞

and ν(Y ) < ∞. Let T be a sublinear operator that maps Lp(X) to Lp(Y ) for every
1 < p ≤ 2 with norm

∥∥T
∥∥

Lp→Lp ≤ A(p−1)−α for some fixed A,α > 0. Prove that
for all f measurable on X we have
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Y
|T ( f )|dν ≤ 6A(1+ν(Y ))

1
2

[∫
X
| f |(log+

2 | f |)
α dµ +Cα + µ(X)

1
2

]
,

where Cα = ∑
∞
k=1 kα(2/3)k. This result provides an example of extrapolation.[

Hint: Write

f =
∞

∑
k=0

f χSk ,

where Sk = {2k ≤ | f | < 2k+1} when k ≥ 1 and S0 = {| f | < 2}. Using Hölder’s
inequality and the hypotheses on T , obtain that∫

Y
|T ( f χSk)|dν ≤ 2Aν(Y )

1
k+1 2kkα

µ(Sk)
k

k+1

for k ≥ 1. Note that for k ≥ 1 we have ν(Y )
1

k+1 ≤ max(1,ν(Y ))
1
2 and consider the

cases µ(Sk) ≥ 3−k−1 and µ(Sk) ≤ 3−k−1 when summing in k ≥ 1. The term with
k = 0 is easier.

]
1.3.8. Prove that for 0 < x < 1 we have

1
2

∫ +∞

−∞

sin(πx)
cosh(πy)+ cos(πx)

dy = x ,

1
2

∫ +∞

−∞

sin(πx)
cosh(πy)− cos(πx)

dy = 1− x ,

and conclude that Lemma 1.3.8 is indeed an extension of Lemma 1.3.5.[
Hint: In the first integral write cosh(πy) = 1

2 (eπy + e−πy). Then use the change of
variables z = eπy.

]

1.4 Lorentz Spaces

Suppose that f is a measurable function on a measure space (X ,µ). It would be de-
sirable to have another function f ∗ defined on [0,∞) that is decreasing and equidis-
tributed with f . By this we mean

d f (α) = d f ∗(α) (1.4.1)

for all α ≥ 0. This is achieved via a simple construction discussed in this section.

1.4.1 Decreasing Rearrangements

Definition 1.4.1. Let f be a complex-valued function defined on X . The decreasing
rearrangement of f is the function f ∗ defined on [0,∞) by
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f ∗(t) = inf{s > 0 : d f (s)≤ t} . (1.4.2)

We adopt the convention inf /0 = ∞, thus having f ∗(t) = ∞ whenever d f (α) > t for
all α ≥ 0. Observe that f ∗ is decreasing and supported in [0,µ(X)].

Before we proceed with properties of the function f ∗, we work out three exam-
ples.

f(x)

a3

a2

a1

E3 E1 B2 B3E2 x

a1

a2

a3

0 0 B1 t

f*(t)

.

.

.

.

Fig. 1.3 The graph of a simple function f (x) and its decreasing rearrangement f ∗(t).

Example 1.4.2. Consider the simple function of Example 1.1.2,

f (x) =
N

∑
j=1

a jχE j(x) ,

where the sets E j have finite measure and are pairwise disjoint and a1 > · · · > aN .
We saw in Example 1.1.2 that

d f (α) =
N

∑
j=0

B jχ[a j+1,a j)(α) ,

where

B j =
j

∑
i=1

µ(Ei)

and aN+1 = B0 = 0 and a0 = ∞. Observe that for B0 ≤ t < B1, the smallest s > 0
with d f (s)≤ t is a1. Similarly, for B1 ≤ t < B2, the smallest s > 0 with d f (s)≤ t is
a2. Arguing this way, it is not difficult to see that

f ∗(t) =
N

∑
j=1

a jχ[B j−1,B j)(t) .
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Example 1.4.3. On (Rn,dx) let

f (x) =
1

1+ |x|p
, 0 < p < ∞ .

A computation shows that

d f (α) =

{
vn( 1

α
−1)

n
p if α < 1 ,

0 if α ≥ 1 ,

and therefore
f ∗(t) =

1
(t/vn)p/n +1

,

where vn is the volume of the unit ball in Rn.

Example 1.4.4. Again on (Rn,dx) let g(x) = 1− e−|x|
2
. We can easily see that

dg(α) = 0 if α ≥ 1 and dg(α) = ∞ if α < 1. We conclude that g∗(t) = 1 for all
t ≥ 0. This example indicates that although quantitative information is preserved,
significant qualitative information is lost in passing from a function to its decreas-
ing rearrangement.

It is clear from the previous examples that f ∗ is continuous from the right and
decreasing. The following are some properties of the function f ∗.

Proposition 1.4.5. For f , g, fn µ-measurable, k ∈C, and 0≤ t,s, t1, t2 < ∞ we have

(1) f ∗(d f (α))≤ α whenever α > 0.

(2) d f ( f ∗(t))≤ t.

(3) f ∗(t) > s if and only if t < d f (s); that is, {t ≥ 0 : f ∗(t) > s}= [0,d f (s)).

(4) |g| ≤ | f | µ-a.e. implies that g∗ ≤ f ∗ and | f |∗ = f ∗.

(5) (k f )∗ = |k| f ∗.

(6) ( f +g)∗(t1 + t2)≤ f ∗(t1)+g∗(t2).

(7) ( f g)∗(t1 + t2)≤ f ∗(t1)g∗(t2).

(8) | fn| ↑ | f | µ-a.e. implies f ∗n ↑ f ∗.

(9) | f | ≤ liminf
n→∞

| fn| µ-a.e. implies f ∗ ≤ liminf
n→∞

f ∗n .

(10) f ∗ is right continuous on [0,∞).

(11) t ≤ µ({| f | ≥ f ∗(t)}) if µ({| f | ≥ f ∗(t)− c}) < ∞ for some c > 0.

(12) d f = d f ∗ .

(13) (| f |p)∗ = ( f ∗)p when 0 < p < ∞ .

(14)
∫

X
| f |p dµ =

∫
∞

0
f ∗(t)p dt when 0 < p < ∞ .
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(15)
∥∥ f
∥∥

L∞ = f ∗(0).

(16) sup
t>0

tq f ∗(t) = sup
α>0

α
(
d f (α)

)q for 0 < q < ∞ .

Proof. Property (1): The set A = {s > 0 : d f (s) ≤ d f (α)} contains α and thus
f ∗(d f (α)) = infA≤ α .

Property (2): Let sn ∈ {s > 0 : d f (s)≤ t} be such that sn ↓ f ∗(t). Then d f (sn)≤ t,
and the right continuity of d f (Exercise 1.1.1(a)) implies that d f ( f ∗(t))≤ t.

Property (3): If s < f ∗(t) = inf{u > 0 : d f (u)≤ t}, then s /∈ {u > 0 : d f (u)≤ t}
which gives d f (s) > t. Conversely, if for some t < d f (s) we had f ∗(t)≤ s, applying
d f and using property (2) would yield the contradiction d f (s)≤ d f ( f ∗(t))≤ t.

Properties (4) and (5) are left to the reader.
Properties (6) and (7): Let A = {s1 > 0 : d f (s1)≤ t1}, B = {s2 > 0 : dg(s2)≤ t2},

P = {s > 0 : d f g(s)≤ t1 + t2}, and S = {s > 0 : d f +g(s)≤ t1 + t2}. Then A+B j S
and A ·B j P; thus ( f +g)∗(t1 +t2) = infS≤ s1 +s2 and ( f g)∗(t1 +t2) = infP≤ s1s2
are valid for all s1 ∈ A and s2 ∈ B. Taking the infimum over all s1 ∈ A and s2 ∈ B
yields the conclusions.

Property (8): It follows from the definition of decreasing rearrangements that
f ∗n ≤ f ∗n+1 ≤ f ∗ for all n. Let h = limn→∞ f ∗n ; then obviously h ≤ f ∗. Since f ∗n ≤ h,
we have d fn(h(t))≤ d fn( f ∗n (t))≤ t, which implies, in view of Exercise 1.1.1(c), that
d f (h(t))≤ t by letting n→ ∞. It follows that f ∗ ≤ h, hence h = f ∗.

Property (9): Set Fn = infm≥n | fm| and h = liminfn→∞ | fn|= supn≥1 Fn. Since Fn ↑
h, property (8) yields that F∗

n ↑ h∗ as n → ∞. By hypothesis we have | f | ≤ h, hence
f ∗ ≤ h∗ = supn F∗

n . Since Fn ≤ | fm| for m≥ n, it follows that F∗
n ≤ f ∗m for m≥ n; thus

F∗
n ≤ infm≥n f ∗m. Putting these facts together, we obtain f ∗ ≤ h∗ ≤ supn infm≥n f ∗m =

liminfn→∞ f ∗n .
Property (10): If f ∗(t0) = 0, then f ∗(t) = 0 for all t > t0 and thus f ∗ is right

continuous at t0. Suppose f ∗(t0) > 0. Pick α such that 0 < α < f ∗(t0) and let {tn}∞
n=1

be a sequence of real numbers decreasing to zero. The definition of f ∗ yields that
d f ( f ∗(t0)−α) > t0. Since tn ↓ 0, there is an n0 ∈ Z+ such that d f ( f ∗(t0)−α) >
t0 + tn for all n ≥ n0. Property (3) yields that for all n ≥ n0 we have f ∗(t0)−α <
f ∗(t0 + tn), and since the latter is at most f ∗(t0), the right continuity of f ∗ follows.

Property (11): The definition of f ∗ yields that the set An = {| f | > f ∗(t)− c/n}
has measure µ(An) > t. The sets An form a decreasing sequence as n increases and
µ(A1) < ∞ by assumption. Consequently, {| f | ≥ f ∗(t)} =

⋂
∞
n=1 An has measure

greater than or equal to t.
Property (12): This is immediate for nonnegative simple functions in view of

Examples 1.1.2 and 1.4.2. For an arbitrary measurable function f , find a sequence
of nonnegative simple functions fn such that fn ↑ | f | and apply (9).

Property (13): It follows from d| f |p(α) = d f (α1/p) = d f ∗(α1/p) = d( f ∗)p(α) for
all α > 0.

Property (14): This is a consequence of property (12) and of Proposition 1.1.4.
Property (15): This is a restatement of (1.1.2).
Property (16): Given α > 0, pick ε satisfying 0 < ε < α . Property (3) yields

f ∗(d f (α)− ε) > α , which implies that

1.4 Lorentz Spaces
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sup
t>0

tq f ∗(t)≥ (d f (α)− ε)q f ∗(d f (α)− ε) > (d f (α)− ε)q
α .

We first let ε → 0 and then take the supremum over all α > 0 to obtain one direction.
Conversely, given t > 0, pick 0 < ε < f ∗(t). Property (3) yields d f ( f ∗(t)− ε) > t.
This implies that supα>0 α(d f (α))q ≥ ( f ∗(t)− ε)(d f ( f ∗(t)− ε))q > ( f ∗(t)− ε)tq.
We first let ε → 0 and then take the supremum over all t > 0 to obtain the opposite
direction of the claimed equality. �

1.4.2 Lorentz Spaces

Having disposed of the basic properties of decreasing rearrangements of functions,
we proceed with the definition of the Lorentz spaces.

Definition 1.4.6. Given f a measurable function on a measure space (X ,µ) and
0 < p,q≤ ∞, define

∥∥ f
∥∥

Lp,q =


(∫

∞

0

(
t

1
p f ∗(t)

)q dt
t

) 1
q

if q < ∞ ,

sup
t>0

t
1
p f ∗(t) if q = ∞ .

The set of all f with
∥∥ f
∥∥

Lp,q < ∞ is denoted by Lp,q(X ,µ) and is called the Lorentz
space with indices p and q.

As in Lp and in weak Lp, two functions in Lp,q(X ,µ) are considered equal if they
are equal µ-almost everywhere. Observe that the previous definition implies that
L∞,∞ = L∞, Lp,∞ = weak Lp in view of Proposition 1.4.5 (16) and that Lp,p = Lp.

Remark 1.4.7. Observe that for all 0 < p,r < ∞ and 0 < q≤ ∞ we have∥∥|g|r∥∥Lp,q =
∥∥g
∥∥r

Lpr,qr . (1.4.3)

On Rn let δ ε( f )(x) = f (εx), ε > 0, be the dilation operator. It is straightforward that
dδ ε ( f )(α) = ε−nd f (α) and (δ ε( f ))∗(t) = f ∗(εnt). It follows that Lorentz norms
satisfy the following dilation identity:∥∥δ

ε( f )
∥∥

Lp,q = ε
−n/p∥∥ f

∥∥
Lp,q . (1.4.4)

Next, we calculate the Lorentz norms of a simple function.

Example 1.4.8. Using the notation of Example 1.4.2, when 0 < p,q < ∞ we have

∥∥ f
∥∥

Lp,q =
(

p
q

) 1
q
[

aq
1B

q
p
1 +aq

2

(
B

q
p
2 −B

q
p
1

)
+ · · ·+aq

N

(
B

q
p
N −B

q
p
N−1

)] 1
q

,

and also



49∥∥ f
∥∥

Lp,∞ = sup
1≤ j≤N

a jB
1
p
j .

The preceding expression for
∥∥ f
∥∥

Lp,q is also valid when p = ∞, but in this case
it is equal to infinity if at least one a j is strictly positive. We conclude that the only
simple function with finite L∞,q norm is the zero function. For this reason we have
that L∞,q = {0} for every 0 < q < ∞.

Proposition 1.4.9. For 0 < p < ∞ and 0 < q≤ ∞, we have the identity

∥∥ f
∥∥

Lp,q = p
1
q

(∫
∞

0

[
d f (s)

1
p s
]q ds

s

) 1
q

. (1.4.5)

Proof. The case q = ∞ is statement (16) in Proposition 1.4.5, and we may therefore
concentrate on the case q < ∞. If f is the simple function of Example 1.1.2, then

d f (s) =
N

∑
j=1

B jχ[a j+1,a j)(s)

with the understanding that aN+1 = 0. Using the this formula and identity in Exam-
ple 1.4.8, we obtain the validity of (1.4.5) for simple functions. In general, given a
measurable function f , find a sequence of nonnegative simple functions such that
fn ↑ | f | a.e. Then d fn ↑ d f (Exercise 1.1.1(c)) and f ∗n ↑ f ∗ (Proposition 1.4.5 (8)).
Using the Lebesgue monotone convergence theorem we deduce (1.4.5). �

Since Lp,p ⊆ Lp,∞, one may wonder whether these spaces are nested. The next
result shows that for any fixed p, the Lorentz spaces Lp,q increase as the exponent q
increases.

Proposition 1.4.10. Suppose 0 < p ≤ ∞ and 0 < q < r ≤ ∞. Then there exists a
constant cp,q,r (which depends on p, q, and r) such that∥∥ f

∥∥
Lp,r ≤ cp,q,r

∥∥ f
∥∥

Lp,q . (1.4.6)

In other words, Lp,q is a subspace of Lp,r.

Proof. We may assume p < ∞, since the case p = ∞ is trivial. We have

t1/p f ∗(t) =
{

q
p

∫ t

0
[s1/p f ∗(t)]q

ds
s

}1/q

≤
{

q
p

∫ t

0
[s1/p f ∗(s)]q

ds
s

}1/q

since f ∗ is decreasing,

≤
(

q
p

)1/q∥∥ f
∥∥

Lp,q .

Hence, taking the supremum over all t > 0, we obtain

1.4 Lorentz Spaces
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∥∥ f
∥∥

Lp,∞ ≤
(

q
p

)1/q∥∥ f
∥∥

Lp,q . (1.4.7)

This establishes (1.4.6) in the case r = ∞. Finally, when r < ∞, we have

∥∥ f
∥∥

Lp,r =
{∫

∞

0
[t1/p f ∗(t)]r−q+q dt

t

}1/r

≤
∥∥ f
∥∥(r−q)/r

Lp,∞

∥∥ f
∥∥q/r

Lp,q . (1.4.8)

Inequality (1.4.7) combined with (1.4.8) gives (1.4.6) with cp,q,r = (q/p)(r−q)/rq. �

Unfortunately, the functionals
∥∥ · ∥∥Lp,q do not satisfy the triangle inequality. For

instance, consider the functions f (t) = t and g(t) = 1− t defined on [0,1]. Then
f ∗(α) = g∗(α) = (1− α)χ[0,1](α). A simple calculation shows that the triangle
inequality for these functions with respect to the norm

∥∥ · ∥∥Lp,q would be equivalent
to

p
q
≤ 2q Γ (q+1)Γ (q/p)

Γ (q+1+q/p)
,

which fails in general. However, since for all t > 0 we have

( f +g)∗(t)≤ f ∗(t/2)+g∗(t/2) ,

the estimate ∥∥ f +g
∥∥

Lp,q ≤ cp,q
(∥∥ f

∥∥
Lp,q +

∥∥g
∥∥

Lp,q

)
, (1.4.9)

where cp,q = 21/p max(1,2(1−q)/q), is a consequence of (1.1.4). Also, if
∥∥ f
∥∥

Lp,q = 0
then we must have f = 0 µ-a.e. Therefore, Lp,q is a quasinormed space for all 0 <
p,q ≤ ∞. Is this space complete with respect to its quasinorm? The next theorem
answers this question.

Theorem 1.4.11. Let (X ,µ) be a measure space. Then for all 0 < p,q ≤ ∞, the
spaces Lp,q(X ,µ) are complete with respect to their quasinorm and they are there-
fore quasi-Banach spaces.

Proof. We consider only the case p < ∞. First we note that convergence in Lp,q

implies convergence in measure. When q = ∞, this is proved in Proposition 1.1.9.
When q < ∞, in view of Proposition 1.4.5 (16) and (1.4.7), it follows that

sup
t>0

t1/p f ∗(t) = sup
α>0

αd f (α)1/p ≤
(

q
p

)1/q∥∥ f
∥∥

Lp,q

for all f ∈ Lp,q, from which the same conclusion follows. Let { fn} be a Cauchy
sequence in Lp,q. Then { fn} is Cauchy in measure, and hence it has a subsequence
{ fnk} that converges almost everywhere to some f by Theorem 1.1.13. Fix k0 and
apply property (9) in Proposition 1.4.5. Since | f − fnk0

| = limk→∞ | fnk − fnk0
|, it

follows that
( f − fnk0

)∗(t)≤ liminf
k→∞

( fnk − fnk0
)∗(t). (1.4.10)
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Raise (1.4.10) to the power q, multiply by tq/p, integrate with respect to dt/t over
(0,∞), and apply Fatou’s lemma to obtain∥∥ f − fnk0

∥∥q
Lp,q ≤ liminf

k→∞

∥∥ fnk − fnk0

∥∥q
Lp,q . (1.4.11)

Now let k0 →∞ in (1.4.11) and use the fact that { fn} is Cauchy to conclude that fnk
converges to f in Lp,q. It is a general fact that if a Cauchy sequence has a convergent
subsequence in a quasinormed space, then the sequence is convergent to the same
limit. It follows that fn converges to f in Lp,q. �

Remark 1.4.12. It can be shown that the spaces Lp,q are normable when p, q are
bigger than 1; see Exercise 1.4.3. Therefore, these spaces can be normed to become
Banach spaces.

It is natural to ask whether simple functions are dense in Lp,q. This is in fact the
case when q 6= ∞.

Theorem 1.4.13. Simple functions are dense in Lp,q(X ,µ) when 0 < q < ∞.

Proof. Let f ∈ Lp,q(X ,µ). Assume without loss of generality that f ≥ 0. Given
n = 1,2,3, . . . , we find a simple function fn ≥ 0 such that

fn(x) = 0

when f (x)≤ 1/n, and

f (x)− 1
n
≤ fn(x)≤ f (x)

when f (x) > 1/n, except on a set of measure less than 1/n. It follows that

µ({x ∈ X : | f (x)− fn(x)|> 1/n}) < 1/n ;

hence ( f − fn)∗(t)≤ 1/n for t ≥ 1/n. Thus

( f − fn)∗(t)→ 0 as n→ ∞ and f ∗n (t)≤ f ∗(t) for all t > 0.

Since ( f − fn)∗(t) ≤ 2 f ∗(t/2), an application of the Lebesgue dominated conver-
gence theorem gives that

∥∥ fn− f
∥∥

Lp,q → 0 as n→ ∞. �

Remark 1.4.14. One may wonder whether simple functions are dense in Lp,∞. This
turns out to be false for all 0 < p ≤ ∞. However, if X is σ -finite, countable linear
combinations of characteristic functions of sets with finite measure are dense in
Lp,∞(X ,µ). We call such functions countably simple. See Exercise 1.4.4 for details.

1.4.3 Duals of Lorentz Spaces

Given a quasi-Banach space Z with norm
∥∥ · ∥∥Z , its dual Z∗ is defined as the space

of all continuous linear functionals T on Z equipped with the norm

1.4 Lorentz Spaces
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∥∥

Z∗ = sup
‖x‖Z=1

|T (x)| .

Observe that the dual of a quasi-Banach space is always a Banach space.
We are now considering the following question: What are the dual spaces (Lp,q)∗

of Lp,q? The answer to this question presents some technical difficulties for general
measure spaces. In this exposition we restrict our attention to σ -finite nonatomic
measure spaces, where the situation is simpler.

Definition 1.4.15. A subset A of a measure space (X ,µ) is called an atom if µ(A) >
0 and every subset B of A has measure either equal to zero or equal to µ(A). A
measure space (X ,µ) is called nonatomic if it contains no atoms. In other words, X
is nonatomic if and only if for any A⊆ X with µ(A) > 0, there exists a proper subset
B $ A with µ(B) > 0 and µ(A\B) > 0.

For instance, R with Lebesgue measure is nonatomic, but any measure space
with counting measure is atomic. Nonatomic spaces have the property that every
measurable subset of them with strictly positive measure contains subsets of any
given measure smaller than the measure of the original subset. See Exercise 1.4.5.

Definition 1.4.16. A measure space is called σ -finite if there is a sequence of mea-
surable sets KN with µ(KN) < ∞ such that

∞⋃
N=1

KN = X .

For instance, Rn equipped with Lebesgue measure is a σ -finite measure space. So
is Zn with the usual counting measure.

Theorem 1.4.17. Suppose that (X ,µ) is a nonatomic σ -finite measure space. Then

(i) (Lp,q)∗ = {0}, when 0 < p < 1, 0 < q≤ ∞ ,

(ii) (Lp,q)∗ = L∞, when p = 1, 0 < q≤ 1 ,

(iii) (Lp,q)∗ = {0}, when p = 1, 1 < q < ∞ ,

(iv) (Lp,q)∗ 6= {0}, when p = 1, q = ∞ ,

(v) (Lp,q)∗ = Lp′,∞, when 1 < p < ∞, 0 < q≤ 1 ,

(vi) (Lp,q)∗ = Lp′,q′ , when 1 < p < ∞, 1 < q < ∞ ,

(vii) (Lp,q)∗ 6= {0}, when 1 < p < ∞, q = ∞ ,

(viii) (Lp,q)∗ 6= {0}, when p = q = ∞ .

Proof. Since X is σ -finite, we have X =
⋃

∞
N=1 KN , where KN is an increasing

sequence of sets with µ(KN) < ∞. Given T ∈ (Lp,q)∗, where 0 < p < ∞ and
0 < q ≤ ∞, consider the measure σ(E) = T (χE). Since σ satisfies |σ(E)| ≤
(p/q)1/q

∥∥T
∥∥µ(E)1/p when q < ∞ and |σ(E)| ≤ ‖T

∥∥µ(E)1/p, it follows that σ

is absolutely continuous with respect to the measure µ . By the Radon–Nikodym
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theorem, there exists a complex-valued measurable function g (which satisfies∫
KN
|g|dµ < ∞ for all N) such that

σ(E) = T (χE) =
∫

X
g χE dµ . (1.4.12)

Linearity implies that (1.4.12) holds for any simple function on X . The continuity
of T and the density of the simple functions on Lp,q (when q < ∞) gives

T ( f ) =
∫

X
g f dµ (1.4.13)

for every f ∈ Lp,q. We now examine each case (i)–(viii) separately.
(i) We first consider the case 0 < p < 1. Let f = ∑n anχEn be a simple function

on X (take f to be countably simple when q = ∞). If X is nonatomic, we can split
each En as a union of N disjoint sets E jn each having measure N−1µ(En). Let f j =
∑n anχE jn . We see that

∥∥ f j
∥∥

Lp,q = N−1/p
∥∥ f
∥∥

Lp,q . Now if T ∈ (Lp,q)∗, it follows that

|T ( f )| ≤
N

∑
j=1

|T ( f j)| ≤
∥∥T
∥∥ N

∑
j=1

∥∥ f j
∥∥

Lp,q ≤
∥∥T
∥∥N1−1/p∥∥ f

∥∥
Lp,q .

Let N → ∞ and use that p < 1 to obtain that T = 0.
(ii) We now consider the case p = 1 and 0 < q≤ 1. Clearly, every g ∈ L∞ gives a

bounded linear functional on L1,q, since∣∣∣∣∫X
f gdµ

∣∣∣∣≤ ∥∥g
∥∥

L∞

∥∥ f
∥∥

L1 ≤Cq
∥∥g
∥∥

L∞

∥∥ f
∥∥

L1,q .

Conversely, suppose that T ∈ (L1,q)∗ where q ≤ 1. The function g given in (1.4.12)
satisfies ∣∣∣∣∫E

gdµ

∣∣∣∣≤ ∥∥T
∥∥µ(E)

for all E ⊆ KN , and hence |g| ≤
∥∥T
∥∥ µ-a.e. on every KN . See Rudin [229, p. 31]

(Theorem 1.40) for a proof of this fact. It follows that
∥∥g
∥∥

L∞ ≤
∥∥T
∥∥ and hence

(L1,q)∗ = L∞.
(iii) Let us now take p = 1, 1 < q < ∞, and suppose that T ∈ (L1,q)∗. Then∣∣∣∣∫X

f gdµ

∣∣∣∣≤ ∥∥T
∥∥ ∥∥ f

∥∥
L1,q , (1.4.14)

where g is the function in (1.4.13). We show that g = 0 a.e. Suppose that |g| ≥ δ

on some set E0 with µ(E0) > 0. Let f = g|g|−1χE0h, where h ≥ 0. Then (1.4.14)
implies that ∥∥h

∥∥
L1(E0) ≤

∥∥T
∥∥δ

−1∥∥h
∥∥

L1,q(E0)

1.4 Lorentz Spaces
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for all h ≥ 0. Since X is nonatomic, this can’t happen unless T = 0. See Exercise
1.4.8.

(iv) In the case p = 1, q = ∞ something interesting happens. Since every contin-
uous linear functional on L1,∞ extends to a continuous linear functional on L1,q for
1 < q < ∞, it must necessarily vanish on all simple functions by part (iii). However,
(L1,∞)∗ contains nontrivial linear functionals. For details we refer to the articles of
Cwikel and Fefferman [63], [64].

(v) We now take up the case p > 1 and 0 < q ≤ 1. Using Exercise 1.4.1(b) and
Proposition 1.4.10, we see that if g ∈ Lp′,∞, then∣∣∣∣∫X

f gdµ

∣∣∣∣ ≤ ∫
∞

0
t

1
p f ∗(t)t

1
p′ g∗(t)

dt
t

≤
∥∥ f
∥∥

Lp,1

∥∥g
∥∥

Lp′,∞

≤Cp,q
∥∥ f
∥∥

Lp,q

∥∥g
∥∥

Lp′,∞ .

Conversely, suppose that T ∈ (Lp,q)∗ when 1 < p < ∞ and 0 < q ≤ 1. Let g satisfy
(1.4.13). Taking f = g|g|−1χ|g|>α and using that∣∣∣∣∫X

f gdµ

∣∣∣∣≤ ∥∥T
∥∥∥∥ f

∥∥
Lp,q ,

we obtain that

αµ({|g|> α})≤ (p/q)1/q∥∥T
∥∥µ({|g|> α})

1
p .

It follows that
∥∥g
∥∥

Lp′,∞ ≈
∥∥T
∥∥.

(vi) Using Exercise 1.4.1(b) and Hölder’s inequality, we obtain∣∣∣∣∫X
f gdµ

∣∣∣∣≤ ∫ ∞

0
t

1
p f ∗(t) t

1
p′ g∗(t)

dt
t
≤
∥∥ f
∥∥

Lp,q

∥∥g
∥∥

Lp′,q′ ;

thus every g ∈ Lp′,q′ gives a bounded linear functional on Lp,q. Conversely, let T be
in (Lp,q)∗. By (1.4.13), T is given by integration against a locally integrable function
g. It remains to prove that g ∈ Lp′,q′ . For all f in Lp,q(X) we have∫

∞

0
f ∗(t)g∗(t)dt = sup

h: dh=d f

∣∣∣∣∫X
hgdµ

∣∣∣∣≤ ∥∥T
∥∥ ∥∥ f

∥∥
Lp,q , (1.4.15)

where the equality is a consequence of the fact that X is nonatomic (see Exercise
1.4.5). Pick a function f on X such that

f ∗(t) =
∫

∞

t/2
s

q′
p′−1g∗(s)q′−1 ds

s
. (1.4.16)

This can be achieved again by Exercise 1.4.5. The fact that the integral in (1.4.16)
converges is a consequence of the observation that the function f ∗ defined in
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(1.4.16) lies in the space Lq(0,∞) with respect to the measure tq/p−1dt. This fol-
lows from the inequality

∥∥ f
∥∥

Lp,q =
(∫

∞

0
t

q
p

[∫
∞

t/2
s

q′
p′−1g∗(s)q′−1 ds

s

]q dt
t

) 1
q

≤C1(p,q)
(∫

∞

0
(t

1
p′ g∗(t))q′ dt

t

) 1
q

= C1(p,q)
∥∥g
∥∥q′/q

Lp′,q′ < ∞ ,

which is a consequence of Hardy’s second inequality in Exercise 1.2.8 with b = q/p.
Using (1.4.15), we conclude that∫

∞

0
f ∗(t)g∗(t)dt ≤

∥∥T
∥∥ ∥∥ f

∥∥
Lp,q ≤C1(p,q)

∥∥T
∥∥ ∥∥g

∥∥q′/q
Lp′,q′ . (1.4.17)

On the other hand, we have∫
∞

0
f ∗(t)g∗(t)dt ≥

∫
∞

0

∫ t

t/2
s

q′
p′−1g∗(s)q′−1 ds

s
g∗(t)dt

≥
∫

∞

0
g∗(t)q′

∫ t

t/2
s

q′
p′−1 ds

s
dt

= C2(p,q)
∥∥g
∥∥q′

Lp′,q′ .

(1.4.18)

Combining (1.4.17) and (1.4.18), we obtain
∥∥g
∥∥

Lp′,q′ ≤C(p,q)
∥∥T
∥∥. This estimate is

valid only when we have a priori knowledge that
∥∥g
∥∥

Lp′,q′ < ∞. Suitably modifying
the preceding proof and using that

∥∥g
∥∥

Lp′,q′ (KN) < ∞, we obtain that
∥∥g
∥∥

Lp′,q′ (KN) ≤
C(p,q)

∥∥T
∥∥ for all N = 1,2, . . . . Letting N → ∞, we obtain the required conclusion.

(vii) For a complete characterization of this space, we refer to the article of
Cwikel [62].

(viii) The dual of L∞ can be identified with the set of all bounded finitely additive
set functions. See Dunford and Schwartz [77]. �

Remark 1.4.18. Some parts of Theorem 1.4.17 are false if X is atomic. For instance,
the dual of `p(Z) contains l∞ when 0 < p < 1 and thus it is not {0}.

1.4.4 The Off-Diagonal Marcinkiewicz Interpolation Theorem

We now present the main result of this section, the off-diagonal extension of
Marcinkiewicz’s interpolation theorem (Theorem 1.3.2). Recall that an operator T
is called quasilinear if it satisfies

|T (λ f )|= |λ | |T ( f )| and |T ( f +g)| ≤ K(|T ( f )|+ |T (g)|),

1.4 Lorentz Spaces
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for some K > 0, λ ∈ C, and all functions f , g in the domain of T . To avoid triviali-
ties, we assume that K ≥ 1.

Theorem 1.4.19. Let 0 < r ≤ ∞, 0 < p0 6= p1 ≤ ∞, and 0 < q0 6= q1 ≤ ∞ and let
(X ,µ) and (Y,ν) be two measure spaces. Let T be either a quasilinear operator
defined on Lp0(X)+Lp1(X) and taking values in the set of measurable functions on
Y or a linear operator defined on the set of simple functions on X and taking values
as before. Assume that for some M0,M1 < ∞ the following (restricted) weak type
estimates hold: ∥∥T (χA)

∥∥
Lq0,∞ ≤M0 µ(A)1/p0 , (1.4.19)∥∥T (χA)
∥∥

Lq1,∞ ≤M1 µ(A)1/p1 , (1.4.20)

for all measurable subsets A of X with µ(A) < ∞. Fix 0 < θ < 1 and let

1
p

=
1−θ

p0
+

θ

p1
and

1
q

=
1−θ

q0
+

θ

q1
. (1.4.21)

Then there exists a constant M, which depends on K, p0, p1, q0, q1, M0, M1, r, and
θ , such that for all functions f in the domain of T and in Lp,r(X) we have∥∥T ( f )

∥∥
Lq,r ≤M

∥∥ f
∥∥

Lp,r . (1.4.22)

We note that Lp,∞ ⊆ Lp0 +Lp1 (Exercise 1.1.10(c)), and thus T is well defined on
Lp,r for all r ≤∞. If r < ∞ and T is linear and defined on the set of simple functions
on X , then T has a unique extension that satisfies (1.4.22) for all f in Lp,r(X), since
simple functions are dense in this space.

Before we give the proof of Theorem 1.4.19, we state and prove a lemma that is
interesting on its own.

Lemma 1.4.20. Let 0 < p < ∞ and 0 < q ≤ ∞. Let T be either a quasilinear oper-
ator defined on Lp(X ,µ) and taking values in the set of measurable functions of a
measure space (Y,ν), or a linear operator initially defined on the space of simple
functions on X and taking values as before. Suppose that there exists a constant
L > 0 such that for all A⊆ X of finite measure we have∥∥T (χA)

∥∥
Lq,∞ ≤ L µ(A)1/p. (1.4.23)

Fix α0 < q with 0 < α0 ≤ log2
log2K . Then for all 0 < α ≤ α0 there exists a constant

C(p,q,K,α) > 0 (depending only on the parameters indicated) such that for all
functions f in Lp,α(X) that lie in the domain of T , we have the estimate∥∥T ( f )

∥∥
Lq,∞ ≤C(p,q,K,α)L

∥∥ f
∥∥

Lp,α . (1.4.24)

Lemma 1.4.20 is saying that if a quasilinear operator satisfies a Lp,1 → Lq,∞ es-
timate uniformly on all characteristic functions, then it must map a Lorentz space
Lp,α to Lq,∞ for some α < 1.
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Proof. It suffices to prove Lemma 1.4.20 for f ≥ 0, since we can express a general
function f as

f = ( f1− f2)+ i( f3− f4) ,

where f j ≥ 0, and use quasilinearity.
It follows from the Aoki–Rolewicz theorem (Exercise 1.4.6) that for all f1, . . . , fm

we have the pointwise inequality

|T ( f1 + · · ·+ fm)| ≤ 4
( m

∑
j=1

|T ( f j)|α1

) 1
α1

≤ 4
( m

∑
j=1

|T ( f j)|α
) 1

α

,

(1.4.25)

where 0 < α ≤ α1 and α1 satisfies the equation

(2K)α1 = 2 .

The second inequality in (1.4.25) is a simple consequence of the fact that α ≤ α1.
Fix α0 > 0 with

α0 ≤ α1 =
log2

log2K
and α0 < q .

This ensures that the quasinormed space Lq/α,∞ is normable when α ≤ α0. In fact,
Exercise 1.1.12 gives that the space Ls,∞ is normable as long as s > 1 and for some
equivalent norm

 f


Ls,∞ we have∥∥ f
∥∥

Ls,∞ ≤
 f


Ls,∞ ≤

s
s−1

∥∥ f
∥∥

Ls,∞ .

Next we claim that for any f ≥ 0 we have∥∥T ( f χA)
∥∥

Lq,∞ ≤C(q,α)L µ(A)1/p∥∥ f
∥∥

L∞ . (1.4.26)

To prove (1.4.26) first observe that multiplying by a suitable constant, we may as-
sume that f ≤ 1. Write

f (x) =
∞

∑
j=1

d j(x)2− j

in binary expansion, where d j(x) = 0 or 1. Let

B j = {x ∈ A : d j(x) = 1} .

Then B j ⊆ A and the function f χA can be written as the sum

∞

∑
j=1

2− j
χB j .

1.4 Lorentz Spaces
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We use (1.4.25) once and (1.4.3) twice in the following argument. We have

∥∥T ( f χA)
∥∥

Lq,∞ ≤ 4
∥∥∥( ∞

∑
j=1

2− jα |T (χB j)|
α

) 1
α
∥∥∥

Lq,∞

= 4
∥∥∥ ∞

∑
j=1

2− jα |T (χB j)|
α

∥∥∥ 1
α

Lq/α,∞

≤ 4
 ∞

∑
j=1

2− jα |T (χB j)|
α

 1
α

Lq/α,∞

≤ 4
(

∞

∑
j=1

2− jα
|T (χB j)|

α


Lq/α,∞

) 1
α

≤ 4
( q

q−α

) 1
α

(
∞

∑
j=1

2− jα
∥∥∥|T (χB j)|

α

∥∥∥
Lq/α,∞

) 1
α

= 4
( q

q−α

) 1
α

(
∞

∑
j=1

2− jα∥∥T (χB j)
∥∥α

Lq,∞

) 1
α

≤ 4
( q

q−α

) 1
α

L
(

∞

∑
j=1

2− jα
µ(B j)α/p

) 1
α

≤ 2
( q

q−α

) 1
α (1−2−α)−

1
α L µ(A)1/p,

since B j ⊆ A. This establishes (1.4.26) with

C(q,α) = 2
( q

q−α

) 1
α (1−2−α)−

1
α .

Now write the function f as

f =
∞

∑
n=−∞

f χAn ,

where An are measurable sets defined by

An = {x ∈ X : f ∗(2n+1) < | f (x)| ≤ f ∗(2n)} . (1.4.27)

Observe that

µ(An) =
∣∣{t ∈ R : f ∗(2n+1) < f ∗(t)≤ f ∗(2n)}

∣∣
=
∣∣[2n,2n+1]

∣∣
= 2n,

since f and f ∗ are equidistributed. Next we have
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∥∥T ( f )
∥∥

Lq,∞ ≤ 4
∥∥∥( ∞

∑
n=−∞

|T ( f χAn)|α
) 1

α
∥∥∥

Lq,∞

= 4
∥∥∥ ∞

∑
n=−∞

|T ( f χAn)|α
∥∥∥ 1

α

Lq/α,∞

≤ 4
 ∞

∑
n=−∞

|T ( f χAn)|α
 1

α

Lq/α,∞

≤ 4
(

∞

∑
n=−∞

|T ( f χAn)|α


Lq/α,∞

) 1
α

≤ 4
( q

q−α

) 1
α

(
∞

∑
n=−∞

∥∥∥|T ( f χAn)|α
∥∥∥

Lq/α,∞

) 1
α

≤ 4
( q

q−α

) 1
α

(
∞

∑
n=−∞

∥∥∥T ( f χAn)
∥∥∥α

Lq,∞

) 1
α

≤ 8
( q

q−α

) 2
α (1−2−α)−

1
α L
(

∞

∑
n=−∞

f ∗(2n)α 2nα/p
) 1

α

≤ 8
( q

q−α

) 2
α (1−2−α)−

1
α (log2)

1
α L
∥∥ f
∥∥

Lp,α .

Taking into account the splitting f = f1− f2 + i f3− i f4, where f j ≥ 0, we conclude
the proof of the lemma with constant

C(p,q,K,α) = Cp K2
( q

q−α

)2/α

(log2)
1
α (1−2−α)−

1
α . (1.4.28)

Recall that we have been assuming that α < min
( log2

log2K ,q
)

throughout. �

We now continue with the proof of Theorem 1.4.19.

Proof. We assume that p0 < p1, since if p0 > p1 we may simply reverse the roles
of p0 and p1. We first consider the case p1 < ∞. Lemma 1.4.20 implies that∥∥T ( f )

∥∥
Lq0,∞ ≤ A0

∥∥ f
∥∥

Lp0,m ,∥∥T ( f )
∥∥

Lq1,∞ ≤ A1
∥∥ f
∥∥

Lp1,m ,
(1.4.29)

where m = 1
2 min

(
q0,q1,

log2
log2K

)
, A0 = C(p0,q0,K,m)M0, A1 = C(p1,q1,K,m)M1,

and C(p,q,K,α) is as in (1.4.28).
Fix a function f in Lp,r. Split f = f t + ft as follows:

f t(x) =

{
f (x) if | f (x)|> f ∗(tγ),
0 if | f (x)| ≤ f ∗(tγ),
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ft(x) =

{
0 if | f (x)|> f ∗(tγ),
f (x) if | f (x)| ≤ f ∗(tγ),

where γ is the following nonzero real number:

γ =
1
q0
− 1

q
1
p0
− 1

p

=
1
q −

1
q1

1
p −

1
p1

.

Next, observe that the following inequalities are valid:

( f t)∗(s) ≤

{
f ∗(s) if 0 < s < tγ ,

0 if s≥ tγ ,

( ft)∗(s) ≤

{
f ∗(tγ) if 0 < s < tγ ,

f ∗(s) if s≥ tγ .

It follows from these inequalities that f t lies in Lp0,m and ft lies in Lp1,m for all t > 0.
The sublinearity of the operator T and (1.4.9) imply∥∥T ( f )

∥∥
Lq,r =

∥∥t
1
q T ( f )∗(t)

∥∥
Lr( dt

t )

≤ K
∥∥t

1
q (|T ( ft)|+ |T ( f t)|)∗(t)

∥∥
Lr( dt

t )

≤ K
∥∥t

1
q T ( ft)∗( t

2 )+ t
1
q T ( f t)∗( t

2 )
∥∥

Lr( dt
t )

≤ Kar

(∥∥t
1
q T ( ft)∗( t

2 )
∥∥

Lr( dt
t ) +

∥∥t
1
q T ( f t)∗( t

2 )
∥∥

Lr( dt
t )

)
≤ Kar

(∥∥t
1
q−

1
q0 t

1
q0 T ( ft)∗( t

2 )
∥∥

Lr( dt
t )

+
∥∥t

1
q−

1
q1 t

1
q1 T ( f t)∗( t

2 )
∥∥

Lr( dt
t )

)
,

(1.4.30)

where

ar =

{
1 when r ≥ 1,
2(1−r)/r when r ≤ 1.

It follows from (1.4.29) that

t
1

q0 T ( f t)∗( t
2 ) ≤ 2

1
q0 sup

s>0
s

1
q0 T ( f t)∗(s)≤ 2

1
q0 A0

∥∥ f t∥∥
Lp0,m , (1.4.31)

t
1

q1 T ( ft)∗( t
2 ) ≤ 2

1
q1 sup

s>0
s

1
q1 T ( ft)∗(s)≤ 2

1
q1 A1

∥∥ ft
∥∥

Lp1,m , (1.4.32)

for all t > 0. Now use (1.4.31) and (1.4.32) to estimate (1.4.30) by

Kar2
1

q0 A0

∥∥∥∥t
1
q−

1
q0
∥∥ f t∥∥

Lp0,m

∥∥∥∥
Lr( dt

t )
+Kar2

1
q1 A1

∥∥∥∥t
1
q−

1
q1
∥∥ ft
∥∥

Lp1,m

∥∥∥∥
Lr( dt

t )
,
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which is the same as

Kar2
1

q0 A0

∥∥∥∥t−γ( 1
p0
− 1

p )∥∥ f t∥∥
Lp0,m

∥∥∥∥
Lr( dt

t )

+Kar2
1

q1 A1

∥∥∥∥tγ( 1
p−

1
p1

)∥∥ ft
∥∥

Lp1,m

∥∥∥∥
Lr( dt

t )
.

(1.4.33)

Next, we change variables u = tγ in the first term of (1.4.33) to obtain

Kar2
1

q0 A0

∥∥∥∥t−γ( 1
p0
− 1

p )∥∥ f t∥∥
Lp0,m

∥∥∥∥
Lr( dt

t )

≤ Kar
2

1
q0 A0

|γ|1/r

∥∥∥∥∥u−( 1
p0
− 1

p )
(∫ u

0
f ∗(s)ms

m
p0

ds
s

) 1
m
∥∥∥∥∥

Lr( du
u )

≤ Kar
2

1
q0 A0

m|γ|1/r

r
r( 1

p0
− 1

p )

(∫
∞

0
(s

1
p0 f ∗(s))rs−r( 1

p0
− 1

p ) ds
s

) 1
r

= Kar
2

1
q0 A0

m|γ|1/r

1
1
p0
− 1

p

∥∥ f
∥∥

Lp,r ,

where the last inequality is a consequence of Hardy’s first inequality in Exercise
1.2.8 with p = r/m≥ 1 and b = (1/p0−1/p)r.

Similarly, change variables u = tγ in the second term of (1.4.33) to obtain

Kar2
1

q1 A1

∥∥∥∥tγ( 1
p−

1
p1

)∥∥ ft
∥∥

Lp1,m

∥∥∥∥
Lr( dt

t )

≤ Kar2
1

q1 A1

|γ|1/r

∥∥∥∥∥u
1
p−

1
p1

[∫ u

0
f ∗(u)ms

m
p1

ds
s

+
∫

∞

u
f ∗(s)ms

m
p1

ds
s

] 1
m
∥∥∥∥∥

Lr( du
u )

≤ Ka2
r 2

1−m
m 2

1
q1 A1

|γ|1/r

{
p1

m

∥∥∥∥u
1
p−

1
p1 f ∗(u)u

1
p1

∥∥∥∥
Lr( du

u )

+
∥∥∥u

1
p−

1
p1

(∫
∞

u
f ∗(s)ms

m
p1

ds
s

) 1
m ∥∥∥

Lr( du
u )

}

≤ Ka2
r 2

1−m
m 2

1
q1 A1

|γ|1/r

{
p1

m

∥∥ f
∥∥

Lp,r +
r

mr( 1
p−

1
p1

)

∥∥∥∥ur( 1
p−

1
p1

) f ∗(u)ru
r

p1

∥∥∥∥
Lr( du

u )

}

=
Ka2

r 2
1−m

m 2
1

q1 A1

|γ|1/r

{
p1

m
+

1
m( 1

p−
1
p1

)

}∥∥ f
∥∥

Lp,r ,

where the last inequality above is Hardy’s second inequality in Exercise 1.2.8 with
p = r/m≥ 1 and b = (1/p−1/p1)r.
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We have now shown that ∥∥T ( f )
∥∥

Lq,r ≤M
∥∥ f
∥∥

Lp,r

with constant

M = Kar
2

1
q0 +2

1
q1

m|γ|1/r

(
A0

1
p0
− 1

p

+ar2
1−m

m A1

(
p1 +

1
1
p −

1
p1

))
. (1.4.34)

We have been tacitly assuming that r < ∞. The remaining case is a simple con-
sequence of the result just proved by letting r → ∞, in which case ar → 1 and
|γ|1/r → 1.

We now turn to the case p1 = ∞. Hypotheses (1.4.19) and (1.4.20) together with
Exercise 1.1.16 imply that∥∥T (χA)

∥∥
Lq,∞ ≤M1−θ

0 Mθ
1 µ(A)1/p

for all 0 ≤ θ ≤ 1. We select λ ∈ (0,1) such that the indices p = pλ and q = qλ

defined by (1.4.21) when θ = λ satisfy p0 < p < pλ < ∞ and qλ is strictly between
q0 and q1. Then apply the case p1 < ∞ just proved with p0, q0 as before and p1 = pλ

and q1 = qλ . The result follows with M as in (1.4.34) except that p1 is replaced by
pλ and q1 by qλ . �

Corollary 1.4.21. Let T be as in the statement of Theorem 1.4.19 and let 0 < p0 6=
p1 ≤∞ and 0 < q0 6= q1 ≤∞. If T maps Lp0 to Lq0,∞ and Lp1 to Lq1,∞, and for some
0 < θ < 1 we have

1
p

=
1−θ

p0
+

θ

p1
,

1
q

=
1−θ

q0
+

θ

q1
, and p≤ q ,

then T satisfies the strong type estimate
∥∥T ( f )

∥∥
Lq ≤ C

∥∥ f
∥∥

Lp for all functions f
in the domain of T . Moreover, if T is linear, then it has a bounded extension from
Lp(X ,µ) to Lq(Y,ν).

Proof. Take r = q in the previous theorem. �

Definition 1.4.22. Let 0 < p,q ≤ ∞. We call an operator T of restricted weak type
(p,q) if it satisfies ∥∥T (χA)

∥∥
Lq,∞ ≤Cµ(A)1/p

for all subsets A of a measure space (X ,µ) with finite measure. Using this terminol-
ogy, Corollary 1.4.21 says that if a quasilinear operator T is of restricted weak types
(p0,q0) and (p1,q1) for some p0 6= p1 and q0 6= q1, then it is bounded from Lp to
Lq when p≤ q.

We now give examples to indicate why the assumptions p0 6= p1 and q0 6= q1
cannot be dropped in Theorem 1.4.19.
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Example 1.4.23. Let X = Y = R and

T ( f )(x) = |x|−1/2
∫ 1

0
f (t)dt .

Then α|{x : |T (χA)(x)|> α}|1/2 = 21/2|A∩ [0,1]| and thus T is of restricted weak
types (1,2) and (3,2). But observe that T does not map L2 = L2,2 to Lq,2. Thus
Theorem 1.4.19 fails if the assumption q0 6= q1 is dropped. The dual operator

S( f )(x) = χ[0,1](x)
∫ +∞

−∞

f (t)|t|−1/2 dt

satisfies α|{x : |S(χA)(x)|> α}|1/q ≤ c|A|1/2 when q = 1 or 3, and thus it furnishes
an example of an operator of restricted weak types (2,1) and (2,3) that is not L2

bounded. Thus Theorem 1.4.19 fails if the assumption p0 6= p1 is dropped.

As an application of Theorem 1.4.19, we give the following strengthening of
Theorem 1.2.13.

Theorem 1.4.24. (Young’s inequality for weak type spaces) Let G be a locally com-
pact group with left Haar measure λ that satisfies (1.2.12) for all measurable sub-
sets A of G. Let 1 < p,q,r < ∞ satisfy

1
q

+1 =
1
p

+
1
r

. (1.4.35)

Then there exists a constant Bpqr > 0 such that for all f in Lp(G) and g in Lr,∞(G)
we have ∥∥ f ∗g

∥∥
Lq(G) ≤ Bpqr

∥∥g
∥∥

Lr,∞(G)

∥∥ f
∥∥

Lp(G) . (1.4.36)

Proof. We fix 1 < p,q < ∞. Since p and q range in an open interval, we can find
p0 < p < p1, q0 < q < q1, and 0 < θ < 1 such that (1.4.21) and (1.4.35) hold. Let
T ( f ) = f ∗ g, defined for all functions f on G. By Theorem 1.2.13, T extends to
a bounded operator from Lp0 to Lp1,∞ and from Lq0 to Lq1,∞. It follows from the
Marcinkiewicz interpolation theorem that T extends to a bounded operator from
Lp(G) to Lq(G). �

Exercises

1.4.1. (a) Let g be a nonnegative simple function on (X ,µ) and let A be a measur-
able subset of X . Prove that ∫

A
gdµ ≤

∫
µ(A)

0
g∗(t)dt.

(b) (G. H. Hardy and J. E. Littlewood ) For f and g measurable on (X ,µ), prove that

1.4 Lorentz Spaces
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X
| f (x)g(x)|dµ(x)≤

∫
∞

0
f ∗(t)g∗(t)dt.

Compare this result to the classical Hardy–Littlewood result asserting that if a j,b j >
0, the sum ∑ j a jb j is greatest when both a j and b j are rearranged in decreasing order
(for this see Hardy, Littlewood, and Pólya [122, p. 261]).

1.4.2. Prove that if f ∈ Lq0,∞ ∩Lq1,∞ for some 0 < q0 < q1 ≤ ∞, then f ∈ Lq,s for
all 0 < s≤ ∞ and q0 < q < q1.

1.4.3. (Hunt [134] ) Given 0 < p,q < ∞, fix an r = r(p,q) > 0 such that r≤ 1, r≤ q
and r < p. For t ≤ µ(X) define

f ∗∗(t) = sup
µ(E)≥t

(
1

µ(E)

∫
E
| f |r dµ

)1/r

,

while for t > µ(X) (if µ(X) < ∞) let

f ∗∗(t) =
(

1
t

∫
X
| f |r dµ

)1/r

.

Also define  f


Lp,q =
(∫

∞

0

(
t

1
p f ∗∗(t)

)q dt
t

) 1
q

.

(The function f ∗∗ and the functional f →
 f


Lp,q depend on r.)

(a) Prove that the inequality

((( f +g)∗∗)(t))r ≤ ( f ∗∗(t))r +(g∗∗(t))r

is valid for all t ≥ 0. Since r ≤ q, conclude that the functional

f →
 f

r
Lp,q

is subadditive and hence it is a norm when r = 1 (this is possible only if p > 1).
(b) Show that for all f we have

∥∥ f
∥∥

Lp,q ≤
 f


Lp,q ≤

(
p

p− r

)1/r ∥∥ f
∥∥

Lp,q .

(c) In conjunction with Exercise 1.1.12, conclude that Lp,q is metrizable whenever
0 < p,q≤ ∞ and also normable when 1 < p < ∞ and 1≤ q≤ ∞.

1.4.4. (a) Show that on a σ -finite measure space (X ,µ) the set of countable linear
combinations of simple functions is dense in Lp,∞(X).
(b) Prove that simple functions are not dense in Lp,∞(R) for any 0 < p≤ ∞.[
Hint: Part (b): Show that the function h(x) = x−1/pχx>0 cannot be approxi-

mated by a sequence of simple functions Lp,∞. To see this, partition the inter-
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val (0,∞) into small subintervals of length ε > 0 and let fε be the step function

∑
[1/ε]
−[1/ε] f (kε)χ[kε,(k+1)ε](x). Show that for some c > 0 we have ‖ fε − f‖Lp,∞ ≥ c.

]
1.4.5. Let (X ,µ) be a nonatomic measure space. Prove the following facts:
(a) If A0 ⊆ A1 ⊆ X , 0 < µ(A1) < ∞, and µ(A0) ≤ t ≤ µ(A1), then there exists an
Et ⊆ A1 with µ(Et) = t.
(b) Given ϕ(t) continuous and decreasing on [0,∞), there exists a measurable func-
tion f on X with f ∗(t) = ϕ(t) for all t > 0.
(c) Given A ⊆ X with 0 < µ(A) < ∞ and g an integrable function on X , there exists
a subset Ã of X with µ(Ã) = µ(A) such that∫

Ã
gdµ =

∫
µ(A)

0
g∗(s)ds.

(d) Given f and g measurable functions on X , we have

sup
h: dh=d f

∣∣∣∣∫X
hgdµ

∣∣∣∣= ∫
∞

0
f ∗(s)g∗(s)ds,

where the supremum is taken over all h equidistributed with f .[
Hint: Part (a): Reduce matters to the situation in which A0 = /0. Consider first

the case that for all A ⊆ X there exists a subset B of X satisfying 1
10 µ(A) ≤

µ(B) ≤ 9
10 µ(A). Then we can find subsets of A1 of measure in any arbitrar-

ily small interval, and by continuity the required conclusion follows. Next con-
sider the case in which there is a subset A1 of X such that every B ⊆ A1 satis-
fies µ(B) < 1

10 µ(A1) or µ(B) > 9
10 µ(A1). Without loss of generality, normalize µ

so that µ(A1) = 1. Let µ1 = sup{µ(C) : C ⊆ A1, µ(C) < 1
10} and pick B1 ⊆ A1

such that 1
2 µ1 ≤ µ(B1) ≤ µ1. Set A2 = A1 \B1 and define µ2 = sup{µ(C) : C ⊆

A2, µ(C) < 1
10}. Continue in this way and define sets A1 ⊇ A2 ⊇ A3 ⊇ ·· · and num-

bers 1
10 ≥ µ1 ≥ µ2 ≥ µ3 ≥ ·· · . If C⊆ An+1 with µ(C∪An+1) < 1

10 , then C∪Bn ⊆ An

with µ(C∪Bn) < 1
5 < 9

10 , and hence by assumption we must have µ(C∪Bn) < 1
10 .

Conclude that µn+1 ≤ 1
2 µn and that µ(An) ≥ 4

5 for all n = 1,2, . . . . Then the set⋂
∞
n=1 An must be an atom. Part (b): First show that when d is a simple right con-

tinuous decreasing function on [0,∞) there exists a measurable f on X such that
f ∗ = d. For general continuous functions, use approximation. Part (c): Let t = µ(A)
and define A1 = {x : |g(x)| > g∗(t)} and A2 = {x : |g(x)| ≥ g∗(t)}. Then A1 ⊆ A2

and µ(A1) ≤ t ≤ µ(A2). Pick Ã such that A1 ⊆ Ã ⊆ A2 and µ(Ã) = t = µ(A) by

part (a). Then
∫

Ã gdµ =
∫

X gχÃ dµ =
∫

∞

0 (gχÃ)∗ ds =
∫ µ(Ã)

0 g∗(s)ds. Part (d): Let
f = ∑

N
j=1 a jχA j where a1 > a2 > · · · > aN > 0 and the A j are pairwise disjoint.

Write f as ∑
N
j=1 b jχB j , where b j = (a j−a j+1) and B j = A1∪·· ·∪A j. Pick B̃ j as in

part (c). Then B̃1 ⊆ ·· · ⊆ B̃N and the function f1 = ∑
N
j=1 b jχB̃ j

has the same distri-
bution function as f . It follows from part (c) that

∫
X f1gdµ =

∫
∞

0 f ∗(s)g∗(s)ds. The
case of a general function f follows from that in which f is simple using Exercise
1.4.1 and approximation.

]
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1.4.6. (Aoki [5]/ Rolewicz [224] ) Let
∥∥ · ∥∥ be a nonnegative functional on a vector

space X that satisfies ∥∥x+ y
∥∥≤ K

(∥∥x
∥∥+

∥∥y
∥∥)

for all x and y in X . (To avoid trivialities, assume that K ≥ 1.) Then for α defined by
the equation

(2K)α = 2 (α ≤ 1),

we have ∥∥x1 + · · ·+ xn
∥∥α ≤ 4(

∥∥x1
∥∥α + · · ·+

∥∥xn
∥∥α)

for all n = 1,2, . . . and all x1, x2, . . . , xn in X .[
Hint: Quasilinearity implies that ‖x1 + · · ·+ xn‖ ≤ max1≤ j≤n[(2K) j‖x j‖] for all

x1, . . . ,xn in X (use that K ≥ 1). Define H : X →R by setting H(0) = 0 and H(x) =
2 j/α if 2 j−1 < ‖x‖α ≤ 2 j. Then ‖x‖≤H(x)≤ 21/α‖x‖ for all x∈X . Prove by induc-
tion that ‖x1 + · · ·+ xn‖α ≤ 2(H(x1)α + · · ·+H(xn)α). Suppose that this statement
is true when n = m. To show its validity for n = m + 1, without loss of generality
assume that ‖x1‖ ≥ ‖x2‖ ≥ · · · ≥ ‖xm+1‖. Then H(x1) ≥ H(x2) ≥ ·· · ≥ H(xm+1).
Assume that all the H(x j)’s are distinct. Then since H(x j)α are distinct powers of
2, they must satisfy H(x j)α ≤ 2− j+1H(x1)α . Then

‖x1 + · · ·+ xm+1‖α ≤
[

max
1≤ j≤m+1

(2K) j‖x j‖
]α

≤
[

max
1≤ j≤m+1

(2K) jH(x j)
]α

≤
[

max
1≤ j≤m+1

(2K) j21/α 2− j/α H(x1)
]α

= 2H(x1)α

≤ 2(H(x1)α + · · ·+H(xm+1)α) .

We now consider the case that H(x j) = H(x j+1) for some 1≤ j≤m. Then for some
integer r we must have 2r−1 < ‖x j+1‖α ≤ ‖x j‖α ≤ 2r and H(x j) = 2r/α . Next note
that

‖x j + x j+1‖α ≤ Kα(‖x j‖+‖x j+1‖)α ≤ Kα(22r)α ≤ 2r+1.

This implies

H(x j + x j+1)α ≤ 2r+1 = 2r +2r = H(x j)α +H(x j+1)α .

Now apply the inductive hypothesis to x1, . . . ,x j−1,x j + x j+1,x j+1, . . . ,xm and use
the previous inequality to obtain the required conclusion.

]
1.4.7. (Stein and Weiss [264] ) Let (X ,µ) and (Y,ν) be measure spaces. Let Z be

a Banach space of complex-valued measurable functions on Y . Assume that Z is
closed under absolute values and satisfies

∥∥ f
∥∥

Z =
∥∥| f |∥∥Z . Suppose that T is a linear

operator defined on the space of measurable functions on (X ,µ) and taking values in
Z. Suppose that for some constant A > 0 we have the restricted weak type estimate



67∥∥T (χE)
∥∥

Z ≤ Aµ(E)1/p

for all E measurable subsets of X and some 0 < p < ∞. Then there is a constant
C(p) > 0 such that ∥∥T ( f )

∥∥
Z ≤C(p)A

∥∥ f
∥∥

Lp,1

for all f in the domain of T .[
Hint: Let f = ∑

N
j=1 a jχE j ≥ 0, where a1 > a2 > · · · > aN > 0, µ(E j) < ∞ pair-

wise disjoint. Let Fj = E1 ∪ ·· · ∪ E j, B0 = 0, and B j = µ(Fj) for j ≥ 1. Write
f = ∑

N
j=1(a j −a j+1)χFj , where aN+1 = 0. Then∥∥T ( f )

∥∥
Z =

∥∥|T ( f )|
∥∥

Z

≤
N

∑
j=1

(a j −a j+1)
∥∥T (χFj)

∥∥
Z

≤ A
N

∑
j=1

(a j −a j+1)(µ(Fj))1/p

= A
N−1

∑
j=0

a j+1(B
1/p
j+1−B1/p

j )

= p−1A
∥∥ f
∥∥

Lp,1 ,

where the penultimate equality follows summing by parts; see Appendix F.
]

1.4.8. Let 0 < p < ∞ and 0 < q1 < q2 ≤ ∞. Let α,β ,q > 0.
(a) Show that the function f (t) = t−α(log t−1)−β χ(0,1)(t) lies in Lp,q(R) if and only
if either p > 1/α or both p = 1/α and q > 1/β .

(b) Show that the function t−
1
p (log t−1)−

1
q1 χ(0,1)(t) lies in Lp,q2(R) but not in

Lp,q1(R).
(c) On Rn construct examples to show that Lp,q1 $ Lp,q2 .
(d) On a general nonatomic measure space (X ,µ) prove that there does not exist a
constant C(p,q1,q2) > 0 such that for all f in Lp,q2(X) the following is valid:∥∥ f

∥∥
Lp,q1 ≤C(p,q1,q2)

∥∥ f
∥∥

Lp,q2 .

1.4.9. (Stein and Weiss [263] ) Let Lp(ω) denote the weighted Lp space with mea-
sure ω(x)dx. Let T be a sublinear operator that maps

T : Lp0(ω0)→ Lq0,∞(w) ,
T : Lp1(ω1)→ Lq1,∞(w) ,

for some p0 6= p1, where 0 < p0, p1,q0,q1 ≤∞ and ω0,ω1,ω are positive functions.
Suppose that

1
pθ

=
1−θ

p0
+

θ

p1
,

1
qθ

=
1−θ

q0
+

θ

q1
.
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Then T maps

Lpθ

(
ω

1−θ
p0

pθ

0 ω

θ
p1

pθ

1

)
→ Lqθ ,pθ (ω) .[

Hint: Define

L( f ) = (ω1/ω0)
1

p1−p0 f

and observe that for each θ ∈ [0,1], L maps

Lpθ

(
ω

1−θ
p0

pθ

0 ω

θ
p1

pθ

1

)
→ Lpθ

(
(ω p1

0 ω
−p0
1 )

1
p1−p0

)
isometrically. Then apply the classical Marcinkiewicz interpolation theorem to the
sublinear operator T ◦L−1, and the required conclusion easily follows.

]
1.4.10. (Kalton [147]/Stein and Weiss [266] ) Let λn be a sequence of positive num-
bers with ∑n λn ≤ 1 and ∑n λn log( 1

λn
) = K < ∞.

(a) Let fn be a sequence of complex-valued functions in L1,∞(X) such that
∥∥ fn
∥∥

L1,∞ ≤
1 uniformly in n. Prove that ∑n λn fn lies in L1,∞(X) with norm at most 2(K + 2).
(This property is referred to as the logconvexity of L1,∞.)
(b) Let Tn be a sequence of sublinear operators that map L1(X) to L1,∞(Y ) with
norms

∥∥Tn
∥∥

L1→L1,∞ ≤ B uniformly in n. Use part (a) to prove that ∑n λnTn maps
L1(X) to L1,∞(Y ) with norm at most 2B(K +2).
(c) Given δ > 0 pick 0 < ε < δ and use the simple estimate

µ
(
{

∞

∑
n=1

2−δn fn >α}
)
≤

∞

∑
n=1

µ
(
{2−δn fn >(2ε −1)2−εn

α}
)

to obtain a simple proof of the statements in part (a) and (b) when λn = 2−δn, n =
1,2, . . . , and zero otherwise.[
Hint: Part (a): For fixed α > 0, write fn = un + vn + wn, where un = fnχ| fn|≤ α

2
,

vn = fnχ| fn|> α

2λn
, and wn = fnχ α

2 <| fn|≤ α

2λn
. Let u = ∑n λnun, v = ∑n λnvn, and w =

∑n λnwn. Clearly |u| ≤α/2. Also {v 6= 0}⊆
⋃

n{| fn|> α

2λn
}; hence µ({v 6= 0})≤ 2

α
.

Finally, ∫
X
|w|dµ ≤ ∑

n
λn

∫
X
| fn|χ α

2 <| fn|≤ α

2λn
dµ

≤ ∑
n

λn

[∫
α/(2λn)

α/2
d fn(β )dβ +

∫
α/2

0
d fn(α/2)dβ

]
≤ K +1 .

Using µ({|u+ v+w|> α})≤ µ({|u|> α/2})+ µ({|v| 6= 0})+ µ({|w|> α/2}),
deduce the conclusion.

]
1.4.11. Construct a sequence of functions fk in L1,∞(Rn) and a function f ∈ L1,∞

such that
∥∥ fk− f

∥∥
L∞ → 0 but

∥∥ fk
∥∥

L1,∞ → ∞ as k → ∞.



69

1.4.12. (a) Suppose that X is a quasi-Banach space and let X∗ be its dual (which is
always a Banach space). Prove that for all T ∈ X∗ we have∥∥T

∥∥
X∗ = sup

x∈X
‖x‖X≤1

|T (x)| .

(b) Now suppose that X is a Banach space. Use the Hahn–Banach theorem to prove
that for every x ∈ X we have ∥∥x

∥∥
X = sup

T∈X∗
‖T‖X∗≤1

|T (x)| .

Observe that this result may fail for quasi-Banach spaces. For example, if X = L1,∞,
every linear functional on X∗ vanishes on the set of simple functions.
(c) Take X = Lp,1 and X∗ = Lp′,∞. Then for 1 < p < ∞ both of these spaces are
normable. Conclude that

∥∥ f
∥∥

Lp,1 ≈ sup
‖g‖

Lp′,∞≤1

∣∣∣∣∫X
f gdµ

∣∣∣∣ ,
∥∥ f
∥∥

Lp,∞ ≈ sup
‖g‖

Lp′,1≤1

∣∣∣∣∫X
f gdµ

∣∣∣∣ .
1.4.13. Let 0 < p,q < ∞. Prove that any function in Lp,q(X ,µ) can be written as

f =
+∞

∑
n=−∞

cn fn,

where fn is a function bounded by 2−n/p, supported on a set of measure 2n, and the
sequence {ck}k lies in `q and satisfies

2−
1
p (log2)

1
q
∥∥{ck}k

∥∥
`q ≤

∥∥ f
∥∥

Lp,q ≤
∥∥{ck}k

∥∥
`q 2

1
p (log2)

1
q .[

Hint: Let cn = 2n/p f ∗(2n) and fn = c−1
n f χAn where An is as in (1.4.27).

]
1.4.14. (T. Tao) Let 0 < p < ∞, 0 < γ < 1, A > 0, and let f be a measurable function
on a measure space (X ,µ).
(a) Suppose that

∥∥ f
∥∥

Lp,∞ ≤ A. Then for every measurable set E of finite measure
there exists a measurable subset E ′ of E with µ(E ′)≥ γµ(E) such that∣∣∣∣∫E ′

f dµ

∣∣∣∣≤Cγ A µ(E)1− 1
p ,

where Cγ = (1−γ)−1/p.
(b) Conversely, if the last condition holds for some Cγ ,A < ∞ and all measurable

1.4 Lorentz Spaces
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subsets E of finite measure, then
∥∥ f
∥∥

Lp,∞ ≤ cγ A, where cγ = Cγ 41/pγ−1
√

2.
(c) Conclude that

∥∥ f
∥∥

Lp,∞ ≈ sup
E⊆X

0<µ(E)<∞

inf
E ′⊆E

µ(E ′)≥ 1
2 µ(E)

µ(E)−1+ 1
p

∣∣∣∣∫E ′
f dµ

∣∣∣∣ .
[
Hint: Part (a): Take E ′ = E \ {| f | > A(1− γ)−

1
p µ(E)−

1
p }. Part (b): Given α > 0,

note that the set
{
| f |> α

}
is contained in{

Re f > α√
2

}
∪
{

Im f > α√
2

}
∪
{

Re f <− α√
2

}
∪
{

Im f <− α√
2

}
.

For E any of the preceding four sets, let E ′ be a subset of it with measure at
least γ µ(E) such as in the hypothesis. Then

∣∣∫
E ′ f dµ

∣∣ ≥ α√
2
γ µ(E), which gives∥∥ f

∥∥
Lp,∞ ≤ 41/pγ−1Cγ

√
2A.
]

1.4.15. Given a linear operator T defined on the set of measurable functions on
a measure space (X ,µ) and taking values in the set of measurable functions on a
measure space (Y,ν), define its “transpose” T t via the identity∫

Y
T ( f )gdν =

∫
X

T t(g) f dµ

for all measurable functions f on X and g on Y , whenever the integrals converge.
Let T be such a linear operator given in the form

T ( f )(y) =
∫

X
K(y,x) f (x)dµ(x) ,

where K is measurable and bounded by some constant M > 0. Suppose that T maps
L1(X) to L1,∞(Y ) with norm

∥∥T
∥∥, and T t maps L1(Y ) to L1,∞(X) with norm

∥∥T t
∥∥.

Show that for all 1 < p < ∞ there exists a constant Cp that depends only on p and is
independent of M such that T maps Lp(X) to Lp(Y ) with norm∥∥T

∥∥
Lp(X)→Lp(Y ) ≤Cp

∥∥T
∥∥ 1

p
∥∥T t∥∥1− 1

p .[
Hint: For R > 0, let BR be the set of all (A,B), where A is a measurable subset of

X with µ(A) ≤ R and B is a measurable subset of Y with ν(B) ≤ R. Let BR,M be
the set of all (A,B) in BR such that |K(x,y)| ≤ M for all x ∈ A and y ∈ B. Also let
Mp = Mp(R,M) < ∞ be the smallest constant such that for all (A,B)∈BR,M we have∣∣∫

B T (χA)dν
∣∣≤Mpµ(A)

1
p ν(B)

1
p′ . Let δ > 0 and (A,B) ∈BR,M . If µ(A)≤ δν(B),

use Exercise 1.4.14 to find a B′ with ν(B′) ≥ 1
2 ν(B) such that

∣∣∫
B′ T (χA)dν

∣∣ ≤
c
∥∥T
∥∥µ(A)≤ cδ

1
p′
∥∥T
∥∥µ(A)

1
p ν(B)

1
p′ . Then ν(B\B′)≤ 1

2 ν(B) and we have∣∣∣∣∫B\B′
T (χA)dν

∣∣∣∣≤Mp2−
1
p′ µ(A)

1
p ν(B)

1
p′ .
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Summing, we obtain Mp ≤Mp2−
1
p′ +cδ

1
p′
∥∥T
∥∥. Whenever ν(B)≤ δ−1µ(A), write∣∣∫

B T (χA)dν
∣∣ =

∣∣∫
A T t(χB)dµ

∣∣ and use Exercise 1.4.14 to find a set A′ with
µ(A′)≥ 1

2 µ(A) and
∣∣∫

A′ T
t(χB)dµ

∣∣≤ c
∥∥T t
∥∥ν(B). Argue similarly to obtain Mp ≤

Mp2−
1
p + cδ

− 1
p
∥∥T t
∥∥. Pick a suitable δ to optimize both expressions. Obtain that

Mp is independent of R and M. Considering B+ = B∩ {T (χA) > 0} and B− =

B∩{T (χA) < 0}, obtain that
∫

B

∣∣T (χA)
∣∣dν ≤ 2Mpµ(A)

1
p ν(B)

1
p′ for (A,B) ∈BR,M .

Use Fatou’s lemma to remove the restriction that (A,B) ∈ BR,M . Finally, use the
characterization of

∥∥ ·∥∥Lp,∞ obtained in Exercise 1.1.12 with r = 1 to conclude that∥∥T (χA)
∥∥

Lp,∞ ≤Cp
∥∥T
∥∥ 1

p
∥∥T t
∥∥1− 1

p µ(A)
1
p .
]

1.4.16. (Bourgain [29] ) Let 0 < p0 < p1 < ∞ and 0 < α,β ,A,B < ∞. Suppose that
a family of sublinear operators Tk is of restricted weak type (p0, p0) with constant
A2−kα and of restricted weak type (p1, p1) with constant B2−kβ for all k ∈Z. Show
that there is a constant C = C(α,β , p0, p1) such that ∑k∈Z Tk is of restricted weak
type (p, p) with constant C A1−θ Bθ , where θ = α/(α +β ) and

1
p

=
1−θ

p0
+

θ

p1
.

[
Hint: Estimate µ({|T (χE)|> λ}) by the sum ∑k≥k0

µ({|Tk(χE)|> cλ2α ′(k0−k)})+
∑k≤k0

µ({|Tk(χE)| > cλ2β ′(k−k0)}), where c is a suitable constant and 0 < α ′ < α ,
β < β ′ < ∞. Apply the restricted weak type (p0, p0) hypothesis on each term of the
first sum, the restricted weak type (p1, p1) hypothesis on each term of the second
sum, and choose k0 to optimize the resulting expression.

]

APPENDIX: SOME MULTILINEAR INTERPOLATION

Multilinear maps are defined on products on linear spaces and take values in another
linear space. We are interested in the situation that these linear spaces are function
spaces. Let (X1,µ1), . . . ,(Xm,µm) be measure spaces, let D j be spaces of measurable
functions on X j, and let T be a map defined on D1×·· ·×Dm and taking values in
the set of measurable functions on another measure space (Z,σ). Then T is called
multilinear if for all f j, g j in D j and all scalars λ we have

|T ( f1, . . . ,λ f j, . . . , fm)| = |λ | |T ( f1, . . . , f j, . . . , fm)| ,
T ( f1, . . . , f j+g j, . . . , fm) = T ( f1, . . . , f j, . . . , fm)+T ( f1, . . . ,g j, . . . , fm) .

If D j are dense subspaces of Lp j(X j,µ j) and T is a multlinear map defined on
∏

m
j=1 D j and satisfies∥∥T ( f1, . . . , fm)

∥∥
Lp(Z) ≤C

∥∥ f1
∥∥

Lp1 (X1) · · ·
∥∥ fm

∥∥
Lpm (Xm) ,

1.4 Lorentz Spaces



72 1 Lp Spaces and Interpolation

for all f j ∈D j, then T has a bounded extension from Lp1 ×·· ·×Lpm → Z. The norm
of a multilinear map T : Lp1 × ·· ·×Lpm → Z is the smallest constant C such that
the preceding inequality holds and is denoted by∥∥T

∥∥
Lp1×···×Lpm→Z .

Suppose that T is defined on ∏
m
j=1 D j, where each D j contains the simple func-

tions. We say that T is quasimultilinear if there is a K > 0 such that for all 1≤ j≤m,
all f j, g j in D j, and all λ ∈ C we have

|T ( f1, . . . ,λ f j, . . . , fm)| = |λ | |T ( f1, . . . , f j, . . . , fm)| ,
|T ( f1, . . . , f j+g j, . . . , fm)| ≤ K

(
|T ( f1, . . . , f j, . . . , fm)|+ |T ( f1, . . . ,g j, . . . , fm)|

)
.

In the special case in which K = 1, T is called multisublinear.

1.4.17. Let T be a multilinear map defined on the set of simple functions of the
product of m measure spaces (X1,µ1)×·· ·× (Xm,µm) and taking values in the set
of measurable functions on another measure space (Z,σ). Let 1 ≤ p jk ≤ ∞ for 1 ≤
k ≤m and j ∈ {0,1} and also let 1≤ p j ≤∞ for j ∈ {0,1}. Suppose that T satisfies∥∥T ( f1, . . . , fm)

∥∥
Lp j ≤M j

∥∥ f1
∥∥

Lp j1 · · ·
∥∥ fm

∥∥
Lp jm , j = 0,1,

for all simple functions fk on Xk. Let (1/q,1/q1, . . . ,1/qm) lie on the open line seg-
ment joining (1/p0,1/p01, . . . ,1/p0m) and (1/p1,1/p11, . . . ,1/p1m) in Rm+1. Then
for some 0 < θ < 1 we have

1
q

=
1−θ

p0
+

θ

p1
,

1
qk

=
1−θ

p0k
+

θ

p1k
, 1≤ k ≤ m.

Prove that T has a bounded extension from Lq1 ×·· ·×Lqm to Lq that satisfies∥∥T ( f1, . . . , fm)
∥∥

Lq ≤M1−θ

0 Mθ
1
∥∥ f1
∥∥

Lq1 · · ·
∥∥ fm

∥∥
Lqm

for all fk ∈ Lqk(Xk).[
Hint: Adapt the proof of Theorem 1.3.4.

]
1.4.18. Let (X1,µ1), . . . ,(Xm,µm) be measure spaces, let D j be spaces of mea-
surable functions on X j that contain the simple functions, and let T be a quasi-
multilinear map defined on D1×·· ·×Dm that takes values in the set of measurable
functions on another measure space (Z,σ). Let 0 < p jk ≤ ∞ for 1 ≤ j ≤ m + 1
and 1 ≤ k ≤ m, and also let 0 < p j ≤ ∞ for 1 ≤ j ≤ m + 1. Suppose that for all
1≤ j ≤ m+1, T satisfies∥∥T (χE1 , . . . ,χEm)

∥∥
Lp j ,∞ ≤Mµ1(E1)

1
p j1 · · ·µm(Em)

1
p jm

for all sets Ek of finite µk measure. Assume that the system
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1/p11 1/p12 . . . 1/p1m 1
1/p21 1/p22 . . . 1/p2m 1

...
...

...
...

...
1/pm1 1/pm2 . . . 1/pmm 1

1/p(m+1)1 1/p(m+1)2 . . . 1/p(m+1)m 1




σ1
σ2
...

σm
τ

=


1/p1
1/p2

...
1/pm

1/pm+1


has a unique solution (σ1, . . . ,σm,τ) ∈ Rm+1 with not all σ j = 0. (This assumption
implies that the determinant of the displayed square matrix is nonzero.) Suppose
that the point (1/q,1/q1, . . . ,1/qm) lies in the open convex hull of the m+1 points
(1/p j,1/p j1, . . . ,1/p jm) in Rm+1, 1≤ j ≤ m+1. Let 0 < tk, t ≤ ∞ satisfy

∑
σk 6=0

1
tk
≥ 1

t
.

Prove that there exists a constant C that depends only on the p jk’s, qk’s, p j’s, and on
K (but not on M) such that for all f j in D j we have∥∥T ( f1, . . . , fm)

∥∥
Lq,t ≤C M

∥∥ f1
∥∥

Lq1,t1 · · ·
∥∥ fm

∥∥
Lqm,tm .[

Hint: Split the functions f j as in the proof of Theorem 1.4.19. For simplicity, you
may want to prove this result only when m = 2.

]
1.4.19. (O’ Neil [207] ) Show that∥∥ f ∗g

∥∥
Lr,s ≤Cp,q,s1,s2

∥∥ f
∥∥

Lp,s1

∥∥g
∥∥

Lq,s2 ,

whenever 1 < p,q,r < ∞, 0 < s1,s2 ≤ ∞, 1
p + 1

q = 1
r + 1, and 1

s1
+ 1

s2
= 1

s . Also
deduce Hölder’s inequality for Lorentz spaces,∥∥ f g

∥∥
Lr,s ≤Cp,q,s1,s2

∥∥ f
∥∥

Lp,s1

∥∥g
∥∥

Lq,s2 ,

where now 0 < p,q,r ≤ ∞, 0 < s1,s2 ≤ ∞, 1
p + 1

q = 1
r , and 1

s1
+ 1

s2
= 1

s .[
Hint: Use Exercise 1.4.17.

]
1.4.20. (Grafakos and Tao [112] ) Suppose that T is a multilinear operator of the
form

T ( f1, . . . , fm)(y) =
∫

X1

· · ·
∫

Xm

K(x1, . . . ,xm,y) f1(x1) · · · fm(xm)dµ1(x1) · · ·dµm(xm) ,

where the kernel K is bounded by some constant M. The jth transpose of T is the
m-linear operator whose kernel is obtained from K by interchanging the variables
x j and y. Suppose that T and all of its transposes map L1(X1)× ·· · × L1(Xm) to
L1/m,∞(Y ). Conclude that T maps Lp1(X1)×·· ·×Lpm(Xm) to Lp(Y ) when 1 < p j ≤
∞, p < ∞, and 1/p = 1/p1 + · · ·+1/pm with a bound independent of the kernel K.[
Hint: Take p > 1 and use the same idea as in Exercise 1.4.15. The full range of p’s

follows by interpolation.
]

1.4 Lorentz Spaces
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HISTORICAL NOTES

The modern theory of measure and integration was founded with the publication of Lebesgue’s
dissertation [169]; see also [170]. The theory of the Lebesgue integral reshaped the course of
integration. The spaces Lp([a,b]), 1 < p < ∞, were first investigated by Riesz [217], who obtained
many important properties of them. A rigorous treatise of harmonic analysis on general groups
can be found in the book of Hewitt and Ross [125]. The best possible constant Cpqr in Young’s
inequality ‖ f ∗ g‖Lr(Rn) ≤ Cpqr‖ f‖Lp(Rn)‖g‖Lq(Rn),

1
p + 1

q = 1
r + 1, 1< p,q,r <∞, was shown by

Beckner [16] to be Cpqr = (BpBqBr′ )n, where B2
p = p1/p(p′)−1/p′ .

Theorem 1.3.2 first appeared without proof in Marcinkiewicz’s brief note [187]. After his death
in World War II, this theorem seemed to have escaped attention until Zygmund reintroduced it in
[302]. This reference presents the more difficult off-diagonal version of the theorem, derived by
Zygmund. Stein and Weiss [264] strengthened Zygmund’s theorem by assuming that the initial
estimates are of restricted weak type whenever 1 ≤ p0, p1,q0,q1 ≤ ∞. The extension of this result
to the case 0 < p0, p1,q0,q1 < 1 as presented in Theorem 1.4.19 is due to the author; the critical
Lemma 1.4.20 was suggested by Kalton. Equivalence of restricted weak type (1,1) and weak type
(1,1) properties for certain maximal multipliers was obtained by Moon [201]. The following partial
converse of Theorem 1.2.13 is due to Stepanov [268]: If a convolution operator maps L1(Rn) to
Lq,∞(Rn) for some 1 < q < ∞ then its kernel must be in Lq,∞.

The extrapolation result of Exercise 1.3.7 is due to Yano [294]; see also Zygmund [304, pp.
119–120]. We refer to Carro [47] for a generalization. See also the related work of Soria [250] and
Tao [274].

The original version of Theorem 1.3.4 was proved by Riesz [220] in the context of bilinear
forms. This version is called the Riesz convexity theorem, since it says that the logarithm of the
function M(α,β ) = infx,y

∣∣∑n
j=1 ∑

m
k=1 a jkx jyk

∣∣‖x‖−1
`1/α

‖y‖−1
`1/β

(where the infimum is taken over all

sequences {x j}n
j=1 in `1/α and {yk}m

k=1 in `1/β ) is a convex function of (α,β ) in the triangle 0 ≤
α,β ≤ 1, α + β ≥ 1. Riesz’s student Thorin [278] extended this triangle to the unit square 0 ≤
α,β ≤ 1 and generalized this theorem by replacing the maximum of a bilinear form with the
maximum of the modulus of an entire function in many variables. After the end of World War II,
Thorin published his thesis [279], building the subject and giving a variety of applications. The
original proof of Thorin was rather long, but a few years later, Tamarkin and Zygmund [272] gave
a very elegant short proof using the maximum modulus principle in a more efficient way. Today,
this theorem is referred to as the Riesz–Thorin interpolation theorem.

Calderón [34] elaborated the complex-variables proof of the Riesz–Thorin theorem into a gen-
eral method of interpolation between Banach spaces. The complex interpolation method can also be
defined for pairs of quasi-Banach spaces, although certain complications arise in this setting; how-
ever, the Riesz–Thorin theorem is true for pairs of Lp spaces (with the “correct” geometric mean
constant) for all 0 < p≤ ∞ and also for Lorentz spaces. In this setting, duality cannot be used, but
a well-developed theory of analytic functions with values in quasi-Banach spaces is crucial. We
refer to the articles of Kalton [148] and [149] for details. Complex interpolation for sublinear maps
is also possible; see the article of Calderón and Zygmund [38]. Interpolation for analytic families
of operators (Theorem 1.3.7) is due to Stein [251]. The critical Lemma 1.3.8 used in the proof was
previously obtained by Hirschman [126].

The fact that nonatomic measure spaces contain subsets of all possible measures is classical.
An extension of this result to countably additive vector measures with values in finite-dimensional
Banach spaces was obtained by Lyapunov [183]; for a proof of this fact, see Diestel and Uhl [75,
p. 264]. The Aoki–Rolewicz theorem (Exercise 1.4.6) was proved independently by Aoki [5] and
Rolewicz [224]. For a proof of this fact and a variety of its uses in the context of quasi-Banach
spaces we refer to the book of Kalton, Peck, and Roberts [150].

Decreasing rearrangements of functions were introduced by Hardy and Littlewood [123]; the
authors attribute their motivation to understanding cricket averages. The Lp,q spaces were intro-
duced by Lorentz in [179] and in [180]. A general treatment of Lorentz spaces is given in the
article of Hunt [134]. The normability of the spaces Lp,q (which holds exactly when 1 < p ≤ ∞
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and 1 ≤ q ≤ ∞) can be traced back to general principles obtained by Kolmogorov [160]. The in-
troduction of the function f ∗∗, which was used in Exercise 1.4.3, to explicitly define a norm on
the normable spaces Lp,q is due to Calderón [34]. These spaces appear as intermediate spaces in
the general interpolation theory of Calderón [34] and in that of Lions and Peetre [172]. The latter
was pointed out by Peetre [211]. For a systematic study of the duals of Lorentz spaces we refer to
Cwikel [62] and Cwikel and Fefferman [63], [64]. An extension of the Marcinkiewicz interpola-
tion theorem to Lorentz spaces was obtained by Hunt [133]. Standard references on interpolation
include the books of Bennett and Sharpley [20], Bergh and Löfström [22], Sadosky [232], and
Chapter 5 in Stein and Weiss [265].

Multilinear complex interpolation (cf. Exercise 1.4.16) is a straightforward adaptation of the
linear one (cf. Theorem 1.3.4); see Zygmund [304, p. 106] and Berg and Löfström [22]. The mul-
tilinear real interpolation method is more involved. References on the subject include (in chrono-
logical order) the articles of Strichartz [269], Sharpley [241] and [242], Zafran [297], Christ [48],
Janson [139], and Grafakos and Kalton [105]. The latter contains, in particular, the proof of Exer-
cise 1.4.17.

1.4 Lorentz Spaces



Chapter 2
Maximal Functions, Fourier Transform, and
Distributions

We have already seen that the convolution of a function with a fixed density is a
smoothing operation that produces a certain average of the function. Averaging is an
important operation in analysis and naturally arises in many situations. The study of
averages of functions is better understood and simplified by the introduction of the
maximal function. This is defined as the largest average of a function over all balls
containing a fixed point. Maximal functions play a key role in differentiation theory,
where they are used in obtaining almost everywhere convergence for certain integral
averages. Although maximal functions do do not preserve qualitative information
about the given functions, they maintain crucial quantitative information, a fact of
great importance in the subject of Fourier analysis.

Another important operation we study in this chapter is the Fourier transform.
This is as fundamental to Fourier analysis as marrow is to the human bone. It is
the father of all oscillatory integrals and a powerful transformation that carries a
function from its spatial domain to its frequency domain. By doing this, it inverts
the function’s localization properties. Then magically, if applied one more time, it
gives back the function composed with a reflection. More important, it transforms
our point of view in harmonic analysis. It changes convolution to multiplication,
translation to modulation, and expanding dilation to shrinking dilation, while its
decay at infinity encodes information about the local smoothness of the function.
The study of the Fourier transform also motivates the launch of a thorough study
of general oscillatory integrals. We take a quick look at this topic with emphasis on
one-dimensional results.

Distributions changed our view of analysis as they furnished a mathematical
framework for many operations that did not exactly qualify to be called functions.
These operations found their mathematical place in the world of functionals ap-
plied to smooth functions (called test functions). These functionals also introduced
the correct interpretation for many physical objects, such as the Dirac delta func-
tion. Distributions quickly became an indispensable tool in analysis and brought a
broader perspective.

77L. Grafakos, Classical Fourier Analysis, Second Edition, 
DOI: 10.1007/978-0-387-09432-8_2, © Springer Science+Business Media, LLC 2008 
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2.1 Maximal Functions

Given a Lebesgue measurable subset A of Rn, we denote by |A| its Lebesgue mea-
sure. For x ∈Rn and r > 0, we denote by B(x,r) the open ball of radius r centered at
x. We also use the notation aB(x,δ ) = B(x,aδ ), for a > 0, for the ball with the same
center and radius aδ . Given δ > 0 and f a locally integrable function on Rn, let

Avg
B(x,δ )

| f |= 1
|B(x,δ )|

∫
B(x,δ )

| f (y)|dy

denote the average of | f | over the ball of radius δ centered at x.

2.1.1 The Hardy–Littlewood Maximal Operator

Definition 2.1.1. The function

M( f )(x) = sup
δ>0

Avg
B(x,δ )

| f |= sup
δ>0

1
vnδ n

∫
|y|<δ

| f (x− y)|dy

is called the centered Hardy–Littlewood maximal function of f .

Obviously we have M( f ) = M(| f |)≥ 0; thus the maximal function is a positive
operator. Information concerning cancellation of the function f is lost by passing
to M( f ). We show later that M( f ) pointwise controls f (i.e., M( f ) ≥ | f | almost
everywhere). Note that M maps L∞ to itself, that is, we have∥∥M( f )

∥∥
L∞ ≤

∥∥ f
∥∥

L∞ .

Let us compute the Hardy–Littlewood maximal function of a specific function.

Example 2.1.2. On R, let f be the characteristic function of the interval [a,b]. For
x ∈ (a,b), clearly M( f ) = 1. For x ≥ b, a simple calculation shows that the largest
average of f over all intervals (x−δ ,x +δ ) is obtained when δ = x−a. Similarly,
when x ≤ a, the largest average is obtained when δ = b− x. Therefore,

M( f )(x) =


(b−a)/2|x−b| when x ≤ a ,
1 when x ∈ (a,b) ,
(b−a)/2|x−a| when x ≥ b .

Observe that M( f ) has a jump at x = a and x = b equal to one-half that of f .

M is a sublinear operator and never vanishes. In fact, we have that if M( f )(x0) =
0 for some x0 ∈ Rn, then f = 0 a.e. Moreover, if f is compactly supported, say in
|x| ≤ R, then



2.1 Maximal Functions 79

M( f )(x)≥
∥∥ f
∥∥

L1

vn

1
(|x|+R)n , (2.1.1)

for |x| ≥ R, where vn is the volume of the unit ball in Rn. Equation (2.1.1) implies
that M( f ) is never in L1(Rn) if f 6= 0 a.e., a strong property that reflects a certain
behavior of the maximal function. In fact, if g is in L1

loc and M(g) is in L1(Rn), then
g = 0 a.e. To see this, use (2.1.1) with gR(x) = g(x)χ|x|≤R to conclude that gR(x) = 0
for almost all x in the ball of radius R > 0. Thus g = 0 a.e. in Rn. However, it is true
that M( f ) is in L1,∞ when f is in L1.

A related analogue of M( f ) is its uncentered version M( f ), defined as the supre-
mum of all averages of f over all open balls containing a given point.

Definition 2.1.3. The uncentered Hardy–Littlewood maximal function of f ,

M( f )(x) = sup
δ>0

|y−x|<δ

Avg
B(y,δ )

| f | ,

is defined as the supremum of the averages of | f | over all open balls B(y,δ ) that
contain the point x.

Clearly M( f )≤ M( f ); in other words, M is a larger operator than M. However,
M( f )≤ 2nM( f ) and the boundedness properties of M are identical to those of M.

Example 2.1.4. On R, let f be the characteristic function of the interval I = [a,b].
For x ∈ (a,b), clearly M( f )(x) = 1. For x > b, a calculation shows that the largest
average of f over all intervals (y− δ ,y + δ ) that contain x is obtained when δ =
1
2 (x− a) and y = 1

2 (x + a). Similarly, when x < a, the largest average is obtained
when δ = 1

2 (b− x) and y = 1
2 (b+ x). We conclude that

M( f )(x) =


(b−a)/|x−b| when x ≤ a ,
1 when x ∈ (a,b) ,
(b−a)/|x−a| when x ≥ b .

Observe that M does not have a jump at x = a and x = b and that it is comparable to
the function

(
1+ dist (x,I)

|I|
)−1.

We are now ready to obtain some basic properties of maximal functions. We need
the following simple covering lemma.

Lemma 2.1.5. Let {B1,B2, . . . ,Bk} be a finite collection of open balls in Rn. Then
there exists a finite subcollection {B j1 , . . . ,B jl} of pairwise disjoint balls such that

l

∑
r=1

∣∣B jr

∣∣≥ 3−n∣∣ k⋃
i=1

Bi
∣∣ . (2.1.2)

Proof. Let us reindex the balls so that
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|B1| ≥ |B2| ≥ · · · ≥ |Bk| .

Let j1 = 1. Having chosen j1, j2, . . . , ji, let ji+1 be the least index s > ji such that⋃i
m=1 B jm is disjoint from Bs. Since we have a finite number of balls, this process will

terminate, say after l steps. We have now selected pairwise disjoint balls B j1 , . . . ,B jl .
If some Bm was not selected, that is, m /∈ { j1, . . . , jl}, then Bm must intersect a
selected ball B jr for some jr < m. Then Bm has smaller size than B jr and we must
have Bm ⊆ 3B jr . This shows that the union of the unselected balls is contained in the
union of the triples of the selected balls. Therefore, the union of all balls is contained
in the union of the triples of the selected balls. Thus∣∣∣∣ k⋃

i=1

Bi

∣∣∣∣≤ ∣∣∣∣ l⋃
r=1

3B jr

∣∣∣∣≤ l

∑
r=1

|3B jr |= 3n
l

∑
r=1

|B jr | ,

and the required conclusion follows. �

We are now ready to prove the main theorem concerning the boundedness of the
centered and uncentered maximal functions M and M, respectively.

Theorem 2.1.6. The uncentered Hardy–Littlewood maximal function maps L1(Rn)
to L1,∞(Rn) with constant at most 3n and also Lp(Rn) to Lp(Rn) for 1 < p < ∞

with constant at most 3n/p p(p− 1)−1. The same is true for the centered maximal
operator M.

We note that operators that map L1 to L1,∞ are said to be weak type (1,1).

Proof. Since M( f )≥M( f ), we have

{x ∈ Rn : |M( f )(x)|> α} ⊆ {x ∈ Rn : |M( f )(x)|> α} ,

and therefore it suffices to show that

|{x ∈ Rn : |M( f )(x)|> α}| ≤ 3n

∥∥ f
∥∥

L1

α
. (2.1.3)

We claim that the set

Eα = {x ∈ Rn : |M( f )(x)|> α}

is open. Indeed, for x ∈ Eα , there is an open ball Bx that contains x such that the av-
erage of | f | over Bx is strictly bigger than α . Then the uncentered maximal function
of any other point in Bx is also bigger than α , and thus Bx is contained in Eα . This
proves that Eα is open.

Let K be a compact subset of Eα . For each x ∈ K there exists an open ball Bx
containing the point x such that∫

Bx

| f (y)|dy > α|Bx| . (2.1.4)
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Observe that Bx ⊂ Eα for all x. By compactness there exists a finite subcover
{Bx1 , . . . ,Bxk} of K. Using Lemma 2.1.5 we find a subcollection of pairwise dis-
joint balls Bx j1

, . . . ,Bx jl
such that (2.1.2) holds. Using (2.1.4) and (2.1.2) we obtain

|K| ≤
∣∣∣ k⋃

i=1

Bxi

∣∣∣≤ 3n
l

∑
i=1
|Bx ji

| ≤ 3n

α

l

∑
i=1

∫
Bx ji

| f (y)|dy≤ 3n

α

∫
Eα

| f (y)|dy ,

since all the balls Bx ji
are disjoint and contained in Eα . Taking the supremum over

all compact K ⊆ Eα and using the inner regularity of Lebesgue measure, we deduce
(2.1.3). We have now proved that M maps L1 → L1,∞ with constant 3n. It is a trivial
fact that M maps L∞ → L∞ with constant 1. Since M is well defined and finite a.e.
on L1 + L∞, it is also on Lp(Rn) for 1 < p < ∞. The Marcinkiewicz interpolation
theorem (Theorem 1.3.2) implies that M maps Lp(Rn) to Lp(Rn) for all 1 < p < ∞.
Using Exercise 1.3.3, we obtain the following estimate for the operator norm of M
on Lp(Rn): ∥∥M

∥∥
Lp→Lp ≤

p3
n
p

p−1
. (2.1.5)

Observe that a direct application of Theorem 1.3.2 would give the slightly worse

bound of 2
( p

p−1

) 1
p 3

n
p . �

Remark 2.1.7. The previous proof gives a bound on the operator norm of M on
Lp(Rn) that grows exponentially with the dimension. One may wonder whether this
bound could be improved to a better one that does not grow exponentially in the
dimension n, as n→ ∞. This is not possible; see Exercise 2.1.8.

Example 2.1.8. Let R > 0. Then there are dimensional constants cn and c′n such that

c′n Rn

(|x|+R)n ≤M(χB(0,R))(x)≤
cn Rn

(|x|+R)n . (2.1.6)

Since these functions are not integrable over Rn, it follows that M does not map
L1(Rn) to L1(Rn).

Next we estimate M(M(χB(0,R)))(x). First we write

Rn

(|x|+R)n ≤ χB(0,R) +
∞

∑
k=0

Rn

(R+2kR)n χB(0,2k+1R)\B(0,2kR) .

Using the upper estimate in (2.1.6) and the sublinearity of M, we obtain

M
(

Rn

(| · |+R)n

)
(x) ≤M(χB(0,R))(x)+

∞

∑
k=0

1
(1+2k)n M(χB(0,2k+1R))(x)

≤ cn Rn

(|x|+R)n +
∞

∑
k=0

1
(1+2k)n

cn (2k+1R)n

(|x|+2k+1R)n

≤ Cn log(e+ |x|/R)
(1+ |x|/R)n ,
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where the last estimate follows by summing separately over k satisfying 2k+1 ≤
|x|/R and 2k+1 ≥ |x|/R. Note that the presence of the logarithm does not affect the
Lp boundedness of this function when p > 1.

2.1.2 Control of Other Maximal Operators

We now study some properties of the Hardy–Littlewood maximal function. We be-
gin with a notational definition that we plan to use throughout this book.

Definition 2.1.9. Given a function g on Rn and ε > 0, we denote by gε the following
function:

gε(x) = ε
−ng(ε−1x) . (2.1.7)

As observed in Example 1.2.16, if g is an integrable function with integral equal
to 1, then the family defined by (2.1.7) is an approximate identity. Therefore, convo-
lution with gε is an averaging operation. The Hardy–Littlewood maximal function
M( f ) is obtained as the supremum of the averages of a function f with respect to
the dilates of the kernel k = v−1

n χB(0,1) in Rn; here vn is the volume of the unit ball
B(0,1). Indeed, we have

M( f )(x) = sup
ε>0

1
vnεn

∫
Rn
| f (x− y)|χB(0,1)

( y
ε

)
dy

= sup
ε>0

(| f | ∗ kε)(x) .

Note that the function k = v−1
n χB(0,1) has integral equal to 1, and the operation given

by convolution with kε is indeed an averaging operation.
It turns out that the Hardy–Littlewood maximal function controls the averages of

a function with respect to any radially decreasing L1 function. Recall that a function
f on Rn is called radial if f (x) = f (y) whenever |x| = |y|. Note that a radial func-
tion f on Rn has the form f (x) = ϕ(|x|) for some function ϕ on R+. We have the
following result.

Theorem 2.1.10. Let k ≥ 0 be a function on [0,∞) that is continuous except at a
finite number of points. Suppose that K(x) = k(|x|) is an integrable function on Rn

that satisfies
K(x)≥ K(y), whenever |x| ≤ |y| (2.1.8)

(i.e., k is decreasing). Then the following estimate is true:

sup
ε>0

(| f | ∗Kε)(x)≤
∥∥K
∥∥

L1M( f )(x) (2.1.9)

for all locally integrable functions f on Rn.

Proof. We prove (2.1.9) when K is radial, satisfies (2.1.8), and is compactly sup-
ported and continuous. When this case is established, select a sequence K j of radial,
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compactly supported, continuous functions that increase to K as j →∞. This is pos-
sible, since the function k is continuous except at a finite number of points. If (2.1.9)
holds for each K j, passing to the limit implies that (2.1.9) also holds for K. Next,
we observe that it suffices to prove (2.1.9) for x = 0. When this case is established,
replacing f (t) by f (t + x) implies that (2.1.9) holds for all x.

Let us now fix a radial, continuous, and compactly supported function K with
support in the ball B(0,R), satisfying (2.1.8). Also fix an f ∈ L1

loc and take x = 0.
Let e1 be the vector (1,0,0, . . . ,0) on the unit sphere Sn−1. Polar coordinates give∫

Rn
| f (y)|Kε(−y)dy =

∫
∞

0

∫
Sn−1

| f (rθ)|Kε(re1)rn−1 dθ dr . (2.1.10)

Define functions

F(r) =
∫

Sn−1
| f (rθ)|dθ ,

G(r) =
∫ r

0
F(s)sn−1 ds ,

where dθ denotes surface measure on Sn−1. Using these functions, (2.1.10), and
integration by parts, we obtain∫

Rn
| f (y)|Kε(y)dy =

∫
εR

0
F(r)rn−1Kε(re1)dr

= G(εR)Kε(εRe1)−G(0)Kε(0)−
∫

εR

0
G(r)dKε(re1)

=
∫

∞

0
G(r)d(−Kε(re1)) , (2.1.11)

where two of the integrals are of Lebesgue–Stieltjes type and we used our assump-
tions that G(0) = 0, Kε(0) < ∞, G(εR) < ∞, and Kε(εRe1) = 0. Let vn be the volume
of the unit ball in Rn. Since

G(r) =
∫ r

0
F(s)sn−1 ds =

∫
|y|≤r

| f (y)|dy≤M( f )(0)vnrn ,

it follows that the expression in (2.1.11) is dominated by

M( f )(0)vn

∫
∞

0
rnd(−Kε(re1)) = M( f )(0)

∫
∞

0
nvnrn−1Kε(re1)dr

= M( f )(0)
∥∥K
∥∥

L1 .

Here we used integration by parts and the fact that the surface measure of the unit
sphere Sn−1 is equal to nvn. See Appendix A.3. The theorem is now proved. �

Remark 2.1.11. Theorem 2.1.10 can be generalized as follows. If K is an L1 func-
tion on Rn whose absolute value is bounded above by some continuous integrable
radial function K0 that satisfies (2.1.8), then (2.1.9) holds with

∥∥K
∥∥

L1 replaced by
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∥∥

L1 . Such a K0 is called a radial decreasing majorant of K. This observation is
formulated as the following corollary.

Corollary 2.1.12. If a function ϕ has an integrable radially decreasing majorant
Φ , then the estimate

sup
t>0

|( f ∗ϕt)(x)| ≤
∥∥Φ
∥∥

L1M( f )(x)

is valid for all locally integrable functions f on Rn.

Example 2.1.13. Let
P(x) =

cn

(1+ |x|2) n+1
2

,

where cn is a constant such that ∫
Rn

P(x)dx = 1 .

The function P is called the Poisson kernel. We define L1 dilates Pt of the Poisson
kernel P by setting

Pt(x) = t−nP(t−1x)

for t > 0. It is straightforward to verify that when n≥ 2,

d2

dt2 Pt +
n

∑
j=1

∂
2
j Pt = 0 ,

that is, Pt(x1, . . . ,xn) is a harmonic function of the variables (x1, . . . ,xn, t). Therefore,
for f ∈ Lp(Rn), 1≤ p < ∞, the function

u(x, t) = ( f ∗Pt)(x)

is harmonic in Rn+1
+ and converges to f (x) in Lp(dx) as t → 0, since {Pt}t>0 is an

approximate identity. If we knew that f ∗Pt converged to f a.e. as t → 0, then we
could say that u(x, t) solves the Dirichlet problem

n+1

∑
j=1

∂
2
j u = 0 on Rn+1

+ ,

u(x,0) = f (x) a.e. on Rn.

(2.1.12)

Solving the Dirichlet problem (2.1.12) motivates the study of the almost everywhere
convergence of the expressions f ∗Pt . This is discussed in the next subsection.

Let us now compute the value of the constant cn. Denote by ωn−1 the surface
area of Sn−1. Using polar coordinates, we obtain
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1
cn

=
∫

Rn

dx

(1+ |x|2) n+1
2

= ωn−1

∫
∞

0

rn−1

(1+ r2)
n+1

2
dr

= ωn−1

∫
π/2

0
(sinϕ)n−1 dϕ (r = tanϕ)

=
2π

n
2

Γ ( n
2 )

1
2

Γ ( n
2 )Γ ( 1

2 )
Γ ( n+1

2 )

=
π

n+1
2

Γ ( n+1
2 )

,

where we used the formula for ωn−1 in Appendix A.3 and an identity in Appendix
A.4. We conclude that

cn =
Γ ( n+1

2 )

π
n+1

2

and that the Poisson kernel on Rn is given by

P(x) =
Γ ( n+1

2 )

π
n+1

2

1

(1+ |x|2) n+1
2

. (2.1.13)

Theorem 2.1.10 implies that the solution of the Dirichlet problem (2.1.12) is point-
wise bounded by the Hardy–Littlewood maximal function of f .

2.1.3 Applications to Differentiation Theory

We continue this section by obtaining some applications of the boundedness of the
Hardy–Littlewood maximal function in differentiation theory.

We now show that the weak type (1,1) property of the Hardy–Littlewood max-
imal function implies almost everywhere convergence for a variety of families of
functions. We deduce this from the more general fact that a certain weak type prop-
erty for the supremum of a family of linear operators implies almost everywhere
convergence.

Here is our setup. Let (X ,µ), (Y,ν) be measure spaces and let 0 < p ≤ ∞, 0 <
q < ∞. Suppose that D is a dense subspace of Lp(X ,µ). This means that for all
f ∈ Lp and all δ > 0 there exists a g ∈ D such that

∥∥ f − g
∥∥

Lp < δ . Suppose that
for every ε > 0, Tε is a linear operator defined on Lp(X ,µ) with values in the set of
measurable functions on Y . Define a sublinear operator

T∗( f )(x) = sup
ε>0

|Tε( f )(x)| . (2.1.14)
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We have the following.

Theorem 2.1.14. Let 0 < p < ∞, 0 < q < ∞, and Tε and T∗ as previously. Suppose
that for some B > 0 and all f ∈ Lp(X) we have∥∥T∗( f )

∥∥
Lq,∞ ≤ B

∥∥ f
∥∥

Lp (2.1.15)

and that for all f ∈ D,
lim
ε→0

Tε( f ) = T ( f ) (2.1.16)

exists and is finite ν-a.e. (and defines a linear operator on D). Then for all func-
tions f in Lp(X ,µ) the limit (2.1.16) exists and is finite ν-a.e., and defines a linear
operator T on Lp(X) (uniquely extending T defined on D) that satisfies∥∥T ( f )

∥∥
Lq,∞ ≤ B

∥∥ f
∥∥

Lp . (2.1.17)

Proof. Given f in Lp, we define the oscillation of f :

O f (y) = limsup
ε→0

limsup
θ→0

|Tε( f )(y)−Tθ ( f )(y)| .

We would like to show that for all f ∈ Lp and δ > 0,

ν({y ∈ Y : O f (y) > δ}) = 0 . (2.1.18)

Once (2.1.18) is established, given f ∈ Lp(X), we obtain that O f (y) = 0 for ν-almost
all y, which implies that Tε( f )(y) is Cauchy for ν-almost all y, and it therefore
converges ν-a.e. to some T ( f )(y) as ε → 0. The operator T defined this way on
Lp(X) is linear and extends T defined on D.

To approximate O f we use density. Given η > 0, find a function g ∈ D such that∥∥ f −g
∥∥

Lp < η . Since Tε(g)→ T (g) ν-a.e, it follows that Og = 0 ν-a.e. Using this
fact and the linearity of the Tε ’s, we conclude that

O f (y)≤ Og(y)+O f−g(y) = O f−g(y) ν-a.e.

Now for any δ > 0 we have

ν({y ∈ Y : O f (y) > δ}) ≤ ν({y ∈ Y : O f−g(y) > δ})
≤ ν({y ∈ Y : 2T∗( f −g)(y) > δ})
≤
(
2B
∥∥ f −g

∥∥
Lp/δ

)q

≤ (2Bη/δ )q .

Letting η → 0, we deduce (2.1.18). We conclude that Tε( f ) is a Cauchy sequence,
and hence it converges ν-a.e. to some T ( f ). Since |T ( f )| ≤ |T∗( f )|, the conclusion
(2.1.17) of the theorem follows easily. �

We now derive some applications. First we return to the issue of almost every-
where convergence of the expressions f ∗Py, where P is the Poisson kernel.
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Example 2.1.15. Fix 1≤ p < ∞ and f ∈ Lp(Rn). Let

P(x) =
Γ ( n+1

2 )

π
n+1

2

1

(1+ |x|2) n+1
2

be the Poisson kernel on Rn and let Pε(x) = ε−nP(ε−1x). We deduce from the previ-
ous theorem that the family f ∗Pε converges to f a.e. Let D be the set of all contin-
uous functions with compact support on Rn. Since the family (Pε)ε>0 is an approx-
imate identity, Theorem 1.2.19 (2) implies that for f in D we have that f ∗Pε → f
uniformly on compact subsets of Rn and hence a.e. In view of Theorem 2.1.10,
the supremum of the family of linear operators Tε( f ) = f ∗Pε is controlled by the
Hardy–Littlewood maximal function, and thus it maps Lp to Lp,∞ for 1 ≤ p < ∞.
Theorem 2.1.14 now gives that f ∗Pε converges to f a.e. for all f ∈ Lp.

Here is another application of Theorem 2.1.14. We refer to Exercise 2.1.10 for
others.

Corollary 2.1.16. (Lebesgue’s differentiation theorem) For any locally integrable
function f on Rn we have

lim
r→0

1
|B(x,r)|

∫
B(x,r)

f (y)dy = f (x) (2.1.19)

for almost all x in Rn. Consequently we have | f | ≤M( f ) a.e.

Proof. Since Rn is the union of the balls B(0,N) for N = 1,2,3 . . . , it suffices to
prove the required conclusion for almost all x inside the ball B(0,N). Then we may
take f supported in a larger ball, thus working with f integrable over the whole
space. Let Tε be the operator given with convolution with kε , where k = v−1

n χB(0,1).
We know that the corresponding maximal operator T∗ is controlled by the the cen-
tered Hardy–Littlewood maximal function M, which maps L1 to L1,∞. It is straight-
forward to verify that (2.1.19) holds for all continuous functions f with compact
support. Since the set of these functions is dense in L1, and T∗ maps L1 to L1,∞,
Theorem 2.1.14 implies that (2.1.19) holds for a general f in L1. �

The following corollaries were inspired by Example 2.1.15.

Corollary 2.1.17. (Differentiation theorem for approximate identities) Let K be an
L1 function on Rn with integral 1 that has a continuous integrable radially decreas-
ing majorant. Then f ∗Kε → f a.e. as ε → 0 for all f ∈ Lp(Rn), 1≤ p < ∞.

Proof. It follows from Example 1.2.16 that Kε is an approximate identity. Theorem
1.2.19 now implies that f ∗Kε → f uniformly on compact sets when f is continuous.
Let D be the space of all continuous functions with compact support. Then f ∗Kε →
f a.e. for f ∈ D. It follows from Corollary 2.1.12 that T∗( f ) = supε>0 | f ∗Kε | maps
Lp to Lp,∞ for 1 ≤ p < ∞. Using Theorem 2.1.14, we conclude the proof of the
corollary. �
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Remark 2.1.18. Fix f ∈ Lp(Rn) for some 1 ≤ p < ∞. Theorem 1.2.19 implies that
f ∗Kε converges to f in Lp and hence some subsequence f ∗Kεn of f ∗Kε converges
to f a.e. as n→∞, (εn → 0). Compare this result with Corollary 2.1.17, which gives
a.e. convergence for the whole family f ∗Kε as ε → 0.

Corollary 2.1.19. (Differentiation theorem for multiples of approximate identi-
ties) Let K be a function on Rn that has an integrable radially decreasing majorant.
Let a =

∫
Rn K(x)dx. Then for all f ∈ Lp(Rn) and 1 ≤ p < ∞, ( f ∗Kε)(x)→ a f (x)

for almost all x ∈ Rn as ε → 0.

Proof. Use Theorem 1.2.21 instead of Theorem 1.2.19 in the proof of Corollary
2.1.17. �

The following application of the Lebesgue differentiation theorem uses a simple
stopping-time argument. This is the sort of argument in which a selection procedure
stops when it is exhausted at a certain scale and is then repeated at the next scale. A
certain refinement of the following proposition is of fundamental importance in the
study of singular integrals given in Chapter 4.

Proposition 2.1.20. Given a nonnegative integrable function f on Rn and α > 0,
there exist disjoint open cubes Q j such that for almost all x ∈

(⋃
j Q j
)c we have

f (x)≤ α and

α <
1
|Q j|

∫
Q j

f (t)dt ≤ 2n
α . (2.1.20)

Proof. The proof provides an excellent paradigm of a stopping-time argument. Start
by decomposing Rn as a union of cubes of equal size, whose interiors are disjoint,
and whose diameter is so large that |Q|−1 ∫

Q f (x)dx ≤ α for every Q in this mesh.
This is possible since f is integrable and |Q|−1 ∫

Q f (x)dx → 0 as |Q| → ∞. Call the
union of these cubes E0.

Divide each cube in the mesh into 2n congruent cubes by bisecting each of the
sides. Call the new collection of cubes E1. Select a cube Q in E1 if

1
|Q|

∫
Q

f (x)dx > α (2.1.21)

and call the set of all selected cubes S1. Now subdivide each cube in E1 \S1 into
2n congruent cubes by bisecting each of the sides as before. Call this new collection
of cubes E2. Repeat the same procedure and select a family of cubes S2 that satisfy
(2.1.21). Continue this way ad infinitum and call the cubes in

⋃
∞
m=1 Sm “selected.”

If Q was selected, then there exists Q1 in Em−1 containing Q that was not selected
at the (m−1)th step for some m≥ 1. Therefore,

α <
1
|Q|

∫
Q

f (x)dx ≤ 2n 1
|Q1|

∫
Q1

f (x)dx ≤ 2n
α .

Now call F the closure of the complement of the union of all selected cubes. If
x ∈ F , then there exists a sequence of cubes containing x whose diameter shrinks
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down to zero such that the average of f over these cubes is less than or equal to α .
By Corollary 2.1.16, it follows that f (x) ≤ α almost everywhere in F . This proves
the proposition. �

In the proof of Proposition 2.1.20 it was not crucial to assume that f was defined
on all Rn, but only on a cube. We now give a local version of this result.

Corollary 2.1.21. Let f ≥ 0 be an integrable function over a cube Q in Rn and let
α ≥ 1

|Q|
∫

Q f dx. Then there exist disjoint open subcubes Q j of Q such that for almost
all x ∈ Q\

⋃
j Q j we have f ≤ α and (2.1.20) holds for all j.

Proof. This easily follows by a simple modification of Proposition 2.1.20 in which
Rn is replaced by the fixed cube Q. �

See Exercise 2.1.4 for an application of Proposition 2.1.20 involving maximal
functions.

Exercises

2.1.1. A positive Borel measure µ on Rn is called inner regular if for any open
subset U of Rn we have µ(U) = sup{µ(K) : K j U, K compact} and µ is called
locally finite if µ(B) < ∞ for all balls B.
(a) Let µ be a positive inner regular locally finite measure on Rn that satisfies the
following doubling condition: There exists a constant D(µ) > 0 such that for all
x ∈ Rn and r > 0 we have

µ(3B(x,r))≤ D(µ)µ(B(x,r)).

For f ∈ L1
loc(R

n,µ) define the uncentered maximal function Mµ( f ) with respect to
µ by

Mµ( f )(x) = sup
r>0

sup
z: |z−x|<r

µ(B(z,r))6=0

1
µ(B(z,r))

∫
B(z,r)

f (y)dµ(y) .

Show that Mµ maps L1(Rn,µ) to L1,∞(Rn,µ) with constant at most D(µ) and

Lp(Rn,µ) to itself with constant at most 2
( p

p−1

) 1
p D(µ)

1
p .

(b) Obtain as a consequence a differentiation theorem analogous to Corollary 2.1.16.[
Hint: Part (a): For f ∈ L1(Rn,µ) show that the set Eα = {Mµ( f ) > α} is open.

Then use the argument of the proof of Theorem 2.1.6 and the inner regularity of µ .
]

2.1.2. On R consider the maximal function Mµ of Exercise 2.1.1.
(a) (W. H. Young ) Prove the following covering lemma. Given a finite set F of open
intervals in R, prove that there exist two subfamilies each consisting of pairwise
disjoint intervals such that the union of the intervals in the original family is equal
to the union of the intervals of both subfamilies. Use this result to show that the
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maximal function Mµ of Exercise 2.1.1 maps L1(µ) → L1,∞(µ) with constant at
most 2.
(b) (Grafakos and Kinnunen [107] ) Prove that for any σ -finite positive measure µ

on R, α > 0, and f ∈ L1
loc(R,µ) we have

1
α

∫
A
| f |dµ−µ(A)≤ 1

α

∫
{| f |>α}

| f |dµ−µ({| f |> α}) .

Use this result and part (a) to prove that for all α > 0 and all locally integrable f we
have

µ({| f |> α})+ µ({Mµ( f ) > α})≤ 1
α

∫
{| f |>α}

| f |dµ +
1
α

∫
{Mµ ( f )>α}

| f |dµ

and note that equality is obtained when α = 1 and f (x) = |x|−1/p.
(c) Conclude that Mµ maps Lp(µ) to Lp(µ), 1 < p < ∞, with bound at most the
unique positive solution Ap of the equation

(p−1)xp− pxp−1−1 = 0 .

(d) (Grafakos and Montgomery-Smith [109] ) If µ is the Lebesgue measure show
that for 1 < p < ∞ we have ∥∥M

∥∥
Lp→Lp = Ap ,

where Ap is the unique positive solution of the equation in part (c).[
Hint: Part (a): Select a subset G of F with minimal cardinality such that

⋃
J∈G J =⋃

I∈F I. Part (d): One direction follows from part (c). Conversely, M(|x|−1/p)(1) =
p

p−1
γ1/p′+1

γ+1 , where γ is the unique positive solution of the equation p
p−1

γ1/p′+1
γ+1 =

γ−1/p. Conclude that M(|x|−1/p)(1) = Ap and that M(|x|−1/p) = Ap|x|−1/p. Since
this function is not in Lp, consider the family fε(x) = |x|−1/p min(|x|−ε , |x|ε), ε > 0,

and show that M( fε)(x)≥ (1+ γ
1
p′ +ε)(1+ γ)−1( 1

p′ + ε)−1 fε(x) for 0 < ε < p′.
]

2.1.3. Define the centered Hardy–Littlewood maximal function Mc and the uncen-
tered Hardy–Littlewood maximal function Mc using cubes with sides parallel to the
axes instead of balls in Rn. Prove that

vn (n/2)n/2 ≤ M( f )
Mc( f )

≤ 2n/vn , vn (n/2)n/2 ≤ M( f )
Mc( f )

≤ 2n/vn ,

where vn is the volume of the unit ball in Rn. Conclude that Mc and Mc are weak
type (1,1) and they map Lp(Rn) to itself for 1 < p≤ ∞.

2.1.4. (a) Prove the estimate:

|{x ∈ Rn : M( f )(x) > 2α}| ≤ 3n

α

∫
{| f |>α}

| f (y)|dy
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and conclude that M maps Lp to Lp,∞ with norm at most 2 · 3n/p for 1 ≤ p < ∞.
Deduce that if f log+(2| f |) is integrable over a ball B, then M( f ) is integrable over
the same ball B.
(b) (Wiener [291], Stein [255] ) Apply Proposition 2.1.20 to | f | and α > 0 and
Exercise 2.1.3 to show that with cn = (n/2)n/2vn we have

|{x ∈ Rn : M( f )(x) > cn α}| ≥ 2−n

α

∫
{| f |>α}

| f (y)|dy .

(c) Suppose that f is integrable and supported in a ball B(0,ρ). Show that for x in
B(0,2ρ)\B(0,ρ) we have M( f )(x)≤M(ρ2|x|−2x). Conclude that∫

B(0,2ρ)
M( f )dx ≤ (4n +1)

∫
B(0,ρ)

M( f )dx

and from this deduce a similar inequality for M( f ).
(d) Suppose that f is integrable and supported in a ball B and that M( f ) is integrable
over B. Let λ0 = 2n|B|−1

∥∥ f
∥∥

L1 . Use part (b) to prove that f log+(λ−1
0 cn | f |) is inte-

grable over B.[
Hint: Part (a): Write f = f χ| f |>α + f χ| f |≤α . Part (c): Let x′ = ρ2|x|−2x for some

ρ < |x|< 2ρ . Show that for R > |x|−ρ , we have that∫
B(x,R)

| f (z)|dz≤
∫

B(x′,R)
| f (z)|dz

by showing that B(x,R)∩B(0,ρ)⊂B(x′,R). Part (d): For x /∈ 2B we have M( f )(x)≤
λ0, hence

∫
2B M( f )(x)dx ≥

∫
∞

λ0
|{x ∈ 2B : M( f )(x) > α}|dα .

]
2.1.5. (A. Kolmogorov ) Let S be a sublinear operator that maps L1(Rn) to L1,∞(Rn)
with norm B. Suppose that f ∈ L1(Rn). Prove that for any set A of finite Lebesgue
measure and for all 0 < q < 1 we have∫

A
|S( f )(x)|q dx ≤ (1−q)−1Bq|A|1−q∥∥ f

∥∥q
L1 ,

and in particular, for the Hardy–Littlewood maximal operator,∫
A

M( f )(x)q dx ≤ (1−q)−13nq|A|1−q∥∥ f
∥∥q

L1 .

[
Hint: Use the identity∫

A
|S( f )(x)|q dx =

∫
∞

0
qα

q−1|{x∈A : S( f )(x)>α}|dα

and estimate the last measure by min(|A|, B
α

∥∥ f
∥∥

L1).
]
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2.1.6. Let Ms( f )(x) be the supremum of the averages of | f | over all rectangles with
sides parallel to the axes containing x. The operator Ms is called the strong maximal
function.
(a) Prove that Ms maps Lp(Rn) to itself.
(b) Show that the operator norm of Ms is An

p, where Ap is as in Exercise 2.1.2(c).
(c) Prove that Ms is not weak type (1,1).

2.1.7. Prove that if

|ϕ(x1, . . . ,xn)| ≤ A(1+ |x1|)−1−ε · · ·(1+ |xn|)−1−ε

for some A,ε > 0, and ϕt1,...,tn(x) = t−1
1 · · · t−1

n ϕ(t−1
1 x1, . . . , t−1

n xn), then the maximal
operator

f 7→ sup
t1,...,tn>0

| f ∗ϕt1,...,tn |

is pointwise controlled by the strong maximal function.

2.1.8. Prove that for any fixed 1 < p < ∞, the operator norm of M on Lp(Rn) tends
to infinity as n→ ∞.[
Hint: Let f0 be the characteristic function of the unit ball in Rn. Consider the aver-

ages |Bx|−1 ∫
Bx

f0 dy, where Bx = B
( 1

2 (|x|− |x|−1) x
|x| ,

1
2 (|x|+ |x|−1)

)
for |x|> 1.

]
2.1.9. (a) In R2 let M0( f )(x) be the maximal function obtained by taking the supre-
mum of the averages of | f | over all rectangles (of arbitrary orientation) containing
x. Prove that M0 is not bounded on Lp(Rn) for p < 2 and conclude that M0 is not
weak type (1,1).
(b) Let M00( f )(x) be the maximal function obtained by taking the supremum of the
averages of | f | over all rectangles in R2 of arbitrary orientation but fixed eccentricity
containing x. (The eccentricity of a rectangle is the ratio of its longer side to its
shorter side.) Using a covering lemma, show that M00 is weak type (1,1) with a
bound proportional to the square of the eccentricity.
(c) On Rn define a maximal function by taking the supremum of the averages
of | f | over all products of intervals I1 × ·· · × In containing a point x with |I2| =
a2|I1|, . . . , |In| = an|I1| and a2, . . . ,an > 0 fixed. Show that this maximal function is
weak type (1,1) with bound independent of the numbers a2, . . . ,an.[
Hint: Part (b): Let b be the eccentricity. If two rectangles with the same eccentricity

intersect, then the smaller one is contained in the bigger one scaled 4b times. Then
use an argument similar to that in Lemma 2.1.5.

]
2.1.10. (a) Let p,q,X ,Y be as in Theorem 2.1.14. Assume that Tε is a family of
quasilinear operators defined on Lp(X) [i.e., |Tε( f + g)| ≤ K(|Tε( f )|+ |Tε(g)|) for
all f ,g ∈ Lp(X)] such that limε→0 Tε( f ) = 0 for all f in some dense subspace D of
Lp(X). Use the argument of Theorem 2.1.14 to prove that limε→0 Tε( f ) = 0 for all
f in Lp(X).
(b) Use the result in part (a) to prove the following improvement of the Lebesgue
differentiation theorem: Let f ∈ Lp

loc(R
n) for some 1 ≤ p < ∞. Then for almost all

x ∈ Rn we have
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lim
|B|→0
B3x

1
|B|

∫
B
| f (y)− f (x)|p dy = 0 ,

where the limit is taken over all open balls B containing x.[
Hint: Define

Tε( f )(x) = sup
B(z,ε)3x

(
1

|B(z,ε)|

∫
B(z,ε)

| f (y)− f (x)|p dy
)1/p

and observe that T∗( f ) = supε>0 Tε( f )≤ | f |+M(| f |p)
1
p . Use Theorem 2.1.14.

]
2.1.11. On R define the right and left maximal functions MR and ML as follows:

ML( f )(x) = sup
r>0

1
r

∫ x

x−r
| f (t)|dt ,

MR( f )(x) = sup
r>0

1
r

∫ x+r

x
| f (t)|dt .

(a) (Riesz’s sunrise lemma [218] ) Show that

|{x ∈ R : ML( f )(x) > α}| =
1
α

∫
{ML( f )>α}

| f (t)|dt ,

|{x ∈ R : MR( f )(x) > α}| =
1
α

∫
{MR( f )>α}

| f (t)|dt .

(b) Conclude that ML and MR map Lp to Lp with norm at most p/(p− 1) for 1 <
p < ∞.
(c) Construct examples to show that the operator norms of ML and MR on Lp are
exactly p/(p−1) for 1 < p < ∞.
(d) (K. L. Phillips ) Prove that M = max(MR,ML).
(e) (J. Duoandikoetxea ) Let N = min(MR,ML). Since

M( f )p +N( f )p = ML( f )p +MR( f )p ,

integrate over the line and use the following consequence of part (a),∫
R

ML( f )p +MR( f )p dx =
p

p−1

∫
R
| f |
(
M( f )p−1 +N( f )p−1)dx ,

to prove that

(p−1)
∥∥M( f )

∥∥p
Lp − p

∥∥ f
∥∥

Lp

∥∥M( f )
∥∥p−1

Lp −
∥∥ f
∥∥p

Lp ≤ 0 .

This provides an alternative proof of the result in Exercise 2.1.2(c).

2.1.12. A cube Q = [a12k,(a1 + 1)2k)× ·· · × [an2k,(an + 1)2k) on Rn is called
dyadic if k, a1, . . . ,an ∈ Z. Observe that either two dyadic cubes are disjoint or one
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contains the other. Define the dyadic maximal function

Md( f )(x) = sup
Q3x

1
|Q|

∫
Q

f (y)dy ,

where the supremum is taken over all dyadic cubes Q containing x.
(a) Prove that Md maps L1 to L1,∞ with constant at most one, that is, show that for
all α > 0 and f ∈ L1(Rn) we have

|{x ∈ Rn : Md( f )(x) > α}| ≤ α
−1
∫
{Md( f )>α}

f (t)dt .

(b) Conclude that Md maps Lp(Rn) to itself with constant at most p/(p−1).

2.1.13. Observe that the proof of Theorem 2.1.6 yields the estimate

λ |{M( f ) > λ}|
1
p ≤ 3n|{M( f ) > λ}|−1+ 1

p

∫
{M( f )>λ}

| f (y)|dy

for λ > 0 and f locally integrable. Use the result of Exercise 1.1.12(a) to prove that
the Hardy–Littlewood maximal operator M maps the space Lp,∞(Rn) to itself for
1 < p < ∞.

2.1.14. Let K(x) = (1+ |x|)−n−δ be defined on Rn. Prove that there exists a constant
Cn,δ such that for all ε0 > 0 we have the estimate

sup
ε>ε0

(| f | ∗Kε)(x)≤Cn,δ sup
ε>ε0

1
εn

∫
|y−x|≤ε

| f (y)|dy ,

for all f locally integrable on Rn.[
Hint: Apply only a minor modification to the proof of Theorem 2.1.10.

]

2.2 The Schwartz Class and the Fourier Transform

In this section we introduce the single most important tool in harmonic analysis, the
Fourier transform. It is often the case that the Fourier transform is introduced as an
operation on L1 functions. In this exposition we first define the Fourier transform
on a smaller class, the space of Schwartz functions, which turns out to be a very
natural environment. Once the basic properties of the Fourier transform are derived,
we extend its definition to other spaces of functions.

We begin with some preliminaries. Given x = (x1, . . . ,xn) ∈ Rn, we set |x| =
(x2

1 + · · ·+ x2
n)

1/2. The first partial derivative of a function f on Rn with respect to
the jth variable x j is denoted by ∂ j f while the mth partial derivative with respect
to the jth variable is denoted by ∂ m

j f . A multi-index α is an ordered n-tuple of
nonnegative integers. For a multi-index α = (α1, . . . ,αn), ∂ α f denotes the derivative
∂

α1
1 · · ·∂ αn

n f . If α = (α1, . . . ,αn) is a multi-index, |α|= α1 + · · ·+αn denotes its size
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and α! = α1! · · ·αn! denotes the product of the factorials of its entries. The number
|α| indicates the total order of differentiation of ∂ α f . The space of functions in
Rn all of whose derivatives of order at most N ∈ Z+ are continuous is denoted by
C N(Rn) and the space of all infinitely differentiable functions on Rn by C ∞(Rn).
The space of C ∞ functions with compact support on Rn is denoted by C ∞

0 (Rn).
This space is nonempty; see Exercise 2.2.1(a).

For x ∈ Rn and α = (α1, . . . ,αn) a multi-index, we set xα = xα1
1 · · ·xαn

n . It is a
simple fact to verify that

|xα | ≤ cn,α |x||α| , (2.2.1)

for some constant that depends on the dimension n and on α . In fact, cn,α is
the maximum of the continuous function (x1, . . . ,xn) 7→ |xα1

1 · · ·xαn
n | on the sphere

Sn−1 = {x ∈ Rn : |x| = 1}. The converse inequality in (2.2.1) fails. However, the
following substitute of the converse of (2.2.1) is of great use: for k ∈ Z+ we have

|x|k ≤Cn,k ∑
|β |=k

|xβ | . (2.2.2)

To prove (2.2.2), take 1/Cn,k to be the minimum of the function

x 7→ ∑
|β |=k

|xβ |

on Sn−1; this minimum is positive since this function has no zeros on Sn−1.
We end the preliminaries by noting the validity of the one-dimensional Leibniz

rule
dm

dtm ( f g) =
m

∑
k=0

(
m
k

)
dk f
dtk

dm−kg
dtm−k , (2.2.3)

for all C m functions f ,g on R, and its multidimensional analogue

∂
α( f g) = ∑

β≤α

(
α1

β1

)
· · ·
(

αn

βn

)
(∂ β f )(∂ α−β g) , (2.2.4)

for f ,g in C |α|(Rn) for some multi-index α , where the notation β ≤ α in (2.2.4)
means that β ranges over all multi-indices satisfying 0 ≤ β j ≤ α j for all 1 ≤ j ≤ n.
We observe that identity (2.2.4) is easily deduced by repeated application of (2.2.3),
which in turn is obtained by induction.

2.2.1 The Class of Schwartz Functions

We now introduce the class of Schwartz functions on Rn. Roughly speaking, a func-
tion is Schwartz if it is smooth and all of its derivatives decay faster than the recip-
rocal of any polynomial at infinity. More precisely, we give the following definition.
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Definition 2.2.1. A C ∞ complex-valued function f on Rn is called a Schwartz func-
tion if for every pair of multi-indices α and β there exists a positive constant Cα,β

such that
ρα,β ( f ) = sup

x∈Rn
|xα

∂
β f (x)|= Cα,β < ∞. (2.2.5)

The quantities ρα,β ( f ) are called the Schwartz seminorms of f . The set of all
Schwartz functions on Rn is denoted by S (Rn).

Example 2.2.2. The function e−|x|
2

is in S (Rn) but e−|x| is not, since it fails to be
differentiable at the origin. The C ∞ function g(x) = (1+ |x|4)−a, a > 0, is not in S
since it decays only like the reciprocal of a fixed polynomial at infinity. The set of
all smooth functions with compact support, C ∞

0 (Rn), is contained in S (Rn).

Remark 2.2.3. If f1 is in S (Rn) and f2 is in S (Rm), then the function of m + n
variables f1(x1, . . . ,xn) f2(xn+1, . . . ,xn+m) is in S (Rn+m). If f is in S (Rn) and P(x)
is a polynomial of n variables, then P(x) f (x) is also in S (Rn). If α is a multi-index
and f is in S (Rn), then ∂ α f is in S (Rn). Also note that

f ∈S (Rn) ⇐⇒ sup
x∈Rn

|∂ α(xβ f (x))|< ∞ for all multi-indices α , β .

Remark 2.2.4. The following alternative characterization of Schwartz functions is
very useful. A C ∞ function f is in S (Rn) if and only if for all positive integers N
and all multi-indices α there exists a positive constant Cα,N such that

|(∂ α f )(x)| ≤Cα,N(1+ |x|)−N . (2.2.6)

The simple proofs are omitted. We now discuss convergence in S (Rn).

Definition 2.2.5. Let fk, f be in S (Rn) for k = 1,2, . . . . We say that the sequence
fk converges to f in S (Rn) if for all multi-indices α and β we have

ρα,β ( fk− f ) = sup
x∈Rn

|xα(∂ β ( fk− f ))(x)| → 0 as k → ∞.

For instance, for any fixed x0 ∈ Rn, f (x + x0/k) → f (x) in S (Rn) for any f in
S (Rn) as k → ∞.

This notion of convergence is compatible with a topology on S (Rn) under which
the operations ( f ,g) 7→ f + g, (a, f ) → a f , and f 7→ ∂ α f are continuous for all
complex scalars a and multi-indices α ( f ,g ∈ S (Rn)). A subbasis for open sets
containing 0 in this topology is

{ f ∈S : ρα,β ( f ) < r} ,

for all α , β multi-indices and all r∈Q+. Observe the following: If ρα,β ( f ) = 0, then
f = 0. This means that S (Rn) is a locally convex topological vector space equipped
with the family of seminorms ρα,β that separate points. We refer to Reed and Simon
[215] for the pertinent definitions. Since the origin in S (Rn) has a countable base,
this space is metrizable. In fact, the following is a metric on S (Rn):
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d( f ,g) =
∞

∑
j=1

2− j ρ j( f −g)
1+ρ j( f −g)

,

where ρ j is an enumeration of all the seminorms ρα,β , α and β multi-indices. One
may easily verify that S is complete with respect to the metric d. Indeed, a Cauchy
sequence {h j} j in S would have to be Cauchy in L∞ and therefore it would con-
verge uniformly to some function h. The same is true for the sequences {∂ β h j} j
and {xα h j(x)} j, and the limits of these sequences can be shown to be the functions
∂ β h and xα h(x), respectively. It follows that the sequence {h j} converges to h in S .
Therefore, S (Rn) is a Fréchet space (complete metrizable locally convex space).

We note that convergence in S is stronger than convergence in all Lp. We have
the following.

Proposition 2.2.6. Let f , fk, k = 1,2,3, . . . , be in S (Rn). If fk → f in S then
fk → f in Lp for all 0 < p≤ ∞. Moreover, there exists a Cp,n > 0 such that∥∥∂

β f
∥∥

Lp ≤Cp,n ∑
|α|≤[(n+1)/p]+1

ρα,β ( f ) (2.2.7)

for all f for which the right-hand side is finite.

Proof. Observe that

∥∥∂
β f
∥∥

Lp ≤
(∫

|x|≤1
|∂ β f (x)|p dx+

∫
|x|≥1

|x|n+1|∂ β f (x)|p|x|−(n+1) dx
)1/p

≤
(

vn
∥∥∂

β f
∥∥p

L∞ + sup
|x|≥1

|x|n+1|∂ β f (x)|p
∫
|x|≥1

|x|−(n+1) dx
)1/p

≤Cp,n
(∥∥∂

β f
∥∥

L∞ + sup
x∈Rn

(|x|[(n+1)/p]+1|∂ β f (x)|)
)
.

Now set m = [(n+1)/p]+1 and use (2.2.2) to obtain

|x|m|∂ β f (x)| ≤Cn,m ∑
|α|=m

|xα
∂

β f (x)| .

Thus the Lp norm of the Schwartz function ∂ β f is controlled by a constant multiple
of a sum of some ρα,0 seminorms of it. Conclusion (2.2.7) now follows immediately.
This shows that convergence in S implies convergence in Lp. �

We now show that the Schwartz class is closed under certain operations.

Proposition 2.2.7. Let f , g be in S (Rn). Then f g and f ∗ g are in S (Rn). More-
over,

∂
α( f ∗g) = (∂ α f )∗g = f ∗ (∂ α g) (2.2.8)

for all multi-indices α .
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Proof. Fix f and g in S (Rn). Let e j be the unit vector (0, . . . ,1, . . . ,0) with 1 in the
jth entry and zeros in all the other entries. Since

f (y+he j)− f (y)
h

− (∂ j f )(y)→ 0 (2.2.9)

as h→ 0, and since the expression in (2.2.9) is pointwise bounded by some constant
depending on f , the integral of the expression in (2.2.9) with respect to the measure
g(x− y)dy converges to zero as h → 0 by the Lebesgue dominated convergence
theorem. This proves (2.2.8) when α = (0, . . . ,1, . . . ,0). The general case follows
by repeating the previous argument and using induction.

We now show that the convolution of two functions in S is also in S . For each
N > n we have

|( f ∗g)(x)| ≤CN

∫
Rn

(1+ |x− y|)−N(1+ |y|)−Ndy . (2.2.10)

The part of the integral in (2.2.10) over the set {y : 1
2 |x| ≤ |y− x|} is bounded by∫

|y−x|≥ 1
2 |x|

(1+ 1
2 |x|)

−N(1+ |y|)−Ndy≤ BN(1+ |x|)−N ,

where BN is a constant depending on N and on the dimension. When 1
2 |x| ≥ |y− x|

we have that |y| ≥ 1
2 |x|, and it follows that the part of the integral in (2.2.10) over

the set {y : |y− x| ≤ 1
2 |x|} is bounded by∫

|y−x|≤ 1
2 |x|

(1+ |x− y|)−N(1+ 1
2 |x|)

−Ndy≤ BN(1+ |x|)−N .

This shows that f ∗g decays like (1+ |x|)−N at infinity, but since N > n is arbitrary
it follows that f ∗g decays faster than the reciprocal of any polynomial.

Since ∂ α( f ∗ g) = (∂ α f ) ∗ g, replacing f by ∂ α f in the previous argument, we
also conclude that all the derivatives of f ∗g decay faster than the reciprocal of any
polynomial at infinity. Using (2.2.6), we conclude that f ∗g is in S . Finally, the fact
that f g is in S follows directly from Leibniz’s rule (2.2.4) and (2.2.6). �

2.2.2 The Fourier Transform of a Schwartz Function

The Fourier transform is often introduced as an operation on L1. In that setting,
problems of convergence arise when certain manipulations of functions are per-
formed. Also, Fourier inversion requires the additional assumption that the Fourier
transform is in L1. Here we initially introduce the Fourier transform on the space
of Schwartz functions. The rapid decay of Schwartz functions at infinity allows us
to develop its fundamental properties without encountering any convergence prob-
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lems. The Fourier transform is a homeomorphism of the Schwartz class and Fourier
inversion holds in it. For these reasons, this class is a natural environment for it.

For x = (x1, . . . ,xn), y = (y1, . . . ,yn) in Rn we use the notation

x · y =
n

∑
j=1

x jy j .

Definition 2.2.8. Given f in S (Rn) we define

f̂ (ξ ) =
∫

Rn
f (x)e−2πix·ξ dx .

We call f̂ the Fourier transform of f .

Example 2.2.9. Let f (x) = e−π|x|2 defined on R. Then f̂ (ξ ) = f (ξ ). First observe
that the function

s 7→
∫ +∞

−∞

e−π(x+is)2
dx, s ∈ R ,

is constant. Indeed, its derivative is∫ +∞

−∞

−2πi(x+ is)e−π(x+is)2
dx =

∫ +∞

−∞

i
d
dx

(e−π(x+is)2
)dx = 0 .

The computation of the Fourier transform of f (x) = e−π|x|2 relies on simple com-
pletion of squares. We have∫

Rn
e−π|x|2e−2πi∑

n
j=1 x jξ j dx =

∫
Rn

e−π ∑
n
j=1(x j+iξ j)2

eπ ∑
n
j=1(iξ j)2

dx

=
(∫ +∞

−∞

e−πx2
dx
)n

e−π|ξ |2

= e−π|ξ |2 ,

where we used that ∫ +∞

−∞

e−x2
dx =

√
π , (2.2.11)

a fact that can be found in Appendix A.1.

Remark 2.2.10. It follows from the definition of the Fourier transform that if f is
in S (Rn) and g is in S (Rm), then

[ f (x1, . . . ,xn)g(xn+1, . . . ,xn+m)]̂= f̂ (ξ1, . . . ,ξn)ĝ(ξn+1, . . . ,ξn+m),

where the first ̂ denotes the Fourier transform on Rn+m. In other words, the Fourier
transform preserves separation of variables.

Combining this observation with the result in Example 2.2.9, we conclude that
the function f (x) = e−π|x|2 defined on Rn is equal to its Fourier transform.
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We now continue with some properties of the Fourier transform. Before we do
this we introduce some notation. For a measurable function f on Rn, x ∈ Rn, and
a > 0 we define the translation, dilation, and reflection of f by

τ
y( f )(x) = f (x− y)

δ
a( f )(x) = f (ax)

f̃ (x) = f (−x).

(2.2.12)

Also recall the notation fa = a−nδ 1/a( f ) introduced in Definition 2.1.9.

Proposition 2.2.11. Given f , g in S (Rn), y∈Rn, b∈C, α a multi-index, and t > 0,
we have

(1)
∥∥ f̂
∥∥

L∞ ≤
∥∥ f
∥∥

L1 ,

(2) f̂ +g = f̂ + ĝ,

(3) b̂ f = b f̂ ,

(4) ̂̃f = ˜̂f ,

(5) f̂ = ˜̂f ,

(6) τ̂y( f )(ξ ) = e−2πiy·ξ f̂ (ξ ),

(7) (e2πix·y f (x))̂(ξ ) = τy( f̂ )(ξ ),

(8) (δ t( f ))̂= t−nδ t−1
( f̂ ) = ( f̂ )t ,

(9) (∂ α f )̂(ξ ) = (2πiξ )α f̂ (ξ ),

(10) (∂ α f̂ )(ξ ) = ((−2πix)α f (x))̂(ξ ),

(11) f̂ ∈S ,

(12) f̂ ∗g = f̂ ĝ,

(13) f̂ ◦A(ξ ) = f̂ (Aξ ), where A is an orthogonal matrix and ξ is a column vector.

Proof. Property (1) follows from Definition 2.2.8 and implies that the Fourier trans-
form is always bounded. Properties (2)–(5) are trivial. Properties (6)–(8) require a
suitable change of variables but they are omitted. Property (9) is proved by integra-
tion by parts (which is justified by the rapid decay of the integrands):

(∂ α f )̂ (ξ ) =
∫

Rn
(∂ α f )(x)e−2πix·ξ dx

= (−1)|α|
∫

Rn
f (x)(−2πiξ )α e−2πix·ξ dx

= (2πiξ )α f̂ (ξ ) .
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To prove (10), let α = (0, . . . ,1, . . . ,0), where all entries are zero except for the
jth entry, which is 1. Since

e−2πix·(ξ+he j)− e−2πix·ξ

h
− (−2πix j)e−2πix·ξ → 0 (2.2.13)

as h→ 0 and the preceding function is bounded by C|x| for all h and ξ , the Lebesgue
dominated convergence theorem implies that the integral of the function in (2.2.13)
with respect to the measure f (x)dx converges to zero. Thus we have proved (10) for
α = (0, . . . ,1, . . . ,0). For other α’s use induction. To prove (11) we use (9), (10),
and (1) in the following way:

∥∥xα(∂ β f̂ )(x)
∥∥

L∞ =
(2π)|β |

(2π)|α|
∥∥(∂ α(xβ f (x)))̂

∥∥
L∞ ≤

(2π)|β |

(2π)|α|
∥∥∂

α(xβ f (x))
∥∥

L1 < ∞ .

Identity (12) follows from the following calculation:

f̂ ∗g(ξ ) =
∫

Rn

∫
Rn

f (x− y)g(y)e−2πix·ξ dydx

=
∫

Rn

∫
Rn

f (x− y)g(y)e−2πi(x−y)·ξ e−2πiy·ξ dydx

=
∫

Rn
g(y)

∫
Rn

f (x− y)e−2πi(x−y)·ξ dx e−2πiy·ξ dy

= f̂ (ξ )ĝ(ξ ),

where the application of Fubini’s theorem is justified by the absolute convergence
of the integrals. Finally, we prove (13). We have

f̂ ◦A(ξ ) =
∫

Rn
f (Ax)e−2πix·ξ dx

=
∫

Rn
f (y)e−2πiA−1y·ξ dy

=
∫

Rn
f (y)e−2πiAt y·ξ dy

=
∫

Rn
f (y)e−2πiy·Aξ dy

= f̂ (Aξ ) ,

where we used the change of variables y = Ax and the fact that |detA|= 1. �

Corollary 2.2.12. The Fourier transform of a radial function is radial. Products and
convolutions of radial functions are radial.

Proof. Let ξ1, ξ2 in Rn with |ξ1|= |ξ2|. Then for some orthogonal matrix A we have
Aξ1 = ξ2. Since f is radial, we have f = f ◦A. Then

f̂ (ξ2) = f̂ (Aξ1) = f̂ ◦A(ξ1) = f̂ (ξ1),
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where we used (13) in Proposition 2.2.11 to justify the second equality. Products
and convolutions of radial functions are easily seen to be radial. �

2.2.3 The Inverse Fourier Transform and Fourier Inversion

We now define the inverse Fourier transform.

Definition 2.2.13. Given a Schwartz function f , we define

f∨(x) = f̂ (−x),

for all x ∈ Rn. The operation
f 7→ f∨

is called the inverse Fourier transform.

It is straightforward that the inverse Fourier transform shares the same properties
as the Fourier transform. One may want to list (and prove) properties for the inverse
Fourier transform analogous to those in Proposition 2.2.11.

We now investigate the relation between the Fourier transform and the inverse
Fourier transform. In the next theorem, we prove that one is the inverse operation of
the other. This property is referred to as Fourier inversion.

Theorem 2.2.14. Given f , g, and h in S (Rn), we have

(1)
∫

Rn
f (x)ĝ(x)dx =

∫
Rn

f̂ (x)g(x)dx ,

(2) (Fourier Inversion) ( f̂ )∨ = f = ( f∨)̂ ,

(3) (Parseval’s relation)
∫

Rn
f (x)h(x)dx =

∫
Rn

f̂ (ξ )ĥ(ξ )dξ ,

(4) (Plancherel’s identity)
∥∥ f
∥∥

L2 =
∥∥ f̂
∥∥

L2 =
∥∥ f∨

∥∥
L2 ,

(5)
∫

Rn
f (x)g(x)dx =

∫
Rn

f̂ (x)g∨(x)dx .

Proof. (1) follows immediately from the definition of the Fourier transform and
Fubini’s theorem. To prove (2) we use (1) with

g(ξ ) = e2πiξ ·te−π|εξ |2 .

By Proposition 2.2.11 (7) and (8) and Example 2.2.9, we have that

ĝ(x) =
1
εn e−π|(x−t)/ε|2 ,
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which is an approximate identity. Now (1) gives∫
Rn

f (x)ε−ne−πε−2|x−t|2 dx =
∫

Rn
f̂ (ξ )e2πiξ ·te−π|εξ |2 dξ . (2.2.14)

Now let ε → 0 in (2.2.14). The left-hand side of (2.2.14) converges to f (t) uniformly
on compact sets by Theorem 1.2.19. The right-hand side of (2.2.14) converges to
( f̂ )∨ (t) as ε → 0 by the Lebesgue dominated convergence theorem. We conclude
that ( f̂ )∨= f on Rn. Replacing f by f̃ and using the result just proved, we conclude
that ( f∨)̂ = f .

To prove (3), use (1) with g = ĥ and the fact that ĝ = h, which is a conse-
quence of Proposition 2.2.11 (5) and Fourier inversion. Plancherel’s identity is a
trivial consequence of (3). (Sometimes the polarized identity (3) is also referred to
as Plancherel’s identity.) Finally, (5) easily follows from (1) and (2). �

Next we have the following simple corollary of Theorem 2.2.14.

Corollary 2.2.15. The Fourier transform is a homeomorphism from S (Rn) onto
itself.

Proof. The continuity of the Fourier transform (and its inverse) follows from Exer-
cise 2.2.2, while Fourier inversion yields that this map is bijective. �

2.2.4 The Fourier Transform on L1 +L2

We have defined the Fourier transform on S (Rn). We now extend this definition to
the space L1(Rn)+L2(Rn).

We begin by observing that the Fourier transform given in Definition 2.2.8,

f̂ (ξ ) =
∫

Rn
f (x)e−2πix·ξ dx ,

makes sense as a convergent integral for functions f ∈ L1(Rn). This allows us to
extend the definition of the Fourier transform on L1. Moreover, this operator satisfies
properties (1)–(8) as well as (12) and (13) in Proposition 2.2.11, with f ,g integrable.
We also define the inverse Fourier transform on L1 by setting f∨(x) = f̂ (−x) for
f ∈ L1(Rn) and we note that analogous properties hold for it. One problem in this
generality is that when f is integrable, one may not necessarily have ( f̂ )∨ = f a.e.
This inversion is possible when f̂ is also integrable; see Exercise 2.2.6.

The integral defining the Fourier transform does not converge absolutely for
functions in L2(Rn); however, the Fourier transform has a natural definition in this
space accompanied by an elegant theory. In view of the result in Exercise 2.2.8, the
Fourier transform is an L2 isometry on L1∩L2, which is a dense subspace of L2. By
density, there is a unique bounded extension of the Fourier transform on L2. Let us
denote this extension by F . Then F is also an isometry on L2, i.e.,
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∥∥

L2 =
∥∥ f
∥∥

L2

for all f ∈ L2(Rn), and any sequence of functions fN ∈ L1(Rn)∩L2(Rn) converging
to a given f in L2(Rn) satisfies∥∥ f̂N −F ( f )

∥∥
L2 → 0 , (2.2.15)

as N → ∞. In particular, the sequence of functions fN(x) = f (x)χ|x|≤N yields that

f̂N(ξ ) =
∫
|x|≤N

f (x)e−2πix·ξ dx (2.2.16)

converges to F ( f )(ξ ) in L2 as N → ∞. If f is both integrable and square inte-
grable, the expressions in (2.2.16) also converge to f̂ (ξ ) pointwise. Also, in view of
Theorem 1.1.11 and (2.2.15), there is a subsequence of f̂N that converges to F ( f )
pointwise a.e. Consequently, for f in L1(Rn)∩L2(Rn) the expressions f̂ and F ( f )
coincide pointwise a.e. For this reason we often adopt the notation f̂ to denote the
Fourier transform of functions f in L2 as well.

In a similar fashion, we let F ′ be the isometry on L2(Rn) that extends the op-
erator f 7→ f∨, which is an L2 isometry on L1 ∩ L2; the last statement follows
by adapting the result of Exercise 2.2.8 to the inverse Fourier transform. Since
ϕ∨(x) = ϕ̂(−x) for ϕ in the Schwartz class, which is dense in L2 (Exercise 2.2.5),
it follows that F ′( f )(x) = F ( f )(−x) for all f ∈ L2 and x ∈ Rn. The operators F
and F ′ are L2-isometries that satisfy F ′ ◦F = F ◦F ′ = Id on the Schwartz space.
By density this identity also holds for L2 functions and implies that F and F ′ are
injective and surjective mappings from L2 to itself; consequently, F ′ coincides with
the inverse operator F−1 of F : L2 → L2, and Fourier inversion

f = F−1 ◦F ( f ) = F ◦F−1( f )

holds on L2.
Having set down the basic facts concerning the action of the Fourier transform on

L1 and L2, it is now a simple matter to extend its definition on Lp for 1 < p < 2. For
functions f ∈ Lp(Rn), 1 < p < 2, we define f̂ = f̂1 + f̂2, where f1 ∈ L1, f2 ∈ L2, and
f = f1 + f2; we may take, for instance, f1 = f χ| f |>1 and f2 = f χ| f |≤1. The definition
of f̂ is independent of the choice of f1 and f2, for if f1 + f2 = h1 +h2 for f1,h1 ∈ L1

and f2,h2 ∈ L2, we have f1−h1 = h2− f2 ∈ L1∩L2. Since these functions are equal
on L1∩L2, their Fourier transforms are also equal, and we obtain f̂1− ĥ1 = ĥ2− f̂2,
which yields f̂1 + f2 = ĥ1 +h2. We have the following result concerning the action
of the Fourier transform on Lp.

Proposition 2.2.16. (Hausdorff–Young inequality) For every function f in Lp(Rn)
we have the estimate ∥∥ f̂

∥∥
Lp′ ≤

∥∥ f
∥∥

Lp

whenever 1≤ p≤ 2.
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Proof. This follows easily from Theorem 1.3.4. Interpolate between the estimates∥∥ f̂
∥∥

L∞ ≤
∥∥ f
∥∥

L1 (Proposition 2.2.11 (1)) and
∥∥ f̂
∥∥

L2 ≤
∥∥ f
∥∥

L2 to obtain
∥∥ f̂
∥∥

Lp′ ≤∥∥ f
∥∥

Lp . We conclude that the Fourier transform is a bounded operator from Lp(Rn)
to Lp′(Rn) with norm at most 1 when 1≤ p≤ 2. �

Next, we are concerned with the behavior of the Fourier transform at infinity.

Proposition 2.2.17. (Riemann–Lebesgue lemma) For a function f in L1(Rn) we
have that

| f̂ (ξ )| → 0 as |ξ | → ∞ .

Proof. Consider the function χ[a,b] on R. A simple computation gives

χ̂[a,b](ξ ) =
e−2πiξ a− e−2πiξ b

2πiξ
,

which tends to zero as |ξ | → ∞. Likewise, if g = ∏
n
j=1 χ[a j ,b j ] on Rn, then

ĝ(ξ ) =
n

∏
j=1

e−2πiξ ja j − e−2πiξ jb j

2πiξ j
,

which also tends to zero as |ξ | → ∞ in Rn.
To prove the assertion, approximate in the L1 norm a general integrable function

f on Rn by a finite sum h of “step functions” like g and use

| f̂ (ξ )| ≤ | f̂ (ξ )− ĥ(ξ )|+ |ĥ(ξ )| ≤
∥∥ f −h

∥∥
L1 + |ĥ(ξ )| .

�

We end this section with an example that illustrates some of the practical uses of
the Fourier transform.

Example 2.2.18. We are asked to find a function f (x1,x2,x3) on R3 that satisfies the
partial differential equation

f (x)+∂
2
1 ∂

2
2 ∂

4
3 f (x)+4i∂ 2

1 f (x)+∂
7
2 f (x) = e−π|x|2 .

Taking the Fourier transform on both sides of this identity and using Proposition
2.2.11 (2), (9) and the result of Example 2.2.9, we obtain

f̂ (ξ )
[
1+(2πiξ1)2(2πiξ2)2(2πiξ3)4 +4i(2πiξ1)2 +(2πiξ2)7

]
= e−π|ξ |2 .

Let p(ξ ) = p(ξ1,ξ2,ξ3) be the polynomial inside the square brackets. We observe
that p(ξ ) has no real zeros and we may therefore write

f̂ (ξ ) = e−π|ξ |2 p(ξ )−1 =⇒ f (x) =
(
e−π|ξ |2 p(ξ )−1)∨ (x) .
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In general, let P(ξ ) = ∑|α|≤N Cα ξ α be a polynomial in Rn with constant complex
coefficients Cα indexed by multi-indices α . If P(2πiξ ) has no real zeros, and u is in
S (Rn), then the partial differential equation

P(∂ ) f = ∑
|α|≤N

Cα ∂
α f = u

is solved as before to give

f =
(
û(ξ )P(2πiξ )−1)∨ .

Since P(2πiξ ) has no real zeros and u ∈ S (Rn), the function û(ξ )P(2πiξ )−1 is
smooth and therefore a Schwartz function. Then f is also in S (Rn) by Proposition
2.2.11 (11).

Exercises

2.2.1. (a) Construct a Schwartz function with compact support.
(b) Construct a C ∞

0 (Rn) function equal to 1 on the annulus 1≤ |x| ≤ 2 and vanishing
off the annulus 1/2≤ |x| ≤ 4.
(c) Construct a nonnegative nonzero Schwartz function f whose Fourier transform
is nonnegative and compactly supported.[
Hint: Part (a): Try the construction in dimension one first using the C ∞ function

η(x) = e−1/x for x > 0 and η(x) = 0 for x < 0. Part (c): Take f = |ϕ ∗ ϕ̃|2, where ϕ̂

is odd, real-valued, and compactly supported.
]

2.2.2. If fk, f ∈S (Rn) and fk → f in S (Rn), then f̂k → f̂ and f∨k → f∨ in S (Rn).

2.2.3. Find the spectrum (i.e., the set of all eigenvalues of the Fourier transform),
that is, all complex numbers λ for which there exist nonzero functions f such that

f̂ = λ f .[
Hint: Apply the Fourier transform three times to the preceding identity. Consider

the functions xe−πx2
, (a + bx2)e−πx2

, and (cx + dx3)e−πx2
for suitable a,b,c,d to

show that all fourth roots of unity are indeed eigenvalues of the Fourier transform.
]

2.2.4. Use the idea of the proof of Proposition 2.2.7 to show that if the functions f ,
g defined on Rn satisfy | f (x)| ≤ A(1 + |x|)−M and |g(x)| ≤ B(1 + |x|)−N for some
M,N > n, then

|( f ∗g)(x)| ≤ ABC(1+ |x|)−L ,

where L = min(N,M) and C = C(N,M) > 0.

2.2.5. (a) Show that C ∞
0 (Rn) is dense on Lp(Rn) for 1 ≤ p < ∞. Conclude that

S (Rn) is also dense on Lp spaces.
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(b) Prove that these spaces are also dense in Lp for 0 < p < 1.[
Hint: When 1 ≤ p < ∞ you may convolve with an approximate identity. For 0 <

p < 1 you may approximate a compactly supported step function with a smooth
function.

]
2.2.6. (a) Prove that if f ∈ L1, then f̂ is uniformly continuous on Rn.
(b) Prove that for f ∈ L1 and g ∈S we have∫

Rn
f (x)ĝ(x)dx =

∫
Rn

f̂ (x)g(x)dx .

(c) Take ĝ(x) = ε−ne−πε−2|x−t|2 in (b) and let ε → 0 to prove that if f and f̂ are both
in L1, then ( f̂ )∨ = f a.e. This fact is called Fourier inversion on L1.

2.2.7. (a) Prove that if f is continuous at 0, then

lim
ε→0

∫
Rn

f̂ (x)e−π|εx|2dx = f (0) .

(b) Prove that if f ∈ L1(Rn), f̂ ≥ 0, and f is continuous at zero, then f̂ is in L1 and
therefore Fourier inversion f (0) =

∥∥ f̂
∥∥

L1 holds at zero and f = ( f̂ )∨ a.e. in general.[
Hint: Part (a): Take g(x) = e−π|εx|2 in Exercise 2.2.6(b).

]
2.2.8. (a) Given f in L1(Rn)∩L2(Rn), prove that∥∥ f̂

∥∥
L2 =

∥∥ f
∥∥

L2 .[
Hint: Let h = f ∗ f̃ , where f̃ (x) = f (−x) and the bar indicates complex conjuga-

tion. Then h ∈ L1(Rn), ĥ = | f̂ |2 ≥ 0, and h is continuous at zero. Exercise 2.2.7(b)

yields
∥∥ f̂
∥∥2

L2 =
∥∥ĥ
∥∥

L1 = h(0) =
∫

Rn
f (x) f̃ (−x)dx =

∥∥ f
∥∥2

L2 .
]

2.2.9. (a) Prove that for all 0 < ε < t < ∞ we have∣∣∣∣∫ t

ε

sin(ξ )
ξ

dξ

∣∣∣∣≤ 4 .

(b) If f is an odd L1 function on the line, conclude that for all t > ε > 0 we have∣∣∣∣∫ t

ε

f̂ (ξ )
ξ

dξ

∣∣∣∣≤ 4
∥∥ f
∥∥

L1 .

(c) Let g(ξ ) be a continuous odd function that is equal to 1/ log(ξ ) for ξ ≥ 2. Show
that there does not exist an L1 function whose Fourier transform is g.

2.2.10. Let f be in L1(R). Prove that∫ +∞

−∞

f (x)dx =
∫ +∞

−∞

f (x−1/x)dx .
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2.2.11. (a) Use Exercise 2.2.10 with f (x) = e−tx2
to obtain the subordination iden-

tity

e−2t =
1√
π

∫
∞

0
e−y−t2/y dy

√
y

, where t > 0.

(b) Set t = π|x| and integrate with respect to e−2πiξ ·xdx to prove that

(e−2π|x|)̂ (ξ ) =
Γ ( n+1

2 )

π
n+1

2

1

(1+ |ξ |2) n+1
2

.

This calculation gives the Fourier transform of the Poisson kernel.

2.2.12. Let 1≤ p≤ ∞ and let p′ be its dual index.
(a) Prove that Schwartz functions f on the line satisfy the estimate∥∥ f

∥∥2
L∞ ≤ 2

∥∥ f
∥∥

Lp

∥∥ f ′
∥∥

Lp′ .

(b) Prove that all Schwartz functions f on Rn satisfy the estimate∥∥ f
∥∥2

L∞ ≤ 2 ∑
α+β=(1,...,1)

∥∥∂
α f
∥∥

Lp

∥∥∂
β f
∥∥

Lp′ ,

where the sum is taken over all multi-indices α and β whose sum is (1,1, . . . ,1).[
Hint: Part (a): Write f (x)2 =

∫ x
−∞

d
dt f (t)2 dt.

]
2.2.13. The uncertainty principle says that the position and the momentum of a
particle cannot be simultaneously localized. Prove the following inequality, which
presents a quantitative version of this principle:

∥∥ f
∥∥2

L2(Rn) ≤
4π

n
inf

y∈Rn

[∫
Rn
|x− y|2| f (x)|2 dx

]1
2

inf
z∈Rn

[∫
Rn
|ξ − z|2| f̂ (ξ )|2 dξ

]1
2
,

where f is a Schwartz function on Rn (or an L2 function with sufficient decay at
infinity).[
Hint: Let y be in Rn. Start with

∥∥ f
∥∥2

L2 =
1
n

∫
Rn

f (x) f (x)
n

∑
j=1

∂ j(x j − y j)dx ,

integrate by parts, apply the Cauchy–Schwarz inequality, Plancherel’s identity, and
the identity ∑

n
j=1 |∂̂ j f (ξ )|2 = 4π2|ξ |2| f̂ (ξ + z)|2 for all ξ ,z ∈ Rn.

]
2.2.14. Let −∞ < α < n

2 < β < +∞. Prove the validity of the following inequality:

∥∥g
∥∥

L1(Rn) ≤C
∥∥|x|α g(x)

∥∥ β−n/2
β−α

L2(Rn)

∥∥|x|β g(x)
∥∥ n/2−α

β−α

L2(Rn)
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for some constant C = C(n,α,β ) independent of g.[
Hint: First prove

∥∥g
∥∥

L1 ≤C
∥∥|x|α g(x)

∥∥
L2 +

∥∥|x|β g(x)
∥∥

L2 and then replace g(x) by
g(λx) for some suitable λ > 0.

]

2.3 The Class of Tempered Distributions

The fundamental idea of the theory of distributions is that it is generally easier to
work with linear functionals acting on spaces of “nice” functions than to work with
“bad” functions directly. The set of “nice” functions we consider is closed under
the basic operations in analysis, and these operations are extended to distributions
by duality. This wonderful interpretation has proved to be an indispensable tool that
has clarified many situations in analysis.

2.3.1 Spaces of Test Functions

We recall the space C ∞
0 (Rn) of all smooth functions with compact support, and

C ∞(Rn) of all smooth functions on Rn. We are mainly interested in the three spaces
of “nice” functions on Rn that are nested as follows:

C ∞
0 (Rn)⊆S (Rn)⊆ C ∞(Rn) .

Here S (Rn) is the space of Schwartz functions introduced in Section 2.2.

Definition 2.3.1. We define convergence of sequences in these spaces. We say that

fk → f in C ∞ ⇐⇒ fk, f ∈ C ∞ and lim
k→∞

sup
|x|≤N

|∂ α( fk− f )(x)|= 0

∀ α multi-indices and all N = 1,2, . . . .

fk → f in S ⇐⇒ fk, f ∈S and lim
k→∞

sup
x∈Rn

|xα
∂

β ( fk− f )(x)|= 0

∀ α,β multi-indices.
fk → f in C ∞

0 ⇐⇒ fk, f ∈ C ∞
0 , support( fk)⊆ B for all k, B compact,

and lim
k→∞

∥∥∂
α( fk− f )

∥∥
L∞ = 0 ∀ α multi-indices.

It follows that convergence in C ∞
0 (Rn) implies convergence in S (Rn), which in

turn implies convergence in C ∞(Rn).

Example 2.3.2. Let ϕ be a nonzero C ∞
0 function on R. We call such functions

smooth bumps. Define the sequence of smooth bumps ϕk(x) = ϕ(x− k)/k. Then
ϕk(x) does not converge to zero in C ∞

0 (R), even though ϕk (and all of its deriva-
tives) converge to zero uniformly. Furthermore, we see that ϕk does not converge to
any function in S (R). Clearly ϕk → 0 in C ∞(R).
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The space C ∞(Rn) is equipped with the family of seminorms

ρ̃α,N( f ) = sup
|x|≤N

|(∂ α f )(x)|, α a multi-index, N = 1,2, . . . . (2.3.1)

It can be shown that C ∞(Rn) is complete with respect to this countable family of
seminorms, i.e., it is a Fréchet space. However, it is true that C ∞

0 (Rn) is not complete
with respect to the topology generated by this family of seminorms.

The topology of C ∞
0 given in Definition 2.3.1 is the inductive limit topology,

and under this topology it can be seen that C ∞
0 is complete. Indeed, C ∞

0 (Rn) is a
countable union of spaces

⋃
∞
k=1 C ∞

0 (B(0,k)) and each of these spaces is complete
with respect to the topology generated by the family of seminorms ρ̃α,N ; hence so
is C ∞

0 (Rn). Nevertheless, C ∞
0 (Rn) is not metrizable. We refer to Reed and Simon

[215] for details on the topologies of these spaces.

2.3.2 Spaces of Functionals on Test Functions

The dual spaces (i.e., the spaces of continuous linear functionals on the sets of test
functions) we introduced is denoted by

(C ∞
0 (Rn))′ = D ′(Rn) ,

(S (Rn))′ = S ′(Rn) ,
(C ∞(Rn))′ = E ′(Rn) .

By definition of the topologies on the dual spaces, we have

Tk → T in D ′ ⇐⇒ Tk,T ∈D ′ and Tk( f )→ T ( f ) for all f ∈ C ∞
0 .

Tk → T in S ′ ⇐⇒ Tk,T ∈S ′ and Tk( f )→ T ( f ) for all f ∈S .
Tk → T in E ′ ⇐⇒ Tk,T ∈ E ′ and Tk( f )→ T ( f ) for all f ∈ C ∞.

The dual spaces are nested as follows:

E ′(Rn)⊆S ′(Rn)⊆D ′(Rn) .

Definition 2.3.3. Elements of the space D ′(Rn) are called distributions. Elements of
S ′(Rn) are called tempered distributions. Elements of the space E ′(Rn) are called
distributions with compact support.

Before we discuss some examples, we give alternative characterizations of distri-
butions, which are very useful from the practical point of view. The action of a
distribution u on a test function f is represented in either one of the following two
ways: 〈

u, f
〉

= u( f ) .
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Proposition 2.3.4. (a) A linear functional u on C ∞
0 (Rn) is a distribution if and only

if for every compact K ⊆ Rn, there exist C > 0 and an integer m such that∣∣〈u, f
〉∣∣≤C ∑

|α|≤m

∥∥∂
α f
∥∥

L∞ , for all f ∈ C ∞ with support in K. (2.3.2)

(b) A linear functional u on S (Rn) is a tempered distribution if and only if there
exist C > 0 and k, m integers such that∣∣〈u, f

〉∣∣≤C ∑
|α|≤m
|β |≤k

ρα,β ( f ), for all f ∈S (Rn). (2.3.3)

(c) A linear functional u on C ∞(Rn) is a distribution with compact support if and
only if there exist C > 0 and N, m integers such that∣∣〈u, f

〉∣∣≤C ∑
|α|≤m

ρ̃α,N( f ), for all f ∈ C ∞(Rn), (2.3.4)

where ρα,β and ρ̃α,N are defined in (2.2.5) and (2.3.1).

Proof. We prove only (2.3.3), since the proofs of (2.3.2) and (2.3.4) are similar. It is
clear that (2.3.3) implies continuity of u. Conversely, it was pointed out in Section
2.2 that the family of sets { f ∈ S (Rn) : ρα,β ( f ) < δ}, where α , β are multi-
indices and δ > 0, forms a subbasis for the topology of S . Thus if u is a continuous
functional on S , there exist integers k, m and a δ > 0 such that

|α| ≤ m, |β | ≤ k, and ρα,β ( f ) < δ =⇒
∣∣〈u, f

〉∣∣≤ 1. (2.3.5)

We see that (2.3.3) follows from (2.3.5) with C = 1/δ . �

Examples 2.3.5. We now discuss some important examples.

1. The Dirac mass at the origin δ0. This is defined by〈
δ0, f

〉
= f (0).

We claim that δ0 is in E ′. To see this we observe that if fk → f in C ∞ then〈
δ0, fk

〉
→
〈
δ0, f

〉
. The Dirac mass at a point a ∈Rn is defined similarly by the

equation 〈
δa, f

〉
= f (a).

2. Some functions g can be thought of as distributions via the identification g 7→
Lg, where Lg is the functional

Lg( f ) =
∫

Rn
f (x)g(x)dx .
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Here are some examples: The function 1 is in S ′ but not in E ′. Compactly
supported integrable functions are in E ′. The function e|x|

2
is in D ′ but not in

S ′.
3. Functions in L1

loc are distributions. To see this, first observe that if g ∈ L1
loc, then

the integral

Lg( f ) =
∫

Rn
f (x)g(x)dx

is well defined for all f ∈ D , and then note that fk → f in D implies that
Lg( fk)→ Lg( f ).

4. Functions in Lp, 1 ≤ p ≤ ∞, are tempered distributions, but they are not in E ′

unless they have compact support.
5. Any finite Borel measure µ is a tempered distribution via the identification

Lµ( f ) =
∫

Rn
f (x)dµ(x) .

To see this, observe that fk → f in S implies that Lµ( fk)→ Lµ( f ). Finite Borel
measures may not be distributions with compact support. Lebesgue measure is
also a tempered distribution.

6. Every function g that satisfies |g(x)| ≤C(1+ |x|)k, for some real number k, is a
tempered distribution. To see this, observe that

Lg( f )≤ sup
x∈Rn

(1+ |x|)m| f (x)|
∫

Rn
(1+ |x|)k−mdx ,

where m > n + k and the expression supx∈Rn |(1 + |x|)m f (x)| is bounded by a
sum of ρα,β seminorms in the Schwartz space.

7. The function log |x| is a tempered distribution. The integral of this function
against Schwartz functions is well defined. More generally, any function that
is integrable in a neighborhood of the origin and satisfies |g(x)| ≤ C(1 + |x|)k

for |x| ≥M is a tempered distribution.
8. Here is an example of a compactly supported distribution on R that is neither a

function nor a measure:〈
u, f
〉

= lim
ε→0

∫
ε≤|x|≤1

f (x)
dx
x

= lim
ε→0

∫
ε≤|x|≤1

( f (x)− f (0))
dx
x

.

We have that
∣∣〈u, f

〉∣∣≤ 2
∥∥ f ′
∥∥

L∞ and that if fn → f in C ∞, then
〈
u, fn

〉
→
〈
u, f
〉
.

2.3.3 The Space of Tempered Distributions

Having set down the basic definitions of distributions, we now focus our study on the
space of tempered distributions. These distributions are the most useful in harmonic
analysis. The main reason for this is that the subject is concerned with boundedness
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of translation-invariant operators, and every such bounded operator from Lp(Rn) to
Lq(Rn) is given by convolution with a tempered distribution. This fact is shown in
Section 2.5.

Suppose that f and g are Schwartz functions and α a multi-index. Integrating by
parts |α| times, we obtain∫

Rn
(∂ α f )(x)g(x)dx = (−1)|α|

∫
Rn

f (x)(∂ α g)(x)dx. (2.3.6)

If we wanted to define the derivative of a tempered distribution u, we would have to
give a definition that extends the definition of the derivative of the function and that
satisfies (2.3.6) for g in S ′ and f ∈ S if the integrals in (2.3.6) are interpreted as
actions of distributions on functions. We simply use equation (2.3.6) to define the
derivative of a distribution.

Definition 2.3.6. Let u ∈S ′ and α a multi-index. Define〈
∂

α u, f
〉

= (−1)|α|
〈
u,∂ α f

〉
. (2.3.7)

If u is a function, the derivatives of u in the sense of distributions are called distri-
butional derivatives.

In view of Theorem 2.2.14, it is natural to give the following:

Definition 2.3.7. Let u ∈ S ′. We define the Fourier transform û and the inverse
Fourier transform u∨ of a tempered distribution u by〈

û, f
〉

=
〈
u, f̂
〉

and
〈
u∨, f

〉
=
〈
u, f∨

〉
, (2.3.8)

for all f in S .

Example 2.3.8. We observe that δ̂0 = 1. More generally, for any multi-index α we
have

(∂ α
δ0)̂ = (2πix)α .

To see this, observe that for all f ∈S we have〈
(∂ α

δ0)̂ , f
〉

=
〈
∂

α
δ0 , f̂

〉
= (−1)|α|

〈
δ0 , ∂

α f̂
〉

= (−1)|α|
〈
δ0 , ((−2πix)α f (x))̂

〉
= (−1)|α|((−2πix)α f (x))̂ (0)

= (−1)|α|
∫

Rn
(−2πix)α f (x)dx

=
∫

Rn
(2πix)α f (x)dx .

This calculation indicates that (∂ α δ0)̂ can be identified with the function (2πix)α .
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Example 2.3.9. Recall that for x0 ∈ Rn, δx0( f ) =
〈
δx0 , f

〉
= f (x0). Then

〈
δ̂x0 ,h

〉
=
〈
δx0 , ĥ

〉
= ĥ(x0) =

∫
Rn

h(x)e−2πix·x0 dx, h ∈S (Rn) ,

that is, δ̂x0 can be identified with the function x 7→ e−2πix·x0 . In particular, δ̂0 = 1.

Example 2.3.10. The function e|x|
2

is not in S ′(Rn) and therefore its Fourier trans-
form is not defined as a distribution. However, the Fourier transform of any locally
integrable function with polynomial growth at infinity is defined as a tempered dis-
tribution.

Now observe that the following are true whenever f , g are in S .∫
Rn

g(x) f (x− t)dx =
∫

Rn
g(x+ t) f (x)dx ,∫

Rn
g(ax) f (x)dx =

∫
Rn

g(x)a−n f (a−1x)dx ,∫
Rn

g̃(x) f (x)dx =
∫

Rn
g(x) f̃ (x)dx ,

(2.3.9)

for all t ∈Rn and a > 0. Recall now the definitions of τ t , δ a, and ˜ given in (2.2.12).
Motivated by (2.3.9), we give the following:

Definition 2.3.11. The translation τ t(u), the dilation δ a(u), and the reflection ũ of
a tempered distribution u are defined as follows:〈

τ
t(u), f

〉
=
〈
u,τ−t( f )

〉
, (2.3.10)〈

δ
a(u), f

〉
=
〈
u,a−n

δ
1/a( f )

〉
, (2.3.11)〈

ũ, f
〉

=
〈
u, f̃
〉
, (2.3.12)

for all t ∈ Rn and a > 0. Let A be an invertible matrix. The composition of a distri-
bution u with an invertible matrix A is the distribution〈

uA,ϕ
〉

= |det A|−1〈u,ϕA−1〉
, (2.3.13)

where ϕA−1
(x) = ϕ(A−1x).

It is easy to see that the operations of translation, dilation, reflection, and differ-
entiation are continuous on tempered distributions.

Example 2.3.12. The Dirac mass at the origin δ0 is equal to its reflection, while
δ a(δ0) = a−nδ0. Also, τx(δ0) = δx for any x ∈ Rn.

Now observe that for f , g, and h in S we have∫
Rn

(h∗g)(x) f (x)dx =
∫

Rn
g(x)(h̃∗ f )(x)dx . (2.3.14)
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Motivated by (2.3.14), we define the convolution of a function with a tempered
distribution as follows:

Definition 2.3.13. Let u ∈S ′ and h ∈S . Define the convolution h∗u by〈
h∗u, f

〉
=
〈
u, h̃∗ f

〉
, f ∈S . (2.3.15)

Example 2.3.14. Let u = δx0 and f ∈S . Then f ∗δx0 is the function x 7→ f (x−x0),
for when h ∈S , we have〈

f ∗δx0 ,h
〉

=
〈
δx0 , f̃ ∗h

〉
= ( f̃ ∗h)(x0) =

∫
Rn

f (x− x0)h(x)dx .

It follows that convolution with δ0 is the identity operator.

We now define the product of a function and a distribution.

Definition 2.3.15. Let u∈S ′ and let h be a C ∞ function that has at most polynomial
growth at infinity and the same is true for all of its derivatives. This means that
it satisfies |(∂ α h)(x)| ≤ C(1 + |x|)kα for all α and some kα > 0. Then define the
product hu of h and u by 〈

hu, f
〉

=
〈
u,h f

〉
, f ∈S . (2.3.16)

Note that h f is in S and thus (2.3.16) is well defined. The product of an arbitrary
C ∞ function with a tempered distribution is not defined.

We observe that if a function g is supported in a set K, then for all f ∈ C ∞
0 (Kc)

we have ∫
Rn

f (x)g(x)dx = 0 . (2.3.17)

Moreover, the support of g is the intersection of all closed sets K with the property
(2.3.17) for all f in C ∞

0 (Kc). Motivated by the preceding observation we give the
following:

Definition 2.3.16. Let u be in D ′(Rn). The support of u (supp u) is the intersection
of all closed sets K with the property

ϕ ∈ C ∞(Rn), supp ϕ ⊆ Kc =⇒
〈
u,ϕ
〉

= 0 . (2.3.18)

Distributions with compact support are exactly those whose support (as defined
in the previous definition) is a compact set. To prove this assertion, we start with
a distribution u with compact support as defined in Definition 2.3.3. Then there
exist C,N,m > 0 such that (2.3.4) holds. For a smooth function f whose support is
contained in B(0,N)c, the expression on the right in (2.3.4) vanishes and we must
therefore have

〈
u, f
〉

= 0. This shows that the support of u is bounded, and since it
is already closed (as an intersection of closed sets), it must be compact. Conversely,
if the support of u as defined in Definition 2.3.16 is a compact set, then there exists
an N > 0 such that supp u is contained in B(0,N). We take a smooth function η that



116 2 Maximal Functions, Fourier Transform, and Distributions

is equal to 1 on B(0,N) and vanishes off B(0,N +1). Then the support of f (1−η)
does not meet the support of u, and we must have〈

u, f
〉

=
〈
u, f η

〉
+
〈
u, f (1−η)

〉
=
〈
u, f η

〉
.

Taking m to be the integer that corresponds to the compact set K = B(0,N +1)
in (2.3.2), and using that the L∞ norm of ∂ α( f η) is controlled by a finite sum of
seminorms ρ̃α,N+1( f ) with |α| ≤ m, we obtain the validity of (2.3.4).

Example 2.3.17. The support of Dirac mass at x0 is the set {x0}.

Along the same lines, we give the following definition:

Definition 2.3.18. We say that a distribution u in D ′(Rn) coincides with the function
h on an open set Ω if〈

u, f
〉

=
∫

Rn
f (x)h(x)dx for all f in C ∞

0 (Ω). (2.3.19)

When (2.3.19) occurs we often say that u agrees with h away from Ω c.

This definition implies that the support of the distribution u− h is contained in
the set Ω c.

Example 2.3.19. The distribution |x|2 +δa1 +δa2 , where a1, a2 are in Rn, coincides
with the function |x|2 on any open set not containing the points a1 and a2. Also, the
distribution in Example 2.3.5 (8) coincides with the function x−1χ|x|≤1 away from
the origin in the real line.

Having ended the streak of definitions regarding operations with distributions,
we now discuss properties of convolutions and Fourier transforms.

Theorem 2.3.20. If u ∈S ′ and ϕ ∈S , then ϕ ∗u is a C ∞ function. Moreover, for
all multi-indices α there exist constants Cα ,kα > 0 such that

|∂ α(ϕ ∗u)(x)| ≤Cα(1+ |x|)kα .

Furthermore, if u has compact support, then f ∗u is a Schwartz function.

Proof. Let ψ be in S (Rn). We have

(ϕ ∗u)(ψ) = u(ϕ̃ ∗ψ) = u
(∫

Rn
ϕ̃( · − y)ψ(y)dy

)
= u

(∫
Rn

τ
y(ϕ̃)( ·)ψ(y)dy

)
(2.3.20)

=
∫

Rn
u(τy(ϕ̃))ψ(y)dy,
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where the last step is justified by the continuity of u and by the fact that the Riemann
sums of the integral in (2.3.20) converge to that integral in the topology of S , a fact
proved later. This calculation identifies the function ϕ ∗u as

(ϕ ∗u)(x) = u
(
τ

x(ϕ̃)
)
. (2.3.21)

We now show that (ϕ ∗ u)(x) is a C ∞ function. Let e j = (0, . . . ,1, . . . ,0) with 1
in the jth entry and zero elsewhere. Then

τ−he j(ϕ ∗u)(x)− (ϕ ∗u)(x)
h

= u
(

τ−he j(τx(ϕ̃))− τx(ϕ̃)
h

)
→ u(τx(∂ jϕ̃))

by the continuity of u and the fact that
(
τ−he j(τx(ϕ̃))−τx(ϕ̃)

)
/h tends to τx(∂ jϕ̃) in

S as h→ 0. See Exercise 2.3.5(a). The same calculation for higher-order derivatives
shows that ϕ ∗ u ∈ C ∞ and that ∂ γ(ϕ ∗ u) = (∂ γ ϕ) ∗ u for all multi-indices γ . It
follows from (2.3.3) that for some C, m, and k we have

|∂ α(ϕ ∗u)(x)| ≤C ∑
|γ|≤m
|β |≤k

sup
y∈Rn

|yγ
τ

x(∂ α+β
ϕ̃)(y)|

= C ∑
|γ|≤m
|β |≤k

sup
y∈Rn

|(x+ y)γ(∂ α+β
ϕ̃)(y)|

≤Cm ∑
|β |≤k

sup
y∈Rn

(|x|m + |y|m)|(∂ α+β
ϕ̃)(y)| ,

(2.3.22)

and this clearly implies that ∂ α(ϕ ∗u) grows at most polynomially at infinity.
We now indicate why ϕ ∗u is Schwartz whenever u has compact support. Apply-

ing estimate (2.3.4) to the function y 7→ ϕ(x− y) yields that∣∣〈u,ϕ(x−·)
〉∣∣= |(ϕ ∗u)(x)| ≤C ∑

|α|≤m
sup
|y|≤N

|∂ α
y ϕ(x− y)|

for some constants C,m,N. Since

|∂ α
y ϕ(x− y)| ≤Cα,M(1+ |x− y|)−M ≤Cα,M,N(1+ |x|)−M

for |x| ≥ 2N, it follows that ϕ ∗u decays rapidly at infinity. Since ∂ γ(ϕ ∗u) = (∂ γ ϕ)∗
u, the same argument yields that all the derivatives of ϕ ∗u decay rapidly at infinity;
hence ϕ ∗ u is a Schwartz function. Incidentally, this argument actually shows that
any Schwartz seminorm of ϕ ∗u is controlled by a finite sum of Schwartz seminorms
of ϕ .

We now return to the point left open concerning the convergence of the Riemann
sums in (2.3.20) in the topology of S (Rn). For each N = 1,2, . . . , consider a parti-
tion of [−N,N]n into (2N2)n cubes Qm of side length 1/N and let ym be the center
of each Qm. For multi-indices α,β , we must show that
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DN(x) =
(2N2)n

∑
m=1

xα
∂

β
x ϕ̃(x− ym)ψ(ym)|Qm|−

∫
Rn

xα
∂

β
x ϕ̃(x− y)ψ(y)dy

converges to zero in L∞(Rn) as N → ∞. We have

xα
∂

β
x ϕ̃(x− ym)ψ(ym)|Qm|−

∫
Qm

xα
∂

β
x ϕ̃(x− y)ψ(y)dy

=
∫

Qm

xα(y− ym) ·∇y
{

∂
β
x ϕ̃(x− y)ψ(y)

}
(ξ )dy

for some ξ = y + θ(ym − y), where θ ∈ [0,1]. It follows that |y| ≤ |ξ |+
√

n/N ≤
|ξ |+1 for N ≥

√
n. It is easy to see that the last integrand is at most

C |x||α|
√

n
N

1
(1+ |x−ξ |)M

1
(2+ |ξ |)M

for M large (pick M > 2|α|), which in turn is at most

C′ |x||α|
√

n
N

1
(1+ |x|)M/2

1
(2+ |ξ |)M/2 ≤C′ |x||α|

√
n

N
1

(1+ |x|)M/2

1
(1+ |y|)M/2 .

Inserting this estimate for the integrand in the last displayed integral, we obtain

|DN(x)| ≤ C′′

N
|x||α|

(1+ |x|)M/2

∫
[−N,N]n

dy
(1+ |y|)M/2 +

∫
([−N,N]n)c

|xα
∂

β
x ϕ̃(x− y)ψ(y)|dy .

But the integrand in the last integral is controlled by

C′′′|x||α|

(1+ |x− y|)M
dy

(1+ |y|)M ≤ C′′′|x||α|

(1+ |x|)M/2

dy
(1+ |y|)M/2 .

Using these estimates it is now easy to see that limN→∞ supx∈Rn |DN(x)|= 0. �

Next we have the following important result regarding distributions with compact
support:

Theorem 2.3.21. If u is in E ′(Rn), then û is a real analytic function on Rn. More-
over, û has a holomorphic extension on Cn. In particular, û is a C ∞ function. Fur-
thermore, û and all of its derivatives have polynomial growth at infinity.

Proof. Given a distribution u with compact support and a polynomial p(ξ ), the
action of u on the C ∞ function ξ 7→ p(ξ )e−2πix·ξ is a well defined function of x,
which we denote by u(p(·)e−2πix·(·)). Here x is an element of Rn or Cn.

It is straightforward to verify that the function of z = (z1, . . . ,zn)

F(z) = u
(
e−2πi(·)·z)
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defined on Cn is holomorphic, in fact entire. Indeed, the continuity and linearity of
u and the fact that (e−2πiξ jh−1)/h →−2πiξ j in C ∞(Rn) as h → 0 in the complex
plane imply that F is differentiable and its derivative with respect to z j is the action
of the distribution u to the C ∞ function

ξ 7→ (−2πiξ j)e
−2πi∑

n
j=1 ξ jz j .

By induction it follows that for all multi-indices α we have

∂
α1
z1
· · ·∂ αn

zn F = u
(
(−2πi(·))α e−2πi∑

n
j=1(·)z j

)
.

Since F is entire, its restriction on Rn, i.e., F(x1, . . . ,xn), where x j = Re z j, is real
analytic. Also, as a consequence of (2.3.4), this restriction and all of its derivatives
have polynomial growth at infinity.

Now for f in S (Rn) we have

〈
û, f
〉

=
〈
u, f̂
〉

= u
(∫

Rn
f (x)e−2πix·ξ dx

)
=
∫

Rn
f (x)u(e−2πix·(·))dx ,

provided we can justify the passage of u inside the integral. The reason for this
is that the Riemann sums of the integral of f (x)e−2πix·ξ over Rn converge to it in
the topology of C ∞, and thus the linear functional u can be interchanged with the
integral. We conclude that the tempered distribution û can be identified with the real
analytic function x 7→ F(x) whose derivatives have polynomial growth at infinity.

To justify the fact concerning the convergence of the Riemann sums, we argue as
in the proof of the previous theorem. For each N = 1,2, . . . , consider a partition of
[−N,N]n into (2N2)n cubes Qm of side length 1/N and let ym be the center of each
Qm. For a multi-index α let

DN(ξ ) =
(2N2)n

∑
m=1

f (ym)(−2πiym)α e−2πiym·ξ |Qm|−
∫

Rn
f (x)(−2πix)α e−2πx·ξ dx .

We must show that for every M > 0, sup|ξ |≤M |DN(ξ )| converges to zero as N → ∞.
Setting g(x) = f (x)(−2πix)α , we write

DN(ξ ) =
(2N2)n

∑
m=1

∫
Qm

[
g(ym)e−2πiym·ξ −g(x)e−2πix·ξ ]dx+

∫
([−N,N]n)c

g(x)e−2πx·ξ dx .

Using the mean value theorem, we bound the absolute value of the expression inside
the square brackets by

(
|∇g(zm)|+2π|ξ | |g(zm)|

)√n
N

≤ CK (1+ |ξ |)
(1+ |zm|)K

√
n

N
,

for some point zm in the cube Qm. Since
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(2N2)n

∑
m=1

∫
Qm

CK (1+ |ξ |)
(1+ |zm|)K ≤C′

K(1+M) < ∞

for |ξ | ≤ M, it follows that sup|ξ |≤M |DN(ξ )| → 0 as N → ∞. �

Next we give a proposition that extends the properties of the Fourier transform

to tempered distributions.

Proposition 2.3.22. Given u, v in S ′(Rn), f ∈ S , y ∈ Rn, b a complex scalar, α a
multi-index, and a > 0, we have

(1) û+ v = û+ v̂ ,

(2) b̂u = bû ,

(3) If u j → u in S ′, then û j → û in S ′ ,

(4) (ũ)̂= (û) ,̃

(5) (τy(u))̂= e−2πiy·ξ û ,

(6) (e2πix·yu)̂= τy(û) ,

(7) (δ a(u))̂= (û)a = a−n(δ a−1
(û)) ,

(8) (∂ α u)̂= (2πiξ )α û ,

(9) ∂ α û = ((−2πix)α u) ,̂

(10) (û)∨ = u ,

(11) f̂ ∗u = f̂ û ,

(12) f̂ u = f̂ ∗ û ,

(13) (Leibniz’s rule) ∂ m
j ( f u) = ∑m

k=0

(m
k

)
(∂ k

j f )(∂ m−k
j u), m ∈ Z+ ,

(14) (Leibniz’s rule) ∂ α( f u) = ∑α1
γ1=0 · · ·∑αn

γn=0

(α1
γ1

) · · ·(αn
γn

)
(∂ γ f )(∂ α−γ u) ,

(15) If uk, u ∈ Lp(Rn) and uk → u in Lp (1 ≤ p ≤ ∞), then uk → u in S ′(Rn).
Therefore, convergence in S implies convergence in Lp, which in turn implies
convergence in S ′(Rn).

Proof. All the statements can be proved easily using duality and the corresponding

statements for Schwartz functions. �

We continue with an application of Theorem 2.3.21.

Proposition 2.3.23. Given u ∈ S ′(Rn), there exists a sequence of C ∞
0 functions fk

such that fk → u in the sense of tempered distributions; in particular, C ∞
0 (Rn) is

dense in S ′(Rn).
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Proof. Fix a function in C ∞
0 (Rn) with ϕ(x) = 1 in a neighborhood of the origin. Let

ϕk(x)= δ 1/k(ϕ)(x)= ϕ(x/k). It follows from Exercise 2.3.5(b) that for u∈S ′(Rn),
ϕku → u in S ′. By Proposition 2.3.22 (3), we have that the map u 7→ (ϕkû)∨ is
continuous on S ′(Rn). Now Theorem 2.3.21 gives that (ϕkû)∨ is a C ∞ function
and therefore ϕ j(ϕkû)∨ is in C ∞

0 (Rn). As observed, ϕ j(ϕkû)∨→ (ϕkû)∨ in S ′ when
k is fixed and j → ∞. Exercise 2.3.5(c) gives that the diagonal sequence ϕk(ϕk f )̂
converges to f̂ in S as k → ∞ for all f ∈ S . Using duality and Exercise 2.2.2,
we conclude that the sequence of C ∞

0 functions ϕk(ϕkû)∨ converges to u in S ′ as
k → ∞. �

2.3.4 The Space of Tempered Distributions Modulo Polynomials

Definition 2.3.24. We define P to be set of all polynomials of n real variables,

∑
|β |≤m

cβ xβ = ∑
β j∈Z+⋃{0}

β1+···+βn≤m

c(β1,...,βn)x
β1
1 · · ·xβn

n ,

with complex coefficients cβ and m an arbitrary integer. We then define an equiva-
lence relation ∼ on S ′(Rn) by setting

u∼ v ⇐⇒ u− v ∈P .

The space of all resulting equivalence classes is denoted by S ′/P .

To avoid cumbersome notation, two elements u,v of the same equivalence class
in S ′/P are identified, and in this case we write u = v in S ′/P . Note that for
u,v ∈S ′/P we have

u = v in S ′/P ⇐⇒

{ 〈
û,φ
〉

=
〈
v̂,φ
〉

for all φ ∈S (Rn)
with support contained in Rn \{0}.

(2.3.23)

Proposition 2.3.25. Let S∞(Rn) be the space of all Schwartz functions ϕ that sat-
isfy ∫

Rn
xγ

ϕ(x)dx = 0

for all multi-indices γ . Then S∞(Rn) is a subspace of S (Rn) that inherits the same
topology as S (Rn) and whose dual is S ′(Rn)/P, that is,(

S∞(Rn)
)′ = S ′(Rn)/P .

Proof. Consider the map J that takes an element u of S ′(Rn) to the equivalence
class in S ′(Rn)/P that contains it. The kernel of this map is P and the claimed
identification follows. �
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We write u j → u in S ′(Rn)/P if and only if u j,u are elements of S ′(Rn)/P
and we have 〈

u j,ϕ
〉
→
〈
u,ϕ
〉

as j → ∞ for all ϕ in S∞(Rn).

Exercises

2.3.1. Show that a positive measure µ that satisfies∫
Rn

dµ(x)
(1+ |x|)k < +∞ ,

for some k > 0, can be identified with a tempered distribution. Show that if we think
of Lebesgue measure as a tempered distribution, then it coincides with the constant
function 1 also interpreted as a tempered distribution.

2.3.2. Let ϕ, f ∈ S (Rn), and for ε > 0 let ϕε(x) = ε−nϕ(ε−1x). Prove that
ϕε ∗ f → b f in S , where b is the integral of ϕ .

2.3.3. Prove that for all a > 0, u ∈S ′(Rn), and f ∈S (Rn) we have

δ
a( f )∗δ

a(u) = a−n
δ

a( f ∗u) .

2.3.4. (a) Prove that the derivative of χ[a,b] is δa−δb.
(b) Compute ∂ jχB(0,1) on R2.
(c) Compute the Fourier transforms of the locally integrable functions sinx and

cosx.
(d) Prove that the derivative of the distribution log |x| ∈S ′(R) is the distribution

u(ϕ) = lim
ε→0

∫
ε≤|x|

ϕ(x)
dx
x

.

2.3.5. Let f ∈S (Rn) and let ϕ ∈ C ∞
0 be identically equal to 1 in a neighborhood

of origin. Define ϕk(x) = ϕ(x/k) as in the proof of Proposition 2.3.23.
(a) Prove that (τ−he j( f )− f )/h→ ∂ j f in S as h→ 0.
(b) Prove that ϕk f → f in S as k → ∞.
(c) Prove that the sequence ϕk(ϕk f )̂ converges to f̂ in S as k → ∞.

2.3.6. Use Theorem 2.3.21 to show that there does not exist a nonzero C ∞
0 function

whose Fourier transform is also a C ∞
0 function.

2.3.7. Let f ∈ Lp(Rn) for some 1≤ p≤ ∞. Show that the sequence of functions

gN(ξ ) =
∫

B(0,N)
f (x)e−2πix·ξ dx
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converges to f̂ in S ′.

2.3.8. Let (ck)k∈Zn be a sequence that satisfies |ck| ≤ A(1+ |k|)M for all k and some
fixed M and A > 0. Let δk denote Dirac mass at the integer k. Show that the sequence
of distributions

∑
|k|≤N

ckδk

converges to some tempered distribution u in S ′(Rn) as N → ∞. Also show that û
is the S ′ limit of the sequence of functions

hN(ξ ) = ∑
|k|≤N

cke−2πiξ ·k .

2.3.9. A distribution in S ′(Rn) is called homogeneous of degree γ ∈ C if〈
u,δ λ ( f )

〉
= λ

−n−γ
〈
u, f
〉
, for all λ > 0.

(a) Prove that this definition agrees with the usual definition for functions.
(b) Show that δ0 is homogeneous of degree −n.
(c) Prove that if u is homogeneous of degree γ , then ∂ α u is homogeneous of degree
γ−|α|.
(d) Show that u is homogeneous of degree γ if and only if û is homogeneous of
degree −n− γ .

2.3.10. Show that the functions einx and e−inx converge to zero in S ′ and D ′ as
n → ∞. Conclude that multiplication of distributions is not a continuous operation
even when it is defined. What is the limit of

√
n(1+n|x|2)−1 in D ′(R) as n→ ∞?

2.3.11. (S. Bernstein ) Let f be a bounded function on Rn with f̂ supported in the
ball B(0,R). Prove that for all multi-indices α there exist constants Cα,n (depending
only on α and on the dimension n) such that∥∥∂

α f
∥∥

L∞ ≤Cα,nR|α|
∥∥ f
∥∥

L∞ .[
Hint: Write f = f ∗ h1/R, where h is a Schwartz function h in Rn whose Fourier

transform is equal to one on the ball B(0,1) and vanishes outside the ball B(0,2).
]

2.3.12. Let Φ̂ be a C ∞
0 function that is equal to 1 in B(0,1) and let Θ̂ be a C ∞ func-

tion that is equal to 1 in a neighborhood of infinity and vanishes in a neighborhood
of zero. Prove the following.
(a) For all u in S ′(Rn) we have(

Φ̂
(
ξ/2N)û)∨→ u in S ′(Rn) as N → ∞.

(b) For all u in S ′(Rn) we have(
Θ̂
(
ξ/2N)û)∨→ 0 in S ′(Rn) as N → ∞.
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(c) The convergence in part (b) also holds in the topology of S ′(Rn)/P .[
Hint: Prove first the corresponding assertions for functions ϕ in S or S∞ with

convergence in the topology of these spaces.
]

2.3.13. Prove that there exists a function in Lp for 2 < p < ∞ whose distributional

Fourier transform is not a locally integrable function.[
Hint: Assume the converse. Then for all f ∈ Lp(Rn), f̂ is locally integrable and

hence the map f �→ f̂ is a well defined linear operator from Lp(Rn) to L1(B(0,1))
(i.e.

∥∥ f̂
∥∥

L1(B(0,1)) < ∞ for all f ∈ Lp(Rn)). Use the closed graph theorem to deduce

that
∥∥ f̂

∥∥
L1(B(0,1)) ≤C

∥∥ f
∥∥

Lp(Rn) for some C < ∞. To violate this inequality whenever

p > 2, take fN(x) = (1+ iN)−n/2e−π(1+iN)−1|x|2 and let N → ∞, noting that f̂N(ξ ) =
e−π|ξ |2(1+iN).

]

2.4 More About Distributions and the Fourier Transform

In this section we discuss further properties of distributions and Fourier transforms

and bring up certain connections that arise between harmonic analysis and partial

differential equations.

2.4.1 Distributions Supported at a Point

We begin with the following characterization of distributions supported at a single

point.

Proposition 2.4.1. If u ∈ S ′(Rn) is supported in the singleton {x0}, then there ex-
ists an integer k and complex numbers aα such that

u = ∑
|α|≤k

aα ∂ α δx0
.

Proof. Without loss of generality we may assume that x0 = 0. By (2.3.3) we have

that for some C, m, and k,∣∣〈u, f
〉∣∣ ≤C ∑

|α|≤m
|β |≤k

sup
x∈Rn

|xα(∂ β f )(x)| for all f ∈ S (Rn).

We now prove that if ϕ ∈ S satisfies

(∂ α ϕ)(0) = 0 for all |α| ≤ k, (2.4.1)

then
〈
u,ϕ

〉
= 0. To see this, fix a ϕ satisfying (2.4.1) and let ζ (x) be a smooth

function on Rn that is equal to 1 when |x| ≥ 2 and equal to zero for |x| ≤ 1. Let
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ζ ε(x) = ζ (x/ε). Then, using (2.4.1) and the continuity of the derivatives of ϕ at the
origin, it is not hard to show that ρα,β (ζ ε ϕ −ϕ)→ 0 as ε → 0 for all |α| ≤ m and
|β | ≤ k. Then∣∣〈u,ϕ

〉∣∣≤ ∣∣〈u,ζ ε
ϕ
〉∣∣+ ∣∣〈u,ζ ε

ϕ−ϕ
〉∣∣≤ 0+C ∑

|α|≤m
|β |≤k

ρα,β (ζ ε
ϕ−ϕ)→ 0

as ε → 0. This proves our assertion.
Now let f ∈S (Rn). Let η be a C ∞

0 function on Rn that is equal to 1 in a neigh-
borhood of the origin. Write

f (x) = η(x)
(

∑
|α|≤k

(∂ α f )(0)
α!

xα +h(x)
)

+(1−η(x)) f (x), (2.4.2)

where h(x) = O(xk+1) as |x| → 0. Then ηh satisfies (2.4.1) and hence
〈
u,ηh

〉
= 0

by the claim. Also, 〈
u,
(
(1−η) f

)〉
= 0

by our hypothesis. Applying u to both sides of (2.4.2), we obtain

〈
u, f
〉

= ∑
|α|≤k

(∂ α f )(0)
α!

u(xα
η(x)) = ∑

|α|≤k
aα(∂ α

δ0)( f ) ,

with aα = (−1)|α|u(xα η(x))/α!. This proves the proposition. �

An immediate consequence is the following result.

Corollary 2.4.2. Let u ∈S ′(Rn). If û is supported in the singleton {ξ0}, then u is
a finite linear combination of functions (−2πiξ )α e2πiξ ·ξ0 , where α is a multi-index.
In particular, if û is supported at the origin, then u is a polynomial.

Proof. Proposition 2.4.1 gives that û is a linear combination of derivatives of Dirac
masses at ξ0. Then Proposition 2.3.22 (8) yields the required conclusion. �

2.4.2 The Laplacian

The Laplacian ∆ is a partial differential operator acting on tempered distributions
on Rn as follows:

∆(u) =
n

∑
j=1

∂
2
j u .

Solutions of Laplace’s equation ∆(u) = 0 are called harmonic distributions. We have
the following:

Corollary 2.4.3. Let u ∈S ′(Rn) satisfy ∆(u) = 0. Then u is a polynomial.
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Proof. Taking Fourier transforms, we obtain that ∆̂(u) = 0. Therefore,

−4π
2|ξ |2û = 0 in S ′.

This implies that û is supported at the origin, and by Corollary 2.4.2 it follows that
u must be polynomial. �

Liouville’s classical theorem that every bounded harmonic function must be con-
stant is a consequence of Corollary 2.4.3. See Exercise 2.4.2.

Next we would like to compute the fundamental solutions of Laplace’s equation
in Rn. A distribution is called a fundamental solution of a partial differential operator
L if we have L(u) = δ0. The following result gives the fundamental solution of the
Laplacian.

Proposition 2.4.4. For n≥ 3 we have

∆(|x|2−n) =−(n−2)
2πn/2

Γ (n/2)
δ0 , (2.4.3)

while for n = 2,
∆(log |x|) = 2πδ0 . (2.4.4)

Proof. We use Green’s identity∫
Ω

v∆(u)−u∆(v)dx =
∫

∂Ω

(
v

∂u
∂ν

−u
∂v
∂ν

)
ds ,

where Ω is an open set in Rn with smooth boundary and ∂v/∂ν denotes the
derivative of v with respect to the outer unit normal vector. Take Ω = Rn \B(0,ε),
v = |x|2−n, and u = f a C ∞

0 (Rn) function in the previous identity. The normal deriva-
tive of f (rθ) is the derivative with respect to the radial variable r. Observe that
∆(|x|2−n) = 0 for x 6= 0. We obtain∫

|x|>ε

∆( f )(x)|x|2−n dx =−
∫

|rθ |=ε

(
ε

2−n ∂ f
∂ r

− f (rθ)
∂ r2−n

∂ r

)
dθ . (2.4.5)

Now observe two things: first, that for some C = C( f ) we have∣∣∣∣∫|rθ |=ε

∂ f
∂ r

dθ

∣∣∣∣≤Cε
n−1 ;

second, that ∫
|rθ |=ε

f (rθ)ε1−n dθ → ωn−1 f (0)

as ε → 0. Letting ε → 0 in (2.4.5), we obtain that

lim
ε→0

∫
|x|>ε

∆( f )(x)|x|2−n dx =−(n−2)ωn−1 f (0) ,
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which implies (2.4.3) in view of the formula for ωn−1 given in Appendix A.3.
The proof of (2.4.4) is identical. The only difference is that the quantity ∂ r2−n/∂ r

in (2.4.5) is replaced by ∂ logr/∂ r. �

2.4.3 Homogeneous Distributions

The fundamental solutions of the Laplacian are locally integrable functions on Rn

and also homogeneous of degree 2− n when n ≥ 3. Since homogeneous distribu-
tions often arise in applications, it is desirable to pursue their study. Here we do not
undertake such a study in depth, but we discuss a few important examples.

Definition 2.4.5. For z ∈ C we define a distribution uz as follows:

〈
uz, f

〉
=
∫

Rn

π
z+n

2

Γ
( z+n

2

) |x|z f (x)dx . (2.4.6)

Clearly the uz’s coincide with the locally integrable functions

π
z+n

2 Γ
( z+n

2

)−1|x|z

when Rez >−n and the definition makes sense only for that range of z’s. It follows
from its definition that uz is a homogeneous distribution of degree z.

We would like to extend the definition of uz for z ∈C. Let Re z >−n first. Fix N
to be a positive integer. Given f ∈S (Rn), write the integral in (2.4.6) as follows:

∫
|x|<1

π
z+n

2

Γ ( z+n
2 )

{
f (x)− ∑

|α|≤N

(∂ α f )(0)
α!

xα

}
|x|z dx

+
∫
|x|>1

π
z+n

2

Γ ( z+n
2 )

f (x)|x|z dx+
∫
|x|<1

π
z+n

2

Γ ( z+n
2 ) ∑

|α|≤N

(∂ α f )(0)
α!

xα |x|z dx .

The preceding expression is equal to

∫
|x|<1

π
z+n

2

Γ ( z+n
2 )

{
f (x)− ∑

|α|≤N

(∂ α f )(0)
α!

xα

}
|x|z dx

+
∫
|x|>1

π
z+n

2

Γ ( z+n
2 )

f (x)|x|z dx

+ ∑
|α|≤N

(∂ α f )(0)
α!

π
z+n

2

Γ ( z+n
2 )

∫ 1

r=0

∫
Sn−1

(rθ)α rz+n−1 dr dθ ,

where we switched to polar coordinates in the penultimate integral. Now set
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b(n,α,z) =
π

z+n
2

Γ ( z+n
2 )

1
α!

(∫
Sn−1

θ
α dθ

)∫ 1

r=0
r|α|+n+z−1 dr

=
π

z+n
2

Γ ( z+n
2 )

1
α!

∫
Sn−1

θ
α dθ

|α|+ z+n
,

where α = (α1, . . . ,αn) is a multi-index. These coefficients are zero when at least
one α j is odd. Consider now the case that all the α j’s are even; then |α| is also even.
The function Γ ( z+n

2 ) has simple poles at the points

z =−n, z =−(n+2), z =−(n+4), and so on;

see Appendix A.5. These poles cancel exactly the poles of the function

z 7→ (|α|+ z+n)−1

at z =−n−|α| when |α| is an even integer in [0,N]. We therefore have

〈
uz, f

〉
=
∫
|x|≥1

π
z+n

2

Γ ( z+n
2 )

f (x)|x|z dx+ ∑
|α|≤N

b(n,α,z)
〈
∂

α
δ0, f

〉
+
∫
|x|<1

π
z+n

2

Γ ( z+n
2 )

{
f (x)− ∑

|α|≤N

(∂ α f )(0)
α!

xα

}
|x|z dx .

(2.4.7)

Both integrals converge absolutely when Re z > −N − n− 1, since the expression
inside the curly brackets above is bounded by a constant multiple of |x|N+1, and
the resulting function of z in (2.4.7) is a well defined analytic function in the range
Re z >−N−n−1.

Since N was arbitrary,
〈
uz, f

〉
has an analytic extension to all of C. Therefore, uz

is a distribution-valued entire function of z.
Next we would like to calculate the Fourier transform of uz. We know by Exercise

2.3.9 that ûz is a homogeneous distribution of degree −n−z. The choice of constant
in the definition of uz was made to justify the following result:

Theorem 2.4.6. For all z ∈ C we have ûz = u−n−z.

Proof. The idea of the proof is straightforward. First we show that for a certain
range of z’s we have∫

Rn
|ξ |zϕ̂(ξ )dξ = C(n,z)

∫
Rn
|x|−n−z

ϕ(x)dx , (2.4.8)

for some fixed constant C(n,z) and all ϕ ∈ S (Rn). Next we pick a specific ϕ to
evaluate the constant C(n,z). Then we use analytic continuation to extend the va-
lidity of (2.4.8) for all z’s. Use polar coordinates by setting ξ = ρϕ and x = rθ in
(2.4.8). We have
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Rn
|ξ |zϕ̂(ξ )dξ

=
∫

∞

0
ρ

z+n−1
∫

∞

0

∫
Sn−1

ϕ(rθ)
(∫

Sn−1
e−2πirρ(θ ·ϕ)dϕ

)
dθ rn−1 dr dρ

=
∫

∞

0

(∫
∞

0
σ(rρ)ρz+n−1 dρ

)(∫
Sn−1

ϕ(rθ)dθ

)
rn−1 dr

= C(n,z)
∫

∞

0
r−z−n

(∫
Sn−1

ϕ(rθ)dθ

)
rn−1 dr

= C(n,z)
∫

Rn
|x|−n−z

ϕ(x)dx ,

where we set

σ(t) =
∫

Sn−1
e−2πit(θ ·ϕ) dϕ =

∫
Sn−1

e−2πit(ϕ1) dϕ , (2.4.9)

C(n,z) =
∫

∞

0
σ(t)tz+n−1 dt , (2.4.10)

and the second equality in (2.4.9) is a consequence of rotational invariance. It re-
mains to prove that the integral in (2.4.10) converges for some range of z’s.

If n = 1, then

σ(t) =
∫

S0
e−2πitϕ dϕ = e−2πit + e2πit = 2cos(2πt)

and the integral in (2.4.10) converges conditionally for −1 < Re z < 0.
Let us therefore assume that n ≥ 2. Since |σ(t)| ≤ ωn−1, the integral converges

near zero when −n < Re z. Let us study the behavior of σ(t) for t large. Using the
formula in Appendix D.2 and the definition of Bessel functions in Appendix B.1,
we write

σ(t) =
∫ 1

−1
e2πits

ωn−2
(√

1− s2
)n−2 ds√

1− s2
= cn J n−2

2
(2πt),

for some constant cn. Using the asymptotics for Bessel functions (Appendix B.7),
we obtain that |σ(t)| ≤ ct−1/2 when n− 2 > −1/2 and t ≥ 1. In either case the
integral in (2.4.10) converges absolutely near infinity when Re z+n−1−1/2 <−1,
i.e., when Re z <−n+1/2.

We have now proved that when −n < Re z <−n+1/2 we have

ûz = C(n,z)u−n−z

for some constant C(n,z) that we wish to compute. Insert the function ϕ(x) = e−π|x|2

in (2.4.8). Example 2.2.9 gives that this function is equal to its Fourier transform.
Use polar coordinates to write

ωn−1

∫
∞

0
rz+n−1e−πr2

dr = C(n,z)ωn−1

∫
∞

0
r−z−n+n−1e−πr2

dr .
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Change variables s = πr2 and use the definition of the gamma function to obtain
that

C(n,z) =
Γ ( z+n

2 )
Γ (− z

2 )
π−

z+n
2

π
z
2

.

It follows that ûz = u−n−z for the range of z’s considered.
At this point observe that for every f ∈S (Rn), the function z 7→

〈
ûz−u−z−n, f

〉
is entire and vanishes for −n < Rez < −n + 1/2. Therefore, it must vanish every-
where and the theorem is proved. �

Homogeneous distributions were introduced in Exercise 2.3.9. We already saw
that the Dirac mass on Rn is a homogeneous distribution of degree −n. There is
another important example of a homogeneous distributions of degree −n, which we
now discuss.

Let Ω be an integrable function on the sphere Sn−1 with integral zero. Define a
tempered distribution WΩ on Rn by setting

〈
WΩ , f

〉
= lim

ε→0

∫
|x|≥ε

Ω(x/|x|)
|x|n

f (x)dx . (2.4.11)

We check that WΩ is a well defined tempered distribution on Rn. Indeed, since
Ω(x/|x|)/|x|n has integral zero over all annuli centered at the origin, we obtain

∣∣〈WΩ ,ϕ
〉∣∣ =

∣∣∣∣lim
ε→0

∫
ε≤|x|≤1

Ω(x/|x|)
|x|n

(ϕ(x)−ϕ(0))dx+
∫
|x|≥1

Ω(x/|x|)
|x|n

ϕ(x)dx
∣∣∣∣

≤
∥∥∇ϕ

∥∥
L∞

∫
|x|≤1

|Ω(x/|x|)|
|x|n−1 dx+

(
sup
x∈Rn

|x| |ϕ(x)|
)∫

|x|≥1

|Ω(x/|x|)|
|x|n+1 dx

≤C1
∥∥∇ϕ

∥∥
L∞

∥∥Ω
∥∥

L1(Sn−1) +C2 ∑
|α|≤1

∥∥ϕ(x)xα
∥∥

L∞

∥∥Ω
∥∥

L1(Sn−1) ,

for suitable constants C1 and C2 in view of (2.2.2).
One can verify that WΩ ∈ S ′(Rn) is a homogeneous distribution of degree −n

just like the Dirac mass at the origin. It is an interesting fact that all homogeneous
distributions on Rn of degree −n that coincide with a smooth function away from
the origin arise in this way. We have the following result.

Proposition 2.4.7. Suppose that m is a C ∞ function on Rn \ {0} that is homoge-
neous of degree zero. Then there exist a scalar b and a C ∞ function Ω on Sn−1 with
integral zero such that

m∨ = bδ0 +WΩ , (2.4.12)

where WΩ denotes the distribution defined in (2.4.11).

To prove this result we need the following proposition, whose proof we postpone
until the end of this section.

Proposition 2.4.8. Suppose that u is a C ∞ function on Rn\{0} that is homogeneous
of degree z ∈ C. Then û is a C ∞ function on Rn \{0}.
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We now prove Proposition 2.4.7 using Proposition 2.4.8.

Proof. Let a be the integral of the smooth function m over Sn−1. The function m−a
is homogeneous of degree zero and thus locally integrable on Rn; hence it can be
thought of as a distribution that we call û (the Fourier transform of a tempered
distribution u). Since û is a C ∞ function on Rn \ {0}, Proposition 2.4.8 implies
that u is also a C ∞ function on Rn \ {0}. Let Ω be the restriction of u on Sn−1.
Then Ω is a well defined C ∞ function on Sn−1. Since u is a homogeneous function
of degree −n that coincides with the smooth function Ω on Sn−1, it follows that
u(x) = Ω(x/|x|)/|x|n for x in Rn \{0}.

We show that Ω has mean value zero over Sn−1. Pick a nonnegative, radial,
smooth, and nonzero function ψ on Rn supported in the annulus 1 < |x|< 2. Switch-
ing to polar coordinates, we write

〈
u,ψ

〉
=
∫

Rn

Ω(x/|x|)
|x|n

ψ(x)dx = cψ

∫
Sn−1

Ω(θ)dθ ,〈
u,ψ

〉
=
〈
û, ψ̂

〉
=
∫

Rn
(m(ξ )−a)ψ̂(ξ )dξ = c′ψ

∫
Sn−1

(
m(θ)−a

)
dθ = 0 ,

and thus Ω has mean value zero over Sn−1 (since cψ 6= 0).
We can now legitimately define the distribution WΩ , which coincides with the

function Ω(x/|x|)/|x|n on Rn \ {0}. But the distribution u also coincides with this
function on Rn \{0}. It follows that u−WΩ is supported at the origin. Proposition
2.4.1 now gives that u−WΩ is a sum of derivatives of Dirac masses. Since both
distributions are homogeneous of degree −n, it follows that

u−WΩ = cδ0 .

But u = (m−a)∨ = m∨−aδ0, and thus m∨ = (c+a)δ0 +WΩ . This proves the propo-
sition. �

We now turn to the proof of Proposition 2.4.8.

Proof. Let u ∈ S ′ be homogeneous of degree z and C ∞ on Rn \ {0}. We need to
show that û is C ∞ away from the origin. We prove that û is C M for all M. Fix
M ∈ Z+ and let α be any multi-index such that

|α|> n+M +Re z . (2.4.13)

Pick a C ∞ function ϕ on Rn that is equal to 1 when |x| ≥ 2 and equal to zero for
|x| ≤ 1. Write u0 = (1−ϕ)u and u∞ = ϕu. Then

∂
α u = ∂

α u0 +∂
α u∞ and thus ∂̂ α u = ∂̂ α u0 + ∂̂ α u∞ ,

where the operations are performed in the sense of distributions. Since u0 is com-
pactly supported, Theorem 2.3.21 implies that ∂̂ α u0 is C ∞. Now Leibniz’s rule gives
that
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∂
α u∞ = v+ϕ∂

α u,

where v is a smooth function supported in the annulus 1 ≤ |x| ≤ 2. Then v̂ is C ∞

and we need to show only that ϕ̂∂ α u is C M . The function ϕ∂ α u is actually C ∞,
and by the homogeneity of ∂ α u (Exercise 2.3.9(c)) we obtain that (∂ α u)(x) =
|x|−|α|+z(∂ α u)(x/|x|). Since ϕ is supported away from zero, it follows that

|ϕ(x)(∂ α u)(x)| ≤ Cα

(1+ |x|)|α|−Re z (2.4.14)

for some Cα > 0. It is now straightforward to see that if a function satisfies (2.4.14),
then its Fourier transform is C M whenever (2.4.13) is satisfied. See Exercise 2.4.1.

We conclude that ∂̂ α u∞ is a C M function whenever (2.4.13) is satisfied; thus
so is ∂̂ α u. Since ∂̂ α u(ξ ) = (2πiξ )α û(ξ ), we deduce smoothness for û away from
the origin. Let ξ 6= 0. Pick a neighborhood V of ξ that does not meet the jth co-
ordinate axis for some 1 ≤ j ≤ n. Then η j 6= 0 when η ∈ V . Let α be the multi-
index (0, . . . ,M, . . . ,0) with M in the jth coordinate and zeros elsewhere. Then
(2πiη j)M û(η) is a C M function on V , and thus so is û(η), since we can divide by
ηM

j . We conclude that û(ξ ) is C M on Rn \{0}. Since M is arbitrary, the conclusion
follows. �

We end this section with an example that illustrates the usefulness of some of the
ideas discussed in this section.

Example 2.4.9. Let η be a smooth function on Rn that is equal to 1 on the set
|x| ≥ 1/2 and vanishes on the set |x| ≤ 1/4. Let 0 < Re(α) < n. Let

g(ξ ) =
(
η(x)|x|−α

)̂(ξ ) .

The function g decays faster than the reciprocal of any polynomial at infinity and

g(ξ )−
πα− n

2 Γ ( n−α

2 )
Γ (α

2 )
|ξ |α−n

is a C ∞ function on Rn. Therefore, g is integrable on Rn. This example indicates
the interplay between the smoothness of a function and the decay of its Fourier
transform. The smoothness of the function η(x)|x|−α near zero is reflected by the
decay of g near infinity. Moreover, the function η(x)|x|−α is not affected by the
bump η near infinity, and this results in a behavior of g(ξ ) near zero similar to that
of (|x|−α)̂(ξ ).

To see these assertions, first observe that ∂ γ(η(x)|x|−α) is integrable and thus
(−2πiξ )γ g(ξ ) is bounded if γ is large enough. This gives the decay of g near infin-
ity. We now use Theorem 2.4.6 to obtain

g(ξ ) =
πα− n

2 Γ ( n−α

2 )
Γ (α

2 )
|ξ |α−n + ϕ̂(ξ ) ,
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where ϕ̂(ξ ) =
(
(η(x)− 1)|x|−α

)̂
(ξ ), which is C ∞ as the Fourier transform of a

compactly supported distribution.

Exercises

2.4.1. Suppose that a function f satisfies the estimate

| f (x)| ≤ Cα

(1+ |x|)N ,

for some N > n. Then f̂ is C M when 1≤M ≤ [N−n].

2.4.2. Use Corollary 2.4.3 to prove Liouville’s theorem that every bounded har-
monic function on Rn must be a constant. Derive as a consequence the fundamental
theorem of algebra, stating that every polynomial on C must have a complex root.

2.4.3. Prove that ex is not in S ′(R) but that exeiex
is in S ′(R).

2.4.4. Show that the Schwartz function x 7→ sech(πx), x ∈ R, coincides with its
Fourier transform.[
Hint: Integrate the function eiaz over the rectangular contour with corners (−R,0),

(R,0), (R, iπ), and (−R, iπ).
]

2.4.5. (Ismagilov [137] ) Construct an uncountable family of linearly independent
Schwartz functions fa such that | fa| = | fb| and | f̂a| = | f̂b| for all fa and fb in the
family.[
Hint: Let w be a smooth nonzero function whose Fourier transform is supported

in the interval [−1/2,1/2] and let ϕ be a real-valued smooth nonconstant periodic
function with period 1. Then take fa(x) = w(x)eiϕ(x−a) for a ∈ R.

]
2.4.6. Let Py be the Poisson kernel defined in (2.1.13). Prove that for f ∈ Lp(Rn),
1≤ p < ∞, the function

(x,y) 7→ (Py ∗ f )(x)

is a harmonic function on Rn+1
+ . Use the Fourier transform and Exercise 2.2.11 to

prove that (Py1 ∗Py2)(x) = Py1+y2(x) for all x ∈ Rn.

2.4.7. (a) For a fixed x0 ∈ Rn, show that the function

v(x;x0) =
1−|x|2

|x− x0|n

is harmonic on Rn \{x0}.
(b) For fixed x0 ∈ Sn−1, prove that the family of functions θ 7→ v(θ ;rx0), 0 < r < 1,
defined on the sphere satisfies
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lim
r↑1

∫
θ∈Sn−1

|θ−x0|>δ

v(θ ;rx0)dθ = 0

uniformly in x0. The function v(θ ;rx0) is called the Poisson kernel for the sphere.
(c) Let f be a continuous function on Sn−1. Prove that the function

u(x) =
1

ωn−1
(1−|x|2)

∫
Sn−1

f (θ)
|x−θ |n

dθ

solves the Dirichlet problem ∆(u) = 0 on |x|< 1 and u = f on |x|= 1.

2.4.8. Fix a real number λ , 0 < λ < n.
(a) Prove that ∫

Sn
|ξ −η |−λ dξ = 2n−λ π

π
2 Γ ( n−λ

2 )

Γ (n− λ

2 )
.

(b) Prove that

∫
Rn
|x− y|−λ (1+ |x|2)

λ
2 −n dx = 2n−λ π

π
2 Γ ( n−λ

2 )

Γ (n− λ

2 )
(1+ |y|2)−

λ
2 .

[
Hint: Use the stereographic projection in Appendix D.6.

]
2.4.9. Prove the following beta integral identity:

∫
Rn

dt
|x− t|α1 |y− t|α2

= π
n
2

Γ
( n−α1

2

)
Γ
( n−α2

2

)
Γ
(

α1+α2−n
2

)
Γ
(

α1
2

)
Γ
(

α2
2

)
Γ
(
n− α1+α2

2

) |x− y|n−α1−α2 ,

where 0 < α1,α2 < n, α1 +α2 > n.

2.4.10. (a) Prove that if a function f on Rn (n≥ 3) is constant on the spheres rSn−1

for all r > 0, then so is its Fourier transform.
(b) If a function on Rn (n≥ 2) is constant on all (n−2)–dimensional spheres orthog-
onal to e1 = (1,0, . . . ,0), then its Fourier transform possesses the same property.

2.4.11. (Grafakos and Morpurgo [108] ) Suppose that 0 < d1,d2,d3 < n satisfy
d1 +d2 +d3 = 2n. Prove that for any distinct x,y,z ∈ Rn we have the identity∫

Rn
|x− t|−d2 |y− t|−d3 |z− t|−d1dt

= π
n
2

3

∏
j=1

Γ
(
n− d j

2

)
Γ
( d j

2

) |x− y|d1−n|y− z|d2−n|z− x|d3−n.

[
Hint: Reduce matters to the case that z = 0 and y = e1. Then take the Fourier

transform in x and use Exercise 2.4.10.
]
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2.4.12. (a) Integrate the function eiz2
over the contour consisting of the three pieces

P1 = {(x,0) : 0 ≤ x ≤ R}, P2 = {(Rcosθ ,Rsinθ) : 0 ≤ θ ≤ π

4 }, and P3 = {(t, t) :

t between R
√

2
2 and 0} to obtain the Fresnel integral identity:

lim
R→∞

∫ +R

−R
eix2

dx =
√

2π

2 (1+ i) .

(b) Use the result in part (a) to show that the Fourier transform of the function eiπ|x|2

in Rn is equal to ei πn
4 e−iπ|ξ |2 .[

Hint: Part (a): On P2 we have e−R2sin(2θ) ≤ e−
4
π

R2θ , and the integral over P2 tends
to 0. Part (b): Try first n = 1.

]

2.5 Convolution Operators on Lp Spaces and Multipliers

In this section we study the class of operators that commute with translations. We
prove in this section that bounded operators that commute with translations must be
of convolution type. Convolution operators arise in many situations, and we would
like to know under what circumstances they are bounded between Lp spaces.

2.5.1 Operators That Commute with Translations

Definition 2.5.1. A vector space X of measurable functions on Rn is called closed
under translations if for f ∈ X we have τz( f ) ∈ X for all z ∈ Rn. Let X and Y be
vector spaces of measurable functions on Rn that are closed under translations. Let
also T be an operator from X to Y . We say that T commutes with translations or is
translation-invariant if

T (τy( f )) = τ
y(T ( f ))

for all f ∈ X and all y ∈ Rn.

It is automatic to see that convolution operators commute with translations. One
of the main goals of this section is to prove the converse: every bounded linear oper-
ator that commutes with translations is of convolution type. We have the following:

Theorem 2.5.2. Suppose 1 ≤ p,q ≤ ∞. Suppose T is a bounded linear operator
from Lp(Rn) to Lq(Rn) that commutes with translations. Then there exists a unique
tempered distribution v such that

T ( f ) = f ∗ v for all f ∈S .

The theorem is a consequence of the following two results:
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Lemma 2.5.3. Under the hypotheses of Theorem 2.5.2 and for f ∈S (Rn), the dis-
tributional derivatives of T ( f ) are Lq functions that satisfy

∂
α T ( f ) = T (∂ α f ), for all multi-indices α . (2.5.1)

Lemma 2.5.4. Let 1 ≤ q ≤ ∞ and let h ∈ Lq(Rn). If all distributional derivatives
∂ α h are also in Lq, then h is almost everywhere equal to a continuous function H
satisfying

|H(0)| ≤Cn,q ∑
|α|≤n+1

∥∥∂
α h
∥∥

Lq . (2.5.2)

Proof. Assuming Lemmas 2.5.3 and 2.5.4, we prove Theorem 2.5.2.
Define a linear functional u on S by setting〈

u, f
〉

= T ( f )(0).

By (2.5.1), (2.5.2), (2.2.7), and the boundedness of T , we have∣∣〈u, f
〉∣∣≤ Cn,q ∑

|α|≤n+1

∥∥∂
α T ( f )

∥∥
Lq

≤Cn,q ∑
|α|≤n+1

∥∥T (∂ α f )
∥∥

Lq

≤Cn,q
∥∥T
∥∥

Lp→Lq ∑
|α|≤n+1

∥∥∂
α f
∥∥

Lp

≤Cn,q
∥∥T
∥∥

Lp→Lq ∑
|α|,|β |≤N

ρα,β ( f ) ,

which implies that u is in S ′. We now set v = ũ and we claim that T ( f ) = f ∗ v for
f ∈ S . To see this, by Theorem 2.3.20 and by the translation invariance of T , we
have

( f ∗ ũ)(x) =
〈
ũ,τx( f̃ )

〉
=
〈
u,τ−x( f )

〉
= T (τ−x( f ))(0) = τ

−x(T ( f ))(0)
= T ( f )(x)

whenever f ∈S (Rn). This proves the theorem. �

We now return to Lemmas 2.5.3 and 2.5.4. We begin with Lemma 2.5.3.

Proof. Let α = (0, . . . ,1, . . . ,0), where 1 is in the jth entry. Let f ,g ∈S . Since

τ−he j(g)−g
h

−∂ jg→ 0 in S as h→ 0, (2.5.3)

it follows that (2.5.3) converges to zero in Lp and thus

T
(

τ−he j(g)−g
h

−∂ jg
)
→ 0 in Lq as h→ 0. (2.5.4)
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Therefore, (2.5.4) converges to zero when integrated against the function ∂ jg.
We now have〈

∂ jT ( f ),g
〉

= −
∫

Rn
T ( f )∂ jgdx

= − lim
h→0

∫
Rn

T ( f )
(

τ−he j − I
h

(g)
)

dx

= lim
h→0

∫
Rn

(( I− τhe j

h

)
◦T ( f )

)
gdx

= lim
h→0

∫
Rn

T
( I− τhe j

h
( f )
)

gdx

=
∫

Rn
T (∂ j f )gdx ,

where we used the fact that T commutes with translations and (2.5.4). This shows
that ∂ jT ( f ) = T (∂ j f ). The general case follows by induction on |α|. �

We now prove Lemma 2.5.4.

Proof. Let R ≥ 1. Fix a C ∞
0 function ϕR that is equal to 1 in the ball |x| ≤ R and

equal to zero when |x| ≥ 2R. Since h is in Lq(Rn), it follows that ϕRh is in L1(Rn).
We show that ϕ̂Rh is also in L1. We begin with the inequality

1≤Cn(1+ |x|)−(n+1)
∑

|α|≤n+1
|(−2πix)α | , (2.5.5)

which is trivial for |x| ≤ 2 and follows from (2.2.2) when |x| ≥ 2. Now multiply
(2.5.5) by |ϕ̂Rh(x)| to obtain

|ϕ̂Rh(x)| ≤Cn(1+ |x|)−(n+1)
∑

|α|≤n+1
|(−2πix)α

ϕ̂Rh(x)|

≤Cn(1+ |x|)−(n+1)
∑

|α|≤n+1

∥∥(∂ α(ϕRh))̂
∥∥

L∞

≤Cn(1+ |x|)−(n+1)
∑

|α|≤n+1

∥∥∂
α(ϕRh)

∥∥
L1

≤Cn(2nRnvn)1/q′(1+ |x|)−(n+1)
∑

|α|≤n+1

∥∥∂
α(ϕRh)

∥∥
Lq

≤Cn,R(1+ |x|)−(n+1)
∑

|α|≤n+1

∥∥∂
α h
∥∥

Lq ,

where we used Leibniz’s rule and the fact that all derivatives of ϕR are bounded by
constants (depending on R).

Integrate the previously displayed inequality with respect to x to obtain∥∥ϕ̂Rh
∥∥

L1 ≤CR,n ∑
|α|≤n+1

∥∥∂
α h
∥∥

Lq < ∞ . (2.5.6)
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Therefore, Fourier inversion holds for ϕRh (see Exercise 2.2.6). This implies that
ϕRh is equal a.e. to a continuous function, namely the inverse Fourier transform of
its Fourier transform. Since ϕR = 1 on the ball B(0,R), we conclude that h is a.e.
equal to a continuous function in this ball. Since R > 0 was arbitrary, it follows that h
is a.e. equal to a continuous function on Rn, which we denote by H. Finally, (2.5.2)
is a direct consequence of (2.5.6) with R = 1, since |H(0)| ≤

∥∥ϕ̂1h
∥∥

L1 . �

2.5.2 The Transpose and the Adjoint of a Linear Operator

We briefly discuss the notions of the transpose and the adjoint of a linear operator.
We first recall real and complex inner products. For f ,g measurable functions on
Rn, we define the complex inner product〈

f |g
〉

=
∫

Rn
f (x)g(x)dx

whenever the integral converges absolutely. We reserve the notation〈
f ,g
〉

=
∫

Rn
f (x)g(x)dx

for the real inner product on L2(Rn) and also for the action of a distribution f on
a test function g. (This notation also makes sense when a distribution f coincides
with a function.)

Let 1 ≤ p,q ≤ ∞. For a bounded linear operator T from Lp(X ,µ) to Lq(Y,ν) we
denote by T ∗ its adjoint operator defined by〈

T ( f ) |g
〉

=
∫

Y
T ( f )gdν =

∫
X

f T ∗(g)dµ =
〈

f |T ∗(g)
〉

(2.5.7)

for f in Lp(X ,µ) and g in Lq′(Y,ν) (or in a dense subspace of it). We also define the
transpose of T as the unique operator T t that satisfies〈

T ( f ),g
〉

=
∫

Rn
T ( f )gdx =

∫
Rn

f T t(g)dx =
〈

f ,T t(g)
〉

for all f ∈ Lp(X ,µ) and all g ∈ Lq′(Y,ν).
If T is an integral operator of the form

T ( f )(x) =
∫

X
K(x,y) f (y)dµ(y),

then T ∗ and T t are also integral operators with kernels K∗(x,y) = K(y,x) and
Kt(x,y) = K(y,x), respectively. If T has the form T ( f ) = ( f̂ m)∨ , that is, it is given
by multiplication on the Fourier transform by a (complex-valued) function m(ξ ),
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then T ∗ is given by multiplication on the Fourier transform by the function m(ξ ).
Indeed for f ,g in S (Rn) we have∫

Rn
f T ∗(g)dx =

∫
Rn

T ( f ) gdx

=
∫

Rn
T̂ ( f ) ĝdξ

=
∫

Rn
f̂ m ĝdξ

=
∫

Rn
f (mĝ)∨ dx .

A similar argument (using Theorem 2.2.14 (5)) gives that if T is given by multipli-
cation on the Fourier transform by the function m(ξ ), then T t is given by multipli-
cation on the Fourier transform by the function m(−ξ ). Since the complex-valued
functions m(ξ ) and m(−ξ ) may be different, the operators T ∗ and T t may be dif-
ferent in general. Also, if m(ξ ) is real-valued, then T is self-adjoint (i.e., T = T ∗)
while if m(ξ ) is even, then T is self-transpose (i.e., T = T t ).

2.5.3 The Spaces M p,q(Rn)

Definition 2.5.5. Given 1≤ p,q≤∞, we denote by M p,q(Rn) the set of all bounded
linear operators from Lp(Rn) to Lq(Rn) that commute with translations.

By Theorem 2.5.2 we have that every T in M p,q is given by convolution with a
tempered distribution. We introduce a norm

∥∥ · ∥∥ on M p,q by setting∥∥T
∥∥

M p,q =
∥∥T
∥∥

Lp→Lq ,

that is, the norm of T in M p,q is the operator norm of T as an operator from Lp to
Lq. It is a known fact that under this norm, M p,q is a complete normed space (i.e.,
a Banach space).

Next we show that when p > q the set M p,q consists of only one element, namely
the zero operator T = 0. This means that the only interesting classes of operators
arise when p≤ q.

Theorem 2.5.6. M p,q = {0} whenever 1≤ q < p < ∞.

Proof. Let f be a nonzero C ∞
0 function and let h ∈ Rn. We have∥∥τ

h(T ( f ))+T ( f )
∥∥

Lq =
∥∥T (τh( f )+ f )

∥∥
Lq ≤

∥∥T
∥∥

Lp→Lq

∥∥τ
h( f )+ f

∥∥
Lp .

Now let |h| → ∞ and use Exercise 2.5.1. We conclude that

2
1
q
∥∥T ( f )

∥∥
Lq ≤

∥∥T
∥∥

Lp→Lq2
1
p
∥∥ f
∥∥

Lp ,
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which is impossible if q < p unless T is the zero operator. �

Next we have a theorem concerning the duals of the spaces M p,q(Rn).

Theorem 2.5.7. Let 1 < p ≤ q < ∞ and T ∈M p,q(Rn). Then T can be defined on
Lq′(Rn), coinciding with its previous definition on the subspace Lp(Rn)∩Lq′(Rn) of
Lp(Rn), so that it maps Lq′(Rn) to Lp′(Rn) with norm∥∥T

∥∥
Lq′→Lp′ =

∥∥T
∥∥

Lp→Lq . (2.5.8)

(Recall ∞′ = 1.) In other words, we have the following isometric identification of
spaces:

M q′,p′(Rn) = M p,q(Rn) .

Proof. We first observe that if T : Lp → Lq is given by convolution with u ∈ S ′,
then T ∗ : Lq′ → Lp′ is given by convolution with ũ ∈ S ′. Indeed, for f in Lp(Rn)
and g in Lq′(Rn) we have∫

Rn
f T ∗(g)dx =

∫
Rn

T ( f )gdx

=
∫

Rn
( f ∗u)gdx

=
∫

Rn
f (g∗ ũ)dx

=
∫

Rn
f g∗ ũdx .

Therefore T ∗ is given by convolution with ũ. Moreover, T ∗ is well defined on Lq′ .
Using the simple identity

f ∗ ũ = ( f̃ ∗u)˜, f ∈ Lq′ , (2.5.9)

it follows that T is also well defined on Lq′ . It remains to show that T (convolution
with u) and T ∗ (convolution with ũ ) map Lq′ to Lp′ with the same norm. But this
easily follows from (2.5.9), which implies that∥∥ f ∗ ũ

∥∥
Lp′∥∥ f

∥∥
Lq′

=

∥∥ f̃ ∗u
∥∥

Lp′∥∥ f̃
∥∥

Lq′

,

for all f ∈ Lq′ , f 6= 0. We conclude that
∥∥T ∗∥∥

Lq′→Lp′
∥∥T
∥∥

Lq′→Lp′ and therefore∥∥T
∥∥

Lp→Lq =
∥∥T
∥∥

Lq′→Lp′ . �

We next focus attention on the spaces M p,q(Rn) whenever p = q. These spaces
are of particular interest, since they include the singular integral operators, which
we study in Chapter 4.
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2.5.4 Characterizations of M 1,1(Rn) and M 2,2(Rn)

It would be desirable to have a characterization of the spaces M p,p in terms of
properties of the convolving distribution. Unfortunately, this is unknown at present
(it is not clear whether it is possible) except for certain cases.

Theorem 2.5.8. An operator T is in M 1,1(Rn) if and only if it is given by convo-
lution with a finite Borel (complex-valued) measure. In this case, the norm of the
operator is equal to the total variation of the measure.

Proof. If T is given with convolution with a finite Borel measure µ , then clearly T
maps L1 to itself and

∥∥T
∥∥

L1→L1 ≤
∥∥µ
∥∥

M
, where

∥∥µ
∥∥

M
is the total variation of µ .

Conversely, let T be an operator bounded from L1 to L1. By Theorem 2.5.2, T is
given by convolution with a tempered distribution u. Let

fε(x) = ε
−ne−π|x/ε|2 .

Since the functions fε are uniformly bounded in L1, it follows from the boundedness
of T that fε ∗u are also uniformly bounded in L1. Since L1 is naturally embedded in
the space of finite Borel measures, which is the dual of the space C00 of continuous
functions that tend to zero at infinity, we obtain that the family fε ∗u lies in a fixed
multiple of the unit ball of C∗

00. By the Banach–Alaoglu theorem, this is a weak∗

compact set. Therefore, some subsequence of fε ∗u converges in the weak∗ topology
to a measure µ . That is, for some εk → 0 and all g ∈C00(Rn) we have

lim
k→∞

∫
Rn

g(x)( fεk ∗u)(x)dx =
∫

Rn
g(x)dµ(x) . (2.5.10)

We claim that u = µ . To see this, fix g ∈S . Equation (2.5.10) implies that〈
u, f̃εk ∗g

〉
=
〈
u, fεk ∗g

〉
→
〈
µ,g
〉

as k → ∞. Exercise 2.3.2 gives that g∗ fεk converges to g in S . Therefore,〈
u, fεk ∗g

〉
→
〈
u,g
〉
.

It follows from (2.5.10) that
〈
u,g
〉

=
〈
µ,g
〉
, and since g was arbitrary, u = µ .

Next, (2.5.10) implies that for all g ∈C00 we have∣∣∣∣∫Rn
g(x)dµ(x)

∣∣∣∣≤ ∥∥g
∥∥

L∞ sup
k

∥∥ fεk ∗u
∥∥

L1 ≤
∥∥g
∥∥

L∞

∥∥T
∥∥

L1→L1 . (2.5.11)

The Riesz representation theorem gives that the norm of the functional

g 7→
∫

Rn
g(x)dµ(x)
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on C00 is exactly
∥∥µ
∥∥

M
. It follows from (2.5.11) that

∥∥T
∥∥

L1→L1 ≥
∥∥µ
∥∥

M
. Since

the reverse inequality is obvious, we conclude that
∥∥T
∥∥

L1→L1 =
∥∥µ
∥∥

M
. �

Operators given by convolution with finite complex-valued Borel measures ob-
viously map L∞(Rn) to L∞(Rn); hence M 1,1(Rn) is a subspace of M ∞,∞(Rn). But
there may exist bounded linear operators on L∞ that commute with translations that
are not given by a convolution. The following example captures a strange behavior
in the case p = q = ∞.

Example 2.5.9. Let X be the space of all bounded complex-valued functions on the
real line such that

Φ( f ) = lim
R→+∞

1
R

∫ R

0
f (t)dt

exists. Then Φ is a bounded linear functional on X that has a bounded extension Φ̃

on L∞ by the Hahn–Banach theorem. We may view Φ̃ as a bounded linear operator
from L∞(R) to the space of constant functions, which is contained in L∞(R). We
note that Φ̃ commutes with translations, since for all f ∈ L∞(R) and x ∈ R we have

Φ̃(τx( f ))− τ
x(Φ̃( f )) = Φ̃(τx( f ))− Φ̃( f ) = Φ̃(τx( f )− f ) = Φ(τx( f )− f ) = 0,

where the last two equalities follow from the fact that for bounded functions f the
expression 1

R
∫ R

0 f (t − x)− f (t)dt has limit zero as R → ∞. Since the operator Φ̃

vanishes on all test functions, it is not given by convolution.

We now study the case p = 2. We have the following theorem:

Theorem 2.5.10. An operator T is in M 2,2(Rn) if and only if it is given by convo-
lution with some u ∈S ′ whose Fourier transform û is an L∞ function. In this case
the norm of T : L2 → L2 is equal to

∥∥û
∥∥

L∞ .

Proof. If û ∈ L∞, Plancherel’s theorem gives∫
Rn
| f ∗u|2 dx =

∫
Rn
| f̂ (ξ )û(ξ )|2 dξ ≤

∥∥û
∥∥2

L∞

∥∥ f̂
∥∥2

L2 ;

therefore,
∥∥T
∥∥

L2→L2 ≤
∥∥û
∥∥

L∞ , and hence T is in M 2,2(Rn).
Now suppose that T ∈M 2,2(Rn) is given by convolution with a tempered distri-

bution u. We show that û is a bounded function. For R > 0 let ϕR be a C ∞
0 function

supported inside the ball B(0,2R) and equal to one on the ball B(0,R). The product
of the function ϕR with the distribution û is ϕRû = ((ϕR)∨ ∗ u)̂ = T (ϕ∨

R )̂ , which
is an L2 function. Since the L2 function ϕRû coincides with the distribution û on
the set B(0,R), it follows that û is in L2(B(0,R)) for all R > 0 and therefore it is
in L2

loc. If f ∈ L∞(Rn) has compact support, the function f û is in L2, and therefore
Plancherel’s theorem and the boundedness of T give∫

Rn
| f (x)û(x)|2 dx =

∫
Rn
|T ( f∨)(x)|2 dx ≤

∥∥T
∥∥2

L2→L2

∫
Rn
| f (x)|2 dx .
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We conclude that for all bounded functions with compact support f we have∫
Rn

(∥∥T
∥∥2

L2→L2 −|û(x)|2
)
| f (x)|2 dx ≥ 0 .

Taking f = |B(x,r)|−1χB(x,r) for r > 0 and using Corollary 2.1.16, we obtain that∥∥T
∥∥2

L2→L2 −|û(x)|2 ≥ 0 for almost all x. Hence û is in L∞ and
∥∥û
∥∥

L∞ ≤
∥∥T
∥∥

L2→L2 .
Combining this with the estimate

∥∥T
∥∥

L2→L2 ≤
∥∥û
∥∥

L∞ , which holds if û ∈ L∞, we
deduce that

∥∥T
∥∥

L2→L2 =
∥∥û
∥∥

L∞ . �

2.5.5 The Space of Fourier Multipliers Mp(Rn)

We have now characterized all convolution operators that map L2 to L2. Suppose
now that T is in M p,p, where 1 < p < 2. As discussed in Theorem 2.5.7, T also
maps Lp′ to Lp′ . Since p < 2 < p′, by Theorem 1.3.4, it follows that T also maps L2

to L2. Thus T is given by convolution with a tempered distribution whose Fourier
transform is a bounded function.

Definition 2.5.11. Given 1≤ p < ∞, we denote by Mp(Rn) the space of all bounded
functions m on Rn such that the operator

Tm( f ) = ( f̂ m)∨, f ∈S ,

is bounded on Lp(Rn) (or is initially defined in a dense subspace of Lp(Rn) and has
a bounded extension on the whole space). The norm of m in Mp(Rn) is defined by∥∥m

∥∥
Mp

=
∥∥Tm

∥∥
Lp→Lp . (2.5.12)

Definition 2.5.11 implies that m ∈ Mp if and only if Tm ∈ M p,p. Elements of
the space Mp are called Lp multipliers or Lp Fourier multipliers. It follows from
Theorem 2.5.10 that M2, the set of all L2 multipliers, is L∞. Theorem 2.5.8 implies
that M1(Rn) is the set of the Fourier transforms of finite Borel measures that is
usually denoted by M (Rn). Theorem 2.5.7 states that a bounded function m is an
Lp multiplier if and only if it is an Lp′ multiplier, and in this case∥∥m

∥∥
Mp

=
∥∥m
∥∥

Mp′
, 1 < p < ∞ .

It is a consequence of Theorem 1.3.4 that the normed spaces Mp are nested, that is,
for 1≤ p≤ q≤ 2 we have

M1 ⊆Mp ⊆Mq ⊆M2 = L∞.

Moreover, if m ∈Mp and 1≤ p≤ 2≤ p′, Theorem 1.3.4 gives
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∥∥

L2→L2 ≤
∥∥Tm

∥∥ 1
2
Lp→Lp

∥∥Tm
∥∥ 1

2
Lp′→Lp′ =

∥∥Tm
∥∥

Lp→Lp , (2.5.13)

since 1/2 = (1/2)/p+(1/2)/p′. Theorem 1.3.4 also gives that∥∥m
∥∥

Mp
≤
∥∥m
∥∥

Mq

whenever 1 ≤ q ≤ p ≤ 2. Thus the Mp’s form an increasing family of spaces as p
increases from 1 to 2.

Example 2.5.12. The function m(ξ ) = e2πiξ ·b is an Lp multiplier for all b ∈ Rn,
since the corresponding operator Tm( f )(x)= f (x+b) is bounded on Lp(Rn). Clearly∥∥m
∥∥

Mp
= 1.

Proposition 2.5.13. For 1 ≤ p < ∞, the normed space
(
Mp,

∥∥ · ∥∥
Mp

)
is a Banach

space. Furthermore, Mp is closed under pointwise multiplication and is a Banach
algebra.

Proof. It suffices to consider the case 1≤ p≤ 2. It is straightforward that if m1, m2
are in Mp and b ∈ C then m1 + m2 and bm1 are also in Mp. Observe that m1m2 is
the multiplier that corresponds to the operator Tm1Tm2 = Tm1m2 and thus∥∥m1m2

∥∥
Mp

=
∥∥Tm1Tm2

∥∥
Lp→Lp ≤

∥∥m1
∥∥

Mp

∥∥m2
∥∥

Mp
.

This proves that Mp is an algebra. To show that Mp is a complete space, take a
Cauchy sequence m j in Mp. It follows from (2.5.13) that m j is Cauchy in L∞, and
hence it converges to some bounded function m in the L∞ norm. We have to show
that m ∈Mp. Fix f ∈S . We have

Tm j( f )(x) =
∫

Rn
f̂ (ξ )m j(ξ )e2πix·ξ dξ →

∫
Rn

f̂ (ξ )m(ξ )e2πix·ξ dξ = Tm( f )(x)

a.e. by the Lebesgue dominated convergence theorem. Since {m j} j is a Cauchy
sequence in Mp, it is bounded in Mp, and thus sup j

∥∥m j
∥∥

Mp
≤C. Fatou’s lemma

now implies that ∫
Rn
|Tm( f )|p dx =

∫
Rn

liminf
j→∞

|Tm j( f )|p dx

≤ liminf
j→∞

∫
Rn
|Tm j( f )|p dx

≤ liminf
j→∞

∥∥m j
∥∥p

Mp

∥∥ f
∥∥p

Lp

≤Cp∥∥ f
∥∥p

Lp ,

which implies that m ∈Mp. Incidentally, this argument shows that if µ j ∈Mp and
µ j → µ a.e., then µ is in Mp and satisfies∥∥µ

∥∥
Mp

≤ liminf
j→∞

∥∥µ j
∥∥

Mp
.
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Apply this inequality to µ j = mk −m j and µ = mk −m for some fixed k. Then let
k → ∞ and use the fact that m j is a Cauchy sequence in Mp to obtain that mk → m
in Mp. This proves that Mp is a Banach space. �

The following proposition summarizes some simple properties of multipliers.

Proposition 2.5.14. For all m ∈Mp, 1≤ p < ∞, x ∈ Rn, and h > 0 we have∥∥τ
x(m)

∥∥
Mp

=
∥∥m
∥∥

Mp
, (2.5.14)∥∥δ

h(m)
∥∥

Mp
=
∥∥m
∥∥

Mp
, (2.5.15)∥∥m̃

∥∥
Mp

=
∥∥m
∥∥

Mp
,∥∥e2πi( ·)·xm

∥∥
Mp

=
∥∥m
∥∥

Mp
,∥∥m◦A

∥∥
Mp

=
∥∥m
∥∥

Mp
, A is an orthogonal matrix.

Proof. See Exercise 2.5.2. �

Example 2.5.15. We show that for−∞<a<b<∞ we have
∥∥χ[a,b]

∥∥
Mp

=
∥∥χ[0,1]

∥∥
Mp

.

Indeed, using (2.5.14) we obtain that
∥∥χ[a,b]

∥∥
Mp

=
∥∥χ[0,b−a]

∥∥
Mp

, and the latter

is equal to
∥∥χ[0,1]

∥∥
Mp

in view of (2.5.15). The fact that
∥∥χ[0,1]

∥∥
Mp

< ∞ for all
1 < p < ∞ is shown in Chapter 4.

We continue with the following interesting result.

Theorem 2.5.16. Suppose that m(ξ ,η) ∈ Mp(Rn+m), where 1 < p < ∞. Then for
almost every ξ ∈ Rn the function η 7→ m(ξ ,η) is in Mp(Rm), with∥∥m(ξ , ·)

∥∥
Mp(Rm) ≤

∥∥m
∥∥

Mp(Rn+m).

Proof. If m is only a measurable function, its restriction to lower-dimensional planes
is not defined. To avoid technical difficulties of this sort, we first assume that m is
continuous at every point. Fix f1, g1 in S (Rn) and f2, g2 in S (Rm). Let

M(ξ ) =
∫

Rm
m(ξ ,η) f̂2(η)ĝ2(η)dη , ξ ∈ Rn,

and observe that∣∣∣∣∫Rn

(
M( ·) f̂1

)∨g1 dx
∣∣∣∣ =

∣∣∣∣∫Rn
M(ξ ) f̂1(ξ )ĝ1(ξ )dξ

∣∣∣∣
=
∣∣∣∣∫∫Rn+m

m(ξ ,η) f̂1 f2(ξ ,η)ĝ1g2(ξ ,η)dξ dη

∣∣∣∣
=
∣∣∣∣∫∫Rn+m

(m f̂1 f2)∨g1g2 dξ dη

∣∣∣∣
≤
∥∥m
∥∥

Mp(Rn+m)

∥∥ f1
∥∥

Lp

∥∥ f2
∥∥

Lp

∥∥g1
∥∥

Lp′
∥∥g2
∥∥

Lp′ .
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Since by duality we have

∥∥(M( ·) f̂1)∨
∥∥

Lp = sup
‖g1‖Lp′≤1

∣∣∣∣∫Rn

(
M( ·) f̂1

)∨g1 dx
∣∣∣∣ ,

it follows that M(ξ ) is in Mp(Rn) with norm∥∥M
∥∥

Mp(Rn) ≤
∥∥m
∥∥

Mp(Rn+m)

∥∥ f2
∥∥

Lp

∥∥g2
∥∥

Lp′ .

Since
∥∥M
∥∥

L∞ ≤
∥∥M
∥∥

Mp
and m is continuous, we obtain that for all ξ ∈ Rn,∣∣∣∣∫Rm

(m(ξ , ·) f̂2)∨g2 dy
∣∣∣∣= |M(ξ )| ≤

∥∥m
∥∥

Mp(Rn+m)

∥∥ f2
∥∥

Lp

∥∥g2
∥∥

Lp′ , (2.5.16)

which of course implies the required conclusion for m continuous. The passage
to a general m is achieved via a regularization argument. Define the family of
functions mε(ξ ,η) = (2ε)−n−m(m ∗ χ|ξ |≤ε,|η |≤ε). By Exercise 2.5.3 we have that∥∥mε

∥∥
Mp(Rn+m) ≤

∥∥m
∥∥

Mp(Rn+m), and clearly the mε ’s are continuous functions. From
this observation and (2.5.16), it follows that∣∣∣∣∫Rm

mε(ξ ,η) f̂2(η)ĝ2(η)dξ dη

∣∣∣∣≤ ∥∥m
∥∥

Mp(Rn+m)

∥∥ f2
∥∥

Lp

∥∥g2
∥∥

Lp′ .

Now let ε → 0 and use the Lebesgue dominated convergence theorem. The conclu-
sion follows. �

Example 2.5.17. (The cone multiplier) On Rn+1 define the function

mλ (ξ1, . . . ,ξn+1) =

(
1− ξ 2

1 + · · ·+ξ 2
n

ξ 2
n+1

)λ

+

, λ > 0,

where the plus sign indicates that mλ = 0 if the expression inside the parentheses is
negative. The multiplier mλ is called the cone multiplier with parameter λ . If mλ is
in Mp(Rn+1), then the function bλ (ξ ) = (1−|ξ |2)λ

+ defined on Rn is in Mp(Rn).
Indeed, by Theorem 2.5.16 we have that for some ξn+1 = h, bλ (ξ1/h, . . . ,ξn/h) is
in Mp(Rn) and hence so is bλ by property (2.5.15).

Exercises

2.5.1. Prove that if f ∈ Lq(Rn) and 1≤ q < ∞, then∥∥τ
h( f )+ f

∥∥
Lq → 21/q∥∥ f

∥∥
Lq as |h| → ∞.
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2.5.2. Prove Proposition 2.5.14. Also prove that if δ
h j
j is a dilation operator in the

jth variable (for instance δ
h1
1 ( f )(x) = f (h1x1,x2, . . . ,xn)), then∥∥δ

h1
1 · · ·δ hn

n (m)
∥∥

Mp
=
∥∥m
∥∥

Mp
.

2.5.3. Let m ∈Mp(Rn), 1≤ p < ∞.
(a) If ψ is a function on Rn whose inverse Fourier transform is an integrable func-
tion, then prove that ∥∥ψm

∥∥
Mp

≤
∥∥ψ

∨∥∥
L1

∥∥m
∥∥

Mp
.

(b) If ψ is in L1(Rn), then prove that∥∥ψ ∗m
∥∥

Mp
≤
∥∥ψ
∥∥

L1

∥∥m
∥∥

Mp
.

2.5.4. Fix a multi-index γ .
(a) Prove that the map T ( f ) = f ∗∂ γ δ0 maps S continuously into S .
(b) Prove that when 1/p−1/q 6= |γ|/n, T does not extend to an element of the space
M p,q.

2.5.5. Let Kγ(x) = |x|−n+γ , where 0 < γ < n. Use Theorem 1.4.24 to show that the
operator

Tγ( f ) = f ∗Kγ , f ∈S ,

extends to a bounded operator in M p,q, where 1/p− 1/q = γ/n, 1 < p < q < ∞.
This provides an example of a nontrivial operator in M p,q when p < q.

2.5.6. (a) Use the ideas of the proof of Proposition 2.5.13 to show that if m j ∈Mp,
1≤ p < ∞,

∥∥m j
∥∥

Mp
≤C for all j = 1,2, . . . , and m j → m a.e., then m ∈Mp and∥∥m

∥∥
Mp

≤ liminf
j→∞

∥∥m j
∥∥

Mp
≤C .

(b) Suppose that for some 1≤ p < ∞, mt ∈Mp for all 0 < t < ∞. Prove that∫
∞

0

∥∥mt
∥∥

Mp

dt
t

< ∞ =⇒ m(ξ ) =
∫

∞

0
mt(ξ )

dt
t
∈Mp .

(c) Use part (a) to prove that if m ∈ Mp, 1 ≤ p < ∞, then m0(x) = lim
R→∞

m(x/R) is

also in Mp and satisfies
∥∥m0

∥∥
Mp

≤
∥∥m
∥∥

Mp
.

(d) If m ∈Mp has left and right limits at the origin, then prove that∥∥m
∥∥

Mp
≥max(|m(0+)|, |m(0−)|).

2.5.7. Let 1 ≤ p < ∞ and suppose that m ∈ Mp(Rn) has no zeros. Prove that the
operator T ( f ) = ( f̂ m−1)∨ satisfies

∥∥T ( f )
∥∥

Lp ≥ cp
∥∥ f
∥∥

Lp , where cp =
∥∥m
∥∥−1

Mp
.

2.5.8. (a) Prove that if m ∈ L∞(Rn) satisfies m∨ ≥ 0, then for all 1≤ p < ∞ we have
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∥∥

Mp
=
∥∥m∨∥∥

L1 .

(b) (L. Colzani and E. Laeng ) Let m1(ξ ) =−1 for ξ > 0 and m1(ξ ) = 1 for ξ < 0.
Let m2(ξ ) = min(ξ − 1,0) for ξ > 0 and m2(ξ ) = max(ξ + 1,0) for ξ < 0. Prove
that ∥∥m1

∥∥
Mp

=
∥∥m2

∥∥
Mp

for all 1 < p < ∞.[
Hint: Part (a): Use Exercise 1.2.9. Part (b): Use part (a) to show that

∥∥m2m−1
1

∥∥
Mp

=

1. Deduce that
∥∥m2

∥∥
Mp

≤
∥∥m1

∥∥
Mp

. For the converse use Exercise 2.5.6(c).
]

2.5.9. (de Leeuw [74] ) Let 1 < p < ∞ and 0 < A < ∞. Prove that the following are
equivalent:
(a) The operator f 7→ ∑m∈Zn am f (x−m) is bounded on Lp(Rn) with norm A.
(b) The Mp norm of the function ∑m∈Zn ame−2πim·x is exactly A.
(c) The operator given by convolution with the sequence {am} is bounded on `p(Zn)
with norm A.

2.5.10. (Jodeit [141] ) Let m(x) in Mp(Rn) be supported in [0,1]n. Then the peri-
odic extension of m in Rn,

M(x) = ∑
k∈Zn

m(x− k) ,

is also in Mp(Rn).

2.5.11. Suppose that u is a C ∞ function on Rn \{0} that is homogeneous of degree
−n+ iτ , τ ∈R. Prove that the operator given by convolution with u maps L2(Rn) to
L2(Rn).

2.5.12. (Hahn [117] ) Let m1 ∈ Lr(Rn) and m2 ∈ Lr′(Rn) for some 2≤ r≤∞. Prove
that m1 ∗m2 ∈Mp(Rn) when 1

p −
1
2 = 1

r and 1≤ p≤ 2.[
Hint: Prove that the trilinear operator (m1,m2, f ) 7→

(
(m1∗m2) f̂

)∨ is bounded from
L2 ×L2 ×L1 → L1 and L∞ ×L1 ×L2 → L2. Apply trilinear complex interpolation
(Exercise 1.4.17) to deduce the required conclusion for 1≤ p≤ 2.

]

2.6 Oscillatory Integrals

Oscillatory integrals have played an important role in harmonic analysis from its
outset. The Fourier transform is the prototype of oscillatory integrals and provides
the simplest example of a nontrivial phase, a linear function of the variable of in-
tegration. More complicated phases naturally appear in the subject; for instance,
Bessel functions provide examples of oscillatory integrals in which the phase is a
sinusoidal function.
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In this section we take a quick look at oscillatory integrals. We mostly concen-
trate on one-dimensional results, which already require some significant analysis.
We examine only a very simple higher-dimensional situation. Our analysis here is
far from adequate.

Definition 2.6.1. An oscillatory integral is an expression of the form

I(λ ) =
∫

Rn
eiλϕ(x)

ψ(x)dx , (2.6.1)

where λ is a positive real number, ϕ is a real-valued function on Rn called the
phase, and ψ is a complex-valued and smooth integrable function on Rn, which is
often taken to have compact support.

2.6.1 Phases with No Critical Points

We begin by studying the simplest possible one-dimensional case. Suppose that ϕ

and ψ are smooth functions on the real line such that supp ψ is a closed interval and

ϕ
′(x) 6= 0 for all x ∈ supp ψ .

Since ϕ ′ has no zeros, it must be either strictly positive or strictly negative every-
where on the support of ψ . It follows that ϕ is monotonic on the support of ψ and
we are allowed to change variables

u = ϕ(x)

in (2.6.1). Then dx = (ϕ ′(x))−1du = (ϕ−1)′(u)du, where ϕ−1 is the inverse function
of ϕ . We transform the integral in (2.6.1) into∫

R
eiλu

ψ(ϕ−1(u))(ϕ−1)′(u)du (2.6.2)

and we note that the function θ(u) = ψ(ϕ−1(u))(ϕ−1)′(u) is smooth and has com-
pact support on R. We therefore interpret the integral in (2.6.1) as θ̂(−λ/2π), where
θ̂ is the Fourier transform of θ . Since θ is a smooth function with compact support,
it follows that the integral in (2.6.2) has rapid decay as λ → ∞.

A quick way to see that the expression θ̂(−λ/2π) has decay of order λ−N for
all N > 0 as λ tends to ∞ is the following. Write

eiλu =
1

(iλ )N
dN

duN (eiλu)

and integrate by parts N times to express the integral in (2.6.2) as
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(−1)N

(iλ )N

∫
R

eiλu dNθ(u)
duN du ,

from which the assertion follows. Hence

|I(λ )|= |θ̂(−λ/2π)| ≤CNλ
−N , (2.6.3)

where CN =
∥∥θ (N)

∥∥
L1 , which depends on derivatives of ϕ and ψ .

We now turn to a higher-dimensional analogue of this situation.

Definition 2.6.2. We say that a point x0 is a critical point of a phase function ϕ if

∇ϕ(x0) =
(
∂1ϕ(x0), . . . ,∂nϕ(x0)

)
= 0 .

Example 2.6.3. Let ξ ∈ Rn \ {0}. Then the phase functions ϕ1(x) = x · ξ , ϕ2(x) =
ex·ξ have no critical points, while the phase function ϕ3(x) = |x|2 − x · ξ has one
critical point at x0 = 1

2 ξ .

The next result concerns the behavior of oscillatory integrals whose phase func-
tions have no critical points.

Proposition 2.6.4. Suppose that ψ is a compactly supported smooth function on Rn

and that ϕ is a real-valued C 1 function on Rn that has no critical points on the
support of ψ . Then the oscillatory integral

I(λ ) =
∫

Rn
eiλϕ(x)

ψ(x)dx (2.6.4)

obeys a bound of the form |I(λ )| ≤CNλ−N for all λ ≥ 1 and all N > 0, where CN
depends on N and on ϕ and ψ .

Proof. Since the case n = 1 has already been discussed, we concentrate on dimen-
sions n≥ 2. For each y in the support of ψ there is a unit vector θy such that

θy ·∇ϕ(y) = |∇ϕ(y)| .

By the continuity of ∇ϕ there is a small neighborhood B(y,ry) of y such that for all
x ∈ B(y,ry) we have

θy ·∇ϕ(x)≥ 1
2
|∇ϕ(y)|> 0 .

Cover the support of ψ by a finite number of balls B(y j,ry j), j = 1, . . . ,m, and pick
c = min j

1
2 |∇ϕ(y j)|; we have

θy j ·∇ϕ(x)≥ c > 0 (2.6.5)

for all x ∈ B(y j,ry j) and j = 1, . . . ,m.
Next we find a smooth partition of unity of Rn such that each member ζk of the

partition is supported in some ball B(y j,ry j) or lies outside the support of ψ . We
therefore write
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I(λ ) = ∑
k

∫
Rn

eiλϕ(x)
ψ(x)ζk(x)dx , (2.6.6)

where the sum contains only a finite number of indices, since only a finite number
of the ζk’s meet the support of ψ . It suffices to show that every term in the sum in
(2.6.6) has rapid decay in λ as λ → ∞.

To this end, we fix a k and we pick a j such that the support of ψζk is contained
in some ball B(y j,ry j). We find unit vectors θy j ,2, . . . ,θy j ,n, such that the system
{θy j ,θy j ,2, . . . ,θy j ,n} is an orthonormal basis of Rn. Let e j be the unit column vector
on Rn whose jth coordinate is one and whose remaining coordinates are zero. We
find an orthogonal matrix R such that Re1 = θy j and we introduce the change of
variables u = y j +R(x− y j) in the integral

Ik(λ ) =
∫

Rn
eiλϕ(x)

ψ(x)ζk(x)dx .

The map x 7→ u = (u1, . . . ,un) is a rotation that fixes y j and preserves the ball
B(y j,ry j). Defining ϕ(x) = ϕo(u), ψ(x) = ψo(u), ζk(x) = ζ o

k (u), under this new
coordinate system we write

Ik(λ ) =
∫

K

{∫
R

eiλϕo(u)
ψ

o(u1, . . . ,un)ζ o
k (u1, . . . ,un)du1

}
du2 · · ·dun , (2.6.7)

where K is a compact subset of Rn−1. Since R is an orthogonal matrix, R−1 = Rt ,
and the change of variables x = y j +Rt(u− y j) implies that

∂x
∂u1

= first row of Rt = first column of R = θy j .

Thus for all x ∈ B(y j,r j) we have

∂ϕo(u)
∂u1

=
∂ϕ(y j +Rt(u− y j))

∂u1
= ∇ϕ(x) · ∂x

∂u1
= ∇ϕ(x) ·θy j ≥ c > 0

in view of condition (2.6.5). This lower estimate is valid for all u ∈ B(y j,ry j), and
therefore the inner integral inside the curly brackets in (2.6.7) is at most CNλ−N by
estimate (2.6.3). Integrating over K results in the same conclusion for I(λ ) defined
in (2.6.4). �

2.6.2 Sublevel Set Estimates and the Van der Corput Lemma

We discuss a sharp decay estimate for one-dimensional oscillatory integrals. This
estimate is obtained as a consequence of delicate size estimates for the Lebesgue
measures of the sublevel sets {|u| ≤ α} for a function u. In what follows, u(k) de-
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notes the kth derivative of a function u(t) defined on R, and C k the space of all
functions whose kth derivative exists and is continuous.

Lemma 2.6.5. Let k ≥ 1 and suppose that a0, . . . ,ak are distinct real numbers. Let
a = min(a j) and b = max(a j) and let f be a real-valued C k−1 function on [a,b] that
is C k on (a,b). Then there exists a point y in (a,b) such that

k

∑
m=0

cm f (am) = f (k)(y) ,

where cm = (−1)k k!
k
∏
`=0
6̀=m

(a`−am)−1.

Proof. Suppose we could find a polynomial pk(x) = ∑
k
j=0 b jx j such that the function

ϕ(x) = f (x)− pk(x) (2.6.8)

satisfies ϕ(am) = 0 for all 0 ≤ m ≤ k. Since the a j are distinct, we apply Rolle’s
theorem k times to find a point y in (a,b) such that f (k)(y) = k!bk.

The existence of a polynomial pk such that (2.6.8) is satisfied is equivalent to the
existence of a solution to the matrix equation

ak
0 ak−1

0 . . . a0 1
ak

1 ak−1
1 . . . a1 1

...
...

...
...

...
ak

k−1 ak−1
k−1 . . . ak−1 1

ak
k ak−1

k . . . ak 1




bk

bk−1
...

b1
b0

=


f (a0)
f (a1)

...
f (ak−1)
f (ak)

 .

The determinant of the square matrix on the left is called the Vandermonde determi-
nant and is equal to

k−1

∏
`=0

k

∏
j=`+1

(a`−a j) 6= 0 .

Since the a j are distinct, it follows that the system has a unique solution. Using
Cramer’s rule, we solve this system to obtain

bk =
k

∑
m=0

(−1)m f (am)

k−1
∏
`=0
6̀=m

k
∏

j=`+1
j 6=m

(a`−a j)

k−1
∏
`=0

k
∏

j=`+1
(a`−a j)

=
k

∑
m=0

(−1)m f (am)
k

∏
`=0
6̀=m

(a`−am)−1(−1)k−m .
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The required conclusion now follows with cm as claimed. �

Lemma 2.6.6. Let E be a measurable subset of R with finite nonzero Lebesgue mea-
sure and let k ∈ Z+. Then there exist a0, . . . ,ak in E such that for all ` = 0,1, . . . ,k
we have

k

∏
j=0
j 6=`

|a j −a`| ≥ (|E|/2e)k . (2.6.9)

Proof. Given a measurable set E with finite measure, pick a compact subset E ′ of
E such that |E \E ′| < δ , for some δ > 0. For x ∈ R define T (x) = |(−∞,x)∩E ′|.
Then T enjoys the distance-decreasing property

|T (x)−T (y)| ≤ |x− y|

for all x,y ∈ E ′; consequently, by the intermediate value theorem, T is a surjective
map from E ′ to [0, |E ′|]. Let a j be points in E ′ such that T (a j) = j

k |E
′| for j =

0,1, . . . ,k. For k an even integer, we have

k

∏
j=0
j 6=`

|a j −a`| ≥
k

∏
j=0
j 6=`

∣∣∣ j
k
|E ′|− `

k
|E ′|
∣∣∣≥ k

∏
j=0
j 6= k

2

∣∣∣ j
k
− 1

2

∣∣∣ |E ′|k =

k
2−1

∏
r=0

( r− k
2

k

)2
|E ′|k ,

and it is easily shown that
(
(k/2)!

)2k−k ≥ (2e)−k.
For k an odd integer we have

k

∏
j=0
j 6=`

|a j −a`| ≥
k

∏
j=0
j 6=`

∣∣∣ j
k
|E ′|− `

k
|E ′|
∣∣∣≥ k

∏
j=0

j 6= k+1
2

∣∣∣ j
k
− k +1

2k

∣∣∣ |E ′|k ,

while the last product is at least{1
k
· 2

k
· · ·

k−1
2
k

}2 k +1
2k

≥ (2e)−k .

We have therefore proved (2.6.9) with E ′ replacing E. Since |E \E ′|< δ and δ > 0
is arbitrarily small, the required conclusion follows. �

The following is the main result of this section.

Proposition 2.6.7. (a) Let u be a real-valued C k function, k ∈ Z+, that satisfies
u(k)(t)≥ 1 for all t ∈ R. Then the following estimate is valid for all α > 0:∣∣{t ∈ R : |u(t)| ≤ α

}∣∣≤ (2e)((k +1)!)
1
k α

1
k . (2.6.10)

(b) For all k ≥ 2, for every real-valued C k function u on the line that satisfies
u(k)(t)≥ 1, for any −∞ < a < b < ∞, and every λ > 0, the following is valid:
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a
eiλu(t)dt

∣∣∣∣≤ 12k |λ |−
1
k . (2.6.11)

(c) If k = 1, u′(t) is monotonic on (a,b), and u′(t)≥ 1 for all t ∈ (a,b), then∣∣∣∣∫ b

a
eiλu(t)dt

∣∣∣∣≤ 3 |λ |−1 . (2.6.12)

Proof. Part (a): Let E = {t ∈ R : |u(t)| ≤ α}. If |E| is nonzero, then by Lemma
2.6.6 there exist a0,a1, . . . ,ak in E such that for all ` we have

|E|k ≤ (2e)k
k

∏
j=0
j 6=`

|a j −a`| . (2.6.13)

Lemma 2.6.5 implies that there exists y ∈
(

mina j,maxa j
)

such that

u(k)(y) = (−1)k k!
k

∑
m=0

u(am)
k

∏
`=0
6̀=m

(a`−am)−1 . (2.6.14)

Using (2.6.13), we obtain that the expression on the right in (2.6.14) is in absolute
value at most

(k +1)! max
0≤ j≤k

|u(a j)|(2e)k |E|−k ≤ (k +1)!α (2e)k |E|−k ,

since a j ∈ E. The bound u(k)(t)≥ 1 now implies

|E|k ≤ (k +1)!(2e)k
α

as claimed. This proves (2.6.10).
Part (b): We now take k ≥ 2 and we split the interval (a,b) in (2.6.11) into the

sets

R1 = {t ∈ (a,b) : |u′(t)| ≤ β} ,

R2 = {t ∈ (a,b) : |u′(t)|> β} ,

for some parameter β to be chosen momentarily. The function v = u′ satisfies
v(k−1) ≥ 1 and k−1≥ 1. It follows from part (a) that∣∣∣∣∫R1

eiλu(t) dt
∣∣∣∣≤ |R1| ≤ 2e(k!)

1
k−1 β

1
k−1 ≤ 6k β

1
k−1 .

To obtain the corresponding estimate over R2, we note that if u(k) ≥ 1, then the set
{|u′|> β} is the union of at most 2k−2 intervals on each of which u′ is monotone.
Let (c,d) be one of these intervals on which u′ is monotone. Then u′ has a fixed sign
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on (c,d) and we have∣∣∣∣∫ d

c
eiλu(t) dt

∣∣∣∣ =
∣∣∣∣∫ d

c

(
eiλu(t))′ 1

λu′(t)
dt
∣∣∣∣

≤
∣∣∣∣∫ d

c
eiλu(t)

( 1
λu′(t)

)′
dt
∣∣∣∣+ 1

|λ |

∣∣∣eiλu(d)

u′(d)
− eiλu(c)

u′(c)

∣∣∣
≤ 1
|λ |

∫ d

c

∣∣∣( 1
u′(t)

)′∣∣∣dt +
2

|λ |β

=
1
|λ |

∣∣∣∣∫ d

c

( 1
u′(t)

)′
dt
∣∣∣∣+ 2

|λ |β

≤ 1
|λ |

∣∣∣ 1
u′(d)

− 1
u′(c)

∣∣∣+ 2
|λ |β

≤ 3
|λ |β

,

where we use the monotonicity of 1/u′(t) in moving the absolute value from inside
the integral to outside. It follows that∣∣∣∣∫R2

eiλu(t) dt
∣∣∣∣≤ 6k

|λ |β
.

Choosing β = |λ |−(k−1)/k to optimize and adding the corresponding estimates for
R1 and R2, we deduce the claimed estimate (2.6.11).

Part (c): Repeat the argument in part (b) setting β = 1 and replacing the interval
(c,d) by (a,b). �

Corollary 2.6.8. Let (a,b), u(t), λ > 0, and k be as in Proposition 2.6.7. Then for
any function ψ on (a,b) with an integrable derivative and k ≥ 2, we have∣∣∣∣∫ b

a
eiλu(t)

ψ(t)dt
∣∣∣∣≤ 12k λ

−1/k
[
|ψ(b)|+

∫ b

a
|ψ ′(s)|ds

]
.

We also have ∣∣∣∣∫ b

a
eiλu(t)

ψ(t)dt
∣∣∣∣≤ 3λ

−1
[
|ψ(b)|+

∫ b

a
|ψ ′(s)|ds

]
,

when k = 1 and u′ is monotonic on (a,b).

Proof. Set

F(x) =
∫ x

a
eiλu(t) dt

and use integration by parts to write∫ b

a
eiλu(t)

ψ(t)dt = F(b)ψ(b)−
∫ b

a
F(t)ψ ′(t)dt .

The conclusion easily follows. �
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Example 2.6.9. The Bessel function of order m is defined as

Jm(r) =
1

2π

∫ 2π

0
eir sinθ e−imθ dθ .

Here we take both r and m to be real numbers, and we suppose that m >− 1
2 ; we refer

to Appendix B for an introduction to Bessel functions and their basic properties.
We use Corollary 2.6.8 to calculate the decay of the Bessel function Jm(r) as

r → ∞. Set
ϕ(θ) = sin(θ)

and note that ϕ ′(θ) vanishes only at θ = π/2 and 3π/2 inside the interval [0,2π] and
that ϕ ′′(π/2) = −1, while ϕ ′′(3π/2) = 1. We now write 1 = ψ1 + ψ2 + ψ3, where
ψ1 is smooth and compactly supported in a small neighborhood of π/2, and ψ2 is
smooth and compactly supported in a small neighborhood of 3π/2. For j = 1,2,
Corollary 2.6.8 yields∣∣∣∣∫ 2π

0
eir sin(θ)(

ψ j(θ)e−imθ
)
dθ

∣∣∣∣≤C mr−1/2

for some constant C, while the corresponding integral containing ψ3 has arbitrary
decay in r in view of estimate (2.6.3) (or Proposition 2.6.4 when n = 1).

Exercises

2.6.1. Suppose that u is a C k function on the line that satisfies |u(k)(t)| ≥ c0 > 0 for
some k ≥ 2 and all t ∈ (a,b). Prove that for λ > 0 we have∣∣∣∣∫ b

a
eiλu(t) dt

∣∣∣∣≤ 12k (λc0)−1/k

and that the same conclusion is valid when k = 1, provided u′ is monotonic.

2.6.2. Show that if u′ is not monotonic in part (c) of Proposition 2.6.7, then the
conclusion may fail.[
Hint: Let ϕ(t) be a smooth function on the real line that is equal to 10t on intervals

[2πk + ε,2π(k + 1
2 )− ε] and equal to t on intervals [2π(k + 1

2 )+ ε,2π(k + 1)− ε].
Show that the imaginary part of the oscillatory integral in question may tend to
infinity over the union of several such intervals.

]
2.6.3. Prove that the dependence on k of the constant in part (b) of Proposition 2.6.7
is indeed linear.[
Hint: Take u(t) = tk/k! over the interval (0,k!).

]
2.6.4. Follow the steps below to give an alternative proof of part (b) of Proposition
2.6.7. Assume that the statement is known for some k ≥ 2 and some constant C(k)
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for all intervals [a,b] and all C k functions satisfying u(k) ≥ 1 on [a,b]. Let c be the
unique point at which the function u(k) attains its minimum in [a,b].
(a) If u(k)(c) = 0, then for all δ > 0 we have u(k)(t) ≥ δ in the complement of the
interval (c−δ ,c+δ ) and derive the bound∣∣∣∣∫ b

a
eiλu(t)dt

∣∣∣∣≤ 2C(k)(λδ )−1/k +2δ .

(b) If u(k)(c) 6= 0, then we must have c ∈ {a,b}. Obtain the bound∣∣∣∣∫ b

a
eiλu(t)dt

∣∣∣∣≤C(k)(λδ )−1/k +δ .

(c) Choose a suitable δ to optimize and deduce the validity of the statement for k+1
with C(k +1) = 2C(k)+2 = 5 ·2k−2. (Note that C(1) = 3.)

2.6.5. (a) Prove that for some constant C and all λ ∈ R and ε ∈ (0,1) we have∣∣∣∣∫
ε≤|t|≤1

eiλ t dt
t

∣∣∣∣≤C .

(b) Prove that for some C′ < ∞ , all λ ∈ R, k > 0, and ε ∈ (0,1) we have∣∣∣∣∫
ε≤|t|≤1

eiλ t±tk dt
t

∣∣∣∣≤C′ .

(c) Show that there is a constant C′′ such that for any 0 < ε < N < ∞, for all ξ1,ξ2
in R, and for all integers k ≥ 2, we have∣∣∣∣∫

ε≤|s|≤N
ei(ξ1s+ξ2sk) ds

s

∣∣∣∣≤C′′ .

[
Hint: Part (a): For |λ | small use the inequality |eiλ t − 1| ≤ |λ t|. If |λ | is large,

split the domains of integration into the regions |t| ≤ |λ |−1 and |t| ≥ |λ |−1 and use
integration by parts in the second case. Part (b): Write

ei(λ t+±tk)−1
t

= eiλ t e±itk −1
t

+
eiλ t

t

and use part (a). Part (c): When ξ1 = ξ2 = 0 it is trivial. If ξ2 = 0, ξ1 6= 0, change
variables t = ξ1s and then split the domain of integration into the sets |t| ≤ 1 and
|t| ≥ 1. In the interval over the set |t| ≤ 1 apply part (b) and over the set |t| ≥ 1 use
integration by parts. In the case ξ2 6= 0, change variables t = |ξ2|1/ks and split the
domain of integration into the sets |t| ≥ 1 and |t| ≤ 1. When |t| ≤ 1 use part (b) and

in the case |t| ≥ 1 use Corollary 2.6.8, noting that dk(ξ1|ξ2|−1/kt±tk)
dt = k!≥ 1.

]
2.6.6. (a) Show that for all a≥ 1 and λ > 0 the following is valid:
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eiλ log t dt
∣∣∣∣≤ 6a .

(b) Prove that there is a constant c > 0 such that for all b > λ > 10 we have∣∣∣∣∫ b

0
eiλ t log t dt

∣∣∣∣≤ c
λ logλ

.

[
Hint: Part (b): Consider the intervals (0,δ ) and [δ ,b) for some δ . Apply Propo-

sition 2.6.7 with k = 1 on one of these intervals and with k = 2 on the other. Then
optimize over δ .

]
2.6.7. Show that there is a constant C < ∞ such that for all nonintegers γ > 1 and
all λ ,b > 1 we have ∣∣∣∣∫ b

0
eiλ tγ

dt
∣∣∣∣≤ C

λ γ
.[

Hint: On the interval (0,δ ) apply Proposition 2.6.7 with k = [γ] + 1 and on the
interval (δ ,b) with k = [γ]. Then optimize by choosing δ = λ−1/γ .

]

HISTORICAL NOTES

The one-dimensional maximal function originated in the work of Hardy and Littlewood [123].
Its n-dimensional analogue was introduced by Wiener [291], who used Lemma 2.1.5, a variant
of the Vitali covering lemma, to derive its Lp boundedness. One may consult the books of de
Guzmán [72], [73] for extensions and other variants of such covering lemmas. The actual covering
lemma proved by Vitali [285] says that if a family of closed cubes in Rn has the property that
for every point x ∈ A ⊆ Rn there exists a sequence of cubes in the family that tends to x, then it
is always possible to extract a sequence of pairwise disjoint cubes E j from the family such that
|A\

⋃
j E j|= 0. We refer to Saks [233] for details and extensions of this theorem.

The class L logL was introduced by Zygmund to give a sufficient condition on the local integra-
bility of the Hardy–Littlewood maximal operator. The necessity of this condition was observed by
Stein [255]. Stein [259] also showed that the Lp(Rn) norm of the centered Hardy–Littlewood maxi-
mal operator M is bounded above by some dimension-free constant; see also Stein and Strömberg
[262]. Analogous results for maximal operators associated with convex bodies are contained in
Bourgain [29], Carbery [42], and Müller [204]. The situation for the uncentered maximal operator
M is different, since given any 1 < p < ∞ there exists Cp > 1 such that ‖M‖Lp(Rn)→Lp(Rn) ≥Cn

p (see
Exercise 2.1.8 for a value of such a constant Cp and also the article of Grafakos and Montgomery-
Smith [109] for a larger value). The centered maximal function Mµ with respect to a general inner
regular locally finite positive measure µ on Rn is bounded on Lp(Rn,µ) without the additional
hypothesis that the measure is doubling; see Fefferman [93]. The proof of this result requires the
following covering lemma, obtained by Besicovitch [23]: Given any family of closed balls whose
centers form a bounded subset of Rn, there exists an at most countable subfamily of balls that
covers the set of centers and has bounded overlap, i.e., no point in Rn belongs to more than a finite
number (depending on the dimension) of the balls in the subfamily. A similar version of this lemma
was obtained independently by Morse [202]. See also Ziemer [300] for an alternative formulation.
The uncentered maximal operator Mµ of Exercise 2.1.1 may not be weak type (1,1) if the mea-
sure µ is nondoubling, as shown by Sjögren [243]; related positive weak type (1,1) results are
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contained in the article of Vargas [283]. The precise value of the operator norm of the uncentered
Hardy–Littlewood maximal function on Lp(R) was shown by Grafakos and Montgomery-Smith
[109] to be the unique positive solution of the equation (p− 1)xp − pxp−1 − 1 = 0. This con-
stant raised to the power n is the operator norm of the strong maximal function Ms on Lp(Rn) for
1 < p ≤ ∞. The best weak type (1,1) constant for the centered Hardy–Littlewood maximal opera-
tor was shown by Melas [193] to be the largest root of the quadratic equation 12x2−22x +5 = 0.
The strong maximal operator Ms is not weak type (1,1), but it satisfies the substitute inequality
dMs( f )(α) ≤ C

∫
Rn

| f (x)|
α

(1 + log+ | f (x)|
α

)n−1 dx. This result is due to Jessen, Marcinkiewicz, and
Zygmund [140], but a geometric proof of it was obtained by Córdoba and Fefferman [58].

The basic facts about the Fourier transform go back to Fourier [95]. The definition of distribu-
tions used here is due to Schwartz [235]. For a concise introduction to the theory of distributions
we refer to Hörmander [130] and Yosida [296]. Homogeneous distributions were considered by
Riesz [222] in the study of the Cauchy problem in partial differential equations, although some
earlier accounts are found in the work of Hadamard. They were later systematically studied by
Gelfand and Šilov [100], [101]. References on the uncertainty principle include the articles of
Fefferman [90] and Folland and Sitaram [94]. The best possible constant Bp in the Hausdorff–
Young inequality

∥∥ f̂
∥∥

Lp′ (Rn) ≤ Bp
∥∥ f
∥∥

Lp(Rn) when 1 ≤ p ≤ 2 was shown by Beckner [16] to be

Bp = (p1/p(p′)−1/p′ )n/2. This best constant was previously obtained by Babenko [13] in the case
when p′ is an even integer.

A nice treatise of the spaces M p,q is found in Hörmander [129]. This reference also contains
Theorem 2.5.6, which is due to him. Theorem 2.5.16 is due to de Leeuw [74], but the proof pre-
sented here is taken from Jodeit [142]. De Leeuw’s result in Exercise 2.5.9 says that periodic
elements of Mp(Rn) can be isometrically identified with elements of M (Tn), the latter being the
space of all multipliers on `p(Zn).

Parts (b) and (c) of Proposition 2.6.7 are due to van der Corput [282] and are referred to in the
literature as van der Corput’s lemma. The refinenment in part (a) was subsequently obtained by
Arhipov, Karachuba, and Čubarikov [6]. The treatment of these results in the text is based on the
article of Carbery, Christ, and Wright [44], which also investigates higher-dimensional analogues
of the theory. Precise asymptotics can be obtained for a variety of oscillatory integrals via the
method of stationary phase; see Hörmander [130]. References on oscillatory integrals include the
books of Titchmarsh [280], Erdélyi [83], Zygmund [303], [304], Stein [261], and Sogge [248]. The
latter provides a treatment of Fourier integral operators.



Chapter 3
Fourier Analysis on the Torus

Principles of Fourier series go back to ancient times. The attempts of the Pythagorean
school to explain musical harmony in terms of whole numbers embrace early ele-
ments of a trigonometric nature. The theory of epicycles in the Almagest of Ptolemy,
based on work related to the circles of Appolonius, contains ideas of astronomical
periodicities that we would interpret today as harmonic analysis. Early studies of
acoustical and optical phenomena, as well as periodic astronomical and geophysical
occurrences, provided a stimulus of the physical sciences to the rigorous study of
expansions of periodic functions. This study is carefully pursued in this chapter.

The modern theory of Fourier series begins with attempts to solve boundary value
problems using trigonometric functions. The work of d’Alembert, Bernoulli, Euler,
and Clairaut on the vibrating string led to the belief that it might be possible to rep-
resent arbitrary periodic functions as sums of sines and cosines. Fourier announced
belief in this possibility in his solution of the problem of heat distribution in spatial
bodies (in particular, for the cube T3) by expanding an arbitrary function of three
variables as a triple sine series. Fourier’s approach, although heuristic, was appeal-
ing and eventually attracted attention. It was carefully studied and further developed
by many scientists, but most notably by Laplace and Dirichlet, who were the first
to investigate the validity of the representation of a function in terms of its Fourier
series. This is the main topic of study in this chapter.

3.1 Fourier Coefficients

We discuss some basic facts of Fourier analysis on the torus Tn. Throughout this
chapter, n denotes the dimension, i.e., a fixed positive integer.

161L. Grafakos, Classical Fourier Analysis, Second Edition, 
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3.1.1 The n-Torus Tn

The n-torus Tn is the cube [0,1]n with opposite sides identified. This means that
the points (x1, . . . ,0, . . . ,xn) and (x1, . . . ,1, . . . ,xn) are identified whenever 0 and 1
appear in the same coordinate. A more precise definition can be given as follows:
For x,y in Rn, we say that

x ≡ y (3.1.1)

if x− y ∈ Zn. Here Zn is the additive subgroup of all points in Rn with integer
coordinates. If (3.1.1) holds, then we write x = y (mod 1). It is a simple fact that ≡
is an equivalence relation that partitions Rn into equivalence classes. The n-torus Tn

is then defined as the set Rn/Zn of all such equivalence classes. When n = 1, this
set can be geometrically viewed as a circle by bending the line segment [0,1] so that
its endpoints are brought together. When n = 2, the identification brings together
the left and right sides of the unit square [0,1]2 and then the top and bottom sides as
well. The resulting figure is a two-dimensional manifold embedded in R3 that looks
like a donut. See Figure 3.1.

Fig. 3.1 The graph of the
two-dimensional torus T2.

The n-torus is an additive group, and zero is the identity element of the group,
which of course coincides with every e j = (0, . . . ,0,1,0, . . . ,0). To avoid multiple
appearances of the identity element in the group, we often think of the n-torus as the
set [−1/2,1/2]n. Since the group Tn is additive, the inverse of an element x ∈ Tn

is denoted by −x. For example, −(1/3,1/4) ≡ (2/3,3/4) on T2, or, equivalently,
−(1/3,1/4) = (2/3,3/4) (mod 1).

The n-torus Tn can also be thought of as the following subset of Cn,

{(e2πix1 , . . . ,e2πixn) ∈ Cn : (x1, . . . ,xn) ∈ [0,1]n} , (3.1.2)

in a way analogous to which the unit interval [0,1] can be thought of as the unit
circle in C once 1 and 0 are identified.
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Functions on Tn are functions f on Rn that satisfy f (x+m) = f (x) for all x ∈Rn

and m ∈ Zn. Such functions are called 1-periodic in every coordinate. Haar measure
on the n-torus is the restriction of n-dimensional Lebesgue measure to the set Tn =
[0,1]n. This measure is still denoted by dx, while the measure of a set A ⊆ Tn is
denoted by |A|. Translation invariance of the Lebesgue measure and the periodicity
of functions on Tn imply that for all f on Tn, we have∫

Tn
f (x)dx =

∫
[−1/2,1/2]n

f (x)dx =
∫

[a1,1+a1]×···×[an,1+an]
f (x)dx (3.1.3)

for any real numbers a1, . . . ,an. The Lp spaces on Tn are nested and L1 contains all
Lp spaces for p≥ 1.

Elements of Zn are denoted by m = (m1, . . . ,mn). For m ∈ Zn, we define the total
size of m to be the number |m|= (m2

1 + · · ·+m2
n)

1/2. Recall that for x = (x1, . . . ,xn)
and y = (y1, . . . ,yn) in Rn,

x · y = x1y1 + · · ·+ xnyn

denotes the usual dot product. Finally, for x ∈ Tn, |x| denotes the usual Euclidean
norm of x. If we identify Tn with [−1/2,1/2]n, then |x| can be interpreted as the
distance of the element x from the origin, and then we have that 0≤ |x| ≤

√
n/2 for

all x ∈ Tn.

3.1.2 Fourier Coefficients

Definition 3.1.1. For a complex-valued function f in L1(Tn) and m in Zn, we define

f̂ (m) =
∫

Tn
f (x)e−2πim·xdx . (3.1.4)

We call f̂ (m) the mth Fourier coefficient of f . We note that f̂ (m) is not defined for
ξ ∈ Rn \Zn, since the function x 7→ e−2πiξ ·x is not 1-periodic in every coordinate
and therefore not well defined on Tn.

The Fourier series of f at x ∈ Tn is the series

∑
m∈Zn

f̂ (m)e2πim·x. (3.1.5)

It is not clear at present in which sense and for which x ∈ Tn (3.1.5) converges. The
study of convergence of Fourier series is the main topic of study in this chapter.

We quickly recall the notation we introduced in Chapter 2. We denote by f the
complex conjugate of the function f , by f̃ the function f̃ (x) = f (−x), and by τy( f )
the function τy( f )(x) = f (x−y) for all y ∈ Tn. We mention some elementary prop-
erties of Fourier coefficients.
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Proposition 3.1.2. Let f , g be in L1(Tn). Then for all m,k ∈ Zn, λ ∈C, y ∈ Tn, and
all multi-indices α we have

(1) f̂ +g(m) = f̂ (m)+ ĝ(m) ,

(2) λ̂ f (m) = λ f̂ (m) ,

(3) f̂ (m) = f̂ (−m) ,

(4) ̂̃f (m) = f̂ (−m) ,

(5) τ̂y( f )(m) = f̂ (m)e−2πim·y ,

(6) (e2πik(·) f )̂(m) = f̂ (m− k) ,

(7) f̂ (0) =
∫

Tn
f (x)dx ,

(8) sup
m∈Zn

| f̂ (m)| ≤
∥∥ f
∥∥

L1(Tn) ,

(9) f̂ ∗g(m) = f̂ (m)ĝ(m) ,

(10) ∂̂ α f (m) = (2πim)α f̂ (m), whenever f ∈ C α .

Proof. The proof of Proposition 3.1.2 is obvious and is left to the reader. We only
sketch the proof of (9). We have

f̂ ∗g(m) =
∫

Tn

∫
Tn

f (x− y)g(y)e−2πim·(x−y)e−2πim·y dydx = f̂ (m)ĝ(m) ,

where the interchange of integrals is justified by the absolute convergence of the
integrals and Fubini’s theorem. �

Remark 3.1.3. The Fourier coefficients have the following property. For a function
f1 on Tn1 and a function f2 on Tn2 , the tensor function

( f1⊗ f2)(x1,x2) = f1(x1) f2(x2)

is a periodic function on Tn1+n2 whose Fourier coefficients are

f̂1⊗ f2(m1,m2) = f̂1(m1) f̂2(m2) , (3.1.6)

for all m1 ∈ Zn1 and m2 ∈ Zn2 .

Definition 3.1.4. A trigonometric polynomial on Tn is a function of the form

P(x) = ∑
m∈Zn

ame2πim·x, (3.1.7)
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where {am}m∈Zn is a finitely supported sequence in Zn. The degree of P is the largest
number |q1|+ · · ·+ |qn| such that aq is nonzero, where q = (q1, . . . ,qn).

Example 3.1.5. A trigonometric monomial is a function of the form

P(x) = ae2πi(q1x1+···+qnxn)

for some q = (q1, . . . ,qn) ∈ Zn and a ∈ C. Observe that P̂(q) = a and P̂(m) = 0 for
m 6= q.

Let P(x) = ∑|m|≤N ame2πim·x be a trigonometric polynomial and let f be in
L1(Tn). Exercise 3.1.1 gives that ( f ∗P)(x) = ∑|m|≤N am f̂ (m)e2πim·x. This implies
that the partial sums ∑|m|≤N f̂ (m)e2πim·x of the Fourier series of f given in (3.1.5)
can be obtained by convolving f with the functions

DN(x) = ∑
|m|≤N

e2πim·x . (3.1.8)

These expressions are named after Dirichlet, as the following definition indicates.

3.1.3 The Dirichlet and Fejér Kernels

Definition 3.1.6. Let 0≤ R < ∞. The square Dirichlet kernel on Tn is the function

D(n,R)(x) = ∑
m∈Zn

|m j |≤R

e2πim·x . (3.1.9)

The circular (or spherical) Dirichlet kernel on Tn is the function

D̃(n,R)(x) = ∑
m∈Zn

|m|≤R

e2πim·x . (3.1.10)

In dimension 1, the function D(1,R) = D̃(1,R) (for R≥ 0) is called the Dirichlet
kernel and is denoted by DR as in (3.1.8). The function D5 is plotted in Figure 3.2.

Both the square and circular (or spherical) Dirichlet kernels are trigonomet-
ric polynomials. The square Dirichlet kernel on Tn is equal to a product of one-
dimensional Dirichlet kernels, that is,

D(n,R)(x1, . . . ,xn) = DR(x1) · · ·DR(xn) . (3.1.11)

We have the following two equivalent ways to write the Dirichlet kernel DN :

DN(x) = ∑
|m|≤N

e2πim·x =
sin((2N +1)πx)

sin(πx)
, x ∈ [0,1]. (3.1.12)
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Fig. 3.2 The graph of the
Dirichlet kernel D5 plotted on
the interval [−1/2,1/2].
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To verify the validity of (3.1.12), sum the geometric series on the left in (3.1.12) to
obtain

e−2πiNx e2πi(2N+1)x−1
e2πix−1

=
e2πi(N+1)x− e−2πiNx

eπix(eπix− e−πix)
=

sin((2N +1)πx)
sin(πx)

.

It follows that for R ∈ R+∪{0} we have

DR(x) =
sin(πx(2[R]+1))

sin(πx)
. (3.1.13)

It is reasonable to ask whether the family {DR}R>0 forms an approximate identity
as R → ∞. Using (3.1.12) we see that each DR is integrable over [−1/2,1/2] with
integral equal to 1. But we can easily obtain from (3.1.12) that for all δ > 0 there is
a constant cδ > 0 such that ∫

1/2≥|x|≥δ

|DR(x)|dx ≥ cδ

for all R > 0. Therefore the family {DR}R>0 does not satisfy property (iii) in Def-
inition 1.2.15. More important, it follows from Exercise 3.1.8 that

∥∥DR
∥∥

L1 ≈ logR
as R → ∞, and therefore property (i) in Definition 1.2.15 also fails for DR. We con-
clude that the family {DR}R>0 is not an approximate identity on T1, a fact that
significantly complicates the study of Fourier series. It follows immediately that the
family {D(n,R)}R>0 does not form an approximate identity on Tn. The same is true
for the family of circular (or spherical) Dirichlet kernels {D̃(n,R)}R>0, although this
is harder to prove. It will be a consequence of the results in Section 3.4.

A typical situation encountered in analysis is that the mean of a sequence behaves
better than the original sequence. This fact led Cesàro and independently Fejér to
consider the arithmetic means of the Dirichlet kernel in dimension 1, that is, the
expressions

FN(x) =
1

N +1
[
D0(x)+D1(x)+D2(x)+ · · ·+DN(x)

]
. (3.1.14)
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It can be checked (see Exercise 3.1.3) that (3.1.14) is in fact equal to the Fejér kernel
given in Example 1.2.18, that is,

FN(x) =
N

∑
j=−N

(
1− | j|

N +1

)
e2πi jx =

1
N +1

(
sin(π(N +1)x)

sin(πx)

)2

, (3.1.15)

whenever N is a nonnegative integer. Identity (3.1.15) implies that the mth Fourier
coefficient of FN is

(
1− |m|

N+1

)
if |m| ≤ N and zero otherwise.

Definition 3.1.7. Let N be a nonnegative integer. The Fejér kernel F(n,N) on Tn

is defined as the average of the product of the Dirichlet kernels in each variable,
precisely,

F(n,N)(x1, . . . ,xn) =
1

(N +1)n

N

∑
k1=0

. . .
N

∑
kn=0

Dk1(x1) · · ·Dkn(xn)

=
n

∏
j=1

(
1

N +1

N

∑
k=0

Dk(x j)
)

=
n

∏
j=1

FN(x j) .

So F(n,N) is equal to the product of the Fejér kernels in each variable. Note that
F(n,N) is a trigonometric polynomial of degree nN.

Remark 3.1.8. Using the first expression for FN in (3.1.15), we can write

F(n,N)(x) = ∑
m∈Zn

|m j |≤N

(
1− |m1|

N +1

)
· · ·
(

1− |mn|
N +1

)
e2πim·x (3.1.16)

for N ≥ 0 an integer. Observe that F(n,0)(x) = 1 for all x ∈ Tn.

Remark 3.1.9. To verify that the Fejér kernel F(n,N) is an approximate identity on
Tn, we use the second expression for F(1,N) in (3.1.15) to obtain

F(n,N)(x1, . . . ,xn) =
1

(N +1)n

n

∏
j=1

(
sin(π(N +1)x j)

sin(πx j)

)2

. (3.1.17)

Properties (i) and (iii) of approximate identities (see Definition 1.2.15) can be
proved using the identity (3.1.17), while property (ii) follows from identity (3.1.16).
See Exercise 3.1.3 for details.

Having introduced the Fejér kernel, let us see how we can use it to obtain some
interesting results.
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3.1.4 Reproduction of Functions from Their Fourier Coefficients

Proposition 3.1.10. The set of trigonometric polynomials is dense in Lp(Tn) for
1≤ p < ∞.

Proof. Given f in Lp(Tn) for 1≤ p < ∞, consider f ∗F(n,N). Because of Exercise
3.1.1, f ∗F(n,N) is also a trigonometric polynomial. In view of Theorem 1.2.19 (1),
f ∗F(n,N) converges to f in Lp as N → ∞. �

Corollary 3.1.11. (Weierstrass approximation theorem for trigonometric polyno-
mials) Every continuous function on the torus is a uniform limit of trigonometric
polynomials.

Proof. Since f is continuous on Tn and Tn is a compact set, Theorem 1.2.19 (2)
gives that f ∗F(n,N) converges uniformly to f as N → ∞. Since f ∗F(n,N) is a
trigonometric polynomial, we conclude that every continuous function on Tn can be
uniformly approximated by trigonometric polynomials. �

We now define partial sums of Fourier series.

Definition 3.1.12. For R≥ 0 the expressions

( f ∗D(n,R))(x) = ∑
m∈Zn

|m j |≤R

f̂ (m)e2πim·x

are called the square partial sums of the Fourier series of f , and the expressions

( f ∗ D̃(n,R))(x) = ∑
m∈Zn

|m|≤R

f̂ (m)e2πim·x

are called the circular (or spherical) partial sums of the Fourier series of f . Simi-
larly, for N ∈ Z+∪{0} the expressions

( f ∗F(n,N))(x) = ∑
m∈Zn

|m j |≤N

(
1− |m1|

N +1

)
· · ·
(

1− |mn|
N +1

)
f̂ (m)e2πim·x

are called the square Cesàro means (or square Fejér means) of f . Finally, for R≥ 0
the expressions

( f ∗ F̃(n,R))(x) = ∑
m∈Zn

|m|≤R

(
1− |m|

R

)
f̂ (m)e2πim·x

are called the circular Cesàro means (or circular Fejér means) of f .

Observe that f ∗ F̃(n,R) is equal to the average of the expressions f ∗ D̃(n,R)
from 0 to R in the following sense:
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( f ∗ F̃(n,R))(x) =
1
R

∫ R

0
(D̃(n,r)∗ f )(x)dr.

This is analogous to the fact that the Fejér kernel FN is the average of the Dirichlet
kernels D0, D1, . . . ,DN . Also observe that f ∗F(n,R) can also be defined for R≥ 0,
but it would be constant on intervals of the form [a,a+1), where a ∈ Z+.

A fundamental problem is in what sense the partial sums of the Fourier series
converge back to the function as N → ∞. This problem is of central importance in
harmonic analysis and is partly investigated in this chapter.

We now ask the question whether the Fourier coefficients uniquely determine the
function. The answer is affirmative and simple.

Proposition 3.1.13. If f ,g∈ L1(Tn) satisfy f̂ (m) = ĝ(m) for all m in Zn, then f = g
a.e.

Proof. By linearity of the problem, it suffices to assume that g = 0. If f̂ (m) = 0 for
all m ∈Zn, Exercise 3.1.1 implies that F(n,N)∗ f = 0 for all N ∈Z+. The sequence
{F(n,N)}N∈Z+ is an approximate identity as N → ∞. Therefore,∥∥ f −F(n,N)∗ f

∥∥
L1 → 0

as N → ∞; hence
∥∥ f
∥∥

L1 = 0, from which we conclude that f = 0 a.e. �

A useful consequence of the result just proved is the following.

Proposition 3.1.14. (Fourier inversion) Suppose that f ∈ L1(Tn) and that

∑
m∈Zn

| f̂ (m)|< ∞ .

Then
f (x) = ∑

m∈Zn
f̂ (m)e2πim·x a.e., (3.1.18)

and therefore f is almost everywhere equal to a continuous function.

Proof. It is straightforward to check that both functions in (3.1.18) are well defined
and have the same Fourier coefficients. Therefore, they must be almost everywhere
equal by Proposition 3.1.13. Moreover, the function on the right in (3.1.18) is ev-
erywhere continuous. �

We continue with a short discussion of Fourier series of square summable func-
tions.

Let H be a separable Hilbert space with complex inner product 〈· | ·〉. Recall that
a subset E of H is called orthonormal if 〈 f |g〉= 0 for all f , g in E with f 6= g, while
〈 f | f 〉 = 1 for all f in E. A complete orthonormal system is a subset of H having
the additional property that the only vector orthogonal to all of its elements is the
zero vector. We refer to Rudin [229] for the relevant definitions and theorems and in
particular for the proof of the following proposition:
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Proposition 3.1.15. Let H be a separable Hilbert space and let {ϕk}k∈Z be an or-
thonormal system in H. Then the following are equivalent:

(1) {ϕk}k∈Z is a complete orthonormal system.
(2) For every f ∈ H we have ∥∥ f

∥∥2
H = ∑

k∈Z
|〈 f |ϕk〉|2 .

(3) For every f ∈ H we have

f = lim
N→∞

∑
|k|≤N

〈 f |ϕk〉ϕk ,

where the series converges in H.

Now consider the Hilbert space space L2(Tn) with inner product〈
f |g
〉

=
∫

Tn
f (t)g(t)dt .

Let ϕm be the sequence of functions ξ 7→ e2πim·ξ indexed by m ∈ Zn. The orthonor-
mality of the sequence {ϕm} is a consequence of the following simple but powerful
identity: ∫

[0,1]n
e2πim·xe2πik·x dx =

{
1 when m = k,
0 when m 6= k.

The completeness of the sequence {ϕm} is also evident. Since
〈

f |ϕm
〉

= f̂ (m) for
all f ∈ L2(Tn), it follows from Proposition 3.1.13 that if

〈
f |ϕm

〉
= 0 for all m∈Zn,

then f = 0 a.e.
The next result is a consequence of Proposition 3.1.15.

Proposition 3.1.16. The following are valid for f ,g ∈ L2(Tn):
(1) (Plancherel’s identity) ∥∥ f

∥∥2
L2 = ∑

m∈Zn
| f̂ (m)|2 .

(2) The function f (t) is a.e. equal to the L2(Tn) limit of the sequence

lim
M→∞

∑
|m|≤M

f̂ (m)e2πim·t .

(3) (Parseval’s relation) ∫
Tn

f (t)g(t)dt = ∑
m∈Zn

f̂ (m)ĝ(m) .

(4) The map f 7→ { f̂ (m)}m∈Zn is an isometry from L2(Tn) onto `2.
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(5) For all k ∈ Zn we have

f̂ g(k) = ∑
m∈Zn

f̂ (m)ĝ(k−m) = ∑
m∈Zn

f̂ (k−m)ĝ(m) .

Proof. (1) and (2) follow from the corresponding statements in Proposition 3.1.15.
Parseval’s relation (3) follows from polarization. First replace f by f + g in (1)
and expand the squares. We obtain that the real parts of the expressions in (3) are
equal. Next replace f by f + ig in (1) and expand the squares. We obtain that the
imaginary parts of the expressions in (3) are equal. Thus (3) holds. Next we prove
(4). We already know that the map f 7→ { f̂ (m)}m∈Zn is an injective isometry. It
remains to show that it is onto. Given a square summable sequence {am}m∈Zn of
complex numbers, define

fN(t) = ∑
|m|≤N

ame2πim·t .

Observe that fN is a Cauchy sequence in L2(Tn) and it therefore converges to some
f ∈ L2(Tn). Then we have f̂ (m) = am for all m ∈ Zn. Finally, (5) is a consequence
of (3) and Proposition 3.1.2 (6) and (3). �

3.1.5 The Poisson Summation Formula

We end this section with a useful result that connects Fourier analysis on the torus
with Fourier analysis on Rn. Suppose that f is an integrable function on Rn and let
f̂ be its Fourier transform. Restrict f̂ on Zn and form the “Fourier series” (assuming
that it converges)

∑
m∈Zn

f̂ (m)e2πim·x.

What does this series represent? Since the preceding function is 1-periodic in every
variable, it follows that it cannot be equal to f , unless it is identically zero. However,
it should not come as a surprise that in many cases it is equal to the periodization of
f on Rn. More precisely, we have the following.

Theorem 3.1.17. (Poisson summation formula) Suppose that f , f̂ ∈ L1(Rn) satisfy

| f (x)|+ | f̂ (x)| ≤C(1+ |x|)−n−δ

for some C,δ > 0. Then f and f̂ are both continuous, and for all x ∈ Rn we have

∑
m∈Zn

f̂ (m)e2πim·x = ∑
m∈Zn

f (x+m), (3.1.19)

and in particular ∑
m∈Zn

f̂ (m) = ∑
m∈Zn

f (m).
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Proof. Since f̂ is integrable on Rn, inversion holds and f can be identified with a
continuous function. Define a 1-periodic function on Tn by setting

F(x) = ∑
m∈Zn

f (x+m) .

It is straightforward to verify that F ∈ L1(Tn). The calculation

F̂(m) =
∫

Tn
F(x)e−2πim·x dx = ∑

k∈Zn

∫
[− 1

2 , 1
2 ]n−k

f (x)e−2πim·x dx = f̂ (m)

gives that the sequence of the Fourier coefficients of F coincides with the restriction
of the Fourier transform of f on Zn. Since we have that

∑
m∈Zn

|F̂(m)|= ∑
m∈Zn

| f̂ (m)| ≤C ∑
m∈Zn

1
(1+ |m|)n+δ

< ∞ ,

Proposition 3.1.14 implies conclusion (3.1.19). �

Example 3.1.18. We have seen earlier (see Exercise 2.2.11) that the following iden-
tity gives the Fourier transform of the Poisson kernel in Rn:

(e−2π|x|)̂(ξ ) =
Γ ( n+1

2 )

π
n+1

2

1

(1+ |ξ |2) n+1
2

.

The Poisson summation formula yields the identity

Γ ( n+1
2 )

π
n+1

2
∑

k∈Zn

ε

(ε2 + |k + x|2) n+1
2

= ∑
k∈Zn

e−2πε|k|e−2πik·x . (3.1.20)

It follows that

∑
k∈Zn\{0}

1

(ε2 + |k|2) n+1
2

=
1
ε

(
π

n+1
2

Γ ( n+1
2 ) ∑

k∈Zn
e−2πε|k|− 1

εn

)
,

from which we obtain the identity

∑
k∈Zn\{0}

1
|k|n+1 = lim

ε→0

1
ε

(
π

n+1
2

Γ ( n+1
2 ) ∑

k∈Zn
e−2πε|k|− 1

εn

)
. (3.1.21)

The limit in (3.1.21) can be calculated easily in dimension 1, since the sum inside
the parentheses in (3.1.21) is a geometric series. Carrying out the calculation, we
obtain

∑
k 6=0

1
k2 =

π2

3
.
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Example 3.1.19. Let η and g be as in Example 2.4.9. Let 0 < Re α < n and let
x ∈ [− 1

2 , 1
2 )n. The Poisson summation formula gives

∑
m∈Zn\{0}

e2πim·x

|m|α
= ∑

m∈Zn

η(m)e2πim·x

|m|α
= g(x)+ ∑

m∈Zn\{0}
g(x+m) .

It was shown in Example 2.4.9 that g(ξ ) decays faster than the reciprocal of any
polynomial at infinity and is equal to πα− n

2 Γ ( n−α

2 )Γ (α

2 )−1|ξ |α−n +h(ξ ), where h
is a smooth function on Rn. Then, for x ∈ [− 1

2 , 1
2 )n, the function

∑
m∈Zn\{0}

g(x+m)

is also smooth, and we conclude that

∑
m∈Zn\{0}

e2πim·x

|m|α
=

πα− n
2 Γ ( n−α

2 )
Γ (α

2 )
|x|α−n +h1(x) ,

where h1(x) is a C ∞ function on [− 1
2 , 1

2 )n.

For other applications of the Poisson summation formula related to lattice points,
see Exercises 3.1.12 and 3.1.13.

Exercises

3.1.1. Let P be a trigonometric polynomial on Tn.
(a) Prove that P(x) = ∑ P̂(m)e2πim·x.
(b) Let f be in L1(Tn). Prove that ( f ∗P)(x) = ∑ P̂(m) f̂ (m)e2πim·x.

3.1.2. On T1 let P be a trigonometric polynomial of degree N > 0. Show that P has
at most 2N zeros. Construct a trigonometric polynomial with exactly 2N zeros.

3.1.3. Prove the identities (3.1.15), (3.1.16), and (3.1.17) about the Fejér kernel
F(n,N) on Tn. Deduce from them that the family {FN}N is an approximate identity
as N → ∞.[
Hint: Express the functions sin2(πx) and sin2(π(N+1)x) in terms of exponentials.

]
3.1.4. (de la Vallée Poussin kernel ). On T1 define

VN(x) = 2F2N+1(x)−FN(x) .

(a) Show that the sequence VN is an approximate identity.
(b) Prove that V̂N(m) = 1 when |m| ≤ N +1, and V̂N(m) = 0 when |m| ≥ 2N +2.
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3.1.5. (Hausdorff–Young inequality ) Prove that when f ∈ Lp, 1 ≤ p ≤ 2, the se-
quence of Fourier coefficients of f is in lp′ and(

∑
m∈Zn

| f̂ (m)|p′
)1/p′ ≤

∥∥ f
∥∥

Lp .

Also observe that 1 is the best constant in the preceding inequality.

3.1.6. Use without proof that there exists a constant C > 0 such that for all t ∈ R
we have ∣∣∣∣ N

∑
k=2

eik logkeikt
∣∣∣∣≤C

√
N, N = 2,3,4, . . . ,

to construct an example of a continuous function g on T1 with

∑
m∈Z

|ĝ(m)|q = ∞

for all q < 2. Thus the Hausdorff–Young inequality of Exercise 3.1.5 fails for p > 2.[
Hint: Consider g(x) = ∑

∞
k=2

eik logk

k1/2(logk)2 e2πikx. For a proof of the previous estimate,

see Zygmund [303, Theorem (4.7) p. 199].
]

3.1.7. The Poisson kernel on Tn is the function

Pr1,...,rn(x) = ∑
m∈Zn

r|m1|
1 · · ·r|mn|

n e2πim·x

and is defined for 0 < r1, . . . ,rn < 1. Prove that Pr1,...,rn can be written as

Pr1,...,rn(x1, . . . ,xn) =
n

∏
j=1

Re
(

1+ r je2πix j

1− r je2πix j

)
=

n

∏
j=1

1− r2
j

1−2r j cos(2πx j)+ r2
j
,

and conclude that Pr,...,r(x) is an approximate identity as r ↑ 1.

3.1.8. Let DN = D(1,N) be the Dirichlet kernel on T1. Prove that

4
π2

N

∑
k=1

1
k
≤
∥∥DN

∥∥
L1 ≤ 2+

π

4
+

4
π2

N

∑
k=1

1
k

.

Conclude that the numbers
∥∥DN

∥∥
L1 grow logarithmically as N → ∞ and therefore

the family {DN}N is not an approximate identity on T1. The numbers
∥∥DN

∥∥
L1 ,

N = 1,2, . . . , are called the Lebesgue constants.[
Hint: Use that

∣∣ 1
sin(πx) −

1
πx

∣∣≤ π

4 when |x| ≤ 1
2 .
]

3.1.9. Let DN be the Dirichlet kernel on T1. Prove that for all 1 < p < ∞ there exist
two constants Cp,cp > 0 such that

cp (2N +1)1/p′ ≤
∥∥DN

∥∥
Lp ≤Cp (2N +1)1/p′ .



3.1 Fourier Coefficients 175[
Hint: Consider the two closest zeros of DN near the origin and split the integral

into the intervals thus obtained.
]

3.1.10. (S. Bernstein ) Let P(x) be a trigonometric polynomial of degree N on T1.
Prove that

∥∥P′
∥∥

L∞ ≤ 4πN
∥∥P
∥∥

L∞ .[
Hint: Prove first that P′(x)/2πiN is equal to(

(e−2πiN(·)P)∗FN−1
)
(x)e2πiNx−

(
(e2πiN(·)P)∗FN−1

)
(x)e−2πiNx

and then take L∞ norms.
]

3.1.11. (Fejér and F. Riesz ) Let P(ξ ) = ∑
N
k=−N ake2πikξ be a trigonometric poly-

nomial on T1 of degree N such that P(ξ ) > 0 for all ξ . Prove that there exists a
trigonometric polynomial Q(ξ ) of the form ∑

N
k=0 bke2πikξ such that P(ξ ) = |Q(ξ )|2.[

Hint: Note that N zeros of the polynomial R(z) = ∑
N
k=−N akzk+N lie inside the unit

circle and the other N lie outside.
]

3.1.12. (Landau [167] ) Points in Zn are called lattice points. Follow the following
steps to obtain the number of lattice points N(R) inside a closed ball of radius R
in Rn. Let B be the closed unit ball in Rn, χB its characteristic function, and vn its
volume.
(a) Using the results in Appendices B.6 and B.7, observe that there is a constant Cn
such that for all ξ ∈ Rn we have

|χ̂B(ξ )| ≤Cn(1+ |ξ |)−
n+1

2 .

(b) For 0 < ε < 1
10 let Φε = χ(1− ε

2 )B ∗ ζε , where ζε(x) 1
εn ζ ( x

ε
) and ζ is a smooth

function that is supported in |x| ≤ 1
2 and has integral equal to 1. Also let Ψ ε =

χ(1+ ε

2 )B ∗ζε . Prove that

Φ
ε(x) = 1 when |x| ≤ 1− ε and Φ

ε(x) = 0 when |x| ≥ 1,
Ψ

ε(x) = 1 when |x| ≤ 1 and Ψ
ε(x) = 0 when |x| ≥ 1+ ε ,

and also that ∣∣Φ̂ε(ξ )
∣∣+ ∣∣Ψ̂ ε(ξ )

∣∣≤Cn,N(1+ |ξ |)−
n+1

2 (1+ ε|ξ |)−N

for every ξ ∈ Rn and N a large positive number.
(c) Use the result in (b) and the Poisson summation formula to obtain

∑
m∈Zn

χB(m
R )≥ ∑

m∈Zn
Φ

ε(m
R ) = Rn

Φ̂ε(0)+ ∑
m∈Zn\{0}

Rn
Φ̂ε(Rm)

≥ vn(1− ε)n−Cn,N ∑
m∈Zn\{0}

Rn(1+R|m|)−
n+1

2 (1+ εR|m|)−N .
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Now use (1−ε)n ≥ 1−nε and pick ε such that εRn = ε−
n−1

2 to deduce the estimate
N(R)≥ vnRn +O(Rn n−1

n+1 ) as R→ ∞. Argue similarly with Ψ ε to obtain the identity

N(R) = vnRn +O(Rn n−1
n+1 ) ,

as R→ ∞.

3.1.13. (Minkowski ) Let S be an open convex symmetric set in Rn and assume that
the Fourier transform of its characteristic function satisfies the decay estimate

|χ̂S(ξ )| ≤C(1+ |ξ |)−
n+1

2 .

(This is the case if the boundary of S has nonzero Gaussian curvature.) Assume that
|S|> 2n. Prove that S contains at least one lattice point other than the origin.[
Hint: Assume the contrary, set f = χ 1

2 S ∗ χ 1
2 S, and apply the Poisson summation

formula to f to prove that f (0)≥ f̂ (0).
]

3.2 Decay of Fourier Coefficients

In this section we investigate the interplay between the smoothness of a function
and the decay of its Fourier coefficients.

3.2.1 Decay of Fourier Coefficients of Arbitrary Integrable
Functions

We begin with the classical result asserting that the Fourier coefficients of any inte-
grable function tend to zero at infinity. One should compare the following proposi-
tion with Proposition 2.2.17.

Proposition 3.2.1. (Riemann–Lebesgue lemma) Let f be in L1(Tn). Then | f̂ (m)|→
0 as |m| → ∞.

Proof. Given f ∈ L1(Tn) and ε > 0, let P be a trigonometric polynomial such that∥∥ f −P
∥∥

L1 < ε . If |m|> degree(P), then P̂(m) = 0 and thus

| f̂ (m)|= | f̂ (m)− P̂(m)| ≤
∥∥ f −P

∥∥
L1 < ε.

This proves that | f̂ (m)| → 0 as |m| → ∞. �

Several questions are naturally raised. How fast may the Fourier coefficients of
an L1 function tend to zero? Does additional smoothness of the function imply faster
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decay of the Fourier coefficients? Can such a decay be quantitatively expressed in
terms of the smoothness of the function?

We answer the first question. Fourier coefficients of an L1 function can tend to
zero arbitrarily slowly, that is, more slowly than any given rate of decay.

Theorem 3.2.2. Let (dm)m∈Zn be a sequence of positive real numbers with dm → 0
as |m| → ∞. Then there exists a g ∈ L1(Tn) such that |ĝ(m)| ≥ dm for all m ∈ Zn. In
other words, given any rate of decay, there exists an integrable function on the torus
whose Fourier coefficients have slower rate of decay.

We first prove this theorem when n = 1 and then extend it to higher dimensions.
We need the following two lemmas.

Lemma 3.2.3. Given a sequence of positive real numbers {am}∞
m=0 that tends to

zero as m→ ∞, there exists a sequence {cm}∞
m=0 that satisfies

cm ≥ am, cm ↓ 0, and cm+2 + cm ≥ 2cm+1

for all m = 0,1, . . . . We call such sequences convex.

Lemma 3.2.4. Given a convex decreasing sequence {cm}∞
m=0 of positive real num-

bers satisfying limm→∞ cm = 0 and a fixed integer s≥ 0, we have that

∞

∑
r=0

(r +1)(cr+s + cr+s+2−2cr+s+1) = cs . (3.2.1)

We first prove Lemma 3.2.3.

Proof. Let k0 = 0 and suppose that am ≤ M for all m ≥ 0. Find k1 > k0 such that
for m ≥ k1 we have am ≤ M/2. Now find k2 > k1 + k1−k0

2 such that for m ≥ k2 we
have am ≤M/4. Next find k3 > k2 + k2−k1

2 such that for m≥ k3 we have am ≤M/8.
Continue inductively in this way and construct a subsequence k0 < k1 < k2 < · · · of
the integers such that for m ≥ k j we have am ≤ 2− jM and k j+1 > k j +

k j−k j−1
2 for

j ≥ 1. Join the points (k0,2M), (k1,M), (k2,M/2), (k3,M/4), . . . by straight lines
and note that by the choice of the subsequence {k j}∞

j=0 the resulting piecewise linear
function h is convex on [0,∞). Define cm = h(m) and observe that the sequence
{cm}∞

m=0 satisfies the required properties. See also Exercise 3.2.1 for an alternative
proof. �

We now prove Lemma 3.2.4. The proof appears more natural after one has solved
Exercise 3.2.3(a).

Proof. We have that

N

∑
r=0

(r +1)(cr+s + cr+s+2−2cr+s+1)

= cs− (N +1)(cs+N+1− cs+N+2)− cs+N+1 .

(3.2.2)



178 3 Fourier Analysis on the Torus

To show that the last expression tends to cs as N → ∞, we take M = [N
2 ] and we use

convexity
(
cs+M+ j−cs+M+ j+1 ≥ cs+M+ j+1−cs+M+ j+2

)
to obtain

cs+M+1− cs+N+2 = cs+M+1− cs+M+2

+ cs+M+2− cs+M+3

+ · · ·
+ cs+N+1− cs+N+2

≥ (N−M +1)(cs+N+1− cs+N+2)

≥ N+1
2 (cs+N+1− cs+N+2)≥ 0 .

The preceding calculation implies that (N + 1)(cs+N+1 − cs+N+2) tends to zero as
N → ∞ and thus the expression in (3.2.2) converges to cs as N → ∞. �

We now continue with the proof of Theorem 3.2.2 when n = 1.

Proof. We are given a sequence of positive numbers {am}m∈Z that converges to zero
as |m| →∞ and we would like to find an integrable function on T1 with | f̂ (m)| ≥ am
for all m ∈ Z. Apply Lemma 3.2.3 to the sequence {am +a−m}m≥0 to find a convex
sequence {cm}m≥0 that dominates {am +a−m}m≥0 and decreases to zero as m→ ∞.
Extend cm for m < 0 by setting cm = c|m|. Now define

f (x) =
∞

∑
j=0

( j +1)(c j + c j+2−2c j+1)Fj(x) , (3.2.3)

where Fj is the (one-dimensional) Fejér kernel. The convexity of the sequence cm
and the positivity of the Fejér kernel imply that f ≥ 0. Lemma 3.2.4 with s = 0 gives
that

∞

∑
j=0

( j +1)(c j + c j+2−2c j+1)
∥∥Fj
∥∥

L1 = c0 < ∞ , (3.2.4)

since
∥∥Fj
∥∥

L1 = 1 for all j. Therefore (3.2.3) defines an integrable function f on T1.
We now compute the Fourier coefficients of f . Since the series in (3.2.3) converges
in L1, for m ∈ Z we have

f̂ (m) =
∞

∑
j=0

( j +1)(c j + c j+2−2c j+1)F̂j(m)

=
∞

∑
j=|m|

( j +1)(c j + c j+2−2c j+1)
(

1− |m|
j +1

)
=

∞

∑
r=0

(r +1)(cr+|m|+ cr+|m|+2−2cr+|m|+1) = c|m| = cm ,

(3.2.5)

where we used Lemma 3.2.4 with s = |m|.
Let us now extend this result on Tn. Let (dm)m∈Zn be a positive sequence with

dm → 0 as |m| →∞. By Exercise 3.2.2, there exists a positive sequence (a j) j∈Z with
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am1 · · ·amn ≥ d(m1,...,mn) and a j → 0 as | j| → ∞. Let

g(x1, . . . , ,xn) = f (x1) · · · f (xn),

where f is the function previously constructed when n = 1. It can be seen easily
using (3.1.6) that ĝ(m)≥ dm. �

3.2.2 Decay of Fourier Coefficients of Smooth Functions

We next study the decay of the Fourier coefficients of functions that possess a certain
amount of smoothness. In this section we see that the decay of the Fourier coeffi-
cients reflects the smoothness of the function in a rather precise quantitative way.
Conversely, if the Fourier coefficients of an integrable function have polynomial de-
cay faster than the dimension, then a certain amount of smoothness can be inferred
about the function.

Definition 3.2.5. For 0≤ γ < 1 define

∥∥ f
∥∥

Λ̇γ
= sup

x,h∈Tn

| f (x+h)− f (x)|
|h|γ

and
Λ̇γ(Tn) = { f : Tn → C with

∥∥ f
∥∥

Λ̇γ
< ∞}.

We call Λ̇γ(Tn) the homogeneous Lipschitz space of order γ on the torus. Functions
f on Tn with

∥∥ f
∥∥

Λ̇γ
< ∞ are called homogeneous Lipschitz functions of order γ .

Some remarks are in order.

Remark 3.2.6. Λ̇γ(Tn) is called the homogeneous Lipschitz space of order γ on Tn,
in contrast to the space Λγ(Tn), which is called the Lipschitz space of order γ . The
latter space is defined as

Λγ(Tn) =
{

f : Tn → C with
∥∥ f
∥∥

Λγ
< ∞

}
,

where ∥∥ f
∥∥

Λγ
=
∥∥ f
∥∥

L∞ +
∥∥ f
∥∥

Λ̇γ
.

Remark 3.2.7. The positive functional
∥∥ · ∥∥

Λ̇γ
satisfies the triangle inequality, but it

does not satisfy the property
∥∥ f
∥∥

Λ̇γ
= 0 =⇒ f = 0 a.e. required to be a norm. It

is therefore a seminorm on Λ̇γ(Tn). However, if we identify functions whose differ-
ence is a constant, we form the space of all equivalence classes Λ̇γ(Tn)/{constants}
(defined for 0≤ γ < 1) on which the functional f →

∥∥ f
∥∥

Λ̇γ
is a norm.
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Remark 3.2.8. Homogeneous Lipschitz functions of order γ = 0 are bounded and
of order γ ∈ (0,1) are continuous and thus bounded. Therefore, Λ̇γ(Tn) ⊆ L∞(Tn)
set-theoretically. However, the norm inequality

∥∥ f
∥∥

L∞ ≤C
∥∥ f
∥∥

Λ̇γ
fails for any con-

stant C independent of all functions f . Take, for example, f = N + sin(2πx) on T1

with N → ∞ to obtain a counterexample. Nevertheless, under the identification of
functions whose difference is a constant, the space Λ̇γ(Tn) embeds in L∞(Tn). To
achieve this, fix a point t0 ∈ Tn and define an embedding

f 7→ f − f (t0)

from Λ̇γ(Tn) to L∞(Tn). The kernel of this map is the space of all constant functions
on Tn, and thus Λ̇γ/{constants} can be identified with a subspace of L∞ for all
0≤ γ < 1.

The following theorem clearly indicates how the smoothness of a function is
reflected by the decay of its Fourier coefficients.

Theorem 3.2.9. Let s ∈ Z with s≥ 0.
(a) Suppose that ∂ α f exist and are integrable for all |α| ≤ s. Then

| f̂ (m)| ≤
(√

n
2π

)s
sup
|α|=s

|∂̂ α f (m)|

|m|s
, m 6= 0, (3.2.6)

and thus | f̂ (m)|(1+ |m|s)→ 0 as |m| → ∞.
(b) Suppose that ∂ α f exist for all |α| ≤ s and whenever |α|= s, ∂ α f are in Λ̇γ(Tn)
for some 0≤ γ < 1. Then

| f̂ (m)| ≤ (
√

n)s+γ

(2π)s2γ+1

sup
|α|=s

∥∥∂ α f
∥∥

Λ̇γ

|m|s+γ
, m 6= 0. (3.2.7)

Proof. Fix m ∈ Zn \ {0} and pick a j such that |m j| = sup1≤k≤n |mk|. Then clearly
m j 6= 0. Integrating by parts s times with respect to the variable x j, we obtain

f̂ (m) =
∫

Tn
f (x)e−2πix·m dx = (−1)s

∫
Tn

(∂ s
j f )(x)

e−2πix·m

(−2πim j)s dx , (3.2.8)

where the boundary terms all vanish because of the periodicity of the integrand.
Taking absolute values and using |m| ≤

√
n |m j|, we obtain assertion (3.2.6).

We now turn to the second part of the theorem. Let e j = (0, . . . ,1, . . . ,0) be the
element of the torus Tn whose jth coordinate is one and all the others are zero. A
simple change of variables together with the fact that eπi =−1 gives that∫

Tn
(∂ s

j f )(x)e−2πix·m dx =−
∫

Tn
(∂ s

j f )(x− e j
2m j

)e−2πix·m dx ,

which implies that
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Tn

(∂ s
j f )(x)e−2πix·m dx =

1
2

∫
Tn

[
(∂ s

j f )(x)− (∂ s
j f )(x− e j

2m j
)
]
e−2πix·m dx .

Now use the estimate

|(∂ s
j f )(x)− (∂ s

j f )(x− e j
2m j

)| ≤

∥∥∂ s
j f
∥∥

Λ̇γ

(2|m j|)γ

and identity (3.2.8) to conclude the proof of (3.2.7). �

The following is an immediate consequence.

Corollary 3.2.10. Let s ∈ Z with s≥ 0.
(a) Suppose that ∂ α f exist and are integrable for all |α| ≤ s. Then for some constant
cn,s we have

| f̂ (m)| ≤ cn,s
max

(∥∥ f
∥∥

L1 ,sup|α|=s |∂̂ α f (m)|
)

(1+ |m|)s . (3.2.9)

(b) Suppose that ∂ α f exist for all |α| ≤ s and whenever |α|= s, ∂ α f are in Λ̇γ(Tn)
for some 0≤ γ < 1. Then for some constant c′n,s we have

| f̂ (m)| ≤ c′n,s

max
(∥∥ f

∥∥
L1 ,sup|α|=s

∥∥∂ α f
∥∥

Λ̇γ

)
(1+ |m|)s+γ

. (3.2.10)

Remark 3.2.11. The conclusions of Theorem 3.2.9 and Corollary 3.2.10 are also
valid when γ = 1. In this case the spaces Λ̇γ should be replaced by the space Lip1
equipped with the seminorm

∥∥ f
∥∥

Lip1 = sup
x,h∈Tn

| f (x+h)− f (x)|
|h|

.

There is a slight lack of uniformity in the notation here, since in the theory of Lips-
chitz spaces the notation Λ̇1 is usually reserved for the space with seminorm

∥∥ f
∥∥

Λ̇1
= sup

x,h∈Tn

| f (x+h)+ f (x−h)−2 f (x)|
|h|

.

The following proposition provides a partial converse to Theorem 3.2.9. We de-
note below by [[s]] the largest integer strictly less than a given real number s.

Proposition 3.2.12. Let s > 0 and suppose that f is an integrable function on the
torus with

| f̂ (m)| ≤C(1+ |m|)−s−n

for all m ∈ Zn. Then f has partial derivatives of all orders |α| ≤ [[s]], and for
0 < γ < s− [[s]], ∂ α f ∈ Λ̇γ for all multi-indices α satisfying |α|= [[s]].

Proof. Since f has an absolutely convergent Fourier series, Proposition 3.1.14 gives
that
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f (x) = ∑
m∈Zn

f̂ (m)e2πix·m , (3.2.11)

for almost all x ∈ Tn.
The series in (3.2.11) can be differentiated with respect to ∂ α

x , where |α|= [[s]],
since

∑
m∈Zn

f̂ (m)∂ α e2πix·m = ∑
m∈Zn

f̂ (m)(2πim)α e2πix·m

and the last series converges absolutely in view of the decay assumptions on the
Fourier coefficients of f . Moreover, we have

(∂ α f )(x) = ∑
m∈Zn

f̂ (m)(2πim)α e2πix·m

for all multi-indices (α1, . . . ,αn) with |α|= [[s]]. Now suppose that 0 < γ < s− [[s]].
Then

|(∂ α f )(x+h)− (∂ α f )(x)| =
∣∣ ∑

m∈Zn
f̂ (m)(2πim)α e2πix·m(e2πim·h−1

)∣∣
≤ 21−γ(2π)s

∑
m∈Zn

|m|[[s]] |h|γ |m|γ

(1+ |m|)n+s

= C′
γ,n,s|h|γ ,

where we used that [[s]]+γ− s < 0 to obtain the convergence of the integral and the
fact that

|e2πim·h−1| ≤min(2,2π|m| |h|)≤ 21−γ(2π)γ |m|γ |h|γ .

�

We have seen that if a function on T1 has an integrable derivative, then its Fourier
coefficients tend to zero when divided by |m|−1. In this case we say that the Fourier
coefficients of f are o(|m|−1) as |m| →∞. We denote by L1

1 the class of all functions
on T1 whose derivative is also in L1. Next we introduce a slightly larger class of
functions on T1 whose Fourier coefficients decay like |m|−1 as |m| → ∞.

Definition 3.2.13. A measurable function f on T1 is said to be of bounded variation
if it is defined everywhere and

Var( f ) = sup
{ M

∑
j=1

| f (x j)− f (x j−1)| : 0 = x0 < x1 < · · ·< xM = 1
}

< ∞ ,

where the supremum is taken over all partitions of the interval [0,1]. The expression
Var( f ) is called the total variation of f . The class of functions of bounded variation
is denoted by BV .

The following result concerns functions of bounded variation.

Proposition 3.2.14. If f is in BV (T1), then
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| f̂ (m)| ≤ Var( f )
2π|m|

whenever m 6= 0.

Proof. If f is a function of bounded variation, then the Lebesgue–Stieltjes integral
with respect to f is well defined. Integration by parts gives

f̂ (m) =
∫

T1
f (x)e−2πimx dx =

∫
T1

e−2πimx

−2πim
d f ,

where the boundary terms vanish because of periodicity. The conclusion follows
from the fact that the norm of the measure d f is the total variation of f . �

For the sequences of Fourier coefficients { f̂ (m)}m of functions f in the spaces

L1
1(T

1)⊆ BV (T1)⊆ L∞(T1) ,

we have derived the following rate of decay, respectively,

o(|m|−1), O(|m|−1), o(1) ,

as |m| → ∞.

3.2.3 Functions with Absolutely Summable Fourier Coefficients

Decay for the Fourier coefficients can also be indirectly deduced from a certain
knowledge about the summability of these coefficients. The simplest such kind of
summability is in the sense of `1. It is therefore natural to consider the class of func-
tions on the torus whose Fourier coefficients form an absolutely summable series.

Definition 3.2.15. An integrable function f on the torus is said to have an absolutely
convergent Fourier series if

∑
m∈Zn

| f̂ (m)|< +∞.

We denote by A(Tn) the space of all integrable functions on the torus Tn whose
Fourier series are absolutely convergent. We then introduce a norm on A(Tn) by
setting ∥∥ f

∥∥
A(Tn) = ∑

m∈Zn
| f̂ (m)| .

It is straightforward that every function in A(Tn) must be bounded. The following
theorem gives us a sufficient condition for a function to be in A(Tn).
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Theorem 3.2.16. Let s be a nonnegative integer and let 0≤ α < 1. Assume that f is
a function defined on Tn all of whose partial derivatives of order s lie in the space
Λ̇α . Suppose that s+α > n/2. Then f ∈ A(Tn) and∥∥ f

∥∥
A(Tn) ≤C sup

|β |=s

∥∥∂
β f
∥∥

Λ̇α
,

where C depends on n, α , and s.

Proof. For 1≤ j ≤ n, let e j be the element of Rn with zero entries except for the jth
coordinate, which is 1. Let l be a positive integer and let h j = 2−l−2e j.

Then for a multi-index m = (m1, . . . ,mn) satisfying 2l ≤ |m| ≤ 2l+1 and for j in
{1, . . . ,n} chosen such that |m j|= supk |mk| we have

|m j|
2l ≥ |m|

2l√n
≥ 1√

n
.

We use the elementary fact that |t| ≤ π =⇒ |eit −1| ≥ 2|t|/π to obtain

|e2πim·h j −1|= |e2πim j2−l−2 −1| ≥ 2
π

|2πm j|
2l+2 =

|m j|
2l ≥ 1√

n

whenever |2πm j |
2l+2 ≤ π , which is always true since |2πm j |

2l+2 ≤ 2π2l+1

2l+2 ≤ π .
We now have(

∑
2l≤|m|<2l+1

| f̂ (m)|
)2 ≤

(
∑

2l≤|m|<2l+1

12)(
∑

2l≤|m|<2l+1

| f̂ (m)|2
)

≤Cn2ln
n

∑
j=1

∑
2l≤|m|<2l+1

|m j |=supk |mk|

| f̂ (m)|2

≤C′
n2ln

n

∑
j=1

∑
2l≤|m|<2l+1

|m j |=supk |mk|

|e2πim·h j −1|2| f̂ (m)|2
|2πm j|2s

|2πm j|2s

≤Cn,s2l(n−2s)
n

∑
j=1

∑
m∈Zn

|e2πim·h j −1|2|∂̂ s
j f (m)|2

= Cn,s2l(n−2s)
n

∑
j=1

∥∥∂
s
j f −∂

s
j f ( · +h j)

∥∥2
L2

≤C′
n,s2

l(n−2s)(2−(l+3))2α sup
|β |=s

∥∥∂
β f
∥∥2

Λ̇α
.

Taking square roots, summing over all positive integers l, and using that s+α > n/2,
we obtain the desired conclusion. �
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Exercises

3.2.1. Given a sequence {an}∞
n=0 of positive numbers such that an → 0 as n → ∞,

find a nonnegative integrable function h on [0,1] such that∫ 1

0
h(t)tm dt ≥ am.

Use this result to deduce a different proof of Lemma 3.2.3.[
Hint: Try h = e

∞

∑
k=0

(sup
j≥k

a j − sup
j≥k+1

a j)(k +2)χ[ k+1
k+2 ,1].

]
3.2.2. Prove that given a positive sequence {dm}m∈Zn with dm → 0 as |m| → ∞,
there exists a positive sequence {a j} j∈Z with am1 · · ·amn ≥ d(m1,...,mn) and a j → 0 as
| j| → ∞.

3.2.3. (a) Use the idea of the proof of Lemma 3.2.4 to prove that if a twice contin-
uously differentiable function f ≥ 0 is defined on (0,∞) and satisfies f ′(x)≤ 0 and
f ′′(x)≥ 0 for all x > 0, then limx→∞ x f ′(x) = 0.
(b) Suppose that a twice continuously differentiable function g is defined on (0,∞)
and satisfies g≥ 0, g′ ≤ 0, and

∫
∞

1 g(x)dx < +∞. Prove that

lim
x→∞

xg(x) = 0.

3.2.4. Prove that for 0≤ γ < δ < 1 we have
∥∥ f
∥∥

Λ̇γ
≤Cn,γ,δ

∥∥ f
∥∥

Λ̇δ

for all functions

f and thus Λ̇δ is a subspace of Λ̇γ .

3.2.5. Prove the inclusions L1
1(T

1)⊆ BV (T1)⊆ L∞(T1) as follows.
(a) If f ∈ L1

1(T
1), then Var( f )≤

∥∥ f ′
∥∥

L1 .
(b) If f ∈ BV (T1), then

∥∥ f
∥∥

L∞ ≤ Var( f )+ | f (0)|.

3.2.6. Suppose that f is a differentiable function on T1 whose derivative f ′ is in
L2(T1). Prove that f ∈ A(T1) and that∥∥ f

∥∥
A(T1) ≤

∥∥ f
∥∥

L1 +
1

2π

(
∑
j 6=0

j−2)1/2∥∥ f ′
∥∥

L2 .

3.2.7. (a) Prove that the product of two functions in A(Tn) is also in A(Tn) and that∥∥ f g
∥∥

A(Tn) ≤
∥∥ f
∥∥

A(Tn)

∥∥g
∥∥

A(Tn).

(b) Prove that the convolution of two square integrable functions on Tn always gives
a function in A(Tn).

3.2.8. Fix 0 < α < 1 and define f on T1 by setting

f (x) =
∞

∑
k=0

2−αke2πi2kx.
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Prove that f ∈ Λ̇α . Conclude that the decay | f̂ (m)| ≤ C|m|−α is best possible for
f ∈ Λ̇α .

3.2.9. Use without proof that there exists a constant C > 0 such that

sup
t∈R

∣∣∣∣ N

∑
k=2

eik logkeikt
∣∣∣∣≤C

√
N, N = 2,3,4, . . . ,

to prove that the function

g(x) =
∞

∑
k=2

eik logk

k
e2πikx

is in Λ̇1/2(T1) but not in A(T1). Conclude that the restriction s > 1/2 in Theorem
3.2.16 is sharp.

3.2.10. Use a result from functional analysis to show that there exist sequences
{am}m∈Zn that tend to zero as |m| → ∞ for which there do not exist functions f in
L1(Tn) with f̂ (m) = am for all m.

3.3 Pointwise Convergence of Fourier Series

In this section we are concerned with the pointwise convergence of the square partial
sums and the Fejér means of a function defined on the torus.

3.3.1 Pointwise Convergence of the Fejér Means

We saw in Section 3.1 that the Fejér kernel is an approximate identity. This implies
that the Fejér (or Cesàro) means of an Lp function f on Tn converge to it in Lp for
any 1≤ p < ∞. Moreover, if f is continuous at x0, then the means (F(n,N)∗ f )(x0)
converge to f (x0) as N → ∞ in view of Theorem 1.2.19 (2). Although this is a
satisfactory result, it is restrictive, since it applies only to continuous functions. It is
natural to ask what happens for more general functions.

Using properties of the Fejér kernel, we obtain the following one-dimensional
result regarding the convergence of the Fejér means:

Theorem 3.3.1. (Fejér) If a function f in L1(T1) has left and right limits at a point
x0, denoted by f (x0−) and f (x0+), respectively, then

(FN ∗ f )(x0)→
1
2
(

f (x0+)+ f (x0−)
)

as N → ∞ . (3.3.1)

In particular, this is the case for functions of bounded variation.
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Proof. Let us identify T1 with [−1/2,1/2]. Given ε > 0, find δ > 0 (δ < 1/2) such
that

0 < t < δ =⇒
∣∣∣∣ f (x0 + t)+ f (x0− t)

2
− f (x0+)+ f (x0−)

2

∣∣∣∣< ε . (3.3.2)

Using the second expression for FN in (3.1.15), we can find an N0 > 0 such that for
N ≥ N0 we have

sup
t∈[δ ,1/2]

FN(t) < ε. (3.3.3)

We now have

(FN ∗ f )(x0)− f (x0+) =
∫

T1
FN(−t)

(
f (x0 + t)− f (x0+)

)
dt ,

(FN ∗ f )(x0)− f (x0−) =
∫

T1
FN(t)

(
f (x0− t)− f (x0−)

)
dt .

Averaging these two identities and using that the integrand is even, we obtain

(FN ∗ f )(x0)−
f (x0+)+ f (x0−)

2

= 2
∫ 1/2

0
FN(t)

(
f (x0 + t)+ f (x0− t)

2
− f (x0+)+ f (x0−)

2

)
dt .

(3.3.4)

We split the integral in (3.3.4) into two pieces, the integral over [0,δ ) and the integral
over [δ ,1/2]. By (3.3.2), the integral over [0,δ ) is controlled by ε

∫
T1 FN(t)dt = ε .

Also (3.3.3) gives that for N ≥ N0∣∣∣∣∫ 1/2

δ

FN(t)
(

f (x0− t)+ f (x0 + t)
2

− f (x0−)+ f (x0+)
2

)
dt
∣∣∣∣

≤ ε

2
(∥∥ f − f (x0−)

∥∥
L1 +

∥∥ f − f (x0+)
∥∥

L1

)
= ε c( f ,x0) ,

where c( f ,x0) is a constant depending on f and x0. We have now proved that given
ε > 0 there exists an N0 such that for N ≥ N0 the second expression in (3.3.4) is
bounded by 2ε (c( f ,x0)+1). This proves the required conclusion.

Functions of bounded variation can be written as differences of increasing func-
tions, and since increasing functions have left and right limits everywhere, (3.3.1)
holds for these functions. �

We continue with an elementary but very useful proposition. We refer to Exercise
3.3.2 for some of its applications.

Proposition 3.3.2. (a) Let f be in L1(Tn). If x0 is a point of continuity of f and
the square partial sums of the Fourier series of f converge at x0, then they must
converge to f (x0).
(b) In dimension 1, if f (x) has left and right limits as x→ x0 and the partial sums of
the Fourier series of f converge, then they must converge to 1

2

(
f (x0+)+ f (x0−)

)
.
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Proof. (a) We observed before that if f ∈ L1(Tn) is continuous at x0, then

(F(n,N)∗ f )(x0)→ f (x0)

as N →∞. If (D(n,N)∗ f )(x0)→ A(x0) as N →∞, then the arithmetic means of this
sequence must converge to the same number as the sequence. Therefore,

(F(n,N)∗ f )(x0)→ A(x0)

as N → ∞ and thus A(x0) = f (x0). Part (b) is proved using the same argument and
the result of Theorem 3.3.1. �

3.3.2 Almost Everywhere Convergence of the Fejér Means

We have seen that the Fejér means of a relatively nice function (such as of bounded
variation) converge everywhere. What can we say about the Fejér means of a general
integrable function? Since the Fejér kernel is a well-behaved approximate identity,
the following result should not come as a surprise.

Theorem 3.3.3. (a) For f ∈ L1(Tn), let

H ( f ) = sup
N∈Z+

| f ∗F(n,N)| .

Then H maps L1(Tn) to L1,∞(Tn) and Lp(Tn) to itself for 1 < p≤ ∞.
(b) For any function f ∈ L1(Tn), we have

(F(n,N)∗ f )(x)→ f (x)

as N → ∞ for almost all x ∈ Tn.

Proof. It is an elementary fact that |t| ≤ π

2 =⇒ |sin t| ≥ 2
π
|t|; see Appendix E.

Using this fact and the expression (3.1.15) we obtain for all t in [− 1
2 , 1

2 ],

|FN(t)| =
1

N +1

∣∣∣∣ sin(π(N +1)t)
sin(πt)

∣∣∣∣2
≤ N +1

4

∣∣∣∣ sin(π(N +1)t)
(N +1)t

∣∣∣∣2
≤ N +1

4
min

(
π

2,
1

(N +1)2t2

)
≤ π2

2
N +1

1+(N +1)2|t|2
.

For t ∈ R let us set ϕ(t) = (1 + |t|2)−1 and ϕε(t) = 1
ε

ϕ( t
ε
) for ε > 0. For x =

(x1, . . . ,xn) ∈ Rn and ε > 0 we also set
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Φ(x) = ϕ(x1) · · ·ϕ(xn)

and Φε(x) = ε−nΦ(ε−1x). Then for |t| ≤ 1
2 we have |FN(t)| ≤ π2

2 ϕε(t) with ε =
(N +1)−1, and for y ∈ [− 1

2 , 1
2 ]n we have

|F(n,N)(y)| ≤ (π2

2 )n
Φε(y), with ε = (N +1)−1.

Now let f be an integrable function on Tn and let f0 denote its periodic extension
on Rn. For x ∈ [− 1

2 , 1
2 ]n we have

H ( f )(x) ≤ sup
N>0

∣∣∣∣∫Tn
F(n,N)(y) f (x− y)dy

∣∣∣∣
≤ (π2

2 )n sup
ε>0

∫
[− 1

2 , 1
2 ]n
|Φε(y)| | f0(x− y)|dy

≤ 5n sup
ε>0

∫
Rn
|Φε(y)| |( f0χQ)(x− y)|dy

= 5nG ( f0χQ)(x),

(3.3.5)

where Q is the cube [−1,1]n and G is the operator

G (h) = sup
ε>0

|h| ∗Φε .

If we can show that G maps L1(Rn) to L1,∞(Rn), the corresponding conclusion for
H on Tn would follow from the fact H ( f )≤ 5nG ( f0χQ) proved in (3.3.5) and the
sequence of inequalities∥∥H ( f )

∥∥
L1,∞(Tn) ≤ 5n∥∥G ( f0χQ)

∥∥
L1,∞(Rn)

≤ 5nC
∥∥ f0χQ

∥∥
L1(Rn)

= C′∥∥ f
∥∥

L1(Tn).

Moreover, the Lp conclusion about H follows from the weak type (1,1) result and
the trivial L∞ inequality, in view of the Marcinkiewicz interpolation theorem (Theo-
rem 1.3.2). The required weak type (1,1) estimate for G on Rn is a consequence of
Lemma 3.3.4. This completes the proof of the statement in part (a) of the theorem.
To prove the statement in part (b) observe that for f ∈ C ∞(Tn), which is a dense
subspace of L1, we have F(n,N) ∗ f → f uniformly on Tn as N → ∞, since the
sequence {FN}N is an approximate identity. Since by part (a), H maps L1(Tn) to
L1,∞(Tn), Theorem 2.1.14 applies and gives that for all f ∈ L1(Tn), F(n,N)∗ f → f
a.e. �

We now prove the weak type (1,1) boundedness of G used earlier.

Lemma 3.3.4. Let Φ(x1, . . . ,xn) = (1 + |x1|2)−1 · · ·(1 + |xn|2)−1 and for ε > 0 let
Φε(x) = ε−nΦ(ε−1x). Then the maximal operator
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G ( f ) = sup
ε>0

| f | ∗Φε

maps L1(Rn) to L1,∞(Rn).

Proof. Let I0 = [−1,1] and Ik = {t ∈ R : 2k−1 ≤ |t| ≤ 2k} for k = 1,2, . . . . Also, let
Ĩk be the convex hull of Ik, that is, the interval [−2k,2k]. For a2, . . . ,an fixed positive
numbers, let Ma2,...,an be the maximal operator obtained by averaging a function on
Rn over all products of closed intervals J1×·· ·× Jn containing a given point with

|J1|= 2a2 |J2|= · · ·= 2an |Jn|.

In view of Exercise 2.1.9(c), we have that Ma2,...,an maps L1 to L1,∞ with some
constant independent of the a j’s. (This is due to the nice doubling property of this
family of rectangles.) For a fixed ε > 0 we need to estimate the expression

(Φε ∗ | f |)(0) =
∫

Rn

| f (−εy)|dy
(1+ y2

1) · · ·(1+ y2
n)

.

Split Rn into n! of regions of the form |y j1 | ≥ · · · ≥ |y jn |, where { j1, . . . , jn} is a
permutation of the set {1, . . . ,n}. By the symmetry of the problem, let us look at the
region R where |y1| ≥ · · · ≥ |yn|. Then for some constant C > 0 we have

∫
R

| f (−εy)|dy
(1+ y2

1) · · ·(1+ y2
n)
≤C

∞

∑
k1=0

k1

∑
k2=0

· · ·
kn−1

∑
kn=0

2−(2k1+···+2kn)
∫

Ik1

· · ·
∫

Ikn

| f (−εy)|dy ,

and the last expression can be trivially controlled by the corresponding expression,
where the Ik’s are replaced by the Ĩk’s. This, in turn, is controlled by

C′
∞

∑
k1=0

k1

∑
k2=0

· · ·
kn−1

∑
kn=0

2−(k1+···+kn)Mk1−k2,...,k1−kn( f )(0) . (3.3.6)

Now set s2 = k1− k2, . . . ,sn = k1− kn, observe that s j ≥ 0, use that

2−(k1+···+kn) ≤ 2−k1/22−s2/2n · · ·2−sn/2n ,

and change the indices of summation to estimate the expression in (3.3.6) by

C′′
∞

∑
k1=0

∞

∑
s2=0

· · ·
∞

∑
sn=0

2−k1/22−s2/2n · · ·2−sn/2nMs2,...,sn( f )(0) .

Argue similarly for the remaining regions |y j1 | ≥ · · · ≥ |y jn | and translate to an arbi-
trary point x to obtain the estimate

|(Φε ∗ f )(x)| ≤C′′n!
∞

∑
s2=0

· · ·
∞

∑
sn=0

2−s2/2n · · ·2−sn/2nMs2,...,sn( f )(x) .
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Now take the supremum over all ε > 0 and use the fact that the maximal functions
Ms2,...,sn map L1 to L1,∞ uniformly in s2, . . . ,sn as well as the result of Exercise 1.4.10
to obtain the desired conclusion for G . �

3.3.3 Pointwise Divergence of the Dirichlet Means

We now pass to the more difficult question of convergence of the square partial sums
of a Fourier series. It is natural to start our investigation with the class of continuous
functions. Do the partial sums of the Fourier series of continuous functions converge
pointwise? The following simple proposition gives us a certain warning about the
behavior of partial sums.

Proposition 3.3.5. (duBois Reymond) There exist a continuous function f on Tn

and an x0 ∈ Tn such that the sequence

(D(n,N)∗ f )(x0) = ∑
m∈Zn

|m j |≤N

f̂ (m)e2πix0·m

satisfies
limsup

N→∞

|(D(n,N)∗ f )(x0)|= ∞ .

In other words, the square partial sums of a continuous function may diverge at a
point.

Proof. It suffices to prove the proposition when n = 1. The one-dimensional ex-
ample f can be easily transferred to n dimensions by considering the function
F(x1, . . . ,xn) = f (x1), which actually diverges on an (n−1)-dimensional plane.

We give a functional-analytic proof. For a constructive proof, see Exercise 3.3.6.
Let C(T1) be the Banach space of all continuous functions on the circle equipped
with the L∞ norm. Consider the continuous linear functionals

f → TN( f ) = (DN ∗ f )(0)

on C(T1) for N = 1,2, . . . . We show that the norms of the TN’s on C(T1) converge to
infinity as N →∞. To see this, given any integer N ≥ 100, let ϕN(x) be a continuous
even function on [− 1

2 , 1
2 ] that is bounded by 1 and is equal to the sign of DN(x)

except at small intervals of length (2N +1)−2 around the 2N +1 zeros of DN . Call
the union of all these intervals BN and set AN = [− 1

2 , 1
2 ]\BN . Then∫

BN

∣∣DN(x)
∣∣dx+

∣∣∣∣∫BN

ϕN(x)DN(x)dx
∣∣∣∣≤ 2 |BN |(2N +1) = 2.

Using this estimate we obtain
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∥∥

C(T1)→C ≥ |TN(ϕN)|=
∣∣∣∣∫T1

DN(−x)ϕN(x)dx
∣∣∣∣

≥
∫

AN

∣∣DN(x)
∣∣dx−

∣∣∣∣∫BN

DN(x)ϕN(x)dx
∣∣∣∣

=
∫

T1

∣∣DN(x)
∣∣dx−

∣∣∣∣∫BN

DN(x)ϕN(x)dx
∣∣∣∣−∫BN

∣∣DN(x)
∣∣dx

≥ 4
π2

N

∑
k=1

1
k
−2 .

It follows that the norms of the linear functionals TN are not uniformly bounded.
The uniform boundedness principle now implies the existence of an f ∈C(T1) and
of a sequence N j → ∞ such that |TN j( f )| → ∞ as j → ∞. The Fourier series of this
f diverges at x = 0. �

3.3.4 Pointwise Convergence of the Dirichlet Means

We have seen that continuous functions may have divergent Fourier series. How
about Lipschitz continuous functions? As it turns out, there is a more general con-
dition due to Dini that implies convergence for the Fourier series of functions that
satisfy a certain integrability condition.

Theorem 3.3.6. (Dini (n = 1), Tonelli (n ≥ 2)) Let f be an integrable function on
Tn and let a = (a1, . . . ,an) ∈ Tn. If∫

|x1−a1|≤ 1
2

· · ·
∫
|xn−an|≤ 1

2

| f (x)− f (a)|
|x1−a1| · · · |xn−an|

dx < ∞ , (3.3.7)

then we have (D(n,N)∗ f )(a)→ f (a).

Proof. Replacing f (x) by f (x+a)− f (a), we may assume that a = 0 and f (a) = 0.
Using identities (3.1.12) and (3.1.11), we can write

(D(n,N)∗ f )(0) =
∫

Tn
f (−x)

n

∏
j=1

sin((2N +1)πx j)
sin(πx j)

dx (3.3.8)

=
∫

Tn
f (−x)

n

∏
j=1

(
sin(2Nπx j)cos(πx j)

sin(πx j)
+ cos(2Nπx j)

)
dx .

Expanding out the product, we obtain a sum of terms each of which contains a factor
of cos(2Nπx j) or sin(2Nπx j) and a term of the form

f (−x)∏
j∈I

cos(πx j)
sin(πx j)

, (3.3.9)
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where I is a subset of {1,2, . . . ,n}. The function in (3.3.9) is integrable on [− 1
2 , 1

2 ]n

except possibly in a neighborhood of the origin. But condition (3.3.7) with a = 0
guarantees that any function of the form (3.3.9) is also integrable in a neighborhood
of the origin. It is now a consequence of the Riemann–Lebesgue lemma (Lemma
3.2.1) that the expression in (3.3.8) tends to zero as N → ∞. �

The following are consequences of Dini’s test.

Corollary 3.3.7. (Riemann’s principle of localization) Let f ∈ L1(T1) and assume
that f vanishes on an open interval I. Then DN ∗ f converges to zero on the ball I.

Proof. Simply observe that (3.3.7) holds in this case. �

Corollary 3.3.8. Let a ∈ Tn and suppose that f ∈ L1(Tn) satisfies

| f (x)− f (a)| ≤C|x1−a1|δ1 · · · |xn−an|δn

for some C,δ j > 0. (When n = 1, this is saying that f is Lipschitz continuous.) Then
the square partial sums (D(n,N)∗ f )(a) converge to f (a).

Proof. Note that condition (3.3.7) holds. �

Corollary 3.3.9. (Dirichlet) If f is defined on T1 and is a differentiable function at
a point a in T1, then (DN ∗ f )(a)→ f (a).

Proof. There exists a δ > 0 (say less than 1/2) such that | f (x)− f (a)|/|x− a| is
bounded by | f ′(a)|+ 1 for |x− a| ≤ δ . Also | f (x)− f (a)|/|x− a| is bounded by
| f (x)− f (a)|/δ when |x−a|> δ . It follows that condition (3.3.7) holds. �

Exercises

3.3.1. Identify T1 with [−1/2,1/2) and fix 0 < b < 1/2. Prove the following:

(a) The mth Fourier coefficient of the function x is i (−1)m

2πm when m 6= 0 and zero
when m = 0.

(b) The mth Fourier coefficient of the function χ[−b,b] is sin(2πbm)
mπ

.

(c) The mth Fourier coefficient of the function
(
1− |x|

b

)
+ is sin2(πbm)

bm2π2 .

(d) The mth Fourier coefficient of the function |x| is − 1
2m2π2 + (−1)m

2m2π2 when m 6= 0
and 1

4 when m = 0.
(e) The mth Fourier coefficient of the function x2 is (−1)m

2m2π2 when m 6= 0 and 1
12

when m = 0.
(f) The mth Fourier coefficient of the function cosh(2πx) is (−1)m

1+m2
sinhπ

π
.

(g) The mth Fourier coefficient of the function sinh(2πx) is im(−1)m

1+m2
sinhπ

π
.
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3.3.2. Use Exercise 3.3.1 and Proposition 3.3.2 to prove that

∑
k∈Z

1
(2k +1)2 =

π2

4
, ∑

k∈Z\{0}

1
k2 =

π2

3
,

∑
k∈Z\{0}

(−1)k+1

k2 =
π2

6
, ∑

k∈Z

(−1)k

k2 +1
=

2π

eπ − e−π
.

3.3.3. Let M > N be given positive integers.
(a) For f ∈ L1(T1), prove the following identity:

(DN ∗ f )(x) =
M +1
M−N

(FM ∗ f )(x)− N +1
M−N

(FN ∗ f )(x)

− M +1
M−N ∑

N<| j|≤M

(
1− | j|

M +1

)
f̂ ( j)e2πi jx .

(b) (G. H. Hardy ) Suppose that a function f on T1 satisfies the following condition:
there exists an a > 0 such that for any ε > 0 there is a k0 > 0 such that for all k ≥ k0
we have

∑
k<|m|≤[ak]

| f̂ (m)|< ε.

Use part (a) to prove that if (FN ∗ f )(x) converges to A(x) as N →∞, then (DN ∗ f )(x)
also converges to A(x) as N → ∞.

3.3.4. Use Exercise 3.3.3 to prove that if f is a function of bounded variation on
T1, then

(DN ∗ f )(x)→ 1
2
( f (x+0)+ f (x−0))

for every t ∈ T1. Apply this result to the function χ[−b,b] of Exercise 3.3.1(b) to
obtain that

lim
N→∞

N

∑
m=−N

sin(2πbm)
mπ

e2πibm =
1
2
−2b .

3.3.5. (a) Prove that the Riemann–Lebesgue lemma holds uniformly on compact
subsets of L1(Tn). This means that given any compact subset of L1(Tn) and ε > 0
there exists an N0 > 0 such that for |m| ≥ N0 we have | f̂ (m)| ≤ ε for all f ∈ K.
(b) Use part (a) to prove the following sharpening of the localization theorem. If f
vanishes on an open ball B in Tn, then D(n,N) ∗ f converges to zero uniformly on
compact subsets of B.

3.3.6. Follow the steps given to obtain a constructive proof of a continuous function
whose Fourier series diverges at a point. On T1 let g(x) =−2πi(x−1/2).
(a) Prove that ĝ(m) = 1/m when m 6= 0 and zero otherwise.
(b) Prove that for all nonnegative integers M and N we have
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(e2πiN( ·)(g∗DN))∗DM

)
(x) = e2πiNx

∑
1≤|r|≤N

1
r

e2πirx

when M ≥ 2N and(
(e2πiN( ·)(g∗DN))∗DM

)
(x) = e2πiNx

∑
−N≤r≤M−N

r 6=0

1
r

e2πirx

when M < 2N. Conclude that there exists a constant C > 0 such that for all M, N,
and x 6= 0 we have

|
(
e2πiN( ·)(g∗DN)∗DM

)
(x)| ≤ C

|x|
.

(c) Show that there exists a constant C1 > 0 such that

sup
N>0

sup
x∈T1

∣∣(g∗DN)(x)
∣∣= sup

N>0
sup
x∈T1

∣∣∣∣∣ ∑
1≤|r|≤N

1
r

e2πirx

∣∣∣∣∣≤C1 < ∞ .

(d) Let λk = 1+ eek
. Define

f (x) =
∞

∑
k=1

1
k2 e2πiλkx(g∗Dλk

)(x)

and prove that f is continuous on T1 and that its Fourier series converges at every
x 6= 0, but limsupM→∞ |( f ∗DM)(0)|= ∞.[
Hint: Take M = eem

with m→ ∞.
]

3.4 Divergence of Fourier Series and Bochner–Riesz
Summability

We saw in the previous section that the Fourier series of a continuous function may
diverge at a point. As expected, the situation can only get worse as the functions
get worse. In this section we present an example, due to A. N. Kolmogorov, of an
integrable function on T1 whose Fourier series diverges almost everywhere. Using
this example, we may construct integrable functions on Tn whose square Dirichlet
means diverge a.e.; see Exercise 3.4.1.

3.4.1 Motivation for Bochner–Riesz Summability

We now consider an analogous question for the circular Dirichlet means of inte-
grable functions on Tn. In dimension 1 we saw that the Fejér means of integrable
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functions are better behaved than their Dirichlet means. We investigate whether
there is a similar phenomenon in higher dimensions. Recall that the circular (or
spherical) partial sums of the Fourier series of f are given by

( f ∗ D̃(n,R))(x) = ∑
m∈Zn

|m|≤R

f̂ (m)e2πim·x ,

where R≥ 0. Taking the averages of these expressions, we obtain

1
R

∫ R

0
( f ∗ D̃(n,r))(x)dr = ∑

m∈Zn

|m|≤R

(
1− |m|

R

)
f̂ (m)e2πim·x ,

and we call these expressions the circular Cesàro means (or circular Fejér means)
of f . It turns out that the circular Cesàro means of integrable functions on T2 always
converge in L1, but in dimension 3, this may fail. Theorem 3.4.6 gives an example of
an integrable function f on T3 whose circular Cesàro means diverge a.e. However,
we show that this is not the case if the circular Cesàro means of a function f in
L1(T3) are replaced by the only slightly different-looking means

∑
m∈Zn

|m|≤R

(
1− |m|

R

)1+ε

f̂ (m)e2πim·x ,

for some ε > 0. The previous discussion suggests that the preceding expressions
behave better as ε increases, but for a fixed ε they get worse as the dimension in-
creases. To study this situation more carefully, we define the family of operators for
which the exponent 1+ ε is replaced by a general nonnegative index α ≥ 0.

Definition 3.4.1. Let α ≥ 0. The Bochner–Riesz means of order α of an integrable
function f on Tn are defined as follows:

Bα
R ( f )(x) = ∑

m∈Zn

|m|≤R

(
1− |m|2

R2

)α

f̂ (m)e2πim·x . (3.4.1)

This family of operators forms a natural “spherical” analogue of the Cesàro–Fejér
sums. It turns out that there is no different behavior of the means if the expression(
1− |m|2

R2

)α in (3.4.1) is replaced by the expression
(
1− |m|

R

)α . See Exercise 3.6.1, on
the equivalence of means generated by these two expressions. The advantage of the
quadratic expression in (3.4.1) is that it has an easily computable kernel. Moreover,
the appearance of the quadratic term in the definition of the Bochner–Riesz means
is responsible for the following reproducing formula:

Bα
R ( f ) =

2Γ (α +1)
Γ (α−β )Γ (β +1)

1
R

∫ R

0

(
1− r2

R2

)α−β−1( r2

R2

)β+ 1
2
Bβ

r ( f )dr , (3.4.2)
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which precisely quantifies the way in which Bα
R is smoother than Bβ

R when α > β .
Identity (3.4.2) also says that when α > β , the operator Bα

R ( f ) is an average of the
operators Bβ

r ( f ), 0 < r < R, with respect to a certain density.
Note that the Bochner–Riesz means of order zero coincide with the circular (or

spherical) Dirichlet means, and as we have seen, these converge in L2(Tn). We now
indicate why the Bochner–Riesz means Bα

R ( f ) converge to f in L1(Tn) as R → ∞

when α > (n−1)/2. Consider the function

mα(ξ ) = (1−|ξ |2)α
+

defined for ξ in Rn. Using an identity proved in Appendix B.5, we have that

(mα)∨(x) = Kα(x) =
Γ (α +1)

πα

J n
2 +α(2π|x|)
|x| n

2 +α
, (3.4.3)

where Jλ is the Bessel function of order λ . The estimates in Appendices B.6 and
B.7 yield that if α > (n−1)/2, then the function Kα obeys the inequality

|Kα(x)| ≤Cn,α(1+ |x|)−n−(α− n−1
2 ) , (3.4.4)

and hence it is in L1(Rn). Using the Poisson summation formula, we write

Bα
R ( f )(x) = ∑

l∈Zn
mα( l

R ) f̂ (l)e2πil·x

= ∑
l∈Zn

( f ∗ (Kα)1/R)(x+ l)

= ( f ∗ (Lα)1/R)(x) ,

where Lα(x) = ∑k∈Zn Kα(x + k) and g1/R(x) = Rng(Rx). Using (3.4.4), we show
easily that the function Lα is an integrable 1-periodic function on Tn. Moreover,∫

Tn
Lα(t)dt =

∫
Rn

Kα(x)dx = mα(0) = 1 .

This fact suggests that when α > n−1
2 , the family {(Lα)ε}ε>0 is an approximate

identity on Tn as ε → 0. To see this we need only to verify the third property in
Definition 1.2.15. For δ < 1

2 using (3.4.4) we have

1
εn

∫
1
2≥|x j |≥δ

∣∣Lα(x/ε)
∣∣dx ≤Cn,α ε

α− n−1
2

∫
1
2≥|x j |≥δ

∑
`∈Zn

1

|x+ `|n+α− n−1
2

dx → 0

as ε → 0, since the sum over ` converges uniformly in x ∈ [−1/2,1/2]n \ [−δ ,δ ]n.
Using Theorem 1.2.19, we obtain these conclusions for α > (n−1)/2:

(a) For f ∈ Lp(Tn), 1≤ p < ∞, Bα
R ( f ) converge to f in Lp as R→ ∞.

(b) For f continuous on Tn, Bα
R ( f ) converge to f uniformly as R→ ∞.
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One may wonder whether there are analogous results for α ≤ (n−1)/2. Theorem
3.4.6 warns that the Bochner–Riesz means may diverge in L1 when α = (n−1)/2.
For this reason, the number α = (n− 1)/2 is referred to as the critical index. The
question of determining the range of α’s for which the Bochner–Riesz means of
order α converge in Lp(Tn) when 1 < p < ∞ is investigated in Chapter 10.

3.4.2 Divergence of Fourier Series of Integrable Functions

It is natural to start our investigation with the case n = 1. We begin with the follow-
ing important result:

Theorem 3.4.2. There exists an integrable function on the circle T1 whose Fourier
series diverges almost everywhere.

Proof. The proof of this theorem is a bit involved, and we need a sequence of lem-
mas, which we prove first.

Lemma 3.4.3. (Kronecker) Suppose that n ∈ Z+ and

{x1,x2, . . . ,xn,1}

is a linearly independent set over the rationals. Then for any ε > 0 and any complex
numbers z1,z2, . . . ,zn with |z j|= 1, there exists an integer m ∈ Z such that

|e2πimx j − z j|< ε for all 1≤ j ≤ n.

Proof. Identifying Tn with the set {(e2πit1 , . . . ,e2πitn) : 0 ≤ t j ≤ 1}, the required
conclusion is a consequence of the fact that for a fixed x = (x1, . . . ,xn) the set {mx :
m ∈ Z} is dense in Tn. If this were not the case, then there would exist an open set
U in Tn that contains no elements of the set {mx : m ∈ Z}. Pick a smooth, nonzero,
and nonnegative function f on Tn supported in U . Then f (mx) = 0 for all m ∈ Z,
but

f̂ (0) =
∫

Tn
f (x)dx > 0 .

Then we have

0 =
1
N

N−1

∑
m=0

f (mx) =
1
N

N−1

∑
m=0

(
∑

l∈Zn
f̂ (l)e2πil·mx

)
= ∑

l∈Zn
f̂ (l)
(

1
N

N−1

∑
m=0

e2πim(l·x)
)

= ∑
l∈Zn\{0}

f̂ (l)
(

1
N

e2πiN(l·x)−1
e2πi(l·x)−1

)
+ f̂ (0) .
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In the last identity we used the fact that e2πi(l·x) 6= 1, since by assumption the
set {x1,x2, . . . ,xn,1} is linearly independent over the rationals. But the expression
inside the parentheses above is bounded by 1 and tends to 0 as N → ∞. Since

| f̂ (l)| ≤C( f ,n)(1+ |l|)−100n ,

taking limits as N → ∞ and using the Lebesgue dominated convergence theorem,
we obtain that

0 = lim
N→∞

∑
l∈Zn\{0}

f̂ (l)
(

1
N

e2πiN(l·x)−1
e2πi(l·x)−1

)
+ f̂ (0)

= f̂ (0) ,

which contradicts our assumption on f . �

Lemma 3.4.4. Let N be a large positive integer. Then there exists a positive measure
µN on T1 with µN(T1) = 1 such that

sup
L≥1

∣∣(µN ∗DL
)
(x)|= sup

L≥1

∣∣∣∣ L

∑
k=−L

µ̂N(k)e2πikx
∣∣∣∣≥ c logN (3.4.5)

for almost all x ∈ T1 (c is a fixed constant).

Proof. We choose points 0≤ x1 < x2 < · · ·< xN ≤ 1 such that

1
2N

≤ |x j+1− x j| ≤
2
N

, 1≤ j ≤ N , (3.4.6)

where we defined xN+1 = x1 +1, and such that the set

{x1, . . . ,xN ,1}

is linearly independent over the rationals. Let

EN =
{

x ∈ [0,1] : {x− x1, . . . ,x− xN ,1} is linearly independent over Q
}

and observe that almost all1 x in T1 belong to EN .
Next, we define the probability measure

µN =
1
N

N

∑
j=1

δx j ,

where δx j are Dirac delta masses at the points x j. For this measure we have

1 Every x in [0,1] \Q[x1, . . . ,xN ] belongs to EN . Here Q[x1, . . . ,xN ] denotes the field extension of
Q obtained by attaching to it the linearly independent elements {x1, . . . ,xN}.
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∑
k=−L

µ̂N(k)e2πikx
∣∣∣∣ =

∣∣∣∣ L

∑
k=−L

(
1
N

N

∑
j=1

e−2πikx j

)
e2πikx

∣∣∣∣
=
∣∣∣∣ 1
N

N

∑
j=1

DL(x− x j)
∣∣∣∣

=
∣∣∣∣ 1
N

N

∑
j=1

sin(2π(L+ 1
2 )(x− x j))

sin(π(x− x j))

∣∣∣∣
=
∣∣∣∣ 1
N

N

∑
j=1

Im
[
e2πi(L+ 1

2 )(x−x j)
]
sgn
(

sin(π(x− x j))
)

|sin(π(x− x j))|

∣∣∣∣ ,

(3.4.7)

where the signum function is defined as sgna = 1 for a > 0, −1 for a < 0, and zero
if a = 0. By Lemma 3.4.3, for all x ∈ EN there exists an L ∈ Z+ such that∣∣e2πiL(x−x j)− ie−2πi 1

2 (x−x j)sgn
(

sin(π(x− x j))
)∣∣< 1

2
,

which can be equivalently written as∣∣e2πi(L+ 1
2 )(x−x j)sgn

(
sin(π(x− x j))

)
− i
∣∣< 1

2
. (3.4.8)

It follows from (3.4.8) that

Im
[
e2πi(L+ 1

2 )(x−x j)
]
sgn
(

sin(π(x− x j))
)

>
1
2

.

Combining this with the result of the calculation in (3.4.7), we obtain that∣∣∣∣ L

∑
k=−L

µ̂N(k)e2πikx
∣∣∣∣> 1

2N

N

∑
j=1

1
|sin(π(x− x j))|

≥ 1
2πN

N

∑
j=1

1
|x− x j|

.

But for every x ∈ [0,1] there exists a j0 such that x ∈ [x j0 ,x j0+1). It follows from
(3.4.6) that |x− x j| ≤C(| j− j0|+1)N−1 and thus

N

∑
j=1

1
|x− x j|

≥ c′N logN .

Thus for every x ∈ EN there exists an L ∈ Z+ such that∣∣∣∣ L

∑
k=−L

µ̂N(k)e2πikx
∣∣∣∣> c logN ,

which proves the required conclusion. �

Lemma 3.4.5. For each 0 < M < ∞ there exists a trigonometric polynomial gM and
a measurable subset AM of T1 with measure |AM|> 1−2−M such that

∥∥gM
∥∥

L1 = 1,
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and such that

inf
x∈AM

sup
L≥1

∣∣(DL ∗gM)(x)
∣∣= inf

x∈AM
sup
L≥1

∣∣∣∣ L

∑
k=−L

ĝM(k)e2πikx
∣∣∣∣> 2M . (3.4.9)

Proof. Given an M with 0 < M < ∞, we pick an integer N(M) such that c logN(M)>
2M+2, where c is as in (3.4.5), and we also pick the measure µN(M), which satisfies
(3.4.5). By Fatou’s lemma we have

1 =
∣∣{x ∈ T1 : lim

L→∞
sup

1≤ j≤L
|(D j ∗µN(M))(x)| ≥ 2M+1}∣∣

≤ liminf
L→∞

∣∣{x ∈ T1 : sup
1≤ j≤L

|(D j ∗µN(M))(x)| ≥ 2M+1}∣∣ ,
and thus we can find a positive integer L(M) such that the set

AM =
{

x ∈ T1 : sup
1≤ j≤L(M)

|(D j ∗µN(M))(x)| ≥ 2M+1}
has measure greater than 1−2−M . We pick a positive integer K(M) such that

sup
1≤ j≤L(M)

∥∥FK(M) ∗D j −D j
∥∥

L∞ ≤ 1 ,

where FK is the Fejér kernel. This is possible, since the Fejér kernel is an approxi-
mate identity and {D j : 1 ≤ j ≤ L} is a finite family of continuous functions. Then
we define gM = µN(M) ∗FK(M). Since µN(M) is a probability measure, we obtain

|(D j ∗gM)(x)− (D j ∗µN(M))(x)| ≤
∥∥D j ∗FK(M)−D j

∥∥
L∞ ≤ 1

for all x ∈ [0,1] and 1≤ j ≤ L. It follows that for x ∈ AM and 1≤ j ≤ L we have

|(D j ∗gM)(x)| ≥ |(D j ∗µN(M))(x)|−1≥ 2M+2−1≥ 2M+1 .

Therefore, (3.4.9) is satisfied for this gM and AM . Since µN is a probability measure
and FK(M) is nonnegative and has L1 norm 1, we have that∥∥gM

∥∥
L1 =

∥∥µN(M) ∗FK(M)
∥∥

L1 =
∥∥µN(M)

∥∥
M

∥∥FK(M)
∥∥

L1 = 1 .

�

We now have the tools needed to construct an example of a function whose
Fourier series diverges almost everywhere. The example is given as a series of func-
tions each of which has a behavior that worsens as its index becomes bigger. The
function we wish to construct is a sum of the form

g =
∞

∑
j=1

ε jgM j , (3.4.10)
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for a choice of sequences ε j → 0 and M j → ∞, where gM are as in Lemma 3.4.5.
Let us be specific. We set ε0 = M0 = d0 = 1. Assume that we have defined ε j,

M j, and d j for all 0≤ j < N. We first set

εN = 2−N(3dN−1)−1. (3.4.11)

Then we pick MN such that

εN2MN ≥ 2N +dN−1 +1 . (3.4.12)

Finally, we set
dN = max

1≤s≤N
degree(gMs), (3.4.13)

where gM is the trigonometric polynomial of Lemma 3.4.5. This defines εN , MN ,
and dN for a given N, provided these numbers are known for all j < N. By induction
we define εN , MN , and dN for all natural numbers N.

We observe that the selections of ε j and M j force the inequalities ε j ≤ 2− j and
d j ≤ d j+1 for all j ≥ 0. Since each gM j has L1 norm 1 and ε j ≤ 2− j, the function g
in (3.4.10) is integrable and has L1 norm at most 1.

For a given j ≥ 0 and x ∈ AM j , by Lemma 3.4.5 there exists an L ≥ 1 such that
|(DL ∗gM j)(x)|> 2M j . Set k = k(x) = min(L,d j). Then we have

|(Dk ∗g)(x)| ≥ ε j|(Dk ∗gM j)(x)|− ∑
1<s< j

εs|(Dk ∗gMs)(x)|−∑
s> j

εs|(Dk ∗gMs)(x)| .

We make the following observations:

(i) |(Dk ∗gM j)(x)|= |(DL ∗gM j)(x)|> 2M j .

(ii) |(Dk ∗gMs)(x)|= |(Dmin(ds,k) ∗gMs)(x)| ≤
∥∥Dmin(ds,L)

∥∥
L∞ ≤ 3ds, when s < j.

(iii) |(Dk ∗gMs)(x)|= |(Dmin(ds,k) ∗gMs)(x)| ≤
∥∥Dmin(d j ,L)

∥∥
L∞ ≤ 3d j, when s > j.

In these estimates we have used that k = min(L,d j),
∥∥Dm

∥∥
L∞ ≤ 2m + 1 ≤ 3m, and

that
Dr ∗gMs = Dmin(r,ds) ∗gMs ,

which follows easily by examining the corresponding Fourier coefficients.
Using the estimates in (i), (ii), and (iii), for this x in AM j and k = k(x) we obtain

|(Dk ∗g)(x)| ≥ ε j2M j −3 ∑
1<s< j

εsds−3 ∑
s> j

εsd j . (3.4.14)

Our selection of ε j and M j now ensures that (3.4.14) is a large number. In fact, we
have

3 ∑
s> j

εsd j ≤ ∑
s> j

2−sd j(ds−1)−1 ≤ ∑
s> j

2−s ≤ 1
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and
3 ∑

1<s< j
εsds ≤ 3d j−1 ∑

1<s< j
εs ≤ d j−1 ∑

1<s< j
2−s(ds−1)−1 ≤ d j−1 .

Therefore, the expression in (3.4.14) is at least ε j2M j −d j−1−1≥ 2 j. It follows that
for every j ≥ 0 and every x ∈ AM j there exists a k = k(x) such that

|(Dk ∗g)(x)| ≥ 2 j . (3.4.15)

We conclude that for every j ≥ 0 and x ∈ AM j we have

sup
k≥1

|(Dk ∗g)(x)| ≥ 2 j .

Thus, for all x in the set A =
∞⋂

j=0

∞⋃
r= j

AMr we have

sup
k≥1

|(Dk ∗g)(x)|= ∞ . (3.4.16)

But A is a countable intersection of subsets of T1 of full measure. Therefore, A has
measure 1 and the required conclusion follows. �

3.4.3 Divergence of Bochner–Riesz Means of Integrable Functions

We now turn to the corresponding n-dimensional problem for spherical summability
of Fourier series. The situation here is quite similar at the critical index α = n−1

2 .

Theorem 3.4.6. Let n > 1. There exists an integrable function f on Tn such that

limsup
R→∞

∣∣∣B n−1
2

R ( f )(x)
∣∣∣= limsup

R→∞

∣∣∣∣ ∑
m∈Zn

|m|≤R

(
1− |m|2

R2

) n−1
2 f̂ (m)e2πim·x

∣∣∣∣= ∞

for almost all x ∈ Tn. Furthermore, such a function can be constructed such that it
is supported in an arbitrarily small given neighborhood of the origin.

Proof. We start by defining the set

S =
{

x ∈ Rn : {|x−m| : m ∈ Zn} is linearly independent over Q
}

.

We show that S has full measure in Rn. Indeed, if x∈Rn \S, then there exist k ∈Z+,
m1, . . .mk ∈ Zn, and am1 , . . . ,amk nonzero rational numbers such that

k

∑
j=1

am j |x−m j|= 0 . (3.4.17)



204 3 Fourier Analysis on the Torus

Since the function

t →
k

∑
j=1

am j |t−m j|

is nonzero and real analytic on Rn \Zn, it must vanish only on a set of Lebesgue
measure zero. Therefore, there exists a set Am1,...,mk,am1 ,...,amk

of Lebesgue measure
zero such that (3.4.17) holds exactly when x is in this set. Then

Rn \S ⊆
∞⋃

k=1

⋃
m1,...,mk∈Zn

⋃
am1 ,...,amk∈Q

Am1,...,mk,am1 ,...,amk
,

from which it follows that Rn \S has Lebesgue measure zero.
Let us set

Kα
R (x) = ∑

|m|≤R

(
1− |m|2

R2

)α e2πim·x .

We need the following lemma regarding Kα
R :

Lemma 3.4.7. For each x ∈ S∩Tn, n≥ 2, we have

limsup
R→∞

|K
n−1

2
R (x)|= ∞ .

It is noteworthy to compare the result of this lemma with the analogous one-
dimensional statement

limsup
R→∞

|DR(x)|= ∞

for the Dirichlet kernel, which holds exactly when x = 0. Thus the uniform ill be-

havior of the kernel K
n−1

2
R reflects in some sense its lack of localization.

Proof. Using (3.4.3) and the Poisson summation formula (Theorem 3.1.17), we ob-
tain the identity

Kα
R (x) =

Γ (α +1)
πα

R
n
2−α

∑
m∈Zn

J n
2 +α(2πR|x−m|)
|x−m| n

2 +α
, (3.4.18)

which is valid for all x ∈ Tn \Zn. Because of the asymptotics in Appendix B.7, the
sum (3.4.18) converges for α > n−1

2 . The same asymptotics imply that for x /∈ Zn

and R≥ 1 we have

J n
2 +α(2πR|x−m|) =

e2πiR|x−m|e−i π
2 ( n

2 +α)−i π
4 + e−2πiR|x−m|ei π

2 ( n
2 +α)+i π

4

π
√

R|x−m|

+O
(
(R|x−m|)−

3
2
)

for all α > 0. It is not possible to let α → n−1
2 in (3.4.18), since the series on the

right of that identity diverges for this value of α . It is a remarkable fact, however,
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that if we average over R first, we obtain an oscillatory factor that allows us to let
α = n−1

2 in the previous identity. Now for x /∈ Zn and T > 1 we obtain

1
T

∫ T

1
Kα

R (x)e2πiλR dR

=
Γ (α+1)

πα ∑
m∈Zn

e−i π
2 ( n

2 +α)−i π
4

|x−m| n+1
2 +α

1
T

∫ T

1
e2πiR(λ+|x−m|)R

n−1
2 −α dR

+
Γ (α+1)

πα ∑
m∈Zn

ei π
2 ( n

2 +α)+i π
4

|x−m| n+1
2 +α

1
T

∫ T

1
e2πiR(λ−|x−m|)R

n−1
2 −α dR

+
Γ (α+1)

πα ∑
m∈Zn

O
(

1

|x−m| n+3
2 +α

)
1
T

∫ T

1
R

n−3
2 −α dR .

We now let α → n−1
2 in the preceding expression. Then we have

1
T

∫ T

1
K

n−1
2

R (x)e2πiλR dR (3.4.19)

=
Γ ( n+1

2 )

π
n−1

2
∑

m∈Zn

e−i π
2 ( 2n−1

2 )−i π
4

|x−m|n
1
T

∫ T

1
e2πiR(λ+|x−m|) dR

+
Γ ( n+1

2 )

π
n−1

2
∑

m∈Zn

ei π
2 ( 2n−1

2 )+i π
4

|x−m|n
1
T

∫ T

1
e2πiR(λ−|x−m|) dR

+
Γ ( n+1

2 )

π
n−1

2
∑

m∈Zn
O
(

1
|x−m|n+1

)
1
T

∫ T

1

dR
R

,

and the wonderful fact is that the first two sums converge because of the appearance
of the oscillatory factors. See Exercise 3.4.8(c). It follows from the previous identity
that if λ > 0 and λ 6= |x−m0| for any m0 ∈ Zn, then the expression in (3.4.19)
converges to zero as T → ∞, while it converges to

Γ ( n+1
2 )

π
n−1

2

e±i( π
2 ( 2n−1

2 )+i π
4 )

|x−m0|n
=

Γ ( n+1
2 )

π
n−1

2

e±i πn
2

|x−m0|n

if λ =±|x−m0| for some m0 ∈ Zn. We now fix x0 ∈ S∩Tn and we set

Λx0 = {|x0−m| : m ∈ Zn}= {λ1,λ2,λ3, . . .} ,

where 0 < λ1 < λ2 < λ3 < · · · . Observe that

∞

∑
j=1

1
λ n

j
= ∞ . (3.4.20)

We have shown that
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lim
T→∞

1
T

∫ T

1
K

n−1
2

t (x0)e2πiλ t dt =


Γ ( n+1

2 )

π
n−1

2

ei πn
2

λ n
j

if λ = λ j,

0 if λ 6=±λ j,
Γ ( n+1

2 )

π
n−1

2

e−i πn
2

λ n
j

if λ =−λ j.

(3.4.21)

Since x0 ∈ S∩Tn, the λ j are linearly independent and thus no expression of the form
±λ j1 ±·· ·±λ js is equal to any other λ j. It follows from (3.4.21) that

lim
T→∞

1
T

∫ T

1
K

n−1
2

t (x0)
N

∏
j=1

[
1+

e−i πn
2 e2πiλ jt + ei πn

2 e−2πiλ jt

2

]
dt =

Γ ( n+1
2 )

π
n−1

2

N

∑
j=1

1
λ n

j
.

Suppose that for x0 ∈ S∩Tn we had

sup
R≥1

|K
n−1

2
R (x0)| ≤ Ax0 < ∞ .

Then it would follow from the previous identity that

Γ ( n+1
2 )

π
n−1

2

N

∑
j=1

1
λ n

j
≤ Ax0 lim

T→∞

1
T

∫ T

1

N

∏
j=1

[
1+

e−i πn
2 e2πiλ jt + ei πn

2 e−2πiλ jt

2

]
dt

= Ax0 ,

which contradicts (3.4.20). We deduce that supR≥1 |K
n−1

2
R (x0)| = ∞ for every point

x0 ∈ S∩Tn and this concludes the proof of Lemma 3.4.7. �

We now proceed with the proof of Theorem 3.4.6. This part of the proof is similar

to the proof of Theorem 3.4.2. Lemma 3.4.7 says that the means B
n−1

2
R (δ0)(x), where

δ0 is the Dirac mass at 0, do not converge for almost all x ∈ Tn. Our goal is to
replace this Dirac mass by a series of integrable functions on Tn that have a peak at
the origin.

Let us fix a nonnegative C ∞ radial function Φ̂ on Rn that is supported in the unit
ball |ξ | ≤ 1 and has integral equal to 1. We now set

ϕε(x) = ∑
m∈Zn

1
εn Φ̂( x+m

ε
) = ∑

m∈Zn
Φ(εm)e2πim·x,

where the identity is valid because of the Poisson summation formula. It follows
that the mth Fourier coefficient of ϕε is Φ(εm). Therefore, we have the estimate

sup
x∈Tn

sup
R>0

|B
n−1

2
R (ϕε)(x)| ≤ ∑

m∈Zn
|Φ(εm)| ≤ ∑

m∈Zn

C′
n

(1+ε|m|)n+1 ≤
Cn

εn . (3.4.22)

For any j ≥ 1, we construct measurable subsets E j of Tn that satisfy |E j| ≥ 1− 1
j ,

a sequence of positive numbers 0 < R1 < R2 < · · · , and two sequences of positive
numbers ε j ≤ δ j such that
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sup
R≤R j

∣∣∣B n−1
2

R

( ∞

∑
s=1

2−s(ϕεs −ϕδs)
)
(x)
∣∣∣≥ j for x ∈ E j. (3.4.23)

We pick E1 = /0, R1 = 1, and ε1 = δ1 = 1. Let k > 1 and suppose that we have
selected E j, R j, δ j, and ε j for all 1 ≤ j ≤ k− 1 such that (3.4.23) is satisfied. We
construct Ek, Rk, δk, and εk such that (3.4.23) is satisfied with j = k. We begin by
choosing δk. Let B be a constant such that

|Φ(x)−Φ(y)| ≤ B|x− y|

for all x,y ∈ Rn. Pick δk small enough that

Bδk ∑
|m|≤Rk−1

|m| ≤ 1 . (3.4.24)

Then we let

Ak = Cn2−k
δ
−n
k +Cn

k−1

∑
j=1

2− j(ε−n
j +δ

−n
j ) ,

where Cn is the constant in (3.4.22), and observe that in view of (3.4.22) we have

sup
x∈Tn

sup
R>0

∣∣∣B n−1
2

R

(
−2−k

ϕδk
+

k−1

∑
j=1

2− j(ϕε j −ϕδ j)
)
(x)
∣∣∣≤ Ak . (3.4.25)

Let δ0 be the Dirac mass at the origin in Tn. Since by Fatou’s lemma and Lemma
3.4.7 we have

liminf
N→∞

∣∣∣{x ∈ Tn : sup
0<R≤N

∣∣∣B n−1
2

R (δ0)(x)
∣∣∣> Ak + k +2

}∣∣∣= 1 ,

there exists an Rk > Rk−1 such that the set

Ek =
{

x ∈ Tn : sup
0<R≤Rk

∣∣∣B n−1
2

R (δ0)(x)
∣∣∣> Ak + k +2

}
has measure at least 1− 1

k . We now choose εk ≤ δk such that

sup
x∈Tn

∣∣B n−1
2

R (δ0)(x)−B
n−1

2
R (ϕεk)(x)

∣∣≤ ∑
|m|≤Rk

(
1− |m|2

R2
k

) n−1
2 |1− ϕ̂εk(m)| ≤ 1 .

This is possible, since the preceding expression in the middle tends to zero as εk → 0.
Then for x ∈ Ek we have

inf
x∈Ek

sup
R≤Rk

2−k∣∣B n−1
2

R (ϕεk)(x)
∣∣≥ Ak + k +1 . (3.4.26)

Observe that the construction of δk gives the estimate
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sup
x∈Tn

sup
R≤Rk−1

|B
n−1

2
R (ϕεk −ϕδk

)(x)| ≤ ∑
|m|≤Rk−1

|Φ(εkm)−Φ(δkm)|

≤ B(δk− εk) ∑
|m|≤Rk−1

|m|

≤ Bδk ∑
|m|≤Rk−1

|m| ≤ 1

(3.4.27)

using (3.4.24). The inductive selection of the parameters can be described schemat-
ically as follows:

δ1,R1,E1,ε1 =⇒ δ2 =⇒ A2 =⇒ R2,E2 =⇒ ε2 =⇒ δ3 =⇒ etc.

Let us now prove (3.4.23) for j = k. Write

B
n−1

2
R

( ∞

∑
s=1

2−s(ϕεs−ϕδs)
)
(x) = B

n−1
2

R

(
−2−k

ϕδk
+

k−1

∑
s=1

2−s(ϕεs−ϕδs)
)
(x)

+B
n−1

2
R

(
2−k

ϕεk

)
(x)

+B
n−1

2
R

( ∞

∑
s=k+1

2−s(ϕεs−ϕδs)
)
(x) .

In view of (3.4.25), (3.4.26), and (3.4.27) for all x ∈ Ek, we obtain

sup
R≤Rk−1

∣∣∣B n−1
2

R

( ∞

∑
s=1

2−s(ϕεs −ϕδs)
)
(x)
∣∣∣≥ k ,

which clearly implies (3.4.23) (with j = k), since Rk > Rk−1. Setting

f =
∞

∑
s=1

2−s(ϕεs −ϕδs) ∈ L1(Tn)

we have now proved that supR>0
∣∣B n−1

2
R ( f )(x)

∣∣= ∞ for all x in

∞⋂
k=1

∞⋃
r=k

Er .

Since the latter set has full measure in Tn, the required conclusion follows.
By taking ε1 arbitrarily small (instead of picking ε1 = 1), we force f to be sup-

ported in an arbitrarily small neighborhood of the origin. �

The previous argument shows that the Bochner–Riesz means Bα
R are badly be-

haved on L1(Tn) when α = n−1
2 . It follows that the “rougher” spherical Dirichlet

means D̃(n,N) ∗ f (which correspond to α = 0) are also ill behaved on L1(Tn).
See Exercise 3.4.5. In Chapter 10 we establish the stronger negative result that the
spherical Dirichlet means of Lp functions may also diverge in Lp when p 6= 2.
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Exercises

3.4.1. Prove that if f ∈ L1(T1) satisfies limsupN→∞ |(DN ∗ f )(x)|= ∞ for almost all
x ∈ T1, then the function

F(x1, . . . ,xn) = f (x1)

on Tn satisfies limsupN→∞ |(D(n,N)∗F)(x)|= ∞ for almost all x ∈ Tn.

3.4.2. (H. Weyl ) A sequence {ak}∞
k=0 with values in Tn is called equidistributed if

for every square Q in Tn we have

lim
N→∞

#{k : 0 ≤ k ≤ N−1, ak ∈ Q}
N

= |Q| .

Show that the following are equivalent:
(a) The sequence {ak}∞

k=0 is equidistributed.
(b) For every smooth function f on Tn we have that

lim
N→∞

1
N

N−1

∑
k=0

f (ak) =
∫

Tn
f (x)dx .

(c) For every m ∈ Zn \{0} we have

lim
N→∞

1
N

N−1

∑
k=0

e2πim·ak = 0 .

[
Hint: Prove that (a) =⇒ (b) =⇒ (c) =⇒ (b) =⇒ (a). In proving (a) ⇐⇒ (b),

approximate f by step functions. In proving (c) =⇒ (b), use Fourier inversion.
]

3.4.3. Suppose that x = (x1, . . . ,xn) ∈ Tn and m · x is irrational for all m ∈ Zn \{0}.
Use Exercise 3.4.2 to show that the sequence {([kx1], . . . , [kxn])}∞

k=0 is equidis-
tributed. (In dimension 1 the hypothesis is satisfied if x is irrational.)

3.4.4. The beta function is defined in Appendix A.2. Derive the identity

tα =
1

B(α−β ,β +1)

∫ t

0
(t− s)α−β−1sβ ds

and show that the function Kα
R (x) = ∑|m|≤R

(
1− |m|2

R2

)α e2πim·x satisfies (3.4.2).[
Hint: Take t = 1− |m|2

R2 and change variables s = r2−|m|2
R2 in the previous beta func-

tion identity.
]

3.4.5. Use Exercise 3.4.4 to obtain that if for some x0 ∈ Tn we have

limsup
R→∞

|Kα
R (x0)|< ∞ ,

then for all β > α we have
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sup
R>0

|Kβ

R (x0)|< ∞ .

Conclude that the circular (spherical) Dirichlet means of the function f constructed
in the proof of Theorem 3.4.6 diverge a.e. The same conclusion is true for the
Bochner–Riesz means of f of every order α ≤ n−1

2 .

3.4.6. For t ∈ [0,∞) let

N(t) = #{m ∈ Zn : |m| ≤ t} .

Let 0 = r0 < r1 < r2 < · · · be the sequence all of numbers r for which there exist
m ∈ Zn such that |m|= r.
(a) Observe that N is right continuous and constant on intervals of the form [r j,r j+1).
(b) Show that the distributional derivative of N is the measure

µ(t) = #{m ∈ Zn : |m|= t} ,

defined via the identity 〈µ,ϕ〉= ∑
∞
j=0 #{m ∈ Zn : |m|= r j}ϕ(r j).

3.4.7. Let f ∈ C 1([0,∞)) and 0 ≤ a < b < ∞ not equal to any r j as defined in
Exercise 3.4.6. Derive the useful identity

∑
m∈Zn

a≤|m|≤b

f (|m|) = f (b)N(b)− f (a)N(a)−
∫ b

a
f ′(x)N(x)dx .

3.4.8. (a) Let 0 < λ < ∞ and fix a transcendental number γ in (0,1). Prove that for
k ∈ Z+ we have

∑
m∈Zn

k+γ≤|m|≤k+1+γ

ei|m|

|m|λ
=
−iωn−1 ei(k+1+γ)

(k+1+γ)λ−(n−1) −
−iωn−1 ei(k+γ)

(k+γ)λ−(n−1) +O(k−λ+(n−1)− n−1
n+1 ) ,

as k → ∞, where ωn−1 is the volume of Sn−1.

(b) Use part (a) to show that if λ ≤ n−1, the limit

lim
R→∞

∑
m∈Zn\{0}
|m|≤R

ei|m|

|m|λ

does not exist.
(c) Show that if λ > n− n−1

n+1 , the following series converges:

∑
m∈Zn\{0}

ei|m|

|m|λ ,
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where the infinite sum is interpreted as the limit in part (b).[
Hint: Part (a): One may need Exercises 3.4.7 and 3.1.12. Part (b): Suppose the

limit exists and let βk = −iωn−1ei(k+1+γ)

(k+1+γ)λ−(n−1) −
−iωn−1ei(k+γ)

(k+γ)λ−(n−1) . If the series ∑m∈Zn\{0}
ei|m|

|m|λ

converged, then we would have βk → 0 as k → ∞. But then kλ−(n−1)βk would also
tend to zero, which gives a contradiction.

]
3.4.9. (Pinsky, Stanton, and Trapa [214] ) Prove that the spherical partial sums of
the Fourier series of the characteristic function of the ball B(0, 1

2π
) in Tn diverges at

x = 0 when n≥ 3.[
Hint: Use the idea of Exercise 3.4.8 with λ = n+1

2 .
]

3.5 The Conjugate Function and Convergence in Norm

In this section we address the following fundamental question: Do Fourier series
converge in norm? We begin with some abstract necessary and sufficient conditions
that guarantee such a convergence. In one dimension, we are able to reduce matters
to the study of the so-called conjugate function on the circle, a sister operator of
the Hilbert transform, which is the center of study of the next chapter. In higher
dimensions the situation is more complicated, but we are able to give a positive
answer in the case of square summability.

3.5.1 Equivalent Formulations of Convergence in Norm

The question we pose is for which 1 ≤ p < ∞ we have∥∥D(n,N)∗ f − f
∥∥

Lp(Tn) → 0 as N → ∞ , (3.5.1)

and similarly for the circular Dirichlet kernel D̃(n,N). We tackle this question by
looking at an equivalent formulation of it.

Theorem 3.5.1. Fix 1≤ p < ∞ and {am} in `∞(Zn). For each R≥ 0, let {am(R)}m∈Zn

be a compactly supported sequence (whose support depends on R) that satisfies
limR→∞ am(R) = am. For f ∈ Lp(Tn) define

SR( f )(x) = ∑
m∈Zn

am(R) f̂ (m)e2πim·x

and for h ∈ C ∞(Tn) define

A(h)(x) = ∑
m∈Zn

amĥ(m)e2πim·x.
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Then for all f ∈ Lp(Tn) the sequence SR( f ) converges in Lp as R→∞ if and only if
there exists a constant K < ∞ such that

sup
R≥0

∥∥SR
∥∥

Lp→Lp ≤ K. (3.5.2)

Furthermore, if (3.5.2) holds, then for the same constant K we have

sup
06=h∈C ∞

∥∥A(h)
∥∥

Lp∥∥h
∥∥

Lp

≤ K , (3.5.3)

and then A extends to a bounded operator Ã from Lp(Tn) to itself; moreover, for
every f ∈ Lp(Tn) we have that SR( f )→ Ã( f ) in Lp as R→ ∞.

Proof. If SR( f ) converges in Lp, then
∥∥SR( f )

∥∥
Lp ≤ C f for some constant C f that

depends on f . The uniform boundedness theorem now gives that the operator norms
of SR from Lp to Lp are bounded uniformly in R. This proves (3.5.2).

Conversely, assume (3.5.2). For h ∈ C ∞(Tn) Fatou’s lemma gives∥∥A(h)
∥∥

Lp =
∥∥ lim

R→∞
SR(h)

∥∥
Lp ≤ liminf

R→∞

∥∥SR(h)
∥∥

Lp ≤ K
∥∥h
∥∥

Lp ;

hence (3.5.3) holds. Thus A extends to a bounded operator Ã on Lp(Tn) by density.
We show that for all f ∈ Lp(Tn) we have SR( f ) → Ã( f ) in Lp as R → ∞. Fix f
in Lp(Tn) and let ε > 0 be given. Pick a trigonometric polynomial P satisfying∥∥ f −P

∥∥
Lp ≤ ε . Let d be the degree of P. Then∥∥SR(P)−A(P)

∥∥
Lp ≤

∥∥SR(P)−A(P)
∥∥

L∞

≤ ∑
|m1|+···+|mn|≤d

|am(R)−am| |P̂(m)| ≤ ε ,

provided R > R0, since am(R)→ am for every m with |m1|+ · · ·+ |mn| ≤ d. Then∥∥SR( f )−Ã( f )
∥∥

Lp ≤
∥∥SR( f )−SR(P)

∥∥
Lp +

∥∥SR(P)−Ã(P)
∥∥

Lp +
∥∥Ã(P)−Ã( f )

∥∥
Lp

≤ Kε + ε +Kε = (2K +1)ε

for R > R0. This proves that SR( f ) converges to Ã( f ) in Lp as R→ ∞. �

The most interesting situation arises, of course, when am(R) → am = 1 for all
m ∈ Zn. In this case we expect the operators SR( f ) to converge back to f as R→ ∞.
We should keep in mind the following three examples:
(a) the sequence am(R) = 1 when max1≤ j≤n |m j| ≤ R and zero otherwise, in which
case the operator SR of Theorem 3.5.1 is

SR( f ) = f ∗D(n,R) ; (3.5.4)

(b) the sequence am(R) = 1 when |m| ≤ R and zero otherwise, in which case the SR
of Theorem 3.5.1 is
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S̃R( f ) = f ∗ D̃(n,R) ; (3.5.5)

(c) the sequence am(R) =
(
1− |m|2

R2

)α

+, in which case SR = Bα
R .

Corollary 3.5.2. Let 1 ≤ p < ∞ and α ≥ 0. Let SR and S̃R be as in (3.5.4) and
(3.5.5), respectively, and let Bα

R be the Bochner–Riesz means as defined in (3.4.1).
Then

∀ f ∈ Lp(Tn), D(n,R)∗ f → f in Lp ⇐⇒ sup
R≥0

∥∥SR
∥∥

Lp→Lp < ∞.

∀ f ∈ Lp(Tn), D̃(n,R)∗ f → f in Lp ⇐⇒ sup
R≥0

∥∥S̃R
∥∥

Lp→Lp < ∞.

∀ f ∈ Lp(Tn), Bα
R ( f )→ f in Lp ⇐⇒ sup

R≥0

∥∥Bα
R
∥∥

Lp→Lp < ∞.

Example 3.5.3. We investigate the one-dimensional case in some detail. We take
n = 1 and we define am(N) = 1 for all −N ≤ m ≤ N and zero otherwise. Then
SN( f ) = S̃N( f ) = DN ∗ f , where DN is the Dirichlet kernel. Clearly, the expressions∥∥SN

∥∥
Lp→Lp can be estimated from above by the L1 norm of DN , but this estimate

is quite rough as it yields a bound that blows up as N → ∞. We later show, via a
more delicate argument, that the expressions

∥∥SN
∥∥

Lp→Lp are uniformly bounded in
N when 1 < p < ∞.

This reasoning, however, allows us to deduce that for some function g ∈ L1(T1),
SN(g) may not converge in L1. This is also a consequence of the proof of Theorem
3.4.2; see (3.4.16). Note that since the Fejér kernel FM has L1 norm 1, we have∥∥SN

∥∥
L1→L1 ≥ lim

M→∞

∥∥DN ∗FM
∥∥

L1 =
∥∥DN

∥∥
L1 .

This implies that the expressions
∥∥SN

∥∥
L1→L1 are not uniformly bounded in N, and

therefore Corollary 3.5.2 gives that for some f ∈ L1(T1), SN( f ) does not converge
to f (nor to any other integrable function) in L1.

Although convergence of the partial sums of Fourier series fail in L1, it is a con-
sequence of Plancherel’s theorem that it holds in L2. More precisely, if f ∈ L2(Tn),
then ∥∥D̃N ∗ f − f

∥∥2
L2 = ∑

|m|>N
| f̂ (m)|2 → 0

as N → ∞ and the same result is true for DN . The following question is therefore
naturally raised. Does Lp convergence hold for p 6= 2? This question was answered
in the affirmative by M. Riesz in dimension 1. In higher dimensions a certain in-
teresting dichotomy appears. Although it is a consequence of the one-dimensional
result that the square partial sums D(n,N)∗ f converge to f in Lp(Tn), this is not the
case for the circular partial sums, since there exists f ∈ Lp(Tn) such that D̃(n,N)∗ f
do not converge in Lp if 1 < p 6= 2 < ∞. We study this issue in Chapter 10.

We begin the discussion with the one-dimensional situation.
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Definition 3.5.4. For f ∈ C ∞(T1) define the conjugate function f̃ by

f̃ (x) =−i ∑
m∈Z1

sgn(m) f̂ (m)e2πimx,

where sgn(m) = 1 for m > 0, −1 for m < 0, and 0 for m = 0. Also define the Riesz
projections P+ and P− by

P+( f )(x) =
∞

∑
m=1

f̂ (m)e2πimx , (3.5.6)

P−( f )(x) =
−1

∑
m=−∞

f̂ (m)e2πimx . (3.5.7)

Observe that f = P+( f )+ P−( f )+ f̂ (0), while f̃ = −iP+( f )+ iP−( f ), when f
is in C ∞(T1). The following is a consequence of Theorem 3.5.1.

Proposition 3.5.5. Let 1 ≤ p < ∞. Then the expressions SN( f ) = DN ∗ f converge
to f in Lp(T1) as N → ∞ if and only if there exists a constant Cp > 0 such that for
all smooth f we have

∥∥ f̃
∥∥

Lp(T1) ≤Cp
∥∥ f
∥∥

Lp(T1).

Proof. Observe that

P+( f ) =
1
2
( f + i f̃ )− 1

2
f̂ (0)

and therefore the Lp boundedness of the operator f 7→ f̃ is equivalent to that of the
operator f 7→ P+( f ).

Next, note the validity of the identity

e−2πiNx
2N

∑
m=0

(
f (·)e2πiN(·))̂ (m)e2πimx =

N

∑
m=−N

f̂ (m)e2πimx .

Since multiplication by exponentials does not affect Lp norms, this identity implies
that the norm of the operator SN( f ) = DN ∗ f from Lp to Lp is equal to that of the
operator

S′N(g)(x) =
2N

∑
m=0

ĝ(m)e2πimx

from Lp to Lp. Therefore,

sup
N≥0

∥∥SN
∥∥

Lp→Lp < ∞ ⇐⇒ sup
N≥0

∥∥S′N
∥∥

Lp→Lp < ∞ . (3.5.8)

Suppose now that for all f ∈ Lp(T1), SN( f ) → f in Lp as N → ∞. Corollary 3.5.2
yields supN≥0

∥∥SN
∥∥

Lp→Lp < ∞ and thus supN≥0
∥∥S′N

∥∥
Lp→Lp < ∞ by (3.5.8). Theorem

3.5.1 applied to the sequence am(R) = 1 for 0 ≤ m ≤ R and am(R) = 0 otherwise
gives that the operator A( f ) = P+( f )+ f̂ (0) is bounded on Lp(T1). Hence so is P+.
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Conversely, suppose that P+ extends to a bounded operator from Lp(T1) to itself.
For all f smooth we can write

S′N( f )(x) =
∞

∑
m=0

f̂ (m)e2πimx−
∞

∑
m=2N+1

f̂ (m)e2πimx

=
∞

∑
m=0

f̂ (m)e2πimx− e2πi(2N)x
∞

∑
m=1

f̂ (m+2N)e2πimx

= P+( f )(x)− e2πi(2N)xP+(e−2πi(2N)(·) f )+ f̂ (0) .

The previous identity implies that

sup
N≥0

∥∥S′N( f )
∥∥

Lp ≤
(
2
∥∥P+

∥∥
Lp→Lp +1

)∥∥ f
∥∥

Lp (3.5.9)

for all f smooth, and by density for all f ∈ Lp(T1). (Note that S′N is well defined
on Lp(T1).) In view of (3.5.8), estimate (3.5.9) also holds for SN . Theorem 3.5.1
applied again gives that SN( f )→ f in Lp for all f ∈ Lp(T1). �

3.5.2 The Lp Boundedness of the Conjugate Function

We know now that convergence of Fourier series in Lp is equivalent to the Lp bound-
edness of the conjugate function or either of the two Riesz projections. It is natural
to ask whether these operators are Lp bounded.

Theorem 3.5.6. Given 1 < p < ∞, there is a constant Ap > 0 such that for all f in
C ∞(T1) we have ∥∥ f̃

∥∥
Lp ≤ Ap

∥∥ f
∥∥

Lp . (3.5.10)

Consequently, the Fourier series of Lp functions on the circle converge back to the
functions in Lp for 1 < p < ∞.

Proof. We present a relatively short proof of this theorem due to S. Bochner. Let
f (t) be a trigonometric polynomial on T1 with coefficients c j. We write

f (t) =
N

∑
j=−N

c je2πi jt =
[ N

∑
j=−N

c j + c− j

2
e2πi jt

]
+ i
[ N

∑
j=−N

c j − c− j

2i
e2πi jt

]
and we note that the expressions inside the square brackets are real-valued trigono-
metric polynomials. We may therefore assume that f is real-valued and by subtract-
ing a constant we can assume that f̂ (0) = 0. Since f is real-valued, we have that

f̂ (−m) = f̂ (m) for all m, and since f̂ (0) = 0, we may write

f̃ (t) =−i ∑
m>0

f̂ (m)e2πimt + i ∑
m>0

f̂ (−m)e−2πimt = 2Re
[
− i ∑

m>0
f̂ (m)e2πimt

]
,



216 3 Fourier Analysis on the Torus

which implies that f̃ is also real-valued (see also Exercise 3.5.4(b)). Therefore the
polynomial f + i f̃ contains only positive frequencies. Thus for k ∈ Z+ we have∫

T1
( f (t)+ i f̃ (t))2k dt = 0 .

Expanding the 2k power and taking real parts, we obtain

k

∑
j=0

(−1)k− j
(

2k
2 j

)∫
T1

f̃ (t)2k−2 j f (t)2 j dt = 0 ,

where we used that f is real-valued. Therefore,

∥∥ f̃
∥∥2k

L2k ≤
k

∑
j=1

(
2k
2 j

)∫
T1

f̃ (t)2k−2 j f (t)2 j dt

≤
k

∑
j=1

(
2k
2 j

)∥∥ f̃
∥∥2k−2 j

L2k

∥∥ f
∥∥2 j

L2k ,

by applying Hölder’s inequality with exponents 2k/(2k−2 j) and 2k/(2 j) to the jth
term of the sum. Dividing the last inequality by

∥∥ f
∥∥2k

L2k , we obtain

R2k ≤
k

∑
j=1

(
2k
2 j

)
R2k−2 j, (3.5.11)

where R =
∥∥ f̃
∥∥

L2k/
∥∥ f
∥∥

L2k . It is an elementary fact that if R > 0 satisfies (3.5.11),
then there exists a positive constant C2k such that R≤C2k. We conclude that∥∥ f̃

∥∥
Lp ≤Cp

∥∥ f
∥∥

Lp when p = 2k. (3.5.12)

We can now remove the assumption that f̂ (0) = 0. Apply (3.5.12) to f − f̂ (0), ob-
serve that the conjugate function of a constant is zero, and use the triangle inequality
and the fact that | f̂ (0)| ≤

∥∥ f
∥∥

L1 ≤
∥∥ f
∥∥

Lp to obtain
∥∥ f̃
∥∥

Lp ≤ 2Cp
∥∥ f
∥∥

Lp when p = 2k
and f is a real-valued trigonometric polynomial. Since a general trigonometric poly-
nomial can be written as P+ iQ, where P and Q are real-valued trigonometric poly-
nomials, we obtain the inequality

∥∥ f̃
∥∥

Lp ≤ 4Cp
∥∥ f
∥∥

Lp for all trigonometric polyno-
mials f when p = 2k. Since trigonometric polynomials are dense in Lp, it follows
that (3.5.10) holds for all smooth functions when p = 2k. It also follows that the con-
jugate function has a bounded extension on Lp(T1) when p = 2k and in particular,
this extension is well defined for simple functions.

Every real number p ≥ 2 lies in an interval of the form [2k,2k + 2], for some
k ∈ Z+. Theorem 1.3.4 gives that∥∥ f̃

∥∥
Lp ≤ Ap

∥∥ f
∥∥

Lp (3.5.13)
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for some Ap > 0 and all 2 ≤ p < ∞ when f is a simple function. By density the
same result is valid for all Lp functions when p ≥ 2. Finally, we observe that the
adjoint operator of f 7→ f̃ is f 7→ − f̃ . By duality, estimate (3.5.13) is also valid for
1 < p≤ 2 with constant Ap′ = Ap. �

We extend the preceding result to higher dimensions.

Theorem 3.5.7. Let 1 < p < ∞ and f ∈ Lp(Tn). Then D(n,N)∗ f converges to f in
Lp as N → ∞.

Proof. Let us prove this theorem in dimension n = 2. The same proof can be ad-
justed to work in every dimension. In view of Corollary 3.5.2, it suffices to prove
that for all f smooth on T2 we have

sup
N≥0

∫ 1

0

∫ 1

0

∣∣∣∣ ∑
|m1|≤N

∑
|m2|≤N

e2πi(m1x1+m2x2) f̂ (m1,m2)
∣∣∣∣p dx1 dx2 ≤ K2p∥∥ f

∥∥p
Lp(T2) .

For fixed f ∈ C ∞(T2), N ≥ 0, and x2 ∈ [0,1], define a trigonometric polynomial
gN,x2 on T1 by setting

∑
|m2|≤N

e2πim2x2 f̂ (m1,m2) = ĝN,x2(m1)

for all m1 ∈ Z. Then we have

(DN ∗gN,x2)(x1) = ∑
|m1|≤N

e2πim1x1 ĝN,x2(m1)

and also

gN,x2(x1) = ∑
|m2|≤N

e2πim2x2

[
∑

m1∈Z
e2πim1x1 f̂ (m1,m2)

]
= (DN ∗ fx1)(x2),

where fx1 is the function defined by fx1(y) = f (x1,y). We have∫ 1

0

∫ 1

0

∣∣∣∣ ∑
|m1|≤N

∑
|m2|≤N

e2πi(m1x1+m2x2) f̂ (m1,m2)
∣∣∣∣p dx1 dx2

=
∫ 1

0

∫ 1

0

∣∣∣∣(DN ∗gN,x2)(x1)
∣∣∣∣p dx1 dx2

≤ K p
∫ 1

0

∫ 1

0

∣∣gN,x2(x1)
∣∣p dx1 dx2

= K p
∫ 1

0

∫ 1

0

∣∣∣∣(DN ∗ fx1)(x2)
∣∣∣∣p dx2 dx1

≤ K2p
∫ 1

0

∫ 1

0

∣∣ fx1(x2)
∣∣p dx2 dx1

= K2p∥∥ f
∥∥p

Lp(T2).
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We used twice the fact that the one-dimensional partial sums are uniformly bounded
in Lp when 1 < p < ∞, a consequence of Corollary 3.5.2, Proposition 3.5.5, and
Theorem 3.5.6. �

Exercises

3.5.1. If f ∈ C ∞(Tn), then show that D(n,N) ∗ f and D̃(n,N) ∗ f converge to f
uniformly and in Lp for 1≤ p≤ ∞.

3.5.2. Prove that the norms of the Riesz projections on L2(T1) are at most 1, while
the operation of conjugation f 7→ f̃ is an isometry on L2(T1).

3.5.3. Let −∞ ≤ a j < b j ≤ +∞ for 1 ≤ j ≤ n. Consider the rectangular projection
operator defined on C ∞(Tn) by

P( f )(x) = ∑
a j≤m j≤b j

f̂ (m)e2πi(m1x1+···+mnxn) .

Prove that when 1 < p < ∞, P extends to a bounded operator from Lp(Tn) to itself
with bounds independent of the a j,b j.[
Hint: Express P in terms of the Riesz projection P+.

]
3.5.4. Let Pr(t) be the Poisson kernel on T1 as defined in Exercise 3.1.7. For 0 <

r < 1, define the conjugate Poisson kernel Qr(t) on the circle by

Qr(t) =−i
+∞

∑
m=−∞

sgn (m)r|m|e2πimt .

(a) For 0 < r < 1, prove the identity

Qr(t) =
2r sin(2πt)

1−2r cos(2πt)+ r2 .

(b) Prove that f̃ (t) = limr→1(Qr ∗ f )(t) whenever f is smooth. Conclude that if f is
real-valued, then so is f̃ .
(c) Let f ∈ L1(T1). Prove that the functions z 7→ (Pr ∗ f )(t) and z 7→ (Qr ∗ f )(t) are
harmonic functions of z = re2πit in the region |z|< 1.
(d) Let f ∈ L1(T1). Prove that the function

z 7→ (Pr ∗ f )(t)+ i(Qr ∗ f )(t)

is analytic in z = re2πit and thus (Pr ∗ f )(t) and (Qr ∗ f )(t) are conjugate harmonic
functions.

3.5.5. Let f be in Λ̇α(T1) for some 0 < α < 1. Prove that the conjugate function f̃
is well defined and can be written as
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f̃ (x) = lim
ε→0

∫
ε≤|t|≤1/2

f (x− t)cot(πt)dt

=
∫
|t|≤1/2

(
f (x− t)− f (x)

)
cot(πt)dt.

[
Hint: Use part (b) of Exercise 3.5.4 and the fact that Qr has integral zero over

the circle to write ( f ∗Qr)(x) =
(
( f − f (x))∗Qr

)
(x), allowing use of the Lebesgue

dominated convergence theorem.
]

3.5.6. Suppose that f is a real-valued function on T1 with | f | ≤ 1 and 0≤ λ < π/2.
(a) Prove that ∫

T1
eλ f̃ (t) dt ≤ 1

cos(λ )
.

(b) Conclude that for 0≤ λ < π/2 we have∫
T1

eλ | f̃ (t)| dt ≤ 2
cos(λ )

.

[
Hint: Part (a): Consider the analytic function F(z) on the disk |z| < 1 defined by

F(z) = −i(Pr ∗ f )(θ)+ (Qr ∗ f )(θ), where z = re2πiθ . Then Re eλF(z) is harmonic
and its average over the circle |z| = r is equal to its value at the origin, which is
cos(λ f (0))≤ 1. Let r ↑ 1 and use that for z = e2πit on the circle we have Re eλF(z) ≥
eλ f̃ (t) cos(λ ).

]
3.5.7. Prove that for 0 < α < 1 there is a constant Cα such that∥∥ f̃

∥∥
Λ̇α (T1) ≤Cα

∥∥ f
∥∥

Λ̇α (T1) .[
Hint: Using Exercise 3.5.5, for |h| ≤ 1/10 write f̃ (x+h)− f̃ (x) as∫

|t|≤5|h|

(
f (x− t)− f (x+h)

)
cot(π(t +h))dt

+
∫
|t|≤5|h|

(
f (x− t)− f (x)

)
cot(πt)dt

+
∫

5|h|≤|t|≤1/2

(
f (x− t)− f (x)

)(
cot(π(t +h))− cot(πt)

)
dt

+
(

f (x)− f (x+h)
)∫

5|h|≤|t|≤1/2
cot(π(t +h))dt .

You may use the fact that cot(πt) = 1
πt + b(t), where b(t) is a bounded function

when |t| ≤ 1/2. The case |h| ≥ 1/10 is easy.
]

3.5.8. (a) Show that for M,N positive integers we have

(FM ∗DN)(x) =

FM(x) for M ≤ N,
FN(x)+ M−N

(M+1)(N+1) ∑
|k|≤N

|k|e2πikx for M > N.
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(b) Prove that for some constant c > 0 we have∫
T1

∣∣∣∣ ∑
|k|≤N

|k|e2πikx
∣∣∣∣dx ≥ cN logN

as N → ∞.[
Hint: Part (b): Show that for x ∈ [− 1

2 , 1
2 ] we have

∑
|k|≤N

|k|e2πikx = (N +1)(DN(x)−FN(x))

and use the result of Exercise 3.1.8.
]

3.5.9. Show that the Fourier series of the integrable functions

f1(x) =
∞

∑
j=0

2− jF
222 j (x) , f2(x) =

∞

∑
j=1

1
j2 F

22 j (x) , x ∈ T1,

do not converge in L1(T1).[
Hint: Let M j = 222 j

or M j = 22 j
depending on the situation. For fixed N let jN

be the least integer j such that M j > N. Then for j ≥ jN + 1 we have M j ≥ M2
jN >

N2 ≥ 2N +1, hence M j−N
M j+1 ≥

1
2 . Split the summation indices into the sets j ≥ jN and

j < jN . Conclude that
∥∥ f1 ∗DN

∥∥
L1 and

∥∥ f2 ∗DN
∥∥

L1 tend to infinity as N →∞ using
Exercise 3.5.8.

]
3.5.10. (Stein [251] ) Note that if α ≥ 0, then Bα

R are bounded on L2(Tn) uniformly
in R > 0. Show that if α > n−1

2 , then Bα
R are bounded on L1(Tn) uniformly in R > 0.

Use complex interpolation to prove that for α > n−1
2

∣∣ 1
p −

1
2

∣∣, the Bα
R are bounded on

Lp(Tn) uniformly in R > 0. Compare this problem with Exercise 1.3.5.

3.6 Multipliers, Transference, and Almost Everywhere
Convergence

In Chapter 2 we saw that bounded operators from Lp(Rn) to Lq(Rn) that commute
with translations are given by convolution with tempered distributions on Rn. In par-
ticular, when p = q, these tempered distributions have bounded Fourier transforms,
called Fourier multipliers. Convolution operators that commute with translations
can also be defined on the torus. These lead to Fourier multipliers on the torus.



3.6 Multipliers, Transference, and A.E. Convergence 221

3.6.1 Multipliers on the Torus

In analogy with the nonperiodic case, we could identify convolution operators on
Tn with appropriate distributions on the torus; see Exercise 3.6.2 for an introduction
to this topic. However, it is simpler to avoid this point of view and consider the mul-
tipliers directly, bypassing the discussion of distributions on the torus. The reason
for this is the following theorem.

Theorem 3.6.1. Suppose that T is a linear operator that commutes with translations
and maps Lp(Tn) to Lq(Tn) for some 1 ≤ p,q ≤ ∞. Then there exists a bounded
sequence {am}m∈Zn such that

T ( f )(x) = ∑
m∈Zn

am f̂ (m)e2πim·x (3.6.1)

for all f ∈ C ∞(Tn). Moreover, we have
∥∥{am}

∥∥
`∞ ≤

∥∥T
∥∥

Lp→Lq .

Proof. Consider the functions em(x) = e2πim·x defined on Tn for m in Zn. Since T is
translation invariant for all h ∈ Tn, we have

T (em)(x−h) = T (τh(em))(x) = e−2πim·hT (em)(x)

for every x ∈ Fh, where Fh is a set of full measure on Tn. For x ∈ Tn define D(x) =
|{h ∈ Tn : x ∈ Fh}|. Then D(x)≤ 1 for all x and by Fubini’s theorem D has integral
1 on Tn. Therefore there exists an x0 ∈ Tn such that D(x0) = 1. It follows that for
almost all h ∈ Tn (i.e., for all h in the set {h ∈ Tn : x0 ∈ Fh}) we have T (em)(x0−
h) = e−2πim·hT (em)(x0). Replacing x0−h by x, we obtain

T (em)(x) = e2πim·x(e−2πim·x0T (em)(x0)
)

= amem(x) (3.6.2)

for almost all x ∈ Tn, where we set am = e−2πim·x0T (em)(x0), for m ∈ Zn. Tak-
ing Lq norms in (3.6.2), we deduce |am| =

∥∥T (em)
∥∥

Lq ≤
∥∥T
∥∥

Lp→Lq , and thus am is
bounded. Moreover, since T (em) = amem for all m in Zn, it follows that (3.6.1) holds
for all trigonometric polynomials. By density this extends to all f ∈C ∞(Tn) and the
theorem is proved. �

Definition 3.6.2. Let 1 ≤ p,q ≤ ∞. We call a bounded sequence {am}m∈Zn an
(Lp,Lq) multiplier if the corresponding operator given by (3.6.1) maps Lp(Tn)
to Lq(Tn). If p = q, (Lp,Lp) multipliers are called simply Lp multipliers. When
1 ≤ p < ∞, the space of all Lp multipliers on Tn is denoted by Mp(Zn). This no-
tation follows the convention that Mp(Ĝ) denote the space of Lp multipliers on
Lp(G), where G is a locally compact group and Ĝ is its dual group. The norm of
an element {am} in Mp(Zn) is the norm of the operator T given by (3.6.1) from
Lp(Tn) to itself. This norm is denoted by

∥∥{am}
∥∥

Mp
.

We now examine some special cases. We begin with the case p = q = 2. As
expected, it turns out that M2(Zn) = `∞(Zn).
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Theorem 3.6.3. A linear operator T that commutes with translations maps L2(Tn)
to itself if and only if there exists a sequence {am}m∈Zn in `∞ such that

T ( f )(x) = ∑
m∈Zn

am f̂ (m)e2πim·x (3.6.3)

for all f ∈ C ∞(Tn). Moreover, in this case we have
∥∥T
∥∥

L2→L2 =
∥∥{am}

∥∥
`∞ .

Proof. The existence of such a sequence is guaranteed by Theorem 3.6.1, which also
gives

∥∥{am}
∥∥

`∞ ≤
∥∥T
∥∥

L2→L2 . Conversely, any operator given by the form (3.6.3)
satisfies ∥∥T ( f )

∥∥2
L2 = ∑

m∈Zn
|am f̂ (m)|2 ≤

∥∥{am}
∥∥2

`∞ ∑
m∈Zn

| f̂ (m)|2 ,

and thus
∥∥T
∥∥

L2→L2 ≤
∥∥{am}

∥∥
`∞ . �

We continue with the case p = q = 1. Recall the definition of a finite Borel mea-
sure on Tn. Given such a measure µ , its Fourier coefficients are defined by

µ̂(m) =
∫

Tn
e−2πix·m dµ(x), m ∈ Zn .

Clearly all the Fourier coefficients of the measure µ are bounded by the total vari-
ation

∥∥µ
∥∥ of µ . See Exercise 3.6.3 for basic properties of Fourier transforms of

distributions on the torus.

Theorem 3.6.4. A linear operator T that commutes with translations maps L1(Tn)
to itself if and only if there exists a finite Borel measure µ on the torus such that

T ( f )(x) = ∑
m∈Zn

µ̂(m) f̂ (m)e2πim·x (3.6.4)

for all f ∈ C ∞(Tn). Moreover, in this case we have
∥∥T
∥∥

L1→L1 =
∥∥µ
∥∥. In other

words, M1(Zn) is the set of all sequences given by Fourier coefficients of finite
Borel measures on Tn.

Proof. Fix f ∈ L1(Tn). If (3.6.4) is valid, then T̂ ( f )(m) = f̂ (m)µ̂(m) for all m∈Zn.
But Exercise 3.6.3 gives that f̂ ∗µ(m) = f̂ (m)µ̂(m) for all m ∈ Zn; therefore, the
integrable functions f ∗ µ and T ( f ) have the same Fourier coefficients and they
must be equal. Thus T ( f ) = f ∗ µ , which implies that T is bounded on L1 and∥∥T ( f )

∥∥
L1 ≤

∥∥µ
∥∥∥∥ f

∥∥
L1 .

To prove the converse direction, we suppose that T commutes with translations
and maps L1(Tn) to itself. We recall the following identity obtained in (3.1.20):

Pε(x) = ∑
m∈Zn

e−2π|m|ε e2πim·x =
Γ ( n+1

2 )

π
n+1

2
∑

m∈Zn

ε−n

(1+ | x+m
ε
|2) n+1

2
≥ 0 (3.6.5)

for all x ∈ Tn. Integrating the second series in (3.6.5) over [−1/2,1/2]n, expressing
the result as an integral over Rn, and using the fact that the Poisson kernel on Rn has
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integral one (cf. Example 2.1.13), we conclude that
∥∥Pε

∥∥
L1(Tn) = 1. It follows that∥∥T (Pε)

∥∥
L1(Tn) ≤

∥∥T
∥∥

L1→L1

for all ε > 0. The Banach–Alaoglu theorem gives that there exist a sequence ε j ↓ 0
and a finite Borel measure µ on Tn such that T (Pε j) tends to µ weakly as j → ∞.
This means that for all continuous functions g on Tn we have

lim
j→∞

∫
Tn

g(x)T (Pε j)(x)dx =
∫

Tn
g(x)dµ(x) . (3.6.6)

It follows from (3.6.6) that for all g continuous on Tn we have∣∣∣∣∫Tn
g(x)dµ(x)

∣∣∣∣≤ sup
j

∥∥T (Pε j)
∥∥

L1

∥∥g
∥∥

L∞ ≤
∥∥T
∥∥

L1→L1

∥∥g
∥∥

L∞ .

Since by the Riesz representation theorem we have that the norm of the linear func-
tional

g 7→
∫

Tn
g(x)dµ(x)

on C(Tn) is
∥∥µ
∥∥, it follows that ∥∥µ

∥∥≤ ∥∥T
∥∥

L1→L1 . (3.6.7)

It remains to prove that T has the form given in (3.6.4). By Theorem 3.6.1 we have
that there exists a bounded sequence {am} on Zn such that (3.6.1) is satisfied. Taking
g(x) = e−2πik·x in (3.6.6) and using the representation for T in (3.6.1), we obtain

µ̂(k) =
∫

Tn
e−2πik·x dµ(x) = lim

j→∞

∫
Tn

e−2πik·x
∑

m∈Zn
ame−2πε j |m|e2πim·x dx = ak .

This proves assertion (3.6.4). It follows from (3.6.4) that T ( f ) = f ∗ µ and thus∥∥T
∥∥

L1→L1 ≤
∥∥µ
∥∥. This fact combined with (3.6.7) gives

∥∥T
∥∥

L1→L1 =
∥∥µ
∥∥. �

Remark 3.6.5. It is not hard to see that most basic properties of the space Mp(Rn)
of Lp Fourier multipliers on Rn are also valid for Mp(Zn). In particular, Mp(Zn)
is a closed subspace of `∞ and thus a Banach space itself. Moreover, sums, scalar
multiples, and products of elements of Mp(Zn) are also in Mp(Zn), which makes
this space a Banach algebra. As in the nonperiodic case, we also have Mp(Zn) =
Mp′(Zn) when 1 < p < ∞.

3.6.2 Transference of Multipliers

It is clear by now that multipliers on L1(Tn) and L1(Rn) are very similar, and the
same is true for L2(Tn) and L2(Rn). These similarities became obvious when we
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characterized L1 and L2 multipliers on both Rn and Tn. So far, there is no known
nontrivial characterization of Mp(Rn), but we might ask whether this space is re-
lated to Mp(Zn). There are several connections of this type and there are general
ways to produce multipliers on the torus from multipliers on Rn and vice versa.
General methods of this sort are called transference of multipliers.

We begin with a useful definition.

Definition 3.6.6. Let t0 ∈Rn. A bounded function b on Rn is called regulated at the
point t0 if

lim
ε→0

1
εn

∫
|t|≤ε

(
b(t0− t)−b(t0)

)
dt = 0 . (3.6.8)

The function b is called regulated if it is regulated at every t0 ∈ Rn.

Condition (3.6.8) says that the point t0 is a Lebesgue point of b. This is certainly
the case if the function b is continuous at t0 ∈Rn. If b(t0) = 0, condition (3.6.8) also
holds when b(t0− t) =−b(t0 + t) whenever |t| ≤ ε for some ε > 0.

The first transference result we discuss is the following.

Theorem 3.6.7. Suppose that b is a regulated function that lies in Mp(Rn) for some
1≤ p < ∞. Then the sequence {b(m)}m∈Zn is in Mp(Zn) and moreover,∥∥{b(m)}

∥∥
Mp(Zn) ≤

∥∥b
∥∥

Mp(Rn) .

Also, for all R > 0, the sequences {b(m/R)}m∈Zn are in Mp(Zn) and we have

sup
R>0

∥∥{b(m/R)}
∥∥

Mp(Zn) ≤
∥∥b
∥∥

Mp(Rn) .

The second conclusion of the theorem is a consequence of the first conclusion
(R = 1), since the functions b(ξ/R) and b(ξ ) have the same norm in Mp(Rn).
Before we begin the proof, we state the following lemma, which we derive after the
proof of Theorem 3.6.7.

Lemma 3.6.8. Let T be the operator on Rn whose multiplier is b(ξ ), and let S
be the operator on Tn whose multiplier is the sequence {b(m)}m∈Zn . Assume that
b(ξ ) is regulated at every point m ∈ Zn. Suppose that P and Q are trigonometric
polynomials on Tn and let Lε(x) = e−πε|x|2 for x∈Rn and ε > 0. Then the following
identity is valid whenever α,β > 0 and α +β = 1:

lim
ε→0

ε
n
2

∫
Rn

T (PLεα)(x)Q(x)Lεβ (x)dx =
∫

Tn
S(P)(x)Q(x)dx. (3.6.9)

Proof. We give the proof of Theorem 3.6.7. The case p = 1 can be proved easily
using Theorems 2.5.8, 3.6.4, and Exercise 3.6.4 and is left to the reader. Let us
therefore consider the case 1 < p < ∞. We are assuming that T maps Lp(Rn) to
itself and we need to show that S maps Lp(Tn) to itself. We prove this using duality.
For P and Q trigonometric polynomials, using Lemma 3.6.8, we have
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S(P)(x)Q(x)dx

∣∣∣∣
=
∣∣∣∣ lim

ε→0
ε

n
2

∫
Rn

T (PLε/p)(x)Q(x)Lε/p′(x)dx
∣∣∣∣

≤
∥∥T
∥∥

Lp→Lp limsup
ε→0

ε
n
2
∥∥PLε/p

∥∥
Lp(Rn)

∥∥QLε/p′
∥∥

Lp′(Rn)

=
∥∥T
∥∥

Lp→Lp limsup
ε→0

(
ε

n
2

∫
Rn
|P(x)|pe−επ|x|2 dx

)1
p
(

ε
n
2

∫
Rn
|Q(x)|p′e−επ|x|2 dx

) 1
p′

=
∥∥T
∥∥

Lp→Lp

(∫
Tn
|P(x)|p dx

)1
p
(∫

Tn
|Q(x)|p′ dx

) 1
p′

,

provided for all continuous (periodic) functions g on Tn we have that

lim
ε→0

ε
n
2

∫
Rn

g(x)e−επ|x|2 dx =
∫

Tn
g(x)dx. (3.6.10)

Assuming (3.6.10) for the moment, we take the supremum over all trigonometric
polynomials Q on Tn with Lp′ norm at most 1 to obtain that S maps Lp(Tn) to itself
with norm at most

∥∥T
∥∥

Lp→Lp , yielding the required conclusion.
We now prove (3.6.10). Use the Poisson summation formula to write the left-

hand side of (3.6.10) as

ε
n
2 ∑

k∈Zn

∫
Tn

g(x− k)e−επ|x−k|2 dx =
∫

Tn
g(x)ε

n
2 ∑

k∈Zn
e−επ|x−k|2 dx

=
∫

Tn
g(x) ∑

k∈Zn
e−π|k|2/ε e2πix·k dx

=
∫

Tn
g(x)dx+Aε ,

where
|Aε | ≤

∥∥g
∥∥

L∞ ∑
|k|≥1

e−π|k|2/ε → 0

as ε → 0. This completes the proof of Theorem 3.6.7. �

We now turn to the proof of Lemma 3.6.8.

Proof. It suffices to prove the required assertion for P(x) = e2πim·x and Q(x) =
e2πik·x, k,m ∈ Zn, since the general case follows from this case by linearity. In view
of Parseval’s relation (Proposition 3.1.16 (3)), we have

∫
Tn

S(P)(x)Q(x)dx = ∑
r∈Zn

b(r)P̂(r)Q̂(r) =

{
b(m) when k = m,
0 when k 6= m.

(3.6.11)

On the other hand, using the identity in Theorem 2.2.14 (3), we obtain
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ε
n
2

∫
Rn

T (PLεα)(x)Q(x)Lεβ (x)dx

= ε
n
2

∫
Rn

b(ξ )P̂Lεα(ξ )Q̂Lεβ (ξ )dξ

= ε
n
2

∫
Rn

b(ξ )(εα)−
n
2 e−π

|ξ−m|2
εα (εβ )−

n
2 e−π

|ξ−k|2
εβ dξ

= (εαβ )−
n
2

∫
Rn

b(ξ )e−π
|ξ−m|2

εα e−π
|ξ−k|2

εβ dξ . (3.6.12)

Now if m = k, since α +β = 1, the expression in (3.6.12) is equal to

(εαβ )−
n
2

∫
Rn

b(ξ )e−π
|ξ−m|2

εαβ dξ , (3.6.13)

which tends to b(m) if b is continuous at m, since the family ε−
n
2 e−π

|ξ |2
ε is an ap-

proximate identity as ε → 0. If b is not continuous at m but satisfies condition (3.6.8)
with t0 = m, then still the expression in (3.6.13) tends to b(m) as ε → 0 in view of
the result of Exercise 3.6.6.

We now consider the case m 6= k in (3.6.12). If |m− k| ≥ 1, then every ξ in Rn

must satisfy either |ξ −m| ≥ 1/2 or |ξ − k| ≥ 1/2. Therefore, the expression in
(3.6.12) is controlled by

(εαβ )−
n
2

(∫
|ξ−m|≥ 1

2

b(ξ )e−
π

4εα e−π
|ξ−k|2

εβ dξ +
∫
|ξ−k|≥ 1

2

b(ξ )e−
π

4εβ e−π
|ξ−m|2

εα dξ

)
,

which is in turn controlled by∥∥b
∥∥

L∞

(
α
− n

2 e−
π

4εα +β
− n

2 e−
π

4εβ

)
,

which tends to zero as ε → 0. This proves that the expression in (3.6.11) is equal to
the limit of the expression in (3.6.12) as ε → 0. This completes the proof of Lemma
3.6.8 �

We now obtain a converse of Theorem 3.6.7. If b(ξ ) is a bounded function on
Rn and the sequence {b(m)}m∈Zn is in Mp(Zn), then we cannot necessarily obtain
that b is in Mp(Rn), since such a conclusion would have to depend on all the values
of b and not on the values of b on a set of measure zero such as the integer lattice.
However, a converse can be formulated if we assume that for all R > 0, the se-
quences {b(Rm)}m∈Zn are in Mp(Zn) uniformly in R. Then we obtain that b(Rξ ) is
in Mp(Rn) uniformly in R > 0, which is equivalent to saying that b∈Mp(Rn), since
dilations of multipliers on Rn do not affect their norms (see Proposition 2.5.14).
These remarks can be precisely expressed in the following theorem.

Theorem 3.6.9. Suppose that b(ξ ) is a bounded Riemann integrable function on
Rn and that the sequences {b(m

R )}m∈Zn are in Mp(Zn) uniformly in R > 0 for some
1≤ p < ∞. Then b is in Mp(Rn) and we have
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∥∥

Mp(Rn) ≤ sup
R>0

∥∥{b(m
R )}m∈Zn

∥∥
Mp(Zn). (3.6.14)

Proof. Suppose that f and g are smooth functions with compact support on Rn.
Then there is an R0 > 0 such that for R≥R0, the functions x 7→ f (Rx) and x 7→ g(Rx)
are supported in [−1/2,1/2]n. We define periodic functions

FR(x) = ∑
k∈Zn

f (R(x− k)) and GR(x) = ∑
k∈Zn

g(R(x− k))

on Tn. Observe that the mth Fourier coefficient of FR is F̂R(m) = R−n f̂ (m/R) and
that of GR is ĜR(m) = R−nĝ(m/R). Set

Cb = sup
R>0

∥∥{b(m/R)}m∈Zn
∥∥

Mp(Zn) .

Now for R≥ R0 we have∣∣∣∣ ∑
m∈Zn

b(m/R) f̂ (m/R)ĝ(m/R)Volume
(
[m

R , m+1
R ]n

)∣∣∣∣ (3.6.15)

=
∣∣∣∣Rn

∑
m∈Zn

b(m/R)F̂R(m)ĜR(m)
∣∣∣∣

=
∣∣∣∣Rn

∫
Tn

(
∑

m∈Zn
b(m/R)F̂R(m)e2πim·x

)
GR(x)dx

∣∣∣∣
≤ Rn∥∥{b(m/R)}m

∥∥
Mp(Zn)

∥∥FR
∥∥

Lp(Tn)

∥∥GR
∥∥

Lp′ (Tn)

≤Cb Rn∥∥FR
∥∥

Lp(Rn)

∥∥GR
∥∥

Lp′ (Rn)

= Cb
∥∥ f
∥∥

Lp(Rn)

∥∥g
∥∥

Lp′ (Rn). (3.6.16)

Since the function b is continuous and bounded, it is Riemann integrable over Rn

and the same is true for the function b(ξ ) f̂ (ξ )ĝ(ξ ). The expressions in (3.6.15) tend
to ∣∣∣∣∫Rn

b(ξ ) f̂ (ξ )ĝ(ξ )dξ

∣∣∣∣
as R→ ∞ by the definition of the Riemann integral. We deduce that∫

Rn
b(ξ ) f̂ (ξ )ĝ(ξ )dξ =

∫
Rn

(b f̂ )∨(x)g(x)dx

is controlled in absolute value by the expression in (3.6.16). This implies the con-
clusion of the theorem. �
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3.6.3 Applications of Transference

Having established two main transference theorems, we turn to an application.

Corollary 3.6.10. Let 1≤ p < ∞, f ∈ Lp(Tn), and α ≥ 0. Then

(a)
∥∥D(n,R)∗ f − f

∥∥
Lp(Tn) → 0 as R→ ∞ if and only if χ[−1,1]n ∈Mp(Rn).

(b)
∥∥D̃(n,R)∗ f − f

∥∥
Lp(Tn) → 0 as R→ ∞ if and only if χB(0,1) ∈Mp(Rn).

(c)
∥∥Bα

R ( f )− f
∥∥

Lp(Tn) → 0 as R→ ∞ if and only if (1−|ξ |2)α
+ ∈Mp(Rn).

Proof. First observe that in view of Corollary 3.5.2, the first statements in (a), (b),
and (c) are equivalent to the statements

sup
R>0

∥∥D(n,R)∗ f
∥∥

Lp(Tn) ≤Cp
∥∥ f
∥∥

Lp(Tn) ,

sup
R>0

∥∥D̃(n,R)∗ f
∥∥

Lp(Tn) ≤Cp
∥∥ f
∥∥

Lp(Tn) ,

sup
R>0

∥∥Bα
R ( f )

∥∥
Lp(Tn) ≤Cp

∥∥ f
∥∥

Lp(Tn) ,

for some constant 0 < Cp < ∞ and all f in Lp(Tn). Now define

χ̃B(0,1)(x) =


1 when |x|< 1,
1/2 when |x|= 1,
0 when |x|> 1,

and

χ̃[−1,1]n(x1, . . . ,xn) =


1 when all |x j|< 1,
1/2 when some but not all |x j|= 1,
1/2n when all |x j|= 1,
0 when some |x j|> 1.

It is not difficult to see that the functions χ̃B(0,1) and χ̃[−1,1]n are regulated and Rie-
mann integrable; see Exercise 3.6.7. The function (1− |ξ |2)α

+ is continuous and
therefore it is both regulated and Riemann integrable. Theorems 3.6.7 and 3.6.9 im-
ply that the uniform (in R > 0) boundedness of the operators D(n,R), D̃(n,R), and
Bα

R on Lp(Tn) is equivalent to the statements that the functions χ̃B(0,1), χ̃[−1,1]n ,
and (1− |ξ |2)α

+ are in Mp(Rn), respectively. Since χ̃[−1,1]n = χ[−1,1]n a.e. and
χ̃B(0,1) = χB(0,1) a.e., the required conclusion follows. �

3.6.4 Transference of Maximal Multipliers

We now prove a theorem concerning maximal multipliers analogous to Theorems
3.6.7 and 3.6.9. This enables us to reduce problems related to almost everywhere
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convergence of Fourier series on the torus to problems of boundedness of maximal
operators on Rn.

Let b be a bounded, regulated, and Riemann integrable function defined on all
of Rn. Suppose that b ∈ Mp(Rn) for some 1 < p < ∞. For R > 0, we introduce
multiplier operators

Sb,R(F)(x) = ∑
m∈Zn

F̂(m)b(m/R)e2πim·x , (3.6.17)

Tb,R( f )(x) =
∫

Rn
f̂ (ξ )b(ξ/R)e2πiξ ·x dξ , (3.6.18)

initially defined for smooth functions with compact support f on Rn and smooth
functions F on Tn.

In view of Theorems 3.6.7 and 3.6.9, Sb,R admits a bounded extension on Lp(Tn)
and Tb,R admits a bounded extension on Lp(Rn). These extensions are denoted in
the same way. We introduce maximal operators

Mb(F)(x) = sup
R>0

∣∣Sb,R(F)(x)
∣∣ , (3.6.19)

Nb( f )(x) = sup
R>0

∣∣Tb,R( f )(x) ,
∣∣ (3.6.20)

and we have the following result concerning them:

Theorem 3.6.11. Suppose that b(ξ ) is a bounded, regulated, and Riemann inte-
grable function defined for all ξ ∈ Rn. Let 1 < p < ∞, and suppose that b lies in
Mp(Rn). Let Mb and Nb be as in (3.6.19) and (3.6.20). Then the following assertions
are equivalent for some finite constant Cp:∥∥Mb(F)

∥∥
Lp(Tn) ≤Cp

∥∥F
∥∥

Lp(Tn) , F ∈ Lp(Tn), (3.6.21)∥∥Nb( f )
∥∥

Lp(Rn) ≤Cp
∥∥ f
∥∥

Lp(Rn) , f ∈ Lp(Rn). (3.6.22)

Proof. Using Exercise 3.6.9, it suffices to prove the required equivalences for the
maximal operators

MF
b (F)(x) = sup

t1<···<tk

∣∣Sb,t j(F)(x)
∣∣ ,

NF
b ( f )(x) = sup

t1<···<tk

∣∣Tb,t j( f )(x)
∣∣ ,

uniformly in the choice of the finite subset

F = {t1, . . . , tk}

of R+. Then MF
b may be viewed as an operator defined on Lp(Tn) and taking values

in Lp(Tn, l∞(F )), and NF
b defined on Lp(Rn) with values in Lp(Rn, l∞(F )). Using

this reduction and duality, estimates (3.6.21) and (3.6.22) are equivalent to the pair
of inequalities
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∑
j=1

∑
m∈Zn

F̂j(m)b(m/t j)e2πim·x
∥∥∥

Lp′ (Tn)
≤Cp

∥∥∥ k

∑
j=1

|Fj|
∥∥∥

Lp′ (Tn)
, (3.6.23)

∥∥∥ k

∑
j=1

∫
Rn

f̂ j(ξ )b(ξ/t j)e2πiξ ·x
∥∥∥

Lp′ (Rn)
≤Cp

∥∥∥ k

∑
j=1

| f j|
∥∥∥

Lp′ (Rn)
, (3.6.24)

where f j are functions on Rn, and Fj are functions on Tn. In proving the equiv-
alence of (3.6.23) and (3.6.24), by density, we may work with smooth functions
with compact support f j and trigonometric polynomials Fj. Suppose that (3.6.23)
holds and let f1, . . . , fk,g be smooth functions with compact support on Rn. Then
for R≥ R0 we have that the functions Fj,R(x) = f j(Rx) and GR(x) = g(Rx) are sup-
ported in [−1/2,1/2]n and they can be viewed as functions on Tn once they are
periodized. As before, the mth Fourier coefficient of Fj,R is R−n f̂ j(m/R) and that of
GR is R−nĝ(m/R). Set

Cb = sup
R>0

∥∥{b(m/R)}m∈Zn
∥∥

Mp(Zn) .

As in the proof of Theorem 3.6.9, for R≥ R0 we have∣∣∣∣ k

∑
j=1

∑
m∈Zn

b(m/Rt j) f̂ j(m/R)ĝ(m/R)Volume
(
[m

R , m+1
R ]n

)∣∣∣∣ (3.6.25)

=
∣∣∣∣Rn

∫
Tn

( k

∑
j=1

∑
m∈Zn

b(m/R)F̂j,R(m)e2πim·x
)

GR(x)dx
∣∣∣∣

≤CbRn
∥∥∥ k

∑
j=1

|Fj,R|
∥∥∥

Lp′ (Tn)

∥∥GR
∥∥

Lp(Tn)

≤Cb Rn
∥∥∥ k

∑
j=1

|Fj,R|
∥∥∥

Lp′ (Rn)

∥∥GR
∥∥

Lp(Rn)

= Cb

∥∥∥ k

∑
j=1

| f j|
∥∥∥

Lp′ (Rn)

∥∥g
∥∥

Lp(Rn).

Set δ
t−1
j (b)(ξ ) = b(ξ/t j). Using that b is Riemann integrable, and realizing the limit

of the partial sums in (3.6.25) when R→ ∞ as a Riemann integral, we obtain∣∣∣∣∫Rn

k

∑
j=1

(δ t−1
j (b) f̂ j)∨(x)g(x)dx

∣∣∣∣≤Cp

∥∥∥ k

∑
j=1

| f j|
∥∥∥

Lp′ (Rn)

∥∥g
∥∥

Lp(Rn) .

Taking the supremum over all smooth functions with compact support g whose Lp

norm is at most 1, we deduce (3.6.24).
We now turn to the converse. Assume that (3.6.24) holds. Let P1, . . . ,Pk and Q be

trigonometric polynomials on Tn. Set Lε(x) = e−πε|x|2 . Since b is regulated at every
point in Rn, Lemma 3.6.8 gives



3.6 Multipliers, Transference, and A.E. Convergence 231∣∣∣∣∫Tn

( k

∑
j=1

∑
m∈Zn

P̂j(m)b(m/Rt j)e2πim·x
)

Q(x)dx
∣∣∣∣

=
∣∣∣∣ lim

ε→0
ε

n
2

∫
Rn

( k

∑
j=1

∫
Rn

Pj(ξ )Lε/p′(ξ )b(ξ/Rt j)e2πiξ ·xdξ

)
Q(x)Lε/p(x)dx

∣∣∣∣
≤Cp limsup

ε→0

[
ε

n
2

∥∥∥ k

∑
j=1

∣∣PjLε/p′
∣∣∥∥∥

Lp′ (Rn)

∥∥QLε/p′
∥∥

Lp(Rn)

]

= Cp limsup
ε→0

[
ε

n
2p′
∥∥∥ k

∑
j=1

∣∣Pj
∣∣Lε/p′

∥∥∥
Lp′ (Rn)

(
ε

n
2

∫
Rn
|Q(x)|pe−επ|x|2dx

)1
p
]

= Cp

∥∥∥ k

∑
j=1

∣∣Pj
∣∣∥∥∥

Lp′ (Rn)

∥∥Q
∥∥

Lp(Tn),

where we used (3.6.10) in the last equality. Taking the supremum over all trigono-
metric polynomials Q with Lp norm 1, we obtain (3.6.23), and this completes the
proof of the theorem. �

Remark 3.6.12. Under the hypotheses of Theorem 3.6.11, the following two in-
equalities are also equivalent:∥∥Mb(F)

∥∥
Lp,∞(Tn) ≤Cp

∥∥F
∥∥

Lp(Tn) , F ∈ Lp(Tn), (3.6.26)∥∥Nb( f )
∥∥

Lp,∞(Rn) ≤Cp
∥∥ f
∥∥

Lp(Rn) , f ∈ Lp(Rn). (3.6.27)

Indeed, Exercise 1.4.12 gives that the pair of inequalities (3.6.26) and (3.6.27) is
equivalent to the pair of inequalities∥∥∥ k

∑
j=1

∑
m∈Zn

F̂j(m)b(m/t j)e2πim·x
∥∥∥

Lp′ (Tn)
≤ Cp

∥∥∥ k

∑
j=1

|Fj|
∥∥∥

Lp′,1(Tn)
, (3.6.28)

∥∥∥ k

∑
j=1

∫
Rn

f̂ j(ξ )b(ξ/t j)e2πiξ ·x
∥∥∥

Lp′ (Rn)
≤ Cp

∥∥∥ k

∑
j=1

| f j|
∥∥∥

Lp′,1(Rn)
, (3.6.29)

where Lp′,1 is the Lorentz space.
Now (3.6.29) follows from (3.6.28) in exactly the same way that (3.6.24) fol-

lows from (3.6.23). Conversely, assuming (3.6.29), in order to prove (3.6.28) it will
suffice to know that

lim
ε→0

ε
n

2p′
∥∥∥ k

∑
j=1

∣∣Pj
∣∣Lε/p′

∥∥∥
Lp′,1(Rn)

=
∥∥∥ k

∑
j=1

∣∣Pj
∣∣∥∥∥

Lp′,1(Tn)
. (3.6.30)

For this we refer to Exercise 3.6.8.
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3.6.5 Transference and Almost Everywhere Convergence

Next we consider the issue of almost everywhere convergence of Fourier series of
functions on T1. The following results are valid.

Theorem 3.6.13. There exists a constant C > 0 such that for any function F in
L2(T1) we have ∥∥ sup

N>0
|F ∗DN |

∥∥
L2,∞ ≤C

∥∥F
∥∥

L2 .

Consequently, for any function F ∈ L2(T1), we have

lim
N→∞

∑
|m|≤N

F̂(m)e2πimx = F(x)

for almost every x ∈ [0,1].

This theorem can be extended to Lp functions on T1 for 1 < p < ∞.

Theorem 3.6.14. For every 1 < p < ∞ there exists a finite constant Cp such that for
all F ∈ Lp(T1) we have ∥∥∥ sup

N>0
|F ∗DN |

∥∥∥
Lp
≤Cp

∥∥F
∥∥

Lp .

Consequently, for any F ∈ Lp(T1), we have

lim
N→∞

∑
|m|≤N

F̂(m)e2πimx = F(x)

for almost every x ∈ [0,1].

The proofs of Theorems 3.6.13 and 3.6.14 are lengthy and involved. They are
consequences of Theorems 11.1.1 and 11.2.1, respectively. We discuss the relation-
ship between the aforementioned pairs of theorems.

Consider the following function defined on R:

b(x)(x) =


1 when |x|< 1,
1/2 when |x|= 1,
0 when |x|> 1.

(3.6.31)

Then b is easily seen to be regulated. Let {DR}R>0 be the family of Dirichlet kernels
as defined in (3.1.13). Since DR = DR+ε whenever 0 < ε < 1, for all F ∈ Lp(T1),
1 < p < ∞, we have

sup
R>0

∥∥F ∗DR
∥∥

Lp(T1) = sup
N∈Z+

∥∥F ∗DN
∥∥

Lp(T1) ≤Cp
∥∥F‖Lp(T1) , (3.6.32)

where the last estimate follows from Theorem 3.5.1, Proposition 3.5.5, and Theorem
3.5.6. (The constant Cp naturally depends only on p.)
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Let Sb,R be as in (3.6.17). For an integrable function F on T1 we have

Sb,R(F) = F ∗DR +QR(F) ,

where

QR(F)(x) =

{
1
2 F̂(R)e2πixR + 1

2 F̂(−R)e−2πixR when R ∈ Z+,
0 when R ∈ R+ \Z+.

Since QR is bounded on Lp(T1) with norm 1, using (3.6.32) we conclude that

sup
R>0

∥∥Sb,R(F)
∥∥

Lp(T1) ≤ (Cp +1)
∥∥F‖Lp(T1)

for all F in Lp(T1). Appealing to Theorem 3.6.9, we deduce that the function b
defined in (3.6.31) lies in Mp(R) (i.e., it is an Lp Fourier multiplier).

Next we discuss the boundedness of the corresponding maximal multipliers. If
Mb is as in (3.6.19), then

Mb(F)(x) = sup
R>0

|(F ∗DR)(x)+QR(F)(x)| ,

whenever F is a function on T1 and

Nb( f )(x) = sup
R>0

∣∣∣∣∫R
f̂ (ξ )b(ξ/R)e2πixξ dξ

∣∣∣∣= sup
R>0

∣∣∣∣∫ +R

−R
f̂ (ξ )e2πixξ dξ

∣∣∣∣
for f in Lp(R), 1 < p < ∞. Both integrals may not be absolutely convergent for
all f ∈ Lp(R), but they should be interpreted as the quantity Tb,R( f )(x), which of
course coincides with them for nice f . (The operator Tb,R is defined in (3.6.18).)

Since the sublinear operator F → supR>0 |QR(F)(x)| is clearly bounded on
Lp(T1), it follows from Theorem 3.6.11 that the boundedness of the maximal oper-
ator Mb on Lp(T1) is equivalent to that of the maximal operator Nb on Lp(R). (The
operator Nb is defined in (3.6.20) and is associated with the function b in (3.6.31).)

The maximal operator Nb is called the Carleson operator and is denoted by C .
Then

C ( f )(x) = sup
R>0

∣∣∣∣∫ +R

−R
f̂ (ξ )e2πixξ dξ

∣∣∣∣ .
The boundedness of this operator on Lp(R) is obtained in Chapter 11.

The extension of Theorem 3.6.14 to higher dimensions is a rather straightforward
consequence of the one-dimensional result.

Theorem 3.6.15. For every 1 < p < ∞, there exists a finite constant Cp,n such that
for all f ∈ Lp(Tn) we have∥∥∥ sup

N>0
|D(n,N)∗ f |

∥∥∥
Lp(Tn)

≤Cp,n
∥∥ f
∥∥

Lp(Tn) (3.6.33)
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and consequently
lim

N→∞
∑

m∈Zn

|m j |≤N

f̂ (m)e2πim·x = f (x)

for almost every x ∈ Tn.

Proof. We prove Theorem 3.6.15 when n = 2. Fix a p with 1 < p < ∞. Since the
Riesz projection P+ is bounded on Lp(T1), transference gives that the function χ(0,∞)
is in Mp(R). It follows that the characteristic function of any half-space of the form
x j > 0 in R2 is in Mp(R2). (These functions have to be suitably defined on the line
x j = 0 to be regulated.) Since rotations of multipliers do not affect their norms, it
follows that the characteristic function of the half-space x2 > x1 is in Mp(R2). The
product of two multipliers is a multiplier; thus the characteristic function of the trun-
cated cone |x1| ≤ |x2| ≤ L is also in Mp(R2). Transference gives that the sequence
{am1,m2}m1,m2 defined by am1,m2 = 1 when |m1| ≤ |m2| ≤ L and zero otherwise is in
Mp(Z2) with norm independent of L > 0. This means that for some constant Bp we
have the following inequality for all f in Lp(T2):∫

T2

∣∣∣∣ ∑
m2∈Z
|m2|≤L

∑
m1∈Z

|m1|≤|m2|

f̂ (m1,m2)e2πi(m1x1+m2x2)
∣∣∣∣p dx2 dx1 ≤ Bp

p
∥∥ f
∥∥p

Lp(Tn) , (3.6.34)

where the constant Bp is independent of L > 0. Now let 1 < p < ∞ and suppose that
f ∈ Lp(T2). For fixed x1 ∈ T1 define a function fx1 on T1 as follows:

fx1(x2) = ∑
m2∈Z ‖m2|≤L

∑
m1∈Z

|m1|≤|m2|

[
f̂ (m1,m2)e2πim1x1

]
e2πim2x2 .

Then fx1 ∈ Lp(T1) and its Fourier coefficients are zero for |m2|> L and equal to

f̂x1(m2) = ∑
|m1|≤|m2|

f̂ (m1,m2)e2πim1x1

for |m2| ≤ L. We now have∫
T1

∫
T1

sup
0<N≤L

∣∣∣∣ ∑
|m1|≤N

∑
|m2|≤N

f̂ (m1,m2)e2πim1x1e2πim2x2

∣∣∣∣p dx2 dx1

≤ 2
∫

T1

∫
T1

sup
0<N≤L

∣∣∣∣ ∑
|m2|≤N

[
∑

|m1|≤|m2|
f̂ (m1,m2)e2πim1x1

]
e2πim2x2

∣∣∣∣p dx2 dx1

= 2
∫

T1

∫
T1

sup
0<N≤L

∣∣(DN ∗ fx1)(x2)
∣∣p dx2 dx1

≤ 2Cp
p

∫
T1

∫
T1
| fx1(x2)|p dx2 dx1

≤ 2Cp
pBp

p
∥∥ f
∥∥p

Lp(T2),
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where we used Theorem 3.6.14 in the penultimate inequality and estimate (3.6.34)
in the last inequality. Since the last estimate we obtained is independent of L > 0,
letting L → ∞ and applying Fatou’s lemma, we obtain the conclusion (3.6.33) for
n = 2. The case of a general dimension n≥ 3 presents no additional difficulties. �

Exercises

3.6.1. Let α ≥ 0. Prove that the function (1− |ξ |2)α
+ is in Mp(Rn) if and only if

the function (1−|ξ |)α
+ is in Mp(Rn).[

Hint: Use that smooth functions with compact support lie in Mp.
]

3.6.2. The purpose of this exercise is to introduce distributions on the torus. The
set of test functions on the torus is C ∞(Tn) equipped with the following topology.
Given f j, f in C ∞(Tn), we say that f j → f in C ∞(Tn) if∥∥∂

α f j −∂
α f
∥∥

L∞(Tn) → 0 as j → ∞, ∀ α .

Under this notion of convergence, C ∞(Tn) is a topological vector space with topol-
ogy induced by the family of seminorms ρα(ϕ) = supx∈Tn |(∂ α f )(x)|, where α

ranges over all multi-indices. The dual space of C ∞(Tn) under this topology is the
set of all distributions on Tn and is denoted by D ′(Tn). The definition implies that
for u j and u in D ′(Tn) we have u j → u in D ′(Tn) if and only if〈

u j, f
〉
→
〈
u, f
〉

as j → ∞ for all f ∈ C ∞(Tn).

The following operations can be defined on elements of D ′(Tn): differentiation (as
in Definition 2.3.6), translation and reflection (as in Definition 2.3.11), convolution
with a C ∞ function (as in Definition 2.3.13), multiplication by a C ∞ function (as
in Definition 2.3.15), the support of a distribution (as in Definition 2.3.16). Use the
same ideas as in Rn to prove the following:
(a) Prove that if u ∈ D ′(Tn) and f ∈ C ∞(Tn), then f ∗ u is the C ∞ function x 7→〈
u,τx( f̃ )

〉
.

(b) In contrast to the situation in Rn, the convolution of two distributions on the
torus can be defined. For u,v ∈D ′(Tn) and f ∈ C ∞(Tn) define〈

u∗ v, f
〉

=
〈
u, f ∗ ṽ

〉
.

Check that convolution of distributions on D ′(Tn) is associative, commutative, and
distributive.
(c) Prove the analogue of Proposition 2.3.23: C ∞(Tn) is dense in D ′(Tn).

3.6.3. For u ∈D ′(Tn) and m ∈ Zn define the Fourier coefficient û(m) by

û(m) = u(e−2πim·( ·)) =
〈
u,e−2πim·( ·)〉 .
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Prove properties (1), (2), (4), (5), (6), (8), (9), (11), and (12) of Proposition 2.3.22
regarding the Fourier coefficients of distributions on the circle. Moreover, prove that
for any u, v in D ′(Tn) we have (u ∗ v)̂ (m) = û(m) v̂(m). In particular, this is valid
for finite Borel measures.

3.6.4. Let µ be a finite Borel measure on Rn and let ν be the periodization of µ ,
that is, ν is a measure on Tn defined by

ν(A) = ∑
m∈Zn

µ(A+m)

for all measurable subsets A of Tn. Prove that the restriction of the Fourier transform
of µ on Zn coincides with the sequence of the Fourier coefficients of the measure ν .

3.6.5. Let T be an operator that commutes with translations and maps Lp(Tn) to
Lq(Tn) for some 1 ≤ p,q ≤ ∞. Prove that there exists a distribution u on Tn such
that T ( f ) = f ∗u.

3.6.6. (G. Weiss ) Suppose that the function b on Rn is regulated at the point x0 in
the sense that

lim
ε→0

1
εn

∫
|t|≤ε

(
b(x0− t)−b(x0)

)
dt = 0.

Let Kε(x) = ε−ne−π|x/ε|2 for ε > 0. Prove that (b∗Kε)(x0)→ b(x0) as ε → 0.[
Hint: Prove that for all δ > 0 we have∣∣(b∗Kε)(x0)−b(x0)

∣∣ ≤ 2
∥∥b
∥∥

L∞

∫
|y|≥δ/ε

e−π|y|2dy

+ |Fx0(δ )| δ n

εn e−πδ 2/ε2

+2π sup
0<r≤δ

|Fx0(r)|
∫ δ

ε

0
rn+1e−πr2

dr ,

where Fx0(δ ) = 1
δ n

∫
|t|≤δ

(
b(x0− t)−b(x0)

)
dt.
]

3.6.7. Let vn be the volume of the unit ball in Rn and e1 = (1,0, . . . ,0). Prove that

lim
ε→0

1
vnεn

∫
|x−e1|≤ε

χ|x|≤1 dx → 1
2

.

Conclude that the function

χ̃B(0,1)(x) =


1 when |x|< 1,
1/2 when |x|= 1,
0 when |x|> 1

is regulated.



3.7 Lacunary Series 237

3.6.8. Let Lε(x) = e−πe|x|2 for ε > 0. Given a continuous function g on Tn, prove
that

lim
ε→0

ε
n

2q
∥∥gLε/q

∥∥
Lq,1(Rn) =

∥∥g
∥∥

Lq,1(Tn)

for all 1 < q < ∞.

3.6.9. Suppose that { ft}t∈R is a family of measurable functions on a measure space
X that satisfies ∥∥sup

t∈F
| ft |
∥∥

Lp ≤ b < ∞

for every finite subset F of R. Prove that for any t there is a measurable function f̃t
on X that is a.e. equal to ft such that∥∥sup

t∈R
| f̃t |
∥∥

Lp ≤ b .

[
Hint: Let a = supF

∥∥supt∈F | ft |
∥∥

Lp ≤ b, where the supremum is taken over all finite
subsets F of R. Pick a sequence of sets Fn such that

∥∥supt∈Fn
| ft |
∥∥

Lp → a as n→ ∞.
Let g = supn supt∈Fn

| ft | and note that
∥∥g
∥∥

Lp = a. Then for any s ∈ R we have∥∥∥sup(| fs|, sup
1≤k≤n

sup
t∈Fk

| ft |)
∥∥∥

Lp
≤ a .

This implies
∥∥max(| fs|,g)

∥∥
Lp ≤ a =

∥∥g
∥∥

Lp , so that | fs| ≤ g a.e. for all s ∈ R. This
means that g is an a.e. upper bound for all ft .

]
3.6.10. (E. Prestini ) Let p≥ 2 and k > 0. Show that for f ∈ Lp(T2) we have that

∑
|m1|≤N
|m2|≤Nk

f̂ (m1,m2)e2πi(m1x1+m2x2) → f (x1,x2)

for almost all (x1,x2) in T2.[
Hint: It suffices to take p = 2. Use the splitting f̂ (m1,m2) = f̂ (m1,m2)χ|m2|≤|m1|k +

f̂ (m1,m2)χ|m2|>|m1|k and apply the idea of the proof of Theorem 3.6.15.
]

3.7 Lacunary Series

In this section we take a quick look at lacunary series. These series provide examples
of functions that possess some remarkable properties.
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3.7.1 Definition and Basic Properties of Lacunary Series

We begin by defining lacunary sequences.

Definition 3.7.1. A sequence of positive integers {λk}∞
k=1 is called lacunary if there

exists a constant A > 1 such that λk+1 ≥ Aλk for all k ∈ Z+.

Examples of lacunary sequences are provided by exponential sequences, such as
λk = 2k,3k,4k, . . . . Observe that polynomial sequences such as λk = 1 + k2 are not
lacunary. Note that lacunary sequences tend to infinity as k → ∞.

We begin with the following result.

Proposition 3.7.2. Let λk be a lacunary sequence and let f be an integrable function
on the circle that is differentiable at a point and has Fourier coefficients

f̂ (m) =

{
am when m = λk ,
0 when m 6= λk .

(3.7.1)

Then we have
lim

k→+∞
f̂ (λk)λk = 0 .

Proof. Applying translation, we may assume that the point at which f is differen-
tiable is the origin. Replacing f by

g(t) = f (t)− f (0)cos(t)− f ′(0)sin(t) = f (t)− f (0)
eit+e−it

2
− f ′(0)

eit−e−it

2i

we may assume that f (0) = f ′(0) = 0. (We have ĝ(m) = f̂ (m) for |m| ≥ 2 and thus
the final conclusion for f is equivalent to that for g.)

Using condition and (3.7.1), we obtain that

1≤ |m−λk|< min(A−1,1−A−1)λk =⇒ f̂ (m) = 0 . (3.7.2)

Given ε > 0, pick a positive integer k0 such that if [min(A−1,1−A−1)λk0 ] = 2N0,
then N−2

0 < ε , and

sup

|x|<N
− 1

4
0

∣∣∣∣ f (x)
x

∣∣∣∣< ε . (3.7.3)

The expression in (3.7.3) can be made arbitrarily small, since f is differentiable at
the origin. Now take an integer k with k ≥ k0 and set 2N = [min(A−1,1−A−1)λk],
which is of course at least 2N0. Using (3.7.2), we obtain that for any trigonometric
polynomial KN of degree 2N with K̂N(0) = 1 we have

f̂ (λk) =
∫
|x|≤ 1

2

f (x)KN(x)e−2πiλkx dx . (3.7.4)
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We take KN = (FN/
∥∥FN

∥∥
L2)2, where FN is the Fejér kernel. Using (3.1.15), we ob-

tain first the identity

∥∥FN
∥∥2

L2 =
N

∑
j=−N

(
1− | j|

N +1

)2

= 1+
1
3

N(2N +1)
N +1

>
N
3

(3.7.5)

and also the estimate

FN(x)2 ≤
(

1
N +1

1
4x2

)2

, (3.7.6)

which is valid for |x| ≤ 1/2. In view of (3.7.5) and (3.7.6), we have the estimate

KN(x)≤ 3
16

1
N3

1
x4 . (3.7.7)

We now use (3.7.4) to obtain

λk f̂ (λk) = λk

∫
|x|≤ 1

2

f (x)KN(x)e−2πiλkx dx = I1
k + I2

k + I3
k ,

where

I1
k = λk

∫
|x|≤N−1

f (x)KN(x)e−2πiλkx dx ,

I2
k = λk

∫
N−1<|x|≤N− 1

4
f (x)KN(x)e−2πiλkx dx ,

I3
k = λk

∫
N− 1

4 <|x|≤ 1
2

f (x)KN(x)e−2πiλkx dx .

Since
∥∥KN

∥∥
L1 = 1, it follows that

|I1
k | ≤

λk

N
sup

|x|<N−1

∣∣∣∣ f (x)
x

∣∣∣∣≤ (2N +1)ε

min(A−1,1−A−1)N
,

which can be made arbitrarily small if ε is small. Also, using (3.7.7), we obtain

|I2
k | ≤

3λk

16N3 sup
|x|<N− 1

4

∣∣∣∣ f (x)
x

∣∣∣∣∫N−1<|x|≤N− 1
4

dx
x3 ≤

3λk

16N
sup

|x|<N− 1
4

∣∣∣∣ f (x)
x

∣∣∣∣ ,
which, as observed, is bounded by a constant multiple of ε . Finally, using again
(3.7.7), we obtain

|I3
k | ≤

3
16N3

1

N− 1
4

∫
N− 1

4 <|x|≤ 1
2

| f (x)|dx ≤ 3
16N2

∥∥ f
∥∥

L1 <
3ε

16

∥∥ f
∥∥

L1 .

It follows that for all k ≥ k0 we have
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|λk f̂ (λk)| ≤ |I1
k |+ |I2

k |+ |I3
k | ≤C( f )ε

for some fixed constant C( f ). This proves the required conclusion. �
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Fig. 3.3 The graph of the real and imaginary parts of the function f (t) = ∑
∞
k=0 2−ke2πi3kt .

Corollary 3.7.3. (Weierstrass ) There exists a continuous function on the circle that
is nowhere differentiable.

Proof. Consider the 1-periodic function

f (t) =
∞

∑
k=0

2−ke2πi3kt .

Since this series converges absolutely and uniformly, f is a continuous function.
If f were differentiable at a point, then by Proposition 3.7.2 we would have that
3k f̂ (3k) tends to zero as k → ∞. Since f̂ (3k) = 2−k for k ≥ 0, this is not the case.
Therefore, f is nowhere differentiable. The real and imaginary parts of this function
are displayed in Figure 3.3. �

3.7.2 Equivalence of Lp Norms of Lacunary Series

We now turn to one of the most important properties of lacunary series, equivalence
of their norms. It is a remarkable result that lacunary Fourier series have comparable
Lp norms for 1≤ p < ∞. More precisely, we have the following theorem:

Theorem 3.7.4. Let 0 < λ1 < λ2 < λ3 < · · · be a lacunary sequence with constant
A > 1. Set Λ = {λk : k ∈ Z+}. Then for all 1 < p < ∞ there exists a constant Cp(A)
such that for all f ∈ L1(T1) with f̂ (k) = 0 when k ∈ Z\Λ we have∥∥ f

∥∥
Lp(T1) ≤Cp(A)

∥∥ f
∥∥

L1(T1) . (3.7.8)

Note that the converse inequality to (3.7.8) is trivial. Therefore, Lp norms of lacu-
nary Fourier series are all equivalent for 1≤ p < ∞.
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Proof. We suppose first that f ∈ L2(T1) and we define

fN(x) =
N

∑
j=1

f̂ (λ j)e2πiλ jx . (3.7.9)

Given a 2 ≤ p < ∞, we pick an integer m with 2m > p and we also pick a positive
integer r such that Ar > m. Then we can write fN as a sum of r functions ϕs, s =
1,2, . . . ,r, where each ϕs has Fourier coefficients that vanish except possibly on the
lacunary set

{λkr+s : k ∈ Z+∪{0}}= {µ1,µ2,µ3, . . .} .

It is a simple fact that the sequence {µk}k is lacunary with constant Ar. Then we
have∫ 1

0
|ϕs(x)|2m dx = ∑

1≤ j1,..., jm,k1,...,km≤N
µ j1 +···+µ jm =µk1 +···+µkm

ϕ̂s(µ j1) · · · ϕ̂s(µ jm)ϕ̂s(µk1) · · · ϕ̂s(µkm) .

We claim that if µ j1 + · · ·+ µ jm = µk1 + · · ·+ µkm , then

max(µ j1 , . . . ,µ jm) = max(µk1 , . . . ,µkm) .

Indeed, if max(µ j1 , . . . ,µ jm) > max(µk1 , . . . ,µkm), then

max(µ j1 , . . . ,µ jm)≤ µk1 + · · ·+ µkm ≤ mmax(µk1 , . . . ,µkm) .

But since
Ar max(µk1 , . . . ,µkm)≤max(µ j1 , . . . ,µ jm) ,

it would follow that Ar ≤ m, which contradicts our choice of r. Likewise, we elimi-
nate the case max(µ j1 , . . . ,µ jm) < max(µk1 , . . . ,µkm). We conclude that these num-
bers are equal. We can now continue the same reasoning by induction to conclude
that if µ j1 + · · ·+ µ jm = µk1 + · · ·+ µkm , then

{µk1 , . . . ,µkm}= {µ j1 , . . . ,µ jm} .

Using this fact in the evaluation of the previous multiple sum, we obtain

∫ 1

0
|ϕs(x)|2m dx =

N

∑
j1=1

· · ·
N

∑
jm=1

|ϕ̂s(µ j1)|
2 · · · |ϕ̂s(µ jm)|2 =

(∥∥ϕs
∥∥2

L2

)m
,

which implies that
∥∥ϕs
∥∥

L2m =
∥∥ϕs
∥∥

L2 for all s ∈ {1,2, . . . ,r}. Thus we have

∥∥ fN
∥∥

Lp ≤
∥∥ fN

∥∥
L2m ≤

√
r
( r

∑
s=1

∥∥ϕs
∥∥2

L2m

) 1
2 =

√
r
( r

∑
s=1

∥∥ϕs
∥∥2

L2

) 1
2 =

√
r
∥∥ fN

∥∥
L2 ,
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since the functions ϕs are orthogonal on L2. Since r can be chosen to be [logA m]+1
and m can be taken to be [ p

2 ]+1, we have now established the inequality∥∥ fN
∥∥

Lp(T1) ≤Cp(A)
∥∥ fN

∥∥
L2(T1) , p≥ 2 , (3.7.10)

with Cp(A) =
√

1+
[

logA
(
[ p

2 ]+1
)]

for all fN that have the form (3.7.9). To extend

(3.7.10) to all f ∈ L2(T1), we observe that fN → f in L2 and some subsequence of
them fN j tends to f a.e. Then Fatou’s lemma gives

∫ 1

0
| f (x)|p dx =

∫ 1

0
liminf

j→∞
| fN j(x)|

p dx

≤ liminf
j→∞

∫ 1

0
| fN j(x)|

p dx

≤Cp(A)p liminf
j→∞

∥∥ fN j

∥∥p
L2

= Cp(A)p∥∥ f
∥∥p

L2 ,

which proves (3.7.10) for all f ∈ L2. We now turn our attention to (3.7.8) in the case
1 < p < 2. By interpolation we obtain for 1 < p < 2∥∥ f

∥∥
L2 ≤

∥∥ f
∥∥ 2

3
L4

∥∥ f
∥∥ 1

3
L1 ≤

(
[logA 3]+1

) 1
2 ·

2
3
∥∥ f
∥∥ 2

3
L2

∥∥ f
∥∥ 1

3
L1 .

This implies that for 1 < p < 2 we have∥∥ f
∥∥

Lp(T1) ≤
∥∥ f
∥∥

L2(T1) ≤
(
[logA 3]+1

)∥∥ f
∥∥

L1(T1) .

Combining this with (3.7.10), which now holds for all f ∈ L2, yields (3.7.8). �

Theorem 3.7.4 describes the equivalence of the Lp norms of lacunary Fourier
series for p < ∞. The question that remains is whether there is a similar character-
ization of the L∞ norms of lacunary Fourier series. Such a characterization is given
in Theorem 3.7.6. Before we state and prove this theorem, we need a classical tool,
referred to as a Riesz product.

Definition 3.7.5. A Riesz product is a function of the form

PN(x) =
N

∏
j=1

(
1+a j cos(2πλ jx+2πγ j)

)
, (3.7.11)

where N is a positive integer, λ1 < λ2 < · · ·< λN is a lacunary sequence of integers,
a j are complex numbers, and γ j ∈ [0,1].

We make a few observations about Riesz products. A simple calculation gives
that if PN, j(x) = 1+a j cos(2πλ jx+2πγ j), then
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P̂N, j(m) =


1 when m = 0,
1
2 a je2πiγ j when m = λ j,
1
2 a je−2πiγ j when m =−λ j,
0 when m /∈ {0,λ j,−λ j}.

(3.7.12)

Assume that the constant A associated with the lacunary sequence λ1 <λ2 < · · ·<λN
is at least 3. Then each integer m has at most one representation as a sum

m = ε1λ1 + · · ·+ εNλN ,

where ε j ∈ {−1,1,0}. See Exercise 3.7.1. We now calculate the Fourier coefficients
of the Riesz product defined in (3.7.11). For a fixed integer b, let us denote by δb the
sequence of integers that is equal to 1 at b and zero otherwise. Then, using (3.7.12),
we obtain that

P̂N, j = δ0 + 1
2 a je2πiγ j δλ j +

1
2 a je−2πiγ j δ−λ j ,

and thus P̂N is the N-fold convolution of these functions. Using that δa ∗δb = δa+b,
we obtain

P̂N(m) =


1 when m = 0,

∏
N
j=1

1
2 a je2πiε jγ j when m = ∑

N
j=1 ε jλ j and ∑

N
j=1 |ε j|> 0,

0 otherwise.

It follows that P̂N(λ j) = 1
2 a je2πiγ j for 1≤ j ≤ N and that P̂N(λ j) = 0 for j ≥ N +1,

since each λ j can be written uniquely as a sum of λk’s as 0 ·λ1 + · · ·+0 ·λ j−1 +1 ·λ j.
See Exercise 3.7.1.

We recall the space A(T1) of all functions with absolutely summable Fourier
coefficients with norm the `1 norm of the coefficients.

Theorem 3.7.6. Let 0 < λ1 < λ2 < λ3 < · · · be a lacunary sequence of integers with
constant A > 1. Set Λ = {λk : k ∈ Z+}. Then there exists a constant C(A) such that
for all f ∈ L∞(T1) with f̂ (k) = 0 when k ∈ Z\Λ we have∥∥ f

∥∥
A(T1) = ∑

k∈Λ

| f̂ (k)| ≤C(A)
∥∥ f
∥∥

L∞(T1) . (3.7.13)

Proof. Let us assume first that A ≥ 3. Also fix f ∈ L∞(T1). We consider the Riesz
product

PN(x) =
N

∏
j=1

(
1+ cos(2πλ jx+2πγ j)

)
,

where γ j is defined via the identity | f̂ (λ j)| = e2πiγ j f̂ (λ j). Then PN ≥ 0 and since
P̂N(0) = 1, it follows that

∥∥PN
∥∥

L1 = 1. By Parseval’s relation we obtain
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m∈Z

P̂N(m) f̂ (m)
∣∣∣∣= ∣∣∣∣∫ 1

0
PN(x) f (x)dx

∣∣∣∣≤ ∥∥ f
∥∥

L∞ , (3.7.14)

and the sum in (3.7.14) is finite, since the Fourier coefficients of P̂N form a finitely
supported sequence. But f̂ (m) = 0 for m /∈Λ , while P̂N(λ j) = 1

2 e2πiγ j for 1≤ j≤N.
Moreover, P̂N(λ j) = 0 for j ≥ N +1, as observed earlier. Thus (3.7.14) reduces to

1
2

N

∑
j=1

∣∣ f̂ (λ j)
∣∣= ∣∣∣∣ N

∑
j=1

1
2

e2πiγ j f̂ (λ j)
∣∣∣∣≤ ∥∥ f

∥∥
L∞ .

Letting N →∞, we obtain that ∑
∞
j=1
∣∣ f̂ (λ j)

∣∣≤ 2
∥∥ f
∥∥

L∞ , which proves (3.7.13) when
A≥ 3.

To prove the theorem for 1 < A < 3, we pick a positive integer r with Ar ≥ 3
(take r = [logA 3]+1). We now consider the sequences

{λkr+s}k , k ∈ Z+∪{0},

and we observe that each such sequence is lacunary with constant Ar. The preceding
construction gives

∞

∑
j=1

∣∣ f̂ (λ jr+s)
∣∣≤ 2

∥∥ f
∥∥

L∞ .

Summing over s in the set {1,2, . . . ,r}, we obtain the required conclusion with
C(A) = 2r = 2[logA 3]+2. �

It follows from Theorem 3.7.6 that if Λ = {λk : k ∈ Z+} is a lacunary set and f
is a bounded function on the circle that satisfies f̂ (k) = 0 when k ∈ Z\Λ , then we
have

f (x) = ∑
k∈Λ

f̂ (k)e2πikx .

This is a consequence of the inversion result in Proposition 3.1.14.
Given a subset Λ of the integers, we denote by CΛ the space of all continuous

functions on T1 such that

m ∈ Z\Λ =⇒ f̂ (m) = 0 . (3.7.15)

It is straightforward that CΛ is a closed subspace of all bounded functions on the
circle T1 with the standard L∞ norm.

Definition 3.7.7. A set of integers Λ is called a Sidon set if every function in CΛ has
an absolutely convergent Fourier series.

Example 3.7.8. Every lacunary set is a Sidon set. Indeed, if f satisfies (3.7.15), then
Theorem 3.7.6 gives that

∑
m∈Λ

| f̂ (m)| ≤C(A)
∥∥ f
∥∥

L∞ ;
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hence f has an absolutely convergent Fourier series.

Example 3.7.9. There exist subsets of R that are not Sidon. For example, Z\{0} is
not a Sidon set. See Exercise 3.7.2.

Exercises

3.7.1. Suppose that 0 < λ1 < λ2 < · · ·< λN is a lacunary sequence of integers with
lacunarity constant A ≥ 3. Prove that for every integer m there exists at most one
N-tuple (ε1, . . . ,εN) with each ε j ∈ {−1,1,0} such that

m = ε1λ1 + · · ·+ εNλN .[
Hint: Suppose there exist two such N-tuples. Pick the largest k such that the coef-

ficients of λk are different.
]

3.7.2. Consider the 1-periodic continuous function h(t) = cos(2πt). Then we have
ĥ(0) = 0, but show that ∑k |ĥ(k)|= ∞. Thus Z\{0} is not a Sidon set.

3.7.3. Suppose that 0 < λ1 < λ2 < · · · is a lacunary sequence and let f be a bounded
function on the circle that satisfies f̂ (m) = 0 whenever m∈Z\{λ1,λ2, . . .}. Suppose
also that

sup
t 6=0

| f (t)− f (0)|
|t|α

= B < ∞

for some 0 < α < 1.
(a) Prove that there is a constant C such that | f̂ (λk)| ≤CBλ

−α

k for all k ≥ 1.
(b) Prove that f ∈ Λ̇α(T1).[
Hint: Let 2N = [min(A−1,1−A−1)λk] and let KN be as in the proof of Proposition

3.7.2. Write

f̂ (λk) =
∫
|x|≤N−1

( f (x)− f (0))e−2πiλkxKN(x)dx

+
∫

N−1≤|x|≤ 1
2

( f (x)− f (0))e−2πiλkxKN(x)dx .

Use that
∥∥KN

∥∥
L1 = 1 and also the estimate (3.7.6). Part (b): Use the estimate in part

(a).
]

3.7.4. Let f be an integrable function on the circle whose Fourier coefficients vanish
outside a lacunary set Λ = {λ1,λ2,λ3, . . .}. Suppose that f vanishes identically in a
small neighborhood of the origin. Show that f is in C ∞(T1).[
Hint: Let 2N = [min(A−1,1−A−1)λk] and let KN be as in the proof of Proposition

3.7.2. Write
f̂ (λk) =

∫
|x|≤ 1

2

f (x)e−2πiλkxKN(x)dx
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and use estimate (3.7.6) to obtain that f is in C 2. Continue by induction.
]

3.7.5. Let 1 < a,b < ∞. Consider the 1-periodic function

f (x) =
∞

∑
k=0

a−ke2πibkx .

Prove that the following statements are equivalent:
(a) f is differentiable at a point.
(b) b < a.
(c) f is differentiable everywhere.

3.7.6. Let Λ be a subset of the integers such that for any sequence of complex
numbers {dλ}λ∈Λ with |dλ |= 1 there is a finite Borel measure µ on T1 such that

|µ̂(λ )−dλ |<
1
2

for all λ ∈Λ . Show that Λ is a Sidon set.

3.7.7. Let Λ ⊆ Z+. Suppose that there is a constant A < ∞ such that for any n ∈
Λ ∪{0} the number of elements in the set{

(ε1, . . . ,εm) ∈ {−1,1}m : n =
m

∑
j=1

ε jn j, n1 < · · ·< nm, n j ∈Λ

}
is at most Am. Show that Λ is a Sidon set.[
Hint: Construct a suitable measure µ and use Exercise 3.7.6.

]
3.7.8. Show that the set{

32m+2
+32m+k, 0≤ k ≤ 2m−1, m≥ 1

}
is a Sidon set.[
Hint: Use Exercise 3.7.7.

]

HISTORICAL NOTES

Trigonometric series in one dimension were first considered in the study of the vibrating string
problem and are implicitly contained in the work of d’Alembert, D. Bernoulli, Clairaut, and Euler.
The analogous problem for vibrating higher-dimensional bodies naturally suggested the use of
multiple trigonometric series. However, it was the work of Fourier on steady-state heat conduction
that incited the subsequent systematic development of such series. Fourier announced his results in
1811, although his classical book Théorie de la chaleur was published in 1822. This book contains
several examples of heuristic use of trigonometric expansions and motivated other mathematicians
to carefully study such expansions.
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The fact that the Fourier series of a continuous function can diverge was first observed by
DuBois Reymond in 1876. The Riemann–Lebesgue lemma was first proved by Riemann in his
memoir on trigonometric series (appeared between 1850 and 1860). It carries Lebesgue’s name
today because Lebesgue later extended it to his notion of integral. The rebuilding of the theory
of Fourier series based on Lebesgue’s integral was mainly achieved by de la Vallée-Poussin and
Fatou.

Theorem 3.2.16 was obtained by S. Bernstein in dimension n = 1. Higher-dimensional ana-
logues of the Hardy–Littlewood series of Exercise 3.2.9 were studied by Wainger [287]. These
series can be used to produce examples indicating that the restriction s > α + n/2 in Bernstein’s
theorem is sharp even in higher dimensions. Part (b) of Theorem 3.3.3 is due to Lebesgue when
n = 1 and Marcinkiewicz and Zygmund [190] when n = 2. Marcinkiewicz and Zygmund’s proof
also extends to higher dimensions. The proof given here is based on Lemma 3.3.4 proved by Stein
[260] in a different context. The proof of Lemma 3.3.4 presented here was suggested by T. Tao.

The development of the complex methods in the study of Fourier series was pioneered by
the Russian school, especially Luzin and his students Kolmogorov, Menshov, and Privalov. The
existence of an integrable function on T1 whose Fourier series diverges almost everywhere (The-
orem 3.4.2) is due to Kolmogorov [156]. An example of an integrable function whose Fourier
series diverges everywhere was also produced by Kolmogorov [159] three years later. Localiza-
tion of the Bochner–Riesz means at the critical exponent α = n−1

2 fails for L1 functions on Tn

(see Bochner [25]) but holds for functions f such that | f | log+ | f | is integrable over Tn (see Stein
[252]). The latter article also contains the Lp boundedness of the maximal Bochner–Riesz operator
supR>0 |Bα

R ( f )| for 1 < p < ∞ when α > | 1
p −

1
2 |. Theorem 3.4.6 is also due to Stein [254]. The

technique that involves the points for which the set {|x−m| : m ∈ Zn} is linearly independent over
the rationals was introduced by Bochner [25].

The boundedness of the conjugate function on the circle (Theorem 3.5.6) and hence the Lp

convergence of one-dimensional Fourier series was announced by Riesz in [219], but its proof
appeared a little later in [220]. Luzin’s conjecture [182] on almost everywhere convergence of
the Fourier series of continuous functions was announced in 1913 and settled by Carleson [45]
in 1965 for the more general class of square summable functions (Theorem 3.6.13). Carleson’s
theorem was later extended by Hunt [135] for the class of Lp functions for all 1 < p < ∞ (Theorem
3.6.14). Sjölin [245] sharpened this result by showing that the Fourier series of functions f with
| f |(log+ | f |)(log+ log+ | f |) integrable over T1 converge almost everywhere. Antonov [3] improved
Sjölin’s result by extending it to functions f with | f |(log+ | f |)(log+ log+ log+ | f |) integrable over
T1. One should also consult the related results of Soria [250] and Arias de Reyna [7]. The book
[8] of Arias de Reyna contains a historically motivated comprehensive study of topics related to
the Carleson–Hunt theorem. Counterexamples due to Konyagin [161] show that Fourier series of
functions f with | f |(log+ | f |) 1

2 (log+ log+ | f |)− 1
2−ε integrable over T1 may diverge when ε > 0.

Examples of continuous functions whose Fourier series diverge exactly on given sets of measure
zero are given in Katznelson [152] and Kahane and Katznelson [145].

The extension of the Carleson–Hunt theorem to higher dimensions for square summability of
Fourier series (Theorem 3.6.15) is a rather straightforward consequence of the one-dimensional
result and was independently obtained by Fefferman [88], Sjölin [245], and Tevzadze [277]. An
example showing that the circular partial sums of a Fourier series may not converge in Lp(Tn)
for n ≥ 2 and p 6= 2 was obtained by Fefferman [89]. This example also shows that there exist Lp

functions on Tn for n ≥ 2 whose circular partial sums do not converge almost everywhere when
1 ≤ p < 2. Indeed, if the opposite happened, then the maximal operator f → supN≥0 |D̃(n,N)∗ f |
would have to be finite a.e. for all f ∈ Lp(Tn), and by Stein’s theorem [254] it would have to be
of weak type (p, p) for some 1 < p < 2. But this would contradict Fefferman’s counterexample on
Lp1 for some p < p1 < 2. On the other hand, almost everywhere is valid for the square partial sums
of functions f with | f |(log+ | f |)n(log+ log+ log+ | f |) integrable over Tn, as shown by Antonov
[4]; see also Sjölin and Soria [247].

Transference of regulated multipliers originated in the article of de Leeuw [74]. The methods
of transference in Section 3.6 were beautifully placed into the framework of a general theory by
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Coifman and Weiss [55]. Transference of maximal multipliers (Theorem 3.6.11) was first obtained
by Kenig and Tomas [154] and later elaborated by Asmar, Berkson, and Gillespie [11], [12].

The main references for trigonometric series are the books of Bary [15] and Zygmund [303],
[304]. Other references for one-dimensional Fourier series include the books of Edwards [82],
Dym and McKean [81], Katznelson [153], Körner [162], and the first eight chapters in Torchinsky
[281]. The reader may also consult the book of Krantz [163] for a historical introduction to the
subject of Fourier series.

A classical treatment of multiple Fourier series can be found in the last chapter of Bochner’s
book [26] and in parts of his other book [27]. Other references include the last chapter in Zygmund
[304], the books of Yanushauskas [295] (in Russian) and Zhizhiashvili [299], the last chapter in
Stein and Weiss [265], and the article of Alimov, Ashurov, and Pulatov in [2]. A brief survey article
on the subject was written by Ash [10]. More extensive expositions were written by Shapiro [240],
Igari [136], and Zhizhiashvili [298]. A short note on the history of Fourier series was written by
Zygmund [305].



Chapter 4
Singular Integrals of Convolution Type

In this chapter we take up the one of the fundamental topics covered in this book,
that of singular integrals. This topic is motivated by its intimate connection with
some of the most important problems in Fourier analysis, such as convergence of
Fourier series. As we have seen, the Lp boundedness of the conjugate function on
the circle is equivalent to the Lp convergence of Fourier series of Lp functions. And
since the Hilbert transform on the line is just a version of the conjugate function,
it plays the same role in the convergence of Fourier integrals on the line as the
conjugate function does on the circle.

The Hilbert transform is the prototype of all singular integrals, and a careful
study of it provides the insight and inspiration for subsequent development of the
subject. Historically, the theory of the Hilbert transform depended on techniques
of complex analysis. With the development of the Calderón–Zygmund school, real-
variable methods slowly replaced complex analysis, and this led to the introduction
of singular integrals in other areas of mathematics. Singular integrals are nowa-
days intimately connected with partial differential equations, operator theory, sev-
eral complex variables, and other fields. There are two kinds of singular integral
operators: those of convolution type and those of nonconvolution type. In this chap-
ter we study singular integrals of convolution type.

4.1 The Hilbert Transform and the Riesz Transforms

We begin the investigation of singular integrals with a careful study of the Hilbert
transform. This study provides a great model for the development of the theory of
singular integrals, presented in the remaining sections and in Chapter 8.
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4.1.1 Definition and Basic Properties of the Hilbert Transform

There are several equivalent ways to introduce the Hilbert transform; in this ex-
position we first define it as a convolution operator with a certain principal value
distribution, but we later discuss other equivalent definitions.

We begin by defining a distribution W0 in S ′(R) as follows:

〈
W0,ϕ

〉
=

1
π

lim
ε→0

∫
ε≤|x|≤1

ϕ(x)
x

dx+
1
π

∫
|x|≥1

ϕ(x)
x

dx , (4.1.1)

for ϕ in S (R). The function 1/x integrated over [−1,−ε]
⋃

[ε,1] has mean value
zero, and we may replace ϕ(x) by ϕ(x)−ϕ(0) in the first integral in (4.1.1). Since
(ϕ(x)−ϕ(0))x−1 is controlled by

∥∥ϕ ′∥∥
L∞ , it follows that the limit in (4.1.1) exists.

To see that W0 is indeed in S ′(R), we go an extra step in the previous reasoning
and obtain the estimate∣∣〈W0,ϕ

〉∣∣≤ 2
π

∥∥ϕ
′∥∥

L∞ +
2
π

sup
x∈R

|xϕ(x)| . (4.1.2)

This guarantees that W0 ∈S ′(R).

Definition 4.1.1. The truncated Hilbert transform of f ∈S (R) (at height ε) is de-
fined by

H(ε)( f )(x) =
1
π

∫
|y|≥ε

f (x− y)
y

dy =
1
π

∫
|x−y|≥ε

f (y)
x− y

dy . (4.1.3)

The Hilbert transform of f ∈S (R) is defined by

H( f )(x) = (W0 ∗ f )(x) = lim
ε→0

H(ε)( f )(x) . (4.1.4)

The integral ∫ +∞

−∞

f (x− y)
y

dy

does not converge absolutely but is defined as a limit of the absolutely convergent
integrals ∫

|y|≥ε

f (x− y)
y

dy ,

as ε → 0. Such limits are called principal value integrals and are denoted by the
letters p.v. Using this notation, the Hilbert transform is

H( f )(x) =
1
π

p.v.
∫ +∞

−∞

f (x− y)
y

dy =
1
π

p.v.
∫ +∞

−∞

f (y)
x− y

dy . (4.1.5)

Remark 4.1.2. Note that for given x ∈R, H( f )(x) is defined for all integrable func-
tions f on R that satisfy a Hölder condition near the point x, that is,
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| f (x)− f (y)| ≤Cx|x− y|εx

for some Cx > 0 and εx > 0 whenever |y− x| < δx. Indeed, suppose that this is the
case. Then we write

H(ε)( f )(x) =
1
π

∫
ε<|x−y|<δx

f (y)
x− y

dy+
1
π

∫
|x−y|≥δx

f (y)
x− y

dy

=
1
π

∫
ε<|x−y|<δx

f (y)− f (x)
x− y

dy+
1
π

∫
|x−y|≥δx

f (y)
x− y

dy .

Both integrals converge absolutely; hence the limit of H(ε)( f )(x) exists as ε → 0.
Therefore, the Hilbert transform of a piecewise smooth integrable function is well
defined at all points of Hölder–Lipschitz continuity of the function. On the other
hand, observe that H(ε)( f ) is well defined for all f ∈ Lp, 1≤ p < ∞, which follows
from Hölder’s inequality, since 1/x is integrable to the power p′ on the set |x| ≥ ε .

Fig. 4.1 The graph of the
function H(χE) when E is
a union of three disjoint
intervals J1∪ J2∪ J3.

Example 4.1.3. Consider the characteristic function χ[a,b] of an interval [a,b]. It is
a simple calculation to show that

H(χ[a,b])(x) =
1
π

log
|x−a|
|x−b|

. (4.1.6)

Let us verify this identity. Pick ε < min(|x− a|, |x− b|). To show (4.1.6) consider
the three cases 0 < x− b, x− a < 0, and x− b < 0 < x− a. In the first two cases,
(4.1.6) follows immediately. In the third case we have
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H(χ[a,b])(x) =
1
π

lim
ε→0

(
log

|x−a|
ε

+ log
ε

|x−b|

)
, (4.1.7)

which gives (4.1.6). It is crucial to observe how the cancellation of the odd kernel
1/x is manifested in (4.1.7). Note that H(χ[a,b])(x) blows up logarithmically in x
near the points a and b and decays like |x|−1 as x → ∞. See Figure 4.1.

Example 4.1.4. Let log+ x = logx when x≥ 1 and zero otherwise. Observe that the
calculation in the previous example actually gives

H(ε)(χ[a,b])(x) =



1
π

log+ |x−a|
max(ε, |x−b|)

when x > b,

− 1
π

log+ |x−b|
max(ε, |x−a|)

when x < a,

1
π

log+ |x−a|
ε

− 1
π

log+ |x−b|
ε

when a < x < b.

We now give an alternative characterization of the Hilbert transform using the
Fourier transform. To achieve this we need to compute the Fourier transform of the
distribution W0 defined in (4.1.1). Fix a Schwartz function ϕ on R. Then

〈
Ŵ0,ϕ

〉
=
〈
W0, ϕ̂

〉
=

1
π

lim
ε→0

∫
|ξ |≥ε

ϕ̂(ξ )
dξ

ξ

=
1
π

lim
ε→0

∫
1
ε
≥|ξ |≥ε

∫
R

ϕ(x)e−2πixξ dx
dξ

ξ

= lim
ε→0

∫
R

ϕ(x)
[

1
π

∫
1
ε
≥|ξ |≥ε

e−2πixξ dξ

ξ

]
dx

= lim
ε→0

∫
R

ϕ(x)
[
−i
π

∫
1
ε
≥|ξ |≥ε

sin(2πxξ )
dξ

ξ

]
dx . (4.1.8)

Now use the results (a) and (b) of Exercise 4.1.1 to deduce that the expressions
inside the square brackets in (4.1.8) are uniformly bounded by 8 and converge as
ε → 0 to

lim
ε→0

∫
1
ε
≥|ξ |≥ε

sin(2πxξ )
dξ

ξ
= π sgnx =


π when x > 0,
0 when x = 0,
−π when x < 0.

(4.1.9)

The Lebesgue dominated convergence theorem and these facts allow us to pass the
limit inside the integral in (4.1.8) to obtain that〈

Ŵ0,ϕ
〉

=
∫

R
ϕ(x)(−isgn(x))dx . (4.1.10)
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This implies that
Ŵ0(ξ ) =−isgnξ . (4.1.11)

In particular, identity (4.1.11) says that Ŵ0 is a (bounded) function.
We now use identity (4.1.11) to write

H( f )(x) =
(

f̂ (ξ )(−isgnξ )
)∨(x) . (4.1.12)

This formula can be used to give an alternative definition of the Hilbert transform.
An immediate consequence of (4.1.12) is that∥∥H( f )

∥∥
L2 =

∥∥ f
∥∥

L2 , (4.1.13)

that is, H is an isometry on L2(R). Moreover, H satisfies

H2 = HH =−I , (4.1.14)

where I is the identity operator. Equation (4.1.14) is a simple consequence of the
fact that (−isgnξ )2 =−1. The adjoint operator H∗ of H is uniquely defined via the
identity 〈

f |H(g)
〉

=
∫

R
f H(g)dx =

∫
R

H∗( f ) gdx =
〈
H∗( f ) |g

〉
,

and we can easily obtain that H∗ has multiplier −isgnξ = isgnξ . We conclude that
H∗ =−H. Likewise, we obtain Ht =−H.

4.1.2 Connections with Analytic Functions

We now investigate connections of the Hilbert transform with the Poisson kernel.
Recall the definition of the Poisson kernel Py given in Example 1.2.17. Then for
f ∈ Lp(R), 1≤ p < ∞, we have

(Py ∗ f )(x) =
y
π

∫ +∞

−∞

f (t)
(x− t)2 + y2 dt , (4.1.15)

and the integral in (4.1.15) converges absolutely by Hölder’s inequality, since the
function t 7→ ((x− t)2 + y2)−1 is in Lp′(R) whenever y > 0.

Let Re z and Im z denote the real and imaginary parts of a complex number z.
Observe that

(Py ∗ f )(x) = Re
(

i
π

∫ +∞

−∞

f (t)
x− t + iy

dt
)

= Re
(

i
π

∫ +∞

−∞

f (t)
z− t

dt
)

,

where z = x+ iy. The function
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Ff (z) =
i
π

∫ +∞

−∞

f (t)
z− t

dt

defined on
R2

+ = {z = x+ iy : y > 0}

is analytic, since its ∂/∂ z derivative is zero. The real part of Ff (x+ iy) is (Py ∗ f )(x).
The imaginary part of Ff (x+ iy) is

Im
(

i
π

∫ +∞

−∞

f (t)
x− t + iy

dt
)

=
1
π

∫ +∞

−∞

f (t)(x− t)
(x− t)2 + y2 dt = ( f ∗Qy)(x) ,

where Qy is called the conjugate Poisson kernel and is given by

Qy(x) =
1
π

x
x2 + y2 . (4.1.16)

The function u f + iv f is analytic and thus u f (x + iy) = ( f ∗Py)(x) and v f (x + iy) =
( f ∗Qy)(x) are conjugate harmonic functions. Since the family Py, y > 0, is an ap-
proximate identity, it follows from Theorem 1.2.19 that Py ∗ f → f in Lp(R) as
y→ 0. The following question therefore arises: What is the limit of f ∗Qy as y→ 0?
As we show next, this limit has to be H( f ).

Theorem 4.1.5. Let 1≤ p < ∞. For any f ∈ Lp(R) we have

f ∗Qε −H(ε)( f )→ 0 (4.1.17)

in Lp and almost everywhere as ε → 0.

Proof. We see that

(Qε ∗ f )(x)− 1
π

∫
|t|≥ε

f (x− t)
t

dt =
1
π

( f ∗ψε)(x),

where ψε(x) = ε−1ψ(ε−1x) and

ψ(t) =

{
t

t2+1 −
1
t when |t| ≥ 1,

t
t2+1 when |t|< 1.

(4.1.18)

Note that ψ has integral zero. Furthermore, the integrable function

Ψ(t) =

{
1

t2+1 when |t| ≥ 1,
1 when |t|< 1,

(4.1.19)

is a radially decreasing majorant of ψ . It follows from Theorem 1.2.21 and Corollary
2.1.19 (with a = 0) that f ∗ψε → 0 in Lp and almost everywhere as ε → 0. �

Remark 4.1.6. For f ∈S (R) we know that limε→0 H(ε)( f ) = H( f ), and we there-
fore conclude from (4.1.17) that
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Qε ∗ f → H( f ) a.e.

as ε → 0. This convergence is also valid for general functions f ∈ Lp(R). This is a
consequence of the result of Theorem 4.1.12, estimate (4.1.31), and Theorem 2.1.14.

4.1.3 Lp Boundedness of the Hilbert Transform

As a consequence of the result in Exercise 4.1.4 and of the fact that

x ≤ 1
2 (ex− e−x) ,

we obtain that

|{x : |H(χE)(x)|> α}| ≤ 2
π

|E|
α

, α > 0, (4.1.20)

for all subsets E of the real line of finite measure. Theorem 1.4.19 with p0 = q0 = 1
and p1 = q1 = 2 now implies that H is bounded on Lp for 1 < p < 2. Duality gives
that H∗ =−H is bounded on Lp for 2 < p < ∞ and hence so is H.

We give another proof of the boundedness of the Hilbert transform H on Lp(R),
which has the advantage that it gives the best possible constant in the resulting norm
inequality when p is a power of 2.

Theorem 4.1.7. For all 1 < p < ∞, there exists a positive constant Cp such that∥∥H( f )
∥∥

Lp ≤Cp
∥∥ f
∥∥

Lp

for all f in S (R). Moreover, the constant Cp satisfies Cp ≤ 2p for 2 ≤ p < ∞

and Cp ≤ 2p/(p− 1) for 1 < p ≤ 2. Therefore, the Hilbert transform H admits an
extension to a bounded operator on Lp(R) when 1 < p < ∞.

Proof. The proof we give is based on the interesting identity

H( f )2 = f 2 +2H( f H( f )), (4.1.21)

valid whenever f is a real-valued Schwartz function. Before we prove (4.1.21), we
discuss its origin. The function f + iH( f ) has a holomorphic extension on R2

+ and
therefore so does its square

( f + iH( f ))2 = f 2−H( f )2 + i2 f H( f ) .

Then f 2 − H( f )2 has a harmonic extension u on the upper half-space whose
conjugate harmonic function v must have boundary values H( f 2 −H( f )2). Thus
H( f 2−H( f )2) = 2 f H( f ), which implies (4.1.21) as H2 =−I.

To give an alternative proof of (4.1.21) we take Fourier transforms. Let

m(ξ ) =−isgnξ
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be the symbol of the Hilbert transform. We have

f̂ 2(ξ )+2[H( f H( f ))]̂ (ξ )

= ( f̂ ∗ f̂ )(ξ )+2m(ξ )( f̂ ∗ Ĥ( f ))(ξ )

=
∫

R
f̂ (η) f̂ (ξ −η)dη +2m(ξ )

∫
R

f̂ (η) f̂ (ξ −η)m(η)dη (4.1.22)

=
∫

R
f̂ (η) f̂ (ξ −η)dη +2m(ξ )

∫
R

f̂ (η) f̂ (ξ −η)m(ξ −η)dη . (4.1.23)

Averaging (4.1.22) and (4.1.23) we obtain

f̂ 2(ξ )+2[H( f H( f ))]̂ (ξ ) =
∫

R
f̂ (η) f̂ (ξ −η)

[
1+m(ξ )

(
m(η)+m(ξ −η)

)]
dη .

But the last displayed expression is equal to∫
R

f̂ (η) f̂ (ξ −η)m(η)m(ξ −η)dη = (Ĥ( f )∗ Ĥ( f ))(ξ )

in view of the identity

m(η)m(ξ −η) = 1+m(ξ )m(η)+m(ξ )m(ξ −η),

which is valid for the function m(ξ ) =−isgnξ .
Having established (4.1.21), we can easily obtain Lp bounds for H when p = 2k

is a power of 2. We already know that H is bounded on Lp with norm one when
p = 2k and k = 1. Suppose that H is bounded on Lp with bound cp for p = 2k for
some k ∈ Z+. Then∥∥H( f )

∥∥
L2p =

∥∥H( f )2∥∥ 1
2
Lp ≤

(∥∥ f 2∥∥
Lp +

∥∥2H( f H( f ))
∥∥

Lp

) 1
2

≤
(∥∥ f

∥∥2
L2p +2cp

∥∥ f H( f )
∥∥

Lp

) 1
2

≤
(∥∥ f

∥∥2
L2p +2cp

∥∥ f
∥∥

L2p

∥∥H( f )
∥∥

L2p

) 1
2 .

We obtain that (∥∥H( f )
∥∥

L2p∥∥ f
∥∥

L2p

)2

−2cp

∥∥H( f )
∥∥

L2p∥∥ f
∥∥

L2p

−1≤ 0.

If follows that ∥∥H( f )
∥∥

L2p∥∥ f
∥∥

L2p

≤ cp +
√

c2
p +1 ,

and from this we conclude that H is bounded on L2p with bound

c2p ≤ cp +
√

c2
p +1 . (4.1.24)
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This completes the induction. We have proved that H maps Lp to Lp when p = 2k,
k = 1,2, . . . . Interpolation now gives that H maps Lp to Lp for all p ≥ 2. Since
H∗ =−H, duality gives that H is also bounded on Lp for 1 < p≤ 2.

The previous proof of the boundedness of the Hilbert transform provides us with
some useful information about the norm of this operator on Lp(R). Let us begin
with the identity

cot
x
2

= cotx+
√

1+ cot2 x,

valid for 0 < x < π

2 . If cp ≤ cot π

2p , then (4.1.24) gives that

c2p ≤ cp +
√

c2
p +1≤ cot

π

2p
+
√

1+ cot2
π

2p
= cot

π

2 ·2p
,

and since 1 = cot π

4 = cot π

2·2 , we obtain by induction that the numbers cot π

2p are
indeed bounds for the norm of H on Lp when p = 2k, k = 1,2, . . . . Duality now
gives that the numbers cot π

2p′ = tan π

2p are bounds for the norm of H on Lp when

p = 2k

2k−1 , k = 1,2, . . . . These bounds allow us to derive good estimates for the norm∥∥H
∥∥

Lp→Lp as p → 1 and p → ∞. Indeed, since cot π

2p ≤ p when p ≥ 2, the Riesz–
Thorin interpolation theorem gives that

∥∥H
∥∥

Lp→Lp ≤ 2p for 2 ≤ p < ∞ and by du-
ality

∥∥H
∥∥

Lp→Lp ≤ 2p
p−1 for 1 < p ≤ 2. This completes the proof of this theorem. It

is worth comparing this proof with the one given in Theorem 3.5.6. �

Remark 4.1.8. The numbers cot π

2p for 2 ≤ p < ∞ and tan π

2p for 1 < p ≤ 2 are
indeed equal to the norms of the Hilbert transform H on Lp(R). This requires a
more delicate argument; see Exercise 4.1.12.

Remark 4.1.9. We may wonder what happens when p = 1 or p = ∞. The Hilbert
transform of χ[a,b] computed in Example 4.1.3 is easily seen to be unbounded and
not integrable, since it behaves like 1/|x| as x → ∞. This behavior near infinity
suggests that the Hilbert transform may map L1 to L1,∞. This is indeed the case, but
this will not be shown until Section 4.3.

We now introduce the maximal Hilbert transform.

Definition 4.1.10. The maximal Hilbert transform is the operator

H(∗)( f )(x) = sup
ε>0

∣∣∣H(ε)( f )(x)
∣∣∣ (4.1.25)

defined for all f in Lp, 1≤ p < ∞. For such f , H(ε)( f ) is well defined as a convergent
integral by Hölder’s inequality. Hence H(∗)( f ) makes sense for f ∈ Lp(R), although
for some values of x, H(∗)( f )(x) may be infinite.

Example 4.1.11. Using the result of Example 4.1.4, we obtain that

H(∗)(χ[a,b])(x) =
1
π

∣∣∣∣log
|x−a|
|x−b|

∣∣∣∣ . (4.1.26)
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We see that in general, H(∗)( f )(x) 6= |H( f )(x)| by taking f to be the characteristic
function of the union of two disjoint closed intervals.

The definition of H yields that H(ε)( f ) converges pointwise to H( f ) whenever f
is a smooth function with compact support. If we have the estimate

∥∥H(∗)( f )
∥∥

Lp ≤
Cp
∥∥ f
∥∥

Lp for f ∈ Lp(R), Theorem 2.1.14 yields that H(ε)( f ) converges to H( f ) a.e.
as ε → 0 for any f ∈ Lp. This almost everywhere limit provides a way to describe
H( f ) for general f ∈ Lp(R). Note that Theorem 4.1.7 implies only that H has a
(unique) bounded extension on Lp, but it does not provide a way to describe H( f )
when f is a general Lp function.

The next theorem is a simple consequence of these ideas.

Theorem 4.1.12. There exists a constant C such that for all 1 < p < ∞ we have∥∥H(∗)( f )
∥∥

Lp ≤C max
(

p,(p−1)−1)∥∥ f
∥∥

Lp . (4.1.27)

Moreover, for all f in Lp(R), H(ε)( f ) converges to H( f ) a.e. and in Lp.

Proof. The following proof yields the slightly weaker bound C max
(

p,(p−1)−2
)
.

Another proof of this theorem with the asserted bound in (4.1.27) is given in Theo-
rem 8.2.3.

Recall the kernels Pε and Qε defined in (4.1.15) and (4.1.16). Fix 1 < p < ∞ and
suppose momentarily that

f ∗Qε = H( f )∗Pε , ε > 0 , (4.1.28)

holds whenever f is an Lp function. Then we have

H(ε)( f ) = H(ε)( f )− f ∗Qε +H( f )∗Pε . (4.1.29)

Using the identity

H(ε)( f )(x)− ( f ∗Qε)(x) =− 1
π

∫
R

f (x− t)ψε(t)dt , (4.1.30)

where ψ is as in (4.1.18), and applying Corollary 2.1.12, we obtain the estimate

sup
ε>0

|H(ε)( f )(x)− ( f ∗Qε)(x)| ≤
1
π

∥∥Ψ∥∥L1M( f )(x) , (4.1.31)

where Ψ is as in (4.1.19) and M is the Hardy–Littlewood maximal function. In view
of (4.1.29) and (4.1.31), we obtain for f ∈ Lp(Rn) that

|H(∗)( f )(x)| ≤
∥∥Ψ∥∥L1M( f )(x)+M(H( f ))(x) . (4.1.32)

It follows immediately from (4.1.32) that H(∗) is Lp bounded with norm at most
C max

(
p,(p−1)−2

)
.



4.1 The Hilbert Transform and the Riesz Transforms 259

It suffices therefore to establish (4.1.28). In the proof of (4.1.28), we might as
well assume that f is a Schwartz function. Taking Fourier transforms, we see that
(4.1.28) is a consequence of the identity(

(−isgnξ )e−2π|ξ |)∨(x) =
1
π

x
x2 +1

. (4.1.33)

Writing the inverse Fourier transform as an integral from−∞ to +∞ and then chang-
ing this to an integral from 0 to ∞, we obtain that (4.1.33) is equivalent to the identity

−i
∫

∞

0
e−2πξ [e2πixξ − e−2πixξ ]dξ =

1
π

x
x2 +1

,

which can be easily checked using integration by parts twice.
The statement in the theorem about the almost everywhere convergence of

H(ε)( f ) to H( f ) is a consequence of (4.1.27), of the fact that the alleged conver-
gence holds for Schwartz functions, and of Theorem 2.1.14. Finally, the Lp con-
vergence follows from the almost everywhere convergence and the Lebesgue domi-
nated convergence theorem in view of the validity of (4.1.32). �

4.1.4 The Riesz Transforms

We now study an n-dimensional analogue of the Hilbert transform. It turns out that
there exist n operators in Rn, called the Riesz transforms, with properties analogous
to those of the Hilbert transform on R.

To define the Riesz transforms, we first introduce tempered distributions Wj on
Rn, for 1≤ j ≤ n, as follows. For ϕ ∈S (Rn), let

〈
Wj,ϕ

〉
=

Γ ( n+1
2 )

π
n+1

2
lim
ε→0

∫
|y|≥ε

y j

|y|n+1 ϕ(y)dy.

One should check that indeed Wj ∈S ′(Rn). Observe that the normalization of Wj
is similar to that of the Poisson kernel.

Definition 4.1.13. For 1 ≤ j ≤ n, the jth Riesz transform of f is given by convolu-
tion with the distribution Wj, that is,

R j( f )(x) = ( f ∗Wj)(x) =
Γ ( n+1

2 )

π
n+1

2
p.v.

∫
Rn

x j − y j

|x− y|n+1 f (y)dy , (4.1.34)

for all f ∈S (Rn). Definition 4.1.13 makes sense for any integrable function f that
has the property that for all x there exist Cx > 0, εx > 0, and δx > 0 such that for
y satisfying |y− x| < δx we have | f (x)− f (y)| ≤ Cx|x− y|εx . The principal value
integral in (4.1.34) is as in Definition 4.1.1.
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We now give a characterization of R j using the Fourier transform. For this we
need to compute the Fourier transform of Wj.

Proposition 4.1.14. The jth Riesz transform R j is given on the Fourier transform
side by multiplication by the function −iξ j/|ξ |. That is, for any f in S (Rn) we
have

R j( f )(x) =
(
−

iξ j

|ξ |
f̂ (ξ )

)∨
(x) . (4.1.35)

Proof. The proof is essentially a reprise of the corresponding proof for the Hilbert
transform, but it involves a few technical difficulties. Fix a Schwartz function ϕ on
Rn. Then for 1≤ j ≤ n we have〈

Ŵj,ϕ
〉

=
〈
Wj, ϕ̂

〉
(4.1.36)

=
Γ ( n+1

2 )

π
n+1

2
lim
ε→0

∫
|ξ |≥ε

ϕ̂(ξ )
ξ j

|ξ |n+1 dξ

=
Γ ( n+1

2 )

π
n+1

2
lim
ε→0

∫
1
ε
≥|ξ |≥ε

∫
Rn

ϕ(x)e−2πix·ξ dx
ξ j

|ξ |n+1 dξ

= lim
ε→0

∫
Rn

ϕ(x)

[
Γ ( n+1

2 )

π
n+1

2

∫
1
ε
≥|ξ |≥ε

e−2πix·ξ ξ j

|ξ |n+1 dξ

]
dx

= lim
ε→0

∫
Rn

ϕ(x)
[

Γ ( n+1
2 )

π
n+1

2

∫
Sn−1

∫
ε≤r≤ 1

ε

e−2πirx·θ r
rn+1 rn−1dr θ jdθ

]
dx

=
∫

Rn
ϕ(x)

[
−i

Γ ( n+1
2 )

π
n+1

2

∫
Sn−1

∫
∞

0
sin(2πrx ·θ)

dr
r

θ j dθ

]
dx

=
∫

Rn
ϕ(x)

[
−i

π

2
Γ ( n+1

2 )

π
n+1

2

∫
Sn−1

sgn(x ·θ)θ j dθ

]
dx

=
∫

Rn
−iϕ(x)

x j

|x|
dx ,

where in the penultimate equality we used the identity
∫

∞

0
sin t

t dt = π

2 , for which we
refer to Exercise 4.1.1, while in the last equality we used the identity

−i
π

2
Γ ( n+1

2 )

π
n+1

2

∫
Sn−1

sgn(x ·θ)θ j dθ =−i
x j

|x|
, (4.1.37)

which needs to be established. The passage of the limit inside the integral in the
previous calculation is a consequence of the Lebesgue dominated convergence the-
orem, which is justified from the fact that∣∣∣∣∫ 1/ε

ε

sin(2πrθ)
r

dr
∣∣∣∣≤ 4 (4.1.38)
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for all ε > 0. For a proof of (4.1.38) we again refer to Exercise 4.1.1. �

It remains to establish (4.1.37). Let us recall that O(n) is the set of all orthogonal
n× n matrices with real entries. An invertible matrix A is called orthogonal if its
transpose At is equal to its inverse A−1, that is, AAt = AtA = I.

Lemma 4.1.15. The following identity is valid for all ξ ∈ Rn \{0}:

∫
Sn−1

sgn(ξ ·θ)θ j dθ =
2π

n−1
2

Γ ( n+1
2 )

ξ j

|ξ |
. (4.1.39)

Therefore (4.1.37) holds.

Proof. We begin with the identity

∫
Sn−1

sgn(θk)θ j dθ =


0 if k 6= j,

∫
Sn−1

|θ j|dθ if k = j,
(4.1.40)

which can be proved by noting that for k 6= j, sgn(θk) has a constant sign on the
hemispheres θk > 0 and θk < 0, on either of which the function θ 7→ θ j has integral
zero.

It suffices to prove (4.1.39) for a unit vector ξ . Given ξ ∈ Sn−1, pick an orthog-
onal n×n matrix A = (akl)k,l such that Ae j = ξ . Then the jth column of the matrix
A is the vector (ξ1,ξ2, . . . ,ξn)t . We have∫

Sn−1
sgn(ξ ·θ)θ j dθ =

∫
Sn−1

sgn(Ae j ·θ)θ j dθ

=
∫

Sn−1
sgn(e j ·At

θ)(AAt
θ) j dθ

=
∫

Sn−1
sgn(e j ·θ)(Aθ) j dθ

=
∫

Sn−1
sgn(θ j)(a j1θ1 + · · ·+ξ jθ j + · · ·+a jnθn)dθ

= ξ j

∫
Sn−1

sgn(θ j)θ j dθ + ∑
1≤m 6= j≤n

0

=
ξ j

|ξ |

∫
Sn−1

|θ j|dθ .

Next, for all j ∈ {1,2, . . . ,n}, we compute the value of the integral∫
Sn−1

|θ j|dθ =
∫

Sn−1
|θ1|dθ ,

which is obviously independent of j by symmetry. In view of the result of Appendix
D.2, we write
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Sn−1

|θ1|dθ =
∫ 1

−1
|s|
∫
√

1−s2 Sn−2
dϕ

ds

(1− s2)
1
2

= ωn−2

∫ 1

−1
|s|(1− s2)

n−3
2 ds

= ωn−2

∫ 1

0
u

n−3
2 du

=
2ωn−2

n−1

=
2π

n−1
2

Γ ( n−1
2 ) n−1

2

=
2π

n−1
2

Γ ( n+1
2 )

,

having used the expression for ωn−2 in Appendix A.3. This proves (4.1.39). The
proof of the lemma and hence that of Proposition 4.1.14 is complete. �

Proposition 4.1.16. The Riesz transforms satisfy

−I =
n

∑
j=1

R2
j , (4.1.41)

where I is the identity operator.

Proof. Use the Fourier transform and the identity ∑
n
j=1(−iξ j/|ξ |)2 =−1 to obtain

that ∑
n
j=1 R2

j( f ) =− f for any f in the Schwartz class. �

Next we discuss a use of the Riesz transforms to partial differential equations.

Example 4.1.17. Suppose that f is a given Schwartz function on Rn and that u is a
distribution that solves Laplace’s equation

∆(u) = f .

Then we can express all second-order derivatives of u in terms of the Riesz trans-
forms of f . First we note that

(−4π
2|ξ |2) û(ξ ) = f̂ (ξ ) .

It follows that for all 1≤ j,k ≤ n we have

∂ j∂ku =
[
(2πiξ j)(2πiξk)û(ξ )

]∨
=
[
(2πiξ j)(2πiξk)

f̂ (ξ )
−4π2|ξ |2

]∨
= −R jRk( f ) ,
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and in particular, we conclude that ∂ j∂ku are functions.
Thus the Riesz transforms provide an explicit way to recover second-order

derivatives in terms of the Laplacian. Such representations are useful in controlling
quantitative expressions (such as norms) of second-order derivatives in terms of the
corresponding expressions for the Laplacian. For instance, this is the case with the
Lp norm; the Lp boundedness of the Riesz transforms is one of the main results of
the next section. We refer to Exercises 4.2.9 and 4.2.10 for similar applications.

Exercises

4.1.1. (a) Show that for all 0 < a < b < ∞ we have∣∣∣∣∫ b

a

sinx
x

dx
∣∣∣∣≤ 4 .

(b) For a > 0 define

I(a) =
∫

∞

0

sinx
x

e−ax dx

and show that I(a) is continuous at zero. Differentiate in a and look at the behavior
of I(a) as a→ ∞ to obtain the identity

I(a) =
π

2
− arctan(a) .

Deduce that I(0) = π

2 and also derive the following identity used in (4.1.9):∫ +∞

−∞

sin(bx)
x

dx = π sgn(b) .

(c) Argue as in part (b) to prove for a≥ 0 the identity∫
∞

0

1− cosx
x2 e−ax dx =

π

2
− arctan(a)+a log

a√
1+a2

.

[
Hint: Part (a): Consider the cases b ≤ 1, a ≤ 1 ≤ b, 1 ≤ a. When a ≥ 1, integrate

by parts.
]

4.1.2. (a) Let ϕ be a compactly supported C m+1 function on R for some m in
Z+⋃{0}. Prove that if ϕ(m) is the mth derivative of ϕ , then

|H(ϕ(m))(x)| ≤Cm,ϕ (1+ |x|)−m−1

for some Cm,ϕ > 0.
(b) Let ϕ be a compactly supported C m+1 function on Rn for some m ∈ Z+. Show
that
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|R j(∂ α
ϕ)(x)| ≤Cn,m,ϕ (1+ |x|)−n−m

for some Cn,m,ϕ > 0 and all multi-indices α with |α|= m.
(c) Let I be an interval on the line and assume that a function h is equal to 1 on the
left half of I, is equal to −1 on the right half of I, and vanishes outside I. Prove that
for x /∈ 3

2 I we have
|H(h)(x)| ≤ 4|I|2|x− center(I)|−2 .[

Hint: Use that when |t| ≤ 1
2 we have log(1+ t) = t +R1(t), where |R1(t)| ≤ 2|t|2.

]
4.1.3. (a) In view of identity (4.1.12) one may define H( f ) as an element of S ′(R)
for bounded functions f on the line whose Fourier transform vanishes in a neigh-
borhood of the origin. Using this interpretation, prove that

H(eix) = − ieix ,

H(cosx) = sinx ,

H(sinx) = − cosx ,

H(sin(πx)/πx) = (cos(πx)−1)/πx .

(b) Show that the operators given by convolution with the smooth function sin(t)/t
and the distribution p.v. cos(t)/t are bounded on Lp(R) whenever 1 < p < ∞.

4.1.4. (Stein and Weiss [264] ) Show that the distribution function of the Hilbert
transform of a characteristic function of a measurable subset E of R of finite measure
is

dH(χE )(α) =
4|E|

eπα − e−πα
, α > 0 .[

Hint: First take E =
⋃N

j=1(a j,b j), where b j < a j+1. Show that the equation
H(χE)(x) = πα has exactly one root ρ j in each open interval (a j,b j) for 1≤ j ≤ N
and exactly one root r j in each interval (b j,a j+1) for 1 ≤ j ≤ N, (aN+1 = ∞). Then
|{x ∈R : H(χE)(x) > πα}|= ∑

N
j=1 r j−∑

N
j=1 ρ j, and this can be expressed in terms

of ∑
N
j=1 a j and ∑

N
j=1 b j. Argue similarly for the set {x∈R : H(χE)(x) <−πα}. For

a general measurable set E, find sets En such that each En is a finite union of intervals
and that χEn → χE in L2. Then H(χEn)→H(χE) in measure; thus H(χEnk

)→H(χE)
a.e. for some subsequence nk. The Lebesgue dominated convergence theorem gives
dH(χEnk

) → dH(χE ). See Figure 4.1.
]

4.1.5. Let 1 ≤ p < ∞. Suppose that there exists a constant C > 0 such that for all
f ∈S (R) with Lp norm one we have

|{x : |H( f )(x)|> 1}| ≤C.

Using only this inequality, prove that H maps Lp(R) to Lp,∞(R). Here H is the
Hilbert transform. State properties for a general operator such that the same conclu-
sion is valid.[
Hint: Try functions of the form λ−1/p f (λ−1x).

]
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4.1.6. Let ϕ be in S (R). Prove that

lim
N→∞

p.v.
∫

R

e2πiNx

x
ϕ(x)dx = ϕ(0)πi,

lim
N→−∞

p.v.
∫

R

e2πiNx

x
ϕ(x)dx = −ϕ(0)πi.

4.1.7. Let Tα , α ∈ R, be the operator given by convolution with the distribution
whose Fourier transform is the function

uα(ξ ) = e−πiα sgnξ .

(a) Show that the Tα ’s are isometries on L2(R) that satisfy

(Tα)−1 = T2−α .

(b) Express Tα in terms of the identity operator and the Hilbert transform.

4.1.8. Let Q( j)
y be the jth conjugate Poisson kernel of Py defined by

Q( j)
y (x) =

π
n+1

2

Γ ( n+1
2 )

x j

(|x|2 + y2)
n+1

2
.

Prove that (Q( j)
y )̂ (ξ ) = −iξ je−2π|ξ |/|ξ |. Conclude that R j(Py) = Q( j)

y and that for
f in L2(Rn) we have R j( f )∗Py = f ∗Q( j)

y . These results are analogous to the state-
ments Q̂y(ξ ) =−isgn(ξ )P̂y(ξ ), H(Py) = Qy, and H( f )∗Py = f ∗Qy.

4.1.9. Let f0, f1, . . . , fn all belong to L2(Rn) and let u j = Py∗ f j be their correspond-
ing Poisson integrals for 0 ≤ j ≤ n. Show that a necessary and sufficient condition
for

f j = R j( f0), j = 1, . . . ,n,

is that the following system of generalized Cauchy-Riemann equations holds:

n

∑
j=0

∂u j

∂x j
= 0 ,

∂u j

∂xk
=

∂uk

∂x j
, j 6= k, x0 = y.

4.1.10. Prove the distributional identity

∂ j|x|−n+1 = (1−n)p.v.
x j

|x|n+1 .

Then take Fourier transforms of both sides and use Theorem 2.4.6 to obtain another
proof of Proposition 4.1.14.
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4.1.11. (a) Prove that if T is a bounded linear operator on L2(R) that commutes
with translations and dilations and anticommutes with the reflection f (x) 7→ f̃ (x) =
f (−x), then T is a constant multiple of the Hilbert transform.
(b) Prove that if T is a bounded operator on L2(R) that commutes with translations
and dilations and vanishes when applied to functions whose Fourier transform is
supported in [0,∞), then T is a constant multiple of the operator f 7→

(
f̂ χ(−∞,0]

)∨.

4.1.12. (Pichorides [213] ) Fix 1 < p≤ 2.
(a) Show that the function (x,y) 7→ Re (|x|+ iy)p is subharmonic on R2.
(b) Prove that for f in C ∞

0 (R) we have∫
R

Re (| f (x)|+ iH( f )(x))p dx ≥ 0.

(c) Prove that for all a and b reals we have

|b|p ≤
(

tan
π

2p

)p
|a|p−Dp Re (|a|+ ib)p

for some Dp > 0. Then use part (b) to conclude that∥∥H
∥∥

Lp→Lp ≤ tan
π

2p
.

(d) To deduce that this constant is sharp, take π/2p′ < γ < π/2p and let fγ(x) =
(x+1)−1|x+1|2γ/π |x−1|−2γ/π cosγ . Then

H( fγ)(x) =

 1
x+1

|x+1|
|x−1|

2γ/π

sinγ when |x|> 1,

− 1
x+1

|x+1|
|x−1|

2γ/π

sinγ when |x|< 1.[
Hint: Part (b): Let CR be the circle of radius R centered at (0,R) in R2. Use that the

integral of the subharmonic function

(x,y) 7→ Re (|(Py ∗ f )(x)|+ i(Qy ∗ f )(x))p

over CR is at least 2πRRe (|(PR ∗ f )(0)|+ i(QR ∗ f )(0))p and let R → ∞. Part (d):
This is best seen by considering the restriction of the analytic function

F(z) = (z+1)−1
(

iz+ i
z−1

)2γ/π

on R×{0}.
]
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4.2 Homogeneous Singular Integrals and the Method of
Rotations

So far we have introduced the Hilbert and the Riesz transforms and we have de-
rived the Lp boundedness of the former. The boundedness properties of the Riesz
transforms on Lp spaces are consequences of the results discussed in this section.

4.2.1 Homogeneous Singular and Maximal Singular Integrals

We introduce singular integral operators on Rn that appropriately generalize the
Riesz transforms on Rn. Here is the setup. We fix Ω to be an integrable function of
the unit sphere Sn−1 with mean value zero. Observe that the kernel

KΩ (x) =
Ω(x/|x|)
|x|n

, x 6= 0, (4.2.1)

is homogeneous of degree −n just like the functions x j/|x|n+1. Since KΩ is not in
L1(Rn), convolution with KΩ cannot be defined as an operation on Schwartz func-
tions on Rn. For this reason we introduce a distribution WΩ in S ′(Rn) by setting〈

WΩ ,ϕ
〉

= lim
ε→0

∫
|x|≥ε

KΩ (x)ϕ(x)dx = lim
ε→0

∫
ε≤|x|≤ε−1

KΩ (x)ϕ(x)dx (4.2.2)

for ϕ ∈S (Rn). Using the fact that Ω has mean value zero, we can easily see that
WΩ is a well defined tempered distribution on Rn. Indeed, since KΩ has integral zero
over all annuli centered at the origin, we have

∣∣〈WΩ ,ϕ
〉∣∣ =

∣∣∣∣lim
ε→0

∫
ε≤|x|≤1

Ω(x/|x|)
|x|n

(ϕ(x)−ϕ(0))dx+
∫
|x|≥1

Ω(x/|x|)
|x|n

ϕ(x)dx
∣∣∣∣

≤
∥∥∇ϕ

∥∥
L∞

∫
|x|≤1

|Ω(x/|x|)|
|x|n−1 dx+ sup

y∈Rn
|y| |ϕ(y)|

∫
|x|≥1

|Ω(x/|x|)|
|x|n+1 dx

≤C1
∥∥∇ϕ

∥∥
L∞

∥∥Ω
∥∥

L1 +C2 ∑
|α|≤1

∥∥ϕ(x)xα
∥∥

L∞

∥∥Ω
∥∥

L1 ,

for suitable C1 and C2, where we used (2.2.2) in the last estimate. Note that the
distribution WΩ coincides with the function KΩ on Rn \{0}.

The Hilbert transform and the Riesz transforms are examples of these general
operators TΩ . For instance, the function Ω(θ) = θ

π|θ | = 1
π

sgnθ defined on the unit
sphere S0 = {−1,1} ⊆ R gives rise to the Hilbert transform, while the function

Ω(θ) =
Γ ( n+1

2 )

π
n+1

2

θ j

|θ |
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defined on Sn−1 ⊆ Rn gives rise to the jth Riesz transform.

Definition 4.2.1. Let Ω be integrable on the sphere Sn−1 with mean value zero. For
0 < ε < N and f ∈

⋃
1≤p<∞ Lp(Rn) we define the truncated singular integral

T (ε,N)
Ω

( f )(x) =
∫

ε≤|y|≤N
f (x− y)

Ω(y/|y|)
|y|n

dy . (4.2.3)

Note that for f ∈ Lp(Rn) we have∥∥T (ε,N)
Ω

( f )
∥∥

Lp ≤
∥∥Ω
∥∥

L1 log(N/ε)
∥∥ f
∥∥

Lp(Rn) ,

which implies that (4.2.3) is finite a.e. and therefore well defined. We denote by TΩ

the singular integral operator whose kernel is the distribution WΩ , that is,

TΩ ( f )(x) = ( f ∗WΩ )(x) = lim
ε→0
N→∞

T (ε,N)
Ω

( f )(x) ,

defined for f ∈S (Rn). The associated maximal singular integral is defined by

T (∗∗)
Ω

( f ) = sup
0<N<∞

sup
0<ε<N

∣∣T (ε,N)
Ω

( f )
∣∣. (4.2.4)

We note that if Ω is bounded, there is no need to use the upper truncations in
the definition of T (ε,N)

Ω
given in (4.2.3). In this case the maximal singular integrals

could be defined as
T (∗)

Ω
( f ) = sup

ε>0

∣∣T (ε)
Ω

( f )
∣∣ , (4.2.5)

where for f ∈
⋃

1≤p<∞ Lp(R), ε > 0, and x ∈ Rn, T (ε)
Ω

( f )(x) is defined in terms of
the absolutely convergent integral

T (ε)
Ω

( f )(x) =
∫
|y|≥ε

f (x− y)
Ω(y/|y|)
|y|n

dy .

To examine the relationship between T (∗)
Ω

and T (∗∗)
Ω

for Ω ∈ L∞(Sn−1), notice that∣∣∣∣∫
ε≤|y|≤N

f (x− y)
Ω(y/|y|)
|y|n

dy
∣∣∣∣≤ sup

0<N<∞

∣∣T (ε,N)
Ω

( f )(x)
∣∣ . (4.2.6)

Then for f ∈ Lp(Rn), 1 ≤ p < ∞, we let N → ∞ on the left in (4.2.6) and we note
that the limit exists in view of the absolute convergence of the integral. Then we
take the supremum over ε > 0 to deduce that T (∗)

Ω
is pointwise bounded by T (∗∗)

Ω
.

Since T (ε,N)
Ω

= T (ε)
Ω

−T (N)
Ω

, it also follows that T (∗∗)
Ω

≤ 2T (∗)
Ω

; thus T (∗)
Ω

and T (∗∗)
Ω

are pointwise comparable when Ω lies in L∞(Sn−1). This is the case with the Hilbert
transform, that is, H(∗∗) is comparable to H(∗); likewise with the Riesz transforms.
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A certain class of multipliers can be realized as singular integral operators of the
kind discussed. Recall from Proposition 2.4.7 that if m is homogeneous of degree 0
and infinitely differentiable on the sphere, then m∨ is given by

m∨ = cδ0 +WΩ ,

for some complex constant c and some smooth Ω on Sn−1 with mean value zero.
Therefore, all convolution operators whose multipliers are homogeneous of degree
zero smooth functions on Sn−1 can be realized as a constant multiple of the identity
plus an operator of the form TΩ .

Example 4.2.2. Let P(ξ ) = ∑|α|=k bα ξ α be a homogeneous polynomial of degree
k in Rn that vanishes only at the origin. Let α be a multi-index of order k. Then the
function

m(ξ ) =
ξ α

P(ξ )
(4.2.7)

is infinitely differentiable on the sphere and homogeneous of degree zero. The oper-
ator given by multiplication on the Fourier transform by m(ξ ) is a constant multiple
of the identity plus an operator given by convolution with a distribution of the form
WΩ for some Ω in C ∞(Sn−1) with mean value zero. In this section we establish
the Lp boundedness of such operators when Ω has appropriate smoothness on the
sphere. This, in particular, implies that m(ξ ) defined by (4.2.7) lies in the space
Mp(Rn), defined in Section 2.5, for 1 < p < ∞.

4.2.2 L2 Boundedness of Homogeneous Singular Integrals

Next we would like to compute the Fourier transform of WΩ . This provides infor-
mation as to whether the operator given by convolution with KΩ is L2 bounded. We
have the following result.

Proposition 4.2.3. Let n ≥ 2 and Ω ∈ L1(Sn−1) have mean value zero. Then the
Fourier transform of WΩ is a (finite a.e.) function given by the formula

ŴΩ (ξ ) =
∫

Sn−1
Ω(θ)

(
log

1
|ξ ·θ |

− iπ
2

sgn (ξ ·θ)
)

dθ . (4.2.8)

Remark 4.2.4. We need to show that the function of ξ on the right in (4.2.8) is
well defined and finite for almost all ξ in Rn. Write ξ = |ξ |ξ ′ where ξ ′ ∈ Sn−1 and
decompose log 1

|ξ ·θ | as log 1
|ξ | + log 1

|ξ ′·θ | . Since Ω has mean value zero, the term

log 1
|ξ | multiplied by Ω(θ) vanishes when integrated over the sphere.

We need to show that ∫
Sn−1

|Ω(θ)| log
1

|ξ ′ ·θ |
dθ < ∞ (4.2.9)
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for almost all ξ ′ ∈ Sn−1. Integrate (4.2.9) over ξ ′ ∈ Sn−1 and apply Fubini’s theorem
to obtain∫

Sn−1
|Ω(θ)|

∫
Sn−1

log
1

|ξ ′ ·θ |
dξ

′ dθ

=
∫

Sn−1
|Ω(θ)|

∫
Sn−1

log
1
|ξ1|

dξ dθ

= ωn−2

∫
Sn−1

|Ω(θ)|
∫ +1

−1

(
log

1
|s|

)
(1− s2)

n−3
2 dsdθ

= Cn
∥∥Ω
∥∥

L1(Sn−1) < ∞ ,

since we are assuming that n ≥ 2. (The second-to-last identity follows from the
identity in Appendix D.2.) We conclude that (4.2.9) holds for almost all ξ ′ ∈ Sn−1.

Since the function of ξ on the right in (4.2.8) is homogeneous of degree zero, it
follows that it is a locally integrable function on Rn.

Before we return to the proof of Proposition 4.2.3, we discuss the following
lemma:

Lemma 4.2.5. Let a be a nonzero real number. Then for 0 < ε < N < ∞ we have

lim
ε→0
N→∞

∫ N

ε

cos(ra)− cos(r)
r

dr = log
1
|a|

, (4.2.10)∣∣∣∣∫ N

ε

cos(ra)− cos(r)
r

dr
∣∣∣∣ ≤ 2

∣∣∣ log
1
|a|

∣∣∣ for all N > ε > 0 , (4.2.11)

lim
ε→0
N→∞

∫ N

ε

e−ira− cos(r)
r

dr = log
1
|a|

− i
π

2
sgn a , (4.2.12)∣∣∣∣∫ N

ε

e−ira− cos(r)
r

dr
∣∣∣∣ ≤ 2

∣∣∣ log
1
|a|

∣∣∣+4 for all N > ε > 0 . (4.2.13)

Proof. We first prove (4.2.10) and (4.2.11). By the fundamental theorem of calculus
we can write∫ N

ε

cos(ra)− cos(r)
r

dr =
∫ N

ε

cos(r|a|)− cos(r)
r

dr

= −
∫ N

ε

∫ |a|

1
sin(tr)dt dr

= −
∫ |a|

1

∫ N

ε

sin(tr)dr dt

= −
∫ |a|

1

cos(εt)
t

dt +
∫ N|a|

N

cos(t)
t

dt ,

and from this expression, we clearly obtain (4.2.11). But the first integral of the same
expression converges to − log |a| as ε → 0 while the second integral converges to
zero as N → ∞ by an integration by parts. This proves (4.2.10).
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To prove (4.2.12) and (4.2.13) we need to know that the expressions∣∣∣∣∫ N

ε

sin(ra)
r

dr
∣∣∣∣= ∣∣∣∣∫ N|a|

ε|a|

sin(r)
r

dr
∣∣∣∣ (4.2.14)

tend to π

2 as ε → 0 and N → ∞ and are bounded by 4. Both statements follow from
Exercise 4.1.1. �

Let us now prove Proposition 4.2.3.

Proof. Let us set ξ ′ = ξ/|ξ |. We have the following:〈
ŴΩ ,ϕ

〉
=
〈
WΩ , ϕ̂

〉
= lim

ε→0

∫
|x|≥ε

Ω(x/|x|)
|x|n

ϕ̂(x)dx

= lim
ε→0
N→∞

∫
Rn

ϕ(ξ )
∫

ε≤|x|≤N

Ω(x/|x|)
|x|n

e−2πix·ξ dx dξ

= lim
ε→0
N→∞

∫
Rn

ϕ(ξ )
∫

Sn−1
Ω(θ)

∫
ε≤r≤N

e−2πirθ ·ξ dr
r

dθ dξ

= lim
ε→0
N→∞

∫
Rn

ϕ(ξ )
∫

Sn−1
Ω(θ)

∫
ε≤r≤N

(
e−2πr|ξ |iθ ·ξ ′ − cos(2πr|ξ |)

)dr
r

dθ dξ

= lim
ε→0
N→∞

∫
Rn

ϕ(ξ )
∫

Sn−1
Ω(θ)

∫
ε

2π|ξ |≤r≤ N
2π|ξ |

e−irθ ·ξ ′ − cos(r)
r

dr dθ dξ

=
∫

Rn
ϕ(ξ )

∫
Sn−1

Ω(θ)
(

log
1

|ξ ′ ·θ |
− iπ

2
sgn(ξ ·θ)

)
dθ dξ ,

by the Lebesgue dominated convergence theorem, Lemma 4.2.5, and Remark 4.2.4.
We were able to subtract cos(2πr|ξ |) from the r integral in the previous calcula-
tion, since Ω has mean value zero over the sphere. Also, the use of the dominated
convergence theorem is justified from the fact that the function

(θ ,ξ ) 7→ |Ω(θ)| |ϕ(ξ )|
(

log
1

|ξ ′ ·θ |
+4
)

lies in L1(Sn−1×Rn). �

Corollary 4.2.6. Let Ω ∈ L1(Sn−1) have mean value zero. Then for almost all ξ ′ in
Sn−1 the integral ∫

Sn−1
Ω(θ) log

1
|ξ ′ ·θ |

dθ (4.2.15)

converges absolutely. Moreover, the associated operator TΩ maps L2(Rn) to itself if
and only if
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ess.sup
ξ ′∈Sn−1

∣∣∣∣∫Sn−1
Ω(θ) log

1
|ξ ′ ·θ |

dθ

∣∣∣∣< ∞ . (4.2.16)

Proof. To obtain the absolute convergence of the integral in (4.2.15) we integrate
over ξ ′ ∈ Sn−1 and we apply Fubini’s theorem. The assertion concerning the bound-
edness of TΩ on L2 is an immediate consequence of Proposition 4.2.3 and Theorem
2.5.10. �

There exist functions Ω in L1(Sn−1) with mean value zero such that the expres-
sions in (4.2.16) are equal to infinity; consequently, not all such Ω give rise to
bounded operators on L2(Rn). Observe, however, that for Ω odd (i.e., Ω(−θ) =
−Ω(θ) for all θ ∈ Sn−1), (4.2.16) trivially holds, since log 1

|ξ ·θ | is even and its

product against an odd function must have integral zero over Sn−1. We conclude
that singular integrals TΩ with odd Ω are always L2 bounded.

4.2.3 The Method of Rotations

Having settled the issue of L2 boundedness for singular integrals of the form TΩ

with Ω odd, we turn our attention to their Lp boundedness. A simple procedure
called the method of rotations plays a crucial role in the study of operators TΩ when
Ω is an odd function.

Theorem 4.2.7. If Ω is odd and integrable over Sn−1, then TΩ and T (∗)
Ω

are Lp

bounded for all 1 < p < ∞. More precisely, TΩ initially defined on Schwartz func-
tions has a bounded extension on Lp(Rn) (which is also denoted by TΩ ).

Proof. We introduce the directional Hilbert transforms. Fix a unit vector θ in Rn.
For a Schwartz function f on Rn let

Hθ ( f )(x) =
1
π

p.v.
∫ +∞

−∞

f (x− tθ)
dt
t

.

We call Hθ ( f ) the directional Hilbert transform of f in the direction θ . Let e j be
the usual unit vectors in Sn−1. Then He1 is simply obtained by applying the Hilbert
transform in the first variable followed by the identity operator in the remaining
variables. Clearly, He1 is bounded on Lp(Rn) with norm equal to that of the Hilbert
transform on Lp(R). Next observe that the following identity is valid for all matrices
A ∈ O(n):

HA(e1)( f )(x) = He1( f ◦A)(A−1x) . (4.2.17)

This implies that the Lp boundedness of Hθ can be reduced to that of He1 . We
conclude that Hθ is Lp bounded for 1 < p < ∞ with norm bounded by the norm of
the Hilbert transform on Lp(R) for every θ ∈ Sn−1.

Likewise, we define the directional maximal Hilbert transforms. For a function
f in

⋃
1≤p<∞ Lp(Rn) and 0 < ε < N < ∞ we let
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H
(ε,N)

θ
( f )(x) =

1
π

∫
ε≤|t|≤N

f (x− tθ)
dt
t

,

H
(∗∗)

θ
( f )(x) = sup

0<ε<N<∞

∣∣∣H (ε,N)
θ

( f )(x)
∣∣∣ .

We observe that for any fixed 0 < ε < N < ∞ and f ∈ Lp(Rn), H
(ε,N)

θ
( f ) is well

defined almost everywhere. Indeed, by Minkowski’s integral inequality we obtain∥∥H (ε,N)
θ

( f )
∥∥

Lp(Rn) ≤
2
π

∥∥ f
∥∥

Lp(Rn) log
N
ε

< ∞ ,

which implies that H
(ε,N)

θ
( f )(x) is finite for almost all x ∈ Rn. Thus H

(∗∗)
θ

( f ) is
well defined a.e. for f in

⋃
1≤p<∞ Lp(Rn).

Identity (4.2.17) is also valid for H
(ε,N)

θ
and H

(∗∗)
θ

. Consequently, H
(∗∗)

θ
is

bounded on Lp(Rn) for 1 < p < ∞ with norm at most that of H(∗∗) on Lp(R).
Next we realize a general singular integral TΩ with Ω odd as an average of the

directional Hilbert transforms Hθ . We start with f in
⋃

1≤p<∞ Lp(Rn) and the fol-
lowing identities:∫

ε≤|y|≤N

Ω(y/|y|)
|y|n

f (x− y)dy = +
∫

Sn−1
Ω(θ)

∫ N

r=ε

f (x− rθ)
dr
r

dθ

= −
∫

Sn−1
Ω(θ)

∫ N

r=ε

f (x+ rθ)
dr
r

dθ ,

where the first follows by switching to polar coordinates and the second one is a
consequence of the first one and the fact that Ω is odd via the change variables
θ 7→ −θ . Averaging the two identities, we obtain∫

ε≤|y|≤N

Ω(y/|y|)
|y|n

f (x− y)dy

=
1
2

∫
Sn−1

Ω(θ)
∫ N

r=ε

f (x− rθ)− f (x+ rθ)
r

dr dθ

=
π

2

∫
Sn−1

Ω(θ)H (ε,N)
θ

( f )(x)dθ .

(4.2.18)

It follows from the identity in (4.2.18) that∫
ε≤|y|≤N

Ω(y/|y|)
|y|n

f (x− y)dy =
π

2

∫
Sn−1

Ω(θ)H (ε,N)
θ

( f )(x)dθ , (4.2.19)

from which we conclude that

T (∗∗)
Ω

( f )(x)≤ π

2

∫
Sn−1

|Ω(θ)|H (∗∗)
θ

( f )(x)dθ . (4.2.20)
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Using the Lebesgue dominated convergence theorem, we see that for f in S (Rn),
we can pass the limits as ε → 0 and N →∞ inside the integral in (4.2.19), concluding
that

TΩ ( f )(x) =
π

2

∫
Sn−1

Ω(θ)Hθ ( f )(x)dθ , (4.2.21)

for f ∈ S (Rn). The Lp boundedness of TΩ and T (∗∗)
Ω

for Ω odd are then trivial
consequences of (4.2.21) and (4.2.20) via Minkowski’s integral inequality. �

Corollary 4.2.8. The Riesz transforms R j and the maximal Riesz transforms R(∗)
j

are bounded on Lp(Rn) for 1 < p < ∞.

Proof. The Riesz transforms have odd kernels. �

Remark 4.2.9. It follows from the proof of Theorem 4.2.7 and from Theorems 4.1.7
and 4.1.12 that whenever Ω is an odd function on Sn−1, we have

∥∥TΩ

∥∥
Lp→Lp ≤

∥∥Ω
∥∥

L1

{
a p when p≥ 2,
a(p−1)−1 when 1 < p≤ 2,∥∥T (∗∗)

Ω

∥∥
Lp→Lp ≤

∥∥Ω
∥∥

L1

{
a p when p≥ 2,
a(p−1)−1 when 1 < p≤ 2,

for some a > 0 independent of p and the dimension.

4.2.4 Singular Integrals with Even Kernels

Since a general integrable function Ω on Sn−1 with mean value zero can be written
as a sum of an odd and an even function, it suffices to study singular integral opera-
tors TΩ with even kernels. For the rest of this section, fix an integrable even function
Ω on Sn−1 with mean value zero. The following idea is fundamental in the study of
such singular integrals. Proposition 4.1.16 implies that

TΩ =−
n

∑
j=1

R jR jTΩ . (4.2.22)

If R jTΩ were another singular integral operator of the form TΩ j for some odd Ω j,
then the boundedness of TΩ would follow from that of TΩ j via the identity (4.2.22)
and Theorem 4.2.7. It turns out that R jTΩ does have an odd kernel, but it may not be
integrable on Sn−1 unless Ω itself possesses an additional amount of integrability.
The amount of extra integrability needed is logarithmic, more precisely of this sort:

cΩ =
∫

Sn−1
|Ω(θ)| log+ |Ω(θ)|dθ < ∞ . (4.2.23)

Observe that
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∥∥

L1 ≤ cΩ +2ωn−1 ≤Cn (cΩ +1) ,

which says that the norm
∥∥Ω
∥∥

L1 is always controlled by a dimensional constant
multiple of cΩ +1. The following theorem is the main result of this section.

Theorem 4.2.10. Let n ≥ 2 and let Ω be an even integrable function on Sn−1 with
mean value zero that satisfies (4.2.23). Then the corresponding singular integral
TΩ is bounded on Lp(Rn), 1 < p < ∞, with norm at most a dimensional constant
multiple of the quantity max

(
(p−1)−2, p2

)
(cΩ +1).

If the operator TΩ in Theorem 4.2.10 is weak type (1,1), then the estimate on the
Lp operator norm of TΩ can be improved to

∥∥TΩ

∥∥
Lp→Lp ≤Cn(p− 1)−1 as p → 1.

This is indeed the case; see the historical comments at the end of this chapter.

Proof. Let WΩ be the distributional kernel of TΩ . Using Proposition 4.2.3 and the
fact that Ω is an even function, we obtain the formula

ŴΩ (ξ ) =
∫

Sn−1
Ω(θ) log

1
|ξ ·θ |

dθ , (4.2.24)

which implies that ŴΩ is itself an even function. Now, using Exercise 4.2.3 and
condition (4.2.23), we conclude that ŴΩ is a bounded function. Therefore, TΩ is L2

bounded. To obtain the Lp boundedness of TΩ , we use the idea mentioned earlier
involving the Riesz transforms. In view of (4.1.41), we have that

TΩ =−
n

∑
j=1

R jTj, (4.2.25)

where Tj = R jTΩ . Equality (4.2.25) makes sense as an operator identity on L2(Rn),
since TΩ and each R j are well defined and bounded on L2(Rn).

The kernel of the operator Tj is the inverse Fourier transform of the distribu-

tion −i ξ j
|ξ |ŴΩ (ξ ), which we denote by K j. At this point we know only that K j is

a tempered distribution whose Fourier transform is the function −i ξ j
|ξ |ŴΩ (ξ ). Our

first goal is to show that K j coincides with an integrable function on an annulus. To
prove this assertion we write

WΩ = W 0
Ω +W 1

Ω +W ∞
Ω ,

where W 0
Ω

is a distribution and W 1
Ω

,W ∞
Ω

are functions defined by

〈
W 0

Ω ,ϕ
〉

= lim
ε→0

∫
ε<|x|≤ 1

2

Ω(x/|x|)
|x|n

ϕ(x)dx ,

W 1
Ω (x) =

Ω(x/|x|)
|x|n

χ 1
2≤|x|≤2 ,

W ∞
Ω (x) =

Ω(x/|x|)
|x|n

χ2<|x| .
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We now fix a j ∈ {1,2, . . . ,n} and we write

K j = K0
j +K1

j +K∞
j ,

where

K0
j =

(
− i ξ j

|ξ |Ŵ
0
Ω

(ξ )
)∨ ,

K1
j =

(
− i ξ j

|ξ |Ŵ
1
Ω

(ξ )
)∨ ,

K∞
j =

(
− i ξ j

|ξ |Ŵ
∞
Ω

(ξ )
)∨ .

Define the annulus
A = {x ∈ Rn : 2/3 < |x|< 3/2}.

For x ∈ A, the convolution of W 0
Ω

with the kernel of the Riesz transform R j can be
written as the convergent integral inside the absolute value:∣∣∣∣∣Γ ( n+1

2 )

π
n+1

2
lim
ε→0

∫
ε<|y|< 1

2

x j − y j

|x− y|n+1
Ω(y/|y|)
|y|n

dy

∣∣∣∣∣ (4.2.26)

=
Γ ( n+1

2 )

π
n+1

2

∣∣∣∣∫|y|< 1
2

(
x j − y j

|x− y|n+1 −
x j

|x|n+1

)
Ω(y/|y|)
|y|n

dy
∣∣∣∣

≤
∫
|y|≤ 1

2

Cn|y|
|Ω(y/|y|)|

|y|n
dy

= C′
n
∥∥Ω
∥∥

L1 ,

where we used the fact that Ω(y/|y|)|y|−n has integral zero over annuli of the form
ε < |y|< 1

2 , the mean value theorem applied to the function x j|x|−(n+1), and the fact
that |x− y| ≥ 1/6 for x in the annulus A. We conclude that on A, K0

j coincides with
the bounded function inside the absolute value in (4.2.26).

Likewise, for x ∈ A we have

Γ ( n+1
2 )

π
n+1

2

∣∣∣∣∫|y|>2

x j − y j

|x− y|n+1
Ω(y/|y|)
|y|n

dy
∣∣∣∣ (4.2.27)

≤
Γ ( n+1

2 )

π
n+1

2

∫
|y|>2

1
|x− y|n

|Ω(y/|y|)|
|y|n

dy

≤
Γ ( n+1

2 )

π
n+1

2

∫
|y|>2

4n

|y|2n |Ω(y/|y|)|dy

= C
∥∥Ω
∥∥

L1 ,

from which it follows that on the annulus A, K∞
j coincides with the bounded function

inside the absolute value in (4.2.27).
Now observe that condition (4.2.23) gives that the function W 1

Ω
satisfies
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|x|≤2

|W 1
Ω (x)| log+ |W 1

Ω (x)|dx

≤
∫ 2

1/2

∫
Sn−1

|Ω(θ)|
rn log+[2n|Ω(θ)|]dθrn−1 dr

r

≤ (log4)
[
n(log2)

∥∥Ω
∥∥

L1 + cΩ

]
< ∞ .

Since the Riesz transform R j maps Lp to Lp with norm at most 4(p− 1)−1 for
1 < p < 2, it follows from Exercise 1.3.7 that K1

j = R j(W 1
Ω

) is integrable over the
ball |x| ≤ 3/2 and moreover, it satisfies∫

A
|K1

j (x)|dx ≤ Cn

[∫
|x|≤2

|W 1
Ω (x)| log+ |W 1

Ω (x)|dx+1
]

≤ C′
n(cΩ +1) .

We have proved that K j is a distribution that coincides with an integrable function
on the annulus A. Furthermore, since K̂ j is homogeneous of degree zero, we have
that K j is a homogeneous distribution of degree −n (Exercise 2.3.9). This means
that for all test functions ϕ and all λ > 0 we have〈

K j,δ
λ (ϕ)

〉
=
〈
K j,ϕ

〉
.

But then for ϕ supported in the annulus 3/4 < |x|< 4/3 and for λ in (8/9,9/8) we
have that δ λ (ϕ) is supported in A and thus∫

K j(x)ϕ(λx)dx =
〈
K j,δ

λ (ϕ)
〉

=
〈
K j,ϕ

〉
=
∫

λ
−nK j(λ−1x)ϕ(x)dx .

From this we conclude that K j(x) = λ−nK j(λ−1x) for 3/4 < |x| < 4/3 and 8/9 <
λ < 9/8. Thus for 8/9 < |x|< 9/8 we have

K j(x) = |x|−nK j(x/|x|) = |x|−n
Ω j(x/|x|) , (4.2.28)

where we defined Ω j to be the restriction of K j over Sn−1. The integrability of K j
over the annulus 8/9 < |x|< 9/8 implies the integrability (and hence finiteness a.e.)
of Ω j over Sn−1 via (4.2.28).

Pick a nonnegative, radial, smooth, and nonzero function ψ on Rn supported in
8/9 < |x|< 9/8. Let e1 = (1,0, . . . ,0). Switching to polar coordinates, we obtain

〈
K j,ψ

〉
=
∫

Rn

Ω j(x/|x|)
|x|n

ψ(x)dx =
(∫ 9/8

8/9
ψ(re1)

dr
r

)∫
Sn−1

Ω j(θ)dθ ,

〈
K j,ψ

〉
=
〈
K̂ j, ψ̂

〉
=
∫

Rn

−iξ j

|ξ |
ŴΩ (ξ )ψ̂(ξ )dξ = c′ψ

∫
Sn−1

−iθ j

|θ |
ŴΩ (θ)dθ = 0,

since by (4.2.24), −iξ j
|ξ | ŴΩ (ξ ) is an odd function. We conclude that Ω j has mean

value zero over Sn−1. We are now in a position to define the distribution WΩ j . We
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claim that
K j = WΩ j . (4.2.29)

To establish the claim, we use (4.2.28) to obtain that the homogeneous distributions
K j and WΩ j agree on the open set 8/9 < |x| < 9/8, and thus they must agree ev-
erywhere on Rn \{0} (check that

〈
K j,ϕ

〉
=
〈
WΩ j ,ϕ

〉
for all ϕ ∈ C ∞

0 (Rn \{0}) by
dilating and translating their support). Therefore, K j −WΩ j is supported at the ori-
gin, and since it is homogeneous of degree −n, it must be equal to bδ0, a constant
multiple of the Dirac mass. But K̂ j is an odd function and hence K j is also odd. It
follows that WΩ j is an odd function on Rn \ {0}, which implies that Ω j is an odd
function. Defining odd distributions in the natural way, we obtain that K j −WΩ j is
an odd distribution, and thus the previous multiple of the Dirac mass must be an
odd distribution. But if bδ0 is odd, then b = 0. We conclude that for each j there
exists an odd integrable function Ω j on Sn−1 with

∥∥Ω j
∥∥

L1 controlled by a constant
multiple of cΩ +1 such that (4.2.29) holds.

Then we use (4.2.25) and (4.2.29) to write

TΩ =−
n

∑
j=1

R jTΩ j ,

and appealing to the boundedness of each TΩ j (Theorem 4.2.7) and to that of the
Riesz transforms, we obtain the required Lp boundedness for TΩ . �

We note that Theorem 4.2.10 holds for all Ω ∈ L1(Sn−1) that satisfy (4.2.23), not
necessarily even Ω . Simply write Ω = Ωe + Ωo , where Ωe is even and Ωo is odd,
and check that condition (4.2.23) holds for Ωe.

4.2.5 Maximal Singular Integrals with Even Kernels

We have the corresponding theorem for maximal singular integrals.

Theorem 4.2.11. Let Ω be an even integrable function on Sn−1 with mean value
zero that satisfies (4.2.23). Then the corresponding maximal singular integral T (∗∗)

Ω
,

defined in (4.2.4), is bounded on Lp(Rn) for 1 < p < ∞ with norm at most a dimen-
sional constant multiple of max(p2,(p−1)−2)(cΩ +1).

Proof. For f ∈ L1
loc(R

n), define the maximal function of f in the direction θ by
setting

Mθ ( f )(x) = sup
a>0

1
2a

∫
|r|≤a

| f (x− rθ)|dr . (4.2.30)

In view of Exercise 4.2.6(a) we have that Mθ is bounded on Lp(Rn) with norm at
most 3 p(p−1)−1.

Fix Φ a smooth radial function such that Φ(x) = 0 for |x| < 1/4, Φ(x) = 1 for
|x|> 3/4, and 0≤Φ(x)≤ 1 for all x in Rn. For f ∈ Lp(Rn) and 0 < ε < N < ∞ we
introduce the smoothly truncated singular integral
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T̃ (ε,N)
Ω

( f )(x) =
∫

Rn

Ω
( x−y
|x−y|

)
|x− y|n

(
Φ
( x−y

ε

)
−Φ

( x−y
N

))
f (y)dy

and the corresponding maximal singular integral operator

T̃ (∗∗)
Ω

( f ) = sup
0<N<∞

sup
0<ε<N

|T̃ (ε,N)
Ω

( f )| .

For f in Lp(Rn) (for some 1 < p < ∞), we have

sup
0<ε<N<∞

∣∣T̃ (ε,N)
Ω

( f )(x)−T (ε,N)
Ω

( f )(x)
∣∣

= sup
0<ε<N<∞

∣∣∣∣ ∫
ε
4≤|y|≤ε

Ω
( y
|y|
)

|y|n
Φ
( y

ε

)
f (x−y)dy

−
∫

N
4 ≤|y|≤N

Ω
( y
|y|
)

|y|n
Φ
( y

N

)
f (x−y)dy

∣∣∣∣
≤ sup

0<ε<N<∞

[ ∫
ε
4≤|y|≤ε

|Ω
( y
|y|
)
|

|y|n
| f (x− y)|dy+

∫
N
4 ≤|y|≤N

|Ω
( y
|y|
)
|

|y|n
| f (x− y)|dy

]

≤ sup
0<ε<N<∞

∫
Sn−1

|Ω(θ)|
[

4
ε

∫
ε

ε
4

| f (x− rθ)|dr +
4
N

∫ N

N
4

| f (x− rθ)|dr
]

dθ

≤ 16
∫

Sn−1
|Ω(θ)|Mθ ( f )(x)dθ .

Using the result of Exercise 4.2.6(a) we conclude that∥∥T̃ (∗∗)
Ω

( f )−T (∗∗)
Ω

( f )
∥∥

Lp ≤ 96
∥∥Ω
∥∥

L1 max(p,(p−1)−1)
∥∥ f
∥∥

Lp .

This implies that it suffices to obtain the required Lp bound for the smoothly trun-
cated maximal singular integral operator T̃ (∗∗)

Ω
.

Let K j, Ω j, and Tj be as in the previous theorem, and let Fj be the Riesz transform
of the function Ω(x/|x|)Φ(x)|x|−n. Let f ∈ Lp(Rn). A calculation yields the identity

T̃ (ε,N)
Ω

( f )(x) =
∫

Rn

[
1
εn

Ω( y
ε
/| y

ε
|)

| y
ε
|n

Φ( y
ε
)− 1

Nn

Ω( y
N /| y

N |)
| y

N |n
Φ( y

N )
]

f (x− y)dy

= −
( n

∑
j=1

[
1
εn Fj

( ·
ε

)
− 1

Nn Fj
( ·

N

)]
∗R j( f )

)
(x) ,

where in the last step we used Proposition 4.1.16. Therefore we may write



280 4 Singular Integrals of Convolution Type

−T̃ (ε,N)
Ω

( f )(x) =
n

∑
j=1

∫
Rn

[
1
εn Fj

( x−y
ε

)
− 1

Nn Fj
( x−y

N

)]
R j( f )(y)dy

= A(ε,N)
1 ( f )(x)+A(ε,N)

2 ( f )(x)+A(ε,N)
3 ( f )(x) ,

(4.2.31)

where

A(ε,N)
1 ( f )(x) =

n

∑
j=1

1
εn

∫
|x−y|≤ε

Fj
( x−y

ε

)
R j( f )(y)dy

−
n

∑
j=1

1
Nn

∫
|x−y|≤N

Fj
( x−y

N

)
R j( f )(y)dy ,

A(ε,N)
2 ( f )(x) =

n

∑
j=1

∫
Rn

[
1
εn χ|x−y|>ε

{
Fj
( x−y

ε

)
−K j

( x−y
ε

)}
− 1

Nn χ|x−y|>N
{

Fj
( x−y

N

)
−K j

( x−y
N

)}]
R j( f )(y)dy ,

A(ε,N)
3 ( f )(x) =

n

∑
j=1

∫
Rn

[
1
εn χ|x−y|>ε K j

( x−y
ε

)
− 1

Nn χ|x−y|>NK j
( x−y

N

)]
R j( f )(y)dy .

It follows from the definitions of Fj and K j that

Fj(z)−K j(z) =
Γ ( n+1

2 )

π
n+1

2
lim
ε→0

∫
ε≤|y|

Ω(y/|y|)
|y|n

(
Φ(y)−1

) z j − y j

|z− y|n+1 dy

=
Γ ( n+1

2 )

π
n+1

2

∫
|y|≤ 3

4

Ω(y/|y|)
|y|n

(
Φ(y)−1

){ z j − y j

|z− y|n+1 −
z j

|z|n+1

}
dy

whenever |z| ≥ 1. But using the mean value theorem, the last expression is easily
seen to be bounded by

Cn

∫
|y|≤ 3

4

Ω(y/|y|)
|y|n

|y|
|z|n+1 dy = C′

n
∥∥Ω
∥∥

L1 |z|−(n+1) ,

whenever |z| ≥ 1. Using this estimate, we obtain that the jth term in A(ε,N)
2 ( f )(x) is

bounded by

Cn

∥∥Ω
∥∥

L1

εn

∫
|x−y|>ε

|R j( f )(y)|dy
(|x− y|/ε)n+1 ≤Cn

2
∥∥Ω
∥∥

L1

2−nεn

∫
Rn

|R j( f )(y)|dy(
1+ |x−y|

ε

)n+1 .

It follows that for functions f in Lp we have

sup
0<ε<N<∞

|A(ε,N)
2 ( f )| ≤Cn

∥∥Ω
∥∥

L1M(R j( f )) ,

in view of Theorem 2.1.10. (M here is the Hardy–Littlewood maximal operator.)
By Theorem 2.1.6, M maps Lp(Rn) to itself with norm bounded by a dimensional



4.2 Singular Integrals and the Method of Rotations 281

constant multiple of max(1,(p−1)−1). Since by Remark 4.2.9 the norm
∥∥R j
∥∥

Lp→Lp

is controlled by a dimensional constant multiple of max(p,(p−1)−1), it follows that∥∥ sup
0<ε<N<∞

|A(ε,N)
2 ( f )|

∥∥
Lp ≤Cn

∥∥Ω
∥∥

L1 max(p,(p−1)−1)
∥∥ f
∥∥

Lp . (4.2.32)

Next, recall that in the proof of Theorem 4.2.10 we showed that

K j(x) =
Ω j(x/|x|)
|x|n

,

where Ω j are integrable functions on Sn−1 that satisfy∥∥Ω j
∥∥

L1 ≤Cn(cΩ +1) . (4.2.33)

Consequently, for functions f in Lp(Rn) we have

sup
0<ε<N<∞

|A(ε,N)
3 ( f )| ≤ 2

n

∑
j=1

T (∗∗)
Ω j

(R j( f )) ,

and by Remark 4.2.9 this last expression has Lp norm at most a dimensional constant
multiple of

∥∥Ω j
∥∥

L1 max(p,(p−1)−1)
∥∥R j( f )

∥∥
Lp . It follows that∥∥∥ sup

0<ε<N<∞

|A(ε,N)
3 ( f )|

∥∥∥
Lp
≤Cn max(p2,(p−1)−2)(cΩ +1)

∥∥ f
∥∥

Lp . (4.2.34)

Finally, we turn our attention to the term A(ε,N)
1 ( f ). To prove the required esti-

mate, we first show that there exist nonnegative homogeneous of degree zero func-
tions G j on Rn that satisfy

|Fj(x)| ≤ G j(x) when |x| ≤ 1 (4.2.35)

and ∫
Sn−1

|G j(θ)|dθ ≤Cn(cΩ +1) . (4.2.36)

To prove (4.2.35), first note that if |x| ≤ 1/8, then

|Fj(x)| =
Γ ( n+1

2 )

π
n+1

2

∣∣∣∣∫Rn

Ω(y/|y|)
|y|n

Φ(y)
x j − y j

|x− y|n+1 dy
∣∣∣∣

≤Cn

∫
|y|≥ 1

4

|Ω(y/|y|)|
|y|2n dy

≤C′
n
∥∥Ω
∥∥

L1 .

We now fix an x satisfying 1/8≤ |x| ≤ 1 and we write
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|Fj(x)| ≤Φ(x)|K j(x)|+ |Fj(x)−Φ(x)K j(x)|

≤ |K j(x)|+
Γ ( n+1

2 )

π
n+1

2

∣∣∣∣ lim
ε→0

∫
|y|>ε

x j − y j

|x− y|n+1

(
Φ(y)−Φ(x)

)Ω(y/|y|)
|y|n

dy
∣∣∣∣

= |K j(x)|+
Γ ( n+1

2 )

π
n+1

2

(
P1(x)+P2(x)+P3(x)

)
,

where

P1(x) =
∣∣∣∣∫|y|≤ 1

16

(
x j − y j

|x− y|n+1 −
x j

|x|n+1

)(
Φ(y)−Φ(x)

)Ω(y/|y|)
|y|n

dy
∣∣∣∣ ,

P2(x) =
∣∣∣∣∫ 1

16≤|y|≤2

x j − y j

|x− y|n+1

(
Φ(y)−Φ(x)

)Ω(y/|y|)
|y|n

dy
∣∣∣∣ ,

P3(x) =
∣∣∣∣∫|y|≥2

x j − y j

|x− y|n+1

(
Φ(y)−Φ(x)

)Ω(y/|y|)
|y|n

dy
∣∣∣∣ .

But since 1/8≤ |x| ≤ 1, we see that

P1(x)≤Cn

∫
|y|≤ 1

16

|y|
|x|n+1

|Ω(y/|y|)|
|y|n

dy≤C′
n
∥∥Ω
∥∥

L1

and that

P3(x)≤Cn

∫
|y|≥2

|Ω(y/|y|)|
|y|2n dy≤C′

n
∥∥Ω
∥∥

L1 .

For P2(x) we use the estimate |Φ(y)−Φ(x)| ≤C|x− y| to obtain

P2(x) ≤
∫

1
16≤|y|≤2

C
|x− y|n−1

|Ω(y/|y|)|
|y|n

dy

≤ 4C
∫

1
16≤|y|≤2

|Ω(y/|y|)|
|x− y|n−1|y|n− 1

2
dy

≤ 4C
∫

Rn

|Ω(y/|y|)|
|x− y|n−1|y|n− 1

2
dy .

Recall that K j(x) = Ω j(x/|x|)|x|−n. We now set

G j(x) = Cn

(∥∥Ω
∥∥

L1 +
∣∣∣Ω j

( x
|x|

)∣∣∣+ |x|n−
3
2

∫
Rn

|Ω(y/|y|)|dy

|x− y|n−1|y|n− 1
2

)
(4.2.37)

and we observe that G j is a homogeneous of degree zero function, it satisfies
(4.2.35), and it is integrable over the annulus 1

2 ≤ |x| ≤ 2. To verify the last as-
sertion, we split up the double integral

I =
∫

1
2≤|x|≤2

∫
Rn

|Ω(y/|y|)|dy

|x− y|n−1|y|n− 1
2

dx
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into the pieces 1/4≤ |y| ≤ 4, |y|> 4, and |y|< 1/4. The part of I where 1/4≤ |y| ≤ 4
is pointwise bounded by a constant multiple of∫

1
4≤|y|≤4

∣∣∣Ω( y
|y|

)∣∣∣ ∫
1
2≤|x|≤2

dx
|y− x|n−1 dy≤

∫
1
4≤|y|≤4

∣∣∣Ω( y
|y|

)∣∣∣ ∫
|x−y|≤6

dx
|y− x|n−1 dy ,

which is pointwise controlled by a constant multiple of ‖Ω‖L1 . In the part of I where
|y| > 4 we use that |x− y|−n+1 ≤ (|y|/2)−n+1 to obtain rapid decay in y and hence
a bound by a constant multiple of ‖Ω‖L1 . Finally, in the part of I where |y| < 1/4
we use that |x− y|−n+1 ≤ (1/4)−n+1, and then we also obtain a similar bound. It
follows from (4.2.37) and (4.2.33) that∫

1
2≤|x|≤2

|G j(x)|dx ≤Cn
(∥∥Ω

∥∥
L1 +

∥∥Ω j
∥∥

L1 +
∥∥Ω
∥∥

L1

)
≤Cn(cΩ +1).

Since G j is homogeneous of degree zero, we deduce (4.2.36).
To complete the proof, we argue as follows:

sup
0<ε<N<∞

|A(ε,N)
1 ( f )(x)|

≤ 2sup
ε>0

n

∑
j=1

1
εn

∫
|z|≤ε

|Fj(z)| |R j( f )(x− z)|dz

≤ 2sup
ε>0

n

∑
j=1

1
εn

∫
ε

r=0

∫
Sn−1

|Fj(rθ)| |R j( f )(x− rθ)|rn−1 dθ dr

≤ 2
n

∑
j=1

∫
Sn−1

|G j(θ)|
{

sup
ε>0

1
εn

∫
ε

r=0
|R j( f )(x− rθ)|rn−1 dr

}
dθ

≤ 4
n

∑
j=1

∫
Sn−1

|G j(θ)|Mθ (R j( f ))(x)dθ .

Using (4.2.36) together with the Lp boundedness of the Riesz transforms and of Mθ

we obtain∥∥∥ sup
0<ε<N<∞

|A(ε,N)
1 ( f )|

∥∥∥
Lp
≤Cn max(p,(p−1)−2)(cΩ +1)

∥∥ f
∥∥

Lp . (4.2.38)

Combining (4.2.38), (4.2.32), and (4.2.34), we obtain the required conclusion. �

The following corollary is a consequence of Theorem 4.2.11.

Corollary 4.2.12. Let Ω be as in Theorem 4.2.11. Then for 1 < p < ∞ and f in
Lp(Rn) the functions T (ε,N)

Ω
( f ) converge to TΩ ( f ) in Lp and almost everywhere as

ε → 0 and N → ∞.

Proof. The a.e. convergence is a consequence of Theorem 2.1.14. The Lp conver-
gence is a consequence of the Lebesgue dominated convergence theorem since for
f ∈ Lp(Rn) we have that |T (ε,N)

Ω
( f )| ≤ T (∗∗)

Ω
( f ) and T (∗∗)

Ω
( f ) is in Lp(Rn). �
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Exercises

4.2.1. Show that the directional Hilbert transform Hθ is given by convolution with
the distribution wθ in S ′(Rn) defined by

〈
wθ ,ϕ

〉
=

1
π

p.v.
∫ +∞

−∞

ϕ(tθ)
t

dt.

Compute the Fourier transform of wθ and prove that Hθ maps L1(Rn) to L1,∞(Rn).

4.2.2. Extend the definitions of WΩ and TΩ to Ω = dµ a finite signed Borel measure
on Sn−1 with mean value zero. Compute the Fourier transform of such WΩ and find
a necessary and sufficient condition on measures Ω = dµ so that TΩ is L2 bounded.

4.2.3. Use the inequality AB ≤ A logA + eB for A ≥ 1 and B > 0 to prove that if
Ω satisfies (4.2.23) then it must satisfy (4.2.16). Conclude that if |Ω | log+ |Ω | is in
L1(Sn−1), then TΩ is L2 bounded.[
Hint: Use that

∫
Sn−1 |ξ ·θ |−α dθ converges when α < 1. See Appendix D.3.

]
4.2.4. Let Ω be a nonzero integrable function on Sn−1 with mean value zero. Let
f ≥ 0 be nonzero and integrable over Rn. Prove that TΩ ( f ) in not in L1(Rn).[
Hint: Show that T̂Ω ( f ) cannot be continuous at zero.

]
4.2.5. Use the idea of the boundedness of Hθ to show that Mθ maps Lp(Rn) to
itself with the same norm as the norm of the centered Hardy–Littlewood maximal
operator on Lp(R).

4.2.6. (a) Let θ ∈ Sn−1. Use an identity similar to (4.2.17) to show that the maximal
operators

sup
a>0

1
a

∫ a

0
| f (x− rθ)|dr , sup

a>0

1
2a

∫ +a

−a
| f (x− rθ)|dr

are Lp(Rn) bounded for 1 < p < ∞ with norm at most 3 p(p−1)−1.
(b) For Ω ∈ L1(Sn−1) and f locally integrable on Rn, define

MΩ ( f )(x) = sup
R>0

1
vnRn

∫
|y|≤R

|Ω(y/|y|)| | f (x− y)|dy .

Apply the method of rotations to prove that MΩ maps Lp(Rn) to itself for 1 < p < ∞.

4.2.7. Let Ω(x,θ) be a function on Rn×Sn−1 satisfying
(a) Ω(x,−θ) =−Ω(x,θ) for all x and θ .

(b)
∫

Sn−1
Ω(x,θ)dθ = 0 for all x ∈ Rn.

(c) supx |Ω(x,θ)| is in L1(Sn−1).
Use the method of rotations to prove that
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TΩ ( f )(x) = p.v.
∫

Rn

Ω(x,y/|y|)
|y|n

f (x− y)dy

is bounded on Lp(Rn) for 1 < p < ∞.

4.2.8. Let Ω ∈ L1(Sn−1) have mean value zero. Prove that if TΩ maps Lp(Rn) to
Lq(Rn), then p = q.[
Hint: Use dilations.

]
4.2.9. Prove that for all 1 < p < ∞ there exists a constant Ap > 0 such that for every
complex-valued C 2(R2) function f with compact support we have the bound∥∥∂x1 f

∥∥
Lp +

∥∥∂x2 f
∥∥

Lp ≤ Ap
∥∥∂x1 f + i∂x2 f

∥∥
Lp .

4.2.10. (a) Let ∆ = ∑
n
j=1 ∂ 2

x j
be the usual Laplacian on Rn. Prove that for all 1 <

p < ∞ there exists a constant Ap > 0 such that for all C 2 functions f with compact
support we have the bound∥∥∂x j ∂xk f

∥∥
Lp ≤ Ap

∥∥∆( f )
∥∥

Lp .

(b) Let ∆ m =

m times︷ ︸︸ ︷
∆ ◦ · · · ◦∆ . Show that for any 1 < p < ∞ there exists a Cp > 0 such

that for all f of class C 2m with compact support and all differential monomials ∂ α
x

of order |α|= 2m we have ∥∥∂
α
x f
∥∥

Lp ≤Cp
∥∥∆

m( f )
∥∥

Lp .

4.2.11. Use the same idea as in Lemma 4.2.5 to show that if f is continuous on
[0,∞), differentiable in (0,∞), and satisfies

lim
N→∞

∫ Na

N

f (u)
u

du = 0

for all a > 0, then

lim
ε→0
N→∞

∫ N

ε

f (at)− f (t)
t

dt = f (0) log
1
a

.

4.2.12. Let Ωo be an odd integrable function on Sn−1 and Ωe an even function on
Sn−1 that satisfies (4.2.23). Let f be a function supported in a ball B in Rn. Prove
that
(a) If | f | log+ | f | is integrable over a ball B, then TΩo( f ) and T (∗∗)

Ωo
( f ) are integrable

over B.
(b) If | f |(log+ | f |)2 is integrable over a ball B, then TΩe( f ) and T (∗∗)

Ωe
( f ) are inte-

grable over B.[
Hint: Use Exercise 1.3.7.

]
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4.2.13. (Sjögren and Soria [244] ) Let Ω be integrable on Sn−1 with mean value
zero. Use Jensen’s inequality to show that for some C > 0 and every radial function
f ∈ L2(Rn) we have ∥∥TΩ ( f )

∥∥
L2 ≤C

∥∥ f
∥∥

L2 .

This inequality subsumes that TΩ is well defined for f radial.

4.3 The Calderón–Zygmund Decomposition and Singular
Integrals

The behavior of singular integral operators on L1(Rn) is a more subtle issue than
that on Lp for 1 < p < ∞. It turns out that singular integrals are not bounded from
L1 to L1. See Example 4.1.3 and also Exercise 4.2.4. In this section we see that
singular integrals map L1 into the larger space L1,∞. This result strengthens their Lp

boundedness.

4.3.1 The Calderón–Zygmund Decomposition

To make some advances in the theory of singular integrals, we need to introduce
the Calderón–Zygmund decomposition. This is a powerful stopping-time construc-
tion that has many other interesting applications. We have already encountered an
example of a stopping-time argument in Section 2.1.

Recall that a dyadic cube in Rn is the set

[2km1,2k(m1 +1))×·· ·× [2kmn,2k(mn +1)) ,

where k,m1, . . . ,mn ∈Z. Two dyadic cubes are either disjoint or related by inclusion.

Theorem 4.3.1. Let f ∈ L1(Rn) and α > 0. Then there exist functions g and b on
Rn such that

(1) f = g+b.

(2)
∥∥g
∥∥

L1 ≤
∥∥ f
∥∥

L1 and
∥∥g
∥∥

L∞ ≤ 2nα .

(3) b = ∑ j b j, where each b j is supported in a dyadic cube Q j. Furthermore, the
cubes Qk and Q j are disjoint when j 6= k.

(4)
∫

Q j

b j(x)dx = 0.

(5)
∥∥b j
∥∥

L1 ≤ 2n+1α|Q j|.

(6) ∑ j |Q j| ≤ α−1
∥∥ f
∥∥

L1 .
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Remark 4.3.2. This decomposition is called the Calderón–Zygmund decomposition
of f at height α . The function g is called the good function of the decomposition,
since it is both integrable and bounded; hence the letter g. The function b is called
the bad function, since it contains the singular part of f (hence the letter b), but it
is carefully chosen to have mean value zero. It follows from (1) and (2) that the bad
function b is integrable and satisfies∥∥b

∥∥
L1 ≤

∥∥ f
∥∥

L1 +
∥∥g
∥∥

L1 ≤ 2
∥∥ f
∥∥

L1 .

By (2) the good function is integrable and bounded; hence it lies in all the Lp spaces
for 1≤ p≤ ∞. More specifically, we have the following estimate:

∥∥g
∥∥

Lp ≤
∥∥g
∥∥ 1

p

L1

∥∥g
∥∥1− 1

p
L∞ ≤

∥∥ f
∥∥ 1

p

L1(2
n
α)1− 1

p = 2
n
p′ α

1
p′
∥∥ f
∥∥ 1

p

L1 . (4.3.1)

Proof. Decompose Rn into a mesh of disjoint dyadic cubes of the same size such
that

|Q| ≥ 1
α

∥∥ f
∥∥

L1

for every cube Q in the mesh. Call these cubes of zero generation. Subdivide each
cube of zero generation into 2n congruent cubes by bisecting each of its sides. We
now have a new mesh of dyadic cubes, which we call of generation one. Select a
cube Q of generation one if

1
|Q|

∫
Q
| f (x)|dx > α. (4.3.2)

Let S(1) be the set of all selected cubes of generation one. Now subdivide each
nonselected cube of generation one into 2n congruent subcubes by bisecting each
side and call these cubes of generation two. Then select all cubes Q of generation
two if (4.3.2) holds. Let S(2) be the set of all selected cubes of generation two.
Repeat this procedure indefinitely.

The set of all selected cubes
⋃

∞
m=1 S(m) is countable and is exactly the set of the

cubes Q j proclaimed in the proposition. Note that in some instances this set may
be empty, in which case b = 0 and g = f . Let us observe that the selected cubes
are disjoint, for otherwise some Qk would be a proper subset of some Q j, which is
impossible since the selected cube Q j was never subdivided. Now define

b j =
(

f − 1
|Q j|

∫
Q j

f dx
)

χQ j ,

b = ∑ j b j, and g = f −b.
For a selected cube Q j there exists a unique nonselected cube Q′ with twice its

side length that contains Q j. Let us call this cube the parent of Q j. Since the parent
Q′ of Q j was not selected, we have |Q′|−1 ∫

Q′ | f |dx ≤ α . Then



288 4 Singular Integrals of Convolution Type

1
|Q j|

∫
Q j

| f (x)|dx ≤ 1
|Q j|

∫
Q′
| f (x)|dx =

2n

|Q′|

∫
Q′
| f (x)|dx ≤ 2n

α.

Consequently,∫
Q j

|b j|dx ≤
∫

Q j

| f |dx+ |Q j|
∣∣∣∣ 1
|Q j|

∫
Q j

f dx
∣∣∣∣≤ 2

∫
Q j

| f |dx ≤ 2n+1
α|Q j| ,

which proves (5). To prove (6), simply observe that

∑
j
|Q j| ≤

1
α

∑
j

∫
Q j

| f |dx =
1
α

∫
⋃

j Q j

| f |dx ≤ 1
α

∥∥ f
∥∥

L1 .

Next we need to obtain the estimates concerning g. We obviously have

g =

 f on Rn \
⋃

j Q j,
1
|Q j |

∫
Q j

f dx on Q j.
(4.3.3)

On the cube Q j, g is equal to the constant |Q j|−1 ∫
Q j

f dx, and this is bounded by
2nα . It suffices to show that g is bounded outside the union of the Q j’s. Indeed, for
each x ∈ Rn \

⋃
j Q j and for each k = 0,1,2, . . . there exists a unique nonselected

dyadic cube Q(k)
x of generation k that contains x. Then for each k ≥ 0, we have∣∣∣∣∣ 1

|Q(k)
x |

∫
Q(k)

x

f (y)dy

∣∣∣∣∣≤ 1

|Q(k)
x |

∫
Q(k)

x

| f (y)|dy≤ α.

The intersection of the closures of the cubes Q(k)
x is the singleton {x}. Using a ver-

sion of Corollary 2.1.16 where the balls are replaced with cubes, we deduce that for
almost all x ∈ Rn \

⋃
j Q j we have

f (x) = lim
k→∞

1

|Q(k)
x |

∫
Q(k)

x

f (y)dy .

Since these averages are at most α , we conclude that | f | ≤ α a.e. on Rn \
⋃

j Q j,
hence |g| ≤ α a.e. on this set. Finally, it follows from (4.3.3) that

∥∥g
∥∥

L1 ≤
∥∥ f
∥∥

L1 .
This finishes the proof of the theorem. �

We now apply the Calderón–Zygmund decomposition to obtain weak type (1,1)
bounds for a wide class of singular integral operators that includes the operators TΩ

we studied in the previous section.
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4.3.2 General Singular Integrals

Let K be a measurable function defined on Rn \{0} that satisfies the size condition

sup
R>0

∫
R≤|x|≤2R

|K(x)|dx = A1 < ∞ . (4.3.4)

This condition is less restrictive than the standard size estimate

sup
x∈Rn

|x|n|K(x)|< ∞ , (4.3.5)

but it is strong enough to capture size properties of kernels K(x) = Ω(x/|x|)/|x|n,
where Ω ∈ L1(Sn−1). We also note that condition (4.3.4) is equivalent to

sup
R>0

1
R

∫
|x|≤R

|K(x)| |x|dx < ∞ . (4.3.6)

See Exercise 4.3.1.
The size condition (4.3.4) is sufficient to make K a tempered distribution away

from the origin. Indeed, for ϕ ∈S (Rn) we have∫
|x|≥1

|K(x)ϕ(x)|dx ≤
∞

∑
m=0

∫
2m+1≥|x|≥2m

|K(x)|(1+ |x|)N |ϕ(x)|
(1+2m)N dx

≤
∞

∑
m=0

A1

(1+2m)N sup
x∈Rn

(1+ |x|)N |ϕ(x)| ,

and the latter is controlled by a finite sum of Schwartz seminorms of ϕ .
We are interested in tempered distributions W on Rn that extend the function K

defined on Rn \{0} and that have the form

W (ϕ) = lim
j→∞

∫
|x|≥δ j

K(x)ϕ(x)dx, ϕ ∈S (Rn), (4.3.7)

for some sequence δ j ↓ 0 as j → ∞. It is not hard to see that there exists a tempered
distribution W satisfying (4.3.7) for all ϕ ∈S (Rn) if and only if

lim
j→∞

∫
1≥|x|≥δ j

K(x)dx = L (4.3.8)

exists. See Exercise 4.3.2. If such a distribution W exists it may not be unique, since
it depends on the choice of the sequence δ j. Two different sequences tending to zero
may give two different tempered distributions W of the form (4.3.7), both coinciding
with the function K on Rn \{0}. See Example 4.4.2 and Remark 4.4.3. Furthermore,
not all functions K on Rn \{0} give rise to distributions W defined by (4.3.7); take,
for example, K(x) = |x|−n.

If condition (4.3.8) is satisfied, we can define
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W (ϕ) = lim
j→∞

∫
j≥|x|≥δ j

K(x)ϕ(x)dx (4.3.9)

and the limit exists as j → ∞ for all ϕ ∈S (Rn) and is equal to

W (ϕ) =
∫
|x|≤1

K(x)(ϕ(x)−ϕ(0))dx+ϕ(0)L+
∫
|x|≥1

K(x)ϕ(x)dx .

Moreover, the previous calculations show that W is an element of S ′(Rn).
Next we assume that the given function K on Rn \{0} satisfies a certain smooth-

ness condition. There are three kinds of smoothness conditions that we encounter:
first, the gradient condition

|∇K(x)| ≤ A2|x|−n−1, x 6= 0; (4.3.10)

next, the weaker Lipschitz condition,

|K(x− y)−K(x)| ≤ A2
|y|δ

|x|n+δ
, whenever |x| ≥ 2|y|; (4.3.11)

and finally the even weaker smoothness condition

sup
y6=0

∫
|x|≥2|y|

|K(x− y)−K(x)|dx = A2 , (4.3.12)

for some A2 < ∞. One should verify that (4.3.12) is a weaker condition than (4.3.11),
which in turn is weaker than (4.3.10). Condition (4.3.12) is often referred to as
Hörmander’s condition.

4.3.3 Lr Boundedness Implies Weak Type (1,1) Boundedness

This next theorem provides a very classical application of the Calderón–Zygmund
decomposition.

Theorem 4.3.3. Assume that K is defined on Rn \{0} and satisfies (4.3.12) for some
A2 < ∞. Let W ∈ S ′(Rn) be as in (4.3.7) coinciding with K on Rn \ {0}. Suppose
that the operator T given by convolution with W maps Lr(Rn) to itself with norm B
for some 1 < r ≤ ∞. Then T has an extension that maps L1(Rn) to L1,∞(Rn) with
norm ∥∥T

∥∥
L1→L1,∞ ≤Cn(A2 +B), (4.3.13)

and T also extends to a bounded operator from Lp(Rn) to itself for 1 < p < ∞ with
norm ∥∥T

∥∥
Lp→Lp ≤C′

n max
(

p,(p−1)−1)(A2 +B), (4.3.14)

where Cn,C′
n are constants that depend on the dimension but not on r or p.



4.3 Calderón–Zygmund Decomposition and Singular Integrals 291

Proof. We first explain the idea of the proof. We write f = g+b; hence

T ( f ) = T (g)+T (b).

The function T (g) is in Lr and thus it satisfies a weak type Lr estimate. The bad part
of f is a sum of functions with mean value zero. Cancellation is used to subtract a
suitable term from every piece of the bad function that allows us to use Hörmander’s
condition (4.3.12). Let us proceed with the details. We work out the case r < ∞ and
we refer to Exercise 4.3.7 for the case r = ∞.

Fix α > 0 and let f be in L1(Rn). We assume that f is in the Schwartz class since
T ( f ) may not be a priori defined for f ∈ L1(Rn). Once (4.3.13) is obtained for f in
S (Rn), a density argument gives that T admits an extension on L1 that also satisfies
(4.3.13). Apply the Calderón–Zygmund decomposition to f at height γα , where γ

is a positive constant to be chosen later. That is, write the function f as the sum

f = g+b,

where conditions (1)–(6) of Theorem 4.3.1 are satisfied with the constant α replaced
by γα . We denote by `(Q) the side length of a cube Q. Let Q∗

j be the unique cube
with sides parallel to the axes having the same center as Q j and having side length

`(Q∗
j) = 2

√
n`(Q j) .

We have∣∣{x ∈ Rn : |T ( f )(x)|> α
}∣∣

≤
∣∣∣{x ∈ Rn : |T (g)(x)|> α

2

}∣∣∣+ ∣∣∣{x ∈ Rn : |T (b)(x)|> α

2

}∣∣∣
≤ 2r

αr

∥∥T (g)
∥∥r

Lr +
∣∣∣⋃

j

Q∗
j

∣∣∣+ ∣∣∣{x /∈
⋃

j

Q∗
j : |T (b)(x)|> α

2

}∣∣∣
≤ 2r

αr Br∥∥g
∥∥r

Lr +∑
j
|Q∗

j |+
2
α

∫
(
⋃

j Q∗
j )

c
|T (b)(x)|dx

≤ 2r

αr 2
nr
r′ Br(γα)

r
r′
∥∥ f
∥∥

L1 +(2
√

n)n

∥∥ f
∥∥

L1

γα
+

2
α

∑
j

∫
(Q∗

j )
c
|T (b j)(x)|dx

≤
(

(2n+1Bγ)r

2nγ
+

(2
√

n)n

γ

)∥∥ f
∥∥

L1

α
+

2
α

∑
j

∫
(Q∗

j )
c
|T (b j)(x)|dx .

It suffices to show that the last sum is bounded by some constant multiple of the
L1 norm of f . It is here where we use the fact that b j has mean value zero and
Hörmander’s condition (4.3.12).

Let y j be the center of the cube Q j. We have
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∑
j

∫
(Q∗

j )
c
|T (b j)(x)|dx = ∑

j

∫
(Q∗

j )
c

∣∣∣∣∫ b j(y)K(x− y)dy
∣∣∣∣ dx

= ∑
j

∫
(Q∗

j )
c

∣∣∣∣∫Q j

b j(y)
(
K(x− y)−K(x− y j)

)
dy
∣∣∣∣ dx

≤ ∑
j

∫
Q j

|b j(y)|
∫

(Q∗
j )

c
|K(x− y)−K(x− y j)|dxdy

= ∑
j

∫
Q j

|b j(y)|
∫
−y j+(Q∗

j )
c
|K(x− (y− y j))−K(x)|dxdy

≤ ∑
j

∫
Q j

|b j(y)|
∫
|x|≥2|y−y j |

|K(x− (y− y j))−K(x)|dxdy

≤ A2 ∑
j

∥∥b j
∥∥

L1

≤ A22n+1∥∥ f
∥∥

L1 ,

where we used the fact that if x ∈ −y j +(Q∗
j)

c then |x| ≥ 1
2`(Q∗

j) =
√

n`(Q j). But

since y− y j ∈ −y j +Q j, we have |y− y j| ≤
√

n
2 `(Q j), thus |x| ≥ 2|y− y j|. Here we

used the fact that the diameter of a cube is equal to
√

n times its side length. See
Figure 4.2.

x

j

j
*

j

0.
.

.

j

j

x y

− y + Q

− y + Q

y − y

Fig. 4.2 The cubes −y j +Q j and −y j +Q∗
j .

Choosing γ = 2−(n+1)B−1, we deduce the weak type (1,1) estimate (4.3.13) for
T with Cn = 2+2n+1(2

√
n)n +2n+2.

In view of Exercise 1.3.2, we have that T maps Lp to Lp with bound at most
C′

n(A2 +B)(p−1)−1/p whenever 1 < p < r. This proves (4.3.14) for 1 < p < r. To
obtain a similar conclusion for r < p < ∞ we use duality. Notice that the adjoint
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operator T ∗ of T , defined by 〈
T ( f ) |g

〉
=
〈

f |T ∗(g)
〉
,

has a kernel that coincides with the function K∗(x) = K(−x) on Rn \{0}. Next we
notice that since K satisfies (4.3.12), then so does K∗ and with the same bound.
Therefore, T ∗, which maps Lr′ to Lr′ , has a kernel that satisfies Hörmander’s con-
dition. It must therefore map L1 to L1,∞ and Lp′ to Lp′ for 1 < p′ < r′ with norm at
most C′

n(A2 +B)(p′−1)−1, by the argument just shown. It follows that T maps Lp

to Lp with norm at most C′
n(A2 +B)p for r < p < ∞, and this proves (4.3.14). �

4.3.4 Discussion on Maximal Singular Integrals

In this subsection we introduce maximal singular integrals and we derive their
boundedness under certain smoothness conditions on the kernels, assuming bound-
edness of the associated linear operator.

Suppose that K is a kernel on Rn \{0} that satisfies the size condition

|K(x)| ≤ A1|x|−n (4.3.15)

for x 6= 0. Then for any ε > 0 the function K(ε)(x) = |x|−nχ|x|≥ε lies in Lp′(Rn)
(with norm cp,nε−n/p) for all 1 ≤ p < ∞. Consequently, by Hölder’s inequality, the
integral

( f ∗K(ε))(x) =
∫
|y|≥ε

f (x− y)K(y)dy

converges absolutely for all x ∈ Rn and all f ∈ Lp(Rn), when 1≤ p < ∞.
Let f ∈

⋃
1≤p<∞ Lp(Rn). We define the truncated singular integrals T (ε)( f ) asso-

ciated with the kernel K by setting

T (ε)( f ) = f ∗K(ε) ;

we also define the maximal truncated singular integral operator associated with K
by setting

T (∗)( f ) = sup
ε>0

|( f ∗K(ε))|= sup
ε>0

|T (ε)( f )| .

This operator is well defined, but possibly infinite, for certain points in Rn.
We now consider the situation in which the kernel K satisfies an integrability

condition over concentric annuli centered at the origin, a condition that is certainly
a weaker condition than (4.3.15). Precisely, suppose that K is a function on Rn \{0}
for which there is a constant A1 < ∞ such that

sup
R>0

∫
R≤|x|≤2R

|K(x)|dx ≤ A1 < ∞ . (4.3.16)
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Such kernels may not be integrable to the power p′ > 1 over the region |x| ≥ ε .
For this reason, it is not possible to define T (ε) as an absolutely convergent integral.
To overcome this difficulty, we consider double truncations. We define the doubly
truncated kernel K(ε,N) by setting

K(ε,N)(x) = K(x)χε≤|x|≤N(x) . (4.3.17)

A repeated application of (4.3.16) yields that∫
|K(ε,N)(x)|dx ≤ A1

([
log2

N
ε

]
+1
)

,

which implies that K(ε,N) is integrable over concentric annuli centered at the origin.
Next, we define the doubly truncated singular integrals T (ε,N) by setting

T (ε,N)( f ) = f ∗K(ε,N) ,

and we observe that these operators are well defined when f in Lp, for 1 ≤ p ≤ ∞.
Indeed, Theorem 1.2.10 yields that∥∥T (ε,N)( f )

∥∥
Lp ≤

∥∥ f
∥∥

Lp

∫
|K(ε,N)(x)|dx < ∞

for functions f in Lp, 1≤ p≤ ∞. Consequently, for almost every x ∈ Rn we have

|T (ε,N)( f )(x)|< ∞ .

For functions in
⋃

1≤p≤∞ Lp(Rn) we define the doubly truncated maximal singular
integral operator T (∗∗) associated with K by setting

T (∗∗)( f ) = sup
0<ε<N<∞

|T (ε,N)( f )| . (4.3.18)

For such functions and for almost all x ∈Rn, T (∗∗)( f )(x) is well defined, but poten-
tially infinite.

One observation is that under condition (4.3.16), one can also define T (∗)(g)
for general integrable functions g with compact support. In this case, say that the
ball B(0,R) contains the support of g. Let x ∈ B(0,M) and N = M + R. Then
|T (ε)(g)(x)| ≤ |g| ∗ |K(ε,N)|(x), which is finite a.e. as the convolution of two L1

functions; consequently, the integral defining T (ε)(g)(x) converges absolutely for
all x ∈ B(0,R). Since R > 0 is arbitrary, T (ε)(g)(x) is defined and finite for almost
all x ∈ Rn.

Obviously T (∗) and T (∗∗) are related. If K satisfies condition (4.3.15), then∣∣∣∣∫
ε≤|y|

f (x− y)K(y)dy
∣∣∣∣≤ sup

N>0

∣∣∣∣∫
ε≤|y|≤N

f (x− y)K(y)dy
∣∣∣∣ ,

which implies that
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T (∗)( f )≤ T (∗∗)( f )

for all f ∈
⋃

1≤p<∞ Lp. Also, T (ε,N)( f ) = T (ε)( f )−T (N)( f ); hence

T (∗∗)( f )≤ 2T (∗)( f ) .

Therefore, for kernels satisfying (4.3.15), T (∗∗) and T (∗) are comparable and the
boudnedness properties of T (∗∗) and T (∗) are equivalent

Theorem 4.3.4. (Cotlar’s inequality.) Let 0 < A1,A2,A3 < ∞ and suppose that K
is defined on Rn \{0} and satisfies the size condition,

|K(x)|dx ≤ A1|x|−n , x 6= 0, (4.3.19)

the smoothness condition

|K(x− y)−K(x)| ≤ A2|y|δ |x|−n−δ , (4.3.20)

whenever |x| ≥ 2|y|> 0, and the cancellation condition

sup
0<r<R<∞

∣∣∣∣∫r<|x|<R
K(x)dx

∣∣∣∣≤ A3 . (4.3.21)

Let W be any tempered distribution on Rn that coincides with K on Rn \{0} and let
T be the operator given by convolution with W. Then there is a constant Cn,δ such
that the following inequality is valid:

T (∗)( f )≤M(T ( f ))+Cn,δ (A1 +A2 +A3)M( f ) , (4.3.22)

for all f ∈ Lp, 1 < p < ∞, where M is the Hardy–Littlewood maximal operator. Thus
the Lp boundedness of T (∗) for 1 < p < ∞ can be deduced from that of T .

Proof. Let ϕ be a radially decreasing smooth function with integral 1 supported
in the ball B(0,1/2). For a function g and ε > 0 we use the notation gε(x) =
ε−ng(ε−1x). For a distribution W we define Wε analogously, i.e. as the unique dis-
tribution with the property

〈
Wε ,ψ

〉
= ε−n

〈
W,ψε−1

〉
. We begin by observing that

Kε−1(x) = εnK(εx) satisfies (4.3.19), (4.3.20), and (4.3.21) uniformly in ε > 0.
Set, as before, K(ε)(x) = K(x)χ|x|≥ε . Fix f ∈ Lp(Rn) for some 1 < p < ∞. Obvi-

ously we have

f ∗K(ε) = f ∗
(
(Kε−1)(1))

ε
= f ∗W ∗ϕε + f ∗

(
(Kε−1)(1)−Wε−1 ∗ϕ

)
ε
. (4.3.23)

Next we prove the following estimate for all ε > 0:∣∣((Kε−1)(1)−Wε−1 ∗ϕ
)
(x)
∣∣≤C(A1 +A2)(1+ |x|)−n−δ (4.3.24)

for all x ∈ Rn. Indeed, for |x| ≥ 1 we express the left-hand side in (4.3.24) as
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(
Kε−1(x)−Kε−1(x− y)

)
ϕ(y)dy

∣∣∣∣ .
Since ϕ is supported in |y| ≤ 1/2, we have |x| ≥ 2|y|, and condition (4.3.20) yields
that the expression on the left-hand side of (4.3.24) is bounded by

A2

|x|n+δ

∫
Rn
|y|δ |ϕ(y)|dy≤ c

A2

(1+ |x|)n+δ
,

which proves (4.3.24) in the case |x| ≥ 1. When |x|< 1, the left-hand side of (4.3.24)
can be written as

(Wε−1 ∗ϕ)(x) = lim
δ j→0

∫
|x−y|≥δ j

Kε−1(x− y)ϕ(y)dy (4.3.25)

for some sequence δ j ↓ 0; see the discussion in Section 4.3.2. The expression in
(4.3.25) is equal to

I1 + I2 + I3 ,

where

I1 =
∫
|x−y|≥ 1

8

Kε−1(x− y)ϕ(y)dy ,

I2 =
∫
|x−y|≤ 1

8

Kε−1(x− y)
(
ϕ(y)−ϕ(x)

)
dy ,

I3 = ϕ(x) lim
δ j→0

∫
|x−y|≥δ j

Kε−1(x− y)dy .

In I1 we have 1/8 ≤ |x− y| ≤ 1 + 1/2 = 3/2; hence I1 is bounded by a multiple of
A1. Since |ϕ(x)−ϕ(y)| ≤ c|x− y|, the same is valid for I2. Finally, I3 is bounded
by a multiple of A3. Combining these facts yields the proof of (4.3.24) in the case
|x|< 1 as well.

Use Corollary 2.1.12 to deduce that

sup
ε>0

∣∣ f ∗ ((Kε−1)(1)−Kε−1 ∗ϕ
)

ε

∣∣≤ c(A1 +A2 +A3)M( f ) .

Finally, take the supremum over ε > 0 in (4.3.23) and use (4.3.24) and Corollary
2.1.12 one more time to deduce the estimate

T (∗)( f )≤M( f ∗W )+C (A1 +A2 +A3)M( f ) ,

where C depends on n and δ , thus concluding the proof of (4.3.22). �
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4.3.5 Boundedness for Maximal Singular Integrals Implies Weak
Type (1,1) Boundedness

We now state and prove a result analogous to that in Theorem 4.3.3 for maximal
singular integrals.

Theorem 4.3.5. Let K(x) be function on Rn \ {0} satisfying (4.3.4) with constant
A1 < ∞ and Hörmander’s condition (4.3.12) with constant A2 < ∞. Suppose that the
operator T (∗∗) as defined in (4.3.18) maps L2(Rn) to itself with norm B. Then T (∗∗)

maps L1(Rn) to L1,∞(Rn) with norm∥∥T (∗∗)∥∥
L1→L1,∞ ≤Cn(A1 +A2 +B),

where Cn is some dimensional constant.

Proof. The proof of this theorem is only a little more involved than the proof of
Theorem 4.3.3. We fix an L1(Rn) function f . We apply the Calderón–Zygmund
decomposition of f at height γα for some γ,α > 0. We then write f = g+b, where
b = ∑ j b j and each b j is supported in some cube Q j. We define Q∗

j as the cube
with the same center as Q j and with sides parallel to the sides of Q j having length
`(Q∗

j) = 5
√

n`(Q j). This is only a minor change compared with the definition of Q j
in Theorem 4.3.3. The main change in the proof is in the treatment of the term∣∣∣{x ∈

(⋃
j

Q∗
j

)c
: |T (∗∗)(b)(x)|> α

2

}∣∣∣ . (4.3.26)

We show that for all γ ≤ (2n+5A1)−1 we have∣∣∣{x ∈
(⋃

j

Q∗
j

)c
: |T (∗∗)(b)(x)|> α

2

}∣∣∣≤ 2n+8A2

∥∥ f
∥∥

L1

α
. (4.3.27)

Let us conclude the proof of the theorem assuming for the moment the validity of
(4.3.27). As in the proof of Theorem 4.3.3, we can show that∣∣∣{x ∈ Rn : |T (∗∗)(g)(x)|> α

2

}∣∣∣+ ∣∣∣⋃
j

Q∗
j

∣∣∣≤ (2n+2B2
γ +

(5
√

n)n

γ

)∥∥ f
∥∥

L1

α
.

Combining this estimate with (4.3.27) and choosing

γ = (2n+5(A1 +A2 +B))−1 ,

we obtain the required estimate

∣∣{x ∈ Rn : |T (∗∗)( f )(x)|> α
}∣∣≤Cn(A1 +A2 +B)

∥∥ f
∥∥

L1

α

with Cn = 2−3 +(5
√

n)n2n+5 +2n+8.
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It remains to prove (4.3.27). This estimate will be a consequence of the fact that
for x ∈

(⋃
j Q∗

j
)c we have the key inequality

T (∗∗)(b)(x)≤ 4E1(x)+2n+2
αγE2(x)+2n+3

αγA1 , (4.3.28)

where

E1(x) = ∑
j

∫
Q j

|K(x− y)−K(x− y j)| |b j(y)|dy ,

E2(x) = ∑
j

∫
Q j

|K(x− y)−K(x− y j)|dy ,

and y j is the center of Q j.
If we had (4.3.28), then we could easily derive (4.3.27). Indeed, fix a γ satisfying

γ ≤ (2n+5A1)−1. Then we have 2n+3αγA1 < α

3 , and using (4.3.28), we obtain∣∣∣{x ∈
(⋃

j

Q∗
j

)c
: |T (∗∗)(b)(x)|> α

2

}∣∣∣
≤
∣∣∣{x ∈

(⋃
j

Q∗
j

)c
: 4E1(x) >

α

12

}∣∣∣
+
∣∣∣{x ∈

(⋃
j

Q∗
j

)c
: 2n+2

αγE2(x) >
α

12

}∣∣∣
≤ 48

α

∫
(
⋃

j Q∗
j )

c
E1(x)dx+2n+6

γ

∫
(
⋃

j Q∗
j )

c
E2(x)dx ,

(4.3.29)

since α

2 = α

3 + α

12 + α

12 . We have∫
(
⋃

j Q∗
j )

c
E1(x)dx

≤ ∑
j

∫
Q j

|b j(y)|
∫

(Q∗
j )

c
|(K(x− y)−K(x− y j)|dxdy

≤ ∑
j

∫
Q j

|b j(y)|
∫
|x−y j |≥2|y−y j |

|K(x− y)−K(x− y j)|dxdy

≤ A2 ∑
j

∫
Q j

|b j(y)|dy = A2 ∑
j

∥∥b j
∥∥

L1 ≤ A22n+1∥∥ f
∥∥

L1 ,

(4.3.30)

where we used the fact that if x ∈ (Q∗
j)

c, then |x− y j| ≥ 1
2`(Q∗

j) = 5
2
√

n`(Q j). But

since |y−y j| ≤
√

n
2 `(Q j), this implies that |x−y j| ≥ 2|y−y j|. Here we used the fact

that the diameter of a cube is equal to
√

n times its side length. Likewise, we obtain
that ∫

(
⋃

j Q∗
j )

c
E2(x)dx ≤ A2 ∑

j
|Q j| ≤ A2

∥∥ f
∥∥

L1

αγ
. (4.3.31)
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Combining (4.3.30) and (4.3.31) with (4.3.29) yields (4.3.27).

Q

x

y

y
0

j

Q
j
*

j.

.

.

Fig. 4.3 The cubes Q j and Q∗
j .

Therefore, the main task of the proof is to prove (4.3.28). Since b = ∑ j b j, to
estimate T (∗∗)(b), it suffices to estimate each |T (ε,N)(b j)| uniformly in ε and N. To
achieve this we use the estimate

|T (ε,N)(b j)| ≤ |T (ε)(b j)|+ |T (N)(b j)| , (4.3.32)

noting that the truncated singular integrals T (ε)(b j) are well defined. Indeed, say x
lies in a compact set K0. Pick M such that K0 −Q j is contained in a ball B(0,M).
Then

|T (ε)(b j)(x)| ≤ |b j| ∗ |K(ε,M)|(x) ,

which is finite a.e. as the convolution of two L1 functions; thus the integral defining
T (ε)(b j)(x) converges absolutely and the expression T (ε)(b j)(x) is well defined for
almost all x.

We work with T (ε) and we note that T (N) can be treated similarly. Fix x /∈
⋃

j Q∗
j

and ε > 0 and define

J1(x,ε) = { j : ∀y ∈ Q j we have |x− y|< ε},
J2(x,ε) = { j : ∀y ∈ Q j we have |x− y|> ε},
J3(x,ε) = { j : ∃y ∈ Q j we have |x− y|= ε}.

Note that
T (ε)(b j)(x) = 0
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whenever x /∈
⋃

j Q∗
j and j ∈ J1(x,ε). Also note that

K(ε)(x− y) = K(x− y)

whenever x /∈
⋃

j Q∗
j , j ∈ J2(x,ε) and y ∈ Q j. Therefore,

sup
ε>0

|T (ε)(b)(x)| ≤ sup
ε>0

∣∣ ∑
j∈J2(x,ε)

T (b j)(x)
∣∣+ sup

ε>0

∣∣ ∑
j∈J3(x,ε)

T (b jχ|x−·|≥ε)(x)
∣∣ ,

but since
sup
ε>0

∣∣ ∑
j∈J2(x,ε)

T (b j)(x)
∣∣≤∑

j
|T (b j)(x)| ≤ E1(x) , (4.3.33)

it suffices to estimate the term

sup
ε>0

∣∣∣ ∑
j∈J3(x,ε)

T (b jχ|x−·|≥ε)(x)
∣∣∣ .

We now make some geometric observations; see Figure 4.3. Fix ε > 0 and a cube
Q j with j ∈ J3(x,ε); recall that x lies in (

⋃
j Q∗

j)
c. Then we have

ε ≥ 1
2
(
`(Q∗

j)− `(Q j)
)

=
1
2
(5
√

n−1)`(Q j)≥ 2
√

n`(Q j) . (4.3.34)

Since j ∈ J3(x,ε), there exists a y0 ∈ Q j with

|x− y0|= ε .

Using (4.3.34), we obtain that for any y ∈ Q j we have

ε

2
≤ ε−

√
n`(Q j)≤ |x− y0|− |y− y0| ≤ |x− y| ,

|x− y| ≤ |x− y0|+ |y− y0| ≤ ε +
√

n`(Q j)≤
3ε

2
.

Therefore, we have proved that⋃
j∈J3(x,ε)

Q j ⊆ B(x, 3ε

2 )\B(x, ε

2 ) .

Letting

c j(ε) =
1
|Q j|

∫
Q j

b j(y)χ|x−y|≥ε(y)dy ,

we note that in view of property (5) of the Calderón–Zygmund decomposition (The-
orem 4.3.1), the estimate |c j(ε)| ≤ 2n+1αγ holds. Then
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sup
ε>0

∣∣∣∣ ∑
j∈J3(x,ε)

∫
Q j

K(x− y)b j(y)χ|x−y|≥ε(y)dy
∣∣∣∣

≤ sup
ε>0

∣∣∣∣ ∑
j∈J3(x,ε)

∫
Q j

K(x− y)
(
b j(y)χ|x−y|≥ε(y)− c j(ε)

)
dy
∣∣∣∣

+ sup
ε>0

∣∣∣∣ ∑
j∈J3(x,ε)

c j(ε)
∫

Q j

K(x− y)dy
∣∣∣∣

≤ sup
ε>0

∣∣∣∣ ∑
j∈J3(x,ε)

∫
Q j

(
K(x− y)−K(x− y j)

)(
b j(y)χ|x−y|≥ε(y)− c j(ε)

)
dy
∣∣∣∣

+2n+1
αγ sup

ε>0

∫
B(x, 3ε

2 )\B(x, ε
2 )
|K(x− y)|dy

≤ ∑
j

∫
Q j

∣∣K(x− y)−K(x− y j)
∣∣(|b j(y)|+2n+1

αγ
)

dy

+2n+1
αγ sup

ε>0

∫
ε
2≤|x−y|≤ 3ε

2

|K(x− y)|dy

≤ E1(x)+2n+1
αγE2(x)+2n+1

αγ(2A1) .

The last estimate, together with (4.3.33), with (4.3.32), and with the analogous esti-
mate for supN>0 |T (N)(b j)(x)| (which is similarly obtained), yields (4.3.28). �

The value of the previous theorem lies in the following: Since we know that for
some sequences ε j ↓ 0, N j ↑∞ the pointwise limit T (ε j ,N j)( f ) exists a.e. for all f in a
dense subclass of L1, then Theorem 4.3.5 allows us to deduce that T (ε j ,N j)( f ) exists
a.e. for all f in L1(Rn).

If the singular integrals have kernels of the form Ω(x/|x|)|x|−n with Ω in L∞,
such as the Hilbert transform and the Riesz transforms, then the upper truncations
are not needed for K in (4.3.17). In this case

T (ε)
Ω

( f )(x) =
∫
|y|≥ε

f (x− y)
Ω(y/|y|)
|y|n

dy

is well defined for f ∈
⋃

1≤p<∞ Lp(Rn) by Hölder’s inequality and is equal to

lim
N→∞

∫
ε≤|y|≤N

f (x− y)
Ω(y/|y|)
|y|n

dy .

Corollary 4.3.6. The maximal Hilbert transform H(∗) and the maximal Riesz trans-
forms R(∗)

j are weak type (1,1). Secondly, limε→0 H(ε)( f ) and limε→0 R(ε)
j (g) exist

a.e. for all f ∈ L1(R) and g ∈ L1(Rn), as ε → 0.

Proof. Since the kernels 1/x on R and x j/|x|n on Rn satisfy (4.3.10), the first state-
ment in the corollary is an immediate consequence of Theorem 4.3.5. The second
statement follows from Theorem 2.1.14 and Corollary 4.2.8, since these limits exist
for Schwartz functions. �
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Corollary 4.3.7. Under the hypotheses of Theorem 4.3.5, T (∗∗) maps Lp(Rn) to it-
self for 1 < p < 2 with norm

∥∥T (∗∗)∥∥
Lp→Lp ≤

Cn(A1 +A2 +B)
p−1

,

where Cn is some dimensional constant.

Exercises

4.3.1. Let A1 be defined in (4.3.4). Prove that

1
2

A1 ≤ sup
R>0

1
R

∫
|x|≤R

|K(x)| |x|dx ≤ 2A1 ;

thus the expressions in (4.3.6) and (4.3.4) are equivalent.

4.3.2. Suppose that K is a locally integrable function on Rn \ {0} that satisfies
(4.3.4). Suppose that δ j ↓ 0. Prove that the principal value operation

W (ϕ) = lim
j→∞

∫
δ j≤|x|≤1

K(x)ϕ(x)dx

defines a distribution in S ′(Rn) if and only if the following limit exists:

lim
j→∞

∫
δ j≤|x|≤1

K(x)dx .

4.3.3. Suppose that a function K on Rn \ {0} satisfies condition (4.3.4) with con-
stant A1 and condition (4.3.12) with constant A2.
(a) Show that the functions K(x)χ|x|≥ε also satisfy condition (4.3.12) uniformly in
ε > 0 with constant A1 +A2.
(b) Obtain the same conclusion for the upper truncations K(x)χ|x|≤N.
(c) Deduce a similar conclusion for the double truncations K(ε,N)(x)= K(x)χε≤|x|≤N .

4.3.4. Modify the proof of Theorem 4.3.5 to prove that if T (∗∗) maps Lr to Lr for
some 1 < r < ∞, and K satisfies condition (4.3.12), then T (∗∗) maps L1 to L1,∞.

4.3.5. Assume that T is a linear operator acting on measurable functions on Rn

such that whenever a function f is supported in a cube Q, then T ( f ) is supported in
a fixed multiple of Q.
(a) Suppose that T maps Lp to itself for some 1 < p < ∞ with norm B. Prove that T
extends to a bounded operator from L1 to L1,∞ with norm a constant multiple of B.
(b) Suppose that T maps Lp to Lq for some 1 < q < p < ∞ with norm B. Prove that
T extends to a bounded operator from L1 to Ls,∞ with norm a multiple of B, where



4.3 Calderón–Zygmund Decomposition and Singular Integrals 303

1
p′

+
1
q

=
1
s

.

4.3.6. (a) Prove that the good function g in the Calderón–Zygmund decomposition
of f = g+b at height α lies in the Lorentz space Lq,1 for 1 ≤ q < ∞. Moreover, for
some dimensional constant Cn we have

∥∥g
∥∥

Lq,1 ≤Cnα1/q′
∥∥ f
∥∥

L1 .
(b) Using this result, prove the following generalization of Theorem 4.3.3: If T maps
Lq,1 to Lq,∞ with norm B for some 1 < q < ∞, then T is weak type (1,1) with norm
at most a multiple of A2 +B.
(c) When 1 < q < ∞, use the results of Exercise 1.1.12 and Exercise 1.4.7 to prove
that if

|{x : |T (χE)(x)|> α}| ≤ B
|E|
αq

for all subsets E of Rn with finite measure, then T is weak type (1,1) with norm at
most a multiple of A2 +B.

4.3.7. Let K satisfy (4.3.12) for some A2 > 0, let W ∈S ′(Rn) be an extension of K
on Rn as in (4.3.7), and let T be the operator given by convolution with W . Obtain
the case r = ∞ in Theorem 4.3.3. Precisely, prove that if T maps L∞(Rn) to itself
with constant B, then T has an extension on L1 +L∞ that satisfies∥∥T

∥∥
L1→L1,∞ ≤C′

n (A2 +B),

and for 1 < p < ∞ it satisfies∥∥T
∥∥

Lp→Lp ≤Cn
1

(p−1)1/p (A2 +B),

where Cn,C′
n are constants that depend only on the dimension.[

Hint: Apply the Calderón–Zygmund decomposition f = g+b at height αγ , where
γ = (2n+1B)−1. Since |g| ≤ 2nαγ , observe that

|{x : |T ( f )(x)|> α}| ≤ |{x : |T (b)(x)|> α/2}| .

For the interpolation use the result of Exercise 1.3.2.
]

4.3.8. (Calderón–Zygmund decomposition on Lq ) Fix a function f ∈ Lq(Rn) for
some 1≤ q < ∞ and let α > 0. Then there exist functions g and b on Rn such that

(1) f = g+b.

(2)
∥∥g
∥∥

Lq ≤
∥∥ f
∥∥

Lq and
∥∥g
∥∥

L∞ ≤ 2
n
q α .

(3) b = ∑ j b j, where each b j is supported in a cube Q j. Furthermore, the cubes Qk
and Q j have disjoint interiors when j 6= k.

(4)
∥∥b j
∥∥q

Lq ≤ 2n+qαq|Q j|.

(5)
∫

Q j
b j(x)dx = 0.
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(6) ∑ j |Q j| ≤ α−q
∥∥ f
∥∥q

Lq .

(7)
∥∥b
∥∥

Lq ≤ 2
n+q

q
∥∥ f
∥∥

Lq and
∥∥b
∥∥

L1 ≤ 2α1−q
∥∥ f
∥∥q

Lq .[
Hint: Imitate the basic idea of the proof of Theorem 4.3.1, but select a cube Q if( 1
|Q|
∫

Q | f (x)|q dx
)1/q

> α . Define g and b as in the proof of Theorem 4.3.1.
]

4.3.9. Let f ∈ L1(Rn). Then for any α > 0, prove that there exist disjoint cubes Q j
in Rn such that the set Eα = {x ∈ Rn : Mc( f )(x) > α} is contained in

⋃
j 3Q j and

α

4n < 1
|Q j |

∫
Q j
| f (t)|dt ≤ α

2n .[
Hint: For given α > 0, select all maximal dyadic cubes Q j(α) such that the average

of f over them is bigger than α . Given x ∈ Eα , pick a cube R that contains x such
that the average of | f | over R is bigger than α and find a dyadic cube Q such that
2−n|Q| < |R| ≤ |Q| and that

∫
R∩Q | f |dx > 2−nα|R|. Conclude that Q is contained

in some Qk(4−nα) and thus R is contained in 3Qk(4−nα). The collection of all
Q j = Q j(4−nα) is the required one.

]
4.3.10. Let K(x) be a function on Rn \{0} that satisfies |K(x)| ≤ A|x|−n. Let η(x)
be a smooth function that is equal to 1 when |x| ≥ 2 and vanishes when |x| ≤ 1. For
f ∈ Lp, 1≤ p < ∞, define truncated singular integral operators

T (ε)( f )(x) =
∫
|y|≥ε

K(y) f (x− y)dy,

T (ε)
η ( f )(x) =

∫
Rn

η(y/ε)K(y) f (x− y)dy .

Show that the truncated maximal singular integral T (∗)( f ) = supε>0 |T (ε)( f )| is Lp

bounded for 1 < p < ∞ if and only if the smoothly truncated maximal singular in-
tegral T (∗)

η ( f ) = supε>0 |T
(ε)

η ( f )| is Lp bounded. Formulate an analogous statement
for p = 1.

4.3.11. (M. Mastylo) Let 1 ≤ p < ∞. Suppose that Tε are linear operators defined
on Lp(Rn) such that for all f ∈ Lp(Rn) we have

∣∣Tε( f )
∣∣ ≤ Aε−a

∥∥ f
∥∥

Lp for some
0 < a,A < ∞. Also suppose that there is a constant C < ∞ such that the maximal
operator T∗( f ) = supε>0 |Tε( f )| satisfies

∥∥T∗(h)
∥∥

Lp ≤ C
∥∥h
∥∥

Lp for all h ∈ S (Rn).
Prove that the same inequality is valid for all f ∈ Lp(Rn).[
Hint: For a fixed δ > 0 define Sδ ( f ) = supε>δ |Tε( f )|, which is a subadditive func-

tional on Lp(Rn). For a fixed f0 ∈ Lp(Rn) define a linear space X0 = {λ f0 : λ ∈C}
and a linear functional T0 on X0 by setting T0(λ f0) = λSδ ( f0). By the Hahn–
Banach theorem there is an extension T̃0 of T0 that satisfies |T̃0( f )| ≤ Sδ ( f ) for
all f ∈ Lp(Rn). Since Sδ is Lp is bounded on Schwartz functions with norm at most
C, then so is T̃0. But T̃0 is linear and by density it is bounded on Lp(Rn) with norm
at most C; consequently,

∥∥Sδ ( f0)
∥∥

Lp =
∥∥T0( f0)

∥∥
Lp =

∥∥T̃0( f0)
∥∥

Lp ≤C
∥∥ f0
∥∥

Lp . The
required conclusion for T∗ follows by Fatou’s lemma.

]
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4.4 Sufficient Conditions for Lp Boundedness

We have used the Calderón–Zygmund decomposition to prove weak type (1,1)
boundedness for singular integral and maximal singular integral operators, assum-
ing that these operators are already L2 bounded. It is therefore natural to ask for
sufficient conditions that imply L2 boundedness for such operators. Precisely, what
are sufficient conditions on functions K on Rn \ {0} so that the corresponding sin-
gular and maximal singular integral operators associated with K are L2 bounded?
We saw in Section 4.2 that if K has the special form K(x) = Ω(x/|x|)/|x|n for some
Ω ∈ L1(Sn−1) with mean value zero, then condition (4.2.16) is necessary and suf-
ficient for the L2 boundedness of T , while the L2 boundedness of T (∗) requires the
stronger smoothness condition (4.2.23).

For the general K considered in this section (for which the corresponding op-
erator does not necessarily commute with dilations), we only give some sufficient
conditions for L2 boundedness of T and T (∗∗).

Throughout this section K denotes a locally integrable function on Rn \{0} that
satisfies the “size” condition

sup
R>0

∫
R≤|x|≤2R

|K(x)|dx = A1 < ∞ , (4.4.1)

the “smoothness” condition

sup
y 6=0

∫
|x|≥2|y|

|K(x− y)−K(x)|dx = A2 < ∞ , (4.4.2)

and the “cancellation” condition

sup
0<R1<R2<∞

∣∣∣∣ ∫
R1<|x|<R2

K(x)dx
∣∣∣∣= A3 < ∞ , (4.4.3)

for some A1,A2,A3 > 0. As mentioned earlier, condition (4.4.2) is often referred to
as Hörmander’s condition. In this section we show that these three conditions give
rise to convolution operators that are bounded on Lp.

4.4.1 Sufficient Conditions for Lp Boundedness of Singular
Integrals

We first note that under conditions (4.4.1), (4.4.2), and (4.4.3), there exists a tem-
pered distribution W that coincides with K on Rn \ {0}. Indeed, condition (4.4.3)
implies that there exists a sequence δ j ↓ 0 such that

lim
j→∞

∫
δ j<|x|≤1

K(x)dx = L
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exists. Using (4.3.8), we conclude that there exists such a tempered distribution W .
Note that we must have |L| ≤ A3.

We observe that the difference of two distributions W and W ′ that coincide with
K on Rn \{0} must be supported at the origin.

Theorem 4.4.1. Assume that K satisfies (4.4.1), (4.4.2), and (4.4.3), and let W be a
tempered distribution that coincides with K on Rn \{0}. Then we have

sup
0<ε<N<∞

sup
ξ 6=0

|(Kχε<| · |<N )̂ (ξ )| ≤ 15(A1 +A2 +A3). (4.4.4)

Thus the operator given by convolution with W maps L2(Rn) to itself with norm at
most 15(A1 +A2 +A3). Consequently, it also maps L1(Rn) to L1,∞(Rn) with bound
at most a dimensional constant multiple of A1 + A2 + A3 and Lp(Rn) to itself with
bound at most Cn max(p,(p−1)−1)(A1 +A2 +A3), for some dimensional constant
Cn, whenever 1 < p < ∞.

Proof. Let us set K(ε,N)(x) = K(x)χε<|x|<N . If we prove (4.4.4), then for all f in
S (Rn) we will have the estimate∥∥ f ∗K(δ j , j)∥∥

L2 ≤ 15(A1 +A2 +A3)
∥∥ f
∥∥

L2

uniformly in j. Using this, (4.3.9), and Fatou’s lemma, we obtain that∥∥ f ∗W
∥∥

L2 ≤ 15(A1 +A2 +A3)
∥∥ f
∥∥

L2 ,

thus proving the second conclusion of the theorem.

Let us now fix a ξ with ε < |ξ |−1 < N and prove (4.4.4). Write K̂(ε,N)(ξ ) =
I1(ξ )+ I2(ξ ), where

I1(ξ ) =
∫

ε<|x|<|ξ |−1
K(x)e−2πix·ξ dx ,

I2(ξ ) =
∫
|ξ |−1<|x|<N

K(x)e−2πix·ξ dx .

We now have

I1(ξ ) =
∫

ε<|x|<|ξ |−1
K(x)dx+

∫
ε<|x|<|ξ |−1

K(x)(e−2πix·ξ −1)dx. (4.4.5)

It follows that

|I1(ξ )| ≤ A3 +2π|ξ |
∫
|x|<|ξ |−1

|x| |K(x)|dx ≤ A3 +2π(2A1)

uniformly in ε . Let us now examine I2(ξ ). Let z = ξ

2|ξ |2 so that e2πiz·ξ = −1 and

2|z|= |ξ |−1. By changing variables x = x′− z, rewrite I2 as
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I2(ξ ) =−
∫
|ξ |−1<|x′−z|<N

K(x′− z)e−2πix′·ξ dx′ ;

hence averaging gives

I2(ξ ) =
1
2

∫
|ξ |−1<|x|<N

K(x)e−2πix·ξ dx− 1
2

∫
|ξ |−1<|x−z|<N

K(x− z)e−2πix·ξ dx .

Now use that∫
A

F dx−
∫

B
Gdx =

∫
B
(F −G)dx+

∫
A\B

F dx−
∫

B\A
F dx (4.4.6)

to write I2(ξ ) = J1(ξ )+ J2(ξ )+ J3(ξ )+ J4(ξ )+ J5(ξ ), where

J1(ξ ) = +
1
2

∫
|ξ |−1<|x−z|<N

(
K(x)−K(x− z)

)
e−2πix·ξ dx , (4.4.7)

J2(ξ ) = +
1
2

∫
|ξ |−1<|x|<N
|x−z|≤|ξ |−1

K(x)e−2πix·ξ dx , (4.4.8)

J3(ξ ) = +
1
2

∫
|ξ |−1<|x|<N
|x−z|≥N

K(x)e−2πix·ξ dx , (4.4.9)

J4(ξ ) = − 1
2

∫
|ξ |−1<|x−z|<N

|x|≤|ξ |−1

K(x)e−2πix·ξ dx , (4.4.10)

J5(ξ ) = − 1
2

∫
|ξ |−1<|x−z|<N

|x|≥N

K(x)e−2πix·ξ dx . (4.4.11)

Since 2|z|= |ξ |−1, J1(ξ ) is bounded in absolute value by 1
2 A2, in view of (4.4.2).

Next observe that |ξ |−1 ≤ |x| ≤ 3
2 |ξ |

−1 in (4.4.8), while 1
2 |ξ |

−1 ≤ |x| ≤ |ξ |−1

in (4.4.10); hence both of these terms are bounded by 1
2 A1. Finally, we have 1

2 N <

|x| < N in (4.4.9) (since |x| > N− 1
2 |ξ |

−1), and similarly we have N ≤ |x| < 3
2 N in

(4.4.11). Thus both J3 and J5 are bounded above by 1
2 A1.

We are left to consider the cases ε < N ≤ |ξ |−1 and |ξ |−1 ≤ ε < N. In the first
case we estimate ∫

ε<|x|<N
K(x)e−2πix·ξ dx

by adapting the previous argument for the term I1, while in the second case we run
the argument used for the term I2 to complete the proof. �
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4.4.2 An Example

We now give an example of a distribution that satisfies conditions (4.4.1), (4.4.2),
and (4.4.3).

Example 4.4.2. Let τ be a nonzero real number and let K(x) = 1
|x|n+iτ defined for

x ∈ Rn \{0}. For a sequence δk ↓ 0 and ϕ a Schwartz function on Rn, define

〈
W,ϕ

〉
= lim

k→∞

∫
δk≤|x|

ϕ(x)
dx

|x|n+iτ , (4.4.12)

whenever the limit exists. We claim that for some choices of sequences δk, W is a
well defined tempered distribution on Rn. Take, for example, δk = e−2πk/τ . For this
sequence δk, observe that∫

δk≤|x|≤1

1
|x|n+iτ dx = ωn−1

1− (e−2πk/τ)−iτ

−iτ
= 0 ,

and thus〈
W,ϕ

〉
=
∫
|x|≤1

(ϕ(x)−ϕ(0))
dx

|x|n+iτ +
∫
|x|≥1

ϕ(x)
dx

|x|n+iτ , (4.4.13)

which implies that W ∈S ′(Rn), since∣∣〈W,ϕ
〉∣∣≤C

[∥∥∇ϕ
∥∥

L∞ +
∥∥ |x|ϕ(x)

∥∥
L∞

]
.

If ϕ is supported in Rn \{0}, then〈
W,ϕ

〉
=
∫

K(x)ϕ(x)dx .

Therefore W coincides with the function K away from the origin. Moreover, (4.4.1)
and (4.4.2) are clearly satisfied for K, while (4.4.3) is also satisfied, since∣∣∣∣∫R1<|x|<R2

1
|x|n+iτ dx

∣∣∣∣= ωn−1

∣∣∣∣∣R−iτ
1 −R−iτ

2
−iτ

∣∣∣∣∣≤ 2ωn−1

|τ|
.

Remark 4.4.3. It is important to emphasize that the limit in (4.4.12) may not exist
for all sequences δk → 0. For example, the limit in (4.4.12) does not exist if δk =
e−πk/τ . Moreover, for a different choice of a sequence δk for which the limit in
(4.4.12) exists (for example, δk = e−π(2k+1)/τ ), we obtain a different distribution W1
that coincides with the function K(x) = |x|−n−iτ .

We discuss a point of caution. We can directly check that the distributions W
defined by (4.4.12) are not homogeneous distributions of degree −n− iτ . In fact,
the only homogeneous distribution of degree −n− iτ that coincides with the func-
tion |x|−n−iτ away from zero is a multiple of the distribution u−n−iτ , where uz is
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defined in (2.4.6). Let us investigate the relationship between u−n−iτ and W defined
in (4.4.13). Recall that (2.4.7) gives

〈
u−n−iτ ,ϕ

〉
=
∫
|x|≥1

ϕ(x)
π−i τ

2

Γ (−i τ

2 )
|x|−n−iτ dx

+
∫
|x|≤1

(ϕ(x)−ϕ(0))
π−i τ

2

Γ (−i τ

2 )
|x|−n−iτ dx+

ωn−1π−i τ
2

−iτΓ (−i τ

2 )
ϕ(0) .

Using (4.4.13), we conclude that u−n−iτ−c1W = c2δ0 for suitable nonzero constants
c1 and c2. Since the Dirac mass at the origin is not a homogeneous distribution of
degree −n− iτ , it follows that neither is W .

Since û−n−iτ = uiτ = c3|ξ |iτ , the identity u−n−iτ − c1W = c2δ0 can be used to
obtain a formula for the Fourier transform of W and thus produce a different proof
that convolution with W is a bounded operator on L2(Rn).

4.4.3 Necessity of the Cancellation Condition

Although conditions (4.4.1), (4.4.2), and (4.4.3) are sufficient for L2 boundedness,
they are not necessary. However, (4.4.3) is also necessary. We have the following:

Proposition 4.4.4. Suppose that K is a function on Rn\{0} that satisfies (4.4.1). Let
W be a tempered distribution on Rn extending K given by (4.3.7). If the operator
T ( f ) = f ∗W maps L2(Rn) to itself (equivalently if Ŵ is an L∞ function), then the
function K must satisfy (4.4.3).

Proof. Pick a radial C ∞ function ϕ supported in the ball |x| ≤ 2 with 0 ≤ ϕ ≤ 1,
and ϕ(x) = 1 when |x| ≤ 1. For R > 0 let ϕR(x) = ϕ(x/R). Fourier inversion for
distributions gives the second equality,

(W ∗ϕ
R)(0) =

〈
W,ϕR〉=

〈
Ŵ , ϕ̂R

〉
=
∫

Rn
Ŵ (ξ )Rn

ϕ̂(Rξ )dξ ,

and the preceding identity implies that

|(W ∗ϕ
R)(0)| ≤

∥∥Ŵ∥∥L∞

∥∥ϕ̂
∥∥

L1 =
∥∥T
∥∥

L2→L2

∥∥ϕ̂
∥∥

L1

uniformly in R > 0. Fix 0 < R1 < R2 < ∞. If R2 ≤ 2R1, we have∣∣∣∣∣∣∣
∫

R1<|x|<R2

K(x)dx

∣∣∣∣∣∣∣≤
∫

R1<|x|<2R1

|K(x)|dx ≤ A1 ,

which implies the required conclusion. We may therefore assume that 2R1 < R2.
Since the part of the integral in (4.4.3) over the set R1 < |x| < 2R1 is controlled by



310 4 Singular Integrals of Convolution Type

A1, it suffices to control the integral of K(x) over the set 2R1 < |x| < R2. Since the
function ϕR2 −ϕR1 is supported away from the origin, the action of the distribution
W on it can be written as integration against the function K. We have∫

Rn
K(x)(ϕR2(x)−ϕ

R1(x))dx

=
∫

2R1<|x|<R2

K(x)dx+
∫

R1<|x|<2R1

K(x)(1−ϕ
R1(x))dx+

∫
R2<|x|<2R2

K(x)ϕR2(x)dx.

The sum of the last two integrals is bounded by 3A1 (since 0 ≤ ϕ ≤ 1), while the
first integral is equal to

(W ∗ϕ
R2)(0)− (W ∗ϕ

R1)(0)

and is therefore bounded by 2
∥∥T
∥∥

L2→L2

∥∥ϕ̂
∥∥

L1 . We conclude that the function K
must satisfy (4.4.3) with constant

A3 ≤ 3A1 +2
∥∥ϕ̂
∥∥

L1

∥∥T
∥∥

L2→L2 ≤ c
(
A1 +

∥∥T
∥∥

L2→L2

)
.

�

4.4.4 Sufficient Conditions for Lp Boundedness of Maximal
Singular Integrals

We now discuss the analogous result to Theorem 4.4.1 for the maximal singular
integral operator T (∗∗).

Theorem 4.4.5. Suppose that K satisfies (4.4.1), (4.4.2), and (4.4.3) and let T (∗∗)

be as in (4.3.18). Then T (∗∗) is bounded on Lp(Rn), 1 < p < ∞, with norm∥∥T (∗∗)∥∥
Lp→Lp ≤Cn max(p,(p−1)−1)(A1 +A2 +A3),

where Cn is a dimensional constant.

Proof. We first define an operator T associated with K that satisfies (4.4.1), (4.4.2),
and (4.4.3). Because of condition (4.4.3), there exists a sequence δ j ↓ 0 such that

lim
j→∞

∫
δ j<|x|≤1

K(x)dx

exists. Therefore, for ϕ ∈S (Rn) we can define a tempered distribution〈
W,ϕ

〉
= lim

j→∞

∫
δ j≤|x|≤ j

K(x)ϕ(x)dx
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and an operator T given by T ( f ) = f ∗W for f ∈S (Rn). In view of Theorems 4.4.1
and 4.3.3, T admits an Lp bounded extension (1 < p < ∞) with∥∥T

∥∥
Lp→Lp ≤ cn max(p,(p−1)−1)(A1 +A2 +A3) (4.4.14)

and is weak type (1,1). This extension is still denoted by T .
Fix 1 < p < ∞ and f ∈ Lp(Rn)∩L∞(Rn) with compact support. We have

T (ε,N)( f )(x)

=
∫

ε≤|x−y|<N
K(x− y) f (y)dy = T (ε)( f )(x)−T (N)( f )(x)

=
∫

ε≤|x−y|
K(x− y) f (y)dy−

∫
N≤|x−y|

K(x− y) f (y)dy

=
∫

ε≤|x−y|
(K(x− y)−K(z1− y)) f (y)dy+

∫
ε≤|x−y|

K(z1− y) f (y)dy

−
∫

N≤|x−y|
(K(x− y)−K(z2− y)) f (y)dy−

∫
N≤|x−y|

K(z2− y) f (y)dy

=
∫

ε≤|x−y|
(K(x− y)−K(z1− y)) f (y)dy+T ( f )(z1)−T ( f χ|x−·|<ε)(z1)

−
∫

N≤|x−y|
(K(x− y)−K(z2− y)) f (y)dy−T ( f )(z2)+T ( f χ|x−·|<N)(z2) ,

where z1 and z2 are arbitrary points in Rn that satisfy |z1− x| ≤ ε

2 and |z2− x| ≤ N
2 .

We used that f has compact support in order to be able to write T (ε)( f )(x) and
T (N)( f )(x) as convergent integrals for almost every x.

At this point we take absolute values, average over |z1−x| ≤ ε

2 and |z2−x| ≤ N
2 ,

and we apply Hölder’s inequality in two terms. We obtain the estimate

|T (ε,N)( f )(x)|

≤ 1
vn

(
2
ε

)n ∫
|z1−x|≤ ε

2

∫
|x−y|≥ε

|K(x− y)−K(z1− y)| | f (y)|dydz1

+
1
vn

(
2
ε

)n ∫
|z1−x|≤ ε

2

|T ( f )(z1)|dz1

+
(

1
vn

(
2
ε

)n ∫
|z1−x|≤ ε

2

|T ( f χ|x−·|<ε)(z1)|p dz1

) 1
p

+
1
vn

(
2
N

)n ∫
|z2−x|≤N

2

∫
|x−y|≥N

|K(x− y)−K(z2− y)| | f (y)|dydz2

+
1
vn

(
2
N

)n ∫
|z2−x|≤N

2

|T ( f )(z2)|dz2

+
(

1
vn

(
2
N

)n ∫
|z2−x|≤N

2

|T ( f χ|x−·|<N)(z2)|p dz2

) 1
p

,
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where vn is the volume of the unit ball in Rn. Applying condition (4.4.2) and esti-
mate (4.4.14), we obtain for f in Lp(Rn)∩L∞(Rn) with compact support that

|T (ε,N)( f )(x)|

≤ 1
vn

(
2
ε

)n ∫
|z1−x|≤ ε

2

|T ( f )(z1)|dz1 +
1
vn

(
2
N

)n ∫
|z2−x|≤N

2

|T ( f )(z2)|dz2

+ cn

( 3

∑
j=1

A j

)
max(p,(p−1)−1)

(
1
vn

(
2
ε

)n ∫
|z1−x|≤ε

| f (z1)|p dz1

) 1
p

+ cn

( 3

∑
j=1

A j

)
max(p,(p−1)−1)

(
1
vn

(
2
N

)n ∫
|z2−x|≤N

| f (z2)|p dz2

) 1
p

+2A2
∥∥ f
∥∥

L∞ .

We now use density to remove the compact support condition on f and obtain the
last displayed estimate for all functions f in Lp(Rn)∩L∞(Rn). Taking the supremum
over all 0 < ε < N and over all N > 0, we deduce that for all f in Lp(Rn)∩L∞(Rn)
we have the estimate

T (∗∗)( f )(x)≤ 2A2
∥∥ f
∥∥

L∞ +Sp( f )(x), (4.4.15)

where Sp is the sublinear operator defined by

Sp( f )(x) = 2M(T ( f ))(x)+3n+1cn

( 3

∑
j=1

A j

)
max(p,(p−1)−1)(M(| f |p)(x))

1
p ,

and M is the Hardy–Littlewood maximal operator.
Recalling that M maps L1 to L1,∞ with bound at most 3n and also Lp to Lp,∞ with

bound at most 2 · 3n/p for 1 < p < ∞ (Exercise 2.1.4), we conclude that Sp maps
Lp(Rn) to Lp,∞(Rn) with norm at most∥∥Sp

∥∥
Lp→Lp,∞ ≤ c̃n(A1 +A2 +A3)max(p,(p−1)−1) , (4.4.16)

where c̃n is another dimensional constant.
Now write f = fα + f α , where

fα = f χ| f |≤α/(16A2) and f α = f χ| f |>α/(16A2).

The function fα is in L∞∩Lp and f α is in L1∩Lp. Moreover, we see that∥∥ f α
∥∥

L1 ≤ (16A2/α)p−1∥∥ f
∥∥p

Lp . (4.4.17)

Apply the Calderón–Zygmund decomposition (Theorem 4.3.1) to the function f α

at height αγ to write f α = gα +bα , where gα is the good function and bα is the bad
function of this decomposition. Using (4.3.1), we obtain
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∥∥

Lp ≤ 2n/p′(αγ)1/p′∥∥ f α
∥∥1/p

L1 ≤ 2(n+4)/p′(A2γ)1/p′∥∥ f
∥∥

Lp . (4.4.18)

We now use (4.4.15) to get

|{x ∈ Rn : T (∗∗)( f )(x) > α}| ≤ b1 +b2 +b3 , (4.4.19)

where

b1 = |{x ∈ Rn : 2A2
∥∥ fα

∥∥
L∞ +Sp( fα)(x) > α/4}| ,

b2 = |{x ∈ Rn : 2A2
∥∥gα

∥∥
L∞ +Sp(gα)(x) > α/4}| ,

b3 = |{x ∈ Rn : T (∗∗)(bα)(x) > α/2}| .

Observe that 2A2
∥∥ fα

∥∥
L∞ ≤ α/8. Selecting γ = 2−n−5(A1 + A2)−1 and using prop-

erty (2) in Theorem 4.3.1, we obtain

2A2
∥∥gα

∥∥
L∞ ≤ A22n+1

αγ ≤ α2−4 <
α

8

and therefore

b1 ≤ |{x ∈ Rn : Sp( fα)(x) > α/8}| ,
b2 ≤ |{x ∈ Rn : Sp(gα)(x) > α/8}| .

(4.4.20)

Since γ ≤ (2n+5A1)−1, it follows from (4.3.27) that

b3 ≤
∣∣∣⋃

j

Q∗
j

∣∣∣+2n+8A2

∥∥ f α
∥∥

L1

α
≤
(

(5
√

n)n

γ
+2n+8A2

)∥∥ f α
∥∥

L1

α
,

and using (4.4.17), we obtain

b3 ≤Cn(A1 +A2)p
α
−p∥∥ f

∥∥p
Lp .

Using Chebyshev’s inequality in (4.4.20) and (4.4.16), we finally obtain that

b1 +b2 ≤ (8/α)p (c̃n)p(A1+A2+A3)p max(p,(p−1)−1)p(∥∥ f
∥∥p

Lp +
∥∥gα

∥∥p
Lp

)
.

Combining the estimates for b1,b2, and b3 and using (4.4.18), we deduce∥∥T (∗∗)( f )
∥∥

Lp,∞ ≤Cn(A1 +A2 +A3)max(p,(p−1)−1)
∥∥ f
∥∥

Lp(Rn) . (4.4.21)

Finally, we need to obtain a similar estimate to (4.4.21), in which the weak Lp norm
on the left is replaced by the Lp norm. This is a consequence of Theorem 1.3.2 via
interpolation between the estimates L

p+1
2 → L

p+1
2 ,∞ and L2p → L2p,∞ for 2 < p < ∞

and between the estimates L2p → L2p,∞ and L1 → L1,∞ for 1 < p < 2. The latter
estimate follows from Theorem 4.3.5. See also Corollary 4.3.7. �
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Exercises

4.4.1. Suppose that T is a convolution operator that is L2 bounded. Suppose that
f ∈ L1(Rn)∩L2(Rn) has vanishing integral and that T ( f ) is integrable. Prove that
T ( f ) also has vanishing integral.

4.4.2. Let K satisfy (4.4.1), (4.4.2), and (4.4.3) and let W ∈S ′ be an extension of
K on Rn. Let f be a Schwartz function on Rn with mean value zero. Prove that the
function f ∗W is in L1(Rn).

4.4.3. Suppose K is a function on Rn \{0} that satisfies (4.4.1), (4.4.2), and (4.4.3).
Let K(ε,N)(x) = K(x)χε<|x|<N for 0 < ε < N < ∞ and let T (ε,N) be the operator given
by convolution with K(ε,N). Use Theorem 4.4.5 to prove that T (ε,N)( f ) converges to
T ( f ) in Lp(Rn) and almost everywhere whenever 1 < p < ∞ and f ∈ Lp(Rn) as
ε → 0 and N → ∞.

4.4.4. (a) Prove that for all x,y ∈ Rn that satisfy |x| ≥ 2|y| we have∣∣∣∣ x− y
|x− y|

− x
|x|

∣∣∣∣≤ 2
|y|
|x|

.

(b) Let Ω be an integrable function with mean value zero on the sphere Sn−1. Sup-
pose that Ω satisfies a Lipschitz (Hölder) condition of order 0 < α < 1 on Sn−1.
This means that

|Ω(θ1)−Ω(θ2)| ≤ B0|θ1−θ2|α

for all θ1,θ2 ∈ Sn−1. Prove that K(x) = Ω(x/|x|)/|x|n satisfies Hörmander’s condi-
tion with constant at most a multiple of B0 +

∥∥Ω
∥∥

L∞ .

4.4.5. Let Ω be an L1 function on Sn−1 with mean value zero.
(a) Let ω∞(t) = sup{|Ω(θ1)−Ω(θ2)| : θ1,θ2 ∈ Sn−1, |θ1−θ2| ≤ t} and suppose
that the following Dini condition holds:∫ 1

0
ω∞(t)

dt
t

< ∞ .

Prove that the function K(x)=Ω(x/|x|)|x|−n satisfies Hörmander’s condition.
(b) (A. Calderón and A. Zygmund ) For A ∈ O(n), let∥∥A

∥∥= sup{|θ −A(θ)| : θ ∈ Sn−1} .

Suppose that Ω satisfies the more general Dini-type condition∫ 1

0
ω1(t)

dt
t

< ∞ ,

where
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ω1(t) = sup
A∈O(n)
‖A‖≤t

∫
Sn−1

|Ω(A(θ))−Ω(θ)|dθ .

Prove the same conclusion as in part (a).[
Hint: Part (b): Use the result in part (a) of Exercise 4.4.4 and switch to polar

coordinates.
]

4.5 Vector-Valued Inequalities

Certain nonlinear expressions that appear in Fourier analysis, such as maximal func-
tions and square functions, can be viewed as linear quantities taking values in some
Banach space. This point of view provides the motivation for a systematic study of
Banach-valued operators. Let us illustrate this line of thinking via an example. Let
T be a linear operator acting on Lp of some measure space (X ,µ) and taking values
in the set of measurable functions of another measure space (Y,ν). The seemingly
nonlinear inequality∥∥∥(∑

j
|T ( f j)|2

)1
2
∥∥∥

Lp
≤Cp

∥∥∥(∑
j
| f j|2

)1
2
∥∥∥

Lp
(4.5.1)

can be transformed to a linear one with only a slight change of view. Let us denote
by Lp(X , `2) the Banach space of all sequences { f j} j of measurable functions on X
that satisfy ∥∥{ f j} j

∥∥
Lp(X ,`2) =

(∫
X

(
∑

j
| f j|2

)p
2

dµ

)1
p

< ∞ . (4.5.2)

Define a linear operator acting on such sequences by setting

~T ({ f j} j) = {T ( f j)} j. (4.5.3)

Then (4.5.1) is equivalent to the inequality∥∥~T ({ f j} j)
∥∥

Lp(Y,`2) ≤Cp
∥∥{ f j} j

∥∥
Lp(X ,`2) , (4.5.4)

in which ~T is thought of as a linear operator acting on the Lp space of `2-valued
functions on X . This is the basic idea of vector-valued inequalities. A nonlinear
inequality such as (4.5.1) can be viewed as a linear norm estimate for an operator
acting and taking values in suitable Banach spaces.



316 4 Singular Integrals of Convolution Type

4.5.1 `2-Valued Extensions of Linear Operators

The following result is classical and fundamental in the subject of vector-valued
inequalities.

Theorem 4.5.1. Let 0 < p,q < ∞ and let (X ,µ) and (Y,ν) be two measure spaces.
The following are valid:
(a) Suppose that T is a bounded linear operator from Lp(X) to Lq(Y ) with norm A.
Then T has an `2-valued extension, that is, for all complex-valued functions f j in
Lp(X) we have ∥∥∥(∑

j
|T ( f j)|2

)1
2
∥∥∥

Lq
≤Cp,qA

∥∥∥(∑
j
| f j|2

)1
2
∥∥∥

Lp
(4.5.5)

for some constant Cp,q that depends only on p and q. Moreover, the constant Cp,q
satisfies Cp,q = 1 if p≤ q.
(b) Suppose that T is a bounded linear operator from Lp(X) to Lq,∞(Y ) with norm
A. Then T has an `2-valued extension, that is,∥∥∥(∑

j
|T ( f j)|2

)1
2
∥∥∥

Lq,∞
≤ Dp,q A

∥∥∥(∑
j
| f j|2

)1
2
∥∥∥

Lp
(4.5.6)

for some constant Dp,q that depends only on p and q.

To prove this theorem, we need the following identities.

Lemma 4.5.2. For any 0 < r < ∞, define constants

Ar =
(

Γ ( r+1
2 )

π
r+1

2

)1
r

and Br =
(

Γ ( r
2 +1)

π
r
2

)1
r

. (4.5.7)

Then for any λ1,λ2, . . . ,λn ∈ R we have(∫
Rn
|λ1x1 + · · ·+λnxn|re−π|x|2dx

)1
r

= Ar (λ 2
1 + · · ·+λ

2
n )

1
2 , (4.5.8)

and for all w1,w2, . . . ,wn ∈ C we have(∫
Cn
|w1z1 + · · ·+wnzn|re−π|z|2dz

)1
r

= Br(|w1|2 + · · ·+ |wn|2)
1
2 . (4.5.9)

Proof. Dividing both sides of (4.5.8) by (λ 2
1 + · · ·+ λ 2

n )
1
2 , we reduce things to the

situation in which λ 2
1 + · · ·+ λ 2

n = 1. Let e1 = (1,0, . . . ,0)t be the standard basis
column unit vector on Rn and find an orthogonal n×n matrix A ∈O(n) (orthogonal
means a real matrix satisfying At = A−1) such that A−1e1 = (λ1, . . . ,λn)t . Then the
first coordinate of Ax is
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(Ax)1 = Ax · e1 = x ·Ate1 = x ·A−1e1 = λ1x1 + · · ·+λnxn .

Now change variables y = Ax in the integral in (4.5.8) and use the fact that |Ax|= |x|
to obtain(∫

Rn
|λ1x1 + · · ·+λnxn|re−π|x|2dx

)1
r

=
(∫

Rn
|y1|re−π|y|2dy

)1
r

=
(

2
∫

∞

0
tre−πt2

dt
)1

r

=
(∫

∞

0
s

r−1
2 e−πsds

)1
r

=
(

Γ ( r+1
2 )

π
r+1

2

)1
r

= Ar ,

which proves (4.5.8).
The proof of (4.5.9) is almost identical. We normalize by assuming that

|w1|2 + · · ·+ |wn|2 = 1 ,

and we let ε1 be the column vector of Cn having 1 in the first entry and zero
elsewhere. We find a unitary n× n matrix A such that A −1ε1 = (w1, . . . ,wn)t .
Unitary means A −1 = A ∗, where A ∗ is the conjugate transpose matrix of A ,
i.e., the matrix whose entries are the complex conjugates of A t and that satis-
fies u ·A v = A ∗u · v for all u,v ∈ Cn. Then (A z)1 = w1z1 + · · ·+ wnzn and also
|A z| = |z|; therefore, changing variables ζ = A z in the integral in (4.5.9), we can
rewrite that integral as(∫

Cn
|ζ1|re−π|ζ |2dζ

)1
r

=
(∫

C
|ζ1|re−π|ζ1|2dζ1

)1
r

=
(

2π

∫
∞

0
tre−πt2

t dt
)1

r

=
(

π

∫
∞

0
s

r
2 e−πsds

)1
r

= Br .

�

Let us now continue with the proof of Theorem 4.5.1.

Proof. If T maps real-valued functions to real-valued functions, then we may use
conclusion (4.5.8) of Lemma 4.5.2. In general, T maps complex-valued functions
to complex-valued functions, and we use conclusion (4.5.9).
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Part (a): Assume first that q ≤ p and let Br be as in (4.5.7). We may assume
that the sequence { f j} j is indexed by Z+. Use successively identity (4.5.9), the
boundedness of T , Hölder’s inequality with exponents p/q and (p/q)′ with respect
to the measure e−π|z|2dz, and identity (4.5.9) again to deduce for n ∈ zp∥∥∥( n

∑
j=1

|T ( f j)|2
)1

2
∥∥∥q

Lq(Y )
= (Bq)−q

∫
Y

∫
Cn
|z1T ( f1)+ · · ·+ znT ( fn)|qe−π|z|2dzdν

= (Bq)−q
∫

Cn

∫
Y
|T (z1 f1 + · · ·+ zn fn)|q dν e−π|z|2dz

≤ (Bq)−qAq
∫

Cn

(∫
X
|z1 f1 + · · ·+ zn fn|p dµ

) q
p

e−π|z|2dz

≤ (Bq)−qAq
(∫

Cn

∫
X
|z1 f1 + · · ·+ zn fn|p dµ e−π|z|2dz

) q
p

= (Bq)−qAq
(

Bp
p

∫
X

( n

∑
j=1

| f j|2
) p

2
dµ

) q
p

= (BpB−1
q )qAq

∥∥∥( n

∑
j=1

| f j|2
)1

2
∥∥∥q

Lp(X)
.

Now, letting n → ∞ in the previous inequality, we obtain the required conclusion
with Cp,q = BpB−1

q . Note that Cp,q = 1 if p = q.
We now turn to the case q > p. Using similar reasoning, we obtain∥∥∥( n

∑
j=1

|T ( f j)|2
)1

2
∥∥∥q

Lq(Y )
= (Bq)−q

∫
Y

∫
Cn
|z1T ( f1)+ · · ·+ znT ( fn)|qe−π|z|2dzdν

= (Bq)−q
∫

Cn

∫
Y
|T (z1 f1 + · · ·+ zn fn)|q dν e−π|z|2dz

≤ (AB−1
q )q

∫
Cn

(∫
X
|z1 f1 + · · ·+ zn fn|p dµ

) q
p

e−π|z|2dz

= (AB−1
q )q

∥∥∥∫
X
|z1 f1 + · · ·+ zn fn|p dµ

∥∥∥q/p

L
q
p (Cn,e−π|z|2 dz)

≤ (AB−1
q )q

{∫
X

∥∥∥|z1 f1 + · · ·+ zn fn|p
∥∥∥

L
q
p (Cn,e−π|z|2 dz)

dµ

}q
p

= (AB−1
q )q

{∫
X

(∫
Cn
|z1 f1 + · · ·+ zn fn|qe−π|z|2dz

)p
q

dµ

}q
p

= (AB−1
q )q

{∫
X
(Bq)p

( n

∑
j=1

| f j|2
) p

2
dµ

} q
p

= Aq
∥∥∥( n

∑
j=1

| f j|2
)1

2
∥∥∥q

Lp(X)
.
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Note that we made use of Minkowski’s integral inequality (Exercise 1.1.6) in the
last inequality.

Part (b): Inequality (4.5.6) will be a consequence of (4.5.5) and of the following
result of Exercise 1.4.3 (see also Exercise 1.1.12):

∥∥g
∥∥

Lq,∞ ≤ sup
0<ν(E)<∞

ν(E)
1
q−

1
r

(∫
E
|g|r dν

)1
r

≤
( q

q− r

)1
r ∥∥g
∥∥

Lq,∞ , (4.5.10)

where 0 < r < q and the supremum is taken over all subsets E of Y of finite measure.
Using (4.5.10), we obtain∥∥∥(∑

j
|T ( f j)|2

)1
2
∥∥∥

Lq,∞(Y )

≤ sup
0<ν(E)<∞

ν(E)
1
q−

1
r

(∫
E

(
∑

j
|T ( f j)|2

)r
2

dν

)1
r

= sup
0<ν(E)<∞

ν(E)
1
q−

1
r

(∫
Y

(
∑

j
|χE T ( f j)|2

)r
2

dν

)1
r

≤ sup
0<ν(E)<∞

ν(E)
1
q−

1
r
∥∥TE

∥∥
Lp→LrCp,r

(∫
X

(
∑

j
| f j|2

)p
2

dµ

)1
p

, (4.5.11)

where TE is defined by TE( f ) = χE T ( f ). Since for any function f in Lp(X) we have

ν(E)
1
q−

1
r
∥∥TE( f )

∥∥
Lr ≤

( q
q− r

)1
r ∥∥T ( f )

∥∥
Lq,∞ ≤

( q
q− r

)1
r
A
∥∥ f
∥∥

Lp ,

it follows that for any measurable set E of finite measure the estimate

ν(E)
1
q−

1
r
∥∥TE

∥∥
Lp→Lr ≤

( q
q− r

)1
r
A (4.5.12)

is valid. Inserting (4.5.12) in (4.5.11), we obtain the required conclusion. �

4.5.2 Applications and `r-Valued Extensions of Linear Operators

Here is an application of Theorem 4.5.1:

Example 4.5.3. On the real line consider the intervals I j = [b j,∞) for j ∈ Z. Let Tj
be the operator given by multiplication on the Fourier transform by the characteristic
function of I j. Then we have the following two inequalities:
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j∈Z

|Tj( f j)|2
)1

2
∥∥∥

Lp
≤Cp

∥∥∥(∑
j∈Z

| f j|2
)1

2
∥∥∥

Lp
, (4.5.13)

∥∥∥(∑
j∈Z

|Tj( f j)|2
)1

2
∥∥∥

L1,∞
≤C

∥∥∥(∑
j∈Z

| f j|2
)1

2
∥∥∥

L1
, (4.5.14)

for 1 < p < ∞. To prove these, first observe that the operator T = 1
2 (I + iH) is given

on the Fourier transform by multiplication by the characteristic function of the half-
axis [0,∞) [precisely, the Fourier multiplier of T is equal to 1 on the set (0,∞)
and 1/2 at the origin; this function is almost everywhere equal to the characteristic
function of the half-axis [0,∞)]. Moreover, each Tj is given by

Tj( f )(x) = e2πib jxT (e−2πib j( ·) f )(x)

and thus with g j(x) = e−2πib jx f (x), (4.5.13) and (4.5.14) can be written respectively
as ∥∥∥(∑

j∈Z
|T (g j)|2

)1
2
∥∥∥

Lp
≤Cp

∥∥∥(∑
j∈Z

|g j|2
)1

2
∥∥∥

Lp
,

∥∥∥(∑
j∈Z

|T (g j)|2
)1

2
∥∥∥

L1,∞
≤C

∥∥∥(∑
j∈Z

|g j|2
)1

2
∥∥∥

L1
.

Theorem 4.5.1 gives that both of the previous estimates are valid by in view of the
boundedness of T = 1

2 (I + iH) from Lp to Lp and from L1 → L1,∞. For a slight
generalization and an extension to higher dimensions, see Exercise 4.6.1.

We have now seen that bounded operators from Lp to Lq (or to Lq,∞) always
admit `2-valued extensions. It is natural to ask whether they also admit `r-valued
extensions for some r 6= 2. For some values of r we may answer this question. Here
is a straightforward corollary of Theorem 4.5.1.

Corollary 4.5.4. Suppose that T is a linear bounded operator from Lp(X) to Lp(Y )
with norm A for some 1≤ p < ∞. Let r be a number between p and 2. Then we have∥∥∥(∑

j
|T ( f j)|r

)1
r
∥∥∥

Lp
≤ A

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp
. (4.5.15)

Proof. The endpoint case r = 2 is a consequence of Theorem 4.5.1, while the end-
point case r = p is trivial. Interpolation (see Exercise 4.5.2) gives the required con-
clusion for r between p and 2. �

We note that Exercise 4.5.2 and Corollary 4.5.4 are also valid for indices less
than 1.

Example 4.5.5. The result of Corollary 4.5.4 may fail if r does not lie in the interval
with endpoints p and 2. Let us take, for example, 1 < p < 2 and consider an r < p.
Take X = Y = R and define a linear operator T by setting
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T ( f )(x) = f̂ (x)χ[0,1](x).

Then T is Lp bounded, since
∥∥T ( f )

∥∥
Lp ≤

∥∥T ( f )
∥∥

Lp′ ≤
∥∥ f
∥∥

Lp . Now take f j =
χ[ j−1, j] for j = 1, . . . ,N. A simple calculation gives

( N

∑
j=1

|T ( f j)(x)|r
)1

r = N
1
r

∣∣∣∣e−2πix−1
−2πix

χ[0,1](x)
∣∣∣∣ ,

while ( N

∑
j=1

| f j|r
)1

r = χ[0,N] .

It follows that N1/r ≤CN1/p for all N > 1, and hence (4.5.15) cannot hold if p > r.

We have now seen that `r-valued extensions for r 6= 2 may fail in general. But do
they fail for some specific operators of interest in Fourier analysis? For instance, is
the inequality ∥∥∥(∑

j∈Z
|H( f j)|r

)1
r
∥∥∥

Lp
≤Cp,r

∥∥∥(∑
j∈Z

| f j|r
)1

r
∥∥∥

Lp
(4.5.16)

true for the Hilbert transform H whenever 1 < p,r < ∞? The answer to this question
is affirmative. Inequality (4.5.16) is indeed valid and was first proved using complex
function theory. In the next section we plan to study inequalities such as (4.5.16)
for general singular integrals using the Calderón–Zygmund theory of the previous
section applied to the context of Banach-valued functions.

4.5.3 General Banach-Valued Extensions

We now set up the background required to state the main results of this section.
Although the Banach spaces of most interest to us are `r for 1≤ r≤∞, we introduce
the basic notions we need in general.

Let B be a Banach space over the field of complex numbers with norm
∥∥ ∥∥

B
, and

let B∗ be its dual (with norm
∥∥ ∥∥

B∗ ). A function F defined on a σ -finite measure
space (X ,µ) and taking values in B is called B-measurable if there exists a mea-
surable subset X0 of X such that µ(X \X0) = 0, F [X0] is contained in some separable
subspace B0 of B, and for every u∗ ∈B∗ the complex-valued map

x 7→
〈
u∗,F(x)

〉
is measurable. A consequence of this definition is that the positive function x 7→∥∥F(x)

∥∥
B

on X is measurable; to see this, use the relevant result in Yosida [296,
p. 131].

For 0 < p ≤ ∞, denote by Lp(X ,B) the space of all B-measurable functions F
on X satisfying
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X

∥∥F(x)
∥∥p

B
dµ(x)

)1
p

< ∞ , (4.5.17)

with the obvious modification when p = ∞. Similarly define Lp,∞(X ,B) as the space
of all B-measurable functions F on X satisfying∥∥∥∥∥F( ·)

∥∥
B

∥∥∥
Lp,∞(X)

< ∞ . (4.5.18)

Then Lp(X ,B) (respectively, Lp,∞(X ,B)) is called the Lp (respectively, Lp,∞) space
of functions on X with values in B. Similarly, we can define other Lorentz spaces of
B-valued functions. The quantity in (4.5.17) (respectively, in (4.5.18)) is the norm
of F in Lp(X ,B) (respectively, in Lp,∞(X ,B)).

We denote by Lp(X) the space Lp(X ,C). Let Lp(X)⊗B be the set of all finite
linear combinations of elements of B with coefficients in Lp(X), that is, elements
of the form

F = f1u1 + · · ·+ fmum, (4.5.19)

where f j ∈ Lp(X), u j ∈B, and m ∈ Z+.
If F is an element of L1⊗B given as in (4.5.19), we define its integral (which is

an element of B) by setting∫
X

F(x)dµ(x) =
m

∑
j=1

(∫
X

f j(x)dµ(x)
)

u j.

Observe that for every F ∈ L1⊗B we have∥∥∥∫
X

F(x)dµ(x)
∥∥∥

B
= sup

‖u∗‖B∗≤1

∣∣∣∣〈u∗,
m

∑
j=1

(∫
X

f j dµ

)
u j

〉∣∣∣∣
= sup

‖u∗‖B∗≤1

∣∣∣∣∫X

〈
u∗,

m

∑
j=1

f ju j
〉

dµ

∣∣∣∣
≤
∫

X
sup

‖u∗‖B∗≤1

∣∣〈u∗, m

∑
j=1

f ju j
〉∣∣dµ

=
∥∥F
∥∥

L1(X ,B) .

Thus the linear operator

F 7→ IF =
∫

X
F(x)dµ(x)

is bounded from L1(X)⊗B into B. Since every element of L1(X ,B) is a (norm)
limit of a sequence of elements in L1(X)⊗B, by continuity, the operator F 7→ IF has
a unique extension on L1(X ,B) that we call the Bochner integral of F and denote
by ∫

X
F(x)dµ(x) .
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It is not difficult to show that the Bochner integral of F is the only element of B
that satisfies 〈

u∗,
∫

X
F(x)dµ(x)

〉
=
∫

X

〈
u∗,F(x)

〉
dµ(x)

for all u∗ ∈B∗.

Proposition 4.5.6. Let B be a Banach space. Then the set of functions of the form
∑

m
j=1 χE j u j, where u j ∈ B, {E j}m

j=1 are pairwise disjoint subsets of Rn with finite
measure, is dense in Lp(Rn,B) whenever 0 < p < ∞. For p = ∞, the set of functions
of the form ∑

∞
j=1 χE j u j, where u j ∈B and {E j}∞

j=1 is a partition of Rn, is dense in
L∞(Rn,B).

Proof. If F ∈ Lp(Rn,B) for 0 < p ≤ ∞, then F is B-measurable; thus there exists
K0 ⊂ Rn satisfying |Rn \K0| = 0 and F [K0] ⊂ B0, where B0 is some separable
subspace of B. Choose a countable dense sequence {u j}∞

j=1 of B0.
First assume that p < ∞. For any ε > 0, there exists a bounded subset K1 of K0

such that ∫
Rn\K1

∥∥F(x)
∥∥p

B
dx <

ε p

3
.

Setting B̃(u j,ε)= {u∈B0 : ‖u−u j‖B < ε(3|K1|)−
1
p }, we have B0 ⊂

⋃
∞
j=1 B̃(u j,ε).

Let A1 = B̃(u1,ε) and A j = B̃(u j,ε)\ (
⋃ j−1

i=1 B̃(ui,ε)) for j ≥ 2. It is easily seen that
{A j}∞

j=1 are pairwise disjoint and
⋃

∞
j=1 A j =

⋃
∞
j=1 B̃(u j,ε). Set Ã j = A j ∩ F [K1]

and E j = F−1[Ã j]. Then K1 =
⋃

∞
j=1 E j and {E j}∞

j=1 are pairwise disjoint. Since
|K1|= ∑

∞
j=1 |E j|< ∞, it follows that |E j|< ∞ and also that for some m ∈ Z+,∫

⋃
∞
j=m+1 E j

‖F(x)‖p
B dx <

ε p

3
. (4.5.20)

Moreover, one can easily verify that ∑
m
j=1 χE j u j is B-measurable. Notice that

‖F(x)− u j‖B < ε(3|K1|)−1/p for any x ∈ E j and j ∈ {1, . . . ,m}. This fact com-
bined with (4.5.20) and the mutual disjointness of {E j}m

j=1 yields that

∫
Rn

∥∥∥∥F(x)−
m

∑
j=1

χE j(x)u j

∥∥∥∥p

B

dx =
∫

Rn\K1

∥∥F(x)
∥∥p

B
dx+

∫
∪∞

j=m+1E j

∥∥F(x)
∥∥p

B
dx

+
∫
⋃m

j=1 E j

∥∥∥∥ m

∑
j=1

χE j(x)[F(x)−u j]
∥∥∥∥p

B

dx

<
ε p

3
+

ε p

3
+

ε p

3
= ε

p .

Now consider the case p = ∞. Obviously we have B0 ⊂
⋃

∞
j=1 B(u j,ε), where

B(u j,ε) = {u ∈ B0 : ‖u− u j‖B < ε}. Let A1 = B(u1,ε) and for j ≥ 2 define sets
A j = B(u j,ε)\(

⋃ j−1
i=1 B(ui,ε)). Let E j = F−1[A j] for j≥ 1 and E0 = Rn \(

⋃
∞
j=1 E j).

As in the proof of the case p < ∞, we have that {E j}∞
j=0 are pairwise disjoint and
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K0 ⊂
⋃

∞
j=0 E j. Notice that ∑

∞
j=0 χE j u j is B-measurable. Since ‖F(x)− u j‖B < ε

for any x ∈ E j and j ≥ 0, we have∥∥∥∥F −
∞

∑
j=0

χE j u j

∥∥∥∥
L∞(Rn,B)

=
∥∥∥∥ ∞

∑
j=0

χE j(F −u j)
∥∥∥∥

L∞(Rn,B)
< ε ,

which completes the proof in the case p = ∞ as well. �

Proposition 4.5.7. Let B be a Banach space.
(a) For any F ∈ Lp(Rn,B) with 1≤ p≤ ∞ we have

‖F‖Lp(Rn,B) = sup
‖G‖

Lp′ (Rn,B∗)
≤1

∣∣∣∣∫Rn
〈G(x),F(x)〉dx

∣∣∣∣ .
(b) The space Lp(Rn,B) isometrically embeds in (Lp′(Rn,B∗))∗ when 1≤ p≤ ∞.

Proof. Obviously (b) is a consequence of (a), thus we concentrate on (a). Hölder’s
inequality yields that the right-hand side of (a) is controlled by its left-hand side. It
remains to establish the reverse inequality.

For F ∈Lp(Rn,B) and ε > 0, by Proposition 4.5.6, there is Fε(x)=∑
m
j=1 χE j(x)u j

with m ∈ Z+ or m = ∞ (when p = ∞) such that
∥∥Fε −F

∥∥
Lp(Rn,B) < ε/2, where

{E j}m
j=1 are pairwise disjoint subsets of Rn and u j ∈B. Since Fε ∈ Lp(Rn,B), we

choose a nonnegative function h satisfying
∥∥h
∥∥

Lp′ (Rn) ≤ 1 such that

∥∥Fε

∥∥
Lp(Rn,B) =

(∫
Rn

∥∥Fε(x)
∥∥p

B
dx
)1/p

<
∫

Rn
h(x)

∥∥Fε(x)
∥∥

B
dx+

ε

4
. (4.5.21)

When 1≤ p < ∞, we can further choose h ∈ Lp′(Rn) to be a function with bounded
support, which ensures that it is integrable. For given u j ∈B, there exists u∗j ∈B∗

satisfying ‖u∗j‖B∗ = 1 and

‖u j‖B < 〈u∗j ,u j〉+
ε

4(‖h‖L1(Rn) +1)
. (4.5.22)

Set G(x) = ∑
m
j=1 h(x)χE j(x)u

∗
j . Clearly G is B∗-measurable and ‖G‖Lp′ (Rn,B∗) ≤ 1.

It follows from (4.5.21) and (4.5.22) that∫
Rn
〈G(x),Fε(x)〉dx =

∫
Rn

h(x)
m

∑
j=1

χE j(x)〈u
∗
j ,u j〉dx

≥
∫

Rn
h(x)

m

∑
j=1

(
‖u j‖B− ε

4(‖h‖L1(Rn) +1)

)
χE j(x)dx

≥
∥∥Fε

∥∥
Lp(Rn,B)−

ε

2
.

Hence, for any ε > 0, we have
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∥∥

Lp(Rn,B) ≤ sup
‖G‖

Lp′ (Rn,B∗)
≤1

∣∣∣∣∫Rn
〈G(x),F(x)〉dx

∣∣∣∣+ ε.

Letting ε → 0 implies the desired inequality, which completes the proof. �

Definition 4.5.8. Let T be a linear operator that maps Lp(Rn) to Lq(Rn) (respec-
tively, Lp(Rn) to Lq,∞(Rn)) for some 0 < p,q ≤ ∞. We define another operator ~T
acting on Lp⊗B by setting

~T
( m

∑
j=1

f ju j

)
=

m

∑
j=1

T ( f j)u j.

If ~T happens to have a bounded extension from Lp(Rn,B) to Lq(Rn,B) (respec-
tively from Lp(Rn,B) to Lq,∞(Rn,B)), then we say that T has a bounded B-valued
extension. In this case we also denote by ~T the B-valued extension of T .

Example 4.5.9. Let B = `r for some 1 ≤ r < ∞. Then a measurable function
F : X → B is just a sequence { f j} j of measurable functions f j : X → C. The
space Lp(X , `r) consists of all measurable complex-valued sequences { f j} j on X
that satisfy ∥∥{ f j} j

∥∥
Lp(X ,`r) =

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp(X)
< ∞ .

The space Lp(X)⊗ `r is the set of all finite sums

m

∑
j=1

(a j1,a j2,a j3, . . .)g j ,

where g j ∈ Lp(X) and (a j1,a j2,a j3, . . .) ∈ `r, j = 1, . . . ,m. This is certainly a sub-
space of Lp(X , `r). Now given ( f1, f2, . . .) ∈ Lp(X , `r), let Fm = e1 f1 + · · ·+ em fm,
where e j is the infinite sequence with zeros everywhere except at the jth entry,
where it has 1. Then Fm ∈ Lp(X)⊗ `r and approximates f in the norm of Lp(X , `r).
This shows the density of Lp(X)⊗ `r in Lp(X , `r).

If T is a linear operator bounded from Lp(X) to Lq(Y ), then ~T is defined by

~T ({ f j} j) = {T ( f j)} j.

According to Definition 4.5.8, T has a bounded `r-extension if and only if the in-
equality ∥∥∥(∑

j
|T ( f j)|r

)1
r
∥∥∥

Lq
≤C

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp

is valid.

A linear operator T acting on measurable functions is called positive if it satisfies
f ≥ 0 =⇒ T ( f )≥ 0. It is straightforward to verify that positive operators satisfy
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f ≤ g =⇒ T ( f )≤ T (g) ,
|T ( f )| ≤ T (| f |) ,
sup

j
|T ( f j)| ≤ T

(
sup

j
| f j|
)
,

(4.5.23)

for all f ,g, f j measurable functions. We have the following result regarding vector-
valued extensions of positive operators:

Proposition 4.5.10. Let 0 < p,q≤∞ and (X ,µ), (Y,ν) be two measure spaces. Let
T be a positive linear operator mapping Lp(X) to Lq(Y ) (respectively, to Lq,∞(Y ))
with norm A. Let B be a Banach space. Then T has a B-valued extension ~T that
maps Lp(X ,B) to Lq(Y,B) (respectively, to Lq,∞(Y,B)) with the same norm.

Proof. Let us first understand this theorem when B = `r for 1≤ r≤∞. The two end-
point cases r = 1 and r = ∞ can be checked easily using the properties in (4.5.23).
For instance, for r = 1 we have∥∥∥∑

j
|T ( f j)|

∥∥∥
Lq
≤
∥∥∥∑

j
T (| f j|)

∥∥∥
Lq

=
∥∥∥T
(
∑

j
| f j|
)∥∥∥

Lq
≤ A

∥∥∥∑
j
| f j|
∥∥∥

Lp
,

while for r = ∞ we have∥∥∥sup
j
|T ( f j)|

∥∥∥
Lq
≤
∥∥∥T (sup

j
| f j|)

∥∥∥
Lq
≤ A

∥∥sup
j
| f j|
∥∥

Lp .

The required inequality for 1 < r < ∞,∥∥∥(∑
j
|T ( f j)|r

)1
r
∥∥∥

Lq
≤ A

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp
,

follows from the Riesz–Thorin interpolation theorem (see Exercise 4.5.2).
The result for a general Banach space B can be proved using the following in-

equality: ∥∥~T (F)(x)
∥∥

B
≤ T

(∥∥F
∥∥

B

)
(x), x ∈ X , (4.5.24)

by simply taking Lq norms. To prove (4.5.24), let us take F = ∑
n
j=1 f ju j. Then

∥∥~T (F)(x)
∥∥

B
=
∥∥∥ n

∑
j=1

T ( f j)(x)u j

∥∥∥
B

= sup
‖u∗‖B∗≤1

∣∣∣〈u∗, n

∑
j=1

T ( f j)(x)u j
〉∣∣∣

= sup
‖u∗‖B∗≤1

∣∣∣T( n

∑
j=1

f j
〈
u∗,u j

〉)
(x)
∣∣∣

≤ T
(

sup
‖u∗‖B∗≤1

∣∣〈u∗, n

∑
j=1

f ju j
〉∣∣)(x)

= T
(∥∥ n

∑
j=1

f ju j
∥∥

B

)
(x) = T

(∥∥F
∥∥

B

)
(x) ,
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where the inequality makes use of the fact that T is a positive operator. �

We end this section with a simple extension of Theorem 4.5.1.

Proposition 4.5.11. Let H be a Hilbert space and let 0 < p < ∞. Then every
bounded linear operator T from Lp(Rn) to Lp(Rn) has an H -valued extension.
In particular, for all measurable families of functions { ft}t∈Rd and for all positive
measures µ on Rd the following estimate is valid:∥∥∥(∫

Rd
|T ( ft)|2 dµ(t)

)1
2
∥∥∥

Lp(Rn)
≤
∥∥T
∥∥

Lp→Lp

∥∥∥(∫
Rd
| ft |2 dµ(t)

)1
2
∥∥∥

Lp(Rn)
.

Proof. If the Hilbert space H is finite-dimensional, then it is isometrically isomor-
phic to `2({1,2, . . . ,N}) for some positive integer N. If H is infinite-dimensional
and separable, then it is isometrically isomorphic to `2(Z). By Theorem 4.5.1, the
linear operator T has an `2-valued extension, and in view of the isometry with H , it
must also have an H -valued extension. If the Hilbert space H is not separable, we
obtain a vector-valued extension of T for all separable subspaces of H with norm
independent of the subspace. �

Exercises

4.5.1. Let B be a Banach space. Prove that
(a) for any G ∈ Lp′(Rn,B∗), 1≤ p≤ ∞, one has

‖G‖Lp′ (Rn,B∗) = sup
‖F‖Lp(Rn,B)≤1

∣∣∣∣∫Rn
〈G(x),F(x)〉dx

∣∣∣∣ ;

(b) the space Lp′(Rn,B∗) isometrically embeds in (Lp(Rn,B))∗ when 1≤ p≤ ∞.

4.5.2. Prove the following version of the Riesz–Thorin interpolation theorem. Let
1≤ p0,q0, , p1,q1,r0,s0,r1,s1 ≤ ∞ and 0 < θ < 1 satisfy

1−θ

p0
+

θ

p1
=

1
p

,
1−θ

q0
+

θ

q1
=

1
q

,

1−θ

r0
+

θ

r1
=

1
r

,
1−θ

s0
+

θ

s1
=

1
s

.

Suppose that ~T is a linear operator that maps Lp0(Rn, `r0) to Lq0(Rn, `s0) with norm
A0 and Lp1(Rn, `r1) to Lq1(Rn, `s2) with norm A1. Prove that ~T maps Lp(Rn, `r) to
Lq(Rn, `s) with norm at most A1−θ

0 Aθ
1 .

4.5.3. (a) Prove the following version of the Marcinkiewicz interpolation theorem.
Let 0 < p0 < p < p1 ≤ ∞ and 0 < θ < 1 satisfy
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1−θ

p0
+

θ

p1
=

1
p

.

Suppose that ~T is a sublinear operator, that is, it satisfies∥∥~T (F +G)
∥∥

B2
≤
∥∥~T (F)

∥∥
B2

+
∥∥~T (G)

∥∥
B2

,

for all F and G. Assume that ~T maps Lp0(Rn,B1) to Lp0,∞(Rn,B2) with norm A0
and Lp1(Rn,B1) to Lp1,∞(Rn,B2) with norm A1. Show that ~T maps Lp(Rn,B1) to

Lp(Rn,B2) with norm at most 2
( p

p−p0
+ p

p1−p

) 1
p A1−θ

0 Aθ
1 .

(b) Let p0 = 1. If ~T is linear and maps L1(Rn,B1) to L1,∞(Rn,B2) with norm A0
and Lp1(Rn,B1) to Lp1(Rn,B2) with norm A1, show that the constant in part (a)
can be improved to 8

(
p−1

)−1/pA1−θ

0 Aθ
1 ; see also Exercise 1.3.2.

4.5.4. Suppose that all x ∈ Rn, K(x) is a bounded linear operator from B1 to B2
and let ~T (F)(x) =

∫
Rn K(x− y)F(y)dy be the vector-valued operator given by con-

volution with K.
(a) Suppose that K satisfies∫

Rn

∥∥K(x)
∥∥

B1→B2
dx = C < ∞ .

Prove that the operator ~T (F) maps Lp(Rn,B1) to Lp(Rn,B2) with norm at most C
for 1≤ p≤ ∞.
(b) (Young’s inequality ) Suppose that K satisfies(∫

Rn

∥∥K(x)
∥∥s

B1→B2
dx
)1/s

= C < ∞ .

Prove that ~T (F) maps Lp(Rn,B1) to Lq(Rn,B2) with norm at most C whenever
1≤ p,q,s≤ ∞ and 1/q+1 = 1/s+1/p.
(c) (Young’s inequality for weak type spaces ) Suppose that K satisfies∥∥∥∥∥K( ·)

∥∥
B1→B2

∥∥∥
Ls,∞

< ∞ .

Prove that ~T (F) maps Lp(Rn,B1) to Lq(Rn,B2) whenever 1≤ p < ∞, 1 < p,s < ∞,
and 1/q+1 = 1/s+1/p.

4.5.5. Prove the following (slight) generalization of the Exercise 4.5.4 when p = 1.
Suppose that K satisfies ∫

Rn

∥∥K(x)u
∥∥

B2
dx ≤C

∥∥u
∥∥

B1
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for all u ∈B1. Then ~T maps L1(Rn,B1) to L1(Rn,B2) with norm at most C. Show,
however, that the preceding condition is not strong enough to imply Lp boundedness
for ~T for 1 < p < ∞.

4.5.6. Use the inequality for the Rademacher functions in Appendix C.2 instead of
Lemma 4.5.2 to prove part (a) of Theorem 4.5.1 in the special case p = q.

4.5.7. Prove the following extension of Theorem 4.4.1. If T is a bounded linear
operator from Lp to the Lorentz space Lq,s, then it has an `2-valued extension. Here
0 < p,q,s≤ ∞.

4.5.8. Let Tj( f )(x) = f (x− j) and f j(x) = χ[− j,1− j] for j = 1,2, . . . ,N. Use these
functions and operators to show that the inequality∥∥∥(∑

j
|Tj( f j)|2

)1
2
∥∥∥

Lp
≤Cp

∥∥∥(∑
j
| f j|2

)1
2
∥∥∥

Lp

may be false in general although the linear operators Tj are uniformly bounded from
Lp(R) to Lp(R).

4.5.9. Suppose that T is a linear operator that takes real-valued functions to real-
valued functions. Prove that

sup
f real-valued

f 6=0

∥∥T ( f )
∥∥

Lp∥∥ f
∥∥

Lp

= sup
f complex-valued

f 6=0

∥∥T ( f )
∥∥

Lp∥∥ f
∥∥

Lp

.

[
Hint: Use Theorem 4.5.1 (a) with p = q.

]

4.6 Vector-Valued Singular Integrals

We now discuss some results about vector-valued singular integrals. By this we
mean singular integral operators taking values in Banach spaces. At this point we
restrict our attention to the situation in which X = Y = Rn.

4.6.1 Banach-Valued Singular Integral Operators

We consider a kernel ~K defined on Rn \{0} that takes values in the space L(B1,B2)
of all bounded linear operators from B1 to B2. In other words, for all x ∈ Rn \{0},
~K(x) is a bounded linear operator from B1 to B2, whose norm we denote by∥∥~K(x)

∥∥
B1→B2

. We assume that ~K(x) is L(B1,B2)-measurable and locally inte-
grable away from the origin, so that the integral
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~T (F)(x) =
∫

Rn
~K(x− y)F(y)dy (4.6.1)

is well defined as an element of B2 for all F ∈ L∞(Rn,B1) with compact support
when x lies outside the support of F .

We assume that the kernel ~K satisfies Hörmander’s condition,∫
|x|≥2|y|

∥∥~K(x− y)−~K(x)
∥∥

B1→B2
dx ≤ A < ∞ , y ∈ Rn \{0}, (4.6.2)

which is a certain form of regularity familiar to us from the scalar case.
The following vector-valued extension of Theorem 4.3.3 is the main result of this

section.

Theorem 4.6.1. Let B1 and B2 be Banach spaces. Suppose that ~T given by (4.6.1)
is a bounded linear operator from Lr(Rn,B1) to Lr(Rn,B2) with norm B = B(r)
for some 1 < r ≤ ∞. Assume that ~K satisfies Hörmander’s condition (4.6.2) for
some A > 0. Then ~T has well defined extensions on Lp(Rn,B1) for all 1 ≤ p < ∞.
Moreover, there exist dimensional constants Cn and C′

n such that∥∥~T (F)
∥∥

L1,∞(Rn,B2) ≤C′
n(A+B)

∥∥F
∥∥

L1(Rn,B1) (4.6.3)

for all F in L1(Rn,B1) and∥∥~T (F)
∥∥

Lp(Rn,B2) ≤Cn max
(

p,(p−1)−1)(A+B)
∥∥F
∥∥

Lp(Rn,B1) (4.6.4)

whenever 1 < p < ∞ and F is in Lp(Rn,B1).

Proof. We prove the weak type estimate (4.6.3) by applying the Calderón–Zygmund
decomposition just as in the scalar case to the function x 7→

∥∥F(x)
∥∥

B1
defined on Rn.

The proof of Theorem 4.3.3 is directly applicable here, and an identical repetition of
the arguments given in the scalar case with suitable norms replacing absolute values
yields (4.6.3).

Next we interpolate between the estimates ~T : L1(Rn,B1)→ L1,∞(Rn,B2) and
~T : Lr(Rn,B1)→ Lr(Rn,B2). Using Exercise 4.5.3, we obtain for 1 < p < r,∥∥~T (F)

∥∥
Lp(Rn,B2) ≤Cn max(1,(p−1)−1)(A+B)

∥∥F
∥∥

Lp(Rn,B1) , (4.6.5)

where Cn is independent of r, p, B1, and B2 (and depends only on n).
We obtain (4.6.4) for p > r via duality. Since ~K(x) is an operator from B1 to

B2, its adjoint ~K∗(x) is an operator from B∗
2 to B∗

1 . Let ~T ∗ be the Banach-valued
operator with kernel ~K∗. Obviously ~K∗(x−y)−~K∗(x) and ~K(x−y)−~K(x) have the
same norm. Therefore, Hörmander’s condition (4.6.2) also holds for ~T ∗, since it can
be written as

sup
y∈Rn\{0}

∫
|x|≥2|y|

∥∥~K∗(x− y)−~K∗(x)
∥∥

B∗
2→B∗

1
dx = A < ∞ . (4.6.6)
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The assumption on ~T gives that ~T ∗ is bounded from Lr′(Rn,B∗
2) to Lr′(Rn,B∗

1).
Indeed, to see this, we fix F ∈ Lr′(Rn,B∗

2) and use Exercise 4.5.1(a). We have∥∥~T ∗(F)
∥∥

Lr′ (Rn,B∗
1) = sup

‖G‖Lr(Rn,B1)≤1

∣∣∣∫
Rn

〈
~T ∗(F)(x),G(x)

〉
dx
∣∣∣

= sup
‖G‖Lr(Rn,B1)≤1

∣∣∣∫
Rn

〈
F(x),~T (G)(x)

〉
dx
∣∣∣

≤ sup
‖G‖Lr(Rn,B1)≤1

∫
Rn

∥∥F(x)
∥∥

B∗
2

∥∥~T (G)(x)
∥∥

B2
dx

≤ sup
‖G‖Lr(Rn,B1)≤1

∥∥F
∥∥

Lr′ (Rn,B∗
2)

∥∥~T (G)
∥∥

Lr(Rn,B2)

≤ B
∥∥F
∥∥

Lr′ (Rn,B∗
2) .

Combining these facts, we obtain that (4.6.3) holds for ~T ∗, that is,∥∥~T ∗(F)
∥∥

L1,∞(Rn,B∗
1) ≤Cn(A+B)

∥∥F
∥∥

L1(Rn,B∗
2) .

Consequently, we obtain by interpolation for 1 < p′ < r′ the estimate∥∥~T ∗(F)
∥∥

Lp′ (Rn,B∗
1)≤Cn max(1, p−1)(A+B)

∥∥F
∥∥

Lp′ (Rn,B∗
2) , (4.6.7)

since (p′−1)−1 = p−1.
We now fix r < p < ∞. Let F lie in some dense subspace of Lp(Rn,B1), such

that
∥∥~T (F)

∥∥
Lp(Rn,B2) < ∞. We use Proposition 4.5.7(a) to write

∥∥~T (F)
∥∥

Lp(Rn,B2) ≤ sup
‖G‖

Lp′ (Rn,B∗
2 )
≤1

∣∣∣∣∫Rn

〈
G(x),~T (F)(x)

〉
dx
∣∣∣∣

= sup
‖G‖

Lp′ (Rn,B∗
2 )
≤1

∣∣∣∣∫Rn

〈
~T ∗(G)(x),F(x)

〉
dx
∣∣∣∣

≤ sup
‖G‖

Lp′ (Rn,B∗
2 )
≤1

∥∥~T ∗(G)
∥∥

Lp′ (Rn,B∗
1)

∥∥F
∥∥

Lp(Rn,B1)

≤Cn max(1, p)(A+B)
∥∥F
∥∥

Lp(Rn,B1)

= Cn max(1, p)(A+B)
∥∥F
∥∥

Lp(Rn,B1) ,

where we used (4.6.7). Since F lies in some dense subspace of Lp(Rn,B1), the
required conclusion follows. This combined with (4.6.5) implies the required con-
clusion whenever 1 < r < ∞. Observe that the case r = ∞ is easier and requires only
Exercise 4.3.7 adapted to the Banach-valued setting. �
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4.6.2 Applications

We proceed with some applications. An important consequence of Theorem 4.6.1 is
the following:

Corollary 4.6.2. Let Wj be a sequence of tempered distributions on Rn whose
Fourier transforms are uniformly bounded functions (i.e., |Ŵj| ≤B for some B). Sup-
pose that each Wj coincides with some locally integrable function K j on Rn \ {0}
that satisfies∫

|x|≥2|y|
sup

j
|K j(x− y)−K j(x)|dx ≤ A, y ∈ Rn \{0}. (4.6.8)

Then there are constants Cn,C′
n > 0 such that for all 1 < p,r < ∞ we have∥∥∥(∑

j
|Wj ∗ f j|r

)1
r
∥∥∥

L1,∞
≤C′

n max(r,(r−1)−1)(A+B)
∥∥∥(∑

j
| f j|r

)1
r
∥∥∥

L1
,

∥∥∥(∑
j
|Wj ∗ f j|r

)1
r
∥∥∥

Lp
≤Cn c(p,r)(A+B)

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp
,

where c(p,r) = max(p,(p−1)−1)max(r,(r−1)−1).

Proof. Let Tj be the operator given by convolution with the distribution Wj. It fol-
lows from Theorem 4.3.3 that the Tj’s are of weak type (1,1) and also bounded on
Lr with bounds at most a dimensional constant multiple of max(r,(r−1)−1)(A+B),
uniformly in j. Naturally, set B1 = B2 = `r and define

~T ({ f j} j) = {Wj ∗ f j} j

for { f j} j ∈ Lr(Rn, `r). Summing gives that ~T maps Lr(Rn, `r) to itself with norm at
most a dimensional constant multiple of max(r,(r−1)−1)(A+B).

The operator ~T has the form

~T (F)(x) =
∫

Rn
~K(x− y)F(y)dy

for F ∈ Lr(Rn, `r) with compact support and x /∈ support(F), where ~K(x) in L(`r, `r)
is the following operator:

~K(x)({t j} j) = {K j(x)t j} j, {t j} j ∈ `r.

Clearly, ∥∥~K(x− y)−~K(x)
∥∥

`r→`r ≤ sup
j
|K j(x− y)−K j(x)| ,

and therefore Hörmander’s condition holds for ~K as a consequence of (4.6.8). The
desired conclusion follows from Theorem 4.6.1. �
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If all the Wj’s are equal, we obtain the following corollary, which contains in
particular the result (4.5.16) mentioned earlier.

Corollary 4.6.3. Let W be an element of S ′(Rn) whose Fourier transform is a func-
tion bounded in absolute value by some B > 0. Suppose that W coincides with some
locally integrable function K on Rn \{0} that satisfies Hörmander’s condition:∫

|x|≥2|y|
|K(x− y)−K(x)|dx ≤ A, y ∈ Rn \{0}. (4.6.9)

Let T be the operator given by convolution with W. Then there exist constants
Cn,C′

n > 0 such that for all 1 < p,r < ∞ we have that∥∥∥(∑
j
|T ( f j)|r

)1
r
∥∥∥

L1,∞
≤C′

n max(r,(r−1)−1)(A+B)
∥∥∥(∑

j
| f j|r

)1
r
∥∥∥

L1
,

∥∥∥(∑
j
|T ( f j)|r

)1
r
∥∥∥

Lp
≤Cnc(p,r)(A+B)

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp
,

where c(p,r) = max(p,(p−1)−1)max(r,(r−1)−1). In particular, these inequalities
are valid for the Hilbert transform and the Riesz transforms.

Interestingly enough, we can use the very statement of Theorem 4.6.1 to obtain
its corresponding vector-valued version.

Proposition 4.6.4. Let let 1 < p,r < ∞ and let B1 and B2 be two Banach spaces.
Suppose that ~T given by (4.6.1) is a bounded linear operator from Lr(Rn,B1) to
Lr(Rn,B2) with norm B = B(r). Also assume that for all x ∈ Rn \ {0}, ~K(x) is
a bounded linear operator from B1 to B2 that satisfies Hörmander’s condition
(4.6.2) for some A > 0. Then there exist positive constants Cn,C′

n such that for all
B1-valued functions Fj we have∥∥∥(∑

j

∥∥~T (Fj)
∥∥r

B2

)1
r
∥∥∥

L1,∞(Rn)
≤C′

n(A+B)
∥∥∥(∑

j

∥∥Fj
∥∥r

B1

)1
r
∥∥∥

L1(Rn)
,

∥∥∥(∑
j

∥∥~T (Fj)
∥∥r

B2

)1
r
∥∥∥

Lp(Rn)
≤Cn(A+B)c(p)

∥∥∥(∑
j

∥∥Fj
∥∥r

B1

)1
r
∥∥∥

Lp(Rn)
,

where c(p) = max(p,(p−1)−1).

Proof. Let us denote by `r(B1) the Banach space of all B1-valued sequences {t j} j
that satisfy ∥∥{t j} j

∥∥
`r(B1) =

(
∑

j

∥∥t j
∥∥r

B1

)1
r < ∞.

Now consider the operator ~S defined by

~S({Fj} j) = {~T (Fj)} j .
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It is obvious that ~S maps Lr(Rn, `r(B1)) to Lr(Rn, `r(B2)) with norm at most B.
Moreover, ~S has kernel K̃(x) ∈ L(`r(B1), `r(B2)) given by

K̃(x)({t j} j) = {~K(x)t j} j,

where ~K is the kernel of ~T . It is not hard to see that the operator norms of ~K and K̃
coincide and therefore∥∥~K(x− y)−~K(x)

∥∥
B1→B2

=
∥∥K̃(x− y)− K̃(x)

∥∥
`r(B1)→`r(B2).

We conclude that K̃ satisfies the hypotheses of Theorem 4.6.1. The conclusions of
Theorem 4.6.1 for ~S are the desired inequalities for ~T . �

4.6.3 Vector-Valued Estimates for Maximal Functions

Next, we discuss applications of vector-valued inequalities to some nonlinear opera-
tors. We fix an integrable function Φ on Rn and for t > 0 define Φt(x) = t−nΦ(t−1x).
We suppose that Φ satisfies the following regularity condition:∫

|x|≥2|y|
sup
t>0

|Φt(x− y)−Φt(x)|dx = AΦ < ∞, y ∈ Rn \{0}. (4.6.10)

We consider the maximal operator

MΦ( f )(x) = sup
t>0

|( f ∗Φt)(x)|

defined for f in L1 + L∞. We are interested in obtaining Lp estimates for MΦ . It is
reasonable to start with p = ∞, which yields the easiest of all the Lp estimates for
MΦ , the trivial estimate ∥∥MΦ( f )

∥∥
L∞ ≤

∥∥Φ
∥∥

L1

∥∥ f
∥∥

L∞ . (4.6.11)

We think of MΦ as a linear operator taking values in a Banach space. Indeed, it
is natural to set

B1 = C and B2 = L∞(R+)

and view MΦ as the linear operator f 7→ { f ∗Φδ}δ>0 that maps B1-valued functions
to B2-valued functions.

To do this precisely, we define a B2-valued kernel

~KΦ(x) = {Φδ (x)}δ∈R+

and a B2 -valued linear operator

~MΦ( f ) = f ∗~KΦ = { f ∗Φδ}δ∈R+
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acting on complex-valued functions on Rn. We know that ~MΦ maps L∞(Rn,B1) =
L∞(Rn) to L∞(Rn,B2) with norm at most

∥∥Φ
∥∥

L1 . Clearly (4.6.10) implies condition
(4.6.2) for the kernel ~KΦ . Applying Theorem 4.6.1, we obtain for 1 < p < ∞,∥∥~MΦ( f )

∥∥
Lp(Rn,B2) ≤Cn max(p,(p−1)−1)

(
AΦ +

∥∥Φ
∥∥

L1

)∥∥ f
∥∥

Lp(Rn) , (4.6.12)

which can be immediately improved to∥∥~MΦ( f )
∥∥

Lr(Rn,B2) ≤Cn max(1,(r−1)−1)
(
AΦ +

∥∥Φ
∥∥

L1

)∥∥ f
∥∥

Lr(Rn) (4.6.13)

via interpolation with estimate (4.6.11) for all 1 < r < ∞.
Next we use estimate (4.6.13) to obtain vector-valued estimates for the sublinear

operator MΦ .

Corollary 4.6.5. Let Φ be an integrable function on Rn that satisfies (4.6.10). Then
there exist dimensional constants Cn and C′

n such that for all 1 < p,r < ∞ the fol-
lowing vector-valued inequalities are valid:∥∥∥(∑

j
|MΦ( f j)|r

)1
r
∥∥∥

L1,∞
≤C′

nc(r)
(
AΦ +

∥∥Φ
∥∥

L1

)∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

L1
, (4.6.14)

where c(r) = 1+(r−1)−1, and∥∥∥(∑
j
|MΦ( f j)|r

)1
r
∥∥∥

Lp
≤Cnc(p,r)

(
AΦ +

∥∥Φ
∥∥

L1

)∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp
, (4.6.15)

where c(p,r) =
(
1+(r−1)−1

)(
p+(p−1)−1

)
.

Proof. We set B1 = C and B2 = L∞(R+). We use estimate (4.6.13) as a start-
ing point in Proposition 4.6.4, which immediately yields the required conclusions
(4.6.14) and (4.6.15). �

Similar estimates hold for the Hardy–Littlewood maximal operator.

Theorem 4.6.6. For 1 < p,r < ∞ the Hardy–Littlewood maximal function M satis-
fies the vector-valued inequalities∥∥∥(∑

j
|M( f j)|r

)1
r
∥∥∥

L1,∞
≤C′

n
(
1+(r−1)−1)∥∥∥(∑

j
| f j|r

)1
r
∥∥∥

L1
, (4.6.16)

∥∥∥(∑
j
|M( f j)|r

)1
r
∥∥∥

Lp
≤Cn c(p,r)

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp
, (4.6.17)

where c(p,r) =
(
1+(r−1)−1

)(
p+(p−1)−1

)
.

Proof. Let us fix a positive radial symmetrically decreasing Schwartz function Φ on
Rn that satisfies Φ(x)≥ 1 when |x| ≤ 1. Then the Hardy–Littlewood maximal func-
tion M( f ) is pointwise controlled by a constant multiple of the function MΦ(| f |). In
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view of Corollary 4.6.5, it suffices to check that for such a Φ , (4.6.10) holds. First
observe that in view of the decreasing character of Φ , we have

sup
j
| f | ∗Φ2 j ≤MΦ(| f |)≤ 2n sup

j
| f | ∗Φ2 j ,

and for this reason we choose to work with the easier dyadic maximal operator

Md
Φ( f ) = sup

j
| f ∗Φ2 j | .

We observe the validity of the simple inequalties

2−n M( f )≤M( f )≤MΦ(| f |)≤ 2nMd
Φ(| f |) . (4.6.18)

If we can show that

sup
y∈Rn\{0}

∫
|x|≥2|y|

sup
j∈Z

|Φ2 j(x− y)−Φ2 j(x)|dx = Cn < ∞ , (4.6.19)

then (4.6.14) and (4.6.15) are satisfied with Md
Φ

replacing MΦ . We therefore turn
our attention to (4.6.19). We have∫

|x|≥2|y|
sup
j∈Z

|Φ2 j(x− y)−Φ2 j(x)|dx

≤ ∑
j∈Z

∫
|x|≥2|y|

|Φ2 j(x− y)−Φ2 j(x)|dx

≤ ∑
2 j>|y|

∫
|x|≥2|y|

|y| |∇Φ
( x−θy

2 j

)
|

2(n+1) j
dx+ ∑

2 j≤|y|

∫
|x|≥2|y|

(|Φ2 j(x− y)|+ |Φ2 j(x)|)dx

≤ ∑
2 j>|y|

∫
|x|≥2|y|

|y|
2(n+1) j

CN dx
(1+ |2− j(x−θy)|)N +2 ∑

2 j≤|y|

∫
|x|≥|y|

|Φ2 j(x)|dx

≤ ∑
2 j>|y|

∫
|x|≥2|y|

|y|
2(n+1) j

CN

(1+ |2− j−1x|)N dx+2 ∑
2 j≤|y|

∫
|x|≥2− j |y|

|Φ(x)|dx

≤ ∑
2 j>|y|

∫
|x|≥2− j |y|

|y|
2 j

CN

(1+ |x|)N dx+2 ∑
2 j≤|y|

CN(2− j|y|)−N

≤CN ∑
2 j>|y|

|y|
2 j +CN = 2CN ,

where CN > 0 depends on N > n, θ ∈ [0,1], and |x−θy| ≥ |x|/2 when |x| ≥ 2|y|.
Now apply (4.6.14) and (4.6.15) to Md

Φ
and use (4.6.18) to obtain the desired

vector-valued inequalities. �

Remark 4.6.7. Observe that (4.6.16) and (4.6.17) also hold for r = ∞. These end-
point estimates can be proved directly by observing that



4.6 Vector-Valued Singular Integrals 337

sup
j

M( f j)≤M(sup
j
| f j|) .

The same is true for estimates (4.6.14) and (4.6.15). Finally, estimates (4.6.17) and
(4.6.15) also hold for p = ∞.

Exercises

4.6.1. (a) For all j ∈ Z, let I j be an interval in R and let Tj be the operator given
on the Fourier transform by multiplication by the characteristic function of I j. Prove
that there exists a constant C > 0 such that for all 1 < p,r < ∞ and for all integrable
functions f j on R we have∥∥∥(∑

j
|Tj( f j)|r

)1
r
∥∥∥

Lp
≤C c(p,r)

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp
,

∥∥∥(∑
j
|Tj( f j)|r

)1
r
∥∥∥

L1,∞
≤C max

(
r,(r−1)−1)∥∥∥(∑

j
| f j|r

)1
r
∥∥∥

L1
,

where c(p,r) = max
(
r,(r−1)−1

)
max

(
p,(p−1)−1

)
.

(b) Let R j be arbitrary rectangles on Rn with sides parallel to the axes and let S j be
the operators given on the Fourier transform by multiplication by the characteristic
functions of R j. Prove that there exists a dimensional constant Cn < ∞ such that for
all indices 1 < p,r < ∞ and for all functions f j in Lp(Rn) we have∥∥∥(∑

j
|S j( f j)|r

)1
r
∥∥∥

Lp
≤Cnc(p,r)n

∥∥∥(∑
j
| f j|r

)1
r
∥∥∥

Lp
,

where c(p,r) is as in part (a).[
Hint: Use Theorem 4.5.1 and the fact that the operator whose multiplier is χ(a,b)

is equal to i
2

(
MaHM−a −MbHM−b

)
, where Ma( f )(x) = f (x)e2πiax and H is the

Hilbert transform.
]

4.6.2. For every t ∈ Rd , let R(t) be a rectangle with sides parallel to the axes in
Rn such that the map t 7→ R(t) is measurable. Then there is a constant Cn > 0 such
that for all 1 < p < ∞, for all σ -finite measures µ on Rd , and for all families of
measurable functions ft on Rn we have∥∥∥∥(∫Rd

|( f̂t χR(t))
∨|2 dµ(t)

)1
2
∥∥∥∥

Lp
≤Cn c(p)n

∥∥∥∥(∫Rd
| ft |2 dµ(t)

)1
2
∥∥∥∥

Lp
,

where c(p) = max(p,(p−1)−1).[
Hint: Reduce this estimate to Proposition 4.5.11. Observe that when d = 1, this

provides a continuous version of the result of Exercise 4.6.1.
]
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4.6.3. (a) Let Φ be a radially decreasing function on Rn that satisfies∫
Rn
|Φ(x− y)−Φ(x)|dx ≤ η(y),

∫
|x|≥R

|Φ(x)|dx ≤ η(R−1) ,

for all R > 1, where η is an increasing function with η(0) = 0 such that∫ 1

0

η(t)
t

dt < ∞ .

Prove that (4.6.19) holds.[
Hint: Modify the calculation in the proof of Theorem 4.6.6.

]
(b) Use Theorem 4.6.1 with r = ∞ to conclude that the maximal function f 7→
sup j∈Z | f ∗Φ2 j | maps Lp(Rn) to itself for 1 < p≤ ∞.

4.6.4. (a) On R, take f j = χ[2 j−1,2 j ] to prove that inequality (4.6.17) fails when
p = ∞ and 1 < r < ∞.
(b) Again on R, take N > 2 and f j = χ[ j−1

N , j
N ] for j = 1,2, . . . ,N to prove that (4.6.17)

fails when 1 < p < ∞ and r = 1.

4.6.5. Prove that the vector-valued inequality∥∥∥(∑
j
|K ∗ f j|q

)1
q
∥∥∥

Lp
≤Cp,q

∥∥∥(∑
j
| f j|q

)1
q
∥∥∥

Lp

may fail in general when q < 1 when the operator f 7→ f ∗K is Lp bounded.[
Hint: Take K = χ[−1,1] and f j = χ[ j−1

N , j
N ] for 1≤ j ≤ N.

]
4.6.6. Let {Q j} j be a countable collection of cubes in Rn with disjoint interiors.
Let c j be the center of the cube Q j and d j its diameter. For ε > 0, define the
Marcinkiewicz function associated with the family {Q j} j as follows:

Mε(x) = ∑
j

dn+ε

j

|x− c j|n+ε +dn+ε

j
.

Prove that for some constants Cn,ε,p and Cn,ε one has

∥∥Mε

∥∥
Lp ≤Cn,ε,p

(
∑

j
|Q j|

) 1
p
, p >

n
n+ ε

,

∥∥Mε

∥∥
L

n
n+ε

,∞ ≤Cn,ε

(
∑

j
|Q j|

) n+ε
n

,

and consequently ∫
Rn

Mε(x)dx ≤Cn,ε ∑
j
|Q j| .[

Hint: Verify that
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dn+ε

j

|x− c j|n+ε +dn+ε

j
≤CM(χQ j)(x)

n+ε
n

and use Corollary 4.6.5.
]

HISTORICAL NOTES

The Lp boundedness of the conjugate function on the circle was announced in 1924 by Riesz
[219], but its first proof appeared three years later in [221]. In view of the identification of the
Hilbert transform with the conjugate function, the Lp boundedness of the Hilbert transform is also
attributed to M. Riesz. Riesz’s proof was first given for p = 2k, k ∈ Z+, via an argument similar to
that in the proof of Theorem 3.5.6. For p 6= 2k this proof relied on interpolation and was completed
with the simultaneous publication of Riesz’s article on interpolation of bilinear forms [220]. The
weak type (1,1) property of the Hilbert transform is due to Kolmogorov [158]. Additional proofs
of the boundedness of the Hilbert transform have been obtained by Stein [267], Loomis [177], and
Calderón [33]. The proof of Theorem 4.1.7, based on identity (4.1.21), is a refinement of a proof
given by Cotlar [60].

The norm of the conjugate function on Lp(T1), and consequently that of the Hilbert trans-
form on Lp(R), was shown by Gohberg and Krupnik [102] to be cot(π/2p) when p is a power
of 2. Duality gives that this norm is tan(π/2p) for 1 < p ≤ 2 whenever p′ is a power of 2. Pi-
chorides [213] extended this result to all 1 < p < ∞ by refining Calderón’s proof of Riesz’s theorem.
This result was also independently obtained by B. Cole (unpublished). The direct and simplified
proof for the Hilbert transform given in Exercise 4.1.12 is in Grafakos [103]. The norm of the
operators 1

2 (I± iH) for real-valued functions was found to be 1
2

[
min(cos(π/2p),sin(π/2p))

]−1

by Verbitsky [284] and later independently by Essén [84]. The norm of the same operators for
complex-valued functions was shown to be equal to [sin(π/p)]−1 by Hollenbeck and Verbitsky
[128]. The best constant in the weak type (1,1) estimate for the Hilbert transform is equal to
(1 + 1

32 + 1
52 + · · ·)(1− 1

32 + 1
52 − ·· ·)−1 as shown by Davis [71] using Brownian motion; an al-

ternative proof was later obtained by Baernstein [14]. Iwaniec and Martin [138] showed that the
norms of the Riesz transforms on Lp(Rn) coincide with that of the Hilbert transform on Lp(R).

Operators of the kind TΩ as well as the stopping-time decomposition of Theorem 4.3.1 were
introduced by Calderón and Zygmund [37]. In the same article, Calderón and Zygmund used this
decomposition to prove Theorem 4.3.3 for operators of the form TΩ when Ω satisfies a certain
weak smoothness condition. The more general condition (4.3.12) first appeared in Hörmander’s
article [129]. A more flexible condition sufficient to yield weak type (1,1) bounds is contained
in the article of Duong and McIntosh [80]. Theorems 4.2.10 and 4.2.11 are also due to Calderón
and Zygmund [39]. The latter article contains the method of rotations. Algebras of operators of the
form TΩ were studied in [40]. For more information on algebras of singular integrals see the article
of Calderón [36]. Theorem 4.4.1 is due to Benedek, Calderón, and Panzone [18], while Example
4.4.2 is taken from Muckenhoupt [203]. Theorem 4.4.5 is due to Riviere [223]. A weaker version
of this theorem, applicable for smoother singular integrals such as the maximal Hilbert transform,
was obtained by Cotlar [60] (Theorem 4.3.4). Improvements of the main inequality in Theorem
4.3.4 for homogeneous singular integrals were obtained by Mateu and Verdera [191] and Mateu,
Orobitg, and Verdera [192]. For a general overview of singular integrals and their applications, one
may consult the expository article of Calderón [35].

Part (a) of Theorem 4.5.1 is due to Marcinkiewicz and Zygmund [189], although the case p = q
was proved earlier by Paley [209] with a larger constant. The values of r for which a general linear
operator of weak or strong type (p,q) admits bounded `r extensions are described in Rubio de
Francia and Torrea [227]. The Lp and weak Lp spaces in Theorem 4.5.1 can be replaced by general
Banach lattices, as shown by Krivine [164] using Grothendieck’s inequality. Hilbert-space-valued
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estimates for singular integrals were obtained by Benedek, Calderón, and Panzone [18]. Other
operator-valued singular integral operators were studied by Rubio de Francia, Ruiz, and Torrea
[228]. Banach-valued singular integrals are studied in great detail in the book of Garcı́a-Cuerva
and Rubio de Francia [98], which provides an excellent presentation of the subject. The `r-valued
estimates (4.5.16) for the Hilbert transform were first obtained by Boas and Bochner [24]. The
corresponding vector-valued estimates for the Hardy–Littlewood maximal function in Theorem
4.6.6 are due to Fefferman and Stein [91]. Conditions of the form (4.6.10) have been applied to
several situations and can be traced in Zo [301].

The sharpness of the logarithmic condition (4.2.23) was indicated by Weiss and Zygmund
[289], who constructed an example of an integrable function Ω with vanishing integral on S1

satisfying
∫

Sn−1 |Ω(θ)| log+ |Ω(θ)|
(

log(2 + log(2 + |Ω(θ)|))
)−δ dθ = ∞ for all δ > 0 and of a

continuous function in Lp(R2) for all 1 < p < ∞ such that limsupε→0 |T
(ε)

Ω
( f )(x)|= ∞ for almost

all x ∈ R2. The proofs of Theorems 4.2.10 and 4.2.11 can be modified to give that if Ω is in the
Hardy space H1 of Sn−1, then TΩ and T (∗)

Ω
map Lp to Lp for 1 < p < ∞. For TΩ this fact was proved

by Connett [57] and independently by Ricci and Weiss [216]; for T (∗)
Ω

this was proved by Fan and
Pan [86] and independently by Grafakos and Stefanov [110]. The latter authors [111] also obtained
that the logarithmic condition ess.sup|ξ |=1

∫
Sn−1 |Ω(θ)|(log 1

|ξ ·θ | |)
1+α dθ < ∞, α > 0, implies Lp

boundedness for TΩ and T (∗)
Ω

for some p 6= 2. See also Fan, Guo, and Pan [85] as well as Ryabogin
and Rubin [231] for extensions. Examples of functions Ω for which TΩ maps Lp to Lp for a certain
range of p’s but not for other ranges of p’s is given in Grafakos, Honzı́k, and Ryabogin [104].

The relatively weak condition |Ω | log+ |Ω | ∈ L1(Sn−1) also implies weak type (1,1) bound-
edness for operators TΩ . This was obtained by Seeger [239] and later extended by Tao [273] to
situations in which there is no Fourier transform structure. Earlier partial results are in Christ and
Rubio de Francia [52] and in the simultaneous work of Hofmann [127], both inspired by the work
of Christ [50]. Soria and Sjögren [244] showed that for arbitrary Ω in L1(Sn−1), TΩ is weak type
(1,1) when restricted to radial functions. Examples due to Christ (published in [110]) indicate
that even for bounded functions Ω on Sn−1, TΩ may not map the endpoint Hardy space H1(Rn)
to L1(Rn). However, Tao and Seeger [275] have showed that TΩ always maps the Hardy space
H1(Rn) to the Lorentz space L1,2(Rn) when |Ω |(log+ |Ω |)2 is integrable over Sn−1. This result
is sharp in the sense that for such Ω , TΩ may not map H1(Rn) to L1,q(Rn) when q < 2 in gen-
eral. If TΩ maps H1(Rn) to itself, Daly and Phillips [67] (in dimension n = 2) and Daly [66] (in
dimensions n≥ 3) showed that Ω must lie in the Hardy space H1(Sn−1). There are also results con-
cerning the singular maximal operator MΩ ( f )(x) = supr>0

1
vnrn

∫
|y|≤r | f (x−y)| |Ω(y)|dy, where Ω

is an integrable function on Sn−1 of not necessarily vanishing integral. Such operators were stud-
ied by Fefferman [92], Christ [50], and Hudson [132]. An excellent treatment of several kinds of
singular integral operators with rough kernels is contained in the book of Lu, Ding, and Yan [181].



Chapter 5
Littlewood–Paley Theory and Multipliers

In this chapter we are concerned with orthogonality properties of the Fourier trans-
form. This orthogonality is easily understood on L2, but at this point it is not clear
how it manifests itself on other spaces. Square functions introduce a way to express
and quantify orthogonality of the Fourier transform on Lp and other function spaces.
The introduction of square functions in this setting was pioneered by Littlewood and
Paley, and the theory that subsequently developed is named after them. The extent
to which Littlewood–Paley theory characterizes function spaces is remarkable. This
topic is investigated Chapter 6.

Historically, Littlewood–Paley theory first appeared in the context of one-dimen-
sional Fourier series and depended on complex function theory. With the devel-
opment of real-variable methods, the whole theory became independent of complex
methods and was extended to Rn. This is the approach that we follow in this chapter.
It turns out that the Littlewood–Paley theory is intimately related to the Calderón–
Zygmund theory introduced in the previous chapter. This connection is deep and
far-reaching, and its central feature is that one is able to derive the main results of
one theory from the other.

The thrust and power of the Littlewood–Paley theory become apparent in some of
the applications we discuss in this chapter. Such applications include the derivation
of certain multiplier theorems, that is, theorems that yield sufficient conditions for
bounded functions to be Lp multipliers. As a consequence of Littlewood–Paley the-
ory we also prove that the lacunary partial Fourier integrals

∫
|ξ |≤2N f̂ (ξ )e2πix·ξ dξ

converge almost everywhere to an Lp function f on Rn.

5.1 Littlewood–Paley Theory

We begin by examining more closely what we mean by orthogonality of the Fourier
transform. If the functions f j defined on Rn have Fourier transforms f̂ j supported in
disjoint sets, then they are orthogonal in the sense that
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j

f j
∥∥2

L2 = ∑
j

∥∥ f j
∥∥2

L2 . (5.1.1)

Unfortunately, when 2 is replaced by some p 6= 2 in (5.1.1), the previous quanti-
ties may not even be comparable, as we show in Examples 5.1.8 and 5.1.9. The
Littlewood–Paley theorem provides a substitute inequality to (5.1.1) expressing the
fact that certain orthogonality considerations are also valid in Lp(Rn).

5.1.1 The Littlewood–Paley Theorem

The orthogonality we are searching for is best seen in the context of one-dimensional
Fourier series (which was the setting in which Littlewood and Paley formulated
their result). The primary observation is that the exponential e2πi2kx oscillates half
as much as e2πi2k+1x and is therefore nearly constant in each period of the latter.
This observation was instrumental in the proof of Theorem 3.7.4, which implied in
particular that for all 1 < p < ∞ we have∥∥∥ N

∑
k=1

ake2πi2kx
∥∥∥

Lp[0,1]
≈
( N

∑
k=1

|ak|2
) 1

2
. (5.1.2)

In other words, we can calculate the Lp norm of ∑
N
k=1 ake2πi2kx in almost a pre-

cise fashion to obtain (modulo multiplicative constants) the same answer as in the
L2 case. Similar calculations are valid for more general blocks of exponentials in
the dyadic range {2k + 1, . . . ,2k+1 − 1}, since the exponentials in each such block
behave independently from those in each previous block. In particular, the Lp inte-
grability of a function on T1 is not affected by the randomization of the sign of its
Fourier coefficients in the previous dyadic blocks. This is the intuition behind the
Littlewood–Paley theorem.

Motivated by this discussion, we introduce the Littlewood–Paley operators in the
continuous setting.

Definition 5.1.1. Let Ψ be an integrable function on Rn and j ∈ Z. We define the
Littlewood–Paley operator ∆ j associated with Ψ by

∆ j( f ) = f ∗Ψ2− j ,

where Ψ2− j(x) = 2 jnΨ(2 jx) for all x in Rn. Thus we have

Ψ̂2− j(ξ ) = Ψ̂(2− j
ξ )

for all ξ in Rn. We note that whenever Ψ is a Schwartz function and f is a tempered
distribution, the quantity ∆ j( f ) is a well defined function.

These operators depend on the choice of the function Ψ ; in most applications
we choose Ψ to be a smooth function with compactly supported Fourier transform.
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Observe that if Ψ̂ is supported in some annulus 0 < c1 < |ξ | < c2 < ∞, then the
Fourier transform of ∆ j is supported in the annulus c12 j < |ξ | < c22 j; in other
words, it is localized near the frequency |ξ | ≈ 2 j. Thus the purpose of ∆ j is to
isolate the part of frequency of a function concentrated near |ξ | ≈ 2 j.

The square function associated with the Littlewood–Paley operators ∆ j is defined
as

f →
(

∑
j∈Z

|∆ j( f )|2
) 1

2
.

It turns out that this quadratic expression captures crucial orthogonality information
about the function f . Precisely, we have the following theorem.

Theorem 5.1.2. (Littlewood–Paley theorem) Suppose that Ψ is an integrable C 1

function on Rn with mean value zero that satisfies

|Ψ(x)|+ |∇Ψ(x)| ≤ B(1+ |x|)−n−1 . (5.1.3)

Then there exists a constant Cn < ∞ such that for all 1 < p < ∞ and all f in Lp(Rn)
we have∥∥∥(∑

j∈Z
|∆ j( f )|2

) 1
2
∥∥∥

Lp(Rn)
≤CnBmax

(
p,(p−1)−1)∥∥ f

∥∥
Lp(Rn). (5.1.4)

There also exists a C′
n < ∞ such that for all f in L1(Rn) we have∥∥∥(∑

j∈Z
|∆ j( f )|2

) 1
2
∥∥∥

L1,∞(Rn)
≤C′

nB
∥∥ f
∥∥

L1(Rn). (5.1.5)

Conversely, let Ψ be a Schwartz function such that either Ψ̂(0) = 0 and

∑
j∈Z

|Ψ̂(2− j
ξ )|2 = 1, ξ ∈ Rn \{0}, (5.1.6)

or Ψ̂ is compactly supported away from the origin and

∑
j∈Z

Ψ̂(2− j
ξ ) = 1, ξ ∈ Rn \{0}. (5.1.7)

Then given a tempered distribution f such that the function
(

∑ j∈Z |∆ j( f )|2
) 1

2 is
in Lp(Rn) for some 1 < p < ∞, there exists a unique polynomial Q such that the
tempered distribution f −Q coincides with an Lp function, and we have

∥∥ f −Q
∥∥

Lp(Rn) ≤C Bmax
(

p,(p−1)−1)∥∥∥(∑
j∈Z

|∆ j( f )|2
) 1

2
∥∥∥

Lp(Rn)
(5.1.8)

for some constant C = Cn,Ψ .
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Proof. We first prove (5.1.4) when p = 2. Using Plancherel’s theorem, we see that
(5.1.4) is a consequence of the inequality

∑
j
|Ψ̂(2− j

ξ )|2 ≤CnB2 (5.1.9)

for some Cn < ∞. Because of (5.1.3), Fourier inversion holds for Ψ . Furthermore,
Ψ has mean value zero and we may write

Ψ̂(ξ ) =
∫

Rn
e−2πix·ξ

Ψ(x)dx =
∫

Rn
(e−2πix·ξ −1)Ψ(x)dx , (5.1.10)

from which we obtain the estimate

|Ψ̂(ξ )| ≤
√

4π|ξ |
∫

Rn
|x|

1
2 |Ψ(x)|dx ≤CnB|ξ |

1
2 . (5.1.11)

For ξ = (ξ1, . . . ,ξn) 6= 0, let j be such that |ξ j| ≥ |ξk| for all k ∈ {1, . . . ,n}. Integrate
by parts with respect to ∂ j in (5.1.10) to obtain

Ψ̂(ξ ) =−
∫

Rn
(−2πiξ j)−1e−2πix·ξ (∂ jΨ)(x)dx,

from which we deduce the estimate

|Ψ̂(ξ )| ≤
√

n |ξ |−1
∫

Rn
|∇Ψ(x)|dx ≤CnB|ξ |−1. (5.1.12)

We now break up the sum in (5.1.9) into the parts where 2− j|ξ | ≤ 1 and 2− j|ξ | ≥
1 and use (5.1.11) and (5.1.12), respectively, to obtain (5.1.9). (See also Exercise
5.1.2.) This proves (5.1.4) when p = 2.

We now turn our attention to the case p 6= 2 in (5.1.4). We view (5.1.4) and (5.1.5)
as vector-valued inequalities in the spirit of Section 4.5. Define an operator ~T acting
on functions on Rn as follows:

~T ( f )(x) = {∆ j( f )(x)} j .

The inequalities (5.1.4) and (5.1.5) we wish to prove say simply that ~T is a bounded
operator from Lp(Rn,C) to Lp(Rn, `2) and from L1(Rn,C) to L1,∞(Rn, `2). We just
proved that this statement is true when p = 2, and therefore the first hypothesis of
Theorem 4.6.1 is satisfied. We now observe that the operator ~T can be written in the
form

~T ( f )(x) =
{∫

Rn
Ψ2− j(x− y) f (y)dy

}
j
=
∫

Rn
~K(x− y)( f (y))dy,

where for each x ∈ Rn, ~K(x) is a bounded linear operator from C to `2 given by

~K(x)(a) = {Ψ2− j(x)a} j. (5.1.13)
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We clearly have that
∥∥~K(x)

∥∥
C→`2 =

(
∑ j |Ψ2− j(x)|2

) 1
2 , and to be able to apply The-

orem 4.6.1 we need to know that∫
|x|≥2|y|

∥∥~K(x− y)−~K(x)
∥∥

C→`2 dx ≤CnB, y 6= 0. (5.1.14)

Since Ψ is a C 1 function, for |x| ≥ 2|y| we have

|Ψ2− j(x− y)−Ψ2− j(x)|

≤ 2(n+1) j|∇Ψ(2 j(x−θy))| |y| for some θ ∈ [0,1],

≤ B2(n+1) j(1+2 j|x−θy|
)−(n+1)|y|

≤ B2(n+1) j(1+2 j−1|x|
)−(n+1)|y| since |x−θy| ≥ 1

2 |x|.

(5.1.15)

This estimate implies that

|Ψ2− j(x− y)−Ψ2− j(x)| ≤ B2(n+1) j|y| . (5.1.16)

We also have that

|Ψ2− j(x− y)−Ψ2− j(x)|
≤ 2n j|Ψ(2 j(x− y))|+2 jn|Ψ(2 jx)|

≤ B2n j(1+2 j|x|
)−(n+1) +B2 jn(1+2 j−1|x|

)−(n+1)

≤ 2B2n j(1+2 j−1|x|
)−(n+1)

.

(5.1.17)

Taking the geometric mean of (5.1.15) and (5.1.17), we obtain

|Ψ2− j(x− y)−Ψ2− j(x)| ≤ 2B|y|
1
2 2(n+ 1

2 ) j(1+2 j−1|x|
)−(n+1)

. (5.1.18)

We now use estimate (5.1.16) when 2 j < 2
|x| and (5.1.18) when 2 j ≥ 2

|x| . We obtain

∥∥~K(x− y)−~K(x)
∥∥

C→`2 =
(

∑
j∈Z

∣∣Ψ2− j(x− y)−Ψ2− j(x)
∣∣2)1

2

≤ ∑
j∈Z

∣∣Ψ2− j(x− y)−Ψ2− j(x)
∣∣

≤ 2B
(
|y| ∑

2 j< 2
|x|

2(n+1) j + |y|
1
2 ∑

2 j≥ 2
|x|

2(n+ 1
2 ) j(2( j−1)|x|)−(n+1)

)
≤CnB

(
|y||x|−n−1 + |y|

1
2 |x|−n− 1

2
)

whenever |x| ≥ 2|y|. Using this bound, we easily deduce (5.1.14) by integrating over
the region |x| ≥ 2|y|. Finally, using Theorem 4.6.1 we conclude the proofs of (5.1.4)
and (5.1.5), which establishes one direction of the theorem.
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We now turn to the converse direction. Let ∆ ∗
j be the adjoint operator of ∆ j

given by ∆̂ ∗
j f = f̂ Ψ̂2− j . Let f be in S ′(Rn). Then the series ∑ j∈Z ∆ ∗

j ∆ j( f ) con-
verges in S ′(Rn). To see this, it suffices to show that the sequence of partial sums
uN = ∑| j|<N ∆ ∗

j ∆ j( f ) converges in S ′. This means that if we test this sequence
against a Schwartz function g, then it is a Cauchy sequence and hence it converges as
N → ∞. But an easy argument using duality and the Cauchy–Schwarz and Hölder’s
inequalities shows that for M > N we have

|〈uN ,g〉−〈uM,g〉| ≤
∥∥∥(∑

j
|∆ j( f )|2

) 1
2
∥∥∥

Lp

∥∥∥( ∑
N≤| j|≤M

|∆ j(g)|2
) 1

2
∥∥∥

Lp′
,

and this can be made small by picking M > N ≥N0(g). Since the sequence 〈uN ,g〉 is
Cauchy, it converges to some Λ(g). Now it remains to show that the map g 7→Λ(g)
is a tempered distribution. Obviously Λ(g) is a linear functional. Also,

|Λ(g)| ≤
∥∥∥(∑

j
|∆ j( f )|2

) 1
2
∥∥∥

Lp

∥∥∥(∑
j
|∆ j(g)|2

) 1
2
∥∥∥

Lp′

≤ Cp′

∥∥∥(∑
j
|∆ j( f )|2

) 1
2
∥∥

Lp

∥∥g
∥∥∥

Lp′
,

and since ‖g‖Lp′ is controlled by a finite number of Schwartz seminorms of g, it
follows that Λ is in S ′. The distribution Λ is the limit of the series ∑ j ∆ ∗

j ∆ j.
Under hypothesis (5.1.6), the Fourier transform of the tempered distribution f −

∑ j∈Z ∆ ∗
j ∆ j( f ) is supported at the origin. This implies that there exists a polynomial

Q such that f −Q = ∑ j∈Z ∆ ∗
j ∆ j( f ). Now let g be a Schwartz function. We have∣∣〈 f −Q , g

〉∣∣ =
∣∣〈∑

j∈Z
∆
∗
j ∆ j( f ),g

〉∣∣
=
∣∣∑

j∈Z

〈
∆
∗
j ∆ j( f ),g

〉∣∣
=
∣∣∑

j∈Z

〈
∆ j( f ),∆ j(g)

〉∣∣
=
∣∣∣∣∫Rn

∑
j∈Z

∆ j( f ) ∆ j(g)dx
∣∣∣∣

≤
∫

Rn

(
∑
j∈Z

|∆ j( f )|2
) 1

2
(

∑
j∈Z

|∆ j(g)|2
) 1

2
dx

≤
∥∥∥(∑

j∈Z
|∆ j( f )|2

) 1
2
∥∥∥

Lp

∥∥∥(∑
j∈Z

|∆ j(g)|2
) 1

2
∥∥∥

Lp′

≤
∥∥∥(∑

j∈Z
|∆ j( f )|2

) 1
2
∥∥∥

Lp
CnBmax

(
p′,(p′−1)−1)∥∥g

∥∥
Lp′ ,

(5.1.19)
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having used the definition of the adjoint (Section 2.5.2), the Cauchy–Schwarz in-
equality, Hölder’s inequality, and (5.1.4). Taking the supremum over all g in Lp′

with norm at most one, we obtain that the tempered distribution f −Q is a bounded
linear functional on Lp′ . By the Riesz representation theorem, f −Q coincides with
an Lp function whose norm satisfies the estimate∥∥ f −Q

∥∥
Lp ≤CnBmax

(
p,(p−1)−1)∥∥∥(∑

j∈Z
|∆ j( f )|2

) 1
2
∥∥∥

Lp
.

We now show uniqueness. If Q1 is another polynomial, with f −Q1 ∈ Lp, then
Q−Q1 must be an Lp function; but the only polynomial that lies in Lp is the zero
polynomial. This completes the proof of the converse of the theorem under hypoth-
esis (5.1.6).

To obtain the same conclusion under the hypothesis (5.1.7) we argue in a similar
way but we leave the details as an exercise. (One may adapt the argument in the
proof of Corollary 5.1.7 to this setting.) �

Remark 5.1.3. We make some observations. If Ψ̂ is real-valued, then the operators
∆ j are self-adjoint. Indeed,∫

Rn
∆ j( f )gdx =

∫
Rn

f̂ Ψ̂2− j ĝdξ =
∫

Rn
f̂ Ψ̂2− j ĝdξ =

∫
Rn

f ∆ j(g)dx .

Moreover, if Ψ is a radial function, we see that the operators ∆ j are self-transpose,
that is, they satisfy ∫

Rn
∆ j( f )gdx =

∫
Rn

f ∆ j(g)dx.

Assume now that Ψ is both radial and has a real-valued Fourier transform. Suppose
also that Ψ satisfies (5.1.3) and that it has mean value zero. Then the inequality∥∥∥∑

j∈Z
∆ j( f j)

∥∥∥
Lp
≤CnBmax

(
p,(p−1)−1)∥∥∥(∑

j∈Z
| f j|2

)1
2
∥∥∥

Lp
(5.1.20)

is true for sequences of functions { f j} j. To see this we use duality. Let ~T ( f ) =
{∆ j( f )} j. Then ~T ∗({g j} j) = ∑ j ∆ j(g j). Inequality (5.1.4) says that the operator ~T
maps Lp(Rn,C) to Lp(Rn, `2), and its dual statement is that ~T ∗ maps Lp′(Rn, `2) to
Lp′(Rn,C). This is exactly the statement in (5.1.20) if p is replaced by p′. Since p
is any number in (1,∞), (5.1.20) is proved.

5.1.2 Vector-Valued Analogues

We now obtain a vector-valued extension of Theorem 5.1.2. We have the following.
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Proposition 5.1.4. Let Ψ be an integrable C 1 function on Rn with mean value zero
that satisfies (5.1.3) and let ∆ j be the Littlewood–Paley operator associated with Ψ .
Then there exists a constant Cn < ∞ such that for all 1 < p,r < ∞ and all sequences
of Lp functions f j we have∥∥∥(∑

j∈Z

(
∑
k∈Z

|∆k( f j)|2
)r

2
)1

r
∥∥∥

Lp(Rn)
≤CnBC̃p,r

∥∥∥(∑
j∈Z

| f j|r
)1

r
∥∥∥

Lp(Rn)
,

where C̃p,r = max(p,(p− 1)−1)max(r,(r− 1)−1). Moreover, for some C′
n > 0 and

all sequences of L1 functions f j we have∥∥∥(∑
j∈Z

(
∑
k∈Z

|∆k( f j)|2
)r

2
)1

r
∥∥∥

L1,∞(Rn)
≤C′

nBmax(r,(r−1)−1)
∥∥∥(∑

j∈Z
| f j|r

)1
r
∥∥∥

L1(Rn)
.

In particular,∥∥∥(∑
j∈Z

|∆ j( f j)|r
)1

r
∥∥∥

Lp(Rn)
≤CnBC̃p,r

∥∥∥(∑
j∈Z

| f j|r
)1

r
∥∥∥

Lp(Rn)
. (5.1.21)

Proof. As in the proof of Theorem 5.1.2, we introduce Banach spaces B1 = C and
B2 = `2 and for f ∈ Lp(Rn) define an operator

~T ( f ) = {∆k( f )}k∈Z .

In the proof of Theorem 5.1.2 we showed that ~T has a kernel ~K that satisfies con-
dition (5.1.14). Furthermore, ~T obviously maps Lr(Rn,C) to Lr(Rn, `r). Applying
Proposition 4.6.4, we obtain the first two statements of the proposition. Restricting
to k = j yields (5.1.21). �

5.1.3 Lp Estimates for Square Functions Associated with Dyadic
Sums

Let us pick a Schwartz function Ψ whose Fourier transform is compactly supported
in the annulus 2−1 ≤ |ξ | ≤ 22 such that (5.1.6) is satisfied. (Clearly (5.1.6) has
no chance of being satisfied if Ψ̂ is supported only in the annulus 1≤ |ξ | ≤ 2.) The
Littlewood–Paley operation f 7→∆ j( f ) represents the smoothly truncated frequency
localization of a function f near the dyadic annulus |ξ | ≈ 2 j. Theorem 5.1.2 says
that the square function formed by these localizations has Lp norm comparable to
that of the original function. In other words, this square function characterizes the
Lp norm of a function. This is the main feature of Littlewood–Paley theory.

One may ask whether Theorem 5.1.2 still holds if the Littlewood–Paley operators
∆ j are replaced by their nonsmooth versions
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f 7→
(
χ2 j≤|ξ |<2 j+1 f̂ (ξ )

)∨(x). (5.1.22)

This question has a surprising answer that already signals that there may be some
fundamental differences between one-dimensional and higher-dimensional Fourier
analysis. The square function formed by the operators in (5.1.22) can be used to
characterize Lp(R) in the same way ∆ j did, but not Lp(Rn) when n > 1 and p 6= 2.
The problem lies in the fact that the characteristic function of the unit disk is not
an Lp multiplier on Rn when n ≥ 2 unless p = 2; this fact is discussed in detail in
Section 10.1. The one-dimensional result we alluded to earlier is the following.

For j ∈ Z we introduce the one-dimensional operator

∆
[
j( f )(x) = ( f̂ χI j)

∨(x) , (5.1.23)

where
I j = [2 j,2 j+1)∪ (−2 j+1,−2 j] ,

and ∆ [
j is a version of the operator ∆ j in which the characteristic function of the set

2 j ≤ |ξ |< 2 j+1 replaces the function Ψ̂(2− jξ ).

Theorem 5.1.5. There exists a constant C1 such that for all 1 < p < ∞ and all f in
Lp(R) we have∥∥ f

∥∥
Lp

C1(p+ 1
p−1 )2

≤
∥∥∥(∑

j∈Z
|∆ [

j( f )|2
)1

2
∥∥∥

Lp
≤C1(p+ 1

p−1 )2∥∥ f
∥∥

Lp . (5.1.24)

Proof. Pick a Schwartz function ψ on the line whose Fourier transform is supported
in the set 2−1 ≤ |ξ | ≤ 22 and is equal to 1 on the set 1 ≤ |ξ | ≤ 2. Let ∆ j be the
Littlewood–Paley operator associated with ψ . Observe that ∆ j∆

[
j = ∆ [

j ∆ j = ∆ [
j ,

since ψ̂ is equal to one on the support of ∆ [
j( f )̂ . We now use Exercise 4.6.1(a)

to obtain∥∥∥(∑
j∈Z

|∆ [
j( f )|2

)1
2
∥∥∥

Lp
=
∥∥∥(∑

j∈Z
|∆ [

j ∆ j( f )|2
)1

2
∥∥∥

Lp

≤C max(p,(p−1)−1)
∥∥∥(∑

j∈Z
|∆ j( f )|2

)1
2
∥∥∥

Lp

≤CBmax(p,(p−1)−1)2∥∥ f
∥∥

Lp ,

where the last inequality follows from Theorem 5.1.2. The reverse inequality for
1 < p < ∞ follows just like the reverse inequality (5.1.8) of Theorem 5.1.2 by simply
replacing the ∆ j’s by the ∆ [

j ’s and setting the polynomial Q equal to zero. (There is
no need to use the Riesz representation theorem here, just the fact that the Lp norm
of f can be realized as the supremum of expressions

∣∣〈 f ,g
〉∣∣ where g has Lp′ norm

at most 1.) �
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There is a higher-dimensional version of Theorem 5.1.5 with dyadic rectan-
gles replacing the dyadic intervals. As has already been pointed out, the higher-
dimensional version with dyadic annuli replacing the dyadic intervals is false.

Let us introduce some notation. For j ∈ Z, we denote by I j the dyadic set
[2 j,2 j+1)

⋃
(−2 j+1,−2 j] as in the statement of Theorem 5.1.5. For j1, . . . , jn ∈ Z

define a dyadic rectangle

R j1,..., jn = I j1 ×·· ·× I jn

in Rn. Actually R j1,..., jn is not a rectangle but a union of 2n rectangles; with some
abuse of language we still call it a rectangle. For notational convenience we write

R j = R j1,..., jn , where j = ( j1, . . . , jn) ∈ Zn.

Observe that for different j, j′ ∈ Zn the rectangles R j and R j′ have disjoint interiors
and that the union of all the R j’s is equal to Rn \{0}. In other words, the family of
R j’s, where j ∈ Zn, forms a tiling of Rn, which we call the dyadic decomposition of
Rn. We now introduce operators

∆
[
j( f )(x) = ( f̂ χR j)

∨(x) , (5.1.25)

and we have the following n-dimensional extension of Theorem 5.1.5.

Theorem 5.1.6. For a Schwartz function ψ on the line with integral zero we define
the operator

∆ j( f )(x) =
(
ψ̂(2− j1ξ1) · · · ψ̂(2− jnξn) f̂ (ξ )

)∨(x) , (5.1.26)

where j = ( j1, . . . , jn) ∈ Zn. Then there is a dimensional constant Cn such that∥∥∥( ∑
j∈Zn

|∆ j( f )|2
)1

2
∥∥∥

Lp
≤Cn(p+ 1

p−1 )n∥∥ f
∥∥

Lp . (5.1.27)

Let ∆ [
j be the operators defined in (5.1.25). Then there exists a positive constant Cn

such that for all 1 < p < ∞ and all f ∈ Lp(Rn) we have∥∥ f
∥∥

Lp

Cn(p+ 1
p−1 )2n

≤
∥∥∥( ∑

j∈Zn
|∆ [

j( f )|2
)1

2
∥∥∥

Lp
≤Cn(p+ 1

p−1 )2n∥∥ f
∥∥

Lp . (5.1.28)

Proof. We first prove (5.1.27). Note that if j = ( j1, . . . , jn) ∈ Zn, then the operator
∆ j is equal to

∆ j( f ) = ∆
( j1)
j1

· · ·∆ ( jn)
jn ( f ) ,

where the ∆
( jr)
jr are one-dimensional operators given on the Fourier transform

by multiplication by ψ̂(2− jr ξr), with the remaining variables fixed. Inequality in
(5.1.27) is a consequence of the one-dimensional case. For instance, we discuss the
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case n = 2. Using Proposition 5.1.4, we obtain∥∥∥( ∑
j∈Z2

|∆ j( f )|2
)1

2
∥∥∥p

Lp(R2)

=
∫

R

[∫
R

(
∑

j1∈Z
∑

j2∈Z
|∆ (1)

j1
∆

(2)
j2

( f )(x1,x2)|2
)p

2
dx1

]
dx2

≤Cp max(p,(p−1)−1)p
∫

R

[∫
R

(
∑

j2∈Z
|∆ (2)

j2
( f )(x1,x2)|2

)p
2

dx1

]
dx2

= Cp max(p,(p−1)−1)p
∫

R

[∫
R

(
∑

j2∈Z
|∆ (2)

j2
( f )(x1,x2)|2

)p
2

dx2

]
dx1

≤C2p max(p,(p−1)−1)2p
∫

R

[∫
R
| f (x1,x2)|p dx2

]
dx1

= C2p max(p,(p−1)−1)2p∥∥ f
∥∥p

Lp(R2) ,

where we also used Theorem 5.1.2 in the calculation. Higher-dimensional versions
of this estimate may easily be obtained by induction.

We now turn to the upper inequality in (5.1.28). We pick a Schwartz function ψ

whose Fourier transform is supported in the union [−4,−1/2]
⋃

[1/2,4] and is equal
to 1 on [−2,−1]

⋃
[2,−4]. Then we clearly have

∆
[
j = ∆

[
j ∆ j ,

since ψ̂(2− j1ξ1) · · · ψ̂(2− jnξn) is equal to 1 on the rectangle R j. We now use Exer-
cise 4.6.1(b) and estimate (5.1.27) to obtain∥∥∥( ∑

j∈Zn
|∆ [

j( f )|2
)1

2
∥∥∥

Lp
=
∥∥∥( ∑

j∈Zn
|∆ [

j ∆ j( f )|2
)1

2
∥∥∥

Lp

≤C max(p,(p−1)−1)n
∥∥∥( ∑

j∈Zn
|∆ j( f )|2

)1
2
∥∥∥

Lp

≤CBmax(p,(p−1)−1)2n∥∥ f
∥∥

Lp .

The lower inequality in (5.1.28) for 1 < p < ∞ is proved like inequality (5.1.8) in
Theorem 5.1.2. The fundamental ingredient in the proof is that f = ∑ j∈Zn ∆ [

j ∆
[
j( f )

for all Schwartz functions f , where the sum is interpreted as the L2-limit of the se-
quence of partial sums. Thus the series converges in S ′, and pairing with a Schwartz
function g, we obtain the lower inequality in (5.1.28) for Schwartz functions, by ap-
plying the steps in (5.1.19) (with Q = 0). To prove the lower inequality in (5.1.28)
for a general function f ∈ Lp(Rn) we approximate an Lp function by a sequence
of Schwartz functions in the Lp norm. Then both sides of the lower inequality in
(5.1.28) for the approximating sequence converge to the corresponding sides of the
lower inequality in (5.1.28) for f ; the convergence of the sequence of Lp norms of
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the square functions requires the upper inequality in (5.1.28) that was previously
established. This concludes the proof of the theorem. �

Next we observe that if the Schwartz function ψ is suitably chosen, then the
reverse inequality in estimate (5.1.27) also holds. More precisely, suppose ψ̂(ξ ) is
an even smooth real-valued function supported in the set 9

10 ≤ |ξ | ≤ 21
10 in R that

satisfies
∑
j∈Z

ψ̂(2− j
ξ ) = 1, ξ ∈ R\{0}; (5.1.29)

then we have the following.

Corollary 5.1.7. Suppose that ψ satisfies (5.1.29) and let ∆ j be as in (5.1.26). Let

f be an Lp function on Rn such that the function
(

∑ j∈Zn |∆ j( f )|2
)1

2 is in Lp(Rn).
Then there is a constant Cn that depends only on the dimension and ψ such that the
lower estimate ∥∥ f

∥∥
Lp

Cn(p+ 1
p−1 )n

≤
∥∥∥( ∑

j∈Zn
|∆ j( f )|2

)1
2
∥∥∥

Lp
(5.1.30)

holds.

Proof. If we had ∑ j∈Z |ψ̂(2− jξ )|2 = 1 instead of (5.1.29), then we could apply the
method used in the lower estimate of Theorem 5.1.2 to obtain the required conclu-
sion. In this case we provide another argument that is very similar in spirit.

We first prove (5.1.30) for Schwartz functions f . Then the series ∑ j∈Zn ∆ j( f )
converges in L2 (and hence in S ′) to f . Now let g be another Schwartz function.
We express the inner product

〈
f ,g
〉

as the action of the distribution ∑ j∈Zn ∆ j( f ) on
the test function g:∣∣〈 f ,g

〉∣∣ =
∣∣∣〈 ∑

j∈Zn
∆ j( f ),g

〉∣∣∣
=
∣∣∣ ∑

j∈Zn

〈
∆ j( f ),g

〉∣∣∣
=
∣∣∣ ∑

j∈Zn
∑

kr∈{ jr−1, jr , jr+1}

〈
∆ j( f ),∆k(g)

〉∣∣∣
≤
∫

Rn
∑

j∈Zn
∑

kr∈{ jr−1, jr , jr+1}

∣∣∆ j( f )
∣∣ ∣∣∆k(g)

∣∣dx

≤ 3n
∫

Rn

(
∑

j∈Zn

∣∣∆ j( f )
∣∣2) 1

2
(

∑
k∈Zn

∣∣∆k(g)
∣∣2) 1

2
dx

≤ 3n
∥∥∥( ∑

j∈Zn

∣∣∆ j( f )
∣∣2) 1

2
∥∥∥

Lp

∥∥∥( ∑
k∈Zn

∣∣∆k(g)
∣∣2) 1

2
∥∥∥

Lp′

≤C−1
n max

(
p′,(p′−1)−1)n∥∥g

∥∥
Lp′

∥∥∥( ∑
j∈Zn

∣∣∆ j( f )
∣∣2) 1

2
∥∥∥

Lp
,
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where we used the fact that ∆ j( f ) and ∆k(g) are orthogonal operators unless every
coordinate of k is within 1 unit of the corresponding coordinate of j; this is an easy
consequence of the support properties of ψ̂ . We now take the supremum over all g
in Lp′ with norm at most 1, to obtain (5.1.30) for Schwartz functions f .

To extend this estimate to general Lp functions f , we use the density argument
described in the last paragraph in the proof of Theorem 5.1.6. �

5.1.4 Lack of Orthogonality on Lp

We discuss two examples indicating why (5.1.1) cannot hold if the exponent 2 is re-
placed by some other exponent q 6= 2. More precisely, we show that if the functions
f j have Fourier transforms supported in disjoint sets, then the inequality∥∥∥∑

j
f j

∥∥∥p

Lp
≤Cp ∑

j

∥∥ f j
∥∥p

Lp (5.1.31)

cannot hold if p > 2, and similarly, the inequality

∑
j

∥∥ f j
∥∥p

Lp ≤Cp

∥∥∥∑
j

f j

∥∥∥p

Lp
(5.1.32)

cannot hold if p < 2. In both (5.1.31) and (5.1.32) the constants Cp are supposed to
be independent of the functions f j.

Example 5.1.8. Pick a Schwartz function ζ whose Fourier transform is positive
and supported in the interval |ξ | ≤ 1/4. Let N be a large integer and let f j(x) =
e2πi jxζ (x). Then f̂ j(ξ ) = ζ̂ (ξ − j) and the f̂ j’s have disjoint Fourier transforms. We
obviously have

N

∑
j=0

∥∥ f j
∥∥p

Lp = (N +1)
∥∥ζ
∥∥p

Lp .

On the other hand, we have the estimate∥∥∥ N

∑
j=0

f j

∥∥∥p

Lp
=
∫

R

∣∣ e2πi(N+1)x−1
e2πix−1

∣∣p|ζ (x)|p dx

≥ c
∫
|x|< 1

10 (N+1)−1

(N+1)p|x|p
|x|p |ζ (x)|p dx

= Cζ (N +1)p−1 ,

since ζ does not vanish in a neighborhood of zero. We conclude that (5.1.31) cannot
hold for this choice of f j’s for p > 2.

Example 5.1.9. We now indicate why (5.1.32) cannot hold for p < 2. We pick a
smooth function Ψ on the line whose Fourier transform Ψ̂ is supported in

[ 7
8 , 17

8

]
,
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is nonnegative, is equal to 1 on
[ 9

8 , 15
8

]
, and satisfies

∑
j∈Z

Ψ̂(2− j
ξ )2 = 1, ξ > 0.

Extend Ψ̂ to be an even function on the whole line and let ∆ j be the Littlewood–
Paley operator associated with Ψ . Also pick a nonzero Schwartz function ϕ on the
real line whose Fourier transform is nonnegative and supported in the set

[ 11
8 , 13

8

]
.

Fix N a large positive integer and let

f j(x) = e2πi 12
8 2 jx

ϕ(x), (5.1.33)

for j = 1,2, . . . ,N. Then the function f̂ j(ξ ) = ϕ̂(ξ − 12
8 2 j) is supported in the set[ 11

8 + 12
8 2 j, 13

8 + 12
8 2 j
]
, which is contained in

[ 9
8 2 j, 15

8 2 j
]

for j ≥ 3. In other words,
Ψ̂(2− jξ ) is equal to 1 on the support of f̂ j. This implies that

∆ j( f j) = f j for j ≥ 3.

This observation combined with (5.1.20) gives for N ≥ 3,∥∥∥ N

∑
j=3

f j

∥∥∥
Lp

=
∥∥∥ N

∑
j=3

∆ j( f j)
∥∥∥

Lp
≤Cp

∥∥∥( N

∑
j=3

| f j|2
)1

2
∥∥∥

Lp
= Cp

∥∥ϕ
∥∥

Lp(N−2)
1
2 ,

where 1 < p < ∞. On the other hand, (5.1.33) trivially yields that( N

∑
j=3

∥∥ f j
∥∥p

Lp

) 1
p =

∥∥ϕ
∥∥

Lp(N−2)
1
p .

Letting N → ∞ we see that (5.1.32) cannot hold for p < 2 even when the f j’s have
Fourier transforms supported in disjoint sets.

Example 5.1.10. A similar idea illustrates the necessity of the `2 norm in (5.1.4).
To see this, let Ψ and ∆ j be as in Example 5.1.9. Let us fix 1 < p < ∞ and q < 2.
We show that the inequality∥∥∥(∑

j∈Z
|∆ j( f )|q

)1
q
∥∥∥

Lp
≤Cp,q

∥∥ f
∥∥

Lp (5.1.34)

cannot hold. Take f = ∑
N
j=3 f j, where the f j are as in (5.1.33) and N ≥ 3. Then the

left-hand side of (5.1.34) is bounded from below by
∥∥ϕ
∥∥

Lp(N − 2)1/q, while the
right-hand side is bounded above by

∥∥ϕ
∥∥

Lp(N− 2)1/2. Letting N → ∞, we deduce
that (5.1.34) is impossible when q < 2.

Example 5.1.11. For 1 < p < ∞ and 2 < q < ∞, the inequality
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∥∥g
∥∥

Lp ≤Cp,q

∥∥∥(∑
j∈Z

|∆ j(g)|q
)1

q
∥∥∥

Lp
(5.1.35)

cannot hold even under assumption (5.1.6) on Ψ . Let ∆ j be as in Example 5.1.9.
Let us suppose that (5.1.35) did hold for some q > 2 for these ∆ j’s. Then the self-
adjointness of the ∆ j’s and duality would give∥∥∥(∑

k∈Z
|∆k(g)|q′

) 1
q′
∥∥∥

Lp′

= sup∥∥‖{hk}k‖`q
∥∥

Lp≤1

∣∣∣∣∫Rn
∑
k∈Z

∆k(g)hk dx
∣∣∣∣

≤
∥∥g
∥∥

Lp′ sup∥∥‖{hk}k‖`q
∥∥

Lp≤1

∥∥∥∑
k∈Z

∆k(hk)
∥∥∥

Lp

≤C
∥∥g
∥∥

Lp′ sup∥∥‖{hk}k‖`q
∥∥

Lp≤1

∥∥∥(∑
j∈Z

∣∣∣∆ j

(
∑
k∈Z

∆k(hk)
)∣∣∣q)1

q
∥∥∥

Lp
by (5.1.35)

≤C′∥∥g
∥∥

Lp′ sup∥∥‖{hk}k‖`q
∥∥

Lp≤1

{ 1

∑
l=−1

∥∥∥(∑
j∈Z

|∆ j∆ j+l(h j)|q
)1

q
∥∥∥

Lp

}

≤C′′∥∥g
∥∥

Lp′ sup∥∥‖{hk}k‖`q
∥∥

Lp≤1

∥∥∥(∑
j∈Z

|h j|q
)1

q
∥∥∥

Lp
= C′′∥∥g

∥∥
Lp′ ,

where the next-to-last inequality follows from (5.1.21) applied twice, while the one
before that follows from support considerations. But since q′ < 2, this exactly proves
(5.1.34), previously shown to be false, a contradiction.

We conclude that if both assertions (5.1.4) and (5.1.8) of Theorem 5.1.2 were to
hold, then the `2 norm inside the Lp norm could not be replaced by an `q norm for
some q 6= 2. Exercise 5.1.6 indicates the crucial use of the fact that `2 is a Hilbert
space in the converse inequality (5.1.8) of Theorem 5.1.2.

Exercises

5.1.1. Construct a Schwartz function Ψ that satisfies (5.1.6) and whose Fourier
transform is supported in the annulus 8

9 ≤ |x| ≤ 9
4 .[

Hint: Set Ψ̂(ξ ) = η(ξ )
(

∑k∈Z η(2−kξ )
)−1, where η is a suitable smooth bump.

]
5.1.2. Suppose that a function Ψ satisfies |Ψ̂(ξ )| ≤ B min(|ξ |δ , |ξ |−ε) for some
ε,δ > 0. Show that for some dimensional constant Cn < ∞ we have
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∑
j∈Z

|Ψ̂(2− j
ξ )| ≤Cn B .

5.1.3. Let Ψ be an integrable function on Rn with mean value zero that satisfies

|Ψ(x)| ≤ B|x|−n−ε ,
∫

Rn
|Ψ(x− y)−Ψ(x)|dx ≤ B|y|ε ,

for some B,ε > 0 and all y 6= 0.
(a) Prove that

∣∣Ψ̂(ξ )
∣∣ ≤ Bmin

(
|ξ | ε

2 , |ξ |−ε
)

and conclude that (5.1.4) holds for
p = 2.

(b) Prove that if ~K is defined by (5.1.13), then (5.1.14) holds and therefore deduce
the validity of (5.1.4) and (5.1.5).[
Hint: Part (a): Write

Ψ̂(ξ ) =
∫

Rn
e−2πix·ξ

Ψ(x)dx =−
∫

Rn
e−2πix·ξ

Ψ(x− y)dx ,

where y = 1
2

ξ

|ξ |2 when |ξ | ≥ 1. For |ξ | ≤ 1 use the mean value property of Ψ . Part
(b): Split the sum

∑
j∈Z

∫
|x|≥2|y|

∣∣Ψ2− j(x− y)−Ψ2− j(x)
∣∣dx

into the parts ∑2 j≤|y|−1 and ∑2 j>|y|−1 .
]

5.1.4. Under the hypotheses of Theorem 5.1.2, prove the following continuous ver-
sions of its conclusions: Show that there exist constants Cn,C′

n such that for all
1 < p < ∞ and for all f ∈ Lp(Rn) we have∥∥∥(∫ ∞

0
| f ∗Ψt |2

dt
t

)1
2
∥∥∥

Lp(Rn)
≤CnBmax(p,(p−1)−1)

∥∥ f
∥∥

Lp(Rn)

and also for all f ∈ L1(Rn) we have∥∥∥(∫ ∞

0
| f ∗Ψt |2

dt
t

)1
2
∥∥∥

L1,∞
≤C′

nB
∥∥ f
∥∥

L1 .

Under the additional hypothesis that
∫

∞

0 |ϕ̂(tξ )|2 dt
t > 0, prove the validity of the

converse inequality

∥∥ f
∥∥

Lp(Rn) ≤CnBmax(p,(p−1)−1)
∥∥∥(∫ ∞

0
| f ∗Ψt |2

dt
t

)1
2
∥∥∥

Lp(Rn)

for all f ∈ Lp(Rn).

5.1.5. Prove the following generalization of Theorem 5.1.2. Suppose that {K j} j is
a sequence of tempered distributions on Rn that coincide with locally integrable
functions away from the origin that satisfy



5.1 Littlewood–Paley Theory 357

sup
y∈Rn\{0}

∫
|x|≥2|y|

(
∑

j
|K j(x− y)−K j(x)|2

)1
2

dx ≤ A < ∞ .

If the Fourier transforms of K j are functions satisfying

∑
j∈Z

|K̂ j(ξ )|2 ≤ B2 ,

then the operator

f →
(

∑
j∈Z

|K j ∗ f |2
)1

2

maps Lp(Rn) to itself and is weak type (1,1).

5.1.6. Suppose that H is a Hilbert space with inner product
〈
· , ·
〉
H

and that an
operator T : L2(Rn)→ L2(Rn,H ) is a multiple of an isometry, that is,∥∥T ( f )

∥∥
L2(Rn,H ) = A

∥∥ f
∥∥

L2(Rn)

for all f . Then the inequality
∥∥T ( f )

∥∥
Lp(Rn,H ) ≤ Cp

∥∥ f
∥∥

Lp(Rn) for all f ∈ Lp(Rn)
and some p ∈ (1,∞) implies∥∥ f

∥∥
Lp′ (Rn) ≤Cp′A

−2∥∥T ( f )
∥∥

Lp′ (Rn,H )

for all f in Lp′(Rn).[
Hint: Use the inner product structure and polarization to obtain

A2
∣∣∣∣∫Rn

f (x)g(x)dx
∣∣∣∣= ∣∣∣∣∫Rn

〈
T ( f )(x),T (g)(x)

〉
H

dx
∣∣∣∣

and then argue as in the proof of inequality (5.1.8).
]

5.1.7. Suppose that {m j} j∈Z is a sequence of bounded functions supported in the
intervals [2 j,2 j+1]. Let Tj( f ) = ( f̂ m j)∨ be the corresponding operators. Assume
that for all sequences of functions { f j} j the vector-valued inequality∥∥∥(∑

j
|Tj( f j)|2

)1
2
∥∥∥

Lp
≤ Ap

∥∥∥(∑
j
| f j|2

)1
2
∥∥∥

Lp

is valid for some 1 < p < ∞. Prove there is a Cp > 0 such that for all finite subsets S
of Z we have ∥∥∥∑

j∈S
m j

∥∥∥
Mp

≤Cp Ap.

[
Hint: Use that

〈
∑ j∈S Tj( f ),g

〉
= ∑ j∈S

〈
∆ [

j Tj( f ),∆ [
j(g)

〉
.
]
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5.1.8. Let m be a bounded function on Rn that is supported in the annulus
1 ≤ |ξ | ≤ 2 and define Tj( f ) =

(
f̂ (ξ )m(2− jξ )

)∨. Suppose that the square func-

tion f 7→
(

∑ j∈Z |Tj( f )|2
)1/2 is bounded on Lp(Rn) for some 1 < p < ∞. Show that

for every finite subset S of the integers we have∥∥∥∑
j∈S

Tj( f )
∥∥∥

Mp
≤Cp,n

∥∥ f
∥∥

Lp

for some constant Cp,n independent of S.

5.1.9. Fix a nonzero Schwartz function h on the line whose Fourier transform is
supported in the interval

[
− 1

8 , 1
8

]
. For {a j} a sequence of numbers, set

f (x) =
∞

∑
j=1

a je2πi2 jxh(x) .

Prove that for all 1 < p < ∞ there exists a constant Cp such that∥∥ f
∥∥

Lp(R) ≤Cp
(
∑

j
|a j|2

) 1
2
∥∥h
∥∥

Lp .

[
Hint: Write f = ∑

∞
j=1 ∆ j(a je2πi2 j(·)h), where ∆ j is given by convolution with ϕ2− j

for some ϕ whose Fourier transform is supported in the interval
[ 6

8 , 10
8

]
and is equal

to 1 on
[ 7

8 , 9
8

]
. Then use (5.1.20).

]
5.1.10. Let Ψ be a Schwartz function whose Fourier transform is supported in the
annulus 1

2 ≤ |ξ | ≤ 2 and that satisfies (5.1.7). Define a Schwartz function Φ by
setting

Φ̂(ξ ) =

{
∑ j≤0Ψ̂(2− jξ ) when ξ 6= 0,
1 when ξ = 0.

Let S0 be the operator given by convolution with Φ .
(a) Prove that for all f ∈S ′(Rn) we have

S0( f )+
N

∑
j=1

∆ j( f )→ f

in S ′(Rn).
(a) Prove that for all f ∈S ′(Rn)/P we have

N

∑
j=−N

∆ j( f )→ f

in S ′(Rn)/P .[
Hint: Use Exercise 2.3.12.

]
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5.1.11. Let ∆ j and S0 be as in Exercise 5.1.10. Then for 1 < p < ∞ we have

∥∥ f
∥∥

Lp ≈
∥∥S0( f )

∥∥
Lp +

∥∥∥( ∞

∑
j=1

|∆ j( f )|2
) 1

2
∥∥∥

Lp
,

with the following interpretations: for Lp functions f , the right-hand side is con-
trolled by a multiple of the left-hand side; a tempered distribution f with finite
right-hand side can be identified with a function whose Lp norm is controlled by a
multiple of this quantity.[
Hint: Use Theorem 5.1.2 (do not re-prove it), together with the identity S0 +

∑
∞
j=1 ∆ j = I, which holds in S ′(Rn) by Exercise 5.1.10.

]

5.2 Two Multiplier Theorems

We now return to the spaces Mp introduced in Section 2.5. We seek sufficient con-
ditions on L∞ functions defined on Rn to be elements of Mp. In this section we are
concerned with two fundamental theorems that provide such sufficient conditions.
These are the Marcinkiewicz and the Hörmander–Mihlin multiplier theorems. Both
multiplier theorems are consequences of the Littlewood–Paley theory discussed in
the previous section.

Using the dyadic decomposition of Rn, we can write any L∞ function m as the
sum

m = ∑
j∈Zn

mχR j ,

where j = ( j1, . . . , jn), R j = I j1 × ·· ·× I jn , and Ik = [2k,2k+1)
⋃

(−2k+1,−2k]. For
j ∈ Zn we set m j = mχR j . A consequence of the ideas developed so far is the fol-
lowing characterization of Mp(Rn) in terms of a vector-valued inequality.

Proposition 5.2.1. Let m∈ L∞(Rn) and let m j = mχR j . Then m lies in Mp(Rn), that
is, for some cp we have∥∥( f̂ m)∨

∥∥
Lp ≤ cp

∥∥ f
∥∥

Lp , f ∈ Lp(Rn),

if and only if for some Cp > 0 we have∥∥∥( ∑
j∈Zn

|( f̂ jm j)∨|2
)1

2
∥∥∥

Lp
≤Cp

∥∥∥( ∑
j∈Zn

| f j|2
)1

2
∥∥∥

Lp
(5.2.1)

for all sequences of functions f j in Lp(Rn).

Proof. Suppose that m ∈Mp(Rn). Exercise 4.6.1 gives the first inequality below∥∥∥( ∑
j∈Zn

|(χR j m f̂ j)∨|2
)1

2
∥∥∥

Lp
≤Cp

∥∥∥( ∑
j∈Zn

|(m f̂ j)∨|2
)1

2
∥∥∥

Lp
≤Cp

∥∥∥( ∑
j∈Zn

| f j|2
)1

2
∥∥∥

Lp
,
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while the second inequality follows from Theorem 4.5.1. (Observe that when p = q
in Theorem 4.5.1, then Cp,q = 1.) Conversely, suppose that (5.2.1) holds for all se-
quences of functions f j. Fix a function f and apply (5.2.1) to the sequence ( f̂ χR j)

∨,
where R j is the dyadic rectangle indexed by j = ( j1, . . . , jn) ∈ Zn. We obtain∥∥∥( ∑

j∈Zn
|( f̂ mχR j)

∨|2
)1

2
∥∥∥

Lp
≤Cp

∥∥∥( ∑
j∈Zn

|( f̂ χR j)
∨|2
)1

2
∥∥∥

Lp
.

Using Theorem 5.1.6, we obtain that the previous inequality is equivalent to the
inequality ∥∥( f̂ m)∨

∥∥
Lp ≤ cp

∥∥ f
∥∥

Lp ,

which implies that m ∈Mp(Rn). �

5.2.1 The Marcinkiewicz Multiplier Theorem on R

Proposition 5.2.1 suggests that the behavior of m on each dyadic rectangle R j should
play a crucial role in determining whether m is an Lp multiplier. The Marcinkiewicz
multiplier theorem provides such sufficient conditions on m restricted to any dyadic
rectangle R j. Before stating this theorem, we illustrate its main idea via the follow-
ing example. Suppose that m is a bounded function that vanishes near −∞, that is
differentiable at every point, and whose derivative is integrable. Then we may write

m(ξ ) =
∫

ξ

−∞

m′(t)dt =
∫ +∞

−∞

χ[t,∞)(ξ )m′(t)dt ,

from which it follows that for a Schwartz function f we have

( f̂ m)∨ =
∫

R
( f̂ χ[t,∞))

∨m′(t)dt.

Since the operators f 7→ ( f̂ χ[t,∞))∨ map Lp(R) to itself independently of t, it follows
that ∥∥( f̂ m)∨

∥∥
Lp ≤Cp

∥∥m′∥∥
L1

∥∥ f
∥∥

Lp ,

thus yielding that m is in Mp(R). The next multiplier theorem is an improvement
of this result and is based on the Littlewood–Paley theorem. We begin with the one-
dimensional case, which already captures the main ideas.

Theorem 5.2.2. (Marcinkiewicz multiplier theorem) Let m : R→ R be a bounded
function that is C 1 in every dyadic set (2 j,2 j+1)

⋃
(−2 j+1,−2 j) for j ∈ Z. Assume

that the derivative m′ of m satisfies

sup
j

[∫ −2 j

−2 j+1
|m′(ξ )|dξ +

∫ 2 j+1

2 j
|m′(ξ )|dξ

]
≤ A < ∞ . (5.2.2)
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Then for all 1 < p < ∞ we have that m ∈Mp(R) and for some C > 0 we have∥∥m
∥∥

Mp(R) ≤C max
(

p,(p−1)−1)6(∥∥m
∥∥

L∞ +A
)
. (5.2.3)

Proof. Since the function m has an integrable derivative on (2 j,2 j+1), it has bounded
variation in this interval and hence it is a difference of two increasing functions.
Therefore, m has left and right limits at the points 2 j and 2 j+1, and by redefining m
at these points we may assume that m is right continuous at the points 2 j and left
continuous at the points −2 j.

Set I j = [2 j,2 j+1)
⋃

(−2 j+1,−2 j] and I+
j = [2 j,2 j+1) whenever j ∈ Z. Given

an interval I in R, we introduce an operator ∆I defined by ∆I( f ) = ( f̂ χI)∨. With
this notation ∆I+j

( f ) is “half” of the operator ∆ [
j introduced in the previous section.

Given m as in the statement of the theorem, we write m(ξ ) = m+(ξ ) + m−(ξ ),
where m+(ξ ) = m(ξ )χξ≥0 and m−(ξ ) = m(ξ )χξ<0. We show that both m+ and m−
are Lp multipliers. Since m′ is integrable over all intervals of the form [2 j,ξ ] when
2 j ≤ ξ < 2 j+1, the fundamental theorem of calculus gives

m(ξ ) = m(2 j)+
∫

ξ

2 j
m′(t)dt, for 2 j ≤ ξ < 2 j+1,

from which it follows that for a Schwartz function f on the real line we have

m(ξ ) f̂ (ξ )χI+j
(ξ ) = m(2 j) f̂ (ξ )χI+j

(ξ )+
∫ 2 j+1

2 j
f̂ (ξ )χ[t,∞)(ξ )χI+j

(ξ )m′(t)dt .

We therefore obtain the identity

( f̂ χI j m+)∨ = ( f̂ mχI+j
)∨ = m(2 j)∆I+j

( f )+
∫ 2 j+1

2 j
∆[t,∞)∆I+j

( f )m′(t)dt ,

which implies that

|( f̂ χI j m+)∨| ≤
∥∥m
∥∥

L∞ |∆I+j
( f )|+A

1
2

(∫ 2 j+1

2 j

∣∣∆[t,∞)∆I+j
( f )
∣∣2 |m′(t)|dt

)1
2
,

using the hypothesis (5.2.2). Taking `2(Z) norms we obtain(
∑
j∈Z

|( f̂ χI j m+)∨|2
)1

2 ≤
∥∥m
∥∥

L∞

(
∑
j∈Z

|∆I+j
( f )|2

)1
2

+A
1
2

(∫
∞

0

∣∣∆[t,∞)∆
[
[log2 t]( f )

∣∣2 |m′(t)|dt
)1

2
.

Exercise 4.6.2 gives
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A
1
2

∥∥∥(∫ ∞

0

∣∣∆[t,∞)∆
[
[log2 t]( f )

∣∣2|m′(t)|dt
)1

2
∥∥∥

Lp

≤C max(p,(p−1)−1)A
1
2

∥∥∥(∫ ∞

0

∣∣∆ [
[log2 t]( f )

∣∣2|m′(t)|dt
)1

2
∥∥∥

Lp
,

while the hypothesis on m′ implies the inequality∥∥∥(∑
j∈Z

∣∣∆I+j
( f )
∣∣2 ∫

I+j
|m′(t)|dt

)1
2
∥∥∥

Lp
≤ A

1
2

∥∥∥(∑
j
|∆I+j

( f )|2
)1

2
∥∥∥

Lp
.

Using Theorem 5.1.5 we obtain that∥∥∥(∑
j
|∆I+j

( f )|2
)1

2
∥∥∥

Lp
≤C′max(p,(p−1)−1)2∥∥( f̂ χ(0,∞)

)∨∥∥
Lp ,

and the latter is at most a constant multiple of max(p,(p− 1)−1)3
∥∥ f
∥∥

Lp . Putting
things together we deduce that∥∥∥(∑

j
|( f̂ χI j m+)∨|2

)1
2
∥∥∥

Lp
≤C′′max(p,(p−1)−1)4(A+

∥∥m
∥∥

L∞

)∥∥ f
∥∥

Lp , (5.2.4)

from which we obtain the estimate∥∥( f̂ m+)∨
∥∥

Lp ≤C max(p,(p−1)−1)6(A+
∥∥m
∥∥

L∞

)∥∥ f
∥∥

Lp ,

using the lower estimate of Theorem 5.1.5. This proves (5.2.3) for m+. A similar
argument also works for m−, and this concludes the proof by summing the corre-
sponding estimates for m+ and m−. �

We remark that the same proof applies under the more general assumption that
m is a function of bounded variation on every interval [2 j,2 j+1] and [−2 j+1,−2 j].
In this case the measure |m′(t)|dt should be replaced by the total variation |dm(t)|
of the Lebesgue–Stieltjes measure dm(t).

Example 5.2.3. Any bounded function that is constant on dyadic intervals is an Lp

multiplier. Also, the function

m(ξ ) = |ξ |2−[log2 |ξ |]

is an Lp multiplier on R for 1 < p < ∞.
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5.2.2 The Marcinkiewicz Multiplier Theorem on Rn

We now extend this theorem on Rn. As usual we denote the coordinates of a point
ξ ∈ Rn by (ξ1, . . . ,ξn). We recall the notation I j = (−2 j+1,−2 j]

⋃
[2 j,2 j+1) and

R j = I j1 ×·· ·× I jn whenever j = ( j1, . . . , jn) ∈ Zn.

Theorem 5.2.4. Let m be a bounded function on Rn that is C n in all regions R j
(i.e., ∂ α m are continuous up to the boundary of R j for all |α| ≤ n). Assume that
there is a constant A such that for all k ∈ {1, . . . ,n}, all j1, . . . , jk ∈ {1,2, . . . ,n}, all
l j1 , . . . , l jk ∈ Z, and all ξs ∈ Ils for s ∈ {1, . . . ,n}\{ j1, . . . , jk} we have∫

Il j1

· · ·
∫

Il jk

∣∣(∂ j1 · · ·∂ jk m)(ξ1, . . . ,ξn)
∣∣dξ jk · · ·dξ j1 ≤ A < ∞ . (5.2.5)

Then m is in Mp(Rn) whenever 1 < p < ∞ and there is a constant Cn < ∞ such that∥∥m
∥∥

Mp(Rn) ≤Cn
(
A+

∥∥m
∥∥

L∞

)
max

(
p,(p−1)−1)6n

. (5.2.6)

Proof. We prove this theorem only in dimension n = 2, since the general case
presents no substantial differences but only some notational inconvenience. We de-
compose the given function m as

m(ξ ) = m++(ξ )+m−+(ξ )+m+−(ξ )+m−−(ξ ) ,

where each of the last four terms is supported in one of the four quadrants. For
instance, the function m+−(ξ1,ξ2) is supported in the quadrant ξ1 ≥ 0 and ξ2 < 0.
As in the one-dimensional case, we work with each of these pieces separately. By
symmetry we choose to work with m++ in the following argument.

Using the fundamental theorem of calculus, we obtain the following simple iden-
tity, valid for 2 j1 ≤ ξ1 < 2 j1+1 and 2 j2 ≤ ξ2 < 2 j2+1:

m(ξ1,ξ2) = m(2 j1 ,2 j2)+
∫

ξ1

2 j1
(∂1m)(t1,2 j2)dt1

+
∫

ξ2

2 j2
(∂2m)(2 j1 , t2)dt2

+
∫

ξ1

2 j1

∫
ξ2

2 j2
(∂1∂2m)(t1, t2)dt2 dt1 .

(5.2.7)

We introduce operators ∆
(r)
I , r ∈ {1,2}, acting in the rth variable (with the other

variable remaining fixed) given by multiplication on the Fourier transform side by
the characteristic function of the interval I. Likewise, we introduce operators ∆

[(r)
j ,

r ∈ {1,2} (also acting in the rth variable), given by multiplication on the Fourier
transform side by the characteristic function of the set (−2 j+1,−2 j]

⋃
[2 j,2 j+1).

For notational convenience, for a given Schwartz function f we write
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f++ =
(

f̂ χ(0,∞)2
)∨

,

and likewise we define f+−, f−+, and f−−.
Multiplying both sides of (5.2.7) by the function f̂ χR j χ(0,∞)2 and taking inverse

Fourier transforms yields

( f̂ χR j m++)∨ = m(2 j1 ,2 j2)∆ [(1)
j1

∆
[(2)
j2

( f++)

+
∫ 2 j1+1

2 j1
∆

[(2)
j2

∆
(1)
[t1,∞)∆

[(1)
j1

( f++)(∂1m)(t1,2 j2)dt1

+
∫ 2 j2+1

2 j2
∆

[(1)
j1

∆
(2)
[t2,∞)∆

[(2)
j2

( f++)(∂2m)(2 j1 , t2)dt2

+
∫ 2 j1+1

2 j1

∫ 2 j2+1

2 j2
∆

(1)
[t1,∞)∆

[(1)
j1

∆
(2)
[t2,∞)∆

[(2)
j2

( f++)(∂1∂2m)(t1, t2)dt2 dt1 .

(5.2.8)

We apply the Cauchy–Schwarz inequality in the last three terms of (5.2.8) with re-
spect to the measures |(∂1m)(t1,2 j2)|dt1, |(∂2m)(2 j1 , t2)|dt2, |(∂1∂2m)(t1, t2)|dt2dt1
and we use hypothesis (5.2.5) to deduce∣∣( f̂ χR j m++)∨

∣∣ ≤ ∥∥m
∥∥

L∞

∣∣∆ [(1)
j1

∆
[(2)
j2

( f++)
∣∣

+ A
1
2

(∫ 2 j1+1

2 j1

∣∣∆ [(2)
j2

∆
(1)
[t1,∞)∆

[(1)
j1

( f++)
∣∣2 |(∂1m)(t1,2 j2)|dt1

) 1
2

+ A
1
2

(∫ 2 j2+1

2 j2

∣∣∆ [(1)
j1

∆
(2)
[t2,∞)∆

[(2)
j2

( f++)
∣∣2 |(∂2m)(2 j1 , t2)|dt2

) 1
2

+ A
1
2

(∫ 2 j1+1

2 j1

∫ 2 j2+1

2 j2

∣∣∆ (1)
[t1,∞)∆

[(1)
j1

∆
(2)
[t2,∞)∆

[(2)
j2

( f++)
∣∣2 |(∂1∂2m)(t1, t2)|dt2 dt1

) 1
2
.

Both sides of the preceding inequality are sequences indexed by j ∈ Z2. We apply
`2(Z2) norms and use Minkowski’s inequality to deduce the pointwise estimate(

∑
j∈Z2

∣∣( f̂ χR j m++)∨
∣∣2)1

2 ≤
∥∥m
∥∥

L∞

(
∑

j∈Z2

∣∣∆ [
j( f++)

∣∣2)1
2

+A
1
2

(∫
∞

0

∫
∞

0

∣∣∆ (1)
[t1,∞)∆

[(2)
[log2 t2]∆

[(1)
[log2 t1]( f++)

∣∣2 ∣∣(∂1m)(t1,2[log2 t2])
∣∣dt1dν(t2)

)1
2

+A
1
2

(∫
∞

0

∫
∞

0

∣∣∆ (2)
[t2,∞)∆

[(1)
[log2 t1]∆

[(2)
[log2 t2]( f++)

∣∣2 ∣∣(∂2m)(2[log2 t1], t2)
∣∣dν(t1)dt2

)1
2

+A
1
2

(∫
∞

0

∫
∞

0

∣∣∆ (1)
[t1,∞)∆

(2)
[t2,∞)∆

[(1)
[log2 t1]∆

[(2)
[log2 t2]( f++)

∣∣2∣∣(∂1∂2m)(t1, t2)
∣∣dt1dt2

)1
2
,

where ν is the counting measure ∑ j∈Z δ2 j defined by ν(A) = #{ j ∈ Z : 2 j ∈ A}
for subsets A of (0,∞). We now take Lp(R2) norms and we estimate separately the
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contribution of each of the four terms on the right side. Using Exercise 4.6.2 we
obtain∥∥∥∥( ∑

j∈Z2

∣∣( f̂ χR j m++)∨
∣∣2)1

2
∥∥∥∥

Lp
≤
∥∥m
∥∥

L∞

∥∥∥∥( ∑
j∈Z2

∣∣∆ [
j( f++)

∣∣2)1
2
∥∥∥∥

Lp

+ C2 A
1
2 max

(
p,(p−1)−1)2

×

{∥∥∥∥(∫ ∞

0

∫
∞

0

∣∣∆ [(2)
[log2 t2]∆

[(1)
[log2 t1]( f++)

∣∣2 ∣∣(∂1m)(t1,2[log2 t2])
∣∣dt1 dν(t2)

)1
2
∥∥∥∥

Lp

+
∥∥∥∥(∫ ∞

0

∫
∞

0

∣∣∆ [(1)
[log2 t1]∆

[(2)
[log2 t2]( f++)

∣∣2 ∣∣(∂2m)(2[log2 t1], t2)
∣∣dν(t1)dt2

)1
2
∥∥∥∥

Lp

+
∥∥∥∥(∫ ∞

0

∫
∞

0

∣∣∆ [(1)
[log2 t1]∆

[(2)
[log2 t2]( f++)

∣∣2∣∣(∂1∂2m)(t1, t2)
∣∣dt1dt2

)1
2
∥∥∥∥

Lp

}
.

But the functions (t1, t2) 7→ ∆
[(1)
[log2 t1]∆

[(2)
[log2 t2]( f++) are constant on products of inter-

vals of the form [2 j1 ,2 j1+1)× [2 j2 ,2 j2+1); hence using hypothesis (5.2.5) again we
deduce the estimate∥∥∥∥( ∑

j∈Z2

∣∣( f̂ χR j m++)∨
∣∣2)1

2
∥∥∥∥

Lp(R2)

≤C2
(∥∥m

∥∥
L∞ +A

)
max

(
p,(p−1)−1)2

∥∥∥∥( ∑
j∈Z2

∣∣∆ [
j( f++)

∣∣2)1
2
∥∥∥∥

Lp(R2)

≤C2
(∥∥m

∥∥
L∞ +A

)
max

(
p,(p−1)−1)4∥∥( f̂ χ(0,∞)2)∨

∥∥
Lp(R2)

≤C2
(∥∥m

∥∥
L∞ +A

)
max

(
p,(p−1)−1)6∥∥ f

∥∥
Lp(R2) ,

where the penultimate estimate follows from Theorem 5.1.6 and the last estimate
by the boundedness of the Hilbert transform (Theorem 4.1.7). We now appeal to
the lower estimate of Theorem 5.1.6, which yields the required estimate for m++.
A similar argument also works for the remaining parts of m, and this concludes the
proof of (5.2.6).

The analogous estimate on Rn is∥∥∥∥( ∑
j∈Zn

∣∣( f̂ χR j m++)∨
∣∣2)1

2
∥∥∥∥

Lp(Rn)
≤Cn

(∥∥m
∥∥

L∞ +A
)

max
(

p,(p−1)−1)3n∥∥ f
∥∥

Lp(Rn)

for some dimensional constant Cn < ∞ and is obtained in a similar fashion. �

We now give a condition that implies (5.2.5) and is well suited for a variety of
applications.

Corollary 5.2.5. Let m be a bounded function defined away from the coordinate
axes on Rn that is C n in that region. Assume furthermore that for all k ∈ {1, . . . ,n},
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all j1, . . . , jk ∈ {1,2, . . . ,n}, and all ξr ∈ R for r /∈ { j1, . . . , jk} we have∣∣(∂ j1 · · ·∂ jk m)(ξ1, . . . ,ξn)
∣∣≤ A |ξ j1 |

−1 · · · |ξ jk |
−1 . (5.2.9)

Then m satisfies (5.2.6).

Proof. Simply observe that condition (5.2.9) implies (5.2.5). �

Example 5.2.6. The following are examples of functions that satisfy the hypotheses
of Corollary 5.2.5:

m1(ξ ) =
ξ1

ξ1 + i(ξ 2
2 + · · ·+ξ 2

n )
,

m2(ξ ) =
|ξ1|α1 · · · |ξn|αn

(ξ 2
1 +ξ 2

2 + · · ·+ξ 2
n )α/2 ,

where α1 +α2 + · · ·+αn = α , α j > 0,

m3(ξ ) =
ξ2ξ 2

3

iξ1 +ξ 2
2 +ξ 4

3
.

The functions m1 and m2 are defined on Rn and m3 on R3.
The previous examples and many other examples that satisfy the hypothesis

(5.2.9) of Corollary 5.2.5 are invariant under a set of dilations in the following sense:
suppose that there exist k1, . . . ,kn ∈ R+ and s ∈ R such that the smooth function m
on Rn \{0} satisfies

m(λ k1ξ1, . . . ,λ
knξn) = λ

ism(ξ1, . . . ,ξn)

for all ξ1, . . . ,ξn ∈ R and λ > 0. Then m satisfies condition (5.2.9). Indeed, differ-
entiation gives

λ
α1k1+···+αnkn∂

α m(λ k1ξ1, . . . ,λ
knξn) = λ

is
∂

α m(ξ1, . . . ,ξn)

for every multi-index α = (α1, . . . ,αn). Now for every ξ ∈Rn \{0} pick the unique
λξ > 0 such that (λ k1

ξ
ξ1, . . . ,λ

kn
ξ

ξn) ∈ Sn−1. Then λ
k jα j
ξ

≤ |ξ j|−α j , and it follows
that

|∂ α m(ξ1, . . . ,ξn)| ≤
[

sup
Sn−1

|∂ α m|
]

λ
α1k1+···+αnkn
ξ

≤Cα |ξ1|−α1 · · · |ξn|−αn .

5.2.3 The Hörmander–Mihlin Multiplier Theorem on Rn

We now discuss a second multiplier theorem.
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Theorem 5.2.7. Let m(ξ ) be a complex-valued bounded function on Rn \ {0} that
satisfies either
(a) Mihlin’s condition

|∂ α

ξ
m(ξ )| ≤ A|ξ |−|α| (5.2.10)

for all multi-indices |α| ≤ [ n
2 ]+1,

or (b) Hörmander’s condition

sup
R>0

R−n+2|α|
∫

R<|ξ |<2R
|∂ α

ξ
m(ξ )|2 dξ ≤ A2 < ∞ (5.2.11)

for all multi-indices |α| ≤ [n/2]+1.
Then for all 1 < p < ∞, m lies in Mp(Rn) and the following estimate is valid:∥∥m

∥∥
Mp

≤Cn max(p,(p−1)−1)
(
A+

∥∥m
∥∥

L∞

)
. (5.2.12)

Moreover, the operator f 7→ ( f̂ m)∨ maps L1(Rn) to L1,∞(Rn) with norm at most a
dimensional constant multiple of A+

∥∥m
∥∥

L∞ .

Proof. First we observe that condition (5.2.11) is a generalization of (5.2.10) and
therefore it suffices to assume (5.2.11).

Since m is a bounded function, the operator given by convolution with W = m∨ is
bounded on L2(Rn). To prove that this operator maps L1(Rn) to L1,∞(Rn), it suffices
to prove that the distribution W coincides with a function K on Rn \{0} that satisfies
Hörmander’s condition.

Let ζ̂ be a smooth function supported in the annulus 1
2 ≤ |ξ | ≤ 2 such that

∑
j∈Z

ζ̂ (2− j
ξ ) = 1, when ξ 6= 0.

Set m j(ξ ) = m(ξ )ζ̂ (2− jξ ) for j ∈ Z and K j = m∨
j . We begin by observing that

∑
N
−N K j converges to W in S ′(Rn). Indeed, for all ϕ ∈S (Rn) we have

〈 N

∑
j=−N

K j,ϕ
〉

=
〈 N

∑
j=−N

m j,ϕ
∨
〉
→
〈
m,ϕ ∨ 〉=

〈
W,ϕ

〉
.

We set n0 = [ n
2 ]+1. We claim that there is a constant C̃n such that

sup
j∈Z

∫
Rn
|K j(x)|(1+2 j|x|)

1
4 dx ≤ C̃nA , (5.2.13)

sup
j∈Z

2− j
∫

Rn
|∇K j(x)|(1+2 j|x|)

1
4 dx ≤ C̃nA . (5.2.14)

To prove (5.2.13) we multiply and divide the integrand in (5.2.13) by the expression
(1 + 2 j|x|)n0 . Applying the Cauchy–Schwarz inequality to |K j(x)|(1 + 2 j|x|)n0 and
(1+2 j|x|)−n0+ 1

4 , we control the integral in (5.2.13) by the product
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Rn
|K j(x)|2(1+2 j|x|)2n0 dx

)1
2
(∫

Rn
(1+2 j|x|)−2n0+ 1

2 dx
)1

2
. (5.2.15)

We now note that −2n0 + 1
2 < −n, and hence the second expression in (5.2.15) is

equal to a constant multiple of 2− jn/2. To estimate the first integral in (5.2.15) we
use the simple fact that

(1+2 j|x|)n0 ≤C(n) ∑
|γ|≤n0

|(2 jx)γ | .

We now have that the expression inside the supremum in (5.2.13) is controlled by

C′(n)2− jn/2
∑

|γ|≤n0

(∫
Rn
|K j(x)|222 j|γ||xγ |2 dx

)1
2
, (5.2.16)

which, by Plancherel’s theorem, is equal to

2− jn/2
∑

|γ|≤n0

Cγ 2 j|γ|
(∫

Rn
|(∂ γ m j)(ξ )|2 dξ

)1
2

(5.2.17)

for some constants Cγ .
For multi-indices δ = (δ1, . . . ,δn) and γ = (γ1, . . . ,γn) we introduce the notation

δ ≤ γ to mean δ j ≤ γ j for all j = 1, . . . ,n . For any |γ| ≤ n0 we use Leibniz’s rule to
obtain∫

Rn
|(∂ γ m j)(ξ )|2 dξ ≤ ∑

δ≤γ

Cδ

∫
Rn

∣∣2− j|γ−δ |(∂ γ−δ

ξ
ζ̂ )(2− j

ξ )(∂ δ

ξ
m)(ξ )

∣∣2 dξ

≤ ∑
δ≤γ

Cδ 2−2 j|γ|22 j|δ |
∫

2 j−1≤|ξ |≤2 j+1
|(∂ δ

ξ
m)(ξ )

∣∣2 dξ

≤ ∑
δ≤γ

Cδ 2−2 j|γ|22 j|δ |2A22 jn2−2 j|δ |

= C̃nA22 jn2−2 j|γ| ,

which is all we need to obtain (5.2.13). To obtain (5.2.14) we repeat the same ar-
gument for every derivative ∂rK j. Since the Fourier transform of (∂rK j)(x)xγ is
equal to a constant multiple of ∂ γ

(
ξrm(ξ )ζ̂ (2− jξ )

)
, we observe that the extra fac-

tor 2− j in (5.2.14) can be combined with ξr to write 2− j∂ γ
(
ξrm(ξ )ζ̂ (2− jξ )

)
as

∂ γ
(
m(ξ )ζ̂r(2− jξ )

)
, where ζ̂r(ξ ) = ξrζ̂ (ξ ). The previous calculation with ζ̂r re-

placing ζ̂ can then be used to complete the proof of (5.2.14).
We now show that for all x 6= 0, the series ∑ j∈Z K j(x) converges to a function,

which we denote by K(x). Indeed, it is trivial to see that for all x ∈ Rn we have

|K j(x)| ≤ cn2 jn∥∥m
∥∥

L∞ ,
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which shows that the function ∑ j≤0 |K j(x)| is bounded. Moreover, as a consequence
of (5.2.13) we have that

(1+2 j
δ )

1
4

∫
|x|≥δ

|K j(x)|dx ≤ C̃nA ,

for any δ > 0, which implies that the function ∑ j>0 |K j(x)| is integrable away from
the origin and thus finite almost everywhere. We conclude that the series ∑ j∈Z K j(x)
represents a well defined function K(x) away from the origin that coincides with the
distribution W = m∨.

We now prove that the function K = ∑ j∈Z K j (defined on Rn \ {0}) satisfies
Hörmander’s condition. It suffices to prove that for all y 6= 0 we have

∑
j∈Z

∫
|x|≥2|y|

|K j(x− y)−K j(x)|dx ≤ 2C′
nA . (5.2.18)

Fix a y ∈Rn \{0} and pick a k ∈Z such that 2−k ≤ |y| ≤ 2−k+1. The part of the sum
in (5.2.18) where j > k is bounded by

∑
j>k

∫
|x|≥2|y|

|K j(x− y)|+ |K j(x)|dx ≤ 2 ∑
j>k

∫
|x|≥|y|

|K j(x)|dx

≤ 2 ∑
j>k

∫
|x|≥|y|

|K j(x)|
(1+2 j|x|) 1

4

(1+2 j|x|) 1
4

dx

≤ ∑
j>k

2C̃nA

(1+2 j|y|) 1
4

≤ ∑
j>k

2C̃nA

(1+2 j2−k)
1
4

= C′
nA ,

where we used (5.2.13). The part of the sum in (5.2.18) where j ≤ k is bounded by

∑
j≤k

∫
|x|≥2|y|

|K j(x− y)−K j(x)|dx

≤ ∑
j≤k

∫
|x|≥2|y|

∫ 1

0
|− y ·∇K j(x−θy)|dθ dx

≤
∫ 1

0
∑
j≤k

2−k+1
∫

Rn
|∇K j(x−θy)|(1+2 j|x−θy|)

1
4 dxdθ

≤
∫ 1

0
∑
j≤k

2−k+1C̃nA2 j dθ ≤C′
nA ,

using (5.2.14). Hörmander’s condition is satisfied for K, and we appeal to Theorem
4.3.3 to complete the proof of (5.2.12). �
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Corollary 5.2.8. Let {m`}`∈Z be bounded functions on Rn whose L∞ norms are uni-
formly controlled by a constant A. Suppose that

sup
R>0

R−n+2|α|
∑
`∈Z

∫
R<|ξ |<2R

|∂ α

ξ
m`(ξ )|2 dξ ≤ A2 for all |α| ≤ [ n

2 ]+1.

Then for some Cn < ∞ and for all functions fk we have∥∥∥(∑
`∈Z

|( f̂`m`)∨|2
)1

2
∥∥∥

Lp
≤Cn (p+(p−1)−1)A

∥∥∥(∑
`∈Z

| f`|2
)1

2
∥∥∥

Lp
. (5.2.19)

Proof. Write each K` = m∨
` = ∑ j K`

j as in the proof of Theorem 5.2.7. Using the
hypothesis, we can prove that

sup
j∈Z

∫
Rn

∑
`

|K`
j (x)|(1+2 j|x|)

1
4 dx ≤ C̃n A , (5.2.20)

sup
j∈Z

2− j
∫

Rn
∑
`

|∇K`
j (x)|(1+2 j|x|)

1
4 dx ≤ C̃n A . (5.2.21)

These estimates are proved just like those in (5.2.13) and (5.2.14) with the extra
summation on ` carried through. Using (5.2.20) and (5.2.21), we now derive that∫

|x|≥2|y|
sup

`
|K`(x− y)−K`(x)|dx ≤∑

j

∫
|x|≥2|y|

∑
`

|K`
j (x− y)−K`

j (x)|dx < ∞

as we did in the proof of Theorem 5.2.7. This is Hörmander condition needed in this
setting, which allows the use of Corollary 4.6.2. The proof of (5.2.19) follows. �

Example 5.2.9. Suppose that τ is a real number. Then the function |ξ |iτ is in Mp
for all 1 < p < ∞, since condition (5.2.10) is satisfied.

We end this section by comparing Theorems 5.2.2/5.2.4 and 5.2.7. It is obvious
that in dimension n = 1, Theorem 5.2.2 is stronger than Theorem 5.2.7. But in higher
dimensions neither theorem includes the other. Condition (5.2.10) for all |α| ≤ n is
less restrictive than condition (5.2.9). Thus for functions that are C n away from the
origin and satisfy condition (5.2.10) for all |α| ≤ n, it is better to use Theorem 5.2.4.
However, in Theorem 5.2.7 the function m is assumed only to be C [n/2]+1, requiring
almost half the amount of differentiability required by condition (5.2.9).

It should be noted that both theorems have their shortcomings. In particular, they
are not Lp sensitive, i.e., delicate enough to detect whether m is bounded on some
Lp but not on some other Lq.
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Exercises

5.2.1. Let 1≤ k < n. Use the same idea as in the proof of Proposition 5.2.1 to prove
that m ∈Mp(Rn) if and only if (5.2.1) is satisfied with m j replaced by

m j(ξ ) = m(ξ )ψ(2− j1ξ1) . . .ψ(2− jk ξk),

where ψ(ξ ) is a smooth compactly supported function equal to 1 on the interval
[2−1,4] that satisfies

∑
j∈Z

ψ(2− j
ξ ) = 1, ξ 6= 0.

5.2.2. (Calderón reproducing formula ) Let Ψ and Φ be radial Schwartz functions
whose Fourier transforms are real-valued and compactly supported away from the
origin and satisfy

∑
j∈Z

Ψ̂(2− j
ξ )Φ̂(2− j

ξ ) = 1

for all ξ 6= 0. Prove that for every function f in S∞(Rn) we have

∑
j∈Z

f ∗Ψ2− j ∗Φ2− j = f ,

where the series converges in S∞(Rn). Conclude that the identity

∑
j∈Z

∆
Ψ
j ∆

Φ
j = I

holds in the sense of S ′(Rn)/P . Here ∆Ψ
j is the operator given by convolution

with Ψ2− j , and ∆ Φ
j is defined likewise.

5.2.3. Consider the differential operators

L1 = ∂1−∂
2
2 +∂

4
3 ,

L2 = ∂1 +∂
2
2 +∂

2
3 .

Prove that for every 1 < p < ∞ there exists a constant Cp < ∞ such that for all
Schwartz functions f on R3 we have∥∥∂2∂

2
3 f
∥∥

Lp ≤Cp
∥∥L1( f )

∥∥
Lp ,∥∥∂1 f

∥∥
Lp ≤Cp

∥∥L2( f )
∥∥

Lp .[
Hint: Use Corollary 5.2.5. What is the relevance of multipliers m1 and m3 in Ex-

ample 5.2.6?
]

5.2.4. (a) Suppose that m(ξ ) is real-valued and satisfies |∂ α m(ξ )| ≤Cα |ξ |−|α| for
all multi-indices α satisfying |α| ≤ [ n

2 ]+1 and all ξ ∈Rn \{0}. Prove that eim(ξ ) is
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in Mp(Rn) for 1 < p < ∞.
(b) Suppose that m(ξ ) is real-valued and satisfies (5.2.9). Prove that eim(ξ ) is in
Mp(Rn) for 1 < p < ∞.

5.2.5. Suppose that ϕ(ξ ) is a smooth function on Rn that vanishes in a neighbor-
hood of the origin and is equal to 1 in a neighborhood of infinity. Prove that the
function eiξ j |ξ |−1

ϕ(ξ ) is in Mp(Rn) for 1 < p < ∞.

5.2.6. Let τ,τ1, . . . ,τn be real numbers and ρ1, . . . ,ρn be even natural numbers.
Prove that the following functions are Lp multipliers on Rn for 1 < p < ∞:

|ξ1|iτ1 · · · |ξn|iτn ,

(|ξ1|ρ1 + · · ·+ |ξn|ρn)iτ ,

(|ξ1|−ρ1 + |ξ2|−ρ2)iτ .

5.2.7. Let ζ̂ (ξ ) be a smooth function on the line that is supported in a compact
set that does not contain the origin and let a j be a bounded sequence of complex
numbers. Prove that the function

m(ξ ) = ∑
j∈Z

a jζ̂ (2− j
ξ )

is in Mp(R) for all 1 < p < ∞.

5.2.8. Let ζ be as in Exercise 5.2.7 and let ∆
ζ

j ( f ) =
(

f̂ (ξ )ζ̂ (2− jξ )
)∨. Show that

the operator
f → sup

N>0

∣∣∣ ∑
j<N

∆
ζ

j ( f )
∣∣∣

is bounded on Lp(R) when 1 < p < ∞.[
Hint: Pick a Schwartz function ϕ satisfying ∑ j∈Z ϕ̂(2− jξ ) = 1 on Rn \{0} with ϕ̂

compactly supported. Then ∆
ϕ

k ∆
ζ

j = 0 if | j− k|< c0 and we have

∑
j<N

∆
ζ

j = ∑
k<N+c0

∆
ϕ

k ∑
j<N

∆
ζ

j = ∑
k<N+c0

∆
ϕ

k ∑
j

∆
ζ

j − ∑
k<N+c0

∆
ϕ

k ∑
j≥N

∆
ζ

j ,

which is a finite sum plus a term controlled by a multiple of the operator

f 7→M
(
∑
j∈Z

∆
ζ

j ( f )
)
,

where M is the Hardy–Littlewood maximal function.
]

5.2.9. Let Ψ be a Schwartz function whose Fourier transform is real-valued, sup-
ported in a compact set that does not contain the origin, and satisfies

∑
j∈Z

Ψ̂(2− j
ξ ) = 1 when ξ 6= 0.
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Let ∆ j be the Littlewood–Paley operator associated with Ψ . Prove that∥∥ ∑
| j|<N

∆ j(g)−g
∥∥

Lp → 0

as N → ∞ for all functions g ∈ S (Rn). Deduce that Schwartz functions whose
Fourier transforms have compact supports that do not contain the origin are dense
in Lp(Rn) for 1 < p < ∞.[
Hint: Use the result of Exercise 5.2.8 and the Lebesgue dominated convergerce

theorem.
]

5.3 Applications of Littlewood–Paley Theory

We now turn our attention to some important applications of Littlewood–Paley the-
ory. We are interested in obtaining bounds for singular and maximal operators.
These bounds are obtained by controlling the corresponding operators by quadratic
expressions.

5.3.1 Estimates for Maximal Operators

One way to control the maximal operator supk |Tk( f )| is by introducing a good av-
eraging function ϕ and using the majorization

sup
k
|Tk( f )| ≤ sup

k
|Tk( f )− f ∗ϕ2−k |+ sup

k
| f ∗ϕ2−k |

≤
(
∑
k
|Tk( f )− f ∗ϕ2−k |2

) 1
2 +Cϕ M( f )

(5.3.1)

for some constant Cϕ depending on ϕ . We apply this idea to prove the following
theorem.

Theorem 5.3.1. Let m be a bounded function on Rn that is C 1 in a neighborhood
of the origin and satisfies m(0) = 1 and |m(ξ )| ≤ C|ξ |−ε for some C,ε > 0 and
all ξ 6= 0. For each k ∈ Z define Tk( f )(x) = ( f̂ (ξ )m(2−kξ ))∨(x). Then there is a
constant Cn such that for all L2 functions f on Rn we have∥∥sup

k∈Z
|Tk( f )|

∥∥
L2 ≤Cn

∥∥ f
∥∥

L2 . (5.3.2)

Proof. Select a Schwartz function ϕ such that ϕ̂(0) = 1. Then there are positive
constants C1 and C2 such that |m(ξ )− ϕ̂(ξ )| ≤C1|ξ |−ε for |ξ | away from zero and
|m(ξ )− ϕ̂(ξ )| ≤C2|ξ | for |ξ | near zero. These two inequalities imply that
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∑
k
|m(2−k

ξ )− ϕ̂(2−k
ξ )|2 ≤C3 < ∞ ,

from which the L2 boundedness of the operator

f 7→
(
∑
k
|Tk( f )− f ∗ϕ2−k |2

)1/2

follows easily. Using estimate (5.3.1) and the well-known L2 estimate for the Hardy–
Littlewood maximal function, we obtain (5.3.2). �

If m(ξ ) is the characteristic function of a rectangle with sides parallel to the axes,
this result can be extended to Lp.

Theorem 5.3.2. Let 1 < p < ∞ and let U be the characteristic function of a product
of open intervals in Rn that contain the origin. For each k ∈ Z define Tk( f )(x) =
( f̂ (ξ )χU (2−kξ ))∨(x). Then there is a constant Cp,n such that for all Lp functions f
on Rn we have ∥∥sup

k∈Z
|Tk( f )|

∥∥
Lp(Rn) ≤Cp,n

∥∥ f
∥∥

Lp(Rn).

Proof. Let us fix an open annulus A whose interior contains the boundary of U and
take a smooth function with compact support ψ̂ that vanishes in a neighborhood of
zero and a neighborhood of infinity and is equal to 1 on the annulus A. Then the
function ϕ̂ = (1− ψ̂ )χU is Schwartz. Since χU = χU ψ̂ + ϕ̂ , it follows that for all
f ∈ Lp(Rn) we have

Tk( f ) = Tk( f )− f ∗ϕ2−k + f ∗ϕ2−k = Tk( f ∗ψ2−k)+ f ∗ϕ2−k .

Taking the supremum over k and using Corollary 2.1.12 we obtain

sup
k∈Z

|Tk( f )| ≤
(
∑
k
|Tk( f )− f ∗ϕ2−k |2

)1/2 +Cϕ M( f ) . (5.3.3)

The operator Tk( f )− f ∗ϕ2−k is given by multiplication on the Fourier transform
side by the multiplier

χU (2−k
ξ )− ϕ̂(2−k

ξ ) = χU (2−k
ξ )ψ̂(2−k

ξ ) = χ2kU (ξ )ψ̂(2−k
ξ ) .

Since {2kU}k∈Z is a measurable family of rectangles with sides parallel to the axes,
Exercise 4.6.1(b) yields the following inequality:∥∥∥(∑

k∈Z
|Tk( f )− f ∗ϕ2−k |2

) 1
2
∥∥∥

Lp
≤Cp,n

∥∥∥(∑
k∈Z

| f ∗ψ2−k |2
) 1

2
∥∥∥

Lp
. (5.3.4)

Since f ∗ψ2−k = ∆
ψ

j ( f ), estimate (5.1.4) of Theorem 5.1.2 yields that the expres-
sion on the right in (5.3.4) is controlled by a multiple of

∥∥ f
∥∥

Lp . Taking Lp norms in
(5.3.3) and using the Lp estimate for the square function yields the required conclu-
sion. �
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The following lacunary version of the Carleson–Hunt theorem is yet another in-
dication of the powerful techniques of Littlewood–Paley theory.

Corollary 5.3.3. (a) Let f be in L2(Rn) and let Ω be an open set that contains the
origin in Rn. Then

lim
k→∞

∫
2kΩ

f̂ (ξ )e2πix·ξ dξ = f (x)

for almost all x ∈ Rn.
(b) Let f be in Lp(Rn) for some 1 < p < ∞. Then

lim
k→∞

∫
|ξ1|<2k

...
|ξn|<2k

f̂ (ξ )e2πix·ξ dξ = f (x)

for almost all x ∈ Rn.

Proof. Both limits exist everywhere for functions f in the Schwartz class. To obtain
almost everywhere convergence for general f in Lp we appeal to Theorem 2.1.14.
The required control of the corresponding maximal operator is a consequence of
Theorem 5.3.1 in case (a) and Theorem 5.3.2 in case (b). �

5.3.2 Estimates for Singular Integrals with Rough Kernels

We now turn to another application of the Littlewood–Paley theory involving singu-
lar integrals.

Theorem 5.3.4. Suppose that µ is a finite Borel measure on Rn with compact sup-
port that satisfies |µ̂(ξ )| ≤ Bmin

(
|ξ |−b, |ξ |b

)
for some b > 0 and all ξ 6= 0. Define

measures µ j by setting µ̂ j(ξ ) = µ̂(2− jξ ). Then the operator

Tµ( f )(x) = ∑
j∈Z

( f ∗µ j)(x)

is bounded on Lp(Rn) for all 1 < p < ∞.

Proof. It is natural to begin with the L2 boundedness of Tµ . The estimate on µ̂

implies that

∑
j∈Z

|µ̂(2− j
ξ )| ≤ ∑

j∈Z
Bmin

(
|2− j

ξ |b, |2− j
ξ |−b)≤CbB < ∞ . (5.3.5)

The L2 boundedness of Tµ is an immediate consequence of (5.3.5).
We now turn to the Lp boundedness of Tµ for 1 < p < ∞. We fix a radial Schwartz

function ψ whose Fourier transform is supported in the annulus 1
2 < |ξ | < 2 that

satisfies
∑
j∈Z

ψ̂(2− j
ξ ) = 1 (5.3.6)
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whenever ξ 6= 0. We let ψ2−k(x) = 2knψ(2kx), so that ψ̂2−k(ξ ) = ψ̂(2−kξ ), and we
observe that the identity

µ j = ∑
k∈Z

µ j ∗ψ2− j−k

is valid by taking Fourier transforms and using (5.3.6). We now define operators Sk
by setting

Sk( f ) = ∑
j∈Z

µ j ∗ψ2− j−k ∗ f = ∑
j∈Z

(µ ∗ψ2−k)2− j ∗ f .

Then for nice f we have that

Tµ( f ) = ∑
j∈Z

µ j ∗ f = ∑
j∈Z

∑
k∈Z

µ j ∗ψ2− j−k ∗ f = ∑
k∈Z

Sk( f ) .

It suffices therefore to obtain Lp boundedness for the sum of the Sk’s. We begin
by investigating the L2 boundedness of each Sk. Since the product ψ̂2− j−k ψ̂2− j′−k is
nonzero only when j′ ∈ { j−1, j, j +1}, it follows that∥∥Sk( f )

∥∥2
L2 ≤ ∑

j∈Z
∑
j′∈Z

∫
Rn
|µ̂ j(ξ )µ̂ j′ (ξ )ψ̂(2− j−k

ξ )ψ̂(2− j′−k
ξ )| | f̂ (ξ )|2 dξ

≤C1 ∑
j∈Z

j+1

∑
j′= j−1

∫
|ξ |≈2 j+k

|µ̂ j(ξ )µ̂ j′(ξ )| | f̂ (ξ )|2 dξ

≤C2 ∑
j∈Z

∫
|ξ |≈2 j+k

B2 min(|2− j
ξ |b, |2− j

ξ |−b)2| f̂ (ξ )|2 dξ

≤C2
3B22−2|k|b

∑
j∈Z

∫
|ξ |≈2 j+k

| f̂ (ξ )|2 dξ

= C2
3B2 2−2|k|b∥∥ f

∥∥2
L2 .

We have therefore obtained that for all k ∈ Z and f ∈S (Rn) we have∥∥Sk( f )
∥∥

L2 ≤C3 B2−b|k|∥∥ f
∥∥

L2 . (5.3.7)

Next we show that the kernel of each Sk satisfies Hörmander’s condition with con-
stant at most a multiple of (1+ |k|). Fix y 6= 0. Then∫

|x|≥2|y|

∣∣∣∣∑
j∈Z

(
(µ ∗ψ2−k)2− j(x− y)− (µ ∗ψ2−k)2− j(x)

)∣∣∣∣dx

≤ ∑
j∈Z

∫
|x|≥2|y|

2 jn∣∣(µ ∗ψ2−k)(2 jx−2 jy)− (µ ∗ψ2−k)(2 jx)
∣∣dx

= ∑
j∈Z

I j,k(y) ,
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where
I j,k(y) =

∫
|x|≥2 j+1|y|

∣∣(µ ∗ψ2−k)(x−2 jy)− (µ ∗ψ2−k)(x)
∣∣dx .

We observe that I j,k(y) ≤ C4
∥∥µ
∥∥

M
. To obtain a more delicate estimate for I j,k(y)

we argue as follows:

I j,k(y) ≤
∫

|x|≥2 j+1|y|

∫
Rn

∣∣ψ2−k(x−2 jy− z)−ψ2−k(x− z)
∣∣dµ(z)dx

=
∫

Rn
2kn

∫
|x|≥2 j+1|y|

∣∣ψ(2kx−2kz−2 j+ky)−ψ(2kx−2kz)
∣∣dxdµ(z)

≤C5

∫
|x|≥2 j+1|y|

∫
Rn

2kn2 j+k|y|
∣∣∇ψ(2kx−2kz−θ)

∣∣dµ(z)dx

≤C62 j+k
∫

Rn

∫
|x|≥2 j+1|y|

2kn|y|
(
1+ |2kx−2kz−θ |

)−n−2 dxdµ(z)

= C62 j+k|y|
∫

Rn

∫
|x|≥2 j+k+1|y|

(
1+ |x−2kz−θ |

)−n−2 dxdµ(z) ,

where |θ | ≤ 2 j+k|y|. Note that θ depends on j,k, and y. From this and from I j,k(y)≤
C4
∥∥µ
∥∥

M
we obtain

I j,k(y)≤C7
∥∥µ
∥∥

M
min

(
1,2 j+k|y|

)
, (5.3.8)

which is valid for all j,k, and y 6= 0. To estimate the last double integral even more
delicately, we consider the following two cases: |x| ≥ 2k+2|z| and |x| < 2k+2|z|. In
the first case we have |x− 2kz− θ | ≥ 1

4 |x|, given the fact that |x| ≥ 2 j+k+1|y|. In
the second case we have that |x| ≤ 2k+2R, where B(0,R) contains the support of
µ . Applying these observations in the last double integral, we obtain the following
estimate:

I j,k(y)≤ C82 j+k|y|
∫

Rn

[ ∫
|x|≥2 j+k+1|y|
|x|≥2k+2|z|

dx(
1+ 1

4 |x|
)n+2 +

∫
|x|≥2 j+k+1|y|
|x|<2k+2R

dx
]

dµ(z)

≤ C92 j+k|y|
∥∥µ
∥∥

M

[
1

(2 j+k|y|)2 +0
]

= C9(2 j+k|y|)−1∥∥µ
∥∥

M
,

provided 2 j|y| ≥ 2R. Combining this estimate with (5.3.8), we obtain

I j,k(y)≤C10
∥∥µ
∥∥

M

{
min

(
1,2 j+k|y|

)
for all j,k and y,

(2 j+k|y|)−1 when 2 j|y| ≥ 2R.
(5.3.9)



378 5 Littlewood–Paley Theory and Multipliers

We now estimate ∑ j I j,k(y). When 2k ≥ (2R)−1 we use (5.3.9) to obtain

∑
j

I j,k(y) ≤ C10
∥∥µ
∥∥

M

[
∑

2 j≤ 1
2k |y|

2 j+k|y|+ ∑
1

2k |y|
≤2 j≤ 2R

|y|

1+ ∑
2 j≥ 2R

|y|

(2 j+k|y|)−1
]

≤C11
∥∥µ
∥∥

M
(| logR|+ |k|) .

Also when 2k < (2R)−1 we again use (5.3.9) to obtain

∑
j

I j,k(y)≤C10
∥∥µ
∥∥

M

[
∑

2 j≤ 1
2k |y|

2 j+k|y|+ ∑
2 j≥ 1

2k |y|

(2 j+k|y|)−1
]
≤C12

∥∥µ
∥∥

M
,

since in the second sum 2 j|y| ≥ 2−k > 2R, which justifies use of the corresponding
estimate in (5.3.9). This gives

∑
j

I j,k(y)≤C13
∥∥µ
∥∥

M
(1+ |k|) , (5.3.10)

where the constant C13 depends on the dimension and on R. We now use esti-
mates (5.3.7) and (5.3.10) and Theorem 4.3.3 to obtain that each Sk maps L1(Rn) to
L1,∞(Rn) with constant at most

Cn(2−b|k|+1+ |k|)
∥∥µ
∥∥

M
≤Cn(2+ |k|)

∥∥µ
∥∥

M
.

It follows from the Marcinkiewicz interpolation theorem (Theorem 1.3.2) that Sk
maps Lp(Rn) to itself for 1 < p < 2 with bound at most Cp,n2−b|k|θp(1 + |k|)1−θp ,
when 1

p = θp
2 +1−θp. Summing over all k ∈ Z, we obtain that Tµ maps Lp(Rn) to

itself for 1 < p < 2. The boundedness of Tµ for p > 2 follows by duality. �

An immediate consequence of the previous result is the following.

Corollary 5.3.5. Let µ j be as in the previous theorem. Then the square function

G( f ) =
(

∑
j∈Z

|µ j ∗ f |2
) 1

2
(5.3.11)

maps Lp(Rn) to itself whenever 1 < p < ∞.

Proof. To obtain the boundedness of the square function in (5.3.11) we use the
Rademacher functions r j(t), introduced in Appendix C.1, reindexed so that their
index set is the set of all integers (not the set of nonnegative integers). For each t we
introduce the operators

T t
µ( f ) = ∑

j∈Z
r j(t)( f ∗µ j) .

Next we observe that for each t in [0,1] the operators T t
µ map Lp(Rn) to itself with

the same constant as the operator Tµ , which is in particular independent of t. Using
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that the square function in (5.3.11) raised to the power p is controlled by a multiple
of the quantity ∫ 1

0

∣∣∣∑
j∈Z

r j(t)( f ∗µ j)
∣∣∣p dt ,

a fact stated in Appendix C.2, we obtain the required conclusion by integrating over
Rn. �

5.3.3 An Almost Orthogonality Principle on Lp

Suppose that Tj are multiplier operators given by Tj( f ) = ( f̂ m j)∨, for some multi-
pliers m j. If the functions m j have disjoint supports and they are bounded uniformly
in j, then the operator

T = ∑
j

Tj

is bounded on L2. The following theorem gives an Lp analogue of this result.

Theorem 5.3.6. Suppose that 1 < p ≤ 2 ≤ q < ∞. Let m j be Schwartz functions
supported in the annuli 2 j−1 ≤ |ξ | ≤ 2 j+1 and let Tj( f ) = ( f̂ m j)∨. Suppose that the
Tj’s are uniformly bounded operators from Lp(Rn) to Lq(Rn), i.e.,

sup
j

∥∥Tj
∥∥

Lp→Lq = A < ∞ .

Then for each f ∈ Lp(Rn), the series

T ( f ) = ∑
j

Tj( f )

converges in the Lq norm and there exists a constant Cp,q,n < ∞ such that∥∥T
∥∥

Lp→Lq ≤Cp,q,nA. (5.3.12)

Proof. Fix a radial Schwartz function ϕ whose Fourier transform ϕ̂ is real, equal to
one on the annulus 1

2 ≤ |ξ | ≤ 2, and vanishes outside the annulus 1
4 ≤ |ξ | ≤ 4. We

set ϕ2− j(x) = 2 jnϕ(2 jx), so that ϕ̂2− j is equal to 1 on the support of each m j. Setting
∆ j( f ) = f ∗ϕ2− j , we observe that

Tj = ∆ jTj∆ j

for all j ∈ Z. For a positive integer N we set

T N = ∑
| j|≤N

∆ jTj∆ j .

Fix f ∈ Lp(Rn). Clearly for every N, T N( f ) is in Lq(Rn). Using (5.1.20) we obtain
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∥∥

Lq =
∥∥ ∑
| j|≤N

∆ jTj∆ j( f )
∥∥

Lq

≤C′
q

∥∥∥(∑
j∈Z

|Tj∆ j( f )|2
) 1

2
∥∥∥

Lq

= C′
q

∥∥∥∑
j∈Z

|Tj∆ j( f )|2
∥∥∥ 1

2

Lq/2

≤C′
q

(
∑
j∈Z

∥∥∥|Tj∆ j( f )|2
∥∥∥

Lq/2

) 1
2

= C′
q

(
∑
j∈Z

∥∥Tj∆ j( f )
∥∥2

Lq

) 1
2
,

where we used Minkowski’s inequality, since q/2≥ 1. Using the uniform bounded-
ness of the Tj’s from Lp to Lq, we deduce that

C′
q

(
∑
j∈Z

∥∥Tj∆ j( f )
∥∥2

Lq

) 1
2 ≤C′

q A
(

∑
j∈Z

∥∥∆ j( f )
∥∥2

Lp

)1
2

= C′
q A
(

∑
j∈Z

∥∥|∆ j( f )|2
∥∥

Lp/2

)1
2

≤C′
q A
(∥∥∥∑

j∈Z
|∆ j( f )|2

∥∥∥
Lp/2

)1
2

= C′
q A
∥∥∥(∑

j∈Z
|∆ j( f )|2

) 1
2
∥∥∥

Lp

≤C′
q Cp A

∥∥ f
∥∥

Lp(Rn) ,

where we used the result of Exercise 1.1.5(b), since p ≤ 2, and Theorem 5.1.2. We
conclude that the operators T N are uniformly bounded from Lp(Rn) to Lq(Rn).

If ĥ is compactly supported in a subset of Rn \ {0}, then the sequence T N(h)
becomes independent of N for N large enough and hence it is Cauchy in Lq. But in
view of Exercise 5.2.9, the set of all such h is dense in Lp(Rn). Combining these
two results with the uniform boundedness of the T N’s from Lp to Lq, a simple ε

3
argument gives that for all f ∈ Lp the sequence T N( f ) is Cauchy in Lq. Therefore,
for all f ∈ Lp the sequence {T N( f )}N converges in Lq to some T ( f ). Fatou’s lemma
gives ∥∥T ( f )

∥∥
Lq ≤C′

q Cp A
∥∥ f
∥∥

Lp ,

which proves (5.3.12). �
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Exercises

5.3.1. (The g-function ) Let Pt(x) = Γ ( n+1
2 )

π
n+1

2

t

(t2+|x|2)
n+1

2
be the Poisson kernel.

(a) Use Exercise 5.1.4 with Ψ(x) = ∂

∂ t Pt(x)
∣∣
t=1 to obtain that the operator

f →
(∫

∞

0
t
∣∣ ∂

∂ t (Pt ∗ f )(x)
∣∣2 dt

)1/2

is Lp bounded for 1 < p < ∞.
(b ) Use Exercise 5.1.3 with Ψ(x) = ∂kP1(x) to obtain that the operator

f →
(∫

∞

0
t|∂k(Pt ∗ f )(x)|2 dt

)1/2

is Lp bounded for 1 < p < ∞.
(c) Conclude that the g-function

g( f )(x) =
(∫

∞

0
t|∇x,t(Pt ∗ f )(x)|2 dt

)1/2

is Lp bounded for 1 < p < ∞.

5.3.2. Suppose that µ is a finite Borel measure on Rn with compact support that sat-
isfies µ̂(0) = 0 and |µ̂(ξ )| ≤C|ξ |−a for some a > 0 and all ξ 6= 0. Define measures
µ j by setting µ̂ j(ξ ) = µ̂(2− jξ ). Show that the operator

Tµ( f )(x) = ∑
j∈Z

( f ∗µ j)(x)

is bounded on Lp for all 1 < p < ∞.[
Hint: Use Theorem 5.3.4

]
5.3.3. (Calderón [41]/Coifman and Weiss [56] ) (a) Suppose that µ is a finite Borel

measure with compact support that satisfies |µ̂(ξ )| ≤C|ξ |−a for some a > 0 and all
ξ 6= 0. Then the maximal function

Mµ( f )(x) = sup
j∈Z

∣∣∣∣∫Rn
f (x−2 jy)dµ(y)

∣∣∣∣
is bounded on Lp for all 1 < p < ∞.
(b) Let µ be the surface measure on the sphere Sn−1 when n ≥ 2. Conclude that
the dyadic spherical maximal function Mµ is bounded on Lp(Rn) for all 1 < p < ∞

whenever n≥ 2.[
Hint: Pick ϕ a compactly supported smooth function on Rn with ϕ̂(0) = 1. Then

the measure σ = µ − µ̂(0)ϕ satisfies the hypotheses of Corollary 5.3.5. But it is
straightforward that
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Mµ( f )(x)≤
(
∑

j
|(σ j ∗ f )(x)|2

)1/2
+ |µ̂(0)|M( f )(x) ,

from which it follows that Mµ is bounded on Lp(Rn) whenever 1 < p < ∞. Now let
µ = dσ be surface measure on Sn−1. It follows from the results in Appendices B.4
and B.7 that |d̂σ(ξ )| ≤C|ξ |− n−1

2 .
]

5.3.4. Let Ω be in Lq(Sn−1) for some 1 < q < ∞ and define the absolutely continu-
ous measure

dµ(x) =
Ω(x/|x|)
|x|n

χ1<|x|≤2 dx .

Show that for all a < 1/q′ we have that |µ̂(ξ )| ≤C|ξ |−a. Under the additional hy-
pothesis that Ω has mean value zero, conclude that the singular integral operator

TΩ ( f )(x) = p.v.
∫

Rn

Ω(y/|y|)
|y|n

f (x− y)dy = ∑
j

f ∗µ j

is Lp bounded for all 1 < p < ∞. This provides an alternative proof of Theorem
4.2.10 under the hypothesis that Ω ∈ Lq(Sn−1).

5.3.5. For a function F on R define

u(F)(x) =
(∫

∞

0
|F(x+ t)+F(x− t)−2F(x)|2 dt

t3

)1/2

.

Given f ∈ L1
loc(R) we denote by F the indefinite integral of f , that is,

F(x) =
∫ x

0
f (t)dt .

Prove that for all 1 < p < ∞ there exist constants cp and Cp such that

cp
∥∥ f
∥∥

Lp ≤
∥∥u(F)

∥∥
Lp ≤Cp

∥∥ f
∥∥

Lp .[
Hint: Let ϕ = χ[−1,0]−χ[0,1]. Then

(ϕt ∗ f )(x) =
1
t

(
F(x+ t)+F(x− t)−2F(x)

)
and you may use Exercise 5.1.4.

]
5.3.6. Let m ∈ Mp(Rn). Define an operator Tt by setting T̂t( f )(ξ ) = f̂ (ξ )m(tξ ).
Show that the maximal operator

sup
N>0

(
1
N

∫ N

0

∣∣Tt( f )(x)
∣∣2 dt

)1
2
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maps Lp(Rn) to itself for all 1 < p < ∞.[
Hint: Majorize this maximal operator by a constant multiple of the sum

M( f )(x)+
(∫ ∞

0
|Tt( f )(x)− ( f ∗ϕt)(x)|2

dt
t

) 1
2

for a suitable function ϕ .
]

5.3.7. (Nazarov and Seeger [206]) Let 0 < β < 1 and p0 = (1−β/2)−1. Suppose
that { f j} j∈Z are L2 functions on the line with norm at most 1 that are supported in
possibly different intervals of length 1. Assume that the f j’s satisfy the orthogonality
relation

∣∣〈 f j | fk〉
∣∣≤ (1+ | j− k|)−β for all j,k ∈ Z.

(a) Let I j Z be such that for all j ∈ I the functions f j are supported in a fixed
interval of length 3. Show that for all p satisfying 0 < p ≤ 2 there is Cp,β < ∞ such
that ∥∥∥∑

j∈I
ε j f j

∥∥∥
Lp
≤Cp,β |I|1−

β

2

whenever ε j are complex numbers with |ε j| ≤ 1.
(b) Under the same hypothesis as in part (a), prove that for all 0 < p < p0 there is a
constant C′

p,β < ∞ such that

∥∥∥∑
j∈I

c j f j

∥∥∥
Lp
≤C′

p,β

(
∑
j∈Z

|c j|p
) 1

p

for all complex-valued sequences {c j} j in `p.
(c) Derive the conclusion of part (b) without the assumption that the f j are supported
in a fixed interval of length 3.[
Hint: Part (a): Pass from Lp to L2 and use the hypothesis. Part (b): Assume

∑ j∈Z |c j|p = 1. For each k = 0,1, . . . , set Ik = { j ∈ Z : 2−k−1 < |c j| ≤ 2−k}. Write∥∥∑ j∈Z c j f j
∥∥

Lp ≤∑
∞
k=0 2−k

∥∥∑ j∈Ik(c j2k) f j
∥∥

Lp , use part (b), Hölder’s inequality, and
the fact that ∑

∞
k=0 2−kp|Ik| ≤ 2p. Part (c): Write ∑ j∈Z c j f j = ∑m∈Z Fm, where Fm is

the sum of c j f j over all j such that the support of f j meets the interval [m,m + 1].
These Fm’s are supported in [m−1,m+2] and are almost orthogonal.

]

5.4 The Haar System, Conditional Expectation, and Martingales

There is a very strong connection between the Littlewood–Paley operators and cer-
tain notions from probability, such as conditional expectation and martingale differ-
ence operators. The conditional expectation we are concerned with is with respect
to the increasing σ -algebra of all dyadic cubes on Rn.
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5.4.1 Conditional Expectation and Dyadic Martingale Differences

We recall the definition of dyadic cubes.

Definition 5.4.1. A dyadic interval in R is an interval of the form[
m2−k,(m+1)2−k)

where m,k are integers. A dyadic cube in Rn is a product of dyadic intervals of the
same length. That is, a dyadic cube is a set of the form

n

∏
j=1

[
m j2−k,(m j +1)2−k)

for some integers m1, . . . ,mn,k.

We defined dyadic intervals to be closed on the left and open on the right, so that
different dyadic intervals of the same length are always disjoint sets.

Given a cube Q in Rn we denote by |Q| its Lebesgue measure and by `(Q) its
side length. We clearly have |Q|= `(Q)n. We introduce some more notation.

Definition 5.4.2. For k ∈Z we denote by Dk the set of all dyadic cubes in Rn whose
side length is 2−k. We also denote by D the set of all dyadic cubes in Rn. Then we
have

D =
⋃
k∈Z

Dk ,

and moreover, the σ -algebra σ(Dk) of measurable subsets of Rn formed by count-
able unions and complements of elements of Dk is increasing as k increases.

We observe the fundamental property of dyadic cubes, which clearly justifies
their usefulness. Any two dyadic intervals of the same side length either are disjoint
or coincide. Moreover, either two given dyadic intervals are disjoint, or one contains
the other. Similarly, either two dyadic cubes are disjoint, or one contains the other.

Definition 5.4.3. Given a locally integrable function f on Rn, we let

Avg
Q

f =
1
|Q|

∫
Q

f (t)dt

denote the average of f over a cube Q.
The conditional expectation of a locally integrable function f on Rn with respect

to the increasing family of σ -algebras σ(Dk) generated by Dk is defined as

Ek( f )(x) = ∑
Q∈Dk

(Avg
Q

f )χQ(x),

for all k ∈ Z. We also define the dyadic martingale difference operator Dk as fol-
lows:
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Dk( f ) = Ek( f )−Ek−1( f ),

also for k ∈ Z.

Next we introduce the family of Haar functions.

Definition 5.4.4. For a dyadic interval I = [m2−k,(m + 1)2−k) we define IL =
[m2−k,(m+ 1

2 )2−k) and IR = [(m+ 1
2 )2−k,(m+1)2−k) to be the left and right parts

of I, respectively. The function

hI(x) = |I|−
1
2 χIL −|I|

− 1
2 χIR

is called the Haar function associated with the interval I.

We remark that Haar functions are constructed in such a way that they have
L2 norm equal to 1. Moreover, the Haar functions have the following fundamental
orthogonality property:

∫
R

hI(x)hI′(x)dx =

{
0 when I 6= I′,
1 when I = I′.

(5.4.1)

To see this, observe that the Haar functions have L2 norm equal to 1 by construction.
Moreover, if I 6= I′, then I and I′ must have different lengths, say we have |I′|< |I|.
If I and I′ are not disjoint, then I′ is contained either in the left or in the right half of
I, on either of which hI is constant. Thus (5.4.1) follows.

We recall the notation 〈
f ,g
〉

=
∫

R
f (x)g(x)dx

valid for square integrable functions. Under this notation, (5.4.1) can be rewritten as〈
hI ,hI′

〉
= δI,I′ , where the latter is 1 when I = I′ and zero otherwise.

5.4.2 Relation Between Dyadic Martingale Differences and Haar
Functions

We have the following result relating the Haar functions to the dyadic martingale
difference operators.

Proposition 5.4.5. For every locally integrable function f on R and for all k ∈Z we
have the identity

Dk( f ) = ∑
I∈Dk−1

〈
f ,hI

〉
hI (5.4.2)

and also ∥∥Dk( f )
∥∥2

L2 = ∑
I∈Dk−1

∣∣〈 f ,hI
〉∣∣2. (5.4.3)
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Proof. We observe that every interval J in Dk is either an IL or an IR for some unique
I ∈Dk−1. Thus we can write

Ek( f ) = ∑
J∈Dk

(Avg
J

f )χJ

= ∑
I∈Dk−1

[(
2
|I|

∫
IL

f (t)dt
)

χIL +
(

2
|I|

∫
IR

f (t)dt
)

χIR

]
.

(5.4.4)

But we also have

Ek−1( f ) = ∑
I∈Dk−1

(Avg
I

f )χI

= ∑
I∈Dk−1

(
1
|I|

∫
IL

f (t)dt +
1
|I|

∫
IR

f (t)dt
)(

χIL + χIR
)
.

(5.4.5)

Now taking the difference between (5.4.4) and (5.4.5) we obtain

Dk( f ) = ∑
I∈Dk−1

[(
1
|I|

∫
IL

f (t)dt
)

χIL −
(

1
|I|

∫
IR

f (t)dt
)

χIL

+
(

1
|I|

∫
IR

f (t)dt
)

χIR −
(

1
|I|

∫
IL

f (t)dt
)

χIR

]
,

which is easily checked to be equal to

∑
I∈Dk−1

(∫
I

f (t)hI(t)dt
)

hI = ∑
I∈Dk−1

〈
f ,hI

〉
hI .

Finally, (5.4.3) is a consequence of (5.4.1). �

Theorem 5.4.6. Every function f ∈ L2(Rn) can be written as

f = ∑
k∈Z

Dk( f ) , (5.4.6)

where the series converges almost everywhere and in L2. We also have∥∥ f
∥∥2

L2 = ∑
k∈Z

∥∥Dk( f )
∥∥2

L2 . (5.4.7)

Moreover, when n = 1 we have the representation

f = ∑
I∈D

〈
f ,hI

〉
hI , (5.4.8)

where the sum converges a.e. and in L2 and also∥∥ f
∥∥2

L2(R) = ∑
I∈D

∣∣〈 f ,hI
〉∣∣2 . (5.4.9)
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Proof. In view of the Lebesgue differentiation theorem, the analogue of Corollary
2.1.16 for cubes, given a function f ∈ L2(Rn) there is a set N f of measure zero on
Rn such that for all x ∈ Rn \N f we have that

Avg
Q j

f → f (x)

whenever Q j is a sequence of decreasing cubes such that
⋂

j Q j = {x}. Given x
in Rn \N f there exists a unique sequence of dyadic cubes Q j(x) ∈ D j such that⋂

∞
j=0 Q j(x) = {x}. Then for all x ∈ Rn \N f we have

lim
j→∞

E j( f )(x) = lim
j→∞

∑
Q∈D j

(Avg
Q

f )χQ(x) = lim
j→∞

Avg
Q j(x)

f = f (x) .

From this we conclude that E j( f ) → f a.e. as j → ∞. We also observe that since
|E j( f )| ≤ Mc( f ), where Mc denotes the uncentered maximal function with respect
to cubes, we have that |E j( f )− f | ≤ 2Mc( f ), which allows us to obtain from the
Lebesgue dominated convergence theorem that E j( f )→ f in L2 as j → ∞.

Next we study convergence of E j( f ) as j →−∞. For a given x ∈ Rn and Q j(x)
as before we have that

|E j( f )(x)|=
∣∣Avg

Q j(x)
f
∣∣≤ ( 1

|Q j(x)|

∫
Q j(x)

| f (t)|2 dt
)1

2
≤ 2

jn
2
∥∥ f
∥∥

L2 ,

which tends to zero as j →−∞, since the side length of each Q j(x) is 2− j. Since
|E j( f )| ≤ Mc( f ), the Lebesgue dominated convergence theorem allows us to con-
clude that E j( f )→ 0 in L2 as j →−∞. To obtain the conclusion asserted in (5.4.6)
we simply observe that

N

∑
k=M

Dk( f ) = EN( f )−EM−1( f )→ f

in L2 and almost everywhere as N → ∞ and M →−∞.
To prove (5.4.7) we first observe that we can rewrite Dk( f ) as

Dk( f ) = ∑
Q∈Dk

(Avg
Q

f )χQ− ∑
R∈Dk−1

(Avg
R

f )χR

= ∑
R∈Dk−1

[
∑

Q∈Dk
Q⊆R

(Avg
Q

f )χQ− (Avg
R

f )χR

]

= ∑
R∈Dk−1

[
∑

Q∈Dk
Q⊆R

(Avg
Q

f )χQ−
1
2n ∑

Q∈Dk
Q⊆R

(Avg
Q

f )χR

]

= ∑
R∈Dk−1

∑
Q∈Dk
Q⊆R

(Avg
Q

f )
(
χQ−2−n

χR
)
. (5.4.10)
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Using this identity we obtain that for given integers k′ > k we have∫
Rn

Dk( f )(x)Dk′( f )(x)dx

= ∑
R∈Dk−1

∑
Q∈Dk
Q⊆R

(Avg
Q

f ) ∑
R′∈Dk′−1

∑
Q′∈Dk′
Q′⊆R′

(Avg
Q′

f )
∫ (

χQ−2−n
χR
)(

χQ′ −2−n
χR′
)

dx .

Since k′ > k, the last integral may be nonzero only when R′ $ R. If this is the case,
then R′ ⊆ QR′ for some dyadic cube QR′ ∈Dk with QR′ $ R. See Figure 5.1.

Fig. 5.1 Picture of the cubes R, R′, and QR′ .

Then the function χQ′ − 2−nχR′ is supported in the cube QR′ and the function
χQ− 2−nχR is constant on any dyadic subcube Q of R (of half its side length) and
in particular is constant on QR′ . Then

∑
Q′∈Dk′
Q′⊆R′

(
Avg

Q′
f
)∫

QR′
χQ′ −2−n

χR′ dx = ∑
Q′∈Dk′
Q′⊆R′

(
Avg

Q′
f
)(
|Q′|−2−n|R′|

)
= 0 ,

since |R′| = 2n|Q′|. We conclude that
〈
Dk( f ),Dk′( f )

〉
= 0 whenever k 6= k′, from

which we easily derive (5.4.7).
Now observe that (5.4.8) is a direct consequence of (5.4.2), and (5.4.9) is a direct

consequence of (5.4.3). �

5.4.3 The Dyadic Martingale Square Function

As a consequence of identity (5.4.7), proved in the previous subsection, we obtain
that ∥∥∥(∑

k∈Z
|Dk( f )|2

) 1
2
∥∥∥

L2(Rn)
=
∥∥ f
∥∥

L2(Rn) , (5.4.11)
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which says that the dyadic martingale square function

S( f ) =
(

∑
k∈Z

|Dk( f )|2
) 1

2

is L2 bounded. It is natural to ask whether there exist Lp analogues of this result,
and this is the purpose of the following theorem.

Theorem 5.4.7. For any 1 < p < ∞ there exists a constant cp,n such that for every
function f in Lp(Rn) we have

1
cp′,n

∥∥ f
∥∥

Lp(Rn) ≤
∥∥S( f )

∥∥
Lp(Rn) ≤ cp,n

∥∥ f
∥∥

Lp(Rn) . (5.4.12)

The lower inequality subsumes the fact that if
∥∥S( f )

∥∥
Lp(Rn) < ∞, then f must be an

Lp function.

Proof. Let {r j} j be the Rademacher functions (see Appendix C.1) enumerated in
such a way that their index set is the set of integers. We rewrite the upper estimate
in (5.4.12) as ∫ 1

0

∫
Rn

∣∣∣∑
k∈Z

rk(ω)Dk( f )(x)
∣∣∣p dxdω ≤Cp

p
∥∥ f
∥∥p

Lp . (5.4.13)

We prove a stronger estimate than (5.4.13), namely that for all ω ∈ [0,1] we have∫
Rn

∣∣∣Tω( f )(x)
∣∣∣p dx ≤Cp

p
∥∥ f
∥∥p

Lp , (5.4.14)

where
Tω( f )(x) = ∑

k∈Z
rk(ω)Dk( f )(x) .

In view of the L2 estimate (5.4.11), we have that the operator Tω is L2 bounded with
norm 1. We show that Tω is weak type (1,1).

To show that Tω is of weak type (1,1) we fix a function f ∈ L1 and α > 0. We
apply the Calderón–Zygmund decomposition (Theorem 4.3.1) to f at height α to
write

f = g+b, b = ∑
j

(
f −Avg

Q j

f
)
χQ j ,

where Q j are dyadic cubes that satisfy ∑ j |Q j| ≤ 1
α

∥∥ f
∥∥

L1 and g has L2 norm at most

(2nα
∥∥ f
∥∥

L1)
1
2 ; see (4.3.1). To achieve this decomposition, we apply the proof of

Theorem 4.3.1 starting with a dyadic mesh of large cubes such that |Q| ≥ 1
α

∥∥ f
∥∥

L1

for all Q in the mesh. Then we subdivide each Q in the mesh by halving each side,
and we select those cubes for which the average of f over them is bigger than α (and
thus at most 2nα). Since the original mesh consists of dyadic cubes, the stopping-
time argument of Theorem 4.3.1 ensures that each selected cube is dyadic.
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We observe (and this is the key observation) that Tω(b) is supported in
⋃

j Q j. To
see this, we use identity (5.4.10) to write Tω(b) as

∑
j

[
∑
k

rk(ω) ∑
R∈Dk−1

∑
Q∈Dk
Q⊆R

Avg
Q

[( f −Avg
Q j

f )χQ j ]
(
χQ−2−n

χR
)]

. (5.4.15)

We consider the following three cases for the cubes Q that appear in the inner sum
in (5.4.15): (i) Q j ⊆ Q, (ii) Q j ∩Q = /0, and (iii) Q $ Q j. It is simple to see that
in cases (i) and (ii) we have AvgQ[( f −AvgQ j

f )χQ j ] = 0. Therefore the inner sum
in (5.4.15) is taken over all Q that satisfy Q $ Q j. But then we must have that the
unique dyadic parent R of Q is also contained in Q j. It follows that the expression
inside the square brackets in (5.4.15) is supported in R and therefore in Q j. We
conclude that Tω(b) is supported in

⋃
j Q j. Using Exercise 4.3.5(a) we obtain that

Tω is weak type (1,1) with norm at most

α
∣∣{|Tω(g)|> α

2 }
∣∣+α

∣∣⋃
j Q j
∣∣∥∥ f

∥∥
L1

≤
α4α−2

∥∥g
∥∥2

L2 +
∥∥ f
∥∥

L1∥∥ f
∥∥

L1

≤ 2n+2 +1 .

We have now established that Tω is weak type (1,1). Since Tω is L2 bounded with
norm 1, it follows by interpolation that Tω is Lp bounded for all 1 < p < 2. The
Lp boundedness of Tω for the remaining p > 2 follows by duality. (Note that the
operators Dk and Ek are self-transpose.) We conclude the validity of (5.4.14), which
implies that of (5.4.13). As observed, this is equivalent to the upper estimate in
(5.4.12).

Finally, we notice that the lower estimate in (5.4.12) is a consequence of the
upper estimate as in the case of the Littlewood–Paley operators ∆ j. Indeed, we need
to observe that in view of (5.4.6) we have∣∣〈 f ,g

〉∣∣ =
∣∣〈∑

k
Dk( f ),∑

k′
Dk′(g)

〉∣∣
=
∣∣∣∑

k
∑
k′

〈
Dk( f ),Dk′(g)

〉∣∣∣
=
∣∣∣∑

k

〈
Dk( f ),Dk(g)

〉∣∣∣ (Exercise 5.4.6(a))

≤
∫

Rn
∑
k
|Dk( f )(x)| |Dk(g)(x)|dx

≤
∫

Rn
S( f )(x)S(g)(x)dx (Cauchy–Schwarz inequality)

≤
∥∥S( f )

∥∥
Lp

∥∥S(g)
∥∥

Lp′ (Hölder’s inequality)

≤
∥∥S( f )

∥∥
Lp cp′,n

∥∥g
∥∥

Lp′ .

Taking the supremum over all functions g on Rn with Lp′ norm at most 1, we obtain
that f gives rise to a bounded linear functional on Lp′ . It follows by the Riesz repre-
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sentation theorem that f must be an Lp function that satisfies the lower estimate in
(5.4.12). �

5.4.4 Almost Orthogonality Between the Littlewood–Paley
Operators and the Dyadic Martingale Difference Operators

Next, we discuss connections between the Littlewood–Paley operators ∆ j and the
dyadic martingale difference operators Dk. It turns out that these operators are al-
most orthogonal in the sense that the L2 operator norm of the composition Dk∆ j
decays exponentially as the indices j and k get farther away from each other.

For the purposes of the next theorem we define the Littlewood–Paley operators
∆ j as convolution operators with the function Ψ2− j , where

Ψ̂(ξ ) = Φ̂(ξ )− Φ̂(2ξ )

and Φ is a fixed radial Schwartz function whose Fourier transform Φ̂ is real-valued,
supported in the ball |ξ | < 2, and equal to 1 on the ball |ξ | < 1. In this case we
clearly have the identity

∑
j∈Z

Ψ̂(2− j
ξ ) = 1, ξ 6= 0 .

Then we have the following theorem.

Theorem 5.4.8. There exists a constant C such that for every k, j in Z the following
estimate on the operator norm of Dk∆ j : L2(Rn)→ L2(Rn) is valid:∥∥Dk∆ j

∥∥
L2→L2 =

∥∥∆ jDk
∥∥

L2→L2 ≤C 2−
1
2 | j−k|. (5.4.16)

Proof. Since Ψ is a radial function, it follows that ∆ j is equal to its transpose oper-
ator on L2. Moreover, the operator Dk is also equal to its transpose. Thus

(Dk∆ j)t = ∆ jDk

and it therefore suffices to prove only that∥∥Dk∆ j
∥∥

L2→L2 ≤C2−
1
2 | j−k| . (5.4.17)

By a simple dilation argument it suffices to prove (5.4.17) when k = 0. In this
case we have the estimate∥∥D0∆ j

∥∥
L2→L2 =

∥∥E0∆ j −E−1∆ j
∥∥

L2→L2

≤
∥∥E0∆ j −∆ j

∥∥
L2→L2 +

∥∥E−1∆ j −∆ j
∥∥

L2→L2 ,

and since the Dk’s and ∆ j’s are self-transposes, we have
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∥∥

L2→L2 =
∥∥∆ jD0

∥∥
L2→L2 =

∥∥∆ jE0−∆ jE−1
∥∥

L2→L2

≤
∥∥∆ jE0−E0

∥∥
L2→L2 +

∥∥∆ jE−1−E0
∥∥

L2→L2 .

Estimate (5.4.17) when k = 0 will be a consequence of the pair of inequalities∥∥E0∆ j −∆ j
∥∥

L2→L2 +
∥∥E−1∆ j −∆ j

∥∥
L2→L2 ≤C2 j for j ≤ 0, (5.4.18)∥∥∆ jE0−E0

∥∥
L2→L2 +

∥∥∆ jE−1−E0
∥∥

L2→L2 ≤C2−
1
2 j for j ≥ 0. (5.4.19)

We start by proving (5.4.18). We consider only the term E0∆ j −∆ j, since the term
E−1∆ j −∆ j is similar. Let f ∈ L2(Rn). Then∥∥E0∆ j( f )−∆ j( f )

∥∥2
L2

= ∑
Q∈D0

∥∥ f ∗Ψ2− j −Avg
Q

( f ∗Ψ2− j)
∥∥2

L2(Q)

≤ ∑
Q∈D0

∫
Q

∫
Q
|( f ∗Ψ2− j)(x)− ( f ∗Ψ2− j)(t)|2 dt dx

≤ 3 ∑
Q∈D0

∫
Q

∫
Q

(∫
5
√

nQ
| f (y)||Ψ2− j(x− y)|dy

)2

dt dx

+3 ∑
Q∈D0

∫
Q

∫
Q

(∫
5
√

nQ
| f (y)||Ψ2− j(t− y)|dy

)2

dt dx

+3 ∑
Q∈D0

∫
Q

∫
Q

(∫
(5
√

nQ)c
| f (y)|2 jn+ j|∇Ψ(2 j(ξx,t − y))|dy

)2

dt dx,

where ξx,t lies on the line segment between x and t. It is a simple fact that the sum
of the last three expressions is bounded by

C22 jn
∑

Q∈D0

∫
5
√

nQ
| f (y)|2 dy+CM22 j

∑
Q∈D0

∫
Q

(∫
Rn

2 jn| f (y)|dy
(1+2 j|x− y|)M

)2

dx ,

which is clearly controlled by C22 j
∥∥ f
∥∥2

L2 . This estimate is useful when j ≤ 0.
We now turn to the proof of (5.4.19). We set S j = ∑k≤ j ∆ j. Since ∆ j is the differ-

ence of two S j’s, it suffices to prove (5.4.19), where ∆ j is replaced by S j. We work
only with the term S jE0−E0, since the other term can be treated similarly. We have

∥∥S jE0( f )−E0( f )
∥∥2

L2 =
∥∥∥ ∑

Q∈D0

(Avg
Q

f )(Φ2− j ∗χQ−χQ)
∥∥∥2

L2

≤ 2
∥∥∥ ∑

Q∈D0

(Avg
Q

f )(Φ2− j ∗χQ−χQ)χ5
√

nQ

∥∥∥2

L2

+2
∥∥∥ ∑

Q∈D0

(Avg
Q

f )(Φ2− j ∗χQ)χ(5
√

nQ)c

∥∥∥2

L2
.
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Since the functions appearing inside the sum in the first term have supports with
bounded overlap, we obtain∥∥∥ ∑

Q∈D0

(Avg
Q

f )(Φ2− j ∗χQ−χQ)χ5
√

nQ

∥∥∥2

L2
≤C ∑

Q∈D0

(Avg
Q
| f |)2∥∥Φ2− j ∗χQ−χQ

∥∥2
L2 ,

and the crucial observation is that∥∥Φ2− j ∗χQ−χQ
∥∥2

L2 ≤C 2− j,

a consequence of Plancherel’s identity and the fact that |1− Φ̂(2− jξ )| ≤ χ|ξ |≥2 j .
Putting these observations together, we deduce∥∥∥ ∑

Q∈D0

(Avg
Q

f )(Φ2− j ∗χQ−χQ)χ3Q

∥∥∥2

L2
≤C ∑

Q∈D0

(Avg
Q
| f |)22− j ≤C 2− j∥∥ f

∥∥2
L2 ,

and the required conclusion will be proved if we can show that∥∥∥ ∑
Q∈D0

(Avg
Q

f )(Φ2− j ∗χQ)χ(3Q)c

∥∥∥2

L2
≤C2− j∥∥ f

∥∥2
L2 . (5.4.20)

We prove (5.4.20) by using an estimate based purely on size. Let cQ be the center of
the dyadic cube Q. For x /∈ 3Q we have the estimate

|(Φ2− j ∗χQ)(x)| ≤ CM2 jn

(1+2 j|x− cQ|)M ≤ CM2 jn

(1+2 j)M/2

1
(1+ |x− cQ|)M/2 ,

since both 2 j ≥ 1, and |x−cQ| ≥ 1. We now control the left-hand side of (5.4.20) by

2 j(2n−M)
∑

Q∈D0

∑
Q′∈D0

(Avg
Q
| f |)(Avg

Q′
| f |)

∫
Rn

CM dx

(1+|x−cQ|)
M
2 (1+|x−cQ′ |)M

2

≤ 2 j(2n−M)
∑

Q∈D0

∑
Q′∈D0

(Avg
Q
| f |)(Avg

Q′
| f |)

(1+ |cQ− cQ′ |)M
4

∫
Rn

CM dx

(1+|x−cQ|)
M
4 (1+|x−cQ′ |)M

4

≤ 2 j(2n−M)
∑

Q∈D0

∑
Q′∈D0

CM

(1+ |cQ− cQ′ |)M
4

(∫
Q
| f (y)|2 dy+

∫
Q′
| f (y)|2 dy

)
≤CM2 j(2n−M)

∑
Q∈D0

∫
Q
| f (y)|2 dy

= CM2 j(2n−M)∥∥ f
∥∥2

L2 .

By taking M large enough, we obtain (5.4.20) and thus (5.4.19). �
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Exercises

5.4.1. (a) Prove that no dyadic cube in Rn contains the point 0 in its interior.
(b) Prove that every interval in R is contained in the union of two dyadic intervals
of at most its length.
(c) Prove that every cube in Rn is contained in the union of 2n dyadic cubes of at
most its side length.

5.4.2. Show that the set [m2−k,(m + 2)2−k) is a dyadic interval if and only if m is
an even integer. More generally, the set [m2−k,(m + s)2−k) is a dyadic interval if
and only if s is a power of 2 and m is an integer multiple of s.

5.4.3. Let Σ be the set of all σ = (σ1, . . . ,σn) that satisfy σ j ∈ {0, 1
2 , 2

3} for all j.
Show that every cube Q in Rn is contained in a cube of the form σ +R, where σ is
in Σ and R is dyadic and has side length comparable to that of Q.

5.4.4. Show that the martingale maximal function f 7→ supk |Ek( f )| is weak type
(1,1) with constant at most 1.

5.4.5. (a) Show that EN( f )→ f a.e. as N → ∞ for all f ∈ L1
loc(R

n).
(b) Prove that EN( f )→ f in Lp as N → ∞ for all f ∈ Lp(Rn) whenever 1 < p≤ ∞.

5.4.6. (a) Show that for functions f and g, if k 6= k′, then we have〈
Dk( f ),Dk′(g)

〉
= 0 .

(b) Conclude that for functions f j we have∥∥∥∑
j

D j( f j)
∥∥∥

L2
=
(
∑

j

∥∥D j( f j)
∥∥2

L2

) 1
2
.

(c) Use Theorem 5.4.8 to show that∥∥∥∑
j

D j∆ j+rD j

∥∥∥
L2→L2

≤C2−
1
2 |r| .

5.4.7. (Grafakos and Kalton [106] ) Let D j, ∆ j be as in Exercise 5.4.6.
(a) Prove that the operator

Vr = ∑
j∈Z

D j∆ j+r

is L2 bounded with norm at most a multiple of 2−
1
2 |r|.

(b) Show that Vr is Lp bounded for all 1 < p < ∞ with a constant depending only on
p and n.
(c) Conclude that for each 1 < p < ∞ there is a constant cp > 0 such that Vr is
bounded on Lp(Rn) with norm at most a multiple of 2−cp |r|.[
Hint: Part (a): Write ∆ j = ∆ j∆̃ j, where ∆̃ j is another family of Littlewood–Paley

operators and use Exercise 5.4.6(b). Part (b): Use duality and (5.1.20).
]
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5.5 The Spherical Maximal Function

In this section we discuss yet another consequence of the Littlewood–Paley theory,
the boundedness of the spherical maximal operator.

5.5.1 Introduction of the Spherical Maximal Function

We denote throughout this section by dσ the normalized Lebesgue measure on the
sphere Sn−1. For f in Lp(Rn), 1≤ p≤ ∞, we define the maximal operator

M ( f )(x) = sup
t>0

∣∣∣∣∫Sn−1
f (x− tθ)dσ(θ)

∣∣∣∣ (5.5.1)

and we observe that by Minkowski’s integral inequality each expression inside the
supremum in (5.5.1) is well defined for f ∈ Lp for almost all x ∈ Rn. The operator
M is called the spherical maximal function. It is unclear at this point for which
functions f we have M ( f ) < ∞ a.e. and for which values of p < ∞ the maximal
inequality ∥∥M ( f )

∥∥
Lp(Rn) ≤Cp

∥∥ f
∥∥

Lp(Rn) (5.5.2)

holds for all functions f ∈ Lp(Rn).
Spherical averages often make their appearance as solutions of partial differential

equations. For instance, the spherical average

u(x, t) =
1

4π

∫
S2

t f (x− ty)dσ(y) (5.5.3)

is a solution of the wave equation

∆x(u)(x, t) =
∂ 2u
∂ t2 (x, t) ,

u(x,0) = 0 ,

∂u
∂ t

(x,0) = f (x) ,

in R3. The introduction of the spherical maximal function is motivated by the fact
that the related spherical average

u(x, t) =
1

4π

∫
S2

f (x− ty)dσ(y) (5.5.4)

solves Darboux’s equation
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∆x(u)(x, t) =
∂ 2u
∂ t2 (x, t)+

2
t

∂u
∂ t

(x, t) ,

u(x,0) = f (x) ,
∂u
∂ t

(x,0) = 0 ,

in R3. It is rather remarkable that the Fourier transform can be used to study almost
everywhere convergence for several kinds of maximal averaging operators such as
the spherical averages in (5.5.4). This is achieved via the boundedness of the cor-
responding maximal operator; the maximal operator controlling the averages over
Sn−1 is given in (5.5.1).

Before we begin the analysis of the spherical maximal function, we recall that

d̂σ(ξ ) =
2π

|ξ | n−2
2

J n−2
2

(2π|ξ |) ,

as shown in Appendix B.4. Using the estimates in Appendices B.6 and B.7 and the
identity

d
dt

Jν(t) =
1
2
(Jν−1(t)− Jν+1(t))

derived in Appendix B.2, we deduce the crucial estimate

|d̂σ(ξ )|+ |∇d̂σ(ξ )| ≤ Cn

(1+ |ξ |) n−1
2

. (5.5.5)

Theorem 5.5.1. Let n≥ 3. For each n
n−1 < p≤ ∞, there is a constant Cp such that∥∥M ( f )

∥∥
Lp(Rn) ≤Cp

∥∥ f
∥∥

Lp(Rn) (5.5.6)

holds for all f in Lp(Rn). It follows that for all n
n−1 < p ≤ ∞ and f ∈ Lp(Rn) we

have
lim
t→0

1
ωn−1

∫
Sn−1

f (x− tθ)dσ(θ) = f (x) (5.5.7)

for almost all x ∈ Rn. Here we set ωn−1 = |Sn−1|.

The proof of this theorem is presented in the rest of this section. We set m(ξ ) =
d̂σ(ξ ). Obviously m(ξ ) is a C ∞ function. To study the maximal multiplier operator

sup
t>0

∣∣( f̂ (ξ )m(tξ )
)∨∣∣

we decompose the multiplier m(ξ ) into radial pieces as follows: We fix a radial C ∞

function ϕ0 in Rn such that ϕ0(ξ ) = 1 when |ξ | ≤ 1 and ϕ0(ξ ) = 0 when |ξ | ≥ 2.
For j ≥ 1 we let

ϕ j(ξ ) = ϕ0(2− j
ξ )−ϕ0(21− j

ξ ) (5.5.8)

and we observe that ϕ j(ξ ) is localized near |ξ | ≈ 2 j. Then we have
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∞

∑
j=0

ϕ j = 1 .

Set m j = ϕ jm for all j ≥ 0. The m j’s are C ∞
0 functions that satisfy

m =
∞

∑
j=0

m j .

Also, the following estimate is valid:

M ( f )≤
∞

∑
j=0

M j( f ) ,

where
M j( f )(x) = sup

t>0

∣∣( f̂ (ξ )m j(tξ )
)∨(x)

∣∣ .
Since the function m0 is C ∞

0 , we have that M0 maps Lp to itself for all 1 < p ≤ ∞.
(See Exercise 5.5.1.)

We define g-functions associated with m j as follows:

G j( f )(x) =
(∫

∞

0
|A j,t( f )(x)|2 dt

t

)1
2
,

where A j,t( f )(x) =
(

f̂ (ξ )m j(tξ )
)∨(x).

5.5.2 The First Key Lemma

We have the following lemma:

Lemma 5.5.2. There is a constant C = C(n) < ∞ such that for any j ≥ 1 we have
the estimate ∥∥M j( f )

∥∥
L2 ≤C2( 1

2−
n−1

2 ) j∥∥ f
∥∥

L2

for all functions f in L2(Rn).

Proof. We define a function

m̃ j(ξ ) = ξ ·∇m j(ξ ) ,

we let Ã j,t( f )(x) =
(

f̂ (ξ ) m̃ j(tξ )
)∨(x), and we let

G̃ j( f )(x) =
(∫

∞

0
|Ã j,t( f )(x)|2 dt

t

)1
2

be the associated g-function. For f ∈ L2(Rn), the identity
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s
dA j,s

ds
( f ) = Ã j,s( f )

is clearly valid for all j and s. Since A j,s( f ) = f ∗ (m∨
j )s and m∨

j has integral zero
for j ≥ 1 (here (m∨

j )s(x) = s−nm∨
j (s

−1x)), it follows from Corollary 2.1.19 that

lim
s→0

A j,s( f )(x) = 0

for all x∈Rn \E, where E is some set of Lebesgue measure zero. By the fundamen-
tal theorem of calculus for x ∈ Rn \E we deduce that

(A j,t( f )(x))2 =
∫ t

0

d
ds

(A j,s( f )(x))2 ds

= 2
∫ t

0
A j,s( f )(x)s

dA j,s

ds
( f )(x)

ds
s

= 2
∫ t

0
A j,s( f )(x)Ã j,s( f )(x)

ds
s

,

from which we obtain the estimate∣∣A j,t( f )(x)
∣∣2 ≤ 2

∫
∞

0

∣∣A j,s( f )(x)
∣∣ ∣∣Ã j,s( f )(x)

∣∣ ds
s

. (5.5.9)

Taking the supremum over all t > 0 on the left-hand side in (5.5.9) and integrating
over Rn, we obtain the estimate

∥∥M j( f )
∥∥2

L2 ≤ 2
∫

Rn

∣∣∣∣∫ ∞

0
A j,s( f )(x)Ã j,s( f )(x)

ds
s

∣∣∣∣2dx

≤ 2
∥∥G j( f )

∥∥
L2

∥∥G̃ j( f )
∥∥

L2 ,

where the last inequality follows by applying the Cauchy–Schwarz inequality twice.
Next we claim that as a consequence of (5.5.5) we have for some c, c̃ < ∞,∥∥m j

∥∥
L∞ ≤ c2− j n−1

2 and
∥∥m̃ j

∥∥
L∞ ≤ c̃2 j(1− n−1

2 ) .

Using these facts together with the facts that the functions m j and m̃ j are sup-
ported in the annuli 2 j−1 ≤ |ξ | ≤ 2 j+1, we obtain that the g-functions G j and G̃ j

are L2 bounded with norms at most a constant multiple of the quantities 2− j n−1
2 and

2 j(1− n−1
2 ), respectively; see Exercise 5.5.2. Note that since n≥ 3, both exponents are

negative. We conclude that∥∥M j( f )
∥∥

L2 ≤C2 j( 1
2−

n−1
2 )∥∥ f

∥∥
L2 ,

which is what we needed to prove. �
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5.5.3 The Second Key Lemma

Next we need the following lemma.

Lemma 5.5.3. There exists a constant C = C(n) < ∞ such that for all j ≥ 1 and for
all f in L1(Rn) we have ∥∥M j( f )

∥∥
L1,∞ ≤C 2 j∥∥ f

∥∥
L1 .

Proof. Let K( j) = (ϕ j)∨ ∗dσ = Φ2− j ∗dσ , where Φ is a Schwartz function. Setting

(K( j))t(x) = t−nK( j)(t−1x)

we have that
M j( f ) = sup

t>0
|(K( j))t ∗ f | . (5.5.10)

The proof of the lemma is based on the estimate:

M j( f )≤C 2 j M( f ) (5.5.11)

and the weak type (1,1) boundedness of the Hardy–Littlewood maximal operator
M (Theorem 2.1.6). To establish (5.5.11), it suffices to show that for any M > n
there is a constant CM < ∞ such that

|K( j)(x)|= |(Φ2− j ∗dσ)(x)| ≤ CM 2 j

(1+ |x|)M . (5.5.12)

Then Theorem 2.1.10 yields (5.5.11) and hence the required conclusion.
Using the fact that Φ is a Schwartz function, we have for every N > 0,

|(Φ2− j ∗dσ)(x)| ≤CN

∫
Sn−1

2n j dσ(y)
(1+2 j|x− y|)N .

We pick an N to depend on M (5.5.12); in fact, any N > M suffices for our purposes.
We split the last integral into the regions

S−1(x) = Sn−1∩{y ∈ Rn : 2 j|x− y| ≤ 1}

and for r ≥ 0,

Sr(x) = Sn−1∩{y ∈ Rn : 2r < 2 j|x− y| ≤ 2r+1} .

The key observation is that whenever B = B(x,R) is a ball in Rn, then the spherical
measure of the set Sn−1∩B(x,R) is at most a dimensional constant multiple of Rn−1.
This implies that the spherical measure of each Sr(x) is at most cn2(r+1− j)(n−1), an
estimate that is useful only when r ≤ j. Using this observation, together with the
fact that for y ∈ Sr(x) we have |x| ≤ 2r+1− j + 1, we obtain the following estimate
for the expression |(Φ2− j ∗dσ)(x)|:
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j

∑
r=−1

∫
Sr(x)

CN2n j dσ(y)
(1+2 j|x− y|)N +

∞

∑
r= j+1

∫
Sr(x)

CN2n j dσ(y)
(1+2 j|x− y|)N

≤C′
N2n j

[ j

∑
r=−1

dσ(Sr(x))χB(0,3)(x)
2rN +

∞

∑
r= j+1

dσ(Sr(x))χB(0,2r+1− j+1)(x)

2rN

]

≤C′
N2n j

[ j

∑
r=−1

cn2(r+1− j)(n−1)χB(0,3)(x)
2rN +

∞

∑
r= j+1

ωn−1 χB(0,2r+2− j)(x)

2rN

]
≤CN,n

[
2 j

χB(0,3)(x)+2n j
∞

∑
r= j+1

1
2rN

(1+2r+2− j)M

(1+ |x|)M

]

≤C′
M,n

2 j

(1+ |x|)M

[
1+

∞

∑
r= j+1

2(r− j)(M−N)

2 j(N+1−n)

]

≤
C′′

M,n2 j

(1+ |x|)M ,

where we used that N > M > n. This establishes (5.5.12). �

5.5.4 Completion of the Proof

It remains to combine the previous ingredients to complete the proof of the theorem.
Interpolating between the L2 → L2 and L1 → L1,∞ estimates obtained in Lemmas
5.5.2 and 5.5.3, we obtain∥∥M j( f )

∥∥
Lp(Rn) ≤Cp2( n

p−(n−1)) j∥∥ f
∥∥

Lp(Rn)

for all 1 < p ≤ 2. When p > n
n−1 the series ∑

∞
j=1 2( n

p−(n−1)) j converges and we
conclude that M is Lp bounded for these p’s. The boundedness of M on Lp for
p > 2 follows by interpolation between Lq for q < 2 and the estimate M : L∞ → L∞.

Exercises

5.5.1. (a) Let m be in L1(Rn)∩L∞(Rn) that satisfies |m∨(x)| ≤C(1 + |x|)−n−δ for
some δ > 0. Show that the maximal multiplier

Mm( f )(x) = sup
t>0

∣∣( f̂ (ξ )m(tξ )
)∨(x)

∣∣
is Lp bounded for all 1 < p < ∞.
(b) Obtain the same conclusion when ξ α m(ξ ) is in L1(Rn) for all multi-indices α
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with |α| ≤ [ n
2 ]+1.[

Hint: Control Mm by the Hardy–Littlewood maximal operator.
]

5.5.2. Suppose that the function m is supported in the annulus R ≤ |ξ | ≤ 2R and is
bounded by A. Show that the g-function

G( f )(x) =
(∫

∞

0
|(m(tξ ) f̂ (ξ ))∨(x)|2 dt

t

)1
2

maps L2(Rn) to L2(Rn) with bound at most A
√

log2.

5.5.3. (Rubio de Francia [226] ) Use the idea of Lemma 5.5.2 to show that if m(ξ )
satisfies |m(ξ )| ≤ (1 + |ξ |)−a and |∇m(ξ )| ≤ (1 + |ξ |)−b and a + b > 1, then the
maximal operator

Mm( f )(x) = sup
t>0

∣∣( f̂ (ξ )m(tξ )
)∨(x)

∣∣
is bounded from L2(Rn) to itself.[
Hint: Use that

Mm ≤
∞

∑
j=0

Mm, j ,

where Mm, j corresponds to the multiplier ϕ jm; here ϕ j is as in (5.5.8). Show that∥∥Mm, j( f )
∥∥

L2 ≤C
∥∥ϕ jm

∥∥ 1
2
L∞

∥∥ϕ jm̃
∥∥ 1

2
L∞

∥∥ f
∥∥

L2 ≤C 2 j 1−(a+b)
2
∥∥ f
∥∥

L2 ,

where m̃(ξ ) = ξ ·∇m(ξ ).
]

5.5.4. (Rubio de Francia [226] ) Observe that the proof of Theorem 5.5.1 gives
the following more general result: If m(ξ ) is the Fourier transform of a compactly
supported Borel measure and satisfies |m(ξ )| ≤ (1 + |ξ |)−a for some a > 0 and all
ξ ∈ Rn, then the maximal operator of Exercise 5.5.3 maps Lp(Rn) to itself when
p > 2a+1

2a .

5.5.5. Show that Theorem 5.5.1 is false when n = 1, that is, show that the maximal
operator

M1( f )(x) = sup
t>0

| f (x+ t)+ f (x− t)|
2

is unbounded on Lp(R) for all p < ∞.

5.5.6. Show that Theorem 5.5.1 is false when n≥ 2 and p≤ n
n−1 .[

Hint: Choose a compactly supported and radial function equal to |y|1−n(− log |y|)−1

when |y| ≤ 1/2.
]
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5.6 Wavelets

We are concerned with orthonormal bases of L2(R) generated by translations and
dilations of a single function such as the Haar functions we encountered in Section
5.4. The Haar functions are generated by integer translations and dyadic dilations
of the single function χ[0, 1

2 ) − χ[ 1
2 ,1). This function is not smooth, and the main

question addressed in this section is whether there exist smooth analogues of the
Haar functions.

Definition 5.6.1. A square integrable function ϕ on Rn is called a wavelet if the
family of functions

ϕν ,k(x) = 2
νn
2 ϕ(2ν x− k) ,

where ν ranges over Z and k over Zn, is an orthonormal basis of L2(Rn). Note that
the Fourier transform of ϕν ,k is given by

ϕ̂ν ,k(ξ ) = 2−
νn
2 ϕ̂(2−ν

ξ )e−2πi2−ν ξ ·k . (5.6.1)

Rephrasing the question posed earlier, the main issue addressed in this section is
whether smooth wavelets actually exist. Before we embark on this topic, we recall
that we have already encountered examples of nonsmooth wavelets.

Example 5.6.2. (The Haar wavelet) Recall the family of functions

hI(x) = |I|−
1
2 (χIL −χIR) ,

where I ranges over D (the set of all dyadic intervals) and IL is the left part of I and
IR is the right part of I. Note that if I = [2−ν k,2−ν(k +1)), then

hI(x) = 2
ν
2 ϕ(2ν x− k) ,

where
ϕ(x) = χ[0, 1

2 )−χ[ 1
2 ,1) . (5.6.2)

The single function ϕ in (5.6.2) therefore generates the Haar basis by taking trans-
lations and dilations. Moreover, we observed in Section 5.4 that the family {hI}I is
orthonormal. In Theorem 5.4.6 we obtained the representation

f = ∑
I∈D

〈
f ,hI

〉
hI in L2 ,

which proves the completeness of the system {hI}I∈D in L2(R).
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5.6.1 Some Preliminary Facts

Before we look at more examples, we make some observations. We begin with the
following useful fact.

Proposition 5.6.3. Let g ∈ L1(Rn). Then

ĝ(m) = 0 for all m ∈ Zn \{0}

if and only if

∑
k∈Zn

g(x+ k) =
∫

Rn
g(t)dt

for almost all x ∈ Tn.

Proof. We define the periodized function

G(x) = ∑
k∈Zn

g(x+ k) ,

which is easily shown to be in L1(Tn). Moreover, we have

Ĝ(m) = ĝ(m)

for all m ∈ Zn, where Ĝ(m) denotes the mth Fourier coefficient of G and ĝ(m) de-
notes the Fourier transform of g at ξ = m. If ĝ(m) = 0 for all m ∈ Zn \ {0}, then
all the Fourier coefficients of G (except for m = 0) vanish, which means that the
sequence {Ĝ}m∈Zn lies in `1(Zn) and hence Fourier inversion applies. We conclude
that for almost all x ∈ Tn we have

G(x) = ∑
m∈Zn

Ĝ(m)e2πim·x = Ĝ(0) = ĝ(0) =
∫

Rn
g(t)dt .

Conversely, if G is a constant, then Ĝ(m) = 0 for all m ∈ Zn \{0}, and so the same
holds for g. �

A consequence of the previous proposition is the following.

Proposition 5.6.4. Let ϕ ∈ L2(Rn). Then the sequence

{ϕ(x− k)}k∈Zn (5.6.3)

forms an orthonormal set in L2(Rn) if and only if

∑
k∈Zn

|ϕ̂(ξ + k)|2 = 1 (5.6.4)

for almost all ξ ∈ Rn.
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Proof. Observe that either (5.6.4) or the hypothesis that the sequence in (5.6.3) is
orthonormal implies that

∥∥ϕ
∥∥

L2 = 1. Also the orthonormality condition

∫
Rn

ϕ(x− j)ϕ(x− k)dx =

{
1 when j = k,
0 when j 6= k,

is equivalent to

∫
Rn

e−2πik·ξ
ϕ̂(ξ )e−2πi j·ξ ϕ̂(ξ )dξ = (|ϕ̂|2) (̂k− j) =

{
1 when j = k,
0 when j 6= k,

in view of Parseval’s identity. Proposition 5.6.3 gives that the latter is equivalent to

∑
k∈Zn

|ϕ̂(ξ + k)|2 =
∫

Rn
|ϕ̂(t)|2 dt = 1

for almost all ξ ∈ Rn. �

Corollary 5.6.5. Let ϕ ∈ L1(Rn) and suppose that the sequence

{ϕ(x− k)}k∈Zn (5.6.5)

forms an orthonormal set in L2(Rn). Then the measure of the support of ϕ̂ is at least
1, that is,

|supp ϕ̂| ≥ 1 . (5.6.6)

If |supp ϕ̂|= 1, then |ϕ̂(ξ )|= 1 for almost all ξ ∈ supp ϕ̂ .

Proof. It follows from (5.6.4) that |ϕ̂| ≤ 1 for almost all ξ ∈ Rn. Therefore,

|supp ϕ̂| ≥
∫

Rn
|ϕ̂(ξ )|2 dξ =

∫
Tn

∑
k∈Zn

|ϕ̂(ξ + k)|2 dξ =
∫

Tn
1dξ = 1 .

It follows from the previous series of inequalities that if equality holds in (5.6.6),
then |ϕ̂(ξ )|= 1 for almost all ξ in supp ϕ̂ . �

5.6.2 Construction of a Nonsmooth Wavelet

Having established these preliminary facts, we now start searching for examples of
wavelets. It follows from Corollary 5.6.5 that the support of the Fourier transform of
a wavelet must have measure at least 1. It is reasonable to ask whether this support
can have measure exactly 1. Example 5.6.6 indicates that this can indeed happen. As
dictated by the same corollary, the Fourier transform of such a wavelet must satisfy
|ϕ̂(ξ )| = 1 for almost all ξ ∈ supp ϕ̂ , so it is natural to look for a wavelet ϕ such
that ϕ̂ = χA for some set A. We can start by asking whether the function
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ϕ̂ = χ[− 1
2 , 1

2 ]

on R is an appropriate Fourier transform of a wavelet, but a moment’s thought shows
that the functions ϕµ,0 and ϕν ,0 cannot be orthogonal to each other when µ 6= 0.
The problem here is that the Fourier transforms of the functions ϕν ,k cluster near
the origin and do not allow for the needed orthogonality. We can fix this problem
by considering a function whose Fourier transform vanishes near the origin. Among
such functions, a natural candidate is

χ[−1,− 1
2 ) + χ[ 1

2 ,1) , (5.6.7)

which is indeed the Fourier transform of a wavelet.

Example 5.6.6. Let A = [−1,− 1
2 )
⋃

[ 1
2 ,1) and define a function ϕ on Rn by setting

ϕ̂ = χAn .

Then we assert that the family of functions

{2νn/2
ϕ(2ν x− k)}k∈Zn,ν∈Z

is an orthonormal basis of L2(Rn) (i.e., the function ϕ is a wavelet). This is an
example of a wavelet with minimally supported frequency.

To see this assertion, first note that {ϕ0,k}k∈Zn is an orthonormal set, since (5.6.4)
is easily seen to hold. Dilating by 2ν , it follows that {ϕν ,k}k∈Zn is also an orthonor-
mal set for every fixed ν ∈ Z. Second, observe that if µ 6= ν , then

supp ϕ̂ν ,k ∩ supp ϕ̂µ,l = /0 . (5.6.8)

This implies that the family {2νn/2ϕ(2ν x− k)}k∈Zn,ν∈Z is also orthonormal.
Finally, we need to show completeness. Here we use Exercise 5.6.2 to write

(ϕ2−ν ∗ f )̂ (ξ ) = 2−νn
∑

k∈Zn
(ϕ2−ν ∗ f )(− k

2ν )e2πi k
2ν ξ , ξ ∈ An , (5.6.9)

where the series converges in L2(An). Next we observe that the following identity
holds for ϕ̂:

∑
ν∈Z

|ϕ̂(2ν
ξ )|2 = 1 , ξ 6= 0 . (5.6.10)

This implies that for all f in S (Rn) we have

f = ∑
ν∈Z

ϕ2−ν ∗ϕ2−ν ∗ f =
[

∑
ν∈Z

ϕ̂2−ν (ϕ2−ν ∗ f )
]̂∨

, (5.6.11)

where the series converges in L2. Inserting in (5.6.11) the value of (ϕ2−ν ∗ f )̂ given
in identity (5.6.9), we obtain
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f (x) = 2−νn
∑

ν∈Z
∑

k∈Zn
(ϕ2−ν ∗ f )(− k

2ν )
[
ϕ̂2−ν (ξ )e2πi k

2ν ξ
]∨(x)

= 2−νn
∑

ν∈Z
∑

k∈Zn
(ϕ2−ν ∗ f )(− k

2ν )ϕ2−ν (x+ k
2ν )

= ∑
ν∈Z

∑
k∈Zn

〈
f ,ϕν ,k

〉
ϕν ,k(x) ,

where the double series converges in L2(Rn). This shows that every Schwartz func-
tion can be written as an L2 sum of ϕν ,k’s, and by density the same is true for every
square integrable f .

5.6.3 Construction of a Smooth Wavelet

The wavelet basis of L2(Rn) constructed in Example 5.6.6 is forced to have slow
decay at infinity, since the Fourier transforms of the elements of the basis are non-
smooth. Smoothing out the function ϕ̂ but still expecting ϕ to be wavelet is a bit
tricky, since property (5.6.8) may be violated when µ 6= ν , and moreover, (5.6.4)
may be destroyed. These two obstacles are overcome by the careful construction of
the next theorem.

Theorem 5.6.7. There exists a Schwartz function ϕ on the real line that is a wavelet,
that is, the collection of functions {ϕν ,k}k,ν∈Z with ϕν ,k(x) = 2

ν
2 ϕ(2ν x− k) is an

orthonormal basis of L2(R). Moreover, the function ϕ can be constructed so that its
Fourier transform satisfies

supp ϕ̂ ⊆
[
− 4

3 ,− 1
3

]
∪
[ 1

3 , 4
3

]
. (5.6.12)

Note that in view of condition (5.6.12), the function ϕ must have vanishing mo-
ments of all orders.

Proof. We start with an odd smooth real-valued function Θ on the real line such that
Θ(t) = π

4 for t ≥ 1
6 −10−10 and such that Θ is increasing on the interval

[
− 1

6 , 1
6

]
.

We set
α(t) = sin(Θ(t)+ π

4 ), β (t) = cos(Θ(t)+ π

4 ),

and we observe that
α(t)2 +β (t)2 = 1

and that
α(−t) = β (t)

for all real t. Next we introduce the smooth function ω defined via
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ω(t) =


β (− t

2 −
1
2 ) = α( t

2 + 1
2 ) when t ∈

[
− 4

3 ,− 2
3

]
,

α(−t− 1
2 ) = β (t + 1

2 ) when t ∈
[
− 2

3 ,− 1
3

]
,

α(t− 1
2 ) when t ∈

[ 1
3 , 2

3

]
,

β ( t
2 −

1
2 ) when t ∈

[ 2
3 , 4

3

]
,

on the interval
[
− 4

3 ,− 1
3

]⋃[ 1
3 , 4

3

]
. Note that ω is an even function. Finally we define

the function ϕ by letting
ϕ̂(ξ ) = e−πiξ

ω(ξ ) ,

and we note that

ϕ(x) =
∫

R
ω(ξ )e2πiξ (x− 1

2 )dξ = 2
∫

∞

0
ω(ξ )cos

(
2π(x− 1

2 )ξ
)

dξ .

It follows that the function ϕ is symmetric about the number 1
2 , that is, we have

ϕ(x) = ϕ(1− x)

for all x ∈ R. Note that ϕ is a Schwartz function whose Fourier transform is sup-
ported in the set

[
− 4

3 ,− 1
3

]⋃[ 1
3 , 4

3

]
.

Having defined ϕ , we proceed by showing that it is a wavelet. In view of identity
(5.6.1) we have that ϕ̂ν ,k is supported in the set 1

3 2ν ≤ |ξ | ≤ 4
3 2ν , while ϕ̂µ, j is

supported in the set 1
3 2µ ≤ |ξ | ≤ 4

3 2µ . The intersection of these sets has measure
zero when |µ − ν | ≥ 2, which implies that such wavelets are orthogonal to each
other. Therefore, it suffices to verify orthogonality between adjacent scales (i.e.,
when ν = µ and ν = µ +1).

We begin with the case ν = µ , which, by a simple dilation, is reduced to the case
ν = µ = 0. Thus to obtain the orthogonality of the functions ϕ0,k(x) = ϕ(x−k) and
ϕ0, j(x) = ϕ(x− j), in view of Proposition 5.6.4, it suffices to show that

∑
k∈Z

|ϕ̂(ξ + k)|2 = 1 . (5.6.13)

Since the sum in (5.6.13) is 1-periodic, we check that is equal to 1 only for ξ in[ 1
3 , 4

3

]
. First for ξ ∈

[ 1
3 , 2

3

]
, the sum in (5.6.13) is equal to

|ϕ̂(ξ )|2 + |ϕ̂(ξ −1)|2 = ω(ξ )2 +ω(ξ −1)2

= α(ξ − 1
2 )2 +β ((ξ −1)+ 1

2 )2

= 1

from the definition of ω . A similar argument also holds for ξ ∈
[ 2

3 , 4
3

]
, and this

completes the proof of (5.6.13). As a consequence of this identity we also obtain
that the functions ϕ0,k have L2 norm equal to 1, and thus so have the functions ϕν ,k,
via a change of variables.

Next we prove the orthogonality of the functions ϕν ,k and ϕν+1, j for general
ν ,k, j ∈ Z. We begin by observing the validity of the following identity:
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ϕ̂(ξ )ϕ̂( ξ

2 ) =

{
e−πiξ/2β ( ξ

2 −
1
2 )α( ξ

2 −
1
2 ) when 2

3 ≤ ξ ≤ 4
3 ,

e−πiξ/2α( ξ

2 + 1
2 )β ( ξ

2 + 1
2 ) when − 4

3 ≤ ξ ≤− 2
3 .

(5.6.14)

Indeed, from the definition of ϕ , it follows that

ϕ̂(ξ )ϕ̂( ξ

2 ) = e−πiξ/2
ω(ξ )ω( ξ

2 ) .

This function is supported in

{ξ ∈ R : 1
3 ≤ |ξ | ≤ 4

3}∩{ξ ∈ R : 2
3 ≤ |ξ | ≤ 8

3}= {ξ ∈ R : 2
3 ≤ |ξ | ≤ 4

3} ,

and on this set it is equal to

e−πiξ/2

{
β ( ξ

2 −
1
2 )α( ξ

2 −
1
2 ) when 2

3 ≤ ξ ≤ 4
3 ,

α( ξ

2 + 1
2 )β ( ξ

2 + 1
2 ) when − 4

3 ≤ ξ ≤− 2
3 ,

by the definition of ω . This establishes (5.6.14).
We now turn to the orthogonality of the functions ϕν ,k and ϕν+1, j for general

ν ,k, j ∈ Z. Using (5.6.1) and (5.6.14) we have

〈
ϕν ,k |ϕν+1, j

〉
=
〈
ϕ̂ν ,k | ϕ̂ν+1, j

〉
=
∫

R
2−

ν
2 ϕ̂(2−ν

ξ )e−2πi ξ k
2ν 2−

ν+1
2 ϕ̂(2−(ν+1)ξ )e−2πi ξ j

2ν+1 dξ

=
1√
2

∫
R

ϕ̂(ξ )ϕ̂( ξ

2 )e−2πiξ (k− j
2 ) dξ

=
1√
2

∫ − 2
3

− 4
3

α( ξ

2 + 1
2 )β ( ξ

2 + 1
2 )e−2πiξ (k− j

2 + 1
4 ) dξ

+
1√
2

∫ 4
3

2
3

α( ξ

2 −
1
2 )β ( ξ

2 −
1
2 )e−2πiξ (k− j

2 + 1
4 ) dξ

= 0 ,

where the last identity follows from the change of variables ξ = ξ ′−2 in the second-
to-last integral, which transforms its range of integration to

[ 2
3 , 4

3

]
and its integrand

to the negative of that of the last displayed integral.
Our final task is to show that the orthonormal system {ϕν ,k}ν ,k∈Z is complete.

We show this by proving that whenever a square-integrable function f satisfies〈
f |ϕν ,k

〉
= 0 (5.6.15)

for all ν ,k ∈ Z, then f must be zero. Suppose that (5.6.15) holds. Plancherel’s iden-
tity yields ∫

R
f̂ (ξ )2−

ν
2 ϕ̂(2−ν ξ )e−2πi2−ν ξ k dξ = 0
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for all ν ,k and thus∫
R

f̂ (2ν
ξ )ϕ̂(ξ )e2πiξ k dξ =

(
f̂ (2ν(·)) ϕ̂

)̂
(−k) = 0 (5.6.16)

for all ν ,k ∈ Z. It follows from Proposition 5.6.3 and (5.6.16) (with k = 0) that

∑
k∈Z

f̂ (2ν(ξ + k))ϕ̂(ξ + k) =
∫

R
f̂ (2ν

ξ ) ϕ̂(ξ )dξ =
(

f̂ (2ν(·)) ϕ̂
)̂

(0) = 0

for all ν ∈ Z.
Next, we show that the identity

∑
k∈Z

f̂ (2ν(ξ + k))ϕ̂(ξ + k) = 0 (5.6.17)

for all ν ∈ Z implies that f̂ is identically equal to zero. Suppose that 1
3 ≤ ξ ≤ 2

3 . In
this case the support properties of ϕ̂ imply that the only terms in the sum in (5.6.17)
that do not vanish are k = 0 and k =−1. Thus for 1

3 ≤ ξ ≤ 2
3 the identity in (5.6.17)

reduces to

0 = f̂ (2ν(ξ −1))ϕ̂(ξ −1)+ f̂ (2ν
ξ )ϕ̂(ξ )

= f̂ (2ν(ξ −1))e−πi(ξ−1)
β ((ξ −1)+ 1

2 )+ f̂ (2ν
ξ )e−πiξ

α(ξ − 1
2 ) ;

hence

− f̂ (2ν(ξ −1))β (ξ − 1
2 )+ f̂ (2ν

ξ )α(ξ − 1
2 ) = 0, 1

3 ≤ ξ ≤ 2
3 . (5.6.18)

Next we observe that when 2
3 ≤ ξ ≤ 4

3 , only the terms with k = 0 and k =−2 survive
in the identity in (5.6.17). This is because when k = −1, ξ + k = ξ −1 ∈

[
− 1

3 , 1
3

]
and this interval has null intersection with the support of ϕ̂ . Therefore, (5.6.17)
reduces to

0 = f̂ (2ν(ξ −2))ϕ̂(ξ −2)+ f̂ (2ν
ξ )ϕ̂(ξ )

= f̂ (2ν(ξ −2))e−πi(ξ−2)
α( ξ−2

2 + 1
2 )+ f̂ (2ν

ξ )e−πiξ
β ( ξ

2 −
1
2 ) ;

hence

f̂ (2ν(ξ −2))α( ξ

2 −
1
2 )+ f̂ (2ν

ξ )β ( ξ

2 −
1
2 ) = 0, 2

3 ≤ ξ ≤ 4
3 . (5.6.19)

Replacing first ν by ν −1 and then ξ

2 by ξ in (5.6.19), we obtain

f̂ (2ν(ξ −1))α(ξ − 1
2 )+ f̂ (2ν

ξ )β (ξ − 1
2 ) = 0, 1

3 ≤ ξ ≤ 2
3 . (5.6.20)

Now consider the 2× 2 system of equations given by (5.6.18) and (5.6.20) with
unknown f̂ (2ν(ξ −1)) and f̂ (2ν ξ ). The determinant of the system is
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det
(
−β (ξ −1/2) α(ξ −1/2)
α(ξ −1/2) β (ξ −1/2)

)
=−1 6= 0 .

Therefore, the system has the unique solution

f̂ (2ν(ξ −1)) = f̂ (2ν
ξ ) = 0 ,

which is valid for all ν ∈ Z and all ξ ∈ [ 1
3 , 2

3 ]. We conclude that f̂ (ξ ) = 0 for all
ξ ∈ R and thus f = 0. This proves the completeness of the system {ϕν ,k}. We
conclude that the function ϕ is a wavelet. �

5.6.4 A Sampling Theorem

We end this section by discussing how one can recover a band-limited function by
its values at a countable number of points.

Definition 5.6.8. An integrable function on Rn is called band limited if its Fourier
transform has compact support.

For every band-limited function there is a B > 0 such that its Fourier transform
is supported in the cube [−B,B]n. In such a case we say that the function is band
limited on the cube [−B,B]n.

It is an interesting observation that such functions are completely determined by
their values at the points x = k/2B, where k ∈ Zn. We have the following result.

Theorem 5.6.9. Let f be band limited on the cube [−B,B]n. Then f can be sampled
by its values at the points x = k/2B, where k ∈ Zn. In particular, we have

f (x1, . . . ,xn) = ∑
k∈Zn

f
( k

2B

) n

∏
j=1

sin(2πBx j −πk j)
2πBx j −πk j

(5.6.21)

for all x ∈ Rn.

Proof. Since the function f̂ is supported in [−B,B]n, we use Exercise 5.6.2 to obtain

f̂ (ξ ) =
1

(2B)n ∑
k∈Zn

̂̂f ( k
2B

)
e2πi k

2B ·ξ

=
1

(2B)n ∑
k∈Zn

f
(
− k

2B

)
e2πi k

2B ·ξ .

Inserting this identity in the inversion formula

f (x) =
∫

[−B,B]n
f̂ (ξ )e2πix·ξ dξ ,

which holds since f̂ is continuous and therefore integrable over [−B,B]n, we obtain
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f (x) =
∫

[−B,B]n

1
(2B)n ∑

k∈Zn
f
(
− k

2B

)
e2πi k

2B ·ξ e2πix·ξ dξ

= ∑
k∈Zn

f
(
− k

2B

) 1
(2B)n

∫
[−B,B]n

e2πi( k
2B +x)·ξ dξ

= ∑
k∈Zn

f
(
− k

2B

) n

∏
j=1

sin(2πBx j +πk j)
2πBx j +πk j

.

This is exactly (5.6.21) when we change k to −k. �

Remark 5.6.10. Identity (5.6.21) holds for any B′ > B. In particular, we have

∑
k∈Zn

f
( k

2B

) n

∏
j=1

sin(2πBx j −πk j)
2πBx j −πk j

= ∑
k∈Zn

f
( k

2B′

) n

∏
j=1

sin(2πB′x j −πk j)
2πB′x j −πk j

for all x ∈ Rn whenever f is band-limited in [−B,B]n. In particular, band-limited
functions in [−B,B]n can be sampled by their values at the points k/2B′ for any
B′ ≥ B.

However, band-limited functions in [−B,B]n cannot be sampled by the points
k/2B′ for any B′ < B, as the following example indicates.

Example 5.6.11. For 0 < B′ < B, let f (x) = g(x)sin(2πB′x), where ĝ is supported
in the interval [−(B−B′),B−B′]. Then f is band limited in [−B,B], but it cannot
be sampled by its values at the points k/2B′, since it vanishes at these points and f
is not identically zero if g is not the zero function.

Exercises

5.6.1. (a) Let A = [−1,− 1
2 )
⋃

[ 1
2 ,1). Show that the family {e2πimx}m∈Z is an or-

thonormal basis of L2(A).
(b) Obtain the same conclusion for the family {e2πim·x}m∈Zn in L2(An).[
Hint: To show completeness, given f ∈ L2(A), define h on [0,1] by setting h(x) =

f (x−1) for x ∈ [0, 1
2 ) and h(x) = f (x) for x ∈ [ 1

2 ,1). Observe that ĥ(m) = f̂ (m) for
all m ∈ Z and expand h in Fourier series.

]
5.6.2. (a) Suppose that g is supported in [−b,b]n for some b > 0 and that the se-
quence {ĝ(k/2b)}k∈Zn lies in `2(Zn). Show that

g(x) = (2b)−n
∑

k∈Zn
ĝ( k

2b )e2πi k
2b ·x

when x ∈ [−b,b]n, where the series converges in L2(Rn).
(b) Suppose that g is supported in [0,b]n for some b > 0 and that the sequence
{ĝ(k/b)}k∈Zn lies in `2(Zn). Show that
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g(x) = b−n
∑

k∈Zn
ĝ( k

b )e2πi k
b ·x

for x ∈ [0,b]n, where the series converges in L2(Rn).
(c) When n = 1, obtain the same as the conclusion in part (b) for x∈ [−b,− b

2 )
⋃

[ b
2 ,b),

provided g is supported in this set.[
Hint: All the results follow by dilations. Part (c): Use the result in Exercise 5.6.2.

]
5.6.3. Show that the sequence of functions

Hk(x1, . . . ,xn) = (2B)
n
2

n

∏
j=1

sin
(
π(2Bx j − k j)

)
π(2Bx j − k j)

, k ∈ Zn ,

is orthonormal in L2(Rn).[
Hint: Interpret the functions Hk as the Fourier transforms of known functions.

]
5.6.4. Prove the following spherical multidimensional version of Theorem 5.6.9.
Suppose that f̂ is supported in the ball |ξ | ≤ R. Show that

f (x) = ∑
k∈Zn

f
(
− k

2R

) 1
2n

J n
2
(2π|Rx+ k

2 |)
|Rx+ k

2 |
n
2

,

where Ja is the Bessel function of order a.

5.6.5. Let {ak}k∈Zn be in `p for some 1 < p < ∞. Show that the sum

∑
k∈Zn

ak

n

∏
j=1

sin(2πBx j −πk j)
2πBx j −πk j

converges in S ′(Rn) to an Lp function A on Rn that is band limited in [−B,B]n.
Moreover, the Lp norm of A is controlled by a constant multiple of the `p norm of
{ak}k.

5.6.6. (a) Suppose that f is a tempered distribution on Rn whose Fourier transform
is supported in the ball B(0,(1− ε) 1

2 ) for some ε > 0. Show that for all 0 < p ≤ ∞

there is a constant Cn,p,ε such that∥∥ f
∥∥

Lp(Rn) ≤Cn,p,ε

∥∥{ f (k)}k
∥∥

`p(Zn) .

In particular, if the values { f (k)}k∈Zn form an `p sequence, then f must coincide
with an Lp function.
(b) Consider functions of the form sin(πx)/(πx) on R to construct a counterexample
to the statement in part (a) when ε = 0.[
Hint: Take a Schwartz function Φ whose Fourier transform is supported in B(0, 1

2 )
and that is identically equal to 1 on the support of f̂ . Then f = f ∗Φ . Apply Theorem
5.6.9 to the function f ∗Φ and use the rapid decay of Φ to sum the series.

]



5.6 Wavelets 413

5.6.7. (a) Let ψ(x) be a nonzero continuous integrable function on R that satisfies∫
R ψ(x)dx = 0 and

Cψ = 2π

∫ +∞

−∞

|ψ̂(t)|2

|t|
dt < ∞ .

Define the wavelet transform of f in L2(R) by setting

W ( f ;a,b)(x) =
1√
|a|

∫ +∞

−∞

f (x)ψ
(x−b

a

)
dx

when a 6= 0 and W ( f ;0,b) = 0. Show that for any f ∈ L2(R) the following inversion
formula holds:

f (x) =
1

Cψ

∫ +∞

−∞

∫ +∞

−∞

1

|a| 1
2

ψ

(x−b
a

)
W ( f ;a,b)db

da
a2 .

(b) State and prove an analogous wavelet transform inversion property on Rn.[
Hint: Apply Theorem 2.2.14 (5) in the b-integral to reduce matters to Fourier

inversion.
]

5.6.8. (P. Casazza ) On Rn let e j be the vector whose coordinates are zero every-
where except for the jth entry, which is 1. Set q j = e j− 1

n ∑
n
k=1 ek for 1≤ j ≤ n and

also qn+1 = 1√
n ∑

n
k=1 ek. Prove that

n+1

∑
j=1

|q j · x|= |x|2

for all x ∈ Rn. This provides an example of a tight frame on Rn.

HISTORICAL NOTES

An early account of square functions in the context of Fourier series appears in the work of Kol-
mogorov [157], who proved the almost everywhere convergence of lacunary partial sums of Fourier
series of periodic square-integrable functions. This result was systematically studied and extended
to Lp functions, 1 < p < ∞, by Littlewood and Paley [174], [175], [176] using complex-analysis
techniques. The real-variable treatment of the Littlewood and Paley theorem was pioneered by
Stein [253] and allowed the higher-dimensional extension of the theory. The use of vector-valued
inequalities in the proof of Theorem 5.1.2 is contained in Benedek, Calderón, and Panzone [18]. A
Littlewood–Paley theorem for lacunary sectors in R2 was obtained by Nagel, Stein, and Wainger
[205].

An interesting Littlewood–Paley estimate holds for 2≤ p < ∞: There exists a constant Cp such
that for all families of disjoint open intervals I j in R the estimate

∥∥(∑ j |( f̂ χI j )
∨|2) 1

2
∥∥

Lp ≤Cp
∥∥ f
∥∥

Lp

holds for all functions f ∈ Lp(R). This was proved by Rubio de Francia [225], but the special case
in which I j = ( j, j+1) was previously obtained by Carleson [46]. An alternative proof of Rubio de
Francia’s theorem was obtained by Bourgain [28]. A higher-dimensional analogue of this estimate
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for arbitrary disjoint open rectangles in Rn with sides parallel to the axes was obtained by Journé
[144]. Easier proofs of the higher-dimensional result were subsequently obtained by Sjölin [246],
Soria [249], and Sato [234].

Part (a) of Theorem 5.2.7 is due to Mihlin [199] and the generalization in part (b) to Hörmander
[129]. Theorem 5.2.2 can be found in Marcinkiewicz’s article [188] in the context of one-
dimensional Fourier series. The power 6 in estimate (5.2.3) that appears in the statement of The-
orem 5.2.2 is not optimal. Tao and Wright [276] proved that the best power of (p− 1)−1 in this
theorem is 3

2 as p → 1. An improvement of the Marcinkiewicz multiplier theorem in one dimen-
sion was obtained by Coifman, Rubio de Francia, and Semmes [54]. Weighted norm estimates for
Hörmander–Mihlin multipliers were obtained by Kurtz and Wheeden [166] and for Marcinkiwiecz
multipliers by Kurtz [165]. Nazarov and Seeger [206] have obtained a very elegant characteriza-
tion of radial Lp multipliers in large dimensions; precisely, they showed that for dimensions n ≥ 5
and 1 < p < 2(n2−2n−3)/(n2−5), a radial function m on Rn is an Lp Fourier multiplier if and
only if there exists a nonzero Schwartz function η such that supt>0 tn/p

∥∥(m( ·)η(t ·))∨
∥∥

Lp < ∞.
This characterization builds on and extends a previously obtained simple characterization by Gar-
rigós and Seeger [99] of radial multipliers on the invariant subspace of radial Lp functions when
1 < p < 2n

n+1 .
The method of proof of Theorem 5.3.4 is adapted from Duoandikoetxea and Rubio de Francia

[78]. The method in this article is rather general and can be used to obtain Lp boundedness for a
variety of rough singular integrals. A version of Theorem 5.3.6 was used by Christ [49] to obtain
Lp smoothing estimates for Cantor–Lebesgue measures. When p = q 6= 2, Theorem 5.3.6 is false
in general, but it is true for all r satisfying | 1

r −
1
2 |< | 1

p −
1
2 | under the additional assumption that

the m j’s are Lipschitz functions uniformly at all scales. This result was independently obtained by
Carbery [43] and Seeger [238].

The probabilistic notions of conditional expectations and martingales have a strong connection
with the Littlewood–Paley theory discussed in this chapter. For the purposes of this exposition we
considered only the case of the sequence of σ -algebras generated by the dyadic cubes of side length
2−k in Rn. The Lp boundedness of the maximal conditional expectation (Doob [76]) is analogous
to the Lp boundedness of the dyadic maximal function; likewise with the corresponding weak type
(1,1) estimate. The Lp boundedness of the dyadic martingale square function (Burkholder [31])
is analogous to Theorem 5.1.2. Moreover, the estimate

∥∥supk |Ek( f )|
∥∥

Lp ≈
∥∥S( f )

∥∥
Lp , 0 < p < ∞,

obtained by Burkholder and Gundy [32] and also by Davis [70] is analogous to the square-function
characterization of the H p norm discussed in Chapter 6. For an exposition on the different and
unifying aspects of Littlewood–Paley theory we refer to Stein [256]. The proof of Theorem 5.4.8,
which quantitatively expresses the almost orthogonality of the Littlewood–Paley and the dyadic
martingale difference operators, is taken from Grafakos and Kalton [106].

The use of quadratic expressions in the study of certain maximal operators has a long history.
We refer to the article of Stein [258] for a historical survey. Theorem 5.5.1 was first proved by Stein
[257]. The proof in the text is taken from an article of Rubio de Francia [226]. Another proof when
n ≥ 3 is due to Cowling and Mauceri [61]. The more difficult case n = 2 was settled by Bourgain
[30] about 10 years later. Alternative proofs when n = 2 were given by Mockenhaupt, Seeger,
and Sogge [200] as well as Schlag [236]. Weighted norm inequalities for the spherical maximal
operator were obtained by Duoandikoetxea and Vega [79]. The discrete spherical maximal function
was studied by Magyar, Stein, and Wainger [184].

Much of the theory of square functions and the ideas associated with them has analogues in the
dyadic setting. A dyadic analogue of the theory discussed here can be obtained. For an introduction
to the area of dyadic harmonic analysis, we refer to Pereyra [212].

The idea of expressing (or reproducing) a signal as a weighted average of translations and
dilations of a single function appeared in early work of Calderón [34]. This idea is in some sense a
forerunner of wavelets. An early example of a wavelet was constructed by Strömberg [270] in his
search for unconditional bases for Hardy spaces. Another example of a wavelet basis was obtained
by Meyer [194]. The construction of an orthonormal wavelet presented in Theorem 5.6.7 is in
Lemarié and Meyer [171]. A compactly supported wavelet was constructed by Daubechies [68].
Mallat [185] introduced the notion of multiresolution analysis, which led to a systematic production
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of wavelets. The area of wavelets has taken off significantly since its inception, spurred by these
early results. A general theory of wavelets and its use in Fourier analysis was carefully developed
in the two-volume monograph of Meyer [195], [196] and its successor Meyer and Coifman [197].
For further study and a complete account on the recent developments on the subject we refer to
the books of Daubechies [69], Chui [53], Wickerhauser [292], Kaiser [146], Benedetto and Frazier
[19], Hérnandez and Weiss [124], Wojtaszczyk [293], Mallat [186], Meyer [198], Frazier [96],
Gröchenig [115], and the references therein.



Appendix A
Gamma and Beta Functions

A.1 A Useful Formula

The following formula is valid:∫
Rn

e−|x|
2
dx =

(√
π
)n

.

This is an immediate consequence of the corresponding one-dimensional identity∫ +∞

−∞

e−x2
dx =

√
π ,

which is usually proved from its two-dimensional version by switching to polar
coordinates:

I2 =
∫ +∞

−∞

∫ +∞

−∞

e−x2
e−y2

dydx = 2π

∫
∞

0
re−r2

dr = π .

A.2 Definitions of Γ (z) and B(z,w)

For a complex number z with Rez > 0 define

Γ (z) =
∫

∞

0
tz−1e−tdt.

Γ (z) is called the gamma function. It follows from its definition that Γ (z) is analytic
on the right half-plane Rez > 0.

Two fundamental properties of the gamma function are that

Γ (z+1) = zΓ (z) and Γ (n) = (n−1)! ,

where z is a complex number with positive real part and n ∈ Z+. Indeed, integration
by parts yields

Γ (z) =
∫

∞

0
tz−1e−t dt =

[
tze−t

z

]∞

0
+

1
z

∫
∞

0
tze−t dt =

1
z

Γ (z+1).

Since Γ (1) = 1, the property Γ (n) = (n− 1)! for n ∈ Z+ follows by induction.
Another important fact is that

417
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Γ
( 1

2

)
=
√

π .

This follows easily from the identity

Γ
( 1

2

)
=
∫

∞

0
t−

1
2 e−t dt = 2

∫
∞

0
e−u2

du =
√

π .

Next we define the beta function. Fix z and w complex numbers with positive
real parts. We define

B(z,w) =
∫ 1

0
tz−1(1− t)w−1 dt =

∫ 1

0
tw−1(1− t)z−1 dt.

We have the following relationship between the gamma and the beta functions:

B(z,w) =
Γ (z)Γ (w)
Γ (z+w)

,

when z and w have positive real parts.
The proof of this fact is as follows:

Γ (z+w)B(z,w) = Γ (z+w)
∫ 1

0
tw−1(1− t)z−1 dt

= Γ (z+w)
∫

∞

0
uw−1

(
1

1+u

)z+w

du t = u/(1+u)

=
∫

∞

0

∫
∞

0
uw−1

(
1

1+u

)z+w

vz+w−1e−v dvdu

=
∫

∞

0

∫
∞

0
uw−1sz+w−1e−s(u+1) dsdu s = v/(1+u)

=
∫

∞

0
sze−s

∫
∞

0
(us)w−1e−su duds

=
∫

∞

0
sz−1e−s

Γ (w)ds

= Γ (z)Γ (w) .

A.3 Volume of the Unit Ball and Surface of the Unit Sphere

We denote by vn the volume of the unit ball in Rn and by ωn−1 the surface area of
the unit sphere Sn−1. We have the following:

ωn−1 =
2π

n
2

Γ ( n
2 )

and
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vn =
ωn−1

n
=

2π
n
2

nΓ ( n
2 )

=
π

n
2

Γ ( n
2 +1)

.

The easy proofs are based on the formula in Appendix A.1. We have(√
π
)n =

∫
Rn

e−|x|
2
dx = ωn−1

∫
∞

0
e−r2

rn−1 dr ,

by switching to polar coordinates. Now change variables t = r2 to obtain that

π
n
2 = ωn−1

2

∫
∞

0
e−tt

n
2−1 dt = ωn−1

2 Γ
( n

2

)
.

This proves the formula for the surface area of the unit sphere in Rn.
To compute vn, write again using polar coordinates

vn = |B(0,1)|=
∫
|x|≤1

1dx =
∫

Sn−1

∫ 1

0
rn−1 dr dθ =

1
n

ωn−1 .

Here is another way to relate the volume to the surface area. Let B(0,R) be the
ball in Rn of radius R > 0 centered at the origin. Then the volume of the shell
B(0,R + h) \B(0,R) divided by h tends to the surface area of B(0,R) as h → 0. In
other words, the derivative of the volume of B(0,R) with respect to the radius R is
equal to the surface area of B(0,R). Since the volume of B(0,R) is vnRn, it follows
that the surface area of B(0,R) is nvnRn−1. Taking R = 1, we deduce ωn−1 = nvn.

A.4 Computation of Integrals Using Gamma Functions

Let k1, . . . ,kn be nonnegative even integers. The integral∫
Rn

xk1
1 · · ·x

kn
n e−|x|

2
dx1 · · ·dxn =

n

∏
j=1

∫ +∞

−∞

x
k j
j e−x2

j dx j =
n

∏
j=1

Γ

(k j +1
2

)
expressed in polar coordinates is equal to(∫

Sn−1
θ

k1
1 · · ·θ kn

n dθ

)∫
∞

0
rk1+···+knrn−1e−r2

dr ,

where θ = (θ1, . . . ,θn). This leads to the identity∫
Sn−1

θ
k1
1 · · ·θ kn

n dθ = 2Γ

(k1 + · · ·+ kn +n
2

)−1 n

∏
j=1

Γ

(k j +1
2

)
.

Another classical integral that can be computed using gamma functions is the
following:
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π/2

0
(sinϕ)a(cosϕ)b dϕ =

1
2

Γ ( a+1
2 )Γ ( b+1

2 )

Γ ( a+b+2
2 )

,

whenever a and b are complex numbers with Rea >−1 and Reb >−1.
Indeed, change variables u = (sinϕ)2; then du = 2(sinϕ)(cosϕ)dϕ , and the pre-

ceding integral becomes

1
2

∫ 1

0
u

a−1
2 (1−u)

b−1
2 du =

1
2

B
(a+1

2
,

b+1
2

)
=

1
2

Γ ( a+1
2 )Γ ( b+1

2 )

Γ ( a+b+2
2 )

.

A.5 Meromorphic Extensions of B(z,w) and Γ (z)

Using the identity Γ (z + 1) = zΓ (z), we can easily define a meromorphic exten-
sion of the gamma function on the whole complex plane starting from its known
values on the right half-plane. We give an explicit description of the meromorphic
extension of Γ (z) on the whole plane. First write

Γ (z) =
∫ 1

0
tz−1e−tdt +

∫
∞

1
tz−1e−tdt

and observe that the second integral is an analytic function of z for all z ∈ C. Write
the first integral as

∫ 1

0
tz−1

{
e−t −

N

∑
j=0

(−t) j

j!

}
dt +

N

∑
j=0

(−1) j/ j!
z+ j

.

The last integral converges when Rez > −N − 1, since the expression inside the
curly brackets is O(tN+1) as t → 0. It follows that the gamma function can be de-
fined to be an analytic function on Rez > −N − 1 except at the points z = − j,
j = 0,1, . . . ,N, at which it has simple poles with residues (−1) j

j! . Since N was arbi-
trary, it follows that the gamma function has a meromorphic extension on the whole
plane.

In view of the identity

B(z,w) =
Γ (z)Γ (w)
Γ (z+w)

,

the definition of B(z,w) can be extended to C×C. It follows that B(z,w) is a mero-
morphic function in each argument.

A.6 Asymptotics of Γ (x) as x → ∞

We now derive Stirling’s formula:
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lim
x→∞

Γ (x+1)( x
e

)x√2πx
= 1 .

First change variables t = x+ sx
√

2
x to obtain

Γ (x+1) =
∫

∞

0
e−ttx dt =

(
x
e

)x√
2x
∫ +∞

−
√

x/2

(
1+ s

√
2
x

)x

e2s
√

x/2
ds .

Setting y =
√ x

2 , we obtain

Γ (x+1)( x
e

)x√2x
=
∫ +∞

−∞

((
1+ s

y

)y

es

)2y

χ(−y,∞)(s)ds.

To show that the last integral converges to
√

π as y→ ∞, we need the following:
(1) The fact that

lim
y→∞

((
1+ s/y

)y

es

)2y

→ e−s2
,

which follows easily by taking logarithms and applying L’Hôpital’s rule twice.
(2) The estimate, valid for y≥ 1,

((
1+ s

y

)y

es

)2y

≤


(1+ s)2

es when s≥ 0,

e−s2
when −y < s < 0,

which can be easily checked using calculus. Using these facts, the Lebesgue dom-
inated convergence theorem, the trivial fact that χ−y<s<∞ → 1 as y → ∞, and the
identity in Appendix A.1, we obtain that

lim
x→∞

Γ (x+1)( x
e

)x√2x
= lim

y→∞

∫ +∞

−∞

((
1+ s

y

)y

es

)2y

χ(−y,∞)(s)ds

=
∫ +∞

−∞

e−s2
ds

=
√

π.

A.7 Euler’s Limit Formula for the Gamma Function

For n a positive integer and Rez > 0 we consider the functions
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Γn(z) =
∫ n

0

(
1− t

n

)n
tz−1 dt

We show that
Γn(z) =

n!nz

z(z+1) · · ·(z+n)

and we obtain Euler’s limit formula for the gamma function

lim
n→∞

Γn(z) = Γ (z) .

We write Γ (z)−Γn(z) = I1(z)+ I2(z)+ I3(z), where

I1(z) =
∫

∞

n
e−ttz−1 dt ,

I2(z) =
∫ n

n/2

(
e−t −

(
1− t

n

)n
)

tz−1 dt ,

I3(z) =
∫ n/2

0

(
e−t −

(
1− t

n

)n
)

tz−1 dt .

Obviously I1(z) tends to zero as n→∞. For I2 and I3 we have that 0≤ t < n, and by
the Taylor expansion of the logarithm we obtain

log
(

1− t
n

)n
= n log

(
1− t

n

)
=−t−L ,

where

L =
t2

n

(1
2

+
1
3

t
n

+
1
4

t2

n2 + · · ·
)

.

It follows that
0 < e−t −

(
1− t

n

)n
= e−t − e−Le−t ≤ e−t ,

and thus I2(z) tends to zero as n→ ∞. For I3 we have t/n≤ 1/2, which implies that

L ≤ t2

n

∞

∑
k=0

1
(k +1)2k−1 =

t2

n
c .

Consequently, for t/n≤ 1/2 we have

0≤ e−t −
(

1− t
n

)n
= e−t(1− e−L)≤ e−tL ≤ e−t ct2

n
.

Plugging this estimate into I3, we deduce that

|I3(z)| ≤
c
n

Γ (Rez+2) ,

which certainly tends to zero as n→ ∞.
Next, n integrations by parts give
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Γn(z) =
n
nz

n−1
n(z+1)

n−2
n(z+2)

· · · 1
n(z+n−1)

∫ n

0
tz+n−1 dt =

n!nz

z(z+1) · · ·(z+n)
.

This can be written as

1 = Γn(z)zexp
{

z
(

1+
1
2

+
1
3

+ · · ·+ 1
n
− logn

)} n

∏
k=1

(
1+

z
k

)
e−z/k .

Taking limits as n→ ∞, we obtain an infinite product form of Euler’s limit formula,

1 = Γ (z)zeγz
∞

∏
k=1

(
1+

z
k

)
e−z/k ,

where Rez > 0 and γ is Euler’s constant

γ = lim
n→∞

1+
1
2

+
1
3

+ · · ·+ 1
n
− logn .

The infinite product converges uniformly on compact subsets of the complex plane
that excludes z = 0,−1,−2, . . . , and thus it represents a holomorphic function in this
domain. This holomorphic function multiplied by Γ (z)zeγz is equal to 1 on Rez > 0
and by analytic continuation it must be equal to 1 on C\{0,−1,−2, . . .}. But Γ (z)
has simple poles, while the infinite product vanishes to order one at the nonpositive
integers. We conclude that Euler’s limit formula holds for all complex numbers z;
consequently, Γ (z) has no zeros and Γ (z)−1 is entire.

An immediate consequence of Euler’s limit formula is the identity

1
|Γ (x+ iy)|2

=
1

|Γ (x)|2
∞

∏
k=0

(
1+

y2

(k + x)2

)
,

which holds for x and y real with x /∈ {0,−1,−2, . . .}. As a consequence we have
that

|Γ (x+ iy)| ≤ |Γ (x)|

and also that
1

|Γ (x+ iy)|
≤ 1
|Γ (x)|

eC(x)|y|2 ,

where

C(x) =
1
2

∞

∑
k=0

1
(k + x)2 ,

whenever x ∈ R\{0,−1,−2, . . .} and y ∈ R.



424 A Gamma and Beta Functions

A.8 Reflection and Duplication Formulas for the Gamma
Function

The reflection formula relates the values of the gamma function of a complex num-
ber z and its reflection about the point 1/2 in the following way:

sin(πz)
π

=
1

Γ (z)
1

Γ (1− z)
.

The duplication formula relates the entire functions Γ (2z)−1 and Γ (z)−1 as follows:

1
Γ (z)Γ (z+ 1

2 )
=

π−
1
2 22z−1

Γ (2z)
.

Both of these could be proved using Euler’s limit formula. The reflection formula
also uses the identity

∞

∏
k=1

(
1− z2

k2

)
=

sin(πz)
πz

,

while the duplication formula makes use of the fact that

lim
n→∞

(n!)2 22n+1

(2n)!n1/2 = 2π
1/2 .

These and other facts related to the gamma function can be found in Olver [208].



Appendix B
Bessel Functions

B.1 Definition

We survey some basics from the theory of Bessel functions Jν of complex order
ν with Reν > −1/2. We define the Bessel function Jν of order ν by its Poisson
representation formula

Jν(t) =

( t
2

)ν

Γ (ν + 1
2 )Γ ( 1

2 )

∫ +1

−1
eits(1− s2)ν ds√

1− s2
,

where Reν > −1/2 and t ≥ 0. Although this definition is also valid when t is a
complex number, for the applications we have in mind, it suffices to consider the
case that t is real and nonnegative; in this case Jν(t) is also a real number.

B.2 Some Basic Properties

Let us summarize a few properties of Bessel functions. We take t > 0.
(1) We have the following recurrence formula:

d
dt

(
t−ν Jν(t)

)
=−t−ν Jν+1(t), Reν >−1/2.

(2) We also have the companion recurrence formula:

d
dt

(
tν Jν(t)

)
= tν Jν−1(t), Reν > 1/2.

(3) Jν(t) satisfies the differential equation:

t2 d2

dt2 (Jν(t))+ t
d
dt

(Jν(t))+(t2−ν
2)Jν(t) = 0 .

(4) If ν ∈Z+, then we have the following identity, which was taken by Bessel as the
definition of Jν for integer ν :

Jν(t) =
1

2π

∫ 2π

0
eit sinθ e−iνθ dθ =

1
2π

∫ 2π

0
cos(t sinθ −νθ)dθ .

425
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(5) For Reν >−1/2 we have the following identity:

Jν(t) =
1

Γ ( 1
2 )

( t
2

)ν ∞

∑
j=0

(−1) j Γ ( j + 1
2 )

Γ ( j +ν +1)
t2 j

(2 j)!
.

(6) For Reν > 1/2 the identity below is valid:

d
dt

(Jν(t)) =
1
2
(
Jν−1(t)− Jν+1(t)

)
.

We first verify property (1). We have

d
dt

(
t−ν Jν(t)

)
=

i
2νΓ (ν + 1

2 )Γ ( 1
2 )

∫ 1

−1
seits(1− s2)ν− 1

2 ds

=
i

2νΓ (ν + 1
2 )Γ ( 1

2 )

∫ 1

−1

it
2

eits (1− s2)ν+ 1
2

ν + 1
2

ds

= − t−ν Jν+1(t),

where we integrated by parts and used the fact that Γ (x +1) = xΓ (x). Property (2)
can be proved similarly.

We proceed with the proof of property (3). A calculation using the definition of
the Bessel function gives that the left-hand side of (3) is equal to

2−ν tν+1

Γ (ν + 1
2 )Γ ( 1

2 )

∫ +1

−1
eist
(

(1− s2)t +2is(ν + 1
2 )
)

(1− s2)ν− 1
2 ds ,

which in turn is equal to

−i
2−ν tν+1

Γ (ν + 1
2 )Γ ( 1

2 )

∫ +1

−1

d
ds

(
eist(1− s2)ν+ 1

2
)

ds = 0 .

Property (4) can be derived directly from (1). Define

Gν(t) =
1

2π

∫ 2π

0
eit sinθ e−iνθ dθ ,

for ν = 0,1,2, . . . and t > 0. We can show easily that G0 = J0. If we had

d
dt

(
t−ν Gν(t)

)
=−t−ν Gν+1(t), t > 0,

for ν ∈ Z+, we would immediately conclude that Gν = Jν for ν ∈ Z+. We have
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d
dt

(
t−ν Gν(t)

)
= − t−ν

(
ν

t
Gν(t)− dGν

dt
(t)
)

= − t−ν

∫ 2π

0

ν

2πt
eit sinθ e−iνθ − 1

2π

(
d
dt

eit sinθ

)
e−iνθ dθ

= − t−ν

2π

∫ 2π

0
i

d
dθ

(
eit sinθ−iνθ

t

)
+(cosθ − isinθ)eit sinθ e−iνθ dθ

= − t−ν

2π

∫ 2π

0
eit sinθ e−i(ν+1)θ dθ

= − t−ν Gν+1(t) .

For t real, the identity in (5) can be derived by inserting the expression

∞

∑
j=0

(−1) j (ts)
2 j

(2 j)!
+ isin(ts)

for eits in the definition of the Bessel function Jν(t) in Appendix B.1. Algebraic
manipulations yield

Jν(t) =
(t/2)ν

Γ ( 1
2 )

∞

∑
j=0

(−1) j 1
Γ (ν + 1

2 )
t2 j

(2 j)!
2
∫ 1

0
s2 j−1(1− s2)ν− 1

2 sds

=
(t/2)ν

Γ ( 1
2 )

∞

∑
j=0

(−1) j 1
Γ (ν + 1

2 )
t2 j

(2 j)!
Γ ( j + 1

2 )Γ (ν + 1
2 )

Γ ( j +ν +1)

=
(t/2)ν

Γ ( 1
2 )

∞

∑
j=0

(−1) j Γ ( j + 1
2 )

Γ ( j +ν +1)
t2 j

(2 j)!
.

To derive property (6) we first multiply (1) by tν and (2) by t−ν ; then we use the
product rule for differentiation and we add the resulting expressions.

For further identities on Bessel functions, one may consult Watson’s monograph
[288].

B.3 An Interesting Identity

Let Re µ >− 1
2 , Reν >−1, and t > 0. Then the following identity is valid:∫ 1

0
Jµ(ts)sµ+1(1− s2)ν ds =

Γ (ν +1)2ν

tν+1 Jµ+ν+1(t) .

To prove this identity we use formula (5) in Appendix B.2. We have
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0
Jµ(ts)sµ+1(1− s2)ν ds

=

( t
2

)µ

Γ ( 1
2 )

∫ 1

0

∞

∑
j=0

(−1) jΓ ( j + 1
2 ) t2 j

Γ ( j + µ +1)(2 j)!
s2 j+µ+µ(1− s2)ν sds

=
1
2

( t
2

)µ

Γ ( 1
2 )

∞

∑
j=0

(−1) jΓ ( j + 1
2 ) t2 j

Γ ( j + µ +1)(2 j)!

∫ 1

0
u j+µ(1−u)ν du

=
1
2

( t
2

)µ

Γ ( 1
2 )

∞

∑
j=0

(−1) jΓ ( j + 1
2 ) t2 j

Γ ( j + µ +1)(2 j)!
Γ (µ + j +1)Γ (ν +1)

Γ (µ +ν + j +2)

=
2νΓ (ν +1)

tν+1

( t
2

)µ+ν+1

Γ ( 1
2 )

∞

∑
j=0

(−1) jΓ ( j + 1
2 ) t2 j

Γ ( j + µ +ν +2)(2 j)!

=
Γ (ν +1)2ν

tν+1 Jµ+ν+1(t) .

B.4 The Fourier Transform of Surface Measure on Sn−1

Let dσ denote surface measure on Sn−1 for n≥ 2. Then the following is true:

d̂σ(ξ ) =
∫

Sn−1
e−2πiξ ·θ dθ =

2π

|ξ | n−2
2

J n−2
2

(2π|ξ |) .

To see this, use the result in Appendix D.3 to write

d̂σ(ξ ) =
∫

Sn−1
e−2πiξ ·θ dθ

=
2π

n−1
2

Γ ( n−1
2 )

∫ +1

−1
e−2πi|ξ |s(1− s2)

n−2
2

ds√
1− s2

=
2π

n−1
2

Γ ( n−1
2 )

Γ ( n−2
2 + 1

2 )Γ ( 1
2 )

(π|ξ |) n−2
2

J n−2
2

(2π|ξ |)

=
2π

|ξ | n−2
2

J n−2
2

(2π|ξ |) .

B.5 The Fourier Transform of a Radial Function on Rn

Let f (x) = f0(|x|) be a radial function defined on Rn, where f0 is defined on [0,∞).
Then the Fourier transform of f is given by the formula
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f̂ (ξ ) =
2π

|ξ | n−2
2

∫
∞

0
f0(r)J n

2−1(2πr|ξ |)r
n
2 dr .

To obtain this formula, use polar coordinates to write

f̂ (ξ ) =
∫

Rn
f (x)e−2πiξ ·x dx

=
∫

∞

0

∫
Sn−1

f0(r)e−2πiξ ·rθ dθ rn−1dr

=
∫

∞

0
f0(r) d̂σ(rξ )rn−1dr

=
∫

∞

0
f0(r)

2π

(r|ξ |) n−2
2

J n−2
2

(2πr|ξ |)rn−1dr

=
2π

|ξ | n−2
2

∫
∞

0
f0(r)J n

2−1(2πr|ξ |)r
n
2 dr .

As an application we take f (x) = χB(0,1), where B(0,1) is the unit ball in Rn. We
obtain

(χB(0,1))̂ (ξ ) =
2π

|ξ | n−2
2

∫ 1

0
J n

2−1(2π|ξ |r)r
n
2 dr =

J n
2
(2π|ξ |)
|ξ | n

2
,

in view of the result in Appendix B.3. More generally, for Reλ >−1, let

mλ (ξ ) =

{
(1−|ξ |2)λ for |ξ | ≤ 1,
0 for |ξ |> 1.

Then

mλ
∨ (x) =

2π

|x| n−2
2

∫ 1

0
J n

2−1(2π|x|r)r
n
2 (1− r2)λ dr =

Γ (λ +1)
πλ

J n
2 +λ (2π|x|)
|x| n

2 +λ
,

using again the identity in Appendix B.3.

B.6 Bessel Functions of Small Arguments

We seek the behavior of Jk(r) as r → 0+. We fix a complex number ν with Reν >
− 1

2 . Then we have the identity

Jν(r) =
rν

2νΓ (ν +1)
+Sν(r) ,

where

Sν(r) =
(r/2)ν

Γ (ν + 1
2 )Γ ( 1

2 )

∫ +1

−1
(eirt −1)(1− t2)ν− 1

2 dt
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and Sν satisfies

|Sν(r)| ≤ 2−Reν rReν+1

(Reν +1) |Γ (ν + 1
2 )|Γ ( 1

2 )
.

To prove this estimate we note that

Jν(r) =
(r/2)ν

Γ (ν + 1
2 )Γ ( 1

2 )

∫ +1

−1
(1− t2)ν− 1

2 dt +Sν(r)

=
(r/2)ν

Γ (ν + 1
2 )Γ ( 1

2 )

∫
π

0
(sin2

φ)ν− 1
2 (sinφ)dφ +Sν(r)

=
(r/2)ν

Γ (ν + 1
2 )Γ ( 1

2 )
Γ (ν + 1

2 )Γ ( 1
2 )

Γ (ν +1)
+Sν(r) ,

where we evaluated the last integral using the result in Appendix A.4. Using that
|eirt −1| ≤ r|t|, we deduce the assertion regarding the size of |Sν(r)|.

It follows from these facts and the estimate in Appendix A.7 that for 0 < r ≤ 1
and Reν >−1/2 we have

|Jν(r)| ≤C0 ec0 |Imν |2 rReν ,

where C0 and c0 are constants depending only on Reν . Note that when Reν ≥ 0,
the constant c0 may be taken to be absolute (such as c0 = π2).

B.7 Bessel Functions of Large Arguments

For r > 0 and complex numbers ν with Reν >−1/2 we prove the identity

Jν(r) =
(r/2)ν

Γ (ν + 1
2 )Γ ( 1

2 )

[
ie−ir

∫
∞

0
e−rt(t2 +2it)ν− 1

2 dt− ieir
∫

∞

0
e−rt(t2−2it)ν− 1

2 dt
]
.

Fix 0 < δ < 1/10 < 10 < R < ∞. We consider the region Ωδ ,R in the complex
plane whose boundary is the set consisting of the interval [−1 + δ ,1− δ ] union a
quarter circle centered at 1 of radius δ from 1−δ to 1+ iδ , union the line segments
from 1 + iδ to 1 + iR, from 1 + iR to −1 + iR, and from −1 + iR to −1 + iδ , union
a quarter circle centered at −1 of radius δ from −1+ iδ to −1+δ . This is a simply
connected region on the interior of which the holomorphic function (1− z2) has no
zeros. Since Ωδ ,R is contained in the complement of the negative imaginary axis,
there is a holomorphic branch of the logarithm such that log(t) is real, log(−t) =
log |t|+ iπ , and log(it) = log |t|+ iπ/2 for t > 0. Since the function log(1− z2) is
well defined and holomorphic in Ωδ ,R, we may define the holomorphic function

(1− z2)ν− 1
2 = e(ν− 1

2 ) log(1−z2)
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for z ∈Ωδ ,R. Since eirz(1− z2)ν− 1
2 has no poles in Ωδ ,R, Cauchy’s theorem yields

i
∫ R

δ

eir(1+it)(t2−2it)ν− 1
2 dt +

∫ 1−δ

−1+δ

eirt(1− t2)ν− 1
2 dt

+ i
∫

δ

R
eir(−1+it)(t2 +2it)ν− 1

2 dt +E(δ ,R) = 0 ,

where E(δ ,R) is the sum of the integrals over the two small quarter-circles of radius
δ and the line segment from 1 + iR to −1 + iR. The first two of these integrals are
bounded by constants times δ , the latter by a constant times R2Reν−1e−rR; hence
E(δ ,R)→ 0 as δ → 0 and R→ ∞. We deduce the identity∫ +1

−1
eirt(1−t2)ν− 1

2 dt = ie−ir
∫

∞

0
e−rt(t2 +2it)ν− 1

2 dt− ieir
∫

∞

0
e−rt(t2−2it)ν− 1

2 dt .

Estimating the two integrals on the right by putting absolute values inside and mul-
tiplying by the missing factor rν 2−ν(Γ (ν + 1

2 )Γ ( 1
2 ))−1, we obtain

|Jν(r)| ≤ 2
(r/2)Reν e

π
2 |Imν |

|Γ (ν + 1
2 )|Γ ( 1

2 )

∫
∞

0
e−rttReν− 1

2
(√

t2 +4
)Reν− 1

2 dt ,

since the absolute value of the argument of t2±2it is at most π/2. When Reν > 1/2,
we use the inequality (

√
t2 +4)Reν− 1

2 ≤ 2Reν− 3
2
(
tReν− 1

2 +2Reν− 1
2
)

to get

|Jν(r)| ≤ 2
(r/2)Reν e

π
2 |Imν |

|Γ (ν + 1
2 )|Γ ( 1

2 )
2Reν− 3

2

[
Γ (2Reν)

r2Reν
+2Reν

Γ (Reν + 1
2 )

rReν+ 1
2

]
.

When 1/2≥ Reν >−1/2 we use that
(√

t2 +4
)Reν− 1

2 ≤ 1 to deduce that

|Jν(r)| ≤ 2
(r/2)Reν e

π
2 |Imν |

|Γ (ν + 1
2 )|Γ ( 1

2 )
Γ (Reν + 1

2 )

rReν+ 1
2

.

These estimates yield that for Reν >−1/2 and r ≥ 1 we have

|Jν(r)| ≤C0(Reν) eπ|Imν |+π2|Imν |2 r−1/2

using the result in Appendix A.7. Here C0 is a constant that depends only on Reν .

B.8 Asymptotics of Bessel Functions

We obtain asymptotics for Jν(r) as r → ∞ whenever Reν > −1/2. We have the
following identity for r > 0:
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Jν(r) =

√
2

πr
cos
(

r− πν

2
− π

4

)
+Rν(r) ,

where Rν is given by

Rν(r) =
(2π)−

1
2 rν

Γ (ν + 1
2 )

ei(r− πν
2 − π

4 )
∫

∞

0
e−rttν+ 1

2
[
(1+ it

2 )ν− 1
2 −1

]dt
t

+
(2π)−

1
2 rν

Γ (ν + 1
2 )

e−i(r− πν
2 − π

4 )
∫

∞

0
e−rttν+ 1

2
[
(1− it

2 )ν− 1
2 −1

]dt
t

and satisfies |Rν(r)| ≤Cν r−3/2 whenever r ≥ 1.
To see the validity of this identity we write

ie−ir(t2 +2it)ν− 1
2 = (2t)ν− 1

2 e−i(r− νπ
2 − π

4 )(1− it
2 )ν− 1

2 ,

−ieir(t2−2it)ν− 1
2 = (2t)ν− 1

2 ei(r− νπ
2 − π

4 )(1+ it
2 )ν− 1

2 .

Inserting these expressions into the corresponding integrals in the formula proved
in Appendix B.7, adding and subtracting 1 from each term (1± it

2 )ν− 1
2 , and multi-

plying by the missing factor (r/2)ν/Γ (ν + 1
2 )Γ ( 1

2 ), we obtain the claimed identity

Jν(r) =

√
2

πr
cos
(

r− πν

2
− π

4

)
+Rν(r) .

It remains to estimate Rν(r). We begin by noting that for a,b real with a > −1
we have the pair of inequalities

|(1± iy)a+ib−1| ≤ 3(|a|+ |b|)
(
2

a+1
2 e

π
2 |b|
)

y when 0 < y < 1 ,

|(1± iy)a+ib−1| ≤ (1+ y2)
a
2 e

π
2 |b|+1≤ 2

(
2

a+1
2 e

π
2 |b|
)

ya when 1≤ y < ∞ .

The first inequality is proved by splitting into real and imaginary parts and applying
the mean value theorem in the real part. Taking ν− 1

2 = a+ ib, y = t/2, and inserting
these estimates into the integrals appearing in Rν , we obtain

|Rν(r)| ≤ 2
1
2 Reν 2

1
4 e

π
2 |Imν |rReν

(2π)1/2|Γ (ν + 1
2 )|

[
3
√

2|ν |
2

∫ 2

0
e−rttReν+ 3

2
dt
t

+
2
√

2
2Reν

∫
∞

2
e−rtt2Reν dt

t

]
.

It follows that for all r > 0 we have

|Rν(r)| ≤ 2
2

1
2 Reν e

π
2 |Imν |

|Γ (ν + 1
2 )|

[
|ν |

Γ (Reν + 3
2 )

r3/2 +
r−Reν

2Reν

∫
∞

2r
e−tt2Reν dt

t

]

≤ 2
2

1
2 Reν e

π
2 |Imν |

|Γ (ν + 1
2 )|

[
|ν |

Γ (Reν + 3
2 )

r3/2 +
2Reν

rReν

Γ (2Reν)
er

]
,
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using that e−t ≤ e−t/2e−r for t ≥ 2r. We conclude that for r ≥ 1 and Reν > −1/2
we have

|Rν(r)| ≤C0(Reν)
e

π
2 |Imν | (|ν |+1)
|Γ (ν + 1

2 )|
r−3/2 ,

where C0 is a constant that depends only on Reν . In view of the result in Ap-
pendix A.7, the last fraction is bounded by another constant depending on Reν

times eπ2(1+|Imν |)2
.



Appendix C
Rademacher Functions

C.1 Definition of the Rademacher Functions

The Rademacher functions are defined on [0,1] as follows: r0(t) = 1; r1(t) = 1 for
0 ≤ t ≤ 1/2 and r1(t) =−1 for 1/2 < t ≤ 1; r2(t) = 1 for 0 ≤ t ≤ 1/4, r2(t) =−1
for 1/4 < t ≤ 1/2, r2(t) = 1 for 1/2 < t ≤ 3/4, and r2(t) = −1 for 3/4 < t ≤ 1;
and so on. According to this definition, we have that r j(t) = sgn(sin(2 jπt)) for
j = 0,1,2, . . . . It is easy to check that the r j’s are mutually independent random
variables on [0,1]. This means that for all functions f j we have∫ 1

0

n

∏
j=0

f j(r j(t))dt =
n

∏
j=0

∫ 1

0
f j(r j(t))dt .

To see the validity of this identity, we write its right-hand side as

f0(1)
n

∏
j=1

∫ 1

0
f j(r j(t))dt = f0(1)

n

∏
j=1

f j(1)+ f j(−1)
2

=
f0(1)
2n ∑

S⊂{1,2,...,n}
∏
j∈S

f j(1)∏
j/∈S

f j(−1)

and we observe that there is a one-to-one and onto correspondence between sub-
sets S of {1,2, . . . ,n} and intervals Ik =

[ k
2n , k+1

2n

]
, k = 0,1, . . . ,2n−1, such that the

restriction of the function ∏
n
j=1 f j(r j(t)) on Ik is equal to

∏
j∈S

f j(1)∏
j/∈S

f j(−1) .

It follows that the last of the three equal displayed expressions is

f0(1)
2n−1

∑
k=0

∫
Ik

n

∏
j=1

f j(r j(t))dt =
∫ 1

0

n

∏
j=0

f j(r j(t))dt .

C.2 Khintchine’s Inequalities

The following property of the Rademacher functions is of fundamental importance
and with far-reaching consequences in analysis:
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For any 0 < p < ∞ and for any real-valued square summable sequences {a j} and
{b j} we have

Bp

(
∑

j
|a j + ib j|2

)1
2
≤
∥∥∥∑

j
(a j + ib j)r j

∥∥∥
Lp([0,1])

≤ Ap

(
∑

j
|a j + ib j|2

)1
2

for some constants 0 < Ap,Bp < ∞ that depend only on p.
These inequalities reflect the orthogonality of the Rademacher functions in Lp

(especially when p 6= 2). Khintchine [155] was the first to prove a special form of
this inequality, and he used it to estimate the asymptotic behavior of certain ran-
dom walks. Later this inequality was systematically studied almost simultaneously
by Littlewood [173] and by Paley and Zygmund [210], who proved the more gen-
eral form stated previously. The foregoing inequalities are usually referred to by
Khintchine’s name.

C.3 Derivation of Khintchine’s Inequalities

Both assertions in Appendix C.2 can be derived from an exponentially decaying
distributional inequality for the function

F(t) = ∑
j
(a j + ib j)r j(t) , t ∈ [0,1],

when a j, b j are square summable real numbers.
We first obtain a distributional inequality for the above function F under the

following three assumptions:

(a)The sequence {b j} is identically zero.
(b)All but finitely many terms of the sequence {a j} are zero.
(c)The sequence {a j} satisfies (∑ j |a j|2)1/2 = 1.

Let ρ > 0. Under assumptions (a), (b), and (c), independence gives∫ 1

0
eρ ∑a jr j(t) dt = ∏

j

∫ 1

0
eρa jr j(t) dt

= ∏
j

eρa j + e−ρa j

2

≤ ∏
j

e
1
2 ρ2a2

j = e
1
2 ρ2

∑a2
j = e

1
2 ρ2

,

where we used the inequality 1
2 (ex +e−x)≤ e

1
2 x2

for all real x, which can be checked
using power series expansions. Since the same argument is also valid for−∑a jr j(t),
we obtain that
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0
eρ|F(t)| dt ≤ 2e

1
2 ρ2

.

From this it follows that

eρα |{t ∈ [0,1] : |F(t)|> α}| ≤
∫ 1

0
eρ|F(t)| dt ≤ 2e

1
2 ρ2

and hence we obtain the distributional inequality

dF(α) = |{t ∈ [0,1] : |F(t)|> α}| ≤ 2e
1
2 ρ2−ρα = 2e−

1
2 α2

,

by picking ρ = α . The Lp norm of F can now be computed easily. Formula (1.1.6)
gives ∥∥F

∥∥p
Lp =

∫
∞

0
pα

p−1dF(α)dα ≤
∫

∞

0
pα

p−12e−
α2
2 dα = 2

p
2 pΓ (p/2) .

We have now proved that∥∥F
∥∥

Lp ≤
√

2
(

pΓ (p/2)
) 1

p
∥∥F
∥∥

L2

under assumptions (a), (b), and (c).
We now dispose of assumptions (a), (b), and (c). Assumption (b) can be easily

eliminated by a limiting argument and (c) by a scaling argument. To dispose of
assumption (a), let a j and b j be real numbers. We have∥∥∥∑

j
(a j + ib j)r j

∥∥∥
Lp

≤
∥∥∥∣∣∑

j
a jr j

∣∣+ ∣∣∑
j

b jr j
∣∣∥∥∥

Lp

≤
∥∥∥∑

j
a jr j

∥∥∥
Lp

+
∥∥∥∑

j
b jr j

∥∥∥
Lp

≤
√

2
(

pΓ (p/2)
) 1

p

((
∑

j
|a j|2

)1
2 +
(
∑

j
|b j|2

)1
2
)

≤
√

2
(

pΓ (p/2)
) 1

p
√

2
(
∑

j
|a j + ib j|2

)1
2
.

Let us now set Ap = 2
(

pΓ (p/2)
)1/p when p > 2. Since we have the trivial esti-

mate
∥∥F
∥∥

Lp ≤
∥∥F
∥∥

L2 when 0 < p ≤ 2, we obtain the required inequality
∥∥F
∥∥

Lp ≤
Ap
∥∥F
∥∥

L2 with

Ap =

{
1 when 0 < p≤ 2,

2 p
1
p Γ (p/2)

1
p when 2 < p < ∞.

Using Sterling’s formula in Appendix A.6, we see that Ap is asymptotic to
√

p as
p→ ∞.
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We now discuss the converse inequality Bp
∥∥F
∥∥

L2 ≤
∥∥F
∥∥

Lp . It is clear that∥∥F
∥∥

L2 ≤
∥∥F
∥∥

Lp when p ≥ 2 and we may therefore take Bp = 1 for p ≥ 2. Let
us now consider the case 0 < p < 2. Pick an s such that 2 < s < ∞. Find a 0 < θ < 1
such that

1
2

=
1−θ

p
+

θ

s
.

Then ∥∥F
∥∥

L2 ≤
∥∥F
∥∥1−θ

Lp

∥∥F
∥∥θ

Ls ≤
∥∥F
∥∥1−θ

Lp Aθ
s
∥∥F
∥∥θ

L2 .

It follows that ∥∥F
∥∥

L2 ≤ A
θ

1−θ
s
∥∥F
∥∥

Lp .

We have now proved the inequality Bp
∥∥F
∥∥

L2 ≤
∥∥F
∥∥

Lp with

Bp =


1 when 2≤ p < ∞,

sup
s>2

A
−

1
p−

1
2

1
2−

1
s

s when 0 < p < 2.

Observe that the function s → A
−
(

1
p−

1
2

)
/
(

1
2−

1
s

)
s tends to zero as s → 2+ and as

s → ∞. Hence it must attain its maximum for some s = s(p) in the interval (2,∞).
We see that Bp ≥ 16 ·256−1/p when p < 2 by taking s = 4.

It is worthwhile to mention that the best possible values of the constants Ap and
Bp in Khintchine’s inequality are known when b j = 0. In this case Szarek [271]
showed that the best possible value of B1 is 1/

√
2, and later Haagerup [116] found

that when b j = 0 the best possible values of Ap and Bp are the numbers

Ap =

{
1 when 0 < p≤ 2,

2
1
2 π

− 1
2p Γ ( p+1

2 ) when 2 < p < ∞,

and

Bp =


2

1
2−

1
p when 0 < p≤ p0,

2
1
2 π

− 1
2p Γ ( p+1

2 ) when p0 < p < 2,
1 when 2 < p < ∞,

where p0 = 1.84742 . . . is the unique solution of the equation 2Γ ( p+1
2 ) =

√
π in the

interval (1,2).

C.4 Khintchine’s Inequalities for Weak Type Spaces

We note that the following weak type estimates are valid:
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4−
1
p B p

2

(
∑

j
|a j + ib j|2

)1
2
≤
∥∥∥∑

j
(a j + ib j)r j

∥∥∥
Lp,∞

≤ Ap

(
∑

j
|a j + ib j|2

)1
2

for all 0 < p < ∞.
Indeed, the upper estimate is a simple consequence of the fact that Lp is a sub-

space of Lp,∞. For the converse inequality we use the fact that Lp,∞([0,1]) is con-
tained in Lp/2([0,1]) and we have (see Exercise 1.1.11)∥∥F

∥∥
Lp/2 ≤ 4

1
p
∥∥F
∥∥

Lp,∞ .

Since any Lorentz space Lp,q([0,1]) can be sandwiched between L2p([0,1]) and
Lp/2([0,1]), similar inequalities hold for all Lorentz spaces Lp,q([0,1]), 0 < p < ∞,
0 < q≤ ∞.

C.5 Extension to Several Variables

We first extend the inequality on the right in Appendix C.2 to several variables. For
a positive integer n we let

Fn(t1, . . . , tn) = ∑
j1

· · ·∑
jn

c j1,..., jnr j1(t1) · · ·r jn(tn),

for t j ∈ [0,1], where c j1,..., jn is a sequence of complex numbers and Fn is a function
defined on [0,1]n.

For any 0 < p < ∞ and for any complex-valued square summable sequence of n
variables {c j1,..., jn} j1,..., jn , we have the following inequalities for Fn:

Bn
p

(
∑
j1

· · ·∑
jn

|c j1,..., jn |2
)1

2
≤
∥∥Fn
∥∥

Lp ≤ An
p

(
∑
j1

· · ·∑
jn

|c j1,..., jn |2
)1

2
,

where Ap,Bp are the constants in Appendix C.2. The norms are over [0,1]n.
The case n = 2 is indicative of the general case. For p≥ 2 we have

∫ 1

0

∫ 1

0
|F2(t1, t2)|p dt1 dt2 ≤ Ap

p

∫ 1

0

(
∑
j1

∣∣∑
j2

c j1, j2r j2(t2)
∣∣2)p

2
dt2

≤ Ap
p

(
∑
j1

(∫ 1

0

∣∣∑
j2

c j1, j2 r j2(t2)
∣∣p dt2

)2
p
)p

2

≤ A2p
p

(
∑
j1

∑
j2

|c j1, jn |2
)p

2
,
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where we used Minkowski’s integral inequality (with exponent p/2≥ 1) in the sec-
ond inequality and the result in the case n = 1 twice.

The case p < 2 follows trivially from Hölder’s inequality with constant Ap = 1.
The reverse inequalities follow exactly as in the case of one variable. Replacing Ap
by An

p in the argument, giving the reverse inequality in the case n = 1, we obtain the
constant Bn

p.
Likewise one may extend the weak type inequalities of Appendix C.3 in several

variables.



Appendix D
Spherical Coordinates

D.1 Spherical Coordinate Formula

Switching integration from spherical coordinates to Cartesian is achieved via the
following identity:∫

RSn−1

f (x)dσ(x) =
∫

π

ϕ1=0
· · ·
∫

π

ϕn−2=0

∫ 2π

ϕn−1=0
f (x(ϕ))J(n,R,ϕ)dϕn−1 · · ·dϕ1,

where

x1 = Rcosϕ1 ,

x2 = Rsinϕ1 cosϕ2 ,

x3 = Rsinϕ1 sinϕ2 cosϕ3 ,

. . .

xn−1 = Rsinϕ1 sinϕ2 sinϕ3 · · ·sinϕn−2 cosϕn−1 ,

xn = Rsinϕ1 sinϕ2 sinϕ3 · · ·sinϕn−2 sinϕn−1 ,

and 0≤ ϕ1, . . . ,ϕn−2 ≤ π , 0≤ ϕn−1 = θ ≤ 2π ,

x(ϕ) = (x1(ϕ1, . . . ,ϕn−1), . . . ,xn(ϕ1, . . . ,ϕn−1)) ,

and
J(n,R,ϕ) = Rn−1(sinϕ1)n−2 · · ·(sinϕn−3)2(sinϕn−2)

is the Jacobian of the transformation.

D.2 A Useful Change of Variables Formula

The following formula is useful in computing integrals over the sphere Sn−1 when
n≥ 2. Let f be a function defined on Sn−1. Then we have∫

RSn−1
f (x)dσ(x) =

∫ +R

−R

∫
√

R2−s2 Sn−2

f
(
s,θ
)

dθ
Rds√
R2− s2

.

To prove this formula, let ϕ ′ = (ϕ2, . . . ,ϕn−1) and
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x′ = x′(ϕ ′) = (cosϕ2,sinϕ2 cosϕ3, . . . ,sinϕ2 · · ·sinϕn−2 sinϕn−1) .

Using the change of variables in Appendix D.1 we express∫
RSn−1

f (x)dσ(x)

as the iterated integral∫
π

ϕ1=0

[∫
π

ϕ2=0
· · ·
∫ 2π

ϕn−1=0
f (Rcosϕ1,Rsinϕ1 x′(ϕ ′))J(n−1,1,ϕ ′)dϕ

′
]

Rdϕ1

(Rsinϕ1)2−n ,

and we can realize the expression inside the square brackets as∫
Sn−2

f (Rcosϕ1,Rsinϕ1 x′)dσ(x′) .

Consequently,∫
RSn−1

f (x)dσ(x) =
∫

π

ϕ1=0

∫
Sn−2

f (Rcosϕ1,Rsinϕ1 x′)dσ(x′)Rn−1(sinϕ1)n−2dϕ1 ,

and the change of variables

s = Rcosϕ1 , ϕ1 ∈ (0,π),

ds =−Rsinϕ1 dϕ1 ,
√

R2− s2 = Rsinϕ1 ,

yields∫
RSn−1

f (x)dσ(x) =
∫ R

−R

{∫
Sn−2

f (s,
√

R2− s2 θ)dθ

}(√
R2− s2

)n−2 Rds√
R2− s2

.

Rescaling the sphere Sn−2 to
√

R2− s2 Sn−2 yields the claimed identity.

D.3 Computation of an Integral over the Sphere

Let K be a function on the line. We use the result in Appendix D.2 to show that for
n≥ 2 we have

∫
Sn−1

K(x ·θ)dθ =
2π

n−1
2

Γ
( n−1

2

) ∫ +1

−1
K(s|x|)

(√
1− s2

)n−3 ds

when x ∈ Rn \ {0}. Let x′ = x/|x| and pick a matrix A ∈ O(n) such that Ae1 = x′,
where e1 = (1,0, . . . ,0). We have
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Sn−1

K(x ·θ)dθ =
∫

Sn−1
K(|x|(x′ ·θ))dθ

=
∫

Sn−1
K(|x|(Ae1 ·θ))dθ

=
∫

Sn−1
K(|x|(e1 ·A−1

θ))dθ

=
∫

Sn−1
K(|x|θ1)dθ

=
∫ +1

−1
K(|x|s)ωn−2

(√
1− s2

)n−2 ds√
1− s2

= ωn−2

∫ +1

−1
K(s|x|)

(√
1− s2

)n−3 ds ,

where ωn−2 = 2π
n−1

2 Γ
( n−1

2

)−1 is the surface area of Sn−2.
For example, we have

∫
Sn−1

dθ

|ξ ·θ |α
= ωn−2

∫ +1

−1

1
|s|α |ξ |α

(1− s2)
n−3

2 ds =
1
|ξ |α

2π
n−1

2 Γ
( 1−α

2

)
Γ
( n−α

2

) ,

and the integral converges only when Reα < 1.

D.4 The Computation of Another Integral over the Sphere

We compute the following integral for n≥ 2:∫
Sn−1

dθ

|θ − e1|α
,

where e1 = (1,0, . . . ,0). Applying the formula in Appendix D.2, we obtain∫
Sn−1

dθ

|θ − e1|α
=
∫ +1

−1

∫
θ∈
√

1−s2 Sn−2

dθ

(|s−1|2 + |θ |2) α
2

ds√
1− s2

=
∫ +1

−1
ωn−2

(1− s2)
n−2

2(
(1− s)2 +1− s2

) α
2

ds√
1− s2

=
ωn−2

2
α
2

∫ +1

−1

(1− s2)
n−3

2

(1− s)
α
2

ds

=
ωn−2

2
α
2

∫ +1

−1
(1− s)

n−3−α
2 (1+ s)

n−3
2 ds ,

which converges exactly when Reα < n−1.
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D.5 Integration over a General Surface

Suppose that S is a hypersurface in Rn of the form S = {(u,Φ(u)) : u ∈ D}, where
D is an open subset of Rn−1 and Φ is a continuously differentiable mapping from D
to R. Let σ be the canonical surface measure on S. If g is a function on S, then we
have ∫

S
g(y)dσ(y) =

∫
D

g(x,Φ(x))
(

1+
n

∑
j=1

|∂ jΦ(x)|2
)1

2
dx .

Specializing to the sphere, we obtain∫
Sn−1

g(θ)dθ =
∫

ξ ′∈Rn−1

|ξ ′|<1

[
g(ξ ′,

√
1−|ξ ′|2)+g(ξ ′,−

√
1−|ξ ′|2)

] dξ ′√
1−|ξ ′|2

.

D.6 The Stereographic Projection

Define a map Π : Rn → Sn by the formula

Π(x1, . . . ,xn) =
(

2x1

1+ |x|2
, . . . ,

2xn

1+ |x|2
,
|x|2−1
1+ |x|2

)
.

It is easy to see that Π is a one-to-one map from Rn onto the sphere Sn minus the
north pole en+1 = (0, . . . ,0,1). Its inverse is given by the formula

Π
−1(θ1, . . . ,θn+1) =

(
θ1

1−θn+1
, . . . ,

θn

1−θn+1

)
.

The Jacobian of the map is verified to be

JΠ (x) =
( 2

1+ |x|2
)n

,

and the following change of variables formulas are valid:∫
Sn

F(θ)dθ =
∫

Rn
F(Π(x))JΠ (x)dx

and ∫
Rn

F(x)dx =
∫

Sn
F(Π−1(θ))JΠ−1(θ)dθ ,

where

JΠ−1(θ) =
1

JΠ (Π−1(θ))
=

(
|θ1|2 + · · ·+ |θn|2 + |1−θn+1|2

2|1−θn+1|2

)n

.
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Another interesting formula about the stereographic projection Π is

|Π(x)−Π(y)|= 2|x− y|(1+ |x|2)−1/2(1+ |y|2)−1/2 ,

for all x, y in Rn.



Appendix E
Some Trigonometric Identities and Inequalities

The following inequalities are valid for t real:

0 < t <
π

2
=⇒ sin(t) < t < tan(t) ,

0 < |t|< π

2
=⇒ 2

π
<

sin(t)
t

< 1 ,

−∞ < t < +∞ =⇒ |sin(t)| ≤ |t| ,

−∞ < t < +∞ =⇒ |1− cos(t)| ≤ |t|2

2
,

−∞ < t < +∞ =⇒ |1− eit | ≤ |t| ,

|t| ≤ π

2
=⇒ |sin(t)| ≥ 2|t|

π
,

|t| ≤ π =⇒ |1− cos(t)| ≥ 2|t|2

π2 ,

|t| ≤ π =⇒ |1− eit | ≥ 2|t|
π

.

The following sum to product formulas are valid:

sin(a)+ sin(b) = 2 sin
(a+b

2

)
cos
(a−b

2

)
,

sin(a)− sin(b) = 2 cos
(a+b

2

)
sin
(a−b

2

)
,

cos(a)+ cos(b) = 2 cos
(a+b

2

)
cos
(a−b

2

)
,

cos(a)− cos(b) = −2 sin
(a+b

2

)
sin
(a−b

2

)
.

The following identities are also easily proved:

N

∑
k=1

cos(kx) = − 1
2

+
sin((N + 1

2 )x)
2sin( x

2 )
,

N

∑
k=1

sin(kx) =
cos( x

2 )− cos((N + 1
2 )x)

2sin( x
2 )

.
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Appendix F
Summation by Parts

Let {ak}∞
k=0, {bk}∞

k=0 be two sequences of complex numbers. Then for N ≥ 1 we
have

N

∑
k=0

akbk = ANbN −
N−1

∑
k=0

Ak(bk+1−bk),

where

Ak =
k

∑
j=0

a j .

More generally we have

N

∑
k=M

akbk = ANbN −AM−1bM −
N−1

∑
k=M

Ak(bk+1−bk) ,

whenever 0≤M ≤ N, where A−1 = 0 and

Ak =
k

∑
j=0

a j

for k ≥ 0.
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Appendix G
Basic Functional Analysis

A quasinorm is a nonnegative functional ‖ · ‖ on a vector space X that satisfies

‖x + y‖X ≤ K(‖x‖X + ‖y‖X ) for some K ≥ 0 and all x,y ∈ X and also ‖λx‖X =
|λ |‖x‖X for all scalars λ . When K = 1, the quasinorm is called a norm. A quasi-

Banach space is a quasinormed space that is complete with respect to the topology

generated by the quasinorm. The proofs of the following theorems can be found in

several books including Albiac and Kalton [1], Kalton Peck and Roberts [150], and

Rudin [230].

The Hahn–Banach theorem. Let X be a normed space and X0 a subspace. Every

bounded linear functional Λ0 on X0 has a bounded extension Λ on X with the same

norm. In addition, if Λ0 is subordinate to a positively homogeneous subadditive

functional P, then Λ may be chosen to have the same property.

Banach–Alaoglou theorem. Let X be a quasi-Banach space and let X∗ be the

space of all bounded linear functionals on X . Then the unit ball of X∗ is weak∗
compact.

Open mapping theorem. Suppose that X and Y are quasi-Banach spaces and

T is a bounded surjective linear map from X onto Y . Then there exists a constant

K < ∞ such that for all x ∈ X we have

‖x‖X ≤ K‖T (x)‖Y .

Closed graph theorem. Suppose that X and Y are quasi-Banach spaces and T is

a linear map from X to Y whose graph is a closed set, i.e., whenever xk,x ∈ X and

(xk,T (xk)) �→ (x,y) in X ×Y for some y ∈ Y , then T (x) = y. Then T is a bounded

linear map from X to Y .

Uniform boundedness principle. Suppose that X is a quasi-Banach space, Y is

a quasinormed space and (Tα)α∈I is a family of bounded linear maps from X to Y
such that for all x ∈ X there exists a Cx < ∞ such that

sup
α∈I

‖Tα(x)‖Y ≤Cx .

Then there exists a constant K < ∞ such that

sup
α∈I

‖Tα‖X→Y ≤ K .
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Appendix H
The Minimax Lemma

Minimax type results are used in the theory of games and have their origin in the
work of Von Neumann [286]. Much of the theory in this subject is based on convex
analysis techniques. For instance, this is the case with the next proposition, which
is needed in the “difficult” inequality in the proof of the minimax lemma. We refer
to Fan [87] for a general account of minimax results. The following exposition is
based on the simple presentation in Appendix A2 of [98].

Minimax Lemma. Let A, B be convex subsets of certain vector spaces. Assume that
a topology is defined in B for which it is a compact Hausdorff space and assume that
there is a function Φ : A×B→ R

⋃
{+∞} that satisfies the following:

(a) Φ( . ,b) is a concave function on A for each b ∈ B,
(b) Φ(a, .) is a convex function on B for each a ∈ A,
(c) Φ(a, .) is lower semicontinuous on B for each a ∈ A.

Then the following identity holds:

min
b∈B

sup
a∈A

Φ(a,b) = sup
a∈A

min
b∈B

Φ(a,b) .

To prove the lemma we need the following proposition:

Proposition. Let B be a convex compact subset of a vector space and suppose that
g j : B→ R

⋃
{+∞}, j = 1,2, . . . ,n, are convex and lower semicontinuous. If

max
1≤ j≤n

g j(b) > 0 for all b ∈ B ,

then there exist nonnegative numbers λ1,λ2, . . . ,λn such that

λ1g1(b)+λ2g2(b)+ · · ·+λngn(b) > 0 for all b ∈ B .

Proof. We first consider the case n = 2. Define subsets of B

B1 = {b ∈ B : g1(b)≤ 0}, B2 = {b ∈ B : g2(b)≤ 0} .

If B1 = /0, we take λ1 = 1 and λ2 = 0, and we similarly deal with the case B2 = /0. If
B1 and B2 are nonempty, then they are closed and thus compact. The hypothesis of
the proposition implies that g2(b) > 0≥ g1(b) for all b∈ B1. Therefore, the function
−g1(b)/g2(b) is well defined and upper semicontinuous on B1 and thus attains its
maximum. The same is true for −g2(b)/g1(b) defined on B2. We set
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454 H The Minimax Lemma

µ1 = max
b∈B1

−g1(b)
g2(b)

≥ 0 , µ2 = max
b∈B2

−g2(b)
g1(b)

≥ 0 .

We need to find λ > 0 such that λg1(b)+ g2(b) > 0 for all b ∈ B. This is clearly
satisfied if b 6∈ B1

⋃
B2, while for b1 ∈ B1 and b2 ∈ B2 we have

λg1(b1)+g2(b1) ≥ (1−λ µ1)g2(b1) ,
λg1(b2)+g2(b2) ≥ (λ −µ2)g1(b2) .

Therefore, it suffices to find a λ > 0 such that 1−λ µ1 > 0 and λ −µ2 > 0. Such a
λ exists if and only if µ1µ2 < 1. To prove that µ1µ2 < 1, we can assume that µ1 6= 0
and µ2 6= 0. Then we take b1 ∈ B1 and b2 ∈ B2, for which the maxima µ1 and µ2 are
attained, respectively. Then we have

g1(b1)+ µ1g2(b1) = 0 ,

g1(b2)+
1
µ2

g2(b2) = 0 .

But g1(b1) < 0 < g1(b2); thus taking bθ = θb1 +(1−θ)b2 for some θ in (0,1), we
have

g1(bθ )≤ θg1(b1)+(1−θ)g1(b2) = 0 .

Considering the same convex combination of the last displayed equations and using
this identity, we obtain that

µ1µ2θg2(b1)+(1−θ)g2(b2) = 0 .

The hypothesis of the proposition implies that g2(bθ ) > 0 and the convexity of g2:

θg2(b1)+(1−θ)g2(b2) > 0 .

Since g2(b1) > 0, we must have µ1µ2g2(b1) < g2(b1), which gives µ1µ2 < 1. This
proves the required claim and completes the case n = 2.

We now use induction to prove the proposition for arbitrary n. Assume that the
result has been proved for n−1 functions. Consider the subset of B

Bn = {b ∈ B : gn(b)≤ 0} .

If Bn = /0, we choose λ1 = λ2 = · · · = λn−1 = 0 and λn = 1. If Bn is not empty,
then it is compact and convex and we can restrict g1,g2, . . . ,gn−1 to Bn. Using the
induction hypothesis, we can find λ1,λ2, . . . ,λn−1 ≥ 0 such that

g0(b) = λ1g1(b)+λ2g2(b)+ · · ·+λn−1gn−1(b) > 0

for all b ∈ Bn. Then g0 and gn are convex lower semicontinuous functions on B, and
max(g0(b),gn(b)) > 0 for all b ∈ B. Using the case n = 2, which was first proved,
we can find λ0,λn ≥ 0 such that for all b ∈ B we have
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0 < λ0g0(b)+λngn(b)
= λ0λ1g1(b)+λ0λ2g2(b)+ · · ·+λ0λn−1gn−1(b)+λngn(b).

This establishes the case of n functions and concludes the proof of the induction and
hence of the proposition. �

We now turn to the proof of the minimax lemma.

Proof. The fact that the left-hand side in the required conclusion of the minimax
lemma is at least as big as the right-hand side is obvious. We can therefore concen-
trate on the converse inequality. In doing this we may assume that the right-hand side
is finite. Without loss of generality we can subtract a finite constant from Φ(a,b),
and so we can also assume that

sup
a∈A

min
b∈B

Φ(a,b) = 0 .

Then, by hypothesis (c) of the minimax lemma, the subsets

Ba = {b ∈ B : Φ(a,b)≤ 0}, a ∈ A

of B are closed and nonempty, and we show that they satisfy the finite intersection
property. Indeed, suppose that

Ba1 ∩Ba2 ∩·· ·∩Ban = /0

for some a1,a2, . . . ,an ∈ A. We write g j(b) = Φ(a j,b), j = 1,2, . . . ,n, and we ob-
serve that the conditions of the previous proposition are satisfied. Therefore we can
find λ1,λ2, . . . ,λn ≥ 0 such that for all b ∈ B we have

λ1Φ(a1,b)+λ2Φ(a2,b)+ · · ·+λnΦ(an,b) > 0 .

For simplicity we normalize the λ j’s by setting λ1 + λ2 + · · ·+ λn = 1. If we set
a0 = λ1a1 +λ2a2 + · · ·+λnan, the concavity hypothesis (a) gives

Φ(a0,b) > 0

for all b ∈ B, contradicting the fact that supa∈A minb∈B Φ(a,b) = 0. Therefore, the
family of closed subsets {Ba}a∈A of B satisfies the finite intersection property. The
compactness of B now implies

⋂
a∈A Ba 6= /0. Take b0 ∈

⋂
a∈A Ba. Then Φ(a,b0)≤ 0

for every a ∈ A, and therefore

min
b∈B

sup
a∈A

Φ(a,b)≤ sup
a∈A

Φ(a,b0)≤ 0

as required. �



Appendix I
The Schur Lemma

Schur’s lemma provides sufficient conditions for linear operators to be bounded
on Lp. Moreover, for positive operators it provides necessary and sufficient such
conditions. We discuss these situations.

I.1 The Classical Schur Lemma

We begin with an easy situation. Suppose that K(x,y) is a locally integrable function
on a product of two σ -finite measure spaces (X ,µ)× (Y,ν), and let T be a linear
operator given by

T ( f )(x) =
∫

Y
K(x,y) f (y)dν(y)

when f is bounded and compactly supported. It is a simple consequence of Fubini’s
theorem that for almost all x ∈ X the integral defining T converges absolutely. The
following lemma provides a sufficient criterion for the Lp boundedness of T .

Lemma. Suppose that a locally integrable function K(x,y) satisfies

sup
x∈X

∫
Y
|K(x,y)|dν(y) = A < ∞ ,

sup
y∈Y

∫
X
|K(x,y)|dµ(x) = B < ∞ .

Then the operator T extends to a bounded operator from Lp(Y ) to Lp(X) with norm

A1− 1
p B

1
p for 1≤ p≤ ∞.

Proof. The second condition gives that T maps L1 to L1 with bound B, while the first
condition gives that T maps L∞ to L∞ with bound A. It follows by the Riesz–Thorin
interpolation theorem that T maps Lp to Lp with bound A1− 1

p B
1
p . �

This lemma can be improved significantly when the operators are assumed to be
positive.

I.2 Schur’s Lemma for Positive Operators

We have the following necessary and sufficient condition for the Lp boundedness of
positive operators.
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458 I The Schur Lemma

Lemma. Let (X ,µ) and (Y,ν) be two σ -finite measure spaces, where µ and ν are
positive measures, and suppose that K(x,y) is a nonnegative measurable function
on X ×Y . Let 1 < p < ∞ and 0 < A < ∞. Let T be the linear operator

T ( f )(x) =
∫

Y
K(x,y) f (y)dν(y)

and T t its transpose operator

T t(g)(y) =
∫

X
K(x,y)g(x)dµ(x) .

To avoid trivialities, we assume that there is a compactly supported, bounded, and
positive ν-a.e. function h1 on Y such that T (h1) > 0 µ-a.e. Then the following are
equivalent:

(i) T maps Lp(Y ) to Lp(X) with norm at most A.
(ii) For all B > A there is a measurable function h on Y that satisfies 0 < h < ∞

ν-a.e., 0 < T (h) < ∞ µ-a.e., and such that

T t(T (h)
p
p′
)
≤ Bp h

p
p′ .

(iii) For all B > A there are measurable functions u on X and v on Y such that
0 < u < ∞ µ-a.e., 0 < v < ∞ ν-a.e., and such that

T (up′) ≤ Bvp′ ,

T t(vp) ≤ Bup.

Proof. First we assume (ii) and we prove (iii). Define u,v by the equations vp′ =
T (h) and up′ = Bh and observe that (iii) holds for this choice of u and v. Moreover,
observe that 0 < u,v < ∞ a.e. with respect to the measures µ and ν , respectively.

Next we assume (iii) and we prove (i). For g in Lp′(X) we have∫
X

T ( f )(x)g(x)dµ(x) =
∫

X

∫
Y

K(x,y) f (y)g(x)
v(x)
u(y)

u(y)
v(x)

dν(y)dµ(x).

We now apply Hölder’s inequality with exponents p and p′ to the functions

f (y)
v(x)
u(y)

and g(x)
u(y)
v(x)

with respect to the measure K(x,y)dν(y)dµ(x) on X ×Y . Since(∫
Y

∫
X

f (y)p v(x)p

u(y)p K(x,y)dµ(x)dν(y)
)1

p

≤ B
1
p
∥∥ f
∥∥

Lp(Y )

and
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X

∫
Y

g(x)p′ u(y)p′

v(x)p′ K(x,y)dν(y)dµ(x)
)1

p′
≤ B

1
p′
∥∥g
∥∥

Lp′ (X),

we conclude that∣∣∣∣∫X
T ( f )(x)g(x)dµ(x)

∣∣∣∣≤ B
1
p + 1

p′ ‖ f‖Lp(Y )
∥∥g
∥∥

Lp′ (X).

Taking the supremum over all g with Lp′(X) norm 1, we obtain∥∥T ( f )
∥∥

Lp(X) ≤ B
∥∥ f
∥∥

Lp(Y ).

Since B was any number greater than A, we conclude that∥∥T
∥∥

Lp(Y )→Lp(X) ≤ A ,

which proves (i).
We finally assume (i) and we prove (ii). Without loss of generality, take here

A = 1 and B > 1. Define a map S : Lp(Y )→ Lp(Y ) by setting

S( f )(y) =
(
T t(T ( f )

p
p′
))p′

p (y).

We observe two things. First, f1 ≤ f2 implies S( f1)≤ S( f2), which is an easy con-
sequence of the fact that the same monotonicity is valid for T . Next, we observe that∥∥ f
∥∥

Lp ≤ 1 implies that
∥∥S( f )

∥∥
Lp ≤ 1 as a consequence of the boundedness of T on

Lp (with norm at most 1).
Construct a sequence hn, n = 1,2, . . . , by induction as follows. Pick h1 > 0 on

Y as in the hypothesis of the theorem such that T (h1) > 0 µ-a.e. and such that∥∥h1
∥∥

Lp ≤ B−p′(Bp′−1). (The last condition can be obtained by multiplying h1 by a
small constant.) Assuming that hn has been defined, we define

hn+1 = h1 +
1

Bp′ S(hn).

We check easily by induction that we have the monotonicity property hn ≤ hn+1 and
the fact that

∥∥hn
∥∥

Lp ≤ 1. We now define

h(x) = sup
n

hn(x) = lim
n→∞

hn(x).

Fatou’s lemma gives that
∥∥h
∥∥

Lp ≤ 1, from which it follows that h < ∞ ν-a.e. Since
h≥ h1 > 0 ν-a.e., we also obtain that h > 0 ν-a.e.

Next we use the Lebesgue dominated convergence theorem to obtain that hn → h
in Lp(Y ). Since T is bounded on Lp, it follows that T (hn) → T (h) in Lp(X). It

follows that T (hn)
p
p′ → T (h)

p
p′ in Lp′(X). Our hypothesis gives that T t maps Lp′(X)
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to Lp′(Y ) with norm at most 1. It follows T t
(
T (hn)

p
p′
)
→ T t

(
T (h)

p
p′
)

in Lp′(Y ).
Raising to the power p′

p , we obtain that S(hn)→ S(h) in Lp(Y ).
It follows that for some subsequence nk of the integers we have S(hnk)→ S(h) a.e.

in Y . Since the sequence S(hn) is increasing, we conclude that the entire sequence
S(hn) converges almost everywhere to S(h). We use this information in conjunction
with hn+1 = h1 + 1

Bp′ S(hn). Indeed, letting n→ ∞ in this identity, we obtain

h = h1 +
1

Bp′ S(h) .

Since h1 > 0 ν-a.e. it follows that S(h) ≤ Bp′h ν-a.e., which proves the required
estimate in (ii).

It remains to prove that 0 < T (h) < ∞ µ-a.e. Since
∥∥h
∥∥

Lp ≤ 1 and T is Lp

bounded, it follows that
∥∥T (h)

∥∥
Lp ≤ 1, which implies that T (h) < ∞ µ-a.e. We

also have T (h)≥ T (h1) > 0 µ-a.e. �

I.3 An Example

Consider the Hilbert operator

T ( f )(x) =
∫

∞

0

f (y)
x+ y

dy ,

where x∈ (0,∞). The operator T takes measurable functions on (0,∞) to measurable
functions on (0,∞). We claim that T maps Lp(0,∞) to itself for 1 < p < ∞; precisely,
we have the estimate∫

∞

0
T ( f )(x)g(x)dx ≤ π

sin(π/p)

∥∥ f
∥∥

Lp(0,∞)

∥∥g
∥∥

Lp′ (0,∞) .

To see this we use Schur’s lemma. We take

u(x) = v(x) = x−
1

pp′ .

We have that

T (up′)(x) =
∫

∞

0

y−
1
p

x+ y
dy = x−

1
p

∫
∞

0

t−
1
p

1+ t
dt = B( 1

p′ ,
1
p )v(x)p′ ,

where B is the usual beta function and the last identity follows from the change of
variables s = (1+ t)−1. Now an easy calculation yields

B( 1
p′ ,

1
p ) =

π

sin(π/p)
,
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so the lemma in Appendix I.2 gives that
∥∥T
∥∥

Lp→Lp ≤ π

sin(π/p) . The sharpness of this
constant follows by considering the sequence of functions

hε(x) =

{
x−

1
p +ε when x < 1,

x−
1
p−ε when x ≥ 1,

which satisfies

lim
ε→0

∥∥T (hε)
∥∥

Lp(0,∞)∥∥hε

∥∥
Lp(0,∞)

=
π

sin(π/p)
.

We make some comments related to the history of Schur’s lemma. Schur [237]
first proved a matrix version of the lemma in Appendix I.1 when p = 2. Precisely,
Schur’s original version was the following: If K(x,y) is a positive decreasing func-
tion in both variables and satisfies

sup
m

∑
n

K(m,n)+ sup
n

∑
m

K(m,n) < ∞ ,

then
∑
m

∑
n

amnK(m,n)bmn ≤C‖a‖`2‖b‖`2 .

Hardy–Littlewood and Pólya [121] extended this result to Lp for 1 < p < ∞ and
disposed of the condition that K be a decreasing function. Aronszajn, Mulla, and
Szeptycki [9] proved that (iii) implies (i) in the lemma of Appendix I.2. Gagliardo
in [97] proved the converse direction that (i) implies (iii) in the same lemma. The
case p = 2 was previously obtained by Karlin [151]. Condition (ii) was introduced
by Howard and Schep [131], who showed that it is equivalent to (i) and (iii). A multi-
linear analogue of the lemma in Appendix I.2 was obtained by Grafakos and Torres
[113]; the easy direction (iii) implies (i) was independently observed by Bekollé,
Bonami, Peloso, and Ricci [17]. See also Cwikel and Kerman [65] for an alternative
multilinear formulation of the Schur lemma.

The case p = p′ = 2 of the application in Appendix I.3 is a continuous version of
Hilbert’s double series theorem. The discrete version was first proved by Hilbert in
his lectures on integral equations (published by Weyl [290]) without a determination
of the exact constant. This exact constant turns out to be π , as discovered by Schur
[237]. The extension to other p’s (with sharp constants) is due to Hardy and M.
Riesz and published by Hardy [120].



Appendix J
The Whitney Decomposition of Open Sets in Rn

An arbitrary open set in Rn can be decomposed as a union of disjoint cubes whose
lengths are proportional to their distance from the boundary of the open set. See, for
instance, Figure J.1 when the open set is the unit disk in R2. For a given cube Q in
Rn, we denote by `(Q) its length.

Proposition. Let Ω be an open nonempty proper subset of Rn. Then there exists a
family of closed cubes {Q j} j such that

(a)
⋃

j Q j = Ω and the Q j’s have disjoint interiors.
(b)

√
n`(Q j)≤ dist (Q j,Ω

c)≤ 4
√

n`(Q j).
(c) If the boundaries of two cubes Q j and Qk touch, then

1
4
≤

`(Q j)
`(Qk)

≤ 4 .

(d) For a given Q j there exist at most 12n Qk’s that touch it.

Fig. J.1 The Whitney decomposition of the unit disk.
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Proof. Let Dk be the collection of all dyadic cubes of the form

{(x1, . . . ,xn) ∈ Rn : m j2−k ≤ x j < (m j +1)2−k} ,

where m j ∈ Z. Observe that each cube in Dk gives rise to 2n cubes in Dk+1 by
bisecting each side.

Write the set Ω as the union of the sets

Ωk = {x ∈Ω : 2
√

n2−k < dist(x,Ω c)≤ 4
√

n2−k}

over all k ∈ Z. Let F ′ be the set of all cubes Q in Dk for some k ∈ Z such that
Q∩Ωk 6= /0. We show that the collection F ′ satisfies property (b). Let Q ∈F ′ and
pick x ∈Ωk ∩Q for some k ∈ Z. Observe that

√
n2−k ≤ dist(x,Ω c)−

√
n`(Q)≤ dist(Q,Ω c)≤ dist(x,Ω c)≤ 4

√
n2−k ,

which proves (b).
Next we observe that ⋃

Q∈F ′
Q = Ω .

Indeed, every Q in F ′ is contained in Ω (since it has positive distance from its
complement) and every x ∈Ω lies in some Ωk and in some dyadic cube in Dk.

The problem is that the cubes in the collection F ′ may not be disjoint. We have
to refine the collection F ′ by eliminating those cubes that are contained in some
other cubes in the collection. Recall that two dyadic cubes have disjoint interiors
or else one contains the other. For every cube Q in F ′ we can therefore consider
the unique maximal cube Qmax in F ′ that contains it. Two different such maximal
cubes must have disjoint interiors by maximality. Now set F = {Qmax : Q ∈F ′}.

The collection of cubes {Q j} j = F clearly satisfies (a) and (b), and we now turn
our attention to the proof of (c). Observe that if Q j and Qk in F touch then

√
n`(Q j)≤ dist(Q j,Ω

c)≤ dist(Q j,Qk)+dist(Qk,Ω
c)≤ 0+4

√
n`(Qk) ,

which proves (c). To prove (d), observe that any cube Q in Dk is touched by exactly
3n−1 other cubes in Dk. But each cube Q in Dk can contain at most 4n cubes of F
of length at least one-quarter of the length of Q. This fact combined with (c) yields
(d). �

The following observation is a consequence of the result just proved: Let F =
{Q j} j be the Whitney decomposition of a proper open subset Ω of Rn. Fix 0 <
ε < 1/4 and denote by Q∗

k the cube with the same center as Qk but with side length
(1 + ε) times that of Qk. Then Qk and Q j touch if and only if Q∗

k and Q j intersect.
Consequently, every point in Ω is contained in at most 12n cubes Q∗

k .



Appendix K
Smoothness and Vanishing Moments

K.1 The Case of No Cancellation

Let a,b ∈ Rn, µ,ν ∈ R, and M,N > n. Set

I(a,µ,M;b,ν ,N) =
∫

Rn

2µn

(1+2µ |x−a|)M
2νn

(1+2ν |x−b|)N dx .

Then we have

I(a,µ,M;b,ν ,N)≤C0
2min(µ,ν)n(

1+2min(µ,ν)|a−b|
)min(M,N) ,

where

C0 = vn

(
M4N

M−n
+

N4M

N−n

)
and vn is the volume of the unit ball in Rn.

To prove this estimate, first observe that∫
Rn

dx
(1+ |x|)M ≤ vnM

M−n
.

Without loss of generality, assume that ν ≤ µ . Consider the cases 2ν |a−b| ≤ 1 and
2ν |a−b| ≥ 1. In the case 2ν |a−b| ≤ 1 we use the estimate

2νn

(1+2ν |x−a|)N ≤ 2νn ≤ 2νn2min(M,N)

(1+2ν |a−b|)min(M,N) ,

and the result is a consequence of the estimate

I(a,µ,M;b,ν ,N)≤ 2νn2min(M,N)

(1+2ν |a−b|)min(M,N)

∫
Rn

2µn

(1+2µ |x−a|)M dx .

In the case 2ν |a−b| ≥ 1 let Ha and Hb be the two half-spaces, containing the points
a and b, respectively, formed by the hyperplane perpendicular to the line segment
[a,b] at its midpoint. Split the integral over Rn as the integral over Ha and the integral
over Hb. For x∈Ha use that |x− b| ≥ 1

2 |a− b|. For x ∈ Hb use a similar inequality
and the fact that 2ν |a−b| ≥ 1 to obtain
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466 K Smoothness and Vanishing Moments

2µn

(1+2µ |x−a|)M ≤ 2µn

(2µ 1
2 |a−b|)M

≤ 4M2(ν−µ)(M−n)2νn

(1+2ν |a−b|)M .

The required estimate follows.

K.2 The Case of Cancellation

Let a,b ∈ Rn, M,N > 0, and L a nonnegative integer. Suppose that φµ and φν are
two functions on Rn that satisfy

|(∂ α
x φµ)(x)| ≤ Aα 2µn 2µL

(1+2µ |x− xµ |)M , for all |α|= L,

|φν(x)| ≤ B2νn

(1+2ν |x− xν |)N ,

for some Aα and B positive, and∫
Rn

φν(x)xβ dx = 0 for all |β | ≤ L−1,

where the last condition is supposed to be vacuous when L = 0. Suppose that N >
M +L+n and that ν ≥ µ . Then we have∣∣∣∣∫Rn

φµ(x)φν(x)dx
∣∣∣∣≤C00

2µn2−(ν−µ)L

(1+2µ |xµ − xν |)M ,

where
C00 = vn

N−L−M
N−L−M−n

B ∑
|α|=L

Aα

α!
.

To prove this statement, we subtract the Taylor polynomial of order L−1 of φµ

at the point xν from the function φµ(x) and use the remainder theorem to control the
required integral by

B ∑
|α|=L

Aα

α!

∫
Rn

|x− xν |L2µn2µL

(1+2µ |ξx− xµ |)M
2νn

(1+2ν |x− xν |)N dx ,

for some ξx on the segment joining xν to x. Using ν ≥ µ and the triangle inequality,
we obtain

1
1+2µ |ξx− xµ |

≤ 1+2ν |x− xν |
1+2µ |xµ − xν |

.

We insert this estimate in the last integral and we use that N > L+M +n to deduce
the required conclusion.
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K.3 The Case of Three Factors

Given three numbers a,b,c we denote by med(a,b,c) the number with the property
min(a,b,c)≤med(a,b,c)≤max(a,b,c).

Let xν ,xµ ,xλ ∈ Rn. Suppose that ψν , ψµ , ψλ are functions defined on Rn such
that for all N > n sufficiently large there exist constants Aν ,Aµ ,Aλ < ∞ such that

|ψν(x)| ≤ Aν

2νn/2

(1+2ν |x− xν |)N ,

|ψµ(x)| ≤ Aµ

2µn/2

(1+2µ |x− xµ |)N ,

|ψλ (x)| ≤ Aλ

2λn/2

(1+2λ |x− xλ |)N ,

for all x ∈ Rn. Then the following estimate is valid:∫
Rn
|ψν(x)| |ψµ(x)| |ψλ (x)|dx

≤
CN,n Aν Aµ Aλ 2−max(µ,ν ,λ )n/2 2med(µ,ν ,λ )n/2 2min(µ,ν ,λ )n/2

((1+2min(ν ,µ)|xν − xµ |)(1+2min(µ,λ )|xµ − xλ |)(1+2min(λ ,ν)|xλ − xν |))N

for some constant CN,n > 0 independent of the remaining parameters.
Analogous estimates hold if some of these factors are assumed to have cancella-

tion and the others vanishing moments. See the article of Grafakos and Torres [114]
for precise statements of these results and applications. Similar estimates with m
factors, m ∈ Z+, are studied in Bényi and Tzirakis [21].



Glossary

A⊆ B A is a subset of B (not necessarily a proper subset)

A $ B A is a proper subset of B

Ac the complement of a set A

χE the characteristic function of the set E

d f the distribution function of a function f

f ∗ the decreasing rearrangement of a function f

fn ↑ f fn increases monotonically to a function f

Z the set of all integers

Z+ the set of all positive integers {1,2,3, . . .}

Zn the n-fold product of the integers

R the set of real numbers

R+ the set of positive real numbers

Rn the Euclidean n-space

Q the set of rationals

Qn the set of n-tuples with rational coordinates

C the set of complex numbers

Cn the n-fold product of complex numbers

T the unit circle identified with the interval [0,1]

Tn the n-dimensional torus [0,1]n

|x|
√
|x1|2 + · · ·+ |xn|2 when x = (x1, . . . ,xn) ∈ Rn

Sn−1 the unit sphere {x ∈ Rn : |x|= 1}
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470 Glossary

e j the vector (0, . . . ,0,1,0, . . . ,0) with 1 in the jth entry and 0 elsewhere

log t the logarithm with base e of t > 0

loga t the logarithm with base a of t > 0 (1 6= a > 0)

log+ t max(0, log t) for t > 0

[t] the integer part of the real number t

x · y the quantity ∑
n
j=1 x jy j when x = (x1, . . . ,xn) and y = (y1, . . . ,yn)

B(x,R) the ball of radius R centered at x in Rn

ωn−1 the surface area of the unit sphere Sn−1

vn the volume of the unit ball {x ∈ Rn : |x|< 1}

|A| the Lebesgue measure of the set A⊆ Rn

dx Lebesgue measure

AvgB f the average 1
|B|
∫

B f (x)dx of f over the set B〈
f ,g
〉

the real inner product
∫

Rn f (x)g(x)dx〈
f |g
〉

the complex inner product
∫

Rn f (x)g(x)dx〈
u, f
〉

the action of a distribution u on a function f

p′ the number p/(p−1), whenever 0 < p 6= 1 < ∞

1′ the number ∞

∞′ the number 1

f = O(g) means | f (x)| ≤M|g(x)| for some M for x near x0

f = o(g) means | f (x)| |g(x)|−1 → 0 as x → x0

At the transpose of the matrix A

A∗ the conjugate transpose of a complex matrix A

A−1 the inverse of the matrix A

O(n) the space of real matrices satisfying A−1 = At

‖T‖X→Y the norm of the (bounded) operator T : X → Y

A≈ B means that there exists a c > 0 such that c−1 ≤ B
A ≤ c

|α| indicates the size |α1|+ · · ·+ |αn| of a multi-index α = (α1, . . . ,αn)

∂ m
j f the mth partial derivative of f (x1, . . . ,xn) with respect to x j

∂ α f ∂
α1
1 · · ·∂ αn

n f

C k the space of functions f with ∂ α f continuous for all |α| ≤ k
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C0 the space of continuous functions with compact support

C00 the space of continuous functions that vanish at infinity

C ∞
0 the space of smooth functions with compact support

D the space of smooth functions with compact support

S the space of Schwartz functions

C ∞ the space of smooth functions
⋃

∞
k=1 C k

D ′(Rn) the space of distributions on Rn

S ′(Rn) the space of tempered distributions on Rn

E ′(Rn) the space of distributions with compact support on Rn

P the set of all complex-valued polynomials of n real variables

S ′(Rn)/P the space of tempered distributions on Rn modulo polynomials

`(Q) the side length of a cube Q in Rn

∂Q the boundary of a cube Q in Rn

Lp(X ,µ) the Lebesgue space over the measure space (X ,µ)

Lp(Rn) the space Lp(Rn, | · |)

Lp,q(X ,µ) the Lorentz space over the measure space (X ,µ)

Lp
loc(R

n) the space of functions that lie in Lp(K) for any compact set K in Rn

|dµ| the total variation of a finite Borel measure µ on Rn

M (Rn) the space of all finite Borel measures on Rn

Mp(Rn) the space of Lp Fourier multipliers, 1≤ p≤ ∞

M p,q(Rn) the space of translation-invariant operators that map Lp(Rn) to Lq(Rn)∥∥µ
∥∥

M

∫
Rn |dµ| the norm of a finite Borel measure µ on Rn

M the centered Hardy–Littlewood maximal operator with respect to balls

M the uncentered Hardy–Littlewood maximal operator with respect to balls

Mc the centered Hardy–Littlewood maximal operator with respect to cubes

Mc the uncentered Hardy–Littlewood maximal operator with respect to cubes

Mµ the centered maximal operator with respect to a measure µ

Mµ the uncentered maximal operator with respect to a measure µ

Ms the strong maximal operator

Md the dyadic maximal operator
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100. I. M. Gelfand and G. E. Šilov, Generalized Functions, Vol. 1: Properties and Operations,

Academic Press, New York, London, 1964.
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116. U. Haagerup, The best constants in Khintchine’s inequality, Studia Math. 70 (1982), 231–

283.
117. L.-S. Hahn, On multipliers of p-integrable functions, Trans. Amer. Math. Soc. 128 (1967),

321–335.
118. G. H. Hardy, Note on a theorem of Hilbert, Math. Zeit. 6 (1920), 314–317.
119. G. H. Hardy, Note on some points in the integral calculus, Messenger Math. 57 (1928),

12–16.
120. G. H. Hardy, Note on a theorem of Hilbert concerning series of positive terms, Proc.

London Math. Soc. 23 (1925), Records of Proc. XLV–XLVI.
121. G. H. Hardy, J. E. Littlewood, and G. Pólya, The maximum of a certain bilinear form,
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Sci. Publ. Math. No. 19 (1964), 5–68.
173. J. E. Littlewood, On a certain bilinear form, Quart. J. Math. Oxford Ser. 1 (1930), 164–

174.
174. J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series (I),

J. London Math. Soc. 6 (1931), 230–233.
175. J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series (II),

Proc. London Math. Soc. 42 (1936), 52–89.
176. J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series (III),

Proc. London Math. Soc. 43 (1937), 105–126.
177. L. H. Loomis, A note on Hilbert’s transform, Bull. Amer. Math. Soc. 52 (1946), 1082–

1086.
178. L. H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull.

Amer. Math. Soc. 55 (1949), 961–962.
179. G. Lorentz, Some new function spaces, Ann. of Math. 51 (1950), 37–55.
180. G. Lorentz, On the theory of spaces Λ , Pacific. J. Math. 1 (1951), 411–429.
181. S. Lu, Y. Ding, and D. Yan, Singular Integrals and Related Topics, World Scientific Pub-

lishing, Singapore, 2007.
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absolutely summable Fourier series, 183
adjoint of an operator, 138
admissible growth, 37
almost everywhere convergence, 232
almost orthogonality, 379, 391
analytic family of operators, 37
Aoki–Rolewicz theorem, 66
approximate identity, 24
asymptotics

of Bessel function, 431
asymptotics of gamma function, 420
atom

in a measure space, 52

bad function, 287
Banach–Alaoglou theorem, 451
Banach-valued extension of a linear operator,

321
Banach-valued extension of an operator, 325
Banach-valued measurable function, 321
Banach-valued singular integral, 329
band limited function, 410
Bernstein’s inequality, 123
Bernstein’s theorem, 175
Bessel function, 156, 425

asymptotics, 431
large arguments, 430
small arguments, 429

beta function, 418
beta integral identity, 134
Boas and Bochner inequality, 321
Bochner integral, 322
Bochner–Riesz means, 196
Bochner–Riesz operator, 196
bounded variation, 182
BV , functions of bounded variation, 182

Calderón reproducing formula, 371
Calderón–Zygmund decomposition, 287
Calderón–Zygmund decomposition on Lq, 303
cancellation condition

for a kernel, 305
Carleson operator, 233
Cauchy sequence in measure, 8
centered Hardy–Littlewood maximal function,

78
centered maximal function with respect to

cubes, 90
Cesàro means, 168
Chebyshev’s inequality, 5
circular Dirichlet kernel, 165
circular means, 196
circular partial sum, 168
closed

under translations, 135
closed graph theorem, 451
commutes with translations, 135
compactly supported distribution, 110
complete orthonormal system, 169
completeness

of Lorentz spaces, 50
completeness of Lp, p < 1, 12
conditional expectation, 384
cone multiplier, 146
conjugate function, 214
conjugate harmonic, 254
conjugate Poisson kernel, 218, 254, 265
continuously differentiable function

of order N, 95
convergence

in C ∞
0 , 109

in S , 97, 109
in Lp, 6
in C ∞, 109
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in measure, 5
in weak Lp, 6

convolution, 18, 115
Cotlar’s inequality, 295
countably simple, 51
covering lemma, 79
critical index, 198
critical point, 150

Darboux’s equation, 395
de la Vallée Poussin kernel, 173
decay of Fourier coefficients, 176
decomposition of open sets, 463
decreasing rearrangement, 44

of a simple function, 45
degree of a trigonometric polynomial, 165
deLeeuw’s theorem, 145
derivative

of a distribution, 113
of a function (partial), 94

differentiation
of approximate identities, 87
theory, 85

dilation
L1 dilation, 82
of a function, 100
of a tempered distribution, 114

Dini condition, 314
Dini’s theorem, 192
Dirac mass, 111
directional Hilbert transform, 272
Dirichlet kernel, 165
Dirichlet problem, 84

on the sphere, 134
distribution, 110

homogeneous, 123, 127
of lattice points, 175
supported at a point, 124
tempered, 110
with compact support, 110, 118

distribution function, 2
of a simple function, 3

distributional derivative, 113
divergence

of Bochner–Riesz means at the critical
index, 203

of the Fourier series of a continuous
function, 191

of the Fourier series of an L1 function, 198
doubling condition

on a measure, 89
doubling measure, 89
doubly truncated kernel, 294
doubly truncated singular integrals, 294

duals of Lorentz spaces, 52
duBois Reymond’s theorem, 191
duplication formula

for the gamma function, 424
dyadic cube, 384
dyadic decomposition, 350
dyadic interval, 384
dyadic martingale difference operator, 384
dyadic martingale square function, 389
dyadic maximal function, 94
dyadic spherical maximal function, 381

eigenvalues
of the Fourier transform, 106

equidistributed, 44
equidistributed sequence, 209
Euler’s constant, 423
Euler’s limit formula for the gamma function,

422
infinite product form, 423

expectation
conditional, 384

extrapolation, 43

Fejér kernel, 25, 167
Fejér means, 168
Fejér’s theorem, 186
Fourier coefficient, 163
Fourier inversion, 102, 169

on L1, 107
on L2, 104

Fourier multiplier, 143
Fourier series, 163
Fourier transform

of a radial function, 428
of a Schwartz function, 99
of surface measure, 428
on L1, 103
on L2, 103
on Lp, 1 < p < 2, 104
properties of, 100

Fréchet space, 97
frame

tight, 413
Fresnel integral, 135
fundamental solution, 126
fundamental theorem of algebra, 133

g-function, 381, 397
gamma function, 417

asymptotics, 420
duplication formula, 424
meromorphic extension, 420

good function, 287, 303
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gradient condition
for a kernel, 290

Green’s identity, 126

Hölder condition, 314
Hölder’s inequality, 2, 10

for weak spaces, 15
Hörmander’s condition, 290, 367
Hörmander–Mihlin multiplier theorem, 366
Haar function, 385
Haar measure, 17
Haar wavelet, 402
Hadamard’s three lines lemma, 36
Hahn–Banach theorem, 451
Hardy’s inequalities, 29
Hardy–Littlewood maximal function

centered, 78
uncentered, 79

harmonic distribution, 125
harmonic function, 84
Hausdorff–Young, 174
Hausdorff–Young inequality, 104
Heisenberg group, 17
Hilbert transform, 250

maximal, 257, 272
maximal directional, 272
truncated, 250

Hirschman’s lemma, 38
homogeneous distribution, 123, 127
homogeneous Lipschitz space, 179
homogeneous maximal singular integrals, 267
homogeneous singular integrals, 267

inductive limit topology, 110
infinitely differentiable function, 95
inner product

complex, 138
real, 138

inner regular measure, 89
interpolation

Banach-valued Marcinkiewicz theorem, 327
Banach-valued Riesz–Thorin theorem, 327
for analytic families of operators, 37
Marcinkiewicz theorem, 31
multilinear Marcinkiewicz theorem, 72
multilinear Riesz–Thorin theorem, 72
off-diagonal Marcinkiewicz theorem, 56
Riesz–Thorin theorem, 34
Stein’s theorem, 37
with change of measure, 67

inverse Fourier transform, 102
isoperimetric inequality, 15

Jensen’s inequality, 11

Khintchine’s inequalities, 435
for weak type spaces, 438

Kolmogorov’s inequality, 91
Kolmogorov’s theorem, 198
Kronecker’s lemma, 198

lacunary Carleson–Hunt theorem, 375
lacunary sequence, 238
Laplace’s equation, 262
Laplacian, 125
lattice points, 175
Lebesgue constants, 174
Lebesgue differentiation theorem, 87, 92
left Haar measure, 17
left maximal function, 93
Leibniz’s rule, 95, 120
linear operator, 31
Liouville’s theorem, 133
Lipschitz condition, 314

for a kernel, 290
Lipschitz space

homogeneous, 179
Littlewood–Paley operator, 342
Littlewood–Paley theorem, 343
localization principle, 193
locally finite measure, 89
locally integrable functions, 10
logconvexity of weak L1, 68
Lorentz spaces, 48

M. Riesz’s theorem, 215
majorant

radial decreasing, 84
Marcinkiewicz and Zygmund theorem, 316
Marcinkiewicz function, 338
Marcinkiewicz interpolation theorem, 31
Marcinkiewicz multiplier theorem

on Rn, 363
on R, 360

maximal function
centered with respect to cubes, 90
dyadic, 94
dyadic spherical, 381
Hardy–Littlewood centered, 78
Hardy–Littlewood uncentered, 79
left, 93
right, 93
strong, 92
uncentered with respect to cubes, 90
with respect to a general measure, 89

maximal Hilbert transform, 257
maximal singular integral, 268

doubly truncated, 294
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maximal singular integrals with even kernels,
278

maximal truncated singular integral, 293
method of rotations, 272
metrizability

of Lorentz space Lp,q, 64
of weak Lp, 13

Mihlin’s condition, 367
Mihlin-Hörmander multiplier theorem, 366
minimally supported frequency wavelet, 405
minimax lemma, 453
Minkowski’s inequality, 2, 11, 19

integral form, 12
Minkowski’s integral inequality, 12
multi-index, 94
multilinear map, 71
multilinear Marcinkiewicz interpolation

theorem, 72
multilinear Riesz–Thorin interpolation

theorem, 72
multiplier, 143

on the torus, 221
multiplier theorems, 359
multisublinear map, 72

nonatomic measure space, 52
nonnormability of weak L1, 14
nonsmooth Littlewood–Paley theorem, 349,

350
normability

of Lorentz space Lp,q, 64
of Lorentz spaces, 64
of weak Lp for p > 1, 13

off-diagonal Marcinkiewicz interpolation
theorem, 56

open mapping theorem, 451
operator

commuting with translations, 135
of strong type (p,q), 31
of weak type (p,q), 31

orthonormal set, 169, 403
orthonormal system

complete, 169
oscillation of a function, 86
oscillatory integral, 149

Parseval’s relation, 102, 170
partial derivative, 94
phase, 149
Plancherel’s identity, 102, 170
pointwise convergence of Fourier series, 186
Poisson kernel, 25, 84, 87, 174, 253
Poisson kernel for the sphere, 134

Poisson representation formula
of Bessel functions, 425

Poisson summation formula, 171
positive operator, 325
principal value integral, 250
principle of localization, 193

quasilinear operator, 31
quasimultilinear map, 72

Rademacher functions, 435
radial decreasing majorant, 84
radial function, 82
reflection

of a function, 100
of a tempered distribution, 114

reflection formula
for the gamma function, 424

regulated function, 224, 236
restricted weak type, 66
restricted weak type (p,q), 62
Riemann’s principle of localization, 193
Riemann–Lebesgue lemma, 105, 176, 194
Riesz product, 242
Riesz projection, 214
Riesz transform, 259
Riesz’s sunrise lemma, 93
Riesz–Thorin interpolation theorem, 34
right maximal function, 93
right Haar measure, 17
rotations method, 272
rough singular integrals, 375

sampling theorem, 410
Schur Lemma, 457
Schwartz function, 96
Schwartz seminorm, 96
self-adjoint operator, 139
self-transpose operator, 139
Sidon set, 244
σ -finite measure space, 52
singular integrals with even kernels, 274
size condition

for a kernel, 289, 305
smooth bump, 109
smooth function, 95, 109
smooth function with compact support, 95, 109
smoothly truncated maximal singular integral,

304
smoothness condition

for a kernel, 290, 305
space

L∞, 1
Lp, 1
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Lp,∞, 4
Lp,q, 48
M 1,1(Rn), 141
M 2,2(Rn), 142
M ∞,∞(Rn), 142
M p,q(Rn), 139
Mp(Rn), 143
S ′/P , 121
C N , 95
C ∞, 95
C ∞

0 , 95
spectrum of the Fourier transform, 106
spherical maximal function, 395
spherical average, 395
spherical coordinates, 441
spherical Dirichlet kernel, 165
spherical partial sum, 168
square Dirichlet kernel, 165
square function, 343, 378

dyadic martingale, 389
square function of Littlewood–Paley, 343
square partial sum, 168
Stein’s interpolation theorem, 37
stereographic projection, 444
Stirling’s formula, 420
stopping-time, 88
stopping-time argument, 287
strong maximal function, 92
strong type (p,q), 31
sublinear operator, 31
summation by parts, 449
sunrise lemma, 93
support of a distribution, 115
surface area of the unit sphere Sn−1, 418

tempered distribution, 110
tempered distributions modulo polynomials,

121
test function, 109
tight frame, 413
tiling of Rn, 350
topological group, 16
torus, 162
total order of differentiation, 95
transference of maximal multipliers, 228
transference of multipliers, 223
translation

of a function, 100
of a tempered distribution, 114

translation-invariant operator, 135
transpose of an operator, 138
trigonometric monomial, 165
trigonometric polynomial, 164
truncated Hilbert transform, 250
truncated maximal singular integral, 304
truncated singular integral, 268, 293

uncentered Hardy–Littlewood maximal
function, 79

uncentered maximal function with respect to a
general measure, 89

uncentered maximal function with respect to
cubes, 90

uncertainty principle, 108
uniform boundedness principle, 451
unitary matrix, 317

Vandermonde determinant, 152
variation of a function, 182
vector-valued

Hardy–Littlewood maximal inequality, 335
vector-valued extension of a linear operator,

319
vector-valued inequalities, 332, 333, 337
vector-valued Littlewood–Paley theorem, 347
vector-valued singular integral, 329
volume of the unit ball in Rn, 419

wave equation, 395
wavelet, 402

of minimally supported frequency, 405
wavelet transform, 413
weak Lp, 4
weak type (p,q), 31
Weierstrass approximation theorem, 30

for trigonometric polynomials, 168
Weierstrass’s theorem, 240
Weyl’s theorem, 209
Whitney decomposition, 463

Young’s covering lemma, 89
Young’s inequality, 21, 328

for weak type spaces, 21, 63
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