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Preface

Optimization is everywhere. It is human nature to seek the best option among
all that are available. Nature, too, seems to be guided by optimization—many
laws of nature have a variational character. Among geometric figures in the
plane with a fixed perimeter, the circle has the greatest area. Such isoperimet-
ric problems involving geometric figures date back to ancient Greece. Fermat’s
principle, discovered in 1629, stating that the tangent line is horizontal at a
minimum point, seems to have influenced the development of calculus. The
proofs of Rolle’s theorem and the mean value theorem in calculus use the
Weierstrass theorem on the existence of maximizers and minimizers. The in-
troduction of the brachistochrone problem in 1696 by Johann Bernoulli had
a tremendous impact on the development of the calculus of variations and
influenced the development of functional analysis. The variational character
of laws of mechanics and optics were discovered in the seventeenth and eigh-
teenth centuries. Euler and Lagrange forged the foundations of the calculus of
variations in the eighteenth century. In the nineteenth century, Riemann used
Dirichlet’s principle, which has a variational character, in his investigations
in complex analysis. The simplex method for linear programming was discov-
ered shortly after the advent of computers in the 1940s, and influenced the
subsequent development of mathematical programming. The emergence of the
theory of optimal control in the 1950s was in response to the need for control-
ling space vehicles and various industrial processes. Today, optimization is a
vast subject with many subfields, and it is growing at a rapid pace. Research
is proceeding in various directions—advancement of theory, development of
new applications and computer codes, and establishment or renewal of ties
with many fields in science and industry.

The main focus of this book is optimization in finite-dimensional spaces.
In broad terms, this is the problem of optimizing a function f in n variables
over a subset of Rn. Thus, the decision variable x = (x1, . . . , xn) is finite-
dimensional. A typical problem in this area is a mathematical program (P ),
which concerns the minimization (or maximization) of a function f(x) subject
to finitely many functional constraints of the form gi(x) ≤ 0, hj(x) = 0 and
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a set constraint of the form x ∈ C, where f , gi, hj are real-valued functions
defined on some subsets of Rn and C is a subset of Rn. Any finite-dimensional
vector space may be substituted for Rn without any loss of generality. If the
domain of f is an open set and there are no constraints (or more generally if
the domains of gi, hj , and C are open sets), then we have an unconstrained
optimization problem. If all the functions are affine and C is defined by linear
equations and inequalities, then (P ) is called a linear program. If f, gi are
convex functions, hj is an affine function, and C is a convex set, then (P ) is a
convex program. If the number of functional constraints is infinite, then (P )
is called a semi-infinite program. Mathematical programs have many real-life
applications. In particular, linear programming, and more recently semidef-
inite programming, are enormously popular and have many industrial and
scientific applications. The latter problem optimizes a linear function subject
to linear equality constraints over the cone of symmetric positive semidefinite
matrices.

The main goal of the theory of mathematical programming is to obtain
optimality conditions (necessary and sufficient) for a local or global minimizer
of (P ). This is an impossible task unless some kind of regularity is assumed
about the data of (P )—the functions f, gi, hj and the set C. This can be
differentiability (in some form) of the functions, or the convexity of the func-
tions as well as of the set C. In this book, we will assume that the functions
f, gi, hj are differentiable as many times as needed (except in cases where
there is no advantage to do so), and do not develop nonsmooth analysis in
any systematic way. Optimization from the viewpoint of nonsmooth analysis
is competently covered in several recent books; see for example Variational
Analysis by Rockafellar and Wets, and Variational Analysis and Generalized
Differentiation by Mordukhovich. Another goal of the theory, important espe-
cially in convex programming, is the duality theory, whereby a second convex
program (D) is associated with (P ) such that the pair (P )-(D) have remark-
able properties which can be exploited in several useful ways. If the problem
(P ) has a lot of structure, it may be possible to use the optimality conditions
to solve analytically for the solutions to (P ). This desirable situation is very
valuable when it is successful, but it is rare, so it becomes necessary to devise
numerical optimization techniques or algorithms to search for the optimal so-
lutions. The process of designing efficient algorithms requires a great deal of
ingenuity, and the optimality conditions contribute to the process in several
ways, for example by suggesting the algorithm itself, or by verifying the cor-
rectness of the numerical solutions returned by the algorithm. The role of the
duality theory in designing algorithms is similar, and often more decisive.

All chapters except Chapter 14 are concerned with the theory of optimiza-
tion. We have tried to present all the major results in the theory of finite-
dimensional optimization, and strived to provide the best available proofs
whenever possible. Moreover, we include several independent proofs of some
of the most important results in order to give the reader and the instructor
of a course using this book flexibility in learning or teaching the key subjects.
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On several occasions we give proofs that may be new. Not all chapters deal
exclusively with finite-dimensional spaces, however. Chapters 3, 5, 6, 14, and
Appendices A and C contain, in part or fully, important results in nonlinear
analysis and in the theory of convexity in infinite-dimensional settings.

Chapter 14 may be viewed as a short course on three basic optimization al-
gorithms: the steepest descent method, Newton’s method, and the conjugate-
gradient method. In particular, the conjugate-gradient method is presented
in great detail. The three algorithms are chosen to be included because many
computational schemes in mathematical programming have their origins in
these algorithms.

Audience and background

The book is suitable as a textbook for a first course in the theory of opti-
mization in finite-dimensional spaces at the graduate level. The book is also
suitable for self-study or as a reference book for more advanced readers. It
evolved out of my experience in teaching a graduate-level course twelve times
since 1993, eleven times at the University of Maryland, Baltimore County
(UMBC), and once in 2001 at Bilkent University, Ankara, Turkey. An impor-
tant feature of the book is the inclusion of over two hundred carefully selected
exercises as well as a fair number of completely solved examples within the
text.

The prerequisites for the course are analysis and linear algebra. The reader
is assumed to be familiar with the basic concepts and results of analysis in
finite-dimensional vector spaces—limits, continuity, completeness, compact-
ness, connectedness, and so on. In some of the more advanced chapters and
sections, it is necessary to be familiar with the same concepts in metric and
Banach spaces. The reader is also assumed to be familiar with the fundamental
concepts and results of linear algebra—vector space, matrix, linear combina-
tion, span, linear independence, linear map (transformation), and so on.

Suggestions for using this book in a course

Ideally, a first course in finite-dimensional optimization should cover the first-
order and second-order optimality conditions in unconstrained optimization,
the fundamental concepts of convexity, the separation theorems involving con-
vex sets (at least in finite-dimensional spaces), the theory of linear inequalities
and convex polyhedra, the optimality conditions in nonlinear programming,
and the duality theory of convex programming. These are treated in Chap-
ters 2, 4, 6, 7, 9, and 11, respectively, and can be covered in a one-semester
course. Chapter 1 on differential calculus can be covered in such a course,
or referred to as needed, depending on the background of the students. In
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any case, it is important to be familiar with the multivariate Taylor formulas,
because they are used in deriving optimality conditions and in differentiating
functions.

In my courses, I cover Chapter 1 (Sections 1.1–1.5), Chapter 2 (Sections
2.1–2.5), Chapter 4 (Sections 4.1–4.5), Chapter 6 (Sections 6.1–6.5, and as-
suming the results from Chapter 5 that are used in some proofs), Chapter
7 (Sections 7.1–7.4), Chapter 9 (Sections 9.1–9.2, 9.4–9.9), and Chapter 11
(Sections 11.1–11.6). This course emphasizes the use of separation theorems
for convex sets for deriving the optimality conditions for nonlinear program-
ming. This approach is both natural and widely applicable—it is possible to
use the same idea to derive optimality conditions for many types of problems,
from nonlinear programming to optimal control problems, as was shown by
Dubovitskii and Milyutin.

Several other possibilities exist for covering most of this core material. If
the goal is to cover quickly the basics of nonlinear programming but not of
convexity, then one can proceed as above but skip Chapter 6 and the first two
sections of Chapter 7, substitute Appendix A for Sections 7.3 and 7.4, and skip
Section 9.1. In this approach, one needs to accept the truth of Theorem 11.15
without proof.

A third possibility is to follow Chapter 3 to cover the theory of linear in-
equalities and the basic theorems of nonlinear analysis, and then cover Chap-
ter 9 (Sections 9.3–9.9). Still other possibilities exist for covering the core
material.

If more time is available, an instructor may choose to cover Chapter 14
on algorithms, Chapter 8 on linear programming, Chapter 10 on nonlinear
programming, or Chapter 12 on semi-infinite programming. In a course ori-
ented more toward convexity, the instructor may cover Chapter 5, 6, or 13 for
a more in-depth study of convexity. In particular, Chapters 5 and 6 contain
very detailed, advanced results on convexity.

Chapters 4–8, 11, and 13 can be used for a stand-alone one-semester course
on the theory of convexity. If desired, one may supplement the course by
presenting the theory of Fenchel duality using, for example, Chapters 1–3
and 6 of the book Convex Analysis and Variational Problems by Ekeland
and Temam. The theory of convexity has an important place in optimization.
We already mentioned the role of the separation theorems for convex sets in
deriving optimality conditions in mathematical programming. The theory of
duality is a powerful tool with many uses, both in theory of optimization and
in the design of numerical optimization algorithms. The role of convexity in
the complexity theory of optimization is even more central; since the work of
Nemirovskii and Yudin in the 1970s on the ellipsoid method, we know that
convex programming (and some close relatives) is the only known class of
problems that are computationally tractable, that is, for which polynomial-
time methods can be developed.
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The major pathways through the book are indicated in the following dia-
gram.
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Comments on the contents of individual chapters

Chapter 1 includes background material on differential calculus. Two novel
features of the chapter are the converse of Taylor’s formula and Danskin’s
theorem. The first result validates the role of Taylor’s formula for computing
derivatives, and Danskin’s formula is a useful tool in optimization.

Chapter 2 develops the first-order and second-order optimality conditions
in unconstrained optimization. Section 2.4 deals with quadratic forms and
symmetric matrices. We recall the spectral decomposition of a symmetric ma-
trix, give the eigenvalue characterizations of definite and semidefinite matrices,
state Descartes’s exact rule of sign (whose proof is given in Appendix B), and
use it as tool for recognizing definite and semidefinite matrices. We also in-
clude a proof of Sylvester’s theorem on the positive definiteness of a symmetric
matrix. (An elegant optimization-based proof is given in an exercise at the end
of the chapter.) In Section 2.5, we give the proofs of the inverse and implicit
function theorems and Lyusternik’s theorem using an optimization-based ap-
proach going back at least to Carathéodory. A proof of Morse’s lemma is given
in Section 2.6 because of the light it throws on the second-order optimality
conditions.

Chapter 3 is devoted to Ekeland’s ε-variational principle (and its relatives)
and its applications. We use it to prove the central result on linear inequal-
ities (Motzkin’s transposition theorem), and the basic theorems of nonlinear
analysis in a general setting. Variational principles are fascinating, and their
importance in optimization is likely to grow even more in the future.
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The next three chapters are devoted to convexity. Chapter 4 treats the
fundamentals of convex analysis. We include Section 4.1 on affine geometry
because of its intrinsic importance, and because it helps make certain results
in convexity more transparent.

Chapter 5 delves into the structure of convex sets. A proper understanding
of concepts such as the relative interior, closure, and the faces of convex sets
is essential for proving separation theorems involving convex sets and much
else. The concept of the relative interior is developed in both algebraic and
topological settings.

Chapter 6 is devoted to the separation of convex sets, the essential source
of duality, at least in convex programming. The chapter is divided into two
parts. Sections 6.1–6.5 deal with the separation theorems in finite dimensions
and do not depend heavily on Chapter 5. They are sufficient for somebody
who is interested in only the finite-dimensional situation. Section 6.5 is de-
voted to the finite-dimensional version of the Dubovitskii–Milyutin theorem, a
convenient separation theorem, applicable to the separation of several convex
sets. Sections 6.6–6.8 treat the separation theorems involving two or several
convex sets in a very general setting. Chapter 5 is a prerequisite for these
sections, which are intended for more advanced readers.

Chapters 7 and 8 treat the theories of convex polyhedra and linear pro-
gramming, respectively. Two sections, Section 7.5 on Tucker’s complemen-
tarity theorem and Section 8.5 on the existence of strictly complementary
solutions in linear programming, are important in interior-point methods.

Chapters 9 and 10 treat nonlinear programming. The standard, basic the-
ory consisting of first-order (Fritz John and KKT) and second-order conditions
for optimality is given in Chapter 9. A novel feature of the chapter is the in-
clusion of a first-order sufficient optimality condition that goes back to Fritz
John, and several completely solved examples of nonlinear programs. Chap-
ter 10 gives complete solutions for seven structured optimization problems.
These problems are chosen for their intrinsic importance and to demonstrate
that optimization techniques can resolve important problems.

Chapter 11 deals with duality theory. We have chosen to treat duality us-
ing the Lagrangian function. This approach is completely general for convex
programming, because it is equivalent to the approach by Fenchel duality in
that context, and more general because it is sometimes applicable beyond
convex programming. We establish the general correspondence between sad-
dle point and duality in Section 11.2 and apply it to nonlinear programming
in Section 11.3. The most important result of the chapter is the strong dual-
ity theorem for convex programming given in Section 11.4, under very weak
conditions. It is necessary to use sophisticated separation theorems to achieve
this result. After treating several examples of duality in Section 11.5, we turn
to the duality theory of conic programming in Section 11.6. As a novel appli-
cation, we give a proof of Hoffman’s lemma using duality in Section 11.8.

Semi-infinite programming is the topic of Chapter 12. This subject is
not commonly included in most optimization textbooks, but many impor-
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tant problems in finite dimensions require it, such as the problem of finding
the extremal-volume ellipsoids associated with a convex body in Rn. We de-
rive the Fritz John optimality conditions for these problems using Danskin’s
theorem when the set indexing the constraints is compact. In the rest of the
chapter we solve several specific, important semi-infinite programming prob-
lem rather than giving a systematic theory. Another method to treat convex
semi-infinite programs, using Helly’s theorem, is given in Section 13.2.

Chapter 13 is devoted to several special topics in convexity that we deem
interesting: the combinatorial theory of convex sets, homogeneous convex
functions, decomposition of convex cones, and norms of polynomials. The last
topic finds an interesting application to self-concordant functions in interior-
point methods.

The focus of Chapter 14 is on algorithms. The development of numerical
algorithms for optimization problems is a highly intricate art and science,
and anything close to a proper treatment would require several volumes. This
chapter is included in our book out of the conviction that there should be a
place in a book on theory for a chapter such as this, which treats in some
depth a few select algorithms. This should help the reader put the theory
in perspective, and accomplish at least three goals: the reader should see
how theory and algorithms fit together, how they are different, and whether
there are differences in the thought processes that go into developing each
part. It should also give the reader additional incentive to learn more about
algorithms.

We choose to treat three fundamental optimization algorithms: the steepest-
descent (and gradient projection), Newton’s, and conjugate-gradient methods.
We develop each in some depth and provide convergence rate estimates where
possible. For example, we provide the convergence rate for the steepest-descent
method for the minimization of a convex quadratic function, and for the mini-
mization of a convex function with Lipschitz gradient. The convergence theory
of Newton’s method is treated, including the convergence theory due to Kan-
torovich. Finally, we give a very extensive treatment of the conjugate-gradient
method. We prove its remarkable convergence properties and show its connec-
tion with orthogonal polynomials.

In Appendix A, we give the theory for the consistency of a system of
finitely many linear (both strict and weak) inequalities in arbitrary vector
spaces. The algebraic proof has considerable merits: it is very general, does
not need any prerequisites, and does not use the completeness of the field
over which the vector space is defined. Consequently, it is applicable to linear
inequalities with rational coefficients.

In Appendix B, we give a short proof of Descartes’s exact rule of sign,
and in Appendix C, the classical proofs of the open mapping theorem and
Graves’s theorem.
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1

Differential Calculus

This chapter is devoted to differential calculus. Tools from differential calculus
are widely used in many branches of analysis, including in optimization. In op-
timization, our main concern in this book, they are used, among other things,
to derive optimality conditions in extremal problems which are described by
differentiable functions.

We treat the calculus of scalar-valued functions f : U → R or vector-
valued functions (maps) f : U → Rm, where U is an open set in Rn. The vector
spaces Rn and Rm can replaced with any finite-dimensional vector spaces over
R without changing any of our results or methods. In fact, most of our results
remain true (with some minor changes) if Rn and Rm are replaced by Banach
spaces. Although this extension can be done in a straightforward manner,
we desire to keep our presentation fairly concrete, and the finite-dimensional
vector space setting is sufficient for our needs. We deviate from this rule only
in Chapter 3, where we consider differentiable functions in Banach spaces.

The interested reader is referred to the books by Edwards [84] and Spi-
vak [245] for more detailed treatments of calculus in finite-dimensional vector
spaces, and Dieudonné [77] and Hörmander [140] in Banach spaces. Surveys
of differential calculus in even more general vector spaces may be found in the
references [11, 12].

1.1 Taylor’s Formula

Taylor’s formula in one or several variables is needed to obtain necessary
and sufficient conditions for local optimal solutions to unconstrained and con-
strained optimization problems. In this section, we treat Taylor’s formula for
functions of a single variable. The several-variable version of the formula is
treated in later sections of this chapter.

We start with Taylor’s formula in Lagrange’s form.
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2 1 Differential Calculus

Theorem 1.1. Let f : I = (c, d)→ R be a n-times differentiable function. If
a, b are distinct points in I, then there exists a point x strictly between a and
b such that

f(b) = f(a) + f ′(a)(b− a) +
f ′′(a)

2
(b− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(b− a)n−1

+
f (n)(x)
n!

(b− a)n

=
n−1∑
i=0

f (i)(a)
i!

(b− a)i +
f (n)(x)
n!

(b− a)n.

Note that the case n = 1 is precisely the mean value theorem.

Proof. The idea of the proof is similar to that in the case n = 1: create a
function g(t) such that g(k)(a) = 0, k = 0, . . . , n − 1, g(b) = 0, and apply
Rolle’s theorem repeatedly.

The (n− 1)th-degree Taylor approximation (polynomial) at a,

Pn−1(t) = f(a) + f ′(a)(t− a) +
f ′′(a)

2
(t− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(t− a)n−1,

satisfies the conditions P (k)
n−1(a) = f (k)(a), k = 0, . . . , n−1. Thus, the function

h(t) := f(t) − Pn−1(t) satisfies the condition h(k)(a) = 0, k = 0, . . . , n − 1.
However, h(b) may not vanish. We rectify the situation by defining

g(t) = f(t)− Pn−1(t)− K

n!
(t− a)n,

with the constant K chosen such that g(b) = 0, that is,

f(b) = Pn−1(b) +
K

n!
(b− a)n. (1.1)

Then,

g(k)(a) = f (k)(a)− P (k)
n−1(a) = 0, k = 0, . . . , n− 1, g(b) = 0.

Rolle’s theorem implies that there exists x1 strictly between a and b such
that g′(x1) = 0. Since g′(a) = g′(x1) = 0, Rolle’s theorem applied to g′

implies that there exists x2 strictly between a and x1 such that g′′(x2) = 0.
We continue in this fashion and obtain {xi}n−1

1 such that g(i−1)(xi−1) = 0.
Finally, g(n−1)(a) = g(n−1)(xn−1) = 0, and applying Rolle’s theorem once
more, we obtain a point xn strictly between a and xn−1 such that g(n)(xn) = 0.
Since g(n)(t) = f (n)(t)−K, we have g(n)(xn) = K. Equation (1.1) implies the
theorem. ut

This proof is adapted from [268].
In practice, the most useful cases of Taylor’s theorem correspond to n = 1

and n = 2.
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Corollary 1.2. Let f : I = (c, d)→ R be a function and a, b be distinct points
in I.

(i) (Mean value theorem) If f is differentiable on I, then there exists a
point ξ strictly between a and b such that

f(b) = f(a) + f ′(ξ)(b− a).

(ii) If f is twice differentiable on I, then there exists a point ζ strictly between
a and b such that

f(b) = f(a) + f ′(a)(b− a) +
f ′′(ζ)

2
(b− a)2.

Another form of Taylor’s theorem expresses the remainder term as an
iterated integral. Its proof is perhaps conceptually the simplest, and it can be
used to easily deduce other forms of Taylor’s theorem from it.

Theorem 1.3. Let f satisfy the conditions of Theorem 1.1. We have

f(b) = f(a) + f ′(a)(b− a) +
f ′′(a)

2!
(b− a)2 + · · ·

+
f (n−1)(a)
(n− 1)!

(b− a)n−1 +
∫ b

a

∫ s1

a

· · ·
∫ sn−1

a

f (n)(sn)dsn · · · ds1.
(1.2)

Proof. The idea of the proof is to use the fundamental theorem of calculus
repeatedly. First, we have f(b)− f(a) =

∫ b
a
f ′(x)dx, or

f(b) = f(a) +
∫ b

a

f ′(s1)ds1.

Similarly, f ′(s1) = f ′(a) +
∫ s1
a
f ′′(s2)ds2, and this gives

f(b) = f(a) +
∫ b

a

f ′(s1)ds1 = f(a) +
∫ b

a

(
f ′(a) +

∫ s1

a

f ′′(s2)ds2

)
ds1

= f(a) + f ′(a)(b− a) +
∫ b

a

∫ s1

a

f ′′(s2)ds2ds1.

Continuing in this fashion, we obtain

f(b) = f(a) + f ′(a)(b− a) + f ′′(a)
∫ b

a

∫ s1

a

∫ s2

a

ds3ds2ds1 + · · ·

+ f (n−1)(a)
∫ b

a

∫ s1

a

· · ·
∫ sn−1

a

dsn · · · ds1

+
∫ b

a

∫ s1

a

· · ·
∫ sn−1

a

f (n)(sn)dsn · · · ds1.



4 1 Differential Calculus

Now it is easy to prove by induction that∫ b

a

∫ s1

a

· · ·
∫ sk−1

a

dsk · · · ds1 =
(b− a)k

k!
. (1.3)

Indeed, this is trivially true for k = 1, and assuming that it holds for k, we
have ∫ b

a

∫ s1

a

· · ·
∫ sk

a

dsk+1dsk · · · ds1 =
∫ b

a

(s1 − a)k

k!
ds1 =

(b− a)k+1

(k + 1)!
,

where the first equation follows from the induction hypothesis. ut
As an easy corollary, we obtain Taylor’s formula in Lagrange’s form.

Corollary 1.4. Theorem 1.1 follows from Theorem 1.3.

Proof. By the mean value theorem there exists x ∈ (a, sn−1) such that∫ sn−1

a

f (n)(sn)dsn = f (n)(x)(sn−1 − a) =
∫ sn−1

a

f (n)(x)dsn.

The proof is completed by substituting this in the iterated integral in the
statement of Theorem 1.3 and using (1.3). ut

Next, we give Taylor’s formula in Cauchy’s form.

Theorem 1.5. Let f satisfy the conditions of Theorem 1.1. We have

f(b) = f(a) + f ′(a)(b− a) +
f ′′(a)

2
(b− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(b− a)n−1

+
1

(n− 1)!

∫ b

a

f (n)(x)(b− x)n−1 dx.

(1.4)

Proof. The domain of the iterated integral in the statement of Theorem 1.3
is {(s1, . . . , sn) : a ≤ sn ≤ sn−1 ≤ · · · ≤ s1 ≤ b}. By Fubini’s theorem, this
integral can be written as∫ b

a

f (n)(sn)
∫ b

sn

· · ·
∫ b

s2

ds1 · · · dsn−1dsn. (1.5)

We claim that ∫ b

sk

· · ·
∫ b

s2

ds1 · · · dsk−1 =
(b− sk)k−1

(k − 1)!
.

Indeed, this is trivial to check for k = 1. If it holds for k, then∫ b

sk+1

· · ·
∫ b

s2

ds1 · · · dskdsk+1 =
∫ b

sk+1

(b− sk)k−1

(k − 1)!
dsk =

(b− sk+1)k

k!
,

where the first equality follows from the induction hypothesis. This proves the
claim for k + 1. Then the integral (1.5) becomes

∫ b
a
f (n)(sn)(b− sn)n−1/(n−

1)!dsn, and coincides with the one in (1.4). The theorem is proved. ut
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We now give a simple demonstration of the use of Taylor’s formula in
optimization. Suppose that x∗ is a critical point , that is, f ′(x∗) = 0. The
quadratic Taylor’s formula gives

f(x) = f(x∗) + f ′(x∗)(x− x∗) +
f ′′(x)

2
(x− x∗)2,

for some x strictly between x and x∗. Now, if f ′′(x) ≥ 0 for all x ∈ I, then

f(x) ≥ f(x∗) for all x ∈ I.

This shows that x∗ is a global minimizer of f . A function f with f ′′(x) non-
negative at all points is a convex function. If f ′′(x) ≥ 0 only in a neighborhood
of x∗, then x∗ is a local minimizer of f . If f ′(x∗) = 0 and f ′′(x) ≤ 0 for all
x, then f(x) ≤ f(x∗), for all x, that is, x∗ is a global maximizer of f . Such
a function f is a concave function. Chapter 4 treats convex and concave (not
necessarily differentiable) functions in detail.

1.2 Differentiation of Functions of Several Variables

Definition 1.6. Let f : U → R be a function on an open set U ⊆ Rn. If
x ∈ U , the limit

∂f

∂xi
(x) := lim

t→0

f(x1, . . . , xi−1, xi + t, xi+1, . . . , xn)− f(x)
t

,

if it exists, is called the partial derivative of f at x with respect to xi. If all
the partial derivatives exist, then the vector

∇f(x) := (∂f/∂x1, . . . , ∂f/∂xn)T

is called the gradient of f .

Let d ∈ Rn be a vector d = (d1, . . . , dn)T . Denoting by ei the ith coordinate
vector

ei := (0, . . . , 1, 0, . . . , 0)T ,

where the only nonzero entry 1 is in the ith position, we have

d = d1e1 + · · ·+ dnen.

Definition 1.7. The directional derivative of f at x ∈ U along the direction
d ∈ Rn is

f ′(x; d) := lim
t↘0

f(x+ td)− f(x)
t

,

provided the limit on the right-hand side exists as t ≥ 0 approaches zero.
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Clearly, f ′(x;αd) = αf ′(x; d) for α ≥ 0, and we note that if f ′(x;−d) =
−f ′(x; d), then we have

f ′(x; d) = lim
t→0

f(x+ td)− f(x)
t

,

because

f ′(x; d) = −f ′(x,−d) = − lim
t↘0

f(x− td)− f(x)
t

= lim
s↗0

f(x+ sd)− f(x)
s

.

Definition 1.8. A function f : U → R is Gâteaux differentiable at x ∈ U
if the directional derivative f ′(x; d) exists for all directions d ∈ Rn and is a
linear function of d.

Let f be Gâteaux differentiable at x. Since d = d1e1 + · · ·+dnen, and f ′(x; d)
is linear in d, we have

f ′(x; d) = f ′(x; d1e1 + · · ·+ dnen) = d1f
′(x; e1) + · · ·+ dnf

′(x; en)
= 〈d,∇f(x)〉 = dT∇f(x).

Definition 1.9. The function f : U → R is Fréchet differentiable at the point
x ∈ U if there exists a linear function ` : Rn → R, `(x) = 〈l, x〉, such that

lim
‖h‖→0

f(x+ h)− f(x)− 〈l, h〉
‖h‖ = 0. (1.6)

Intuitively speaking, this means that the function f can be “well approx-
imated” around x by an affine function h→ f(x) + 〈l, h〉, that is,

f(x+ h) ≈ f(x) + 〈l, h〉.

This approximate equation can be made precise using Landau’s little “oh”
notation, where we call a vector o(h) ∈ Rn if

lim
h→0

‖o(h)‖
‖h‖ = 0.

With this notation, the Fréchet differentiability of f at x is equivalent to
stating f(x+ h)− f(x)− 〈l, h〉 = o(h), or

f(x+ h) = f(x) + 〈l, h〉+ o(h). (1.7)

The o(h) notation is very intuitive and convenient to use in proofs involving
limits.

Clearly, if f is Fréchet differentiable at x, then it is continuous at x, because
(1.7) implies that limh→0 f(x+ h) = f(x).

The vector l in the definition of Fréchet differentiability can be calculated
explicitly. Choosing h = tei (i = 1, . . . , n) in (1.6) gives
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lim
t→0

f(x+ tei)− f(x)− tli
t

= 0.

We have li = ∂f(x)/∂xi, and thus

l = ∇f(x). (1.8)

Then (1.7) becomes

f(x+ h) = f(x) + 〈∇f(x), h〉+ o(h).

This also gives us the following Theorem.

Theorem 1.10. If U ⊆ Rn is open and f : U → R is Fréchet differentiable
at x, then f is Gâteaux differentiable at x.

Thus, Fréchet differentiability implies Gâteaux differentiability, but the
converse is not true; see the exercises at the end of the chapter. Consequently,
Fréchet differentiability is a stronger concept than Gâteaux differentiability.
In fact, the former concept is a uniform version of the latter: it is not hard to
see that f is Fréchet differentiable at x if and only if f is Gâteaux differentiable
and the limit

lim
t→0

f(x+ td)− f(x)− 〈∇f(x), d〉
t

converges uniformly to zero for all ‖d‖ ≤ 1, that is, given ε > 0, there exists
δ > 0 such that ∥∥∥∥f(x+ td)− f(x)− 〈∇f(x), d〉

t

∥∥∥∥ < ε,

for all |t| < δ and for all ‖d‖ ≤ 1.

Definition 1.11. If x, y are two points in Rn, we denote by [x, y] the closed
line segment between x and y, that is,

[x, y] = {x+ t(y − x) : 0 ≤ t ≤ 1}.

Similarly, we use (x, y) to denote the “open” line segment {x+ t(y − x) : 0 <
t < 1}. Note that if x = y, we have [x, y] = (x, y) = {x}.

Lemma 1.12. (Mean value theorem) Let f : U → R be a Gâteaux dif-
ferentiable function on an open set U in Rn. If x, y are distinct points in U
such that the line segment [x, y] lies in U , then there exists a point z on (x, y)
strictly between x and y, such that

f(y) = f(x) + 〈∇f(z), y − x〉.
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Proof. Define the function h(t) = f(x + t(y − x)). Since f is Gâteaux differ-
entiable, h(t) is differentiable and

h′(t) = 〈∇f(x+ t(y − x)), y − x〉.

It follows from the mean value theorem in one variable (Corollary 1.2) that
there exists 0 < t < 1 such that h(1)− h(0) = h′(t). Define z = x+ t(y − x).
Since h(0) = f(x) and h(1) = f(y), we see that

f(y)− f(x) = 〈∇f(z), y − x〉.

ut

Theorem 1.13. Let f : U → R be a function on an open set U ⊆ Rn. If
f(x) is Gâteaux differentiable at x0 ∈ U and the partial derivatives ∂f/∂xj
(j = 1, . . . , n) are continuous at x0, then f is Fréchet differentiable at x0.

Proof. The mean value theorem (Lemma 1.12) implies that there exists a
point x strictly between x0 and x0 + h such that

f(x0 + h)− f(x0)− 〈∇f(x0), h〉 = 〈∇f(x)−∇f(x0), h〉,

and the continuity of ∇f at x0 implies that ∇f(x) −∇f(x0) → 0 as h → 0.
Therefore,

f(x0 + h)− f(x0)− 〈∇f(x0), h〉 = o(h),

proving that f is Fréchet differentiable at x0. ut

1.3 Differentiability of Vector-Valued Functions

Let F : U → Rm be a function, where U is an open subset of Rn. We write

F (x) = F (x1, . . . , xn) =


f1(x)
f2(x)

...
fm(x)

 ,

where fi is called the ith coordinate function of F .

Definition 1.14. The function F is called Gâteaux differentiable at x ∈ U if

lim
t→0

F (x+ td)− F (x)
t

is linear in d, that is, there exists a linear map T : Rn → Rm, say T (x) = Ax,
where A is an m× n matrix, such that

lim
t→0

F (x+ td)− F (x)
t

= Ad.
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This equation means that

lim
t→0

fi(x+ td)− fi(x)
t

= 〈ai, d〉,

where ai is the ith row of A. Thus, F is Gâteaux differentiable if and only if
each coordinate function fi is. It follows from (1.8) that

ai = ∇fi(x)T = (∂fi/∂x1, . . . , ∂fi/∂xn).

Therefore,

A =



∂f1/∂x1 . . . ∂f1/∂xj . . . ∂f1/∂xn
...

...
...

∂fi/∂x1 . . . ∂fi/∂xj . . . ∂fi/∂xn
...

...
...

∂fm/∂x1 . . . ∂fm/∂xj . . . ∂fm/∂xn

 =

∇f1(x)T
...

∇fm(x)T

 = [∂fi/∂xj ].

We denote A by DF (x) and call it the Jacobian of F at x. Note that if m = 1,
that is, F is a scalar-valued function, then

DF (x) = ∇F (x)T .

Definition 1.15. The function F is called Fréchet differentiable at x ∈ U if
there exists a linear map B : Rn → Rm satisfying

lim
‖h‖→0

‖F (x+ h)− F (x)−Bh‖
‖h‖ = 0. (1.9)

The map B, denoted by DF (x), is called the Fréchet derivative of F .

This equation means, as above,

lim
‖h‖→0

|fi(x+ h)− fi(x)− 〈bi, h〉|
‖h‖ = 0,

for each i = 1, . . . ,m. In other words, F is Fréchet differentiable at x
if and only if each coordinate function fi is. We have bi = ∇fi(x) =
(∂fi/∂x1, . . . , ∂fi/∂xn)T , and

B = DF (x) = [∂fi(x)/∂xj ].

If F is Fréchet differentiable at x, then F is Gâteaux differentiable at x. Since
F is Fréchet (Gâteaux) differentiable at x if and only if each coordinate func-
tion fi is Fréchet (Gâteaux) differentiable at x, this follows from previously
proved results about scalar functions.
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1.4 The Chain Rule

Theorem 1.16. Let F : U → V , G : V → Rk, where U ⊆ Rn and V ⊆ Rm
are open sets, and let H = G ◦ F : U → Rk, H(x) = G(F (x)) = (G ◦ F )(x)
be their composition. If F is Gâteaux differentiable at x and G is Fréchet
differentiable at y = F (x), then H is Gâteaux differentiable at x and

DH(x) = DG(y) ◦DF (x).

Moreover, if F and G are Fréchet differentiable at x and y = F (x), respec-
tively, then H is Fréchet differentiable at x.

Proof. Set A = DF (x) and B = DG(y). We have

F (x+ td) = F (x) + tDF (x)d+ o(t) = F (x) + tAd+ o(t)

and

H(x+ td) = G(F (x+ td)) = G
(
F (x) + (tAd+ o(t))

)
= G(F (x)) +DG(F (x))

(
tAd+ o(t)

)
+ o
(
tAd+ o(t)

)
= H(x) + tBAd+Bo(t) + o

(
tAd+ o(t)

)
= H(x) + tBAd+ o(t).

Comparing the above equation with

H(x+ td) = H(x) + tDH(x)d+ o(t),

we conclude that
DH(x) = BA = DG(y) ◦DF (x).

This proves the first part of the theorem.
If F is Fréchet differentiable at x, similar calculations show that

F (x+ h) = F (x) +DF (x)h+ o(h)

and

H(x+ h) = G(F (x+ h)) = G (F (x) +DF (x)h+ o(h))
= G(F (x)) +DG(F (x)) [DF (x)h+ o(h)] + o (DF (x)h+ o(h))
= H(x) +DG(F (x)) ◦DF (x)h+DG(F (x))o(h)

+ o(DF (x)h+ o(h))
= H(x) +DG(y) ◦DF (x)h+ o(h).

This shows that H is Fréchet differentiable. ut
Exercise 16 on page 26 shows that the chain rule may fail under Gâteaux
differentiability.

The mean value theorem fails for vector-valued functions (see Exercise 13),
but we have the following two very important substitutes.
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Lemma 1.17. Let f : I → Rm be a map on an interval I = (a, b). If f is
differentiable at every point in I, then

‖f(y)− f(x)‖ ≤ |y − x| · sup
0≤t≤1

‖Df(x+ t(y − x))‖, x, y ∈ I.

Proof. Let M > sup0≤t≤1 ‖Df(x+ t(y − x))‖ and set

K :=
{
t : 0 ≤ t ≤ 1, ‖f(x+ t(y − x))− f(x)‖ ≤Mt|y − x|

}
.

The set K is closed, since f is continuous, and 0 ∈ K. Let s be the largest
element of K. We claim that s = 1. Otherwise, s < 1, and choosing t ∈ (s, 1)
such that t− s is small enough, we have

‖f(x+ t(y − x))− f(x)‖
≤ ‖f(x+ t(y − x))− f(x+ s(y − x))‖+ ‖f(x+ s(y − x))− f(x)‖
≤
∥∥∥Df(x+ s(y − x))(t− s)(y − x) + o((t− s)|y − x|)

∥∥∥+Ms|y − x|
≤ M(t− s)|y − x|+Ms|y − x|
= Mt|y − x|,

that is, t ∈ K, a contradiction. This proves the claim and the lemma. ut

Theorem 1.18. Let f : U → Rm be Gâteaux differentiable on an open set U
in Rn. If x, y are points in U such that the line segment [x, y] lies in U , and
T : Rn → Rm is a linear map, then

‖f(y)− f(x)− T (y − x)‖ ≤ ‖y − x‖ · sup
0≤t≤1

‖Df(x+ t(y − x))− T‖.

Proof. The map g(t) = f(x+ t(y − x))− tT (y − x) is differentiable with the
derivative

Dg(t) = [Df(x+ t(y − x))− T ](y − x).

Lemma 1.17 gives ‖g(1)− g(0)‖ ≤ sup0≤t≤1 ‖Dg(t)‖, so that

‖f(y)− f(x)− T (y − x)‖ ≤ sup
0≤t≤1

‖Df(x+ t(y − x))(y − x)− T (y − x)‖

≤ ‖y − x‖ · sup
0≤t≤1

‖Df(x+ t(y − x))− T‖.

ut

Lemma 1.17 and Theorem 1.18 hold in a Banach space setting, with the
same proof.

Theorem 1.19. Let F : U → Rm be a map on an open set U ⊆ Rn. If
F (x) = (f1(x), . . . , fm(x))T is Gâteaux differentiable at x0 ∈ U and the partial
derivatives ∂fi/∂xj (i = 1, . . . ,m, j = 1, . . . , n) are continuous at x0, then F
is Fréchet differentiable at x0.
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Proof. By Theorem 1.18, we have

‖f(x+ h)− f(x)−Df(x)h‖ ≤ sup
0≤t≤1

‖Df(x+ th)−Df(x)‖ · ‖h‖ = o(h)

as h→ 0, because Df is continuous. ut

Definition 1.20. Let f : U → Rm be a map on an open set U ⊆ Rn. We
call f twice Fréchet differentiable on U if both f and Df are Fréchet differ-
entiable on U , and denote by D2f := D(Df) the second derivative of f . By
induction, we say that f is k-times Fréchet differentiable on U if f is (k− 1)-
times Fréchet differentiable and Dk−1f is Fréchet differentiable. We denote
by Dkf = D(Dk−1f) the kth derivative of f .

If a ∈ U and u, v ∈ Rn, then we denote by D2f(a)[u, v] the directional
derivative of the function h(x) := f ′(x;u) along direction v, that is,

D2f(a)[u, v] := h′(x; v).

The operation of taking successive directional derivatives is commutative
under suitable differentiability assumptions.

Theorem 1.21. If f : U → R is twice Fréchet differentiable on an open set
U in Rn, then D2f(a) is a symmetric bilinear form for all a ∈ U , that is,

D2f(a)[u, v] = D2f(a)[v, u] for all u, v ∈ Rn.

Proof. Define g(t) := f(a+ u+ tv)− f(a+ tv). We have

g′(t) = Df(a+ u+ tv)(v)−Df(a+ tv)(v),

and Lemma 1.17 applied to g(t)− tg′(0) gives

‖g(1)− g(0)− g′(0)‖ ≤ sup
0≤t≤1

‖g′(t)− g′(0)‖. (1.10)

Since Df is Fréchet differentiable, we have

Df(a+ u+ tv)(v)−Df(a)(v)−D2f(a)[v, u+ tv] = o
(
‖v‖ · ‖u+ tv‖

)
≤ o
(
(‖u‖+ ‖v‖)2

)
,

Df(a+ tv)(v)−Df(a)(v)−D2f(a)[v, tv] = o
(
‖v‖ · ‖tv‖

)
≤ o
(
(‖u‖+ ‖v‖)2

)
.

Subtracting the second equation from the first one gives

Df(a+ u+ tv)(v)−Df(a+ tv)(v)−D2f(a)[v, u] = o
(
(‖u‖+ ‖v‖)2

)
,

that is,
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g′(t)−D2f(a)[v, u] = o
(
(‖u‖+ ‖v‖)2

)
.

Using this in (1.10) gives the equations g′(t)− g′(0) = o
(
(‖u‖+ ‖v‖)2

)
and

g(1)− g(0)−D2f(a)[v, u] = o
(
(‖u‖+ ‖v‖)2

)
.

Since g(1)− g(0) = f(a+ u+ v)− f(a+ v)− f(a+ u) + f(a) is symmetric in
u and v, we similarly have

g(1)− g(0)−D2f(a)[u, v] = o
(
(‖u‖+ ‖v‖)2

)
.

Consequently,

B[u, v] := D2f(a)[u, v]−D2f(a)[v, u] = o((‖u‖+ ‖v‖)2).

Let ‖u‖ = ‖v‖ = 1, and let t→ 0. We have B[tu, tv] = o(t2). Thus, B[u, v] =
o(t2)/t2 → 0, that is, B[u, v] = 0. This proves the symmetry of D2f(a). ut

Exercise 12 shows that D2f(x)[u, v] = D2f(x)[v, u] may fail in the absence
of sufficient differentiability assumptions.

Corollary 1.22. If f : U → R is k-times Fréchet differentiable on an open
set U in Rn and a ∈ U , then Dkf(a) is a symmetric k-linear form, that is,

Dkf(a)[uσ(1), . . . , uσ(k)] = Dkf(a)[u1, . . . , uk] for all u1, . . . , uk ∈ E,

where σ is a permutation of the set {1, 2, . . . , k}.

The proof is obtained from Theorem 1.21 by induction.

1.5 Taylor’s Formula for Functions of Several Variables

Taylor’s formula for a function of a single variable extends to a function f :
U → R defined on an open set U ⊆ Rn. For this purpose, we restrict f to line
segments in U . Let {x + td : t ∈ R} be a line passing through x and having
the direction d 6= 0 ∈ Rn. Define the function h(t) = f(g(t)) = f(x + td) =
(f ◦ g)(t), where g(t) = x+ td. It follows from the chain rule that

h′(t) = 〈∇f(x+ td), d〉 =
∂f(x+ td)

∂x1
d1 + · · ·+ ∂f(x+ td)

∂xn
dn.

Differentiating h′ using the chain rule again, we obtain
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h′′(t) =
〈
∇(

∂f(x+ td)
∂x1

), d
〉
d1 + · · ·+

〈
∇(

∂f(x+ td)
∂xn

), d
〉
dn

=
(

∂

∂x1
(
∂f(x+ td)

∂x1
)d1 + · · ·+ ∂

∂xn
(
∂f(x+ td)

∂x1
)dn

)
d1 + · · ·

+
(

∂

∂x1
(
∂f(x+ td)

∂xn
)d1 + · · ·+ ∂

∂xn
(
∂f(x+ td)

∂xn
)dn

)
dn

=
(
∂2f(x+ td)

∂x2
1

d2
1 +

∂2f(x+ td)
∂x2∂x1

d2d1 + · · ·+ ∂2f(x+ td)
∂xn∂x1

dnd1

)
+ · · ·+

(
∂2f(x+ td)
∂x1∂xn

d1dn + · · ·+ ∂2f(x+ td)
∂x2

n

d2
n

)
=

n∑
j=1

n∑
i=1

∂2f(x+ td)
∂xi∂xj

didj .

Therefore,

h′′(t) = (d1, . . . , dn)



∂2f(x+td)
∂x2

1

∂2f(x+td)
∂xj∂x1

∂2f(x+td)
∂xn∂x1

...
...

...
∂2f(x+td)
∂x1∂xi

∂2f(x+td)
∂xj∂xi

∂2f(x+td)
∂xn∂xi

...
...

...
∂2f(x+td)
∂x1∂xn

∂2f(x+td)
∂xj∂xn

∂2f(x+td)
∂x2
n


d1

...
dn



= dT
[
∂2f(x+ td)
∂xj∂xi

]
d = dTD2f(x+ td)d.

The matrix

Hf(x) := D2F (x) = D(∇f(x)) = [∂2f(x)/∂xi∂xj ]

is called the Hessian matrix of f at x. If the second-order partial derivatives
∂2f(x)/∂xi∂xj are continuous, then the mixed derivatives are equal, that is,

∂2f(x)
∂xi∂xj

=
∂2f(x)
∂xj∂xi

,

and the Hessian matrix Hf(x) is symmetric, that is, Hf(x)T = Hf(x).
One can keep differentiating h(t) to obtain

h(3)(t) =
n∑
i=1

n∑
j=1

n∑
k=1

∂3f(x+ td)
∂xi∂xj∂xk

didjdk = D3f(x+ td)[d, d, d],

and in general

h(k)(t) =
n∑

i1=1

· · ·
n∑

ik=1

∂kf(x+ td)
∂xi1 · · · ∂xik

di1di2 · · · dik = Dkf(x+ td)
[
d, . . . , d

]︸ ︷︷ ︸
k times

.
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We note that A[d, . . . , d] = Dkf(x)[d, . . . , d] is a k-linear form, which gives
rise to a k-linear functional A[d1, . . . , dk]. If the kth-order partial derivatives
are continuous, then A[d1, . . . , dk] is symmetric, that is,

A[dσ(1), . . . , dσ(k)] = A[d1, . . . , dk],

for any permutation σ of the set {1, . . . , k}.
After these preparations, we can display the multivariate Taylor’s formula.

Theorem 1.23. (Multivariate Taylor’s formula) Let U be an open sub-
set of Rn, and let x, y be distinct points in U such that the line segment [x, y]
lies in U . If f : U → R has continuous kth-order partial derivatives on U ,
then there exists a point z ∈ (x, y) such that

f(y) =
k−1∑
i=0

1
i!
Dif(x)

[
y − x, . . . , y − x︸ ︷︷ ︸

i times

]
+

1
k!
Dkf(z)

[
y − x, . . . , y − x︸ ︷︷ ︸

k+1 times

]
= f(x) +Df(x)[y − x] +

1
2
D2f(x)[y − x, y − x] + · · ·

+
1

(k − 1)!
Dk−1f(x)[y − x, . . . , y − x] +

1
k!
Dkf(z)[y − x, . . . , y − x].

Here

Df(x)[y − x] = 〈∇f(x), y − x〉,
D2f(x)[y − x, y − x] = (y − x)THf(x)(y − x) = dTH(x)d.

Proof. It follows from Taylor’s formula for h that there exists 0 < t < 1 such
that

h(1) = h(0) + h′(0) +
h′′(0)

2!
+ · · ·+ h(k−1)(0)

(k − 1)!
+
h(k)(t)
k!

.

We note that h(1) = f(y), h(0) = f(x), h′(0) = 〈∇f(x), y − x〉, and h′′(0) =
D2f(x)[d, d] = dTH(x)d. In general,

h(i)(t) = Dif(x+ t(y − x))[y − x, . . . , y − x].

Setting z = x+ t(y− x), we see that the Taylor’s formula in the statement of
the theorem holds. ut

Corollary 1.24. Let U be an open subset of Rn, and let f : U → R have
continuous kth-order partial derivatives on U . Then, as y approaches x,

f(y) =
k∑
i=0

1
i!
Dif(x)

[
y − x, . . . , y − x︸ ︷︷ ︸

i times

]
+ o(‖y − x‖k).
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We remark that in light of Exercise 1, the corollary holds under the weaker
assumption that f is k-times Fréchet differentiable.

Usually, Taylor’s formula is considered for k = 1, 2, 3,

f(y) = f(x) + 〈∇f(z1), y − x〉,

f(y) = f(x) + 〈∇f(x), y − x〉+
1
2

(y − x)THf(z2)(y − x),

f(y) = f(x) + 〈∇f(x), y − x〉+
1
2

(y − x)THf(x)(y − x)

+
1
6
D3f(z3)[y − x, y − x, y − x],

where zi ∈ (x, y), i = 1, 2, 3. As y → x, we have

f(y) = f(x) + 〈∇f(x), y − x〉+ o(‖y − x‖),

f(y) = f(x) + 〈∇f(x), y − x〉+
1
2

(y − x)THf(x)(y − x) + o(‖y − x‖2),

f(y) = f(x) + 〈∇f(x), y − x〉+
1
2

(y − x)THf(x)(y − x)

+
1
6
D3f(x)[y − x, y − x, y − x] + o(‖y − x‖3).

1.6 The Converse of Taylor’s Theorem

Taylor’s theorem has the following converse.

Theorem 1.25. Let U be an open subset of Rn. If a continuous function
f : U → R satisfies

f(x+y) = a0(x)+a1(x)[y]+
1
2
a2(x)[y2]+ · · ·+ 1

k!
ak(x)[yk]+o(‖y‖k), (1.11)

where ai(x) is a symmetric i-linear form on Rn and where we have written
ak[yk] for ak(x)[y, . . . , y] to simplify notation, then f is k-times Fréchet dif-
ferentiable and ai(x) = Dif(x), i = 1, . . . , k.

Proof. We use induction on k. For k = 0, 1, the theorem is true by the conti-
nuity of f and the definition of Fréchet differentiability, respectively. Suppose
the theorem is true for k − 1. Then, ak(x)[yk] = o(‖y‖k−1) in (1.11), and the
induction hypothesis implies that aj(x) = Djf(x) for j = 0, . . . , k − 1. We
now expand f(x+ y + z) in two ways,

f(x+ y + z) = f(x+ y) +Df(x+ y)[z] + · · ·+ Dk−1f(x+ y)[zk−1]
(k − 1)!

+
1
k!
ak(x+ y)[zk] + o(‖y‖k)
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and

f(x+ y + z) = f(x) +Df(x)[y + z] + · · ·+ Dk−1f(x)[(y + z)k−1]
(k − 1)!

+
1
k!
ak(x)[(y + z)k] + o(‖y + z‖k).

Fix x, and restrict z such that the ratio ‖y‖/2 ≤ ‖z‖ ≤ ‖y‖. Then o(‖z‖i),
o(‖y‖i), and o(‖y + z‖i) are all equivalent. Subtracting the second equation
above from the first one, collecting coefficients of [zi], and denoting by gi(y)
the coefficient of [zi], we have

g0(y) + g1(y)[z] + · · ·+ gk(y)[zk] = o(‖y‖k). (1.12)

Note that

gk(y)[zk] =
1
k!

(ak(x+ y)− ak(x)) [zk] = o(‖y‖k),

since ak(x+y)−ak(x) = o(1) by the continuity of ak. Thus, this term may be
dropped from equation (1.12). We claim that each remaining term in (1.12) is
also o(‖y‖k). To prove this, we replace z with tiz, where {ti}k1 are all distinct.
Then the resulting equations may be written as

1 t1 · · · tk1
1 t2 · · · tk2
...

...
...

1 tk · · · tkk




g0(y)
g1(y)[z]

...
gk−1(y)[zk−1]

 =


o(‖y‖k)
o(‖y‖k)

...
o(‖y‖k)

 .

Since ti are distinct, the Vandermonde matrix above has determinant
∏
i<j(ti−

tj) 6= 0, so that it is nonsingular. It follows by Cramer’s rule that gi(y)[zi] =
o(‖y‖k) for i = 1, . . . , k − 1. In particular,

gk−1(y)[zk−1] =
[
Dk−1f(x+ y)

(k − 1)!
− Dk−1f(x)

(k − 1)!
− kak(x)[y]

k!

]
[zk−1] = o(‖y‖k),

where the expression involving ak(x) follows since the symmetry of ak(y) gives
ak(y)[(y + z)k] = kak(y)[y, z, z, . . . , z] + · · · . This gives

Dk−1f(x+ y)−Dk−1f(x)− ak(x)[y] = o(‖y‖),

which implies ak(x) = Dkf(x). ut

The simple proof above is in [203]. See also [3] for a more general form of this
theorem.

The significance of Theorem 1.25 is that Taylor’s formula is often a very
efficient tool for computing the derivatives Dkf(x) of a multivariate function.
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If we can develop the function t 7→ f(x + td) as a series in t in some way,
then the coefficient of tk is Dkf(x)[d, . . . , d]/k! by Theorem 1.25, and we can
recover Dkf easily.

We illustrate this technique with some important examples.

Example 1.26. (Quadratic functions) Let

f(x) =
1
2
〈Ax, x〉+ 〈c, x〉+ α =

1
2

n∑
j=1

n∑
i=1

aijxixj +
n∑
j=1

cjxj + α

be a quadratic function in Rn, where A is a symmetric n× n matrix, c ∈ Rn,
and α is a scalar. It is easy but tedious to compute the gradient and Hessian
of f by computing the first-order and second-order partial derivatives of f .

Alternatively,

f(x+ td) =
1
2
〈A(x+ td), x+ td〉+ 〈c, x+ td〉+ α

=
1
2
〈Ax, x〉+ t〈Ax, d〉+

t2

2
〈Ad, d〉+ 〈c, x〉+ t〈c, d〉+ α

= f(x) + t〈Ax+ c, d〉+
t2

2
〈Ad, d〉.

Theorem 1.25 implies that

∇f(x) = Ax+ c, Hf(x) = D2f(x) = A.

These formulas apply without change to any quadratic function in an inner
product space E if A is a self-adjoint (symmetric) linear operator A : E → E.

Example 1.27. (Logarithm of the determinant function)
Let us first consider the vector space Rn×n of n × n matrices. This is a

vector space of dimension n2. A natural inner product on Rn×n is given by

〈X,Y 〉 :=
n∑

i,j=1

xijyij =
n∑

i,j=1

(XT )jiyij = tr(XTY ).

Next, we consider the linear subspace Sn of symmetric n×n matrices of Rn×n.
This is a vector space of dimension n(n + 1)/2. The trace inner product on
Rn×n induces an inner product on Sn given by

〈X,Y 〉 := tr(XY ).

Let us now consider the function
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f(X) = ln detX,

where X ∈ Sn is positive definite, an important function in semidefinite pro-
gramming.

We compute the Taylor series of f at a given positive definite matrix
X ∈ Sn and a given direction D ∈ Sn. We have

f(X + tD) = ln det(X + tD) = ln det(X1/2(I + tX−1/2DX−1/2)X1/2)

= ln detX + ln det(I + tX−1/2DX−1/2).

Writing D := X−1/2DX−1/2 = QTΛQ, where Q is an orthogonal matrix and
Λ = diag(λ1, . . . , λn), we obtain

f(X + tD)− f(X) = ln det(I + tD) = ln det(QT (I + tΛ)Q)

= ln det(I + tΛ) = ln
n∏
i

(1 + tλi) =
n∑
1

ln(1 + tλi).

Since

ln(1 + s) =
∫

ds

1 + s
=
∫

(1− s+ s2 − s3 + · · · )ds = s− s2

2
+
s3

3
+ · · · ,

we have

f(X + tD)− f(X) =
n∑
1

tλi −
t2

2
λ2
i + o(t2) = t tr(Λ)− t2

2
tr(Λ2) + o(t2).

Noting that

tr(Λ) = tr(QTΛQ) = tr(D) = tr(X−1D) = 〈X−1, D〉,
and similarly

tr(Λ2) = tr(X−1/2DXD−1/2)2 = tr(X−1DX−1D) = 〈X−1DX−1, D〉,
we obtain

f(X + tD) = f(X) + t〈X−1, D〉 − t2

2
〈X−1DX−1, D〉+ o(t2).

Theorem 1.25 again implies that∇f(X) = X−1 andD2f(X)(D) = X−1DX−1.
Here D2f(X)(D) can be written, using the tensor (Kronecker) product nota-
tion,

(X−1 ⊗X−1)(D) := X−1DX−1.

In summary, we have

∇f(X) = X−1, D2f(X) = −X−1 ⊗X−1. (1.13)

Higher-order derivatives of f can be obtained by computing more terms in
the Taylor expansion above.

The derivative of the determinant of not necessarily symmetric matrices
is considered in Exercise 22 at the end of the chapter. See also Exercise 23.
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Example 1.28. (Matrix inversion)
Denote by GL(n,R) the set of nonsingular matrices in the vector space

V = Rn×n of n×n real matrices. We will show that the matrix inversion map

Inv : GL(n,R)→ GL(n,R), Inv(A) = A−1

is infinitely differentiable, and compute its derivatives.
First, we have from (I + A)(I − A + A2 − A3 + (−1)kAk) = I − Ak+1,

Neumann’s formula

(I +A)−1 = I −A+A2 −A3 + · · · for ‖A‖ < 1.

It follows that for |t| small,

(I + tA)−1 = I − tA+ t2A2 − t3A3 + · · · =
∞∑
t=0

(−1)ktkAk,

which immediately gives that

Dk Inv(I)[A, . . . , A] = (−1)kk!Ak.

Now, if A ∈ GL(n,R) and H ∈ V are arbitrary matrices, and K := A−1H,
we have

(A+ tH)−1 = [A(I +A−1H)]−1 = (I + tK)−1A−1 =
∞∑
t=0

(−1)ktkKkA−1,

and we obtain

Dk Inv(A)[H, . . . ,H] = (−1)kk!A−1HA−1H · · ·A−1HA−1,

where the right-hand side contains k + 1 A’s and k H’s.
These results extend verbatim to inversion of nonsingular continuous linear

mappings A : X → X where X is a Banach space.

1.7 Danskin’s Theorem

Danskin’s theorem [65, 66] is one of the fundamental theorems in optimization
theory. We will use it in Chapters 9 and 12 to derive optimality conditions for
nonlinear programming and semi-infinite programming, respectively.

Theorem 1.29. (Danskin) Suppose f : X × Y → R is a continuous func-
tion, where X ⊆ Rn is an open set, Y is a compact set of a topological space
F , and ∇xf(x, y) exists and is continuous. Then the marginal function

ϕ(x) := max
y∈Y

f(x, y)
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is continuous and has directional derivatives in every direction, which are
given by the formula

ϕ′(x;h) = max
y∈Y (x)

〈∇xf(x, y), h〉, (1.14)

where Y (x) = {y ∈ Y : ϕ(x) = f(x, y)} is the set of maximizers in the
definition of ϕ(x).

Proof. We first prove that ϕ(x) is continuous. Let x0 ∈ X and let {xk}∞1 be
a sequence converging to x0. Pick yk ∈ Y such that ϕ(xk) = f(xk, yk). Since
Y is compact, we may assume without loss of generality that yk → y0 ∈ Y .
Noting that f(xk, yk) ≥ f(xk, y) for any y ∈ Y , we have

lim
k→∞

ϕ(xk) = lim
k→∞

f(xk, yk) = f(x0, y0) ≥ lim
k→∞

f(xk, y) = f(x0, y),

for all y ∈ Y . The inequality f(x0, y0) ≥ f(x0, y) implies ϕ(x0) = f(x0, y0),
and we have ϕ(x0) = f(x0, y0) = limk→∞ ϕ(xk), that is, ϕ(x) is continuous.

Let 0 6= h ∈ Rn be a direction, and let {xk}∞1 , xk = x0 + tkh, tk ≥ 0,
be a sequence converging to x0. Let y ∈ Y (x0) be an arbitrary point. If
ϕ(xk) = f(xk, yk) (k ≥ 1), we have

ϕ(xk)− ϕ(x0)
tk

=
f(xk, yk)− f(x0, y)

tk

=
f(xk, yk)− f(xk, y)

tk
+
f(xk, y)− f(x0, y)

tk

≥ f(xk, y)− f(x0, y)
tk

= 〈∇xf(x0 + t′kh, y), h〉,

where the inequality follows since f(xk, yk) ≥ f(xk, y), and the last equality
follows from the mean value theorem. Taking limits, we obtain

lim
k→∞

ϕ(xk)− ϕ(x0)
tk

≥ 〈∇xf(x0, y), h〉 for all y ∈ Y (x0).

This implies

lim
k→∞

ϕ(xk)− ϕ(x0)
tk

≥ max
y∈Y (x0)

〈∇xf(x0, y), h〉. (1.15)

Similarly, if ϕ(xk) = f(xk, yk) (k ≥ 0), where yk → y0, we also have

ϕ(xk)− ϕ(x0)
tk

=
f(xk, yk)− f(x0, yk)

tk
+
f(x0, yk)− f(x0, y0)

tk

≤ f(xk, yk)− f(x0, yk)
tk

= 〈∇xf(x0 + t′′kh, yk), h〉.
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This implies that

lim
k→∞

ϕ(xk)− ϕ(x0)
tk

≤ lim
i→∞
〈∇xf(x0 + t′kih, yki), h〉

= 〈∇xf(x0, y0), h〉
≤ max

y∈Y (x0)
〈∇xf(x0, y), h〉.

This inequality and (1.15) prove (1.14). ut

We remark that Danskin’s theorem and its proof above hold verbatim if X
is an open set in a Banach space. It can also be generalized in other ways; for
example, in the case where Y is a finite set, the directional differentiability of
x 7→ f(x, y) for each y is enough to guarantee the directional differentiability
of ϕ.

Corollary 1.30. Let {fi}k1 be functions defined on a set X in Rn, and let
ϕ(x) := max{fi(x) : i = 1, . . . , k} be their pointwise maximum. If all fi are
directionally differentiable at x0 in the direction h ∈ Rn, then ϕ is directionally
differentiable at x0 in the direction h, and

ϕ′(x;h) = max
y∈I

f ′i(x;h),

where I = {i : ϕ(x) = fi(x)}.

This can be proved by mimicking the proof of Theorem 1.29. We leave it
to the reader; see Exercise 24.

1.8 Exercises

1. Let f : I = (c, d)→ R be an n-times differentiable function. Show that

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)
n!

(x− a)n + o((x− a)n).

The point of the exercise is to prove the above equality without assuming
that f n-times continuously differentiable, because if f (n) is continuous,
then the equality follows readily from Theorem 1.1.
Hint: Prove the equality

lim
x→a

f(x)− f(a)− f ′(a)(x− a)− · · · − f(n)(a)
n! (x− a)n

(x− a)n
= 0,

using induction on n, passing from n to n+ 1 using L’Hospital’s rule.
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2. This exercise gives a fairly simple approach to Taylor’s formula in Cauchy’s
form (Theorem 1.5) using integration by parts. The idea is to write

f(b)− f(a) =
∫ b

a

f ′(x)dx = −
∫ b

a

f ′(x)d(b− x),

and then use integration by parts on the last integral. This gives

f(b) = f(a)− f ′(x)(b− x)|ba +
∫ b

a

(b− x)f ′′(x)dx

= f(a) + f ′(a)(b− a) +
∫ b

a

(b− x)f ′′(x)dx,

which is Theorem 1.5 for n = 2.
(a) Use integration by parts on the last integral above to prove the the-

orem for n = 3.
(b) Use induction on n to complete the proof of Theorem 1.5.

3. This exercise outlines an interesting approach to Taylor’s formula in
Cauchy’s form.
Let f : J → R be a function on an open interval J , differentiable enough
times. Consider the operations

A : f(x) 7→
∫ x

a

f(t)dt, B : f(x) 7→ f ′(x), I : f(x) 7→ f(x).

Show that BA(f(x)) = f(x), but AB(f(x)) = f(x) − f(a), so that
AB 6= BA, that is, A and B do not commute, when f(a) 6= 0. Obvi-
ously, Bk(f(x)) = f (k)(x). The formula for Ak is more complicated. Show
that

A2(f(x)) =
∫ x

a

∫ s

a

f(t)dt ds =
∫ x

a

∫ x

t

f(t)ds dt =
∫ x

a

(x− t)f(t)dt,

where the second equality follows from Fubini’s theorem for multiple in-
tegrals. More generally, show that

Ak(f(x)) =
∫ x

a

(x− t)k−1

(k − 1)!
f(t)dt,

a formula due to Cauchy.
Observe that

n−1∑
k=0

Ak(I −AB)Bk =
n−1∑
k=0

(AkBk −Ak+1Bk+1) = I −AnBn.

Noting that (I − AB)(f(x)) = f(a), show that the above telescoping
formula gives
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n−1∑
k=0

(x− a)k

k!
fk(a) = f(x)−

∫ x

a

(x− t)n−1

(n− 1)!
f (n)(t)dt,

which is precisely Taylor’s formula in Cauchy’s form.
This problem is taken from [261], which contains simple derivations of
certain other formulas in analysis.

4. Here is an interesting approach, using determinants, to Taylor’s formula
in Lagrange’s form.
Let f(x), {fi(x)}n+2

1 (x)} be (n+1)-times continuously differentiable func-
tions. Then ∣∣∣∣∣∣∣∣∣∣∣∣∣

f(x) f1(x) · · · fn+2(x)
f(0) f1(0) · · · fn+2(0)
f ′(0) f ′1(0) · · · f ′n+2(0)

...
... · · ·

...
f (n)(0) f

(n)
1 (0) · · · f

(n)
n+2(0)

f (n+1)(h) f (n+1)
1 (h) · · · f (n+1)

n+2 (h)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

for some h strictly between 0 and x. To prove this, consider x as a constant
and let D(i)(h) denote the function of h by replacing the last row of the
determinant with f (i)(h), f (i)

1 (h), . . . , f (i)
n+2(h).

(a) Show that the derivative of D(i)(h) with respect to h is D(i+1)(h) for
i = 0, 1, . . . , n, and the determinant above is D(n+1)(h).

(b) Show that D(0)(0) = 0 and D(0)(x) = 0.
(c) Use Rolle’s theorem to prove the existence of h1 strictly between

0 and x such that D(1)(h1) = 0. Also, show that D(1)(0) = 0. Use
Rolle’s theorem again to prove the existence of h2 strictly between 0
and h1 such that D(2)(h2) = 0.

(d) Continue in this fashion to show that there exists a point h strictly
between 0 and x such that D(n+1)(h) = 0.

As an application, show that there exists a point h strictly between 0 and
x such that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(x) 1 x
1!

x2

2! · · · x
n

n!
xn+1

(n+1)!

f(0) 1 0 0 · · · 0 0
f ′(0) 0 1 0 · · · 0 0

...
...

... · · ·
...

...
f (n)(0) 0 0 0 · · · 1 0
f (n+1)(h) 0 0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

and that the above determinant is

f(x)− f(0)− f ′(0)x− f ′′(0)
2

x2 − · · · − f (n)(0)
n!

xn − f (n+1)(h)
(n+ 1)!

xn+1.

5. Let f : Rn → R be a function satisfying the inequality |f(x)| ≤ ‖x‖2.
Show that f is Fréchet differentiable at 0.
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6. Define a function f : R2 → R as follows:

f(x, y) =


x if y = 0,
y if x = 0,
0 otherwise.

Show that the partial derivatives

∂f(0, 0)
∂x

:= lim
t→0

f(t, 0)− f(0, 0)
t

, and
∂f(0, 0)
∂y

:= lim
t→0

f(0, t)− f(0, 0)
t

exist, but that f is not Gâteaux differentiable at (0, 0).
7. (Genocchi-Peano) Define the function f : R2 → R

f(x, y) =

{
xy2

x2+y4 if (x, y) 6= (0, 0),
0 if (x, y) = (0, 0).

(a) Show that f is directionally differentiable at (0, 0), that is, f has
directional derivatives at the origin along all directions.

(b) Show that f is not Gâteaux differentiable at the origin.
(c) Show that, even though f is continuous when restricted to lines pass-

ing thorough the origin, f is not continuous at the origin.
8. Define a function f : R2 → R as follows:

f(x, y) =

{
2y exp(−x−2)
y2+exp(−2x−2) if x 6= 0,

0 otherwise.

Show that f is Gâteaux differentiable at (0, 0), but that f is not continuous
there.

9. Define a function f : R2 → R as follows:

f(x, y) =

{
x3y
x4+y2 if (x, y) 6= (0, 0),
0 if (x, y) = (0, 0).

Show that f is Gâteaux differentiable but not Fréchet differentiable at
(0, 0).

10. Define a function f : R2 → R as follows:

f(x, y) =

{
y(x2+y2)3/2

(x2+y2)2+y2 if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Show that f is Gâteaux differentiable but not Fréchet differentiable at
(0, 0).
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11. Define a function f : R2 → R as follows:

f(x, y) =

{
xy
r sin

(
1
r

)
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0),

where r = ‖(x, y)‖ = (x2 + y2)1/2. Show that ∂f/∂x and ∂f/∂y exist at
every point (x, y) ∈ R2, and the four functions x 7→ ∂f(x, b)/∂x, y 7→
∂f(a, y)/∂x, x 7→ ∂f(x, b)/∂y, y 7→ ∂f(a, y)/∂y are continuous for any
(a, b) ∈ R2, but f is not Fréchet differentiable at (0, 0).

12. Let f : R2 → R be a function defined by the formula

f(x, y) =

{
xy(x2−y2)
x2+y2 if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Show that all four second-order partial derivatives ∂2f/∂x2, ∂2f/∂x∂y,
∂2f/∂y∂x, and ∂2f/∂y2 exist everywhere on R2, but ∂2f/∂x∂y 6= ∂2f/∂y∂x
at the point (0, 0).

13. Define a function F : R2 → R2 as follows:

F (x, y) = (x3, y2).

Let x = (0, 0) and y = (1, 1). Show that there is no vector z on the line
segment between x and y such that

F (y)− F (x) = DF (z)(y − x).

This shows that the mean value theorem (Lemma 1.12) does not general-
ize, at least in the same form.

14. Let f : Rn → Rm be a Gâteaux differentiable map such that the Jacobian
Df vanishes identically, that is, Df(x) = 0 for all x ∈ Rn. Use Theo-
rem 1.18 to give a short proof that f must be a constant function. More
generally, use the same theorem to prove that if Df is a constant matrix,
then f must be an affine transformation.

15. For a given scalar p ∈ [1,∞), let

f(x) ≡ ‖x‖p ≡
(

n∑
i=1

|xi|p
)1/p

, x ∈ Rn,

denote the lp-norm for vectors in Rn. Compute the partial derivatives
∂f/∂xi, i = 1, 2, . . . , n, for any vector x with no zero component. Does f
have a Fréchet or Gâteaux derivative at such a point? At the point x = 0?
What more can be said for the case p = 2?

16. This exercise shows that Gâteaux differentiability may not be enough for
the chain rule to hold.
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(a) (Fréchet) Define the functions f : R → R2, f(t) = (t, t2), and
g : R2 → R,

g(x, y) =

{
x if y = x2,

0 otherwise.

Show that g is Gâteaux differentiable at (0, 0) with gradient∇g(0, 0) =
(0, 0), but g◦f is the identity function on R, to conclude that the chain
rule for g ◦ f fails at t = 0.

(b) Define the functions f : R→ R2, f(t) = (t cos t, t sin t), and g : R2 →
R given (in polar coordinates) by

g(r, θ) =

{
r2

θ3 if 0 < θ < 2π,
0 if θ = 0.

Show that g is Gâteaux differentiable at (0, 0) with gradient∇g(0, 0) =
(0, 0), but (g ◦ f)(t) = 1/t, so that the chain rule for g ◦ f again fails
at t = 0.

17. Let f : V → R be an infinitely differentiable function on a vector space
V . Let f be n-homogeneous, that is,

f(tx) = tnf(x).

Show that

Dkf(x)
[
x, . . . , x

]︸ ︷︷ ︸
k times

=

{
n!

(n−k)!f(x), k = 0, . . . , n,

0, k > n.

The formula for the case k = 1, Df(x)[x] = nf(x), is known as Euler’s
formula.
Hint: Write the Taylor series for f(x + tx), and note that f(x + tx) =
f((1 + t)x) = (1 + t)nf(x).

18. Let M : Rn1 × Rn2 × · · · × Rnk → Rm be a multilinear map, that is,
xi 7→M(x1, . . . , xi−1, xi, xi+1, . . . , xk) is linear when all variables xj other
than xi are fixed. Show that

M ′(x;h) = M(h1, x1, . . . , xk) +M(x1, h2, x3, . . . , xk)+
· · ·+M(x1, x2, . . . , xk−1, hk),

where we have used the notation x = (x1, . . . , xk), h = (h1, . . . , hk), and
M ′(x;h) = M ′(x1, . . . , xk;h1, . . . , hk). Then, compute D2M(x)[h, h] and
D3M(x)[h, h, h]. How do the formulas simplify when M is a symmetric
multilinear mapping?
Hint: Compute M(x1 + th1, x2 + th2, . . . , xk + thk) using multilinearity of
M .
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19. Let F : Rn → Rm be a map with Lipschitz derivative, that is, there exists
L ≥ 0 such that

‖DF (y)−DF (x)‖ ≤ L‖y − x‖ for all x, y ∈ Rn.

Show that

‖F (y)− F (x)−DF (x)(y − x)‖ ≤ L

2
‖y − x‖2 for all x, y ∈ Rn.

Notice that the slightly weaker inequality, with the constant L/2 replaced
by L, follows immediately from Theorem 1.18.
Hint: Define the function ϕ(t) = F (x+ t(y − x))− tDF (x)(y − x). Show
that ϕ′(t) = (DF (x + t(y − x)) −DF (x))(y − x), and use the inequality∥∥∫ 1

0
ϕ′(t) dt

∥∥ ≤ ∫ 1

0
‖ϕ′(t)‖dt.

20. Let f : I = (c, d)→ R be such that 0 ∈ I.
(a) If f ∈ C1 (continuously differentiable) on I, then show that there

exists a continuous function a on I such that

f(x) = f(0) + a(x)x.

Moreover, show that if f ∈ C2, then a ∈ C1.
(b) If f ∈ C2 (twice continuously differentiable) on I, then show that

there exists a continuous function b on I such that

f(x) = f(0) + f ′(0)x+ b(x)x2.

Hint: If x 6= 0, the above equations define a(x) and b(x),

a(x) =
f(x)− f(0)

x
, b(x) =

f(x)− f(0)− f ′(0)x
x2

.

Use L’Hospital’s rule to show that a(0) and b(0) can be defined in
such a way that the functions a, b are continuous at x = 0.

(c) Let f : U → R be a C1 (continuous partial derivatives) function in a
neighborhood U of the origin in Rn. Prove that there exist continuous
functions {ai(x)}n1 on U such that

f(x1, . . . , xn) = f(0) +
n∑
i=1

xiai(x1, . . . , xn).

Moreover, show that if f ∈ C2, then ai ∈ C1.
Hint: Show that (a) guarantees the existence of a continuous function
a(x) such that f(x1, . . . , xn) = f(0, x2, . . . , xn) + x1a1(x1, . . . , xn).
Then, use induction on n.

(d) Let f : U → R be a C2 (second partial derivatives continuous)
function on U . Using (b), show that there exists a continuous function
b(x) on U such that

f(x1, . . . , xn) = f(0, x2, . . . , xn)+x1
∂f(0, x2, . . . , xn)

∂x1
+x2

1b(x1, . . . , xn).
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(e) Let f be a function as in (d) and assume that ∇f(0) = 0. Prove that
there exist continuous functions {bij(x)}ni,j=1 on U such that

f(x1, . . . , xn) = f(0) +
n∑

i,j=1

xixibij(x1, . . . , xn).

Hint: Use (c) on the C1 function ∂f(0, x2, . . . , xn)/∂x1 in (d) to obtain
a representation

f(x1, . . . , xn) = f(0, x2, . . . , xn) +
n∑
j=1

x1xjb1j(x1, . . . , xn).

Complete the proof by induction on n.
21. Compute the first two derivatives of the determinant function f(x) =

detX on Sn, the space of n× n symmetric real matrices
(a) From scratch, mimicking the derivation in Example 1.27.
(b) Using the chain rule and the results of Example 1.27.

22. Let Rn×n be the space of n×n real matrices. Show that if A(t) ∈ Rn×n is
a differentiable function of t then d(detA(t))/dt is the sum of the determi-
nants of n matrices, in which the ith matrix is A(t) except that the ith row
is differentiated. Use this result to prove that the directional derivative
of the determinant function at the matrix A ∈ Rn×n along the direction
B ∈ Rn×n is given by

(det)′(A;B) = tr(Adj(A)B) = 〈Adj(A)T , B〉,
where Adj(A) is the adjoint of A, and where the inner product on Rn×n
is the trace inner product given by 〈X,Y 〉 = tr(XTY ). Conclude that

D(det)(A) = Adj(A)T .

Hint: Use the determinant formula detX =
∑
σ sgn(σ)x1σ(1) · · ·xnσ(n) to

compute d(detA(t))/dt, and Laplace’s expansion formula for determinants
to compute (det)′(A;B).

23. Let A ∈ Rn×n. Show that
(a) (det)′(I;A) = tr(A), where I is the identity matrix.

Hint: Show that det(I+ tA) = 1 + t(a11 +a22 + · · ·+ann) + · · · , using
the formula detA =

∑
σ sgn(σ)a1σ(1) · · · anσ(n).

(b) Show that if A is a nonsingular matrix, then

(det)′(A;B) = det(A) tr(A−1B) = 〈det(A)A−T , B〉.
Consequently, show that

A−1 =
Adj(A)
detA

.

Hint: Use det(A + tB) = det(A) det(I + A−1B) and the previous
problem.

24. Prove Corollary 1.30.
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Unconstrained Optimization

In optimization theory, the optimality conditions for interior points are usu-
ally much simpler than the optimality conditions for boundary points. In this
chapter, we deal with the former, easier case. Boundary points appear more
prominently in constrained optimization, when one tries to optimize a func-
tion, subject to several functional constraints. For this reason, the optimality
conditions for boundary points are generally discussed in constrained opti-
mization, whereas the optimality conditions for interior points are discussed
in unconstrained optimization, regardless of whether the optimization prob-
lem at hand has constraints.

In this chapter, we first establish some basic results on the existence of
global minimizer or maximizers of continuous functions on a metric space.
These are the famous Weierstrass theorem and its variants, which are es-
sentially the only general tools available for establishing the existence of
optimizers.

The rest of the chapter is devoted to obtaining the fundamental first-order
and second-order necessary and sufficient optimality conditions for minimiz-
ing or maximizing differentiable functions. Since the tools here are based on
differentiation, and differentiation is a local theory, the optimality conditions
generally apply to local optimizers. The necessary and sufficient conditions
play different, usually complementary, roles. A typical necessary condition for

ties or inequalities, must be satisfied at a local minimizer. A typical sufficient
condition for a local minimizer, however, states that if certain conditions are
satisfied at a given point, then that point must be a local minimizer.

The nature (local minimum, local maximum, or saddle point) of a critical
point x of a twice differentiable function f is deduced from the definiteness
properties of the quadratic form q(d) = 〈D2f(x)d, d〉 involving the Hessian
matrixD2f(x). Thus, there is a need for an efficient recognition of a symmetric
matrix. Several tools are developed in Section 2.4 for this purpose. A novel
feature of this section is that we give an exposition of a simple tool, Descartes’s
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a local minimizer, say, states that certain conditions, usually given as equali-
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rule of sign, that can be used to count exactly the number of positive and
negative eigenvalues of a symmetric matrix, including D2f(x).

The inverse function theorem and the closely related implicit function
theorem are important tools in many branches of analysis. Another closely
related result, Lyusternik’s theorem [191], is an important tool in optimiza-
tion, where it is used in the derivation of optimality conditions in constrained
optimization. We give an elementary proof of the implicit function theorem in
finite-dimensional vector spaces in Section 2.5, following Carathéodory [54],
and use it to prove the inverse function theorem and Lyusternik’s theorem in
finite dimensions. The proof of the same theorems in Banach spaces is given in
Chapter 3 using Ekeland’s ε-variational principle. If one is interested only in
finite-dimensional versions of these results, it suffices to read only Section 2.5.

The local behavior of a C2 function f around a nondegenerate critical
point x (D2f(x) is nonsingular) is determined by the Hessian matrix D2f(x).
This is the content of Morse’s lemma, which is treated in Section 2.6. Morse’s
lemma is a basic result in Morse theory, which investigates the relationships
between various types of critical points of a function f ; see, for example,
Milnor [197] for an introduction to Morse theory.

2.1 Basic Results on the Existence of Optimizers

We start by defining various types of optimal points.

Definition 2.1. Let f : U → R be a function on a set U ⊆ Rn. Let x∗ ∈ U
be an arbitrary point, and let Br(x∗) := {x ∈ U : ‖x − x∗‖ < r} be the open
ball of radius r around x∗. The point x∗ is called

(a) a local minimizer of f if

f(x∗) ≤ f(x) for all x in some ball Br(x∗),

and a strict local minimizer of f if

f(x∗) < f(x) for all x ∈ Br(x∗), x 6= x∗;

(b) a global minimizer of f on U if

f(x∗) ≤ f(x) for all x ∈ U,

and a strict global minimizer of f on U if

f(x∗) < f(x) for all x ∈ U, x 6= x∗;

(c) a critical point of f if f is Gâteaux differentiable at x∗ and ∇f(x∗) = 0;
(d) a saddle point of f if it is a critical point and there exist points y, z in

any ball Br(x∗) such that f(y) < f(x∗) < f(z).
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Parallel definitions apply for a maximizer of f . We call a point x∗ an optimizer
of f if x∗ is a minimizer or a maximizer in any of the senses above.

The most basic result on the existence of optimizers is the following theo-
rem, due to Weierstrass.

Theorem 2.2. (Weierstrass) Let f : K → R be a continuous function
defined on a compact metric space K. Then there exists a global minimizer
x∗ ∈ K of f on K, that is,

f(x∗) ≤ f(x) for all x ∈ K.

Proof. Let {xk} in K be a minimizing sequence for f , that is, f(xk) →
inf{f(x) : x ∈ K} =: f∗, where we may have f∗ = −∞. Since K is compact,
there exists a subsequence {xki} converging to x∗ ∈ K. Since f is continuous,
we have f(x∗) = limi→∞ f(xki) = f∗ ∈ R, and thus the point x∗ is a global
minimizer of f on K. ut

An alternative proof runs as follows:

Proof. Define Kn := {x ∈ K : f(x) > n}. Then Kn is open, and K =
∪∞n=−∞Kn, that is, {Kn}∞n=−∞ is an open cover of K. Since K is compact, a
finite subset {Kni}ki=1 also covers K, that is, K = ∪ki=1Kni . Then K = Kn,
where n := min{ni : i = 1, . . . , k}, and f∗ := inf{f(x) : x ∈ K} > −∞. Thus,
f is bounded from below on K.

Suppose that f does not have a global minimizer on K. Define Fn := {x ∈
K : f(x) > f∗ + 1/n}. Then Fn is an open subset of K and K = ∪∞n=1Fn.
As above, we have K = Fn for some n > 1, that is, f(x) > f∗ + 1/n for all
x ∈ K, a contradiction to the definition of f∗. ut

We remark that the second proof is more general, since it is valid verbatim
on all compact topological spaces, not only compact metric spaces.

The compactness assumption can be relaxed somewhat.

Theorem 2.3. Let f : E → R be a continuous function defined on a metric
space E. If f has a nonempty, compact sublevel set {x ∈ E : f(x) ≤ α}, then
f achieves a global minimizer on E.

Proof. Let {xn} be a minimizing sequence for f , that is,

f(xn)→ inf{f(x) : x ∈ E} = inf
E
f =: f∗.

Denote by D the sublevel set above, that is, D = {x ∈ E : f(x) ≤ α}. Clearly,
there exists N such that xn ∈ D for all n ≥ N . Since D is compact, {xn}∞N
has a convergent subsequence xnk → x∗ ∈ D. Since f is continuous, we have

f(x∗) = lim
n→∞

f(xn) = f∗.

This means that f achieves its minimum on E at the point x∗. ut
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Definition 2.4. A function f : D → R on a subset D of a normed vector
space E is called coercive if

f(x)→∞ as ‖x‖ → ∞.

Corollary 2.5. If f : D → R is a continuous coercive function defined on a
closed set D ⊆ Rn, then f achieves a global minimum on D.

Proof. The sublevel sets lα(f) = {x ∈ D : f(x) ≤ α} are closed, since f is
continuous, and bounded since f is coercive. Thus, f achieves its minimum
on L at a point x∗, which is also a global minimizer of f on D. ut

Example 2.6. (The fundamental theorem of algebra)
This famous theorem states that every polynomial

p(z) := anz
n + an−1z

−1 + · · ·+ a1z + a0,

with leading coefficient an 6= 0 and where the coefficients ai are complex
numbers, has a complex root, hence n complex roots counting multiplicities.
The problem has a fascinating history, and it is generally agreed that the first
rigorous proof of it was given by the great mathematician Gauss in 1797, when
he was just 20 years old, and appeared in his doctoral thesis of 1799. Here, we
give an elementary proof of this result. This very short proof from [253] uses
optimization techniques, but the essential idea is already in Fefferman [92],
and probably in earlier works.

Consider minimizing the function

f(z) = |p(z)|

over the complex numbers. We have

|p(z)| = |z|n ·
∣∣∣an +

an−1

z
+
an−2

z2
+ · · ·+ a1

zn−1
+
a0

zn

∣∣∣ .
As |z| → ∞, the norm of the sum above converges to |an| > 0. Thus, f(z) is
a coercive function, and so has a minimizer z∗ in C.

Without loss of any generality, we may assume that z∗ = 0; otherwise, we
can consider the polynomial q(z) = p(z + z∗). We have

|a0| = f(0) ≤ f(z) =
∣∣∣ n∑
k=0

akz
k
∣∣∣, z ∈ C.

If a0 = 0, z = 0 is a root of p, and we are done. We claim that in fact, a0 = 0.
Suppose a0 6= 0 and let

p(z) = a0 + akz
k + zk+1q(z),

where ak 6= 0 is the first nonzero coefficient after a0 and q is a polynomial.
Choose a kth root w ∈ C of −a0/ak. Then
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p(tw) = a0 + akt
kwk + tk+1wk+1q(tw) = (1− tk)a0 + tk[twk+1q(tw)].

If 0 < t < 1 is small enough, then t|wk+1q(tw)| < |a0|, and

|p(tw)| < (1− tk)|a0|+ tk|a0| = |a0|,

a contradiction.

2.2 First-Order Optimality Conditions

Theorem 2.7. (First-order necessary condition for a local optimizer)
Let f : U → R be a Gâteaux differentiable function on an open set U ⊆ Rn.
A local optimizer is a critical point, that is,

x a local optimizer =⇒ ∇f(x) = 0.

Clearly, the theorem holds verbatim if U ⊆ Rn is an arbitrary set with a
nonempty interior, f is Gâteaux differentiable on intU , and x ∈ intU . We
will not always point out such obvious facts in the interest of not complicating
the statements of our theorems.

Proof. We first assume that x is a local minimizer of f . If d ∈ Rn, then

f ′(x; d) = lim
t→0

f(x+ td)− f(x)
t

= 〈∇f(x), d〉.

If |t| is small, then the numerator above is nonnegative, since x is a local
minimizer. If t > 0, then the difference quotient is nonnegative, so in the limit
as t ↘ 0, we have f ′(x; d) ≥ 0. However, if t < 0, the difference quotient
is nonpositive, and we have f ′(x; d) ≤ 0. Thus, we conclude that f ′(x; d) =
〈∇f(x), d〉 = 0. If x is a local maximizer of f , then 〈∇f(x), d〉 = 0, since x is
a local minimizer of −f . Picking d = ∇f(x) gives f ′(x; d) = ‖∇f(x)‖2 = 0,
that is, ∇f(x) = 0. ut

We note that Theorem 2.7 proves the following more general result.

Corollary 2.8. Let f : U → R be a function on an open set U ⊆ Rn. If
x ∈ U is a local minimizer of f and the directional derivative f ′(x; d) exists
for a direction d ∈ Rn, then f ′(x; d) ≥ 0.

Remark 2.9. Functions that have directional derivatives but are not necessar-
ily differentiable occur naturally in optimization, for example in minimizing
a function that is the pointwise maximum of a set of differentiable functions.
See Danskin’s theorem, Theorem 1.29, on page 20.

In fact, it is possible use this approach to derive optimality conditions
for constrained optimization problems. See Section 12.1 for the derivation of
optimality conditions in semi-infinite programming.
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Example 2.10. Here is an optimization problem from the theory of orthogonal
polynomials; see [250], whose solution is obtained using a novel technique, a
differential equation.

We determine the minimizers and the minimum value of the function

f(x1, . . . , xn) =
1
2

n∑
1

x2
j −

∑
1≤i<j≤n

ln |xi − xj |.

Differentiate f with respect to each variable xj and set to zero to obtain

∂f

∂xj
= xj −

∑
i6=j

1
xj − xi

= 0.

To solve for x, consider the polynomial

g(x) =
n∏
1

(x− xj),

which has roots at the point x = x1, . . . , xn. Differentiating this function gives

g′(xj) =
∏
i6=j

(xj − xi),
g′′(xj)
g′(xj)

= 2
∏
i 6=j

1
xj − xi

,

so that ∂f/∂xj = 0 can be written as

g′′(xj)− 2xjg′(xj) = 0,

meaning that the polynomial

g′′(x)− 2xg′(x)

of order n has the same roots as the polynomial g(x), so must be proportional
to g(x). Comparing the coefficients of xn gives

g′′(x)− 2xg′(x) + 2ng(x) = 0.

The solution to this differential equation is the Hermite polynomial of order n,

Hn(x) = n!
[n/2]∑

0

(−1)k(2x)n−2k

k!(n− 2k)!
.

Therefore, the solutions xj are the roots of the Hermite polynomial Hn(x).
The discriminant of Hn is given by

∏
i<j

(xi − xj)2 = 2−(n(n−1)/2
n∏
1

jj ,
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and the above formula for Hn gives
n∑
1

x2
j = n(n− 1)/2.

Thus, the minimum value of f is

1
4
n(n− 1)(1 + ln 2)− 1

2

n∑
1

j ln j.

2.3 Second-Order Optimality Conditions

Definition 2.11. An n× n matrix A is called positive semidefinite if

〈Ad, d〉 ≥ 0 for all d ∈ Rn.

It is called positive definite if

〈Ad, d〉 > 0 for all d ∈ Rn, d 6= 0.

Note that if A is positive semidefinite, then aii = 〈Aei, ei〉 ≥ 0, and if
A is positive definite, then aii > 0. Similarly, choosing d = tei + ej gives
q(t) := aiit

2 + 2aijt+ ajj ≥ 0 for all t ∈ R. Recall that the quadratic function
q(t) is nonnegative (positive) if and only if its discriminant ∆ = 4(a2

ij−aiiajj)
is nonpositive (negative). Thus, aiiajj − a2

ij ≥ 0 if A is positive semidefinite,
and aiiajj − a2

ij > 0 if A is positive definite.

Theorem 2.12. (Second-order necessary condition for a local mini-
mizer) Let f : U → R be twice Gâteaux differentiable on an open set U ⊆ Rn
in the sense that there exist a vector ∇f(x) and a symmetric matrix Hf(x)
such that for all h ∈ Rn,

f(x+ th) = f(x) + t〈∇f(x), h〉+
t2

2
〈Hf(x)h, h〉+ o(t2). (2.1)

(This condition is satisfied if f has continuous second-order partial derivatives,
that is, if f ∈ C2.)

If x ∈ U is a local minimizer of f , then the matrix Hf(x) is positive
semidefinite.

Proof. The first-order necessary condition implies ∇f(x) = 0. Since x is a
local minimizer, we have f(x + th) ≥ f(x) if |t| is small enough. Then, (2.1)
gives

t2

2
〈Hf(x)h, h〉+ o(t2) ≥ 0.

Dividing by t2 and letting t→ 0 gives

hTHf(x)h ≥ 0 for all h ∈ Rn,

proving that Hf(x) is positive semidefinite. ut



38 2 Unconstrained Optimization

We remark that the converse does not hold; see Exercise 9 on page 56.
However, we have the following theorem.

Theorem 2.13. (Second-order sufficient condition for a local mini-
mizer) Let f : U → R be C2 on an open set U ⊆ Rn. If x ∈ U is a critical
point and Hf(x) is positive definite, then x is a strict local minimizer of f
on U .

Proof. Define A := Hf(x). Since g(d) := 〈Ad, d〉 > 0 for all d on the unit
sphere S := {d ∈ Rn : ‖d‖ = 1} and S is compact, it follows that there exists
α > 0 such that g(d) ≥ α > 0 for all d ∈ S. Since g is homogeneous, we have
g(d) ≥ α‖d‖2 for all d ∈ Rn.

Let ‖d‖ be sufficiently small. It follows from the multivariate Taylor’s
formula (Corollary 1.24) and the fact ∇f(x) = 0 that

f(x+ d) = f(x) + 〈∇f(x), d〉+
1
2
〈Ad, d〉+ o(‖d‖2)

≥ f(x) + ‖d‖2
(
α

2
+
o(‖d‖2)
‖d‖2

)
> f(x).

This proves that x is a strict local minimizer of f . ut

The positive definiteness condition on A is really needed. Exercise 9 de-
scribes a problem in which a critical point x has Hf(x) positive semidefinite,
but x is actually a saddle point.

However, a global positive semidefiniteness condition on Hf(x) has strong
implications.

Theorem 2.14. (Second-order sufficient condition for a global min-
imizer) Let f : U → R be a function with positive semidefinite Hessian on
an open convex set U ⊆ Rn. If x ∈ U is a critical point, then x is a global
minimizer of f on U .

Proof. Let y ∈ U . It follows from the multivariate Taylor’s formula (Theo-
rem 1.23) that there exists a point z ∈ (x, y) such that

f(y) = f(x) + 〈∇f(x), y − x〉+
1
2

(y − x)THf(z)(y − x).

Since ∇f(x) = 0 and Hf(z) is positive semidefinite, we have f(y) ≥ f(x) for
all y ∈ D. Thus, x is a global minimizer of f on U . ut

Remark 2.15. We remark that a function with a positive semidefinite Hessian
is a convex function. If the Hessian is positive definite at every point, then
the function is strictly convex. In this case, the function f has at most one
critical point, which is the unique global minimizer. Chapter 4 treats convex
(not necessarily differentiable) functions in detail.



2.3 Second-Order Optimality Conditions 39

Theorem 2.16. (Second-order sufficient condition for a saddle point)
Let f : U → R be twice Gâteaux differentiable on an open set U ⊆ Rn in the
sense of (2.1). If x ∈ U is a critical point and Hf(x) is indefinite, that is, it
has at least one positive and one negative eigenvalue, then x is a saddle point
of f on U .

Proof. Define A := Hf(x). If λ > 0 is an eigenvalue of A with a corresponding
eigenvector d ∈ Rn, ‖d‖ = 1, then 〈Ad, d〉 = 〈λd, d〉 = λ, and it follows from
Corollary 1.24 that for sufficiently small t > 0,

f(x+ td) = f(x) + t〈∇f(x), d〉+
t2

2
〈Ad, d〉+ o(t2)

= f(x) +
t2

2
λ+ o(t2) > f(x).

Similarly, if λ < 0 is an eigenvalue of A with a corresponding eigenvector d,
‖d‖ = 1, then f(x+ td) < f(x) for small enough t > 0. This proves that x is
a saddle point. ut

Definition 2.17. Let f : U → R be a C2 function on an open set U ⊆ Rn. A
critical point x ∈ U is called nondegenerate if the Hessian matrix D2f(x) is
nonsingular.

A well-known result, Morse’s lemma [202], states that if x is a nondegen-
erate critical point, then the Hessian Df(x0) determines the behavior of f
around x0. More precisely, it states that if f : U → R is at least C2+k (k ≥ 1)
on an open set U ⊆ Rn, and if x0 ∈ U is a nondegenerate critical point of
f , then there exist open neighborhoods V 3 x0 and W 3 0 in Rn and a
one-to-one and onto Ck map ϕ : V →W such that

f(x) = f(x0) +
1
2
〈D2f(x0)ϕ(x), ϕ(x)〉.

This is the content of Theorem 2.32 on page 49. See also Corollary 2.33.
We end this section by noting that the second-order tests considered above,

and especially Morse’s lemma, give conclusive information about a critical
point except when the Hessian matrix is degenerate. In these degenerate cases,
nothing can be deduced about the critical point in general: it could be a
local minimizer, local maximizer, or a saddle point. For example, the origin
(x, y) = (0, 0) is a critical point of the function f(x, y) = x3 − 3xy2 (the real
part of the complex function (x + iy)3), with D2f(0, 0) = 0. It is a saddle
point, and the graph of this function is called a monkey saddle. A computer
plot of the graph of f will reveal that this saddle is different from the familiar
horse saddle in that there is also a third depression for the tail of the monkey.

Example 2.18. Consider the family of problems

min f(x, y) := x2 + y2 + βxy + x+ 2y.
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We have

∇f(x, y) =
(

2x+ βy + 1
2y + βx+ 2

)
, Hf(x, y) =

[
2 β
β 2

]
.

We have ∇f(x, y) = 0 if and only if

2x+ βy = −1,
βx+ 2y = −2.

If β 6= ∓2, then the unique solution to the above equations is (x∗, y∗) =
(2β − 2, β − 4)/(4− β2). If β = 2, the above equations become 2x+ 2y = −1
and 2x + 2y = −2, thus inconsistent. Similarly, if β = −2, we also have an
inconsistent system of equations. Therefore, no critical points exist for β = ∓2.

The eigenvalues of A := Hf(x, y) can be calculated explicitly: the charac-
teristic polynomial of A is

det(A− λI) = (2− λ)2 − β2 = 0,

which has solutions λ = 2 ∓ β. These are the eigenvalues of A. Thus, the
eigenvalues of A are positive for −2 < β < 2. In this case, the optimal solution
(x∗, y∗) calculated above is a global minimizer of f by Theorem 2.13 and
Corollary 2.20 below. In the case |β| > 2, one eigenvalue of A is positive and
the other negative, so that the corresponding optimal solution z∗ := (x∗, y∗)
is a saddle point by Theorem 2.16.

Finally, let us consider the behavior of f when β = ∓2, when it has no
critical point. If β = 2, then f(x, y) = (x+ y)2 + x+ 2y; thus f(x,−x) = −x
and f(x,−x)→ ∓∞ as x→ ±∞. When β = −2, f has a similar behavior.

2.4 Quadratic Forms

We have seen that symmetric positive semidefinite and positive definite ma-
trices are important in the second-order optimality conditions for a local min-
imizer. In this section, we give characterizations of such matrices.

We recall the spectral decomposition or orthogonal diagonalization of sym-
metric matrices.

Theorem 2.19. (Spectral decomposition of a symmetric matrix) Let
A be an n × n real symmetric matrix. There exist a real diagonal matrix
Λ = diag(λ1, . . . , λn) and a real orthogonal matrix U = [u1, . . . , un] such that

A = UΛUT .

The scalar λi is an eigenvalue of A, and ui is an eigenvector of A correspond-
ing to λi.
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Proof. It is well known from linear algebra that A has n real eigenvalues
{λi}n1 with corresponding eigenvectors {ui}n1 , ‖ui‖ = 1, which are mutually
orthogonal, that is, 〈ui, uj〉 = 0 for i 6= j. From Aui = λiui, we obtain

AU = A[u1, . . . , un] = [Au1, . . . , Aun] = [λ1u1, . . . , λnun] = UΛ,

where U = [u1, . . . , un] and Λ = diag(λ1, . . . , λn). Since the eigenvalues are
orthogonal, we have

UTU =

u
T
1
...
uTn

 [u1, . . . , un
]

=
[
〈ui, uj〉

]
= I,

that is, U is an orthogonal matrix with inverse UT . It follows that A =
A(UUT ) = (AU)UT = UΛUT . ut

In Section 10.1 (page 251), we will give an optimization proof of this theo-
rem. This approach provides a variational characterization of the eigenvalues,
which has many applications.

Corollary 2.20. Let A be an n × n symmetric matrix. Then A is positive
semidefinite if and only if all eigenvalues of A are nonnegative. Moreover, A
is positive definite if and only if all eigenvalues of A are positive.

Proof. We have

dTAd = dTUΛUT d = (UT d)TΛ(UT d).

Since U is nonsingular, we see that dTAd ≥ 0 for all d ∈ Rn if and only if
dTΛd ≥ 0 for all d ∈ Rn. In other words, A is positive semidefinite if and only
if Λ is. Since

dTΛd =
n∑
i=1

λid
2
i ,

Λ is positive semidefinite if and only λi ≥ 0 for each i = 1, . . . , n. This proves
the first part of the theorem. The proof of the second part is similar. ut

Although this result characterizes the symmetric positive semidefinite and
positive definite matrices, the determination of the eigenvalues of A is not an
easy computational task unless n is small. However, here we are interested
only in the signs of the eigenvalues and not their exact numerical values.

It is also possible to simultaneously “diagonalize” two symmetric matrices,
provided one of them is positive definite. This result is frequently useful in
optimization. For example, it may be used to give a quick proof of the fact
that the function F (X) = − ln detX is convex on the cone of positive definite
matrices.
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Theorem 2.21. Let A and B be symmetric n× n matrices such that at least
one of the matrices is positive definite. The matrices can be simultaneously
diagonalized in the sense that there exists a nonsingular matrix X ∈ Rn×n
such that

XTAX = diag{λ1, . . . , λn}, XTBX = diag{δ1, . . . , δn}.

We remark that the notion of diagonalization in this theorem is different
from its usual definition linear algebra where diagonalizing a square matrix A
means finding an invertible matrix X such that X−1AX is a diagonal matrix.
The diagonalization above is more appropriate quadratic forms, because sub-
stituting x = Xy in the quadratic from q1(x) = 〈Ax, x〉 gives the quadratic
form q2(y) := q1(Xx) = 〈Cy, y〉 where C = XTAX.

Proof. Suppose that B is positive definite. Then B has the spectral decompo-
sition UTBU = D, where U ∈ Rn×n is orthogonal and D = diag{d1, . . . , dn}
is a diagonal matrix with all di > 0. Define the square root of B,

C := U diag{
√
d1, . . . ,

√
dn}UT .

Note that C−1BC−1 = I. Now A := C−1AC−1 has the spectral decomposi-
tion V TAV = Λ = diag{λ1, . . . , λn}. Setting X = C−1V , we see that

XTAX = Λ, XTBX = V TC−1BC−1V = V TV = I,

completing the proof. ut

2.4.1 Counting Roots of Polynomials in Intervals

The number of positive (and negative) eigenvalues can be counted by a simple
rule dating back to Descartes in seventeenth century.

Definition 2.22. Let a0, a1, . . . , an be a sequence of real numbers. If all the
numbers in the sequence are nonzero, the total number of variations of sign in
the sequence, denoted by V (a0, a1, . . . , an), is the number of times consecutive
numbers ak−1 and ak differ in sign, that is,

V (a0, a1, . . . , an) := |{k : ak−1ak < 0, k = 1, . . . , n}|.

If the sequence a0, a1, . . . , an contains zeros, then V (a0, a1, . . . , an) is defined
to be the variations of the reduced sequence by ignoring all zero elements in
the sequence. Also, we define V (a0) = 0 for any a0 ∈ R.

For example, V (1, 0, 0,−3, 2, 0, 1,−7, 3) = V (1,−3, 2, 1,−7, 3) = 4.

Theorem 2.23. (Descartes’s rule of sign) Let p(x) = a0 + a1x+ a2x
2 +

· · ·+anx
n be a polynomial of degree n with real coefficients. Then the number

of positive roots Np(0,∞) of p is given by



2.4 Quadratic Forms 43

Np(0,∞) = V (a0, a1, . . . , an)− 2κ

for some nonnegative integer κ.
Moreover, if the roots of p are all real, then κ = 0, that is,

Np(0,∞) = V (a0, a1, . . . , an).

A simple proof of the theorem is given in Appendix B.

Corollary 2.24. Let An×n be a symmetric matrix and let p(λ) = det(λI −
A) = a0 +a1λ+ · · ·+anλ

n be the characteristic polynomial of A. The number
of positive eigenvalues of A is given by

Np(0,∞) = V (a0, a1, . . . , an),

and the number of negative eigenvalues by

Np(−∞, 0) = V (a0,−a1, a2, . . . , (−1)nan).

Proof. The characteristic polynomial has only real roots, these being the
eigenvalues of A. This proves the first equality. The second equality follows
by considering the polynomial q(λ) = −p(λ) and noting that the k coefficient
of q is (−1)kak. ut

Alternatively, Np(−∞, 0) can be computed by noting that the positive, nega-
tive, and zero eigenvalues (counted according to its multiplicity) of A add up
to n.

2.4.2 Sylvester’s Theorem

There is also a remarkable determinant test due to Sylvester to recognize a
symmetric positive definite matrix. We first need to introduce some concepts.

Let A be an n× n symmetric matrix. The submatrix

Ak :=

a11 . . . a1k

...
...

ak1 . . . akk


consisting of the first k rows and columns of A is called the kth leading prin-
cipal submatrix of A, and its determinant detAk is called the kth leading
principal minor of A.

Theorem 2.25. (Sylvester) Let A be an n × n symmetric matrix. Then A
is positive definite if and only if all the leading principal minors of A are
positive, that is, A is positive definite if and only if detAi > 0, i = 1, . . . , n.
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Proof. We first prove that if A is positive definite, then all leading principal
minors of A are positive. We use induction on n, the dimension of A. The
proof is trivial for n = 1. Assuming that the result is true for n, we will prove
it for n+ 1. Let A be an (n+ 1)× (n+ 1) symmetric, positive definite matrix.
We write

A =
[
B b
bT c

]
,

where B is a symmetric n×n matrix, b ∈ Rn, and c ∈ R. Choosing 0 6= d ∈ Rn,
we have

0 < (dT , 0)A
(
d
0

)
= (dT , 0)

[
B b
bT c

](
d
0

)
= dTBd,

that is, B is positive definite. By the induction hypothesis, we have detAi >
0, i = 1, . . . , n. Since A is positive definite, its eigenvalues {λi}n+1

i=1 are all
positive. Thus, we also have detAn+1 = detA = λ1 · · ·λn+1 > 0.

Conversely, let us prove that if all detAi > 0, i = 1, . . . , n + 1, then A is
positive definite. The proof is again by induction on n. The proof is trivial for
n = 1. Suppose the theorem is true for n; we will prove it for n+ 1.

Since detAi > 0 for i = 1, . . . , n we see by the induction hypothesis that
B is positive definite. Suppose A is not positive definite. Then λn+1 < 0,
and since detA = λ1 · · ·λn+1 > 0, we must also have λn < 0. Let un and
un+1 be the eigenvectors of A corresponding to λn and λn+1, respectively. We
have 〈un, un+1〉 = 0, so that we can choose scalars αn and αn+1 such that
u = αnun + αn+1un+1 is not zero but has the last ((n + 1)th) component
equal to zero, say u = (v, 0)T where v 6= 0. Then uTAu = vTBv > 0, since B
is positive definite. However, we also have

0 < uTAu = 〈αnun + αn+1un+1, A(αnun + αn+1un+1)〉
= 〈αnun + αn+1un+1, λnαnun + λn+1αn+1un+1〉
= λnα

2
n〈un, un〉+ λn+1α

2
n+1〈un+1, un+1〉 < 0,

where the last inequality follows from the facts λi < 0 and ‖ui‖ = 1,
i = n, n + 1. This contradiction shows that all eigenvalues of A are posi-
tive. Corollary 2.20 implies that A is positive definite. ut

This simple proof is taken from Carathéodory [54], p. 187.
Another elegant proof of Sylvester’s theorem, more in the spirit of opti-

mization techniques, is outlined in Exercise 12 at the end of the chapter.

2.5 The Inverse Function, Implicit Function, and
Lyusternik Theorems in Finite Dimensions

In this section, we first give an elementary proof of the implicit function
theorem in finite-dimensional vector spaces. This proof has a variational flavor,
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and is used to prove the inverse function theorem and Lyusternik’s theorem.
The implicit function theorem will also be utilized to prove Morse’s lemma in
Section 2.6.

Theorem 2.26. (Implicit function theorem) Let f : U × V → Rm be a
C1 mapping, where U ⊆ Rn and V ⊆ Rm are open sets. Let (x0, y0) ∈ U × V
be a point such that f(x0, y0) = 0 and Dyf(x0, y0) : Rm → Rm, the derivative
of f with respect to y, is nonsingular.

Then there exist neighborhoods U1 3 x0 and V1 3 y0 and a C1 mapping
y : U1 → V1 such that a point (x, y) ∈ U1×V1 satisfies f(x, y) = 0 if and only
if y = y(x). The derivative of y at x0 is given by

Dy(x0) = −Dyf(x0, y0)−1Dxf(x0, y0).

Moreover, if f is k-times continuously differentiable, that is, f ∈ Ck, then
y(x) ∈ Ck.

The linear case should help one to remember the form of the implicit
function theorem: if f(x, y) = Ax+By and Dyf = B is an invertible matrix,
then the equation f(x, y) = α gives Ax + By = α. This may be solved for y
by premultiplying it by B−1, giving y(x) = B−1(α−Ax).

Proof. Assume without loss of generality that x0 = 0 and y0 = 0, by con-
sidering the function (x, y) 7→ f(x + x0, y + y0) − f(x0, y0) if necessary. Let
f(x) = (f1(x, y), . . . , fm(x, y)), where fi is the ith coordinate function of f .
Since Df is continuous, there exist neighborhoods U0 and V0 of the origin in
Rn and Rm, respectively, such that the matrix

∇yf1(x, y1)T

∇yf2(x, y2)T
...

∇yfm(x, ym)T

 (2.2)

is invertible for all (x, yi) ∈ U0 × V0.
We claim that for every x ∈ U0, there exists at most one y ∈ V0 such

that f(x, y) = 0. Otherwise, there would exist y, z ∈ V0, y 6= z, such that
f(x, y) = f(x, z) = 0. The mean value theorem (Lemma 1.12) implies that
there exists yi ∈ (y, z) such that

fi(x, z)− fi(x, y) = 〈∇yfi(x, yi), z − y〉 = 0, i = 1, . . . ,m.

Since the matrix in (2.2) is nonsingular, we obtain y = z, a contradiction that
proves our claim.

Let Br(0) ⊆ V0. Since f(0, 0) = 0, we have f(0, y) 6= 0 for y ∈ Sr(0) :=
{y ∈ Rl : ‖y‖ = r}, and since f is continuous on U0 × V0, there exists α > 0
such that ‖f(0, y)‖ ≥ α for all y ∈ Sr(0). It follows that the function

The Inverse Function, Implicit Function, and Lyusternik Theorems
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F (x, y) := ‖f(x, y)‖2 =
m∑
i=1

fi(x, y)2

satisfies the properties

F (0, y) ≥ α > 0 for y ∈ Sr(0) and F (0, 0) = 0.

Since F is continuous, there exists an open neighborhood U1 ⊆ U0 of 0 ∈ Rn
such that

F (x, y) ≥ α

2
, F (x, 0) ≤ α

2
for all x ∈ U1, y ∈ Sr(0).

Thus, for a fixed x ∈ U1, the function y 7→ F (x, y) achieves its minimum on
Br(0) at a point y(x) in the interior of Br(0), and we have

DyF (x, y(x)) = 2Dyf(x, y(x))f(x, y(x)) = 0,

and since the matrix Dyf(x, y(x)) is nonsingular, we conclude that

f(x, y(x)) = 0.

Writing ∆y := y(x+∆x)− y(x), we have by the mean value theorem

0 = Dxf(x̃, ỹ)∆x+Dyf(x̃, ỹ)∆y

for some point (x̃, ỹ) on the line segment between (x, y(x)) and (x+∆x, y(x+
∆x)). This implies that as ‖∆x‖ goes to zero, so does ‖∆y‖, proving that
y(x) is a continuous function.

The function y(x) is actually C1, since by Taylor’s formula

0 = f(x+∆x, y(x+∆x))− f(x, y(x))
= Dxf(x, y(x))∆x+Dyf(x, y(x))∆y + o((∆x,∆y)),

and since o((∆x,∆y)) = o(∆x) by the continuity of y(x), we have

∆y = −D−1
y f(x, y(x))Dxf(x, y(x))∆x+ o(∆x).

This proves that y(x) is Fréchet differentiable at x with

Dy(x) = −D−1
y f(x, y(x))Dxf(x, y(x)).

If f ∈ C2, then D−1
y f(x, y(x)) = AdjDyf(x, y(x))/ detDyf(x, y(x)) and

Dxf(x, y(x)) are C1, and the above formula shows that the function y(x) is
C2. In general, if Ck, we prove by induction on k that y(x) is Ck. ut

This elementary proof is taken from Carathéodory [54], pp. 10–13. A sim-
ilar kind of proof, using penalty functions, will used in Chapter 9 to obtain
optimality conditions for constrained optimization problems.
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Corollary 2.27. (Inverse function theorem) Let f be a C1 map from a
neighborhood of x0 ∈ Rn into Rn.

If Df(x0) is nonsingular, then there exist neighborhoods U 3 x0 and V 3
y0 = f(x0) such that f : U → V is a C1 diffeomorphism, and

Df−1(y) = Df(x)−1 for all (x, y) ∈ U × V, y = f(x).

Moreover, if f is Ck, then f is a Ck diffeomorphism on U .

Proof. Define the function F (x, y) = f(x) − y, and note that DxF (x0, y) =
Df(x0) is nonsingular. Apply Theorem 2.26 to F . ut

The map f : R2 → R2 given by f(x, y) = (ex cos y, ex sin y) has the Ja-
cobian detDf(x, y)) = ex 6= 0, hence locally one-to-one around every point
(x, y) ∈ R2. However, f is clearly not one-to-one globally.

Definition 2.28. Let M be a nonempty subset of Rn and x ∈ M . A vector
d ∈ Rn is called a tangent direction of M at x if there exist a sequence xn ∈M
converging to x and a nonnegative sequence αn such that

lim
n→∞

αn(xn − x) = d.

The tangent cone of M at x, denoted by TM (x), is the set of all tangent
directions of M at x.

This definition is sufficient for our purposes. We remark that the same defi-
nition is valid in a topological vector space. A detailed study of this and several
related concepts is needed in nonsmooth analysis; see [230] and [199, 200].

Theorem 2.29. (Lyusternik) Let f : U → Rm be a C1 map, where U ⊂ Rn
is an open set. Let M = f−1(f(x0)) be the level set of a point x0 ∈ U .

If the derivative Df(x0) is a linear map onto Rm, then the tangent cone
of M at x0 is the null space of the linear map Df(x0), that is,

TM (x0) = {d ∈ Rn : Df(x0)d = 0}.

Remark 2.30. Let f = (f1, . . . , fm), where {fi} are the components functions
of f . It is easy to verify that

KerDf(x0) = {d ∈ Rn : 〈∇fi(x0), d〉 = 0, i = 1, . . . ,m},

and that the surjectivity of Df(x0) is equivalent to the linear independence
of the gradient vectors {∇fi(x0)}m1 .

Proof. We may assume that x0 = 0 and f(x0) = 0, by considering the function
x 7→ f(x + x0) − f(x0) if necessary. Define A := Df(0). The proof of the
inclusion TM (0) ⊆ KerA is easy: if d ∈ TM (0), then there exist points x(t) =
td+ o(t) ∈M , and we have

The Inverse Function, Implicit Function, and Lyusternik Theorems
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0 = f(0 + td+ o(t)) = f(0) + tDf(0)(d) + o(t) = tDf(0)(d) + o(t).

Dividing both sides by t and letting t→ 0, we obtain Df(0)(d) = 0.
The proof of the reverse inclusion KerA ⊆ TM (0) is based on the idea that

the equation f(x) = 0 can be written as f(y, z) = 0 in a form that is suitable
for applying the implicit function theorem.

Define K := KerA and L := K⊥. Since A is onto Rm, we can identify
K and L with Rn−m and Rm, respectively, by introducing a suitable basis
in Rn. We write a point x ∈ Rn in the form x = (y, z) ∈ K × L. We have
A = [Dyf(0), Dzf(0)], and

0 = A(K) = {A(d1, 0) : d1 ∈ Rn−m} = Dyf(0)(Rn−m),

so that Dyf(0) = 0. Since A has rank m, it follows that Dzf(0) is nonsingular.
Theorem 2.26 implies that there exist neighborhoods U1 ⊆ Rm and U2 ⊆

Rn−m around the origin and a C1 map α : U1 → U2, α(0) = 0, such that
x = (y, z) ∈ U1 × U2 satisfies f(x) = 0 if and only if z = α(y). The equation
f(x) = 0 can then be written as f(y, α(y)) = 0. Differentiating this equation
and using the chain rule, we obtain

0 = Dyf(y, α(y)) +Dzf(y, α(y))Dα(y).

At the origin x = 0, Dyf(0) = 0, and Dzf(0) nonsingular, so that Dα(0) = 0.
If |y| is small, we have

α(y) = α(0) +Dα(0)y + o(y) = o(y).

Let d = (d1, 0) ∈ K. As t→ 0, the point x(t) := (td1, α(td1)) = (td1, o(t)) lies
in M , that is, f(x(t)) = 0, and satisfies (x(t) − td)/t = (0, o(t))/t → 0. This
implies that K ⊆ TM (0), and the theorem is proved. ut

2.6 Morse’s Lemma

Let f : U → R be a C2+k (k ≥ 0) function on an open set U ⊆ Rn. Recall that
a critical point x ∈ U is called nondegenerate if the Hessian matrix D2f(x) is
nonsingular. Morse’s lemma, due originally to Morse [202], states that after
a local, possibly nonlinear, change of coordinates, the function f is identical
to its quadratic form q(x) := f(x0) + 〈D2f(x0)(x− x0), x− x0〉. Thus, the
quadratic function q(x) determines the behavior of the function f around x0.

Morse’s original proof uses the Gram–Schmidt process. A modern version
of the proof can be found in Milnor [197]. The simple proof below is from [6].
It has the virtue that the same proof, with obvious modifications, works in
Banach spaces.

The following technical result is needed in the proof of Morse’s lemma.
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Lemma 2.31. Let Sn be the space of n × n symmetric matrices, A ∈ Sn

nonsingular, and let SnA be the vector space of n×n matrices X such that AX
is symmetric. The quadratic map

qA : SnA → Sn defined by qA(X) = XTAX

is locally one-to-one around I ∈ SnA. Consequently, there exist open neighbor-
hoods U 3 I and V 3 A such that q−1

A : V → U is a well-defined, infinitely
differentiable map.

Proof. We have

q(I + tH) := qA(I + tH) = (I + tHT )A(I + tH)

= A+ t(HTA+AH) + t2HTAH = A+ 2tAH + t2AH2,

so thatDq(I)(H) = 2AH. The mappingDq(I) is one-to-one, sinceDq(I)(H) =
AH = 0 implies H = 0, due to the fact that A is nonsingular.

The map Dq(I) is also onto, since given Y ∈ Sn, the matrix X := A−1Y/2
is in SnA and satisfies Dq(I)(X) = Y . The rest of the lemma follows from the
inverse function theorem (Corollary 2.27). ut

Theorem 2.32. (Morse’s lemma) Let k ≥ 1 and f : U → R be a C2+k

function on an open set U ⊆ Rn. If x0 ∈ U is a nondegenerate critical point
of f , then there exist open neighborhoods V 3 x0 and W 3 0 in Rn and a Ck

diffeomorphism ϕ : V →W such that

f(x) = f(x0) +
1
2
〈D2f(x0)ϕ(x), ϕ(x)〉.

Proof. We may assume without any loss of generality that U is a convex set,
x0 = 0, and f(0) = 0. Let 0 6= x ∈ U , and define α(t) := f(tx). We have

α(1) = α(0) + α′(0) +
∫ 1

0

(1− t)α′′(t) dt

by Theorem 1.5, and since α′(t) = 〈∇f(tx), x〉, ∇f(0) = 0 and α′′(t) =
〈D2f(tx)x, x〉, we obtain

f(x) =
1
2
〈A(x)x, x〉, where A(x) := 2

∫ 1

0

(1− t)D2f(tx) dt.

Note that A : U → Sn is a Ck map, and A(0) = 2(
∫ 1

0
(1 − t) dt)D2f(0) =

D2f(0). Consequently, the map

H : V0 → Z defined by H = q−1
A(0) ◦A,

where V0 is a neighborhood of 0 ∈ Rn and Z is a neighborhood of I ∈ SnA(0)

as in Lemma 2.31, is also Ck.
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We have A = qA(0) ◦ H, that is, A(x) = qA(0)(H(x)) = H(x)TA(0)H(x)
for x ∈ V0, and

f(x) = 〈A(x)x, x〉 = 〈H(x)TA(0)H(x)x, x〉

= 〈A(0)H(x)x,H(x)x〉 =
1
2
〈A(0)ϕ(x), ϕ(x)〉,

where
ϕ(x) := H(x)x, ϕ : V0 → Rn,

is a Ck map. Since H(0) = I, we have

x+ o(‖x‖) = H(0)x+ o(‖x‖) = (H(0) +DH(0)x+ o(‖x‖))x
= H(x)x = ϕ(x) = ϕ(0) +Dϕ(0)x+ o(‖x‖),

where the third and fifth equalities follow from Taylor’s formula. This proves
that Dϕ(0) = I, and hence is nonsingular. Thus, the inverse function theorem
implies that there exist neighborhoods V,W of 0 ∈ Rn, V ⊆ V0, such that
ϕ : V →W is a Ck diffeomorphism. ut

Corollary 2.33. Let f : U → R be a C2+k function as in Theorem 2.32, and
let x0 ∈ U be a nondegenerate critical point of f such that the Hessian matrix
A = Df(x0) has k (0 ≤ k ≤ n) positive and n− k negative eigenvalues.

Then there exists a local, nonlinear coordinate transformation y = ψ(x)
(ψ : W → V is a Ck diffeomorphism between some neighborhoods W 3 0 and
V 3 x0) such that

f(ψ(y)) = f(x0) + y2
1 + · · ·+ y2

k − y2
k+1 − · · · − y2

n. (2.3)

Proof. Let A := Df(x0) have the spectral decomposition A = UTΛU , where
Λ = diag(λ1, . . . , λk, . . . , λn) with λi > 0 for i ≤ k and λi < 0 for i > k. Let
ϕ : V → W be the Ck mapping in Theorem 2.32, where V and W are open
neighborhoods of x0 and 0, respectively. Define

y = ψ−1(x) :=
1√
2
|Λ|1/2Uϕ(x), x ∈ V,

where |Λ|1/2 is the diagonal matrix with diagonal entries
√
|λi|, i = 1, . . . , n.

Theorem 2.32 and a straightforward computation give the representation (2.3).
ut

The proofs in this section work for functions f that are at least C3. How-
ever, appropriate versions of Morse’s lemma exist for C2 functions; see, for
example, [254]. There also exist higher-order versions of Morse’s lemma for
critical points x0 such that there exists k ≥ 2 such that Dif(x0) = 0 for
i = 1, . . . , k − 1 and Dkf(x0) is nondegenerate in a certain sense; see [51].
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2.7 Semicontinuous Functions

Semicontinuous functions are of independent interest in analysis. They also
play an important role in optimization, since they appear in Ekeland’s varia-
tional principle and in the theory of convex functions.

The concept of semicontinuous functions can be defined on a topological
space. For our purposes, it will be sufficient to consider metric spaces. In this
section, E will denote a metric space with a distance function d.

We start with some notions of limits. In optimization theory, various op-
erations converge to ±∞, thus making it convenient to consider extended real
numbers by adding ∞ and/or −∞ to real numbers.

Definition 2.34. Let {xn} be a sequence of extended real numbers, that is,
xn ∈ R ∪ {±∞}. The limit inferior of {xn} is

lim
n→∞

xn := lim
n→∞

inf{xn, xn+1, . . .} = sup
n

inf
k≥n

xk,

where the second equality follows since {infk≥n xk} is an increasing sequence
in n. Similarly, the limit superior of {xn} is

lim
n→∞

xn := lim
n→∞

sup
k≥n

xk = inf
n

sup
k≥n

xk.

Let f : E → R ∪ {±∞} be an extended real-valued function. The limit
inferior of f as x ∈ E converges to x0 ∈ E is defined by

lim
x→x0

f(x) := lim
δ→0

inf
d(x,x0)<δ

f(x) = sup
δ→0

inf
d(x,x0)<δ

f(x),

and its limit superior by

lim
x→x0

f(x) := lim
δ→0

sup
d(x,x0)<δ

f(x) = inf
δ→0

sup
d(x,x0)<δ

f(x).

Lemma 2.35. Let f : E → R ∪ {±∞}. We have

lim
x→x0

f(x) = inf
{xn}

lim
n→∞

f(xn),

where the infimum on the right-hand side is taken over all sequences xn → x0.
Similarly,

lim
x→x0

f(x) = sup
{xn}

lim
n→∞

f(xn).

Proof. We prove only the first equality, since the second one follows immedi-
ately from it. Define

M := lim
x→x0

f(x), L := inf
{xn}

lim
n→∞

f(xn), Nδ := {x ∈ E : d(x, x0) < δ}.
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First, we consider the case M = −∞. Note that it is enough to show the
existence of a sequence xn → x0 such that f(xn) → −∞. Since M = −∞, it
follows from the definition of limx→x0

f(x) above that inf x ∈ N1/nf(x) = −∞
for all n > 0. Thus, we can find xn ∈ N1/n satisfying f(xn) < −n, proving
the lemma.

Next, consider the case M = ∞. Let {xn} be an arbitrary sequence con-
verging to x0. We claim that f(xn) → ∞, from which the lemma follows
immediately. Since M = ∞, for a given α > 0, there exists δ > 0 such that
α < infNδ f(x). Since xn → x0, there exists N such that xn ∈ Nδ for all
n ≥ N . Thus, f(xn) > α for all n ≥ N , and the claim is proved.

Finally, consider the case −∞ < M < ∞. On the one hand, given ε > 0,
there exists δ > 0 such that infNδ f(x) > M − ε. Thus, f(x) > M − ε
for all x ∈ Nδ. Let {xn} be an arbitrary sequence converging to x0. Since
xn ∈ Nδ for all large enough n, we have lim f(xn) ≥ M − ε, for any ε > 0.
Thus, limn→∞ f(xn) ≥ M for any sequence converging to x0, proving the
inequality L ≥ M . On the other hand, since infx∈Nδ f(x) ↗ M as δ ↘ 0,
we have infx∈N1/n f(x) ↗ M as n → ∞. If we pick xn ∈ N1/n such that
f(xn) ≤ (infx∈N1/n f(x)) + 1/n, then

L ≤ lim
n→∞

f(xn) ≤ lim
n→∞

(
( inf
x∈N1/n

f(x)) + 1/n
)

= lim
n→∞

inf
x∈N1/n

f(x) = M.

This proves the reverse inequality L ≤M . ut
We are now ready to define semicontinuous functions.

Definition 2.36. Let f : E → R ∪ {±∞}. The function f is called lower
semicontinuous at a point x0 ∈ E if

f(x0) ≤ lim
x→x0

f(x).

Equivalently, by virtue of Lemma 2.35, f is lower semicontinuous at x0 if

f(x0) ≤ lim
n→∞

f(xn),

for every sequence xn → x0.
The function f is called upper semicontinuous at x0 if −f is lower semi-

continuous at x0, that is,

f(x0) ≥ lim
x→x0

f(x),

or
f(x0) ≥ lim

n→∞
f(xn),

for every sequence xn → x0.
The function f is called lower semicontinuous or closed on E if it is lower

semicontinuous at every point in E. Similarly, f is called upper semicontinu-
ous on E if it is upper semicontinuous at every point in E.
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Remark 2.37. We always have limx→x0
f(x) ≤ f(x0), since x0 lies in every

neighborhood Nδ, so that f is lower semicontinuous at x0 if and only if

f(x0) = lim
x→x0

f(x).

Similarly, f is upper semicontinuous at x0 if and only if

f(x0) = lim
x→x0

f(x).

Also, note that any function is lower semicontinuous at a point x with f(x) =
−∞, and similarly any function is upper semicontinuous at a point x0 with
f(x) =∞.

It will be seen shortly that the semicontinuity properties of f are tied up
with the closedness of its epigraph.

Definition 2.38. If f : E → R ∪ {±R} is a function, the set

epi(f) := {(x, t) ∈ E × R : f(x) ≤ t}

is called the epigraph of f . Similarly, the set

hypo(f) := {(x, t) ∈ E × R : f(x) ≥ t}

is called the hypograph of f .

Theorem 2.39. Let f : E → R ∪ {±∞}. The following are equivalent:

(a) f is lower semicontinuous (upper semicontinuous) on E,
(b) epi(f) (hypo(f)) is a closed subset of E × R,
(c) The sublevel set {x ∈ E : f(x) ≤ α} ({x ∈ E : f(x) ≥ α}) is closed for

all α ∈ R.

Proof. We prove the theorem only for a lower semicontinuous function, since
the upper semicontinuous case follows immediately.

(a) implies (b): Let (xn, yn) be a sequence in epi(f) converging to a point
(x, y). Since f is lower semicontinuous at x, f(x) ≤ lim f(xn) ≤ lim yn = y,
proving that (x, y) ∈ epi(f).

(b) implies (c): Let xn be a sequence in L := {z : f(z) ≤ α} converging
to a point x ∈ E. We have (xn, α) ∈ epi(f) converging to (x, α) ∈ epi(f),
meaning that x ∈ L. Thus, L is closed.

(c) implies (a): Let f(x) ∈ R. We claim that f is lower semicontinuous
at x. Otherwise, there exists ε > 0 such that supδ>0 infNδ f(x) = f(x) − 2ε.
Thus, for any δ > 0, we have infNδ f(x) ≤ f(x) − 2ε, meaning that we can
find a sequence xn → x such that f(xn) ≤ f(x) − ε. Since the set S = {z :
f(z) ≤ f(x) − ε} is closed and xn ∈ S, we have x ∈ S. This implies that
f(x) ≤ f(x)− ε, a contradiction that proves our claim.
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Since f is automatically lower semicontinuous at a point where f(x) =
−∞, it remains to consider the case f(x) =∞. If f is not lower semicontinuous
at such a point x, we have supδ>0 infNδ f(x) = α ∈ R. Then infNδ f(x) ≤ α
for any δ > 0. Let β ∈ R, β > α. We can find a sequence xn → x such that
f(xn) ≤ β. Since S = {z : f(z) ≤ β} is closed and xn ∈ S, we have x ∈ S,
that is, f(x) ≤ β <∞, a contradiction. ut

Figure 2.1 illustrates the epigraph of a function whose function value jumps
up at the point x, making the function not lower semicontinuous there. If we
had f(x) = limy↗x f(y) instead, the function f would be lower semicontinuous
at x, although it would still be discontinuous at x.

x

epi(f)

Fig. 2.1. Epigraph of a function.

Corollary 2.40. If the functions f, g : E → R∪{+∞} are lower semicontin-
uous, then so is f + g.

Proof. We claim that

{x : f(x) + g(x) > t} = ∪α∈R ({x : f(x) > t− α} ∩ {x : g(x) > α}) .
If f(x)+g(x) = t+2ε > t and g(x) = α+ε > α, then f(x) = t−α+ε > t−α.
This proves that the set on the left-hand side is a subset of the one on the
right-hand side. The reverse inclusion is trivial, and the claim is proved. Hence
the set {x : f(x) + g(x) > t} is open, since it is a union of open sets. ut
Theorem 2.41. Let f : E → R ∪ {∞} be a lower semicontinuous function
defined on a metric space E. If f has a nonempty compact sublevel set,

lα(f) := {x ∈ E : f(x) ≤ α},
then f achieves its global minimum on E.
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Proof. Let {xn} be a minimizing sequence for f , that is,

f(xn)↘ inf{f(x) : x ∈ E} =: inf
E
f.

Clearly, there exists an integer N such that xn ∈ lα(f) for all n ≥ N . Since
lα(f) is compact, {xn}∞N has a convergent subsequence xnk → x∗ ∈ lα(f).
Since f is lower semicontinuous at x∗, we have

f(x∗) ≤ lim f(xn) = inf
E
f(x).

This means that f(x∗) = infE f , that is, f achieves its minimum on E at the
point x∗. ut

We remark that the second proof of Theorem 2.2 can be extended without
any changes to give an alternative proof of this theorem.

The following extension of Theorem 2.2 follows immediately.

Corollary 2.42. A lower semicontinuous function f : K → R on a compact
metric space K achieves its global minimum on K.

Corollary 2.43. Let f : D → R be a lower semicontinuous function defined
on a topological space D.

(a) If D is compact, or
(b) D is a subset of a finite-dimensional normed vector space E and f is

coercive,

then f achieves a global minimum on D.

Proof. In either case, all sublevel sets of f are compact. In (ii), this fol-
lows from the fact that the sublevel sets of f are closed and bounded, hence
compact. ut

We note that Theorem 2.2 follows immediately from part (i) of this
corollary.

2.8 Exercises

1. (a) Show that for all values of a, the function f(x, y) = x3 − 3axy + y3

has no global minimizers or global maximizers.
(b) For each value of a, find all the critical point(s) of f and determine

their nature, that is, determine whether each critical point is a local
minimum, local maximum, or saddle point.

2. Consider the function f(x, y) = ex
2+y2 − x2 − 2y2.

(a) Find the critical points of f .
(b) Find the local (and global) minima and maxima of f as well as its

saddle points.
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3. Find the critical points of the function f(x, y, z) = xyze−x−y−z, and de-
termine their nature.

4. Solve the geometric programming problem

min
t1>0,t2>0

1
t1t2

+ t1 + t2.

5. Consider the function

f(x, y, z) = 2x2 + xy + y2 + yz + z2 − 6x− 7y − 8z + 9.

(a) Using the first-order necessary conditions, find a critical point of f .
(b) Verify that the point found in (a) is a local minimum of f by verifying

the second-order sufficient conditions.
(c) Prove that the point is a global minimum of f .

6. Let f : Rn → R be a Gâteaux differentiable function. If lim‖x‖→∞
f(x)
‖x‖ =

∞, then show that the gradient function ∇f(x) is onto, that is, given
u ∈ Rn, there exists a point x such that ∇f(x) = u.
Hint: Consider functions f(x) − 〈c, x〉 that are bounded from below by
choosing suitable c ∈ Rn.

7. A strong minimizer of a function f is a point x0 satisfying the condition
f(x0) = inf f > −∞ and xn → x0 whenever f(xn)→ inf f .
(a) Show that a strong minimizer is a strict minimizer.
(b) Show that a strict minimizer is not necessarily a strong minimizer.

(Consider the function f(x) = x2ex.)
(c) Show that x0 is a strong minimizer if and only if diam(S(f, ε)) ↘ 0

as ε→ 0, where S(f, ε) = {x : f(x) ≤ inf f + ε}.
8. Consider the following problems.

(a) Let f : R→ R be a function with a continuous derivative. Show that
if f has a local minimizer that is not a global minimizer, then it must
have another critical point.

(b) Contrast this with the function f : R2 → R given by f(x, y) =
e3y−3xey +x3. Show that f has a unique critical point that is a local
minimizer but not a global one. Show that the polynomial g(x, y) =
x2(1 + y3) + y2 also has a unique local minimizer that is not a global
one.

(c) Show that the polynomial g(x, y) = (xy−x− 1)2 + (x2− 1)2 has two
local minimizers.

Parts (b) and (c) seem counterintuitive; plotting their graphs using com-
puter software should be helpful in revealing their unusual properties.

9. Consider the function f(x, y) = x2−αxy2 +2y4. Show that for all param-
eter values except two, the origin (0, 0) is the only critical point of f .
(a) Find the exceptional α’s and show that f has infinitely many critical

points for these α values. Determine the nature of these critical points.
(b) Consider the values of α’s for which the origin is the only critical

point. For each α, determine the nature of the critical point. Show
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that in some cases, the origin is a local minimum, but in other cases,
it is a saddle point.

(c) Show that even when the origin is a saddle point, (0, 0) is a local strict
minimizer of f on every line passing through the origin. In fact, show
that, except for one line, the function g(t) := f(td) satisfies g′(0) = 0
and g′′(0) > 0.

10. Consider the quadratic function f(x) = 1
2 〈Ax, x〉+ 〈c, x〉+ a, where A is

a symmetric n× n matrix. If f is bounded from below on Rn, show that
A is positive semidefinite, and that f achieves its minimum on Rn.
Hint: Diagonalize A.

11. Let f : C → R be a twice Fréchet differentiable function on an open set
in Rn. Suppose that ∆f(x) :=

∑n
i=1

∂2f(x)
∂x2
i

= 0 for all x ∈ C, that is, f
is a harmonic function. If p is a critical point of f , that is, ∇f(p) = 0,
and the Hessian Hf(p) is not identically zero, then p is must be a saddle
point of f .

12. Sylvester’s theorem, Theorem 2.25 on page 43, states that a symmetric
matrix A is positive definite if and only if all the leading principal minors
of A are positive. The purpose of this problem is to give an elegant proof
of this result using optimization techniques.
Let A be an (n+ 1)× (n+ 1) symmetric matrix in the form A =

[
B b
bT c

]
,

where B is a positive definite n× n matrix, b ∈ Rn, and c ∈ R.
(a) Consider the quadratic function

p(x) := (xT , 1)
[
B b
bT c

](
x
1

)
= 〈Bx, x〉+ 2〈b, x〉+ c

on Rn. Show that the point x∗ = −B−1b is the unique global mini-
mizer of p on Rn, and p(x∗) = c−〈B−1b, b〉. Thus, p is positive on Rn
if and only if c− 〈B−1b, b〉 > 0.

(b) Show that detA = detB · (c− 〈B−1b, b〉).
Hint: Find a suitable vector d ∈ Rn such that[

I 0
dT 1

] [
B b
bT c

] [
I d
0 1

]
=
[
B 0
0 c− bTB−1b

]
.

This is related to the notion of Schur complement in linear algebra.
(c) Prove Sylvester’s theorem by induction on the dimension of A using

parts (a) and (b).
13. The purpose of this problem is to demonstrate that the behavior of a

smooth function around a regular point x is determined by its derivative
Df(x) 6= 0. Thus, it is a first-order version of Morse’s lemma.
Let f be Ck in a neighborhood of the origin in Rn, and f(0) = 0. Suppose
that 0 is a regular point, that is, l := ∇f(0) 6= 0. Let x0 ∈ Rn such
l(x0) = 1.
(a) Show that the linear map T : Rn → (Ker l)× R defined by
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T (x) := (x− l(x)x0, l(x))

is one-to-one and onto, thus an isomorphism between Rn and (Ker l)×
R.

(b) Show that the Ck map

ψ(x) := (x− l(x)x0, f(x))

has derivative Dψ(0) = T . Conclude using the inverse function the-
orem that ψ is a Ck diffeomorphism between a neighborhood U of 0
and its image ψ(U).

(c) Define the Ck diffeomorphism

ϕ := T−1 ◦ ψ,

so that ψ = T ◦ ϕ. Show that the equation ψ(x) = T (ϕ(x)) gives the
sought-after formula

f(x) = l(ϕ(x)) for all x ∈ U.

We remark that this result is valid in Banach spaces, since the inverse
function theorem holds in that setting.

14. Let f : U → R be a C2 function on an open set U ⊆ Rn. Show that the
nondegenerate critical points of f are isolated: if x0 ∈ U is a nondegenerate
critical point of f , then there exists an open neighborhood V 3 x0 such
that x0 is the only critical point of f on V .
Hint: The inverse function theorem may be helpful.

15. (Jordan and von Neumann [149]) If f is a quadratic form, that is,
f(x) = 〈Ax, x〉, where A is a symmetric n×n matrix, then f satisfies the
properties
(i) f(x+ y) + f(x− y) = 2f(x) + 2f(y) for all x, y ∈ Rn,
(ii) f is continuous.

The property (i) is called the parallelogram law . These two properties
characterize quadratic forms, even in more general spaces than Rn [149,
104] and [240], pp. 275–276.
For a function f : Rn → R, define

B(x, y) :=
1
4

(f(x+ y)− f(x− y)) .

(Note that if f is a quadratic form, then B(x, y) = 〈Ax, y〉.)
Parts (a)–(c) below prove that if f satisfies only (i), then B is symmetric,
B(x, y) = B(y, x), and additive in each variable, B(x+ y, z) = B(x, z) +
B(y, z).
(a) Show that f(0) = 0, f(−x) = x, and f(2x) = 4f(x). Use these to

show that B is symmetric and B(x, x) = f(x).
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(b) Show that

8B(x, z) + 8B(y, z) = 2f(x+ z) + 2f(y + z)− 2f(x− z)− 2f(y − z)
= f(x+ y + 2z) + f(x− y)− f(x+ y − 2z)
− f(x− y)

= 4B(x+ y, 2z).

Consequently,

B(x, z) +B(y, z) =
1
2
B(x+ y, 2z). (2.4)

(c) Show directly from the definition of B that B(0, z) = B(z, 0) = 0,
and use it and (2.4) to prove that B(x, z) = B(x, 2z)/2. Then show
that this and (2.4) give

B(x+ y, z) = B(x, z) +B(y, z),

that is, the function B(x, y) is additive in the first variable, and sim-
ilarly in the second variable.

Now, use property (ii) to prove that
(d) B is homogeneous in each variable, that is,

B(tx, y) = tB(x, y), B(x, ty) = tB(x, y),

for all x, y ∈ Rn, and for all t ∈ R.
Hint: Use (c) to show that B(nx, y) = nB(x, y) for all integers n.
Next, if t = m/n is a rational number, define z := tx = mx/n. Then
nz = mx, and nB(z, y) = mB(x, y) or B(tx, y) = tB(x, y). Finally,
use continuity of f to show that B(tx, y) = tB(x, y) for all t ∈ R.

(e) For each fixed y, the function x 7→ B(x, y) is linear. Show that there
exists l(y) ∈ Rn such that B(x, y) = 〈x, l(y)〉. Show that l is a linear
function of y, and that l(y) = Ay for some n×n matrix A. Show that,
without losing any generality, A may be assumed to be a symmetric
matrix.

(f) Prove that a norm ‖ · ‖ is Euclidean, that is, it comes from an inner
product, if and only if the function f(x) = ‖x‖2 satisfies the paral-
lelogram law. This is the motivation of the paper of Jordan and von
Neumann [149].

16. Let f : U → Rm be a C1 mapping on an open set U ⊆ Rn. Suppose
that at a point x0 ∈ U , Df(x0) : Rn → Rm is one-to-one, so that it is
an isomorphism between Rn and L := Df(x0)(Rn). Assume without loss
of generality that x0 = 0 and f(0) = 0. The purpose of this problem is
to prove that f(U) is C1 diffeomorphic to a neighborhood of the origin
in L, that is, there exists a local C1 diffeomorphism of Rm around the
origin such that g ◦ f is a C1 diffeomorphism between a neighborhood of
0 ∈ Rn and a neighborhood of the origin in L. (Thus, g “straightens out”
the image of f around 0.)
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(a) Let M be a subspace of Rm complementary to L, that is, Rm = L+M
and L ∩M = {0}. Show that the linear map T : Rm → L×M , given
by T (u) = Df(0)−1v+w, where u = v+w, v ∈ L, w ∈M , is a linear
isomorphism, and that the C1 map f := T ◦ f : U → L×M satisfies
Df(0)(h) = (h, 0). Conclude that it is enough to prove our claim for f ,
or equivalently, to assume that f : Rn → Rn × Rk = Rn+k, f(0) = 0,
and Df(0)(h) = (h, 0).

(b) Consider the map ϕ : Rn × Rk → Rn × Rk given by ϕ(x, y) =
f(x) + (0, y). Show that Dϕ(0, 0) is the identity mapping on Rn+k, so
that ϕ must be a local diffeomorphism between two neighborhoods of
the origin in Rn+k. Call its inverse g.

(c) Show that

(g ◦ f)(x) = g(f(x)) = g(ϕ(x, 0)) = (x, 0).

Show that this implies that g satisfies the required properties.



3

Variational Principles

Consider a C1 function f : Rn → R. If f has a (global) minimizer x, then we
know that ∇f(x) = 0. Suppose, however, that f is bounded below, but does
not have a minimizer. Is it possible to find a minimizing sequence {xn} satisfy-
ing f(xn)→ inf f that also satisfies ∇f(xn)→ 0? If this is true, then it should
be possible to obtain new optimality conditions even when minimizers do not
exist. A celebrated result of Ekeland [86] known as Ekeland’s ε-variational
principle ensures that the answer to the above question is yes. Moreover, this
principle is valid in a much more general context and has turned out to be one
of the most important of the recent contributions to analysis. In this chapter,
we give a fairly detailed exposition of this important principle and some of
its applications. These include a short proof of Banach’s fixed point theorem,
a characterization of the consistency of a system of linear inequalities, and
the proofs of some of the most basic theorems of analysis (the open map-
ping theorem, Graves’s theorem, Lyusternik’s theorem, the inverse function
theorem, and the implicit function theorem). Another significant application
to the derivation of the Fritz John conditions in nonlinear programming is
postponed to Section 9.3.

We will also consider lower semicontinuous functions f : M → R ∪ {+∞}
on a metric space M . The function is allowed to take on the value +∞. This is
a convenient device when a real-valued function f is defined on only a proper
subset D of M . We then extend f by declaring f(x) =∞ for x /∈ D. Of course,
the function f that is identically equal to +∞ on all of M is not interesting,
and is called an improper function. In the contrary case, that is, when f(x) is
finite for at least one point x in M , we call f a proper function.

3.1 Ekeland’s ε-Variational Principle

Let (M,d) be a metric space, and let f : M → R be any function. Define a
relation y � x on M by the condition

DOI 10.1007/978-0-387-68407-9_3,  © Springer Science +Business Media, LLC 2010 
61O. Gü  ler, Foundations of Optimization, Graduate Texts in Mathematics 258,  



62 3 Variational Principles

y � x ⇐⇒ f(y) + d(x, y) ≤ f(x).

This is a partial ordering on M , that is, for all x, y, z in M , we have

(i) x � x,
(ii) x � y and y � x implies x = y,

(iii) x � y and y � z implies x � z.

Now, property (i) is trivially true, (ii) is equivalent to the property of the
distance function that d(x, y) = 0 implies x = y, and (iii) follows from the
triangle inequality d(x, z) ≤ d(x, y) + d(y, z). We call a minimal point in the
partial order � a d-point. Thus, a point x ∈ M is a d-point if y � x implies
y = x, or equivalently,

f(x) < f(y) + d(x, y) for all y ∈M, y 6= x.

Define the set

S(x) := {y ∈M : y � x} = {y ∈M : f(y) + d(x, y) ≤ f(x)}.

We have x ∈ S(x), so that S(x) 6= ∅. Since � is a partial order, it follows that
y � x if and only if S(y) ⊆ S(x). We note that if f is a lower semicontinuous
function, then S(x) is a closed subset of M . Also, a d-point x is characterized
by the condition that S(x) is a singleton, that is, S(x) = {x}.

Ekeland’s ε-variational principle is an easy corollary of the following im-
portant theorem.

Theorem 3.1. Let (M,d) be a metric space. The following conditions are
equivalent:

(a) (M,d) is a complete metric space,
(b) For any proper lower semicontinuous function f : M → R∪{∞} bounded

below, and any point x0 ∈M , there exists a d-point x satisfying x � x0.

Proof. (a) =⇒ (b): We may assume that f(x0) ∈ R, since otherwise we can
replace x0 with any z ∈M such that f(z) <∞. Generate a sequence {xn}∞0
recursively such that given xn, choose xn+1 to be any point in S(xn). We claim
that {xn} is a Cauchy sequence. If n > m, then xn � xn−1 � · · · � xm, so
that xn � xm and f(xn) + d(xn, xm) ≤ f(xm). Thus, {f(xn)} is a decreasing
sequence of real numbers bounded from below, say f(xn)↘ α for some α ∈ R.
Since d(xn, xm) ≤ f(xm) − f(xn) → 0 as m,n → ∞, the claim is proved.
Since M is a complete metric space, xn converges to a point x ∈ M . Since
xn ∈ S(xn) for all k ≥ n and S(xn) is closed, we see that x ∈ S(xn). Thus,
x � xn � xn−1 for all n ≥ 1, or equivalently x ∈ ∩∞n=1S(xn). Consequently,
S(x) ⊆ ∩∞n=1S(xn), but this is not strong enough to conclude that S(x) is a
singleton. For that, we need to pick xn+1 ∈ S(xn) more carefully.

Choose xn+1 ∈ S(xn) such that
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f(xn+1) ≤ inf
S(xn)

f +
1
n
.

Now, if z ∈ S(x), we have z � x � xn−1 � xn, and

f(z) + d(z, xn) ≤ f(xn) ≤ inf
S(xn−1)

f +
1
n
≤ f(z) +

1
n
,

so that
d(z, xn) ≤ 1

n
→ 0 as n→∞.

This gives xn → z = x, proving that S(x) = {x}, that is, x is a d-point.
(b) =⇒ (a): Let {xn}∞1 be a Cauchy sequence in M . Consider the

function
f(x) := 2 lim

n→∞
d(x, xn).

n)}∞1 m)−
d(x, xn)| ≤ d(xm, xn)→ 0 as m,n→∞, hence converges, so that the function
f(x) is well-defined. The function f is continuous, since |d(x, xn)−d(y, xn)| ≤
d(x, y) implies that |f(x)− f(y)| ≤ d(x, y).

Note that f(xn)→ 0. Let x ∈M be a d-point of f . Then

f(x) ≤ f(xn) + d(x, xn) for all n ≥ 1.

Letting n→∞ gives f(x) ≤ f(x)/2, that is, f(x) = 0. This implies d(x, xn)→
0 or xn → x, proving that (M,d) is a complete metric space. ut

The proof of (a) implies (b) is due to Ekeland [86]. See also Ekeland [87]
for the origins of the improved proof above. The proof of (b) implies (a) is
given in Weston [265] and in Sullivan [249].

Theorem 3.2. (Ekeland’s ε-variational principle) Let (M,d) be a com-
plete metric space, and let f : M → R ∪ {+∞} be a proper lower semicontin-
uous function that is bounded from below.

Then for every ε > 0, λ > 0, and x ∈M such that

f(x) ≤ inf
M
f + ε,

there exists an element xε ∈M satisfying the following three properties:

f(xε) ≤ f(x),
d(xε, x) ≤ λ,
f(xε) < f(z) +

ε

λ
d(z, xε) for all z ∈M, z 6= xε.

(3.1)

Ekeland’s ε-variational principle is illustrated in Figure 3.1. At a d-point
(such as xε), the cone lies completely below the graph of f , since f(xε) −
ε
λd(z, xε) < f(z) for all z 6= xε.

Here the numerical sequence {d(x,x is a Cauchy sequence, since |d(x,x
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x xε

λ

ε

Fig. 3.1. Ekeland’s ε-variational principle.

Proof. It suffices to prove the theorem for λ = 1 and ε = 1; the general
case follows by replacing the distance function d by the equivalent distance
function d/λ and the function f by the function f/ε.

It follows from Theorem 3.1 that there exists a d-point x � x. We claim
that the point x satisfies the properties in (3.1). The third condition states
that x is a d-point, while the first two conditions follow from the inequalities

f(x) + d(x, x) ≤ f(x) ≤ inf
M
f + 1 ≤ f(x) + 1,

where first inequality is a consequence of x � x. ut

There is a shorter proof of Ekeland’s ε-variational principle due to Hiriart-
Urruty [133] in finite dimensions, that is, when M = Rn equipped with the
distance function d(x, y) = ‖x − y‖ given by any norm, say the Euclidean
norm. The proof in [133] gives a slightly weaker statement than the third
inequality in (3.1). The proof below is from [41].

Proof. We assume that λ = 1 without loss of generality. Define the function

g(z) := f(z) + ε‖z − x‖.

The function g(z) is clearly lower semicontinuous, and is coercive, that is,
lim‖z‖→∞ f(z) = ∞. Thus, the set K of minimizers of g is a compact subset
of Rn. Let xε ∈ K be a point that minimizes f on K.



3.1 Ekeland’s ε-Variational Principle 65

We have g(xε) ≤ g(z), that is,

f(xε) + ε‖xε − x‖ ≤ f(z) + ε‖z − x‖ for all z ∈ Rn.

Putting z = x in the above inequality gives

f(xε) + ε‖xε − x‖ ≤ f(x) ≤ inf
Rn
f + ε ≤ f(xε) + ε.

These immediately yield the first and second conditions in (3.1).
To prove the third inequality in (3.1), we note that for points in z ∈ K,

z 6= xε,
f(xε) ≤ f(z) < f(z) + ε‖z − xε‖,

while if z /∈ K, then

f(xε) + ε‖xε − x‖ < f(z) + ε‖z − x‖ ≤ f(z) + ε(‖z − xε‖+ ‖xε − x‖),

again yielding the inequality f(xε) < f(z) + ε‖z − xε‖. ut

Taking λ =
√
ε in Theorem 3.2, we immediately obtain the following

corollary.

Corollary 3.3. Let the function f and the point x satisfy the conditions in
Theorem 3.2. Then there exists a point xε satisfying the following conditions:

f(xε) ≤ f(x),

d(xε, x) ≤ √ε,
f(z) > f(xε)−

√
εd(z, xε) for all z ∈M, z 6= xε.

Ekeland’s ε-variational principle has turned out to be one of the most im-
portant and versatile of the recent tools in analysis. We will discuss several
of its applications below, but these barely scratch the surface on its possible
uses. The interested reader may consult Ekeland [87, 88] for a fairly com-
prehensive review of results on this topic up to about 1990, and the growing
mathematical literature for its more recent applications.

Definition 3.4. Let X,Y be Banach spaces, and f : U → Y a map on an
open subset U ⊆ X. The map f is called Gâteaux differentiable at x ∈ U if

lim
t→0

f(x+ td)− f(x)
t

= Ad for all d ∈ X,

where A : X → Y is a continuous linear map. If f is Gâteaux differentiable
at every point x ∈ U , we say f is Gâteaux differentiable on U . The map A,
denoted by Df(x), is called the Gâteaux derivative of f .

The map f is called Fréchet differentiable at x ∈ U if there exists a con-
tinuous linear map B : X → Y such that
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lim
‖h‖→0

‖f(x+ h)− f(x)−Bh‖
‖h‖ = 0. (3.2)

The map B, denoted by Df(x), is called the Fréchet derivative of f . If f is
Fréchet differentiable at every point x ∈ U , we say f is Fréchet differentiable
on U . Then we have Df : U → L(X,Y ), where L(X,Y ) is the Banach space
of continuous linear maps from X into Y endowed with the operator norm
‖L‖ := sup‖x‖=1 ‖Lx‖.

If Df is continuous on U , then we say f is continuously differentiable on U
and write f ∈ C1. If Df ∈ C1, then we call f twice continuously differentiable
and write f ∈ C2. A kth-order continuously differentiable map f , f ∈ Ck, is
defined similarly by induction.

It is easy to show that if f Fréchet differentiable at x ∈ U , then it is
Gâteaux differentiable at x and the two derivatives of f agree.

Corollary 3.5. Let f : X → R be a function on a Banach space X that is
Gâteaux differentiable, lower semicontinuous, and bounded from below. Let
ε > 0, and let x ∈ X be a point such that

f(x) ≤ inf
X
f + ε.

Then there exists a point xε ∈ X such that

f(xε) ≤ f(x),
‖x− xε‖ ≤ 1,
‖∇f(xε)‖ ≤ ε.

Consequently, there exists a minimizing sequence {xn} in X satisfying the
conditions

f(xn)→ inf
X
f and ∇f(xn)→ 0.

Proof. Theorem 3.2 gives a point xε satisfying the first two conditions above.
To prove the third condition, note that for an arbitrary direction d ∈ X,
‖d‖ = 1, we have

t〈∇f(xε), d〉+ o(t) = f(xε + td)− f(xε) ≥ −tε

as t → 0, where the equality follows since f is Gâteaux differentiable and
the inequality follows from the third inequality in Theorem 3.2. This gives
〈∇f(xε), d〉 ≥ −ε, or equivalently 〈∇f(xε), d〉 ≤ ε for all d ∈ X, ‖d‖ = 1.
Therefore, ‖∇f(xε)‖ ≤ ε.

Let yn be a point in X satisfying f(yn) ≤ infX f + 1/n. We have already
shown that there exists a point xn satisfying the conditions f(xn) ≤ f(yn) ≤
infX f+1/n and ‖∇f(xn)‖ ≤ 1/n. The sequence {xn}∞1 satisfies the required
properties. ut
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It is also possible to investigate the asymptotic properties of functions
using Ekeland’s ε-variational principle.

Theorem 3.6. Let f : X → R be a function on a Banach space X that is
Gâteaux differentiable, lower semicontinuous, bounded from below, but that is
not coercive. Define

α := lim
‖x‖→∞

f(x) = sup
n≥1

inf
‖x‖≥n

f(x).

Then there exists a sequence {xn} in X satisfying the conditions

‖xn‖ → ∞, f(xn)→ α, and ∇f(xn)→ 0.

Proof. Let (Mn, d) be the complete metric space such that Mn := {x ∈ X :
‖x‖ ≥ n} and the distance function d is given by the norm on X. Let ‖yn‖ ≥
n+ 2 be a point satisfying

f(yn) ≤ inf
Mn+2

f +
1
n

= inf
Mn

f + δn +
1
n
,

where δn := infMn+2 f − infMn
f . We have δn ↘ 0, since infMn

f ↗ α. Apply-
ing Theorem 3.2 to the function f on Mn with ε = εn := δn + 1/n and λ = 1,
we obtain a point xn ∈Mn satisfying the conditions

f(xn) ≤ f(yn),
‖xn − yn‖ ≤ 1,

f(xn) < f(x) + εn‖x− xn‖ for all x ∈Mn, x 6= xn.

It follows that ‖xn‖ ≥ ‖yn‖ − ‖xn − yn‖ ≥ n+ 1, so that xn is in the interior
of the region {x ∈ X : ‖x‖ ≥ n}. Let h ∈ X, ‖h‖ = 1 be a unit direction
vector. We have

t〈−∇f(xn), h〉+ o(t) = f(xn)− f(xn + th) ≤ tεn

as t → 0. Dividing the end terms above by t, letting t ↘ 0, and then maxi-
mizing over all unit directions h, we obtain ‖∇f(xn)‖ ≤ εn → 0 as n → ∞.
Since

f(xn) ≤ f(yn) ≤ inf
Mn+2

f +
1
n
≤ α+

1
n
,

the sequence {xn} satisfies all the required properties. ut

See Brézis and Nirenberg [49] for the original proof, and related interesting
results.

The well-known Banach fixed point theorem also follows easily from Eke-
land’s ε-variational principle.
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Definition 3.7. Let ϕ : M → M be a mapping on a metric space (M,d). A
point x ∈M is called a fixed point of ϕ if ϕ(x) = x.

The mapping ϕ is called a contractive mapping if there exist a constant
0 ≤ α < 1 such that

d(ϕ(x), ϕ(y)) ≤ αd(x, y) for all x, y ∈M.

Theorem 3.8. (Banach fixed point theorem) A contractive mapping ϕ :
M →M on a complete metric space (M,d) has a unique fixed point.

Proof. Define the function f(x) := d(x, ϕ(x)), and choose ε ∈ (0, 1 − α).
Theorem 3.2 implies that there exists a point x̄ ∈M such that

f(x̄) ≤ f(x) + εd(x, x̄) for all x ∈M.

We claim that ϕ(x̄) = x̄. Otherwise, choosing x = ϕ(x̄) above, we have

d(ϕ(x̄), x̄) ≤ d(ϕ(x̄), ϕ2(x̄)) + εd(ϕ(x̄), x̄) ≤ (α+ ε)d(ϕ(x̄), x̄).

This gives the contradiction 1 ≤ α+ ε < 1. The uniqueness of the fixed point
follows from the usual argument: if x1 and x2 are two distinct fixed points,
then we get a contradiction,

d(x1, x2) = d(ϕ(x1), ϕ(x2)) ≤ αd(x1, x2) < d(x1, x2).

ut

3.2 Borwein–Preiss Variational Principle

The perturbation in Ekeland’s ε-variational principle is nonsmooth. There are
smooth versions of variational principles pioneered by Borwein and Preiss [42].
We state a generalization of their results due to Li and Shi [189].

Definition 3.9. Let (M,d) be a metric space. We call a function ρ : M×M →
[0,∞] a gauge-type function if it is continuous, ρ(x, x) = 0 for all x ∈ M ,
and given ε > 0, there exists a δ > 0 such that for all y, z ∈ M , we have
ρ(y, z) ≤ δ implies d(y, z) < ε.

Theorem 3.10. (Borwein–Preiss Variational Principle) Let (M,d) be
a complete metric space and let f : M → R ∪ {+∞} be a proper lower semi-
continuous function, bounded from below. Let ρ be a gauge-type function and
{δk}∞k=0 a sequence of positive numbers.

If ε > 0 and x ∈M satisfies

f(x) ≤ inf
M
f + ε,

then there exist an element xε ∈M and a sequence {xn} ⊂M such that
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ρ(x, xε) ≤
ε

δ0
, ρ(xn, xε) ≤

ε

2kδ0
,

f(xε) +
∞∑
k=0

δkρ(xε, xn) ≤ f(x),

f(z) +
∞∑
k=0

δkρ(z, xn) > f(xε) +
∞∑
k=0

δkρ(xε, xn) for all z ∈M, z 6= xε.

The proof of this theorem resembles that of Theorem 3.2, which the inter-
ested reader can find in the book [43]. We will instead give a version of this
theorem in finite-dimensional Euclidean spaces that is much simpler to prove,
but which is sufficient for our purposes.

Theorem 3.11. (Smooth variational principle in finite-dimensional
spaces) Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous function,
bounded from below. Let λ and p ≥ 1.

If ε > 0 and x ∈ Rn satisfies

f(x) ≤ inf
Rn
f + ε,

then there exists an xε ∈ Rn such that

‖x− xε‖ ≤ λ,
f(xε) +

ε

λp
‖xε − x‖p ≤ f(z) +

ε

λp
‖z − x‖p for all z ∈ Rn.

Proof. Note that the function g(z) := f(z) + ε
λp ‖z − x‖p is coercive, and so

has a minimizer xε ∈ Rn. This proves the second assertion of the theorem. If
we set z = x in this inequality, we obtain

f(xε) +
ε

λp
‖x− xε‖p ≤ f(x) ≤ inf

Rn
f + ε ≤ f(xε) + ε.

This gives ‖x− xε‖ ≤ λ. ut

Corollary 3.12. If a C2 function f : Rk → R is bounded from below, then
there exists a sequence {xn}∞1 in Rk satisfying the properties

f(xn)→ inf
Rk
f,

∇f(xn)→ 0,

lim
n→∞

〈D2f(xn)d, d〉 ≥ 0 for each d ∈ Rk.

Proof. Let p = 2 and λ = 1 in Theorem 3.11. Let x, ε > 0, and xε > 0 be as
in that theorem. Note that for d ∈ Rk, the point xε satisfies ‖xε−x‖ ≤ 1 and
the conditions
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f(xε) ≤ inf
Rk
f + ε,

∇g(xε) := ∇f(xε) + 2ε(xε − x) = 0,

f(xε + td)− f(xε) ≥ ε
(
‖xε − x‖2 − ‖(xε − x) + td‖2

)
.

From the last inequality above, we obtain for ‖d‖ = 1,

−2ε =
ε
(
2‖xε − x‖2 − ‖(xε − x) + td‖2 − ‖(xε − x)− td‖2

)
t2

≤ f(xε + td) + f(xε − td)− 2f(xε)
t2

.

It is easily verified, using Taylor’s formula, that the last term above tends to
〈D2f(xε)d, d〉 as t→ 0.

Altogether, xε has the properties

f(xε) ≤ inf
Rk
f + ε,

‖∇f(xε)‖ ≤ 2ε‖xε − x‖ ≤ 2ε,

〈D2f(xε)d, d〉 ≥ −2ε for each d ∈ Rk, ‖d‖ = 1,

where we used the fact ‖x− xε‖ ≤ 1 in the middle inequality.
The sequence {xn}, where xn is xε corresponding to ε = 1/n, satisfies the

required properties. ut

It is also possible to improve Theorem 3.6 for twice differentiable functions.

Corollary 3.13. If a C2 function f : Rk → R is bounded from below and is
not coercive, then there exists a sequence {xn}∞1 in Rn, ‖xn‖ → ∞, such that

f(xn)→ lim
‖x‖→∞

f(x),

∇f(xn)→ 0,

lim
n→∞

〈D2f(xn)d, d〉 ≥ 0 for all d ∈ Rk.

Proof. Define
α := lim

‖x‖→∞
f(x) = sup

n≥1
inf
‖x‖≥n

f(x).

Let (Mn, d) be the complete metric space Mn := {x ∈ X : ‖x‖ ≥ n} with the
distance function d given by the Euclidean norm on Rk. Let ‖yn‖ ≥ n+ 2 be
a point satisfying

f(yn) ≤ inf
Mn+2

f +
1
n

= inf
Mn

f + δn +
1
n
,

where δn := infMn+2 f − infMn f . We have δn ↘ 0, since infMn f ↗ α. Apply-
ing Theorem 3.11 to the function f in Mn, with the point yn, the parameters
ε = εn := δn + 1/n, λ = 1, and p = 2, we obtain a point xn such that
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f(xn) ≤ f(yn) ≤ α+
1
n
,

‖xn − yn‖ ≤ 1,

f(xn) + εn‖xn − yn‖2 ≤ f(x) + εn‖x− yn‖2 for all ‖x‖ ≥ n.

(3.3)

The middle inequality in (3.3) gives

‖xn‖ ≥ ‖yn‖ − ‖xn − yn‖ ≥ ‖yn‖ − 1 ≥ n+ 1,

while the last inequality in (3.3) gives ∇f(xn) + 2εn(xn − yn) = 0, implying

‖∇f(xn)‖ = 2εn‖xn − yn‖ ≤ 2εn.

Also, the last inequality in (3.3), applied to the points x = xn ± td for fixed
but arbitrary d ∈ Rk, ‖d‖ = 1, and sufficiently small t > 0, gives

f(xn) + εn‖xn − yn‖2 ≤ f(xn ± td) + εn‖xn − yn ± td‖2.

Upon summing and simplifying these two inequalities, we arrive at,

−2εn =
εn(2‖xn − yn‖2 − ‖(xn − yn) + td‖2 − ‖(xn − yn)− td‖2)

t2

≤ f(xn + td) + f(xn − td)− 2f(xn)
t2

t→0−−−→ 〈D2f(xn)d, d〉.

In summary, the point xn has the properties ‖xn‖ ≥ n + 1, f(xn) ≤ α + 1
n ,

‖∇f(xn)‖ ≤ εn, and 〈D2f(xn)d, d〉 ≥ −2εn for each d ∈ Rk, ‖d‖ = 1. Since
εn → 0, the sequence {xn} satisfies the required properties. ut

3.3 Consistency of Linear Equalities and Inequalities

Systems of finitely many linear equations and inequalities (finite linear sys-
tems) play prominent roles in many parts of optimization, with linear pro-
gramming, and the theory of convex polyhedra being the primary examples.
They also have a role to play in the derivation of optimality conditions for
general mathematical programming problems. Because of their importance,
and because it gives an instructor flexibility in covering them, we treat the
solvability of finite linear systems from several independent points of view.

The oldest method for treating finite linear systems is the Fourier–Motzkin
elimination method , which goes back to Fourier in the nineteenth century
and Motzkin in the 1930s; see Stoer and Witzgall [247]. A special case of
this method is given in Chapter 7. This approach has the merit that it is
completely elementary, and moreover, the field over which the vector space
is defined is more general, so that one can characterize solvability of linear
systems over, say, the field of rational numbers using this approach.
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Another method for treating finite linear systems in vector spaces over
more general fields combinatorial. This goes back to Carver [55] in the 1920s,
and is treated in Appendix A. This appendix does not have any prerequisites
and can be read at any time.

The traditional approach to characterizing the solvability of linear equa-
tions and inequalities is to obtain them as consequences of separation theorems
for convex sets. We treat this method in detail in Chapter 7.

Finally, it is possible to approach finite linear systems via variational prin-
ciples; this is described below.

Gordan’s lemma is the equivalence of parts (b) and (c) in the following
theorem.

Theorem 3.14. Define the function

f(x) = ln
m∑
i=1

e〈ai,x〉,

where {ai}m1 are vectors in Rn. The following statements are equivalent:

(a) f(x) is bounded from below,

(b) there exists λ ∈ Rm, λ ≥ 0, λ 6= 0,
m∑
i=1

λiai = 0,

(c) there exists no x satisfying 〈ai, x〉 < 0, i = 1, . . . ,m.

Proof. The proofs of (b)⇒ (c) and (c)⇒ (a) are trivial.
To prove (a)⇒ (b), note that Corollary 3.5 gives a sequence {xn} satisfying

∇f(xn) =
∑
i=1

λ
(k)
i ai → 0,

where λ(k)
i = e〈ai,xn〉∑m

j=1 e
〈ai,xn〉

. Since 0 ≤ λ
(k)
i ≤ 1, it has a convergent subse-

quence, and we may without loss of generality assume that λ(k) → λ, λ ≥ 0,
and λ 6= 0. This gives

∑m
i=1 λiai = 0 and proves Gordan’s lemma. ut

The idea of using variational principles to prove Gordan’s lemma appears
to be due to Hiriart-Urruty; see [41].

Theorem 3.15. (Motzkin’s transposition theorem, homogeneous ver-
sion) Let {ai}l1, {bj}m1 , and {ck}p1 be vectors in Rn. Then the linear system

〈ai, x〉 < 0, i = 1, . . . , l,
〈bj , x〉 ≤ 0, j = 1, . . . ,m,
〈ck, x〉 = 0, k = 1, . . . , p,

(3.4)

is inconsistent if and only if there exist vectors (multipliers)
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λ := (λ1, . . . , λl) ≥ 0, λ 6= 0,
µ := (µ1, . . . , µm) ≥ 0,
δ := (δ1, . . . , δp),

(3.5)

such that
l∑
1

λiai +
m∑
1

µjbj +
p∑
1

δkck = 0. (3.6)

Proof. We may assume, without any loss of generality, that p = 0, that is,
linear equalities are not present in (3.4), since each equality 〈ck, x〉 = 0 may be
replaced by two inequalities 〈ck, x〉 ≤ 0 and 〈−ck, x〉 ≤ 0, and the multipliers
for these inequalities can be then combined in (3.6).

It is easy to see that if (3.6) holds with the multipliers satisfying (3.5),
then (3.4) must be inconsistent, since if a vector x satisfies it, then we obtain
the contradiction

0 =
〈 l∑

1

λiai +
m∑
1

µjbj +
p∑
1

δkck, x
〉

=
l∑
1

λi〈ai, x〉+
m∑
1

µj〈bj , x〉+
p∑
1

δk〈ck, x〉 < 0,

where the last inequality follows since at least one λi is positive.
Conversely, assume that (3.4) is inconsistent. We use induction on m to

establish the claim that there exist multipliers satisfying (3.5) such that (3.6)
holds. If m = 0, then the claim follows directly from Theorem 3.14.

Assuming that it is true for m − 1, we now prove the claim for m. Call
the inequality system (3.4) Im, and the system obtained from it by remov-
ing the last inequality 〈bm, x〉 ≤ 0, Im−1. Thus, Im is inconsistent. We may
assume that Im−1 is consistent, since otherwise we obtain, using the induc-
tion hypothesis, nonnegative multipliers λ ∈ Rl, µ ∈ Rm−1, λ 6= 0 such that∑l

1 λiai +
∑m−1

1 µjbj = 0. Then (3.6) holds with µm = 0, and the claim is
proved.

Thus assume that Im−1 is consistent. Adding to this system the equality
〈bm, x〉 = 0 renders it inconsistent. Defining

L := {bm}⊥ = {x : 〈bm, x〉 = 0},

we can write this inconsistent system in the form

〈ΠLai, x〉 < 0, i = 1, . . . , l, 〈ΠLbj , x〉 ≤ 0, j = 1, . . . ,m− 1 (x ∈ L),

whereΠL denotes the orthogonal projection operator onto L. By the induction
hypothesis, there exist nonnegative multipliers λ ∈ Rl, µ ∈ Rm−1, λ 6= 0 such
that

∑l
1 λiΠLai+

∑m−1
1 µjΠLbj = 0. Hence the vector

∑l
1 λiai+

∑m−1
1 µjbj

lies in L⊥ = span{bm}, and there exists µm ∈ R such that
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l∑
1

λiai +
m∑
1

µjbj = 0.

It remains to show that µm ≥ 0. Let x satisfy Im−1, so that 〈ai, x〉 < 0 for
i = 1, . . . , l, and 〈bj , x〉 ≤ 0 for j = 1, . . . ,m− 1. Since Im is inconsistent, we
also have 〈bm, x〉 > 0, and the above equality gives

0 =
l∑
1

λi〈ai, x〉+
m∑
1

µj〈bj , x〉 < µm〈bm, x〉,

yielding µm > 0. Here the inequality follows since at least one λi is positive.
ut

Corollary 3.16. (Farkas’s lemma, homogeneous version) Let {ai}m1
and c be vectors in Rn. The following statements are equivalent:

(a) if x satisfies 〈ai, x〉 ≤ 0, i = 1, . . . ,m, then it also satisfies 〈c, x〉 ≤ 0,

(b) there exists λ ≥ 0 such that c =
∑m

i=1
λiai.

Proof. The corollary follows immediately from Theorem 3.15 by noting that
the validity of (a) is equivalent to the inconsistency of the linear inequality
system

〈−c, x〉 < 0, 〈ai, x〉 ≤ 0, i = 1, . . . ,m.

ut
The next theorem characterizes the solvability of the most general system

of finitely many linear equations and inequalities, and thus must be considered
one of the central result in this area.

Theorem 3.17. (Motzkin’s transposition theorem, affine version)
Let {ai}l1, {bj}m1 , {ck}p1 be vectors in Rn, and let {αi}l1, {βj}m1 , {γk}p1 be
scalars. Then the linear system

〈ai, x〉 < αi, i = 1, . . . , l,
〈bj , x〉 ≤ βj , j = 1, . . . ,m,
〈ck, x〉 = γk, k = 1, . . . , p,

(3.7)

is inconsistent if and only if there exist vectors (multipliers) λ0 ∈ R, λ ∈ Rl,
µ ∈ Rm, δ ∈ Rp, satisfying

l∑
1

λiai +
m∑
1

µjbj +
p∑
1

δkck = 0,

l∑
1

λiαi +
m∑
1

µjβj +
p∑
1

δkγk + λ0 = 0,

(λ0, λ, µ) ≥ 0, (λ0, λ) 6= 0.

(3.8)
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Proof. Note that the inconsistency of the system (3.7) is equivalent to that of
the homogenized system 〈ai, x〉 < tαi, 〈bj , x〉 ≤ tβj , 〈ck, x〉 = tγk, t > 0, that
is, of the system

〈(0,−1), (x, t)〉 < 0,
〈(ai,−αi), (x, t)〉 < 0, i = 1, . . . , l,
〈(bj ,−βj), (x, t)〉 ≤ 0, j = 1, . . . ,m,
〈(ck,−γk), (x, t)〉 = 0, k = 1, . . . , p.

(3.9)

This follows from the fact that if x solves (3.7), then (x, 1) solves the homo-
geneous system, and conversely, if (x, t) solves the homogeneous system, then
x/t solves (3.7).

Theorem 3.15 implies that there exist multipliers λ0 ∈ R, λ ∈ Rl, µ ∈ Rm,
and δ ∈ Rp satisfying the sign restrictions 0 ≤ (λ0, λ) 6= 0, 0 ≤ µ, and the
equality

λ0(0,−1) +
l∑
1

λi(ai,−αi) +
m∑
1

λi(bj ,−βj) +
p∑
1

δk(ck,−γk) = 0,

which is exactly (3.8). ut
Corollary 3.18. (Farkas’s lemma, affine version) Let

〈ai, x〉 ≤ αi, i = 1, . . . ,m, (3.10)

be a consistent system of linear inequalities, where {ai}m1 ⊂ Rn. The following
statements are equivalent:

(a) if x satisfies 〈ai, x〉 ≤ αi, i = 1, . . . ,m, then it also satisfies 〈c, x〉 ≤ γ,
(b) there exists 0 ≤ λ ∈ Rm such that

∑m

i=1
λiai = c, and

∑m

i=1
λiαi ≤ γ.

Proof. Note that the validity of (a) is equivalent to the inconsistency of the
linear inequality system

〈−c, x〉 < −γ, 〈ai, x〉 ≤ αi, i = 1, . . . ,m.

It follows from Theorem 3.17 that there exist nonnegative multipliers 0 6=
(µ0, µ1) ∈ R2 and λ ∈ Rm such that

−µ1c+
m∑
i=1

λiai = 0, −µ1γ +
m∑
i=1

λiαi + µ0 = 0.

If µ1 > 0, then we may assume that µ1 = 1 due to homogeneity, and the
corollary follows. If µ1 = 0, then we have µ0 > 0,

∑m
i=1 λiai = 0, and∑m

i=1 λiαi < 0. This, however, contradicts the consistency of (3.10), since
if x satisfies it, then

0 ≥
m∑
1

λi(〈ai, x〉 − αi) = −
m∑
1

λiαi > 0.

ut
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3.4 Variational Proofs of Some Basic Theorems of
Nonlinear Analysis

In this section, we demonstrate that some of the most important results in
nonlinear analysis can be proved using Ekeland’s ε-variational principle. These
include the open mapping theorem, Graves’s theorem [110], the inverse func-
tion theorem, implicit function theorem, and Lyusternik’s theorem. (The tra-
ditional proofs of the open mapping theorem and Graves’s theorem are given
in Appendix C for comparison and completeness.)

The inverse function theorem and the closely related implicit function
theorem are important tools in many branches of analysis. Lyusternik’s theo-
rem [191] is an important tool in optimization, where it is used in the deriva-
tion of optimality conditions in constrained optimization. The open mapping
theorem is a fundamental result in functional analysis.

All of these results are valid in Banach spaces. However, if one is interested
only in using the inverse function, implicit function, and Lyusternik’s theorems
in a finite-dimensional setting, then there is a short cut. All these results are
proved in an elementary manner in Section 2.5.

3.4.1 The Open Mapping and Graves’s Theorems

We first define a useful concept due to De Giorgi, Marino, and Tosques [70].

Definition 3.19. Let f : X → R be a function on a metric space X. The
strong slope of |∇f |(x) of f at a point x ∈ X is given by the formula

|∇f |(x) =

{
limz→x

f(x)−f(z)
d(x,z) if x is not a local minimizer of f,

0 otherwise.

Thus, at a point x that is not a local minimizer of f , |∇f |(x) measures
the largest local rate of decrease of f at x.

The concept of strong slope interacts nicely with Ekeland’s ε-variational
principle: let f : X → R be a lower semicontinuous function on a complete
metric space X that is bounded from below. If σ > 0, then Theorem 3.1
implies that there exists a σd-point x, and we notice from its definition that
x satisfies the property

|∇f |(x) ≤ σ.
This proves the existence of points with small positive strong slope, that is,

inf{|∇f |(x) : inf
M
f < f(x) <∞} = 0.

We also need the following, partial, statement of the open mapping
theorem.
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Lemma 3.20. Let T : X → Y be a continuous linear mapping from a Banach
space X onto a Banach space Y . Then there exists a constant τ > 0 such that
τBY ⊆ A(BX), where BX = {x ∈ X : ‖x‖ ≤ 1} and BY = {y ∈ Y : ‖y‖ ≤ 1}
are the closed unit balls in X and Y , respectively.

Proof. Since A is onto,

Y = A(X) = A(∪∞n=1nBX) = ∪∞n=1A(nBX) = ∪∞n=1nA(BX).

It follows from the Baire category theorem that at least one set nA(BX)
contains an open set. This implies that A(BX) contains an open set, say
y + τBY ⊆ A(BX). Since BX = −BX , we also have −y + τBY ⊆ A(BX).
If z ∈ Y such that ‖z‖ < τ , then there exist {uk}∞1 and {vk}∞1 in BX such
that y+ z = limAuk and −y+ z = limAvk. But then z = limA(uk + vk)/2 ∈
A(BX), proving τBY ⊆ A(BX). ut

We are now ready to state and prove Graves’s theorem. It should be noticed
that the proof below needs only Lemma 3.20 above and not the full statement
of the open mapping theorem, that it is shorter, and that it proves a somewhat
stronger result than Theorem C.2. Moreover, we deduce the full proof of the
open mapping theorem from it.

Theorem 3.21. (Graves’s theorem) Let X and Y be Banach spaces, r >
0, and let f : rBX → Y be a mapping such that f(0) = 0. Let A : X → Y be
a continuous linear mapping onto Y satisfying τBY ⊆ A(BX). Let f − A be
Lipschitz continuous on D with a constant δ, 0 ≤ δ < τ , that is,

‖f(x1)− f(x2)−A(x1 − x2)‖ ≤ δ‖x1 − x2‖ for all x1, x2 ∈ rBX .

Then
(τ − δ)rBY ⊆ f(rBX), (3.11)

that is, the equation y = f(x) has a solution ‖x‖ ≤ r whenever ‖y‖ < (τ−δ)r.
Moreover,

c d(x, f−1(y)) ≤ ‖f(x)− y‖, for all ‖x‖ ≤ r, ‖y‖ < cr, (3.12)

where c : τ − δ > 0.

Proof. Define D = rBX , and for each point y ∈ Y , define the function fy
on D,

fy(x) := ‖f(x)− y‖.
We first claim that

|∇fy|(x) ≥ c > 0 for all x ∈ D such that fy(x) 6= 0.

If x ∈ D is such a point, then Lemma 3.20 implies that there exists a sequence
{dn} ⊂ X with ‖dn‖ ≤ 1 such that
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−τ f(x)− y
‖f(x)− y‖ = −τ f(x)− y

fy(x)
= lim
n→∞

Adn.

We have

f(x+ tdn)− y =
[
(f −A)(x+ tdn)− (f −A)(x)

]
+ t
[
Adn + τ

f(x)− y
fy(x)

]
+
(

1− tτ

fy(x)

)
(f(x)− y),

implying that for sufficiently small t > 0 and sufficiently large n,

fy(x+ tdn) ≤ tδ‖dn‖+ o(t) +
(

1− tτ

fy(x)

)
fy(x)

≤ fy(x) + t(δ − τ) + o(t)
< fy(x),

where the last equality follows from δ < τ . This shows that x is not a local
minimizer of fy. We have therefore

|∇fy|(x) = lim
z→x

fy(x)− fy(z)
‖x− z‖ ≥ lim

t↘0,n→∞

fy(x)− fy(x+ tdn)
t‖dn‖

≥ lim
t↘0,n→∞

fy(x)− fy(x+ tdn)
t

≥ τ − δ = c,

proving our claim.
If (3.11) is false, then there exists y ∈ Y , ‖y‖ < cr, such that fy is positive

on D. Choosing ε := ‖y‖ < cr and noting that ‖y‖ = fy(0) ≤ infD fy + ε,
it follows from Theorem 3.2 (with λ = r) that there exists a point xε ∈ D
satisfying

fy(xε) ≤ fy(x) +
ε

r
‖xε − x‖ for all x ∈ D.

Therefore, c ≤ |∇fy|(xε) ≤ ε/r < c, where the first inequality follows from
our first claim, and the second one follows since xε is an (ε/r)d-point. This is
a contradiction that settles (3.11).

Finally, let ‖y‖ < cr and x ∈ D such that f(x) 6= y. Define δ :=
d(x, f−1(y)) > 0, ε := fy(x) = ‖f(x) − y‖ > 0, and pick 0 < λ < δ. Since
infD fy = 0, we have fy(x) = infD fy + ε, and Theorem 3.2 implies that there
exists a point x ∈ D satisfying ‖x− x‖ ≤ λ < δ, so that fy(x) > 0, and that

fy(x) ≤ fy(z) +
ε

λ
‖x− z‖ for all z ∈ D,

so that |∇fy|(x) ≤ ε/λ. Therefore,

c ≤ |∇fy|(x) ≤ ε

λ
=
‖f(x)− y‖

λ
,

for all 0 < λ < δ = d(x, f−1(y)). This proves (3.12). ut
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Corollary 3.22. (Open mapping theorem) Let X and Y be Banach
spaces and let A : X → Y be a continuous linear mapping onto Y . Then
A is an open mapping, that is, if O ⊆ X is open, then A(O) is open in Y .

Proof. Applying Theorem 3.21 with f = A, y = 0, and δ = 0, we obtain

τ d(x,A−10) ≤ ‖Ax‖,

for all x with small enough norm, and hence for all x, by the homogeneity
of the above inequality. If y = Ax satisfies ‖y‖ < τ , then d(x,A−10) < 1.
Thus there exists a point u ∈ X such that Au = 0 and ‖x − u‖ < 1. Since
A(x−u) = y, this shows that τBY ⊆ A(BX). Since A is linear, it follows that
A is an open mapping. ut

The references [16] and [145] contain more applications of Ekeland’s ε-
variational principle along these lines.

3.4.2 Lyusternik’s Theorem

Theorem 3.23. (Lyusternik’s theorem) Let X and Y be Banach spaces,
U ⊆ X an open set, and f : U → Y . Let TM (x0) be the tangent cone of the
level set M = f−1(f(x0)) at the point x0 ∈ U .

If f is C1 in a neighborhood of a point x0 such that Df(x0) is a linear
mapping onto Y , then TM (x0) is the null space of the linear map Df(x0),
that is,

TM (x0) = KerDf(x0) := {d ∈ X : Df(x0)(d) = 0}. (3.13)

Proof. As in the proof of Theorem 2.29, we may assume that x0 = 0 and
f(x0) = 0. Define A = Df(0). The proof of the inclusion TM (0) ⊆ KerA is
the standard one given there, namely if d ∈ TM (0), then there exist points
x(t) = td+ o(t) in M , so that

0 = f(td+ o(t)) = f(0) + tDf(0)(d) + o(t) = tAd+ o(t).

Dividing both sides by t and letting t→ 0, we obtain Ad = 0.
To prove the reverse inclusion KerA ⊆ TM (0), note that Theorem 1.18

implies

‖f(x2)− f(x1)−A(x2− x1)‖ ≤ ‖x2− x1)‖ · sup
t∈[0,1]

‖Df(x1 + t(x2− x1))−A‖.

Therefore, given ε > 0, there exists a neighborhood U 3 0 such that f −A
is Lipschitz continuous with a constant ε on U . It follows from Theorem 3.21
that there exists a constant c > 0 such that cd(x,M) ≤ ‖f(x)‖ for all x in a
neighborhood V 3 0.

If d ∈ KerA, then f(td) = f(0)+tAd+o(t) = o(t), so that d(td,M) = o(t).
Thus, there exists x(t) ∈M satisfying x(t)− td = o(t). We obtain
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x(t)− 0
t

= d+
o(t)
t
→ d as t→ 0,

proving that d ∈ TM (0). ut

The references [78, 146, 145] provide much more information on Lyusternik’s
theorem and its uses in optimization and related fields. The reference Ioffe [145]
is a recent survey on Graves’s theorem and the associated concept of metric
regularity .

3.4.3 The Inverse and Implicit Function Theorems

The inverse function theorem and the closely related implicit function theo-
rems are among the most important results in all of nonlinear analysis. We
turn to these results next.

Theorem 3.24. (Inverse function theorem) Let X and Y be Banach
spaces, x0 ∈ X, and f is a C1 mapping from a neighborhood of x0 into Y .

If Df(x0) : X → Y is invertible, then f is a C1 diffeomorphism on a
neighborhood of x0.

Moreover, if f is Ck on Ω, then f is a Ck diffeomorphism on a neighbor-
hood of x0.

Proof. Define A = Df(x0). Corollary 3.22 implies that A−1 is a continuous
linear map; thus ‖A−1‖ = sup‖y‖=1 ‖A−1y‖ < ∞. As noted in the proof
Theorem 3.23, given ε > 0, there exists a neighborhood U of x0 such that

‖f(x2)− f(x1)−A(x2 − x1)‖ ≤ ε‖x2 − x1‖ for all x1, x2 ∈ U. (3.14)

This implies that f is one-to-one in a neighborhood of x0, because if x1 6= x2

and f(x1) = f(x2) in the above inequality, then

‖A(x1 − x2)‖ = ‖f(x1)− f(x2)−A(x1 − x2)‖ ≤ ε‖x1 − x2‖
≤ ε‖A−1‖ · ‖A(x1 − x2)‖,

which cannot hold if ε > 0 is small enough.
Moreover, the inclusion (3.11) in Theorem 3.21 implies that there exist

open neighborhoods U 3 x0 and V 3 y0 such that f : U → V is one-to-one
and onto, and the inequality (3.12) implies that f−1 : V → U is continuous.
Setting yi := f(xi), i = 1, 2, we have

‖f−1(y2)− f−1(y1)−A−1(y2 − y1)‖
= ‖x2 − x1 −A−1(f(x2)− f(x1))‖
≤ ‖A−1‖ · ‖f(x2)− f(x1)−A(x2 − x1)‖
≤ ε‖A−1‖ · ‖x2 − x1‖

≤ ε‖A−1‖
c
‖y2 − y1‖,
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for all y1, y2 ∈ V , where the second inequality follows from (3.14), and the
last inequality from (3.12). This proves that f−1 is differentiable at y0 with
Df−1(y0) = A−1 = Df(x0)−1.

If the neighborhood U containing x0 is chosen small enough such that
Df(x) is invertible for every x ∈ U , then f is a diffeomorphism between U
and V = f(U). It follows that if y = f(x), then

Df−1(y) = Df(x)−1,

that is,
D(f−1) = Inv ◦Df ◦ f−1 (3.15)

on f(U), where Inv is the map sending a nonsingular matrix to its inverse.
Since Inv is infinitely differentiable (see Example 1.28) and Df and f−1 are
continuous, it follows that f−1 ∈ C1. If, moreover, f ∈ C2, that is, Df ∈ C1,
it follows from 3.15 that D(f−1) ∈ C1, that is, f−1 ∈ C2. Induction on k
settles the general case. ut

Remark 3.25. The above proof of the inverse function theorem differs from
the usual proofs in that Graves’s theorem (for which we gave a variational
as well as a classical proof) is used instead of Banach’s fixed point theorem
to establish the fact that f is an open mapping near x0. The common proof
based on the latter theorem can be found in many books; see for example
Lang [183] for a clean presentation.

The inverse function theorem may fail if the continuity assumption on Df
is removed; see an example in [77], page 273.

If X and Y are Banach spaces, x0 ∈ X, y0 ∈ Y , and f is a C1 map in
a neighborhood of (x0, y0), we denote by Dxf(x0, y0) the derivative of f at
(x0, y0) with respect to x, that is, Dxf(x0, y0) is the derivative of the map
x 7→ f(x, y0) at x0.

Theorem 3.26. (Implicit function theorem) Let X, Y be Banach spaces,
x0 ∈ X, y0 ∈ Y , and f a C1 map in a neighborhood of (x0, y0). Define
w0 = f(x0, y0).

If Dyf(x0, y0) : Y → Y is a linear isomorphism, then there exist neigh-
borhoods U 3 x0 and V 3 y0, and a C1 mapping y : U → V such that a point
(x, y) ∈ U × V satisfies f(x, y) = w0 if and only if y = y(x). The derivative
of y at x0 is given by

Dy(x0) = −Dyf(x0, y0)−1Dxf(x0, y0).

Moreover, if f is Ck, then so is y(x).

Proof. Define the map F (x, y) = (x, f(x, y)). At a point z0 = (x0, y0), it
follows from Taylor’s formula
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F (x0 + th, y0 + tk) = (x0 + th, f(x0 + th, y0 + tk))

=
(
x0 + th, f(x0, y0) + t[Dxf(x0, y0)h+Dyf(x0, y0)k] + o(t)

)
= F (x0, y0) + t

(
h,Dxf(x0, y0)h+Dyf(x0, y0)k

)
+ o(t),

that the derivative DF (x0, y0) : X × Y → X × Y given by

DF (x0, y0)(h, k) =
(
h,Dxf(x0, y0)h+Dyf(x0, y0)k

)
is a linear isomorphism. It follows from Theorem 3.24 that there exist neigh-
borhoods U 3 x0, V 3 y0, and W 3 (x0, w0) such that F : U × V → W is
a bijection and F−1 is C1 (Ck if f is Ck). Note that F−1(x, y) = (x, g(x, y))
for some function g ∈ C1.

Let (x, y) ∈ U ×V . We have f(x, y) = w0 if and only F (x, y) = (x,w0), or
(x, y) = F−1(x,w0) = (x, g(x,w0)), that is, if and only if y = g(x,w0) =: y(x).
Since g ∈ C1, we have y(x) ∈ C1 as well.

The chain rule applied to the function f(x, y(x)) = w0 gives Dxf(x, y(x))+
Dyf(x, y(x))Dy(x) = 0, leading to the formula for Dy(x0). ut

3.5 Exercises

1. Let f : Rn → R be a lower semicontinuous function that is bounded
from below. Suppose that there exist a > 0 and b and R > 0 such that
f(x) ≥ a‖x‖ + b for ‖x‖ ≥ R. Prove that the image ∇f(Rn) is dense in
the ball {x ∈ Rn : ‖x‖ ≤ a}.
Hint: Apply Ekeland’s ε-variational principle to the function g(x) = f(x)−
〈x, u〉, where ‖u‖ ≤ a.

2. Let f : X → R be a lower semicontinuous Gâteaux differentiable function
on a Banach space X. If f is bounded from below and coercive, that is,
lim‖x‖→∞

f(x)
‖x‖ =∞, then the range {∇f(x) : x ∈ X} is dense in X∗, the

dual space of X.
Remark: Compare this problem to Exercise 6 on page 56.

3. (Caristi) Let (X, d) be a complete metric space, and f : X → R∪{∞} a
lower semicontinuous function that is bounded from below. Let T : X →
X be a multivalued mapping, that is, for each x ∈ X, T (x) is a subset of
X. Prove that if

f(y) ≤ f(x)− d(x, y) for all y ∈ T (x),

then there exists a fixed point of T , that is, there exists a point x ∈ X
such that

x ∈ T (x).

Hint: Set ε = λ = 1 in Ekeland’s ε-variational principle, and show that
the point obtained is a fixed point of T .
Caristi’s theorem is in fact equivalent to Ekeland’s ε-variational principle,
because it is possible to obtain the latter from the former.
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4. Prove the following refinement of Corollary 3.5: let f be a function as in
that corollary, and {xn} a minimizing sequence for f . Prove that there
exists another minimizing sequence {yn} for f such that

f(yn) ≤ f(xn), ‖xn − yy‖ → 0, and ∇f(yn)→ 0.

5. Let f : Rn → R be a C1 function. The function f is said to satisfy
the Palais–Smale condition if whenever a sequence {xn}∞1 satisfies the
conditions

f(xn)→ α, ∇f(xn)→ 0,

then {xn} contains a convergent subsequence.
Prove that if f is bounded from below and satisfies the Palais–Smale
condition, then f must be a coercive function.

6. Let f : E → E be a contractive mapping on a Banach space E. Prove that
the mapping T = I − f is a homeomorphism of E, that is, T : E → E is
one-to-one and onto, and T−1 is continuous.
Hint: Given y ∈ E, apply Banach’s fixed point theorem to the mapping
x 7→ y − f(x).

7. Let f : U → Rm be a C1 map, where U ⊂ Rn is an open set. If the gradient
Df(x0) at a point x0 ∈ U is a linear map onto Rm, prove that there exists
a local right inverse of f around x0, that is, there exist neighborhoods V 3
x0 and W 3 f(x0) and a C1 mapping g : W → V such that f(g(y)) = y
for all y ∈W .
Hint: Define A = Df(x0), and find a linear map B : Rm → Rn such that
AB = Im. Then show that the inverse function theorem can be applied to
h = f ◦B, and use h to define a suitable function g satisfying the required
properties.
State and prove an analogous theorem when Df(x0) is a one-to-one linear
map.





4

Convex Analysis

Convexity is an important part of optimization, and we devote several chapters
to various aspects of it in this book. This chapter treats the most basic prop-
erties of convex sets and functions, while Chapter 5 is devoted to their deeper
properties, such as the relative interior (both in the algebraic and topological
senses) and boundary structure of convex sets, the continuity properties of
convex functions, and homogenization of convex sets. Chapter 6 treats the
separation properties of convex sets, a very important topic in optimization.
The calculus of the relative interior of convex sets developed in Chapter 5
plays an important role here. Chapters 7 and 8 deal with two, related, special
topics, the theory of convex polyhedra and the theory of linear programming,
respectively. Both are important topics within optimization, and each has
wide applicability within science, engineering, and technology. Many devel-
opments in optimization have in fact been inspired by linear programming.
Finally, Chapter 13 investigates several special topics in convexity.

4.1 Affine Geometry

Convex sets contain the line segment between any two of its points, while
affine sets contain the whole line between any two of its points. Thus, the
natural setting for convex sets is an affine subset of a vector space. Besides,
concepts such as the dimension and the relative interior of a convex set make
essential use of ideas from affine geometry; as an example; see the statement
of Theorem 4.13 below due to Carathéodory. For this reason, we review here
the fundamental properties of affine sets before embarking on the study of
convex sets.

Definition 4.1. A nonempty subset A of a vector space E is called an affine
set if for points x and y in A, the line passing through x and y is contained
in A; in other words,

x, y ∈ A =⇒ ` := {x+ t(y − x) = (1− t)x+ ty : t ∈ R} ⊆ A.
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Let A and B be affine sets in vector spaces E and F , respectively. A map
F : A→ B is called an affine map if

F ((1− t)x+ ty) = (1− t)F (x) + tF (y) for all t ∈ R.

Let {xi}k1 be a finite set of points in E. An affine combination of {xi}k1 is
any point of the form

k∑
i=1

λixi,
k∑
i=1

λi = 1.

Let B be a nonempty set in E. The affine hull (or span) of B is the set of
all affine combinations of points from B, that is,

aff(B) :=
{ k∑
i=1

λibi : bi ∈ B,
k∑
i=1

λi = 1, k = 1, 2, . . .
}
.

Lemma 4.2. Let A be a nonempty set in E. Then aff(A) is an affine set, in
fact, the smallest affine set containing A.

Proof. It is clear that A ⊆ aff(A). Let us show that aff(A) is an affine set. If
t ∈ R and u, v ∈ aff(A) have the forms

u =
k∑
i=1

λixi, v =
l∑

j=1

µjyj , where xi, yj ∈ A,
k∑
i=1

λi = 1,
l∑

j=1

µj = 1,

then

(1− t)u+ tv =
k∑
i=1

(1− t)λixi +
l∑

j=1

tµjyj .

Since

k∑
i=1

(1− t)λi +
l∑

j=1

tµj = (1− t)
k∑
i=1

λi + t
l∑

j=1

µj = (1− t) + t = 1,

we see that (1 − t)u + tv is an affine combination of points in A; this proves
that aff(A) is an affine set.

Next, we show that if D is an affine set containing A, then aff(A) ⊆ D, that
is, every affine combination

∑k
i=1 λixi, xi ∈ A, lies in D. We use induction on

k, the number of elements in the affine combination. The result is trivial for
k = 1, and easy for k = 2: if x1 and x2 are points in A, and 0 6= t ∈ R, then
x1, x2 ∈ D, and since D is affine, we have (1− t)x1 + tx2 ∈ D. Supposing we
have shown the result for every i < k, we prove it for k. Consider an affine
combination x :=

∑k
i=1 λixi with {xi}k1 ⊆ A, λi 6= 0, i = 1, . . . , k. Write

x = α
(k−1∑
i=1

λi
α
xi

)
+ (1− α)xk, where α :=

k−1∑
i=1

λi = 1− λk.
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The point x :=
∑k−1
i=1 (λi/α)xi is an affine combination of {xi}k−1

i=1 , since∑k−1
i=1 λi/α = 1, and it lies in D by the induction hypothesis. Since x =

tx+ (1− t)xk, and x, xk ∈ D, we have x ∈ D. The lemma is proved. ut

An immediate consequence of Lemma 4.2 is the following result.

Lemma 4.3. If A ⊆ E is an affine set, then aff(A) = A, that is, all affine
combinations of elements from A lie in A:

{λi}k1 ⊂ R,
k∑
i=1

λi = 1, {xi}k1 ⊂ A =⇒
k∑
i=1

λixi ∈ A.

Affine sets are precisely the translations of linear subspaces. The following
result makes this connection explicit.

Theorem 4.4. If A ⊆ E is an affine subset of E, and a ∈ A is an arbitrary
point, then

L := A− a = {y − a : y ∈ A}
is a linear subspace of E, which is independent of a ∈ A; consequently,

A = a+ L, and L = A−A = {y − z : y, z ∈ A}. (4.1)

Conversely, if a ∈ E and L is a linear subspace of E, then A := a + L is an
affine subspace of E.

Proof. Let us first prove that L is a linear subspace of E. Let {x1, x2} ⊆ L
and {α1, α2} ⊂ R. Writing xi = yi − a, yi ∈ A, we have

y := a+ α1x1 + α2x2 = a+ α1(y1 − a) + α2(y2 − a)
= (1− α1 − α2)a+ α1y1 + α2y2 ∈ A,

by Lemma 4.3, since y is an affine combination of a, y1, y2 ∈ A. Thus, α1x1 +
α2x2 = y − a ∈ L, and L is a linear subspace of E.

Next, we claim that if a1, a2 ∈ A, then A−a1 = A−a2. This is equivalent
to proving that if a ∈ A, the b defined by the equation a− a1 = b− a2, that
is, b := a − a1 + a2, lies in A. This follows again from Lemma 4.3, since b is
an affine combination of a, a1, a2 ∈ A.

It remains to prove the converse statement. Let A := a+ L, where a ∈ E
and L ⊆ E is a linear subspace of E. If yi = a+ xi, xi ∈ L, i = 1, 2, then

(1− λ)y1 + λy2 = a+ [(1− λ)x1 + λx2] ∈ a+ L = A,

proving that A is an affine subset of E. ut

Definition 4.5. Let A ⊆ E be an affine set. The (affine) dimension A is the
dimension of the linear subspace L = A−A,
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dim(A) = dim(A−A).

A set of vectors {xi}l1 in A is called affinely independent if every affine
combination of {xi}l1 is uniquely written as an affine combination; in other
words, if x =

∑l
1 αixi,

∑l
1 αi = 1, then the coefficients {αi}l1 are unique.

A set of vectors {xi}k1 in A is called an affine basis of A if it is affinely
independent and spans A.

Lemma 4.6. Let A ⊆ E be an affine subset of E with the corresponding linear
subspace L = A−A.

A subset {xi}l1 of A is affinely independent if and only if

l∑
1

αixi = 0,
l∑
1

αi = 0 =⇒ αi = 0, i = 1, . . . , l. (4.2)

Moreover, {xi}l1 in A is affinely independent if and only if for any fixed j, the
vectors {xi − xj}i6=j in L are linearly independent.

A set of vectors {xi}m1 affinely span A if and only if for any fixed j, the
vectors {xi−xj}i6=j linearly span L. Consequently, a set of vectors {xi}k1 is a
affine basis of A if and only if for any fixed j, the set of vectors {xi − xj}i 6=j
is a linear basis of L.

Proof. Notice that x =
∑l

1 αixi and x =
∑l

1 βixi are two distinct affine
combinations if and only if 0 =

∑l
1(βi−αi)xi is a nontrivial linear combination

with
∑l

1(βi − αi) = 0; this proves the first statement.
To prove the second statement, note that the conditions

∑l
1 αixi = 0

and
∑l

1 αi = 0 can be rewritten in the form
∑
i 6=j αi(xi − xj) = 0 with no

restrictions on {αi}i6=j .
To prove the third statement, note that L = A − xj . Thus, an arbitrary

point x ∈ A can be represented as an affine combination x =
∑m

1 αixi,∑l
1 αixi = 0, if and only if the corresponding point y =: x − xj ∈ L has a

representation as a linear combination y =
∑
i 6=j αi(xi − xj), because

y = x− xj =
( m∑

1

αixi

)
− xj =

∑
i6=j

αi(xi − xj) +
( m∑

1

αi − 1
)
xj

=
∑
i6=j

αi(xi − xj).

The lemma is proved. ut

Let F : A → B be a map between two affine sets A and B. It is easy to
verify that F is an affine map if and only if its graph

gr(F ) := {(x, F (x)) : x ∈ A} ⊆ A×B
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is an affine set. If A and B are vector spaces and F is an affine map satisfying
f(0) = 0, then it is also easy to verify, using Lemma 4.3, that F is a linear
map. Consequently, a map between two vector spaces is linear if and only if
its graph is a vector space. The following result elucidates the relationship
between affine and linear maps.

Theorem 4.7. Let F : A → B be an affine map between affine sets A ⊆ E1

and B ⊆ E2. Then F preserves affine combinations, that is,

F
( k∑
i=1

αixi

)
=

k∑
i=1

αiF (xi), where xi ∈ A, αi ∈ R,
k∑
i=1

αi = 1.

Let L = A−A and M = B −B be the linear vector spaces associated with A
and B, respectively. The function F̄ : L→M defined by

F̄ (x− a) := F (x)− F (a)

is a linear map that is independent of a ∈ A.
Consequently, if F : A → B is an affine map between two affine sets

A = a + L and B = b + M , then there exists a linear map T : L → M such
that

F (x) = T (x− a) + F (a).

Proof. The graph C = {(x, y) : x ∈ A, y = F (x)} is an affine set in E1 × E2.
It follows from Lemma 4.3 that if

∑k
1 αi = 1, then

∑k
1 αi(xi, F (xi)) =

(
∑k

1 αixi, αiF (xi)) ∈ C. This proves the statement that F (
∑k

1 αixi) =∑k
1 αiF (xi). The set K = C − {(a, F (a)} is a linear subspace of E1 × E2.

It is also the graph of the map F̄ : L → M , which is a linear map. It follows
from Theorem 4.4 that K and F̄ are independent of a ∈ A. ut

4.2 Convex Sets

In this section, convex sets will be defined within affine spaces, since this is
their natural setting. However, a reader who prefers to work within vector
spaces may assume that each affine set mentioned is a vector space.

Definition 4.8. A subset C in an affine space E is called a convex set if for
x, y ∈ C, the line segment

[x, y] := {(1− λ)x+ λy : 0 ≤ λ ≤ 1}

lies in C. In other words, if x, y ∈ C, then (1−λ)x+λy ∈ C for all 0 ≤ λ ≤ 1.

In Figure 4.1, the sets A and B are convex. However, the set C is non-
convex, since x and y are in C, but not all of the line segment connecting x
and y.
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Fig. 4.1. Convex and nonconvex sets.

Lemma 4.9. Let E be an affine space. The following statements are true.

(a) Intersections of convex sets are convex: if {Cγ}γ∈Γ is a family of convex
sets in E, then ∩γ∈ΓCγ is a convex set.

(b) Minkowski sums of convex sets are convex: if {Ci}ki=1 is a set of convex
sets, then their Minkowski sum

C1 + · · ·+ Ck := {x1 + · · ·+ xk : xi ∈ Ci, i = 1, . . . , k}

is a convex set.
(c) An affine image of a convex set is convex: if C ⊆ E is a convex set and

T : E → F is an affine map from E into another affine space F , then
T (C) ⊆ F is also a convex set.

Proof. These statements are all easy to prove; we prove only (a). Let x, y ∈
C := ∩γ∈ΓCγ . For each γ ∈ Γ , we have x, y ∈ Cγ , and since Cγ is convex,
[x, y] ⊆ Cγ ; therefore, [x, y] ⊆ C and C is a convex set. ut
Definition 4.10. Let {xi}k1 be a finite set of points in an affine space E. A
convex combination of {xi}k1 is any point of the form

k∑
i=1

λixi, λi ≥ 0,
k∑
i=1

λi = 1.

Let A ⊆ E be a nonempty set. The convex hull of A is the set of all convex
combinations of points from A, that is,

co(A) :=
{ k∑
i=1

λixi : xi ∈ A,
k∑
i=1

λi = 1, λi ≥ 0, k ≥ 1
}
.

Theorem 4.11. Let A 6= ∅ be a subset of an affine space E. Then co(A) is a
convex set; in fact, co(A) is the smallest convex set containing A.

Proof. The proof is essentially a repeat of the proof of Lemma 4.2, but we now
make the additional requirements that 0 < α < 1 and that {λi}k1 , {µj}l1 be
nonnegative in that proof. It suffices to note that all the affine combinations
now become convex combinations. ut
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The following result is an immediate consequence of the above theorem.

Corollary 4.12. If C is a convex set in an affine space E, then co(C) = C,
that is, all convex combinations of elements from C lie in C,

λi ≥ 0, xi ∈ C, i = 1, . . . , k,
k∑
i=1

λi = 1 =⇒
k∑
i=1

λixi ∈ C.

The following theorem, due to Carathéodory [53], is a fundamental result
in convexity in finite-dimensional vector spaces, and has many applications,
including in optimization.

Theorem 4.13. (Carathéodory) Let A be a nonempty subset of an affine
space E. Every element of co(A) can be represented as a convex combination
of affinely independent elements from A.

Consequently, if n = dim(aff(A)) < ∞, then every element of co(A) can
be represented as a convex combination of at most n+ 1 elements from A; in
other words,

co(A) =
{n+1∑
i=1

λixi : xi ∈ A, λi ≥ 0, i = 1, . . . , n+ 1,
n+1∑
i=1

λi = 1
}
.

Proof. Let

x =
k∑
i=1

λixi ∈ co(A), where
k∑
i=1

λi = 1, λi > 0. (4.3)

If {xi}k1 is affinely independent, then {xi − x1}k2 is linearly independent and
k − 1 ≤ n; thus, k ≤ n+ 1, and the theorem is proved.

Suppose that {xi}k1 is affinely dependent. It follows from Lemma 4.6 that
there exist scalars {δi}k1 such that

k∑
i=1

δixi = 0,
k∑
i=1

δi = 0, (δ1, . . . , δk) 6= 0. (4.4)

If we subtract from (4.3) ε times (4.4) (ε > 0), we obtain

x = (λ1 − εδ1)x1 + · · ·+ (λk − εδk)xk,
k∑
i=1

(λi − εδi) = 1. (4.5)

Since
∑k
i=1 δi = 0, there exist positive and negative scalars δi. If δi ≤ 0,

then λi − εδi ≥ 0 remains nonnegative for all ε ≥ 0; however, if δi > 0, then
λi − εδi ≥ 0 if and only if ε ≤ λi/δi. Therefore, if we set ε = min{λi/δi : δi >
0}, then x remains a convex combination in (4.5), but has at least one fewer
term. We can continue this process until the vectors {x2−x1, . . . , xk −x1} in
the representation (4.3) are linearly independent. When we halt, we will have
k ≤ n+ 1. ut
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We immediately have the following.

Corollary 4.14. If C is a nonempty subset of an n-dimensional vector space
E, then every element of co(A) can be represented as a convex combination
of at most n+ 1 elements from A.

Corollary 4.15. If C is a nonempty compact subset of a finite-dimensional
affine space E, then so is the set co(C).

Proof. It follows from Theorem 4.13 that

co(C) =
{n+1∑
i=1

λixi : λi ≥ 0, xi ∈ C, i = 1, . . . , n+ 1,
n+1∑
i=1

λi = 1
}
,

where n = dim(C). Consider a sequence {xk}∞1 in co(C), where

xk =
n+1∑
i=1

λki x
k
i .

Since C is compact, the sequence {xk1} has a convergent subsequence xkj1 →
x1 ∈ C. Next, let the sequence {xkj2 } have convergent subsequence x

kjl
2 →

x2 ∈ C, and so on. Eventually, we can find a subsequence kj such that

lim
j→∞

x
kj
i = xi ∈ C for all i = 1, . . . , n+ 1.

Using the same arguments, we can assume that limj→∞ λ
kj
i = λi ≥ 0 for all

i = 1, . . . , n+ 1. Then we have
∑n+1
i=1 λi = 1, and

xkj →
n+1∑
i=1

λixi ∈ co(C).

This proves that co(C) is compact. ut

An alternative proof runs as follows: Let

∆n :=
{

(λ1, . . . , λn+1) : λi ≥ 0, i = 1, . . . , n+ 1,
n+1∑
i=1

λi = 1
}

be the standard unit simplex in Rn+1, and consider the map

∆n × C × · · · × C︸ ︷︷ ︸
n+1 times

→ E,

given by



4.2 Convex Sets 93

T (λ1, . . . , λn+1, x1, . . . , xn+1) =
n+1∑
i=1

λixi.

Note that the image of T is co(C). Since the map T is continuous and the
domain of T is compact (∆n and C are compact), we conclude that co(C) is
compact.

We also record here the following elementary results.

Lemma 4.16. Let E be an affine space in a normed vector space. If C ⊆ E is
a convex set, then its closure C is also a convex set. If C1, C2 ⊆ E are convex
sets, C1 is compact, and C2 is closed, then C1 + C2 is a closed, convex set.

Proof. To prove the first statement, define the convex set

Cε := {z : ‖z − x‖ < ε, x ∈ C} = {x+ u : x ∈ C, ‖u‖ < ε} = C +Bε(0).

Note that C := ∩ε>0Cε, because a point z ∈ E lies in C if and only if given
ε > 0, there exists a point x ∈ C such that ‖z − x‖ < ε. It follows from
Lemma 4.9 that C is a convex set.

To prove the second statement, let {zk}∞k=1 be a sequence in C1 + C2

converging to a point z. Write zk = xk + yk with xk ∈ C1 and yk ∈ C2. Since
C1 is compact, there exists a subsequence xki → x ∈ C1. Since zki → z, yki
must converge to the point y := z − x ∈ C2. Thus, z = x + y ∈ C1 + C2,
proving that C1 + C2 is a closed set. ut

4.2.1 Convex Cones

Definition 4.17. A set K in a vector space E is called a cone if tx ∈ K
whenever t > 0 and x ∈ K. If K is also a convex set, then it is called a
convex cone.

Lemma 4.18. A set K in a vector space E is a convex cone if and only if

x, y ∈ K and t > 0 =⇒ tx ∈ K, x+ y ∈ K. (4.6)

Proof. Let x, y ∈ K. If K is a convex cone, then (x + y)/2 ∈ K, since K is
convex, and x + y = 2((x + y)/2) ∈ K, since K is a cone. This proves (4.6).
Conversely, if 0 < t < 1 and (4.6) holds, then (1− t)x+ ty ∈ K, proving that
K is a convex set. ut

Many concepts and results for convex sets have analogues for convex cones.

Definition 4.19. Let {xi}k1 be a finite set of points in a vector space E. A
positive combination of {xi}k1 is any point of the form

k∑
i=1

λixi, λi > 0, i = 1, . . . , k.
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Let A ⊆ E be a nonempty set. The convex conical hull of A is the set of all
positive combinations of points from A, that is,

cone(A) :=
{ k∑
i=1

λixi : xi ∈ X, λi > 0, k ≥ 1
}
.

Theorem 4.20. Let A be a nonempty set in a vector space E. Then cone(A)
is the smallest convex cone containing A. If K is a convex cone, then
cone(K) = K.

This is proved in exactly the same way as Theorem 4.11. In fact, the proof
here is somewhat simpler, since the weights {λi} in a positive combination
are not required to sum to one.

Theorem 4.21. (Carathéodory) Let A be a nonempty subset of a vector
space E. Every element of cone(A) can be represented as a positive com-
bination of linearly independent elements from A. Consequently, if n =
dim(span(A)) < ∞, then every element of cone(A) can be represented as
a positive combination of at most n elements from A. In other words,

cone(A) =
{ n∑
i=1

λixi : xi ∈ A, λi > 0, i = 1, . . . , n
}
.

Proof. The proof is essentially the same as in the affine case. Let

x =
k∑
i=1

λixi ∈ cone(A), where all λi > 0. (4.7)

If the vectors {xi}k1 are linearly dependent, then there exist scalars {δi}ki=1,
not all zero, such that

k∑
i=2

δixi = 0.

If we subtract from (4.3) ε times this equation, we obtain

x = (λ1 − εδ1)x1 + · · ·+ (λk − εδk)xk.

The rest of the proof is completed using the same arguments in the proof of
Theorem 4.13. ut

Corollary 4.22. If C is a nonempty subset of an n-dimensional vector space
E, then every element of cone(A) can be represented as a positive combination
of at most n elements from A.
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4.3 Convex Functions

In this section, we define convex functions and discuss their most basic prop-
erties. Normally, a convex function f : C → R is defined on a convex set C
in a vector or affine space E. It will be sufficient for us to assume that E is
a vector space. If C is a proper subset of E, we may extend f to the whole
space E by defining f(x) = ∞ when x /∈ C. This device is for convenience,
since it relieves us from having to describe the domain of C each time a func-
tion is defined or mentioned. A related advantage is that a convex function
is sometimes defined through a pointwise maximization process, which often
introduces +∞ as a function value. It is possible to consider convex functions
taking the value −∞; see [228, 89]. We do not consider them in this book,
since they tend to be rather pathological.

Definition 4.23. Let E be vector space. A function f : E → R∪{∞} is called
a convex function if

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y) for all x, y ∈ E, t ∈ [0, 1]. (4.8)

The set
dom(f) = {x : f(x) ∈ R}

is called the effective domain of f . The function f strictly convex if

f((1−t)x+ty) < (1−t)f(x)+tf(y) for all x 6= y ∈ dom(f), t ∈ (0, 1). (4.9)

A function f : E → R ∪ {−∞} is called a concave function if −f is a
convex function, that is,

f((1− t)x+ ty) ≥ (1− t)f(x) + tf(y) for all x, y ∈ E, t ∈ [0, 1], (4.10)

and strictly concave if for all x 6= y ∈ dom(f) and t ∈ (0, 1),

f((1− t)x+ ty) > (1− t)f(x) + tf(y). (4.11)

It is clear the function inequalities above need to be verified only when f(x)
and f(y) are finite. Also, it is easy to show that dom(f) is a convex set of E.
Thus, f : dom(f)→ R is a convex or concave function in the usual sense, that
is, it satisfies the relevant functional inequality above for all x, y ∈ dom(f).

If f : C → R is a convex function on a convex set C ⊆ E and α ∈ R is a
constant, then it is easy to show that the sublevel sets of f ,

lα(f) := {x ∈ C : f(x) ≤ α}
and {x ∈ C : f(x) < α}, are convex. However, the converse is false, since the
sublevel sets of any monotonic function in R are convex.

Recall that the epigraph of f is the set in Rn+1 defined by the formula

epi(f) := {(x, α) : x ∈ E,α ∈ R, f(x) ≤ α}.
The following simple but important result makes it possible to view convex
functions geometrically, an important theme in convex analysis.
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Lemma 4.24. Let f : E → R ∪ {∞} be a function on a vector space E. The
function f is convex if and only if epi(f) ⊆ E × R is a convex set in E × R.

Proof. First, assume that f is convex. Let (xi, αi) ∈ epi(f), i = 1, 2, and
0 ≤ λ ≤ 1. We have f(xi) ≤ αi (i = 1, 2), and since f is a convex function,
we obtain

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2) ≤ (1− λ)α1 + λα2;

this implies (1 − λ)(x1, α1) + λ(x2, α2) ∈ epi(f), and proves that epi(f) is a
convex set.

Conversely, suppose that epi(f) is a convex set. Let x1, x2 ∈ E and 0 ≤
λ ≤ 1. We have (xi, f(xi)) ∈ epi(f), i = 1, 2, so that

(1− λ)(x1, f(x1)) + λ(x2, f(x2)) = ((1− λ)x1 + λx2, (1− λ)f(x1) + λf(x2))

lies in epi(f), that is,

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2),

thus proving that f is a convex function. ut

epi(f)

Fig. 4.2. Epigraph of a convex function.

Corollary 4.25. (Jensen’s inequality) If f : E → R ∪ {∞} is a convex
function, then

f
( k∑

1

λixi

)
≤

k∑
1

λif(xi),

whenever λi ≥ 0, i = 1, . . . , k, and
∑k
i=1 λi = 1.
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Proof. Since the corollary clearly holds if f(xi) =∞ for some xi, we assume
f(xi) ∈ R for all i = 1, . . . , k. The points (xi, f(xi)) lie in epi(f), and since
epi(f) is a convex set, we have

k∑
i=1

λi(xi, f(xi)) =
( k∑
i=1

λixi,
k∑
i=1

λif(xi)
)
∈ epi(f).

It follows that

f
( k∑

1

λixi

)
≤
∑

λif(xi).

ut
Lemma 4.26. The following functions are convex:

(a) The affine function f(x) = 〈a, x〉+ b, where a ∈ E, and b ∈ R.
(b) A norm function f(x) = ‖x‖ on a normed linear space E.
(c) If {fi}ki=1 are convex functions, and αi ≥ 0, then the function

∑k
i=1 αifi

is a convex function.
(d) If {fα}α∈A is any family of convex function, fα : E → R∪{∞}, then the

pointwise supremum of fα, f(x) := supα∈A fα(x), is a convex function
f : E → R ∪ {∞}.

Proof. The proofs of (a) and (c) are trivial. To prove (b), note that if x, y ∈ E
and 0 < λ < 1, then

f((1− λ)x+ λy) = ‖(1− λ)x+ λy‖ ≤ ‖(1− λ)x‖+ ‖λy‖
= (1− λ)‖x‖+ λ‖y‖ = (1− λ)f(x) + λf(y).

To prove (d), we consider epi(f):

epi(f) = {(x, λ) : sup
α∈A

fα(x) ≤ λ} = {(x, λ) : fα(x) ≤ λ for all α ∈ A}

=
⋂
α∈A
{(x, α) : fα(x) ≤ λ} =

⋂
α∈A

epi(fα).

Since each epi(fi) is convex, we see that epi(h) is convex, implying that f(x)
is a convex function. ut

We remark that taking the pointwise supremum of convex functions as in
(d) is a common operation in optimization and convex analysis. While this
operation preserves convexity, it usually destroys differentiability.

4.4 Differentiable Convex Functions

In this section, we give characterizations of differentiable convex functions in
terms of their gradients or Hessians. When applicable, these often provide the
quickest means to establish the convexity of a function.
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The following important result gives the differential characterization of
convex functions.

Theorem 4.27. Let C be a convex set in Rn, and let f be a Gâteaux differ-
entiable function on an open set containing C.

Then f is convex on C if and only if the tangent plane at any point x ∈ C
lies below the graph of f , that is,

f(y) ≥ f(x) + 〈∇f(x), y − x〉 for all x, y ∈ C. (4.12)

Moreover, f is strictly convex on C if and only if the inequality above is
strict when y 6= x.

Proof. First, assume that f is a convex function. If t ∈ (0, 1), then the in-
equality f(x + t(y − x)) = f((1 − t)x + ty) ≤ (1 − t)f(x) + tf(y) can be
written as

f(x+ t(y − x))− f(x)
t

≤ f(y)− f(x); (4.13)

taking the limit of the left-hand side as t↘ 0, we obtain

〈∇f(x), y − x〉 = lim
t↘0

f(x+ t(y − x))− f(x)
t

≤ f(y)− f(x).

Conversely, assume that (4.12) holds. Let x, y ∈ C, x 6= y, t ∈ (0, 1), and
define xt := x+ t(y − x) = (1− t)x+ ty. The inequality (4.12) gives

f(x) ≥ f(xt) + 〈∇f(xt), x− xt〉,
f(y) ≥ f(xt) + 〈∇f(xt), y − xt〉.

(4.14)

Multiplying these inequalities by 1− t and t, and adding them, we obtain

(1− t)f(x) + tf(y) ≥ f(xt) + 〈∇f(xt), (1− t)x+ ty − xt〉
= f(xt) = f((1− t)x+ ty),

(4.15)

which proves that f is a convex function.
Suppose that f is strictly convex. Let x, y ∈ C, x 6= y, and t ∈ (0, 1).

Then, the inequality in (4.13) is strict. It is straightforward to verify that the
difference quotient (f(x+ t(y− x))− f(x))/t is a nonincreasing function of t,
and strictly decreasing if f is strictly convex (see Exercise 9 on page 108); it
follows that

〈∇f(x), y − x〉 = lim
t↘0

f(x+ t(y − x))− f(x)
t

= inf
t>0

f(x+ t(y − x))− f(x)
t

< f(y)− f(x).

Conversely, if the inequality (4.12) is strict for x, y ∈ C, x 6= y, then xt ∈ (x, y)
and the inequalities in (4.14) and (4.15) are strict, proving that f is a strictly
convex function. ut
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Exercise 10 offers a different insight into the above theorem.
The following important result provides the second-order differential char-

acterizations of a convex function.

Theorem 4.28. Let C be a convex set in Rn, and let f be a twice Fréchet
differentiable function on an open set containing C. Then,

(a) The function f is convex on C if and only if the Hessian Hf(x) is positive
semidefinite at every point x ∈ C;

(b) If Hf(x) is positive definite at every point x ∈ C, then f is strictly convex.

Proof. (a). First, assume that f is convex and consider an arbitrary direction
d ∈ E. It follows from Theorem 4.27 and Taylor’s formula that

f(x) + t〈∇f(x), d〉 ≤ f(x+ td)

= f(x) + t〈∇f(x), d〉+
t2

2
〈Hf(x)d, d〉+ o(t2).

This implies that 〈Hf(x)d, d〉+ o(t2)/t2 ≥ 0; letting t→ 0 proves that Hf(x)
is positive semidefinite.

Conversely, assume that Hf(x) is positive semidefinite at every x ∈ C,
and let x, y ∈ C, x 6= y. There exists a point z ∈ (x, y) such that

f(y) = f(x) + 〈∇f(x), y − x〉+
1
2
〈Hf(z)(y − x), y − x〉

≥ f(x) + 〈∇f(x), y − x〉,

and Theorem 4.27 implies that f is convex.
The proof of (b) is similar to that of (a). ut

It should be mentioned that the converse of statement (b) is false, as the
function f(x) = x4 shows: f is strictly convex, but f ′′(0) = 0.

Remark 4.29. Theorems 4.27 and 4.28, with straightforward modifications, are
valid in much more general spaces.

Corollary 4.30. Consider the quadratic function

f(x) =
1
2
〈Qx, x〉+ 〈c, x〉,

where Q is a symmetric n× n matrix and c ∈ Rn. Then:

(a) The function f is convex if and only if Q is positive semidefinite;
(b) The function f(x) is strictly convex if and only if Q is positive definite;
(c) If f is bounded below on Rn, then f is convex and achieves its minimum

on Rn;
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(d) Let X∗ be the set of the global minimizers of f ; if X∗ 6= ∅, then the values
〈Qx∗, x∗〉 and 〈c, x∗〉 are independent of x∗ ∈ X∗; in fact,

〈Qx∗, x∗〉 = −〈c, x∗〉 = −2 min
Rn

f for all x∗ ∈ X∗.

Proof. We have ∇f(x) = Qx + c and Hf(x) = Q; see Example 1.26. Thus,
Theorem 4.28 proves (a).

If f(x) is strictly convex and h 6= 0, then Theorem 4.27 gives

f(x) + 〈∇f(x), h〉 < f(x+ h) = f(x) + 〈∇f(x), h〉+
1
2
〈Qh, h〉.

We have 〈Qh, h〉 > 0 for all 0 6= h ∈ Rn, that is, Q is positive definite.
Conversely, if Q is positive definite and h 6= 0, then

f(x+ h) = f(x) + 〈∇f(x), h〉+
1
2
〈Qh, h〉 > f(x) + 〈∇f(x), h〉,

and Theorem 4.27 implies that f is strictly convex. This proves (b).
If x∗ is a global minimizer of f on Rn, then Hf(x∗) = Q is positive

semidefinite by Theorem 2.12, and then it follows from (a) that f is a convex
function.

Suppose that f is bounded from below on Rn. Diagonalize Q in the form
Q = UΛUT , where U is an orthogonal matrix and Λ = diag{λ1, . . . , λn},
where λi 6= 0 for i = 1, . . . , k and λi = 0 for i = k + 1, . . . , n. Substituting
u = UTx and setting c = UT c, we have

f(x) =
1
2
〈ΛUTx, UTx〉+ 〈UT c, UTx〉 =

1
2
〈Λu, u〉+ 〈c, u〉

=: f(u) =
k∑
i=1

(λi
2
u2
i + ciui

)
+

n∑
i=k+1

ciui.

It is clear that minimizing f over x ∈ Rn is equivalent to minimizing f over
Rn and that f has a lower bound on Rn if and only if λi > 0 for i = 1, . . . , k
and ci = 0 for i = k+ 1, . . . , n. Moreover, if f is bounded from below, then it
has a minimizer, since each function 1

2λiu
2
i +ciui is minimized at u∗i = −ci/λi

for i = 1, . . . , k. This proves (c).
It remains to prove (d). If x ∈ X∗ is any global minimizer of f , then

∇f(x∗) = Qx∗ + c = 0 and

min
Rn

f = f(x∗) =
1
2
〈Qx∗, x∗〉+ 〈c, x∗〉 =

1
2
〈Qx∗, x∗〉 − 〈Qx∗, x∗〉

= −1
2
〈Qx∗, x∗〉 =

1
2
〈c, x∗〉.

ut
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It is shown in Chapter 1 (see Exercise 9 on page 25) that Gâteaux differ-
entiability is in general weaker than Fréchet differentiability, and additional
conditions, such as the continuity of partial derivatives, are needed to improve
Gâteaux differentiability to Fréchet differentiability; see Theorem 1.19. We
end this section by showing that convexity collapses the distinction between
Gâteaux and Fréchet differentiability.

Theorem 4.31. Let C be a convex set in Rn such that int(C) 6= ∅, and let
f : C → R be a convex function. If x ∈ int(C), and the partial derivatives
{∂f(x)/∂xi}n1 exist, then f is Fréchet differentiable at x.

Consequently, if f is Gâteaux differentiable at x, then it is Fréchet differ-
entiable at x.

Proof. Define the function

g(h) := f(x+ h)− f(x)− 〈∇f(x), h〉.

Note that g is a convex function, g(0) = 0, and ∇g(0) = 0. We have

g(h) = g(
1
n

n∑
i=1

nhiei) ≤
∑

hi
g(nhiei)
nhi

≤ ‖h‖ ·
∑∣∣∣∣g(nhiei)

nhi

∣∣∣∣ ,
where the last two sums are over all i such that hi 6= 0. Here the first in-
equality follows from Jensen’s inequality, and the last inequality follows from
the Cauchy–Schwarz inequality followed by the inequality ‖u‖ ≤ ‖u‖1 :=∑n
i=1 |ui|, u ∈ Rn. The convexity of g also implies that 0 = 2g(0) ≤

g(−h) + g(h). Using this and the above inequalities for g, we obtain

−
∑∣∣∣∣g(−nhiei)

nhi

∣∣∣∣ ≤ −g(−h)
‖h‖ ≤ g(h)

‖h‖ ≤
∑∣∣∣∣g(nhiei)

nhi

∣∣∣∣ .
The terms inside the sums above converge to ∂g(0)/∂xi = 0 as hi → 0.
Thus, g(h) = o(h), which is equivalent to the statement that f is Fréchet
differentiable at x.

4.5 Optimization on Convex Sets

One of the most important and basic properties of convex functions is the fact
that any local minimizer on a convex set is a global one.

Theorem 4.32. Let f : C → R be a convex function on a convex set C in a
vector space E. Any local minimizer of f on C is a global minimizer of f on
C. If f is strictly convex, then there exists at most one global minimizer of f
on C.
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Proof. Let x∗ ∈ C be a local minimizer of f on C. If x ∈ C, then the line
segment [x∗, x] lies in C. For t ∈ (0, 1), the point xt := x∗ + t(x − x∗) =
(1 − t)x∗ + tx lies in C, and since x∗ is a local minimizer, f(x∗) ≤ f(xt) if t
is close to 0. We have

f(x∗) ≤ f(xt) ≤ (1− t)f(x∗) + tf(x),

where the last inequality follows from the convexity of f . Consequently,

f(x∗) ≤ f(x) for all x ∈ C,

that is, x∗ is a global minimizer of f on C.
If f is strictly convex and x∗1 and x∗2 are two global minimizers of f on C,

then
f
(x∗1 + x∗2

2

)
<

1
2
f(x∗1) +

1
2
f(x∗2) = f(x∗1) = f(x∗2) = f∗,

a contradiction. The theorem is proved.
A slightly different proof runs as follows: If x ∈ C satisfies f(x) < f(x∗),

then

f(x∗ + t(x− x∗)) = f((1− t)x∗ + tx) ≤ (1− t)f(x∗) + tf(x) < f(x∗)

for all t ∈ (0, 1], that is, f(z) < f(x∗) for all z ∈ (x∗, x]. Since the segment
(x∗, x] ⊆ C contains points arbitrarily near x∗, this clearly contradicts the
assumption that x∗ is a local minimizer of f . ut

Now we consider the minimization of a differentiable function f on a con-
vex set C. We obtain an important first-order necessary condition, called a
variational inequality (the inequality (4.16) below), that a local minimizer
x∗ ∈ C of f must satisfy. If f a convex function, then the variational inequal-
ity is a sufficient condition as well, so that it provides a characterization of a
global minimizer of the convex function f on C.

Theorem 4.33. Let C be a convex set in Rn, and let f be a Gâteaux differ-
entiable function on an open set containing C.

(a) (First-order necessary condition for a local minimizer) If x∗ ∈ C
is a local minimizer of f on C, then

〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ C. (4.16)

(b) (First-order sufficient condition for a local minimizer) If f is
convex and (4.16) is satisfied at x∗ ∈ C, then x∗ is a global minimizer of
f on C.

Proof. To prove (a), pick a point x ∈ C. Since C is convex, [x∗, x] ⊆ C, and
since x∗ is a local minimizer of f on C, we have f(x∗ + t(x − x∗)) ≥ f(x∗)
when t > 0 is close to zero. Thus,
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〈∇f(x∗), x− x∗〉 = lim
t↘0

f(x∗ + t(x− x∗))− f(x∗)
t

≥ 0.

To prove (b), suppose x∗ ∈ C satisfies the variational inequality (4.16).
We have

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉 ≥ f(x∗) for all x ∈ C

where the first inequality follows from the convexity of f , and the second one
from (4.16). ut

It is clear from the proof above that Theorem 4.33 is valid in very general
spaces, including normed linear spaces.

4.5.1 Examples of Variational Inequalities

Example 4.34. Let f be a Gâteaux differentiable function in a neighborhood
of a convex set C ⊆ Rn. If C has nonempty interior, and x∗ ∈ int(C) is
a local minimizer of f , then ∇f(x∗) = 0, as we have seen in Chapter 2
(Theorem 2.7). This equation also follows from the variational inequality,
since choosing x = x∗ − ε∇f(x∗) ∈ C in (4.16) gives ‖∇f(x∗)‖ ≤ 0.

Example 4.35. Consider a differentiable function f : [a, b] → R. If x∗ ∈ (a, b)
is a local minimizer, then the preceding example above shows that f ′(x∗) = 0,
the familiar condition from elementary calculus. If x∗ = a is a local minimizer,
then x−x∗ = x−a ≥ 0 in the variational inequality, so we can deduce only that
f ′(a) ≥ 0. Thus, the condition f ′(a) ≥ 0 is the first-order necessary condition
for a to be a local minimizer of f on [a, b]. A similar argument shows that
if x∗ = b is a local minimizer of f on [a, b], then f ′(b) ≤ 0. We see that the
variational inequality gives something new, even in the one-dimensional case.

Example 4.36. Consider the minimization of a differentiable function on an
affine subspace,

min f(x)
s. t. Ax = b,

where f : Rn → R, A is an m × n matrix, and b ∈ Rm. Define C = {x ∈
Rn : Ax = b}. If x∗ ∈ C is a local minimizer of f on C, then it satisfies the
variational inequality

〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ C.

Since {z = x−x∗ : x ∈ C} = {z : Az = 0} = N(A), the variational inequality
becomes

〈∇f(x∗), z〉 ≥ 0 for all z ∈ N(A).

If z ∈ N(A), so is −z ∈ L, and the above inequality reduces to the equality
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〈∇f(x∗), z〉 = 0 for all z ∈ N(A).

We know from linear algebra that this is equivalent to the inclusion ∇f(x∗) ∈
N(A)⊥ = R(AT ). Consequently,

∇f(x∗) ∈ R(AT ) (4.17)

is a necessary condition for x∗ to be a local minimizer. If f is convex, then
(4.17) is a necessary and sufficient condition for x∗ to be a global minimum
of f over C.

The condition (4.17) can be put in the form

ΠN(A)∇f(x∗) = 0,

which states that the component of ∇f(x∗) along the feasible set C = {x :
Ax = b} is zero. This resembles the first-order optimality condition in uncon-
strained optimization, and should make it easier to remember (4.17).

Example 4.37. Consider the quadratic program

min f(x) :=
1
2
〈Qx, x〉+ cTx,

s. t. x ≥ 0,

where Q is an n× n symmetric and c ∈ Rn.
If Q is positive definite, then the objective function f(x) is coercive, and

thus there exists a unique global minimizer x∗ of f over the nonnegative
orthant {x ∈ Rn : x ≥ 0}.

Let x∗ ≥ 0 be a local minimizer of f on the nonnegative orthant. Since
∇f(x∗) = Qx∗ + c, the variational inequality becomes

〈Qx∗ + c, x− x∗〉 ≥ 0 for all x ≥ 0 in Rn. (4.18)

If we choose x = 2x∗ and then x = 0 in (4.18), we obtain 〈Qx∗ + c, x∗〉 = 0.
Substituting this in (4.18) implies that 〈Qx∗ + c, x〉 ≥ 0 for all x ≥ 0, which
in turn yields Qx∗ + c ≥ 0. Therefore, (4.18) implies the conditions

Qx∗ + c ≥ 0, x∗ ≥ 0, and 〈Qx∗ + c, x∗〉 = 0. (4.19)

Conversely, it is easy to verify that (4.19) implies (4.18).
Therefore, the two inequalities and the equation in (4.19) are the first-

order necessary conditions for a local minimizer of a quadratic function f
over the nonnegative orthant. If, moreover, f is a convex quadratic function,
then (4.19) characterizes a global minimizer of f over the same orthant by
virtue of Theorem 4.33.

Remark 4.38. The problem of finding a point x∗ satisfying (4.19), where Q
is an arbitrary n × n matrix Q, is called a linear complementarity problem
(LCP). Note that if Q is not symmetric, then (4.19) cannot be associated
with an optimization problem, but it may come from a saddle point problem,
for example.
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Example 4.39. Consider the maximization problem

max g(x) := xα1
1 . . . xαnn ,

s. t. x1 + · · ·+ xn = 1
xi ≥ 0, i = 1, . . . , n

Since each x∗i must clearly be positive at a local maximizer, we can reformulate
the problem:

min f(x) := −α1 lnx1 + · · ·+ (−αn) lnxn
s. t. x1 + · · ·+ xn = 1.

We have ∇f(x) = (−α1/x1, . . . ,−αn/xn)T , and the constraint set has the
form C = {x : Ax = 1}, where A = [1, . . . , 1]; thus it follows from (4.17) that
αi/x

∗
i = λ (i = 1, . . . , n). Therefore, x∗i = αi/λ and

1 =
n∑
i=1

x∗i =
n∑
i=1

αi
λ
,

giving λ =
∑n
i=1 αi and

x∗i =
αi∑n
k=1 αk

, i = 1, . . . , n.

Optimization is often a useful tool for proving inequalities. For example, if
αk = 1/n for all k = 1, . . . , n in the above problem, then x∗ = (1/n, . . . , 1/n),
and the optimal objective value of the maximization problem is g(x∗) = 1/n.
This proves that g(x) ≤ 1/n whenever x ≥ 0 and x1 + · · ·+xn = 1. Since both
the objective function and the function h(x) := x1 + · · ·+xn are homogeneous
of first degree, that is, g(tx) = tg(x) and h(tx) = th(x) for t ≥ 0, we have
indeed proved the inequality

n
√
x1x2 · · ·xn ≤

x1 + x2 + · · ·+ xn
n

for all xi ≥ 0, i = 1, . . . , n,

which is the precisely the arithmetic–geometric mean inequality. Moreover,
since the maximum of g over the feasible set is unique, we see that the
arithmetic–geometric mean inequality becomes an equality if and only if
x1 = x2 = · · · = xn.

Example 4.40. Finally, we consider the minimization of a differentiable func-
tion on a convex polyhedron,

min f(x)
s. t. Ax ≤ a,

Bx = b,
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where f : Rn → R, A and B are m × n and p × n matrices, respectively,
a ∈ Rm, and b ∈ Rp. Define C = {x ∈ Rn : Ax ≤ a,Bx = b}. If x∗ ∈ C is a
local minimizer of f on C, then it satisfies the variational inequality

〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ C,

or equivalently the implication

Ax ≤ a, Bx = b =⇒ 〈∇f(x∗), x〉 ≥ 〈∇f(x∗), x∗〉.

It is not a trivial matter to rewrite this system of potentially infinitely many
conditions (one condition for each x ∈ P ) in a compact, manageable form,
but it is possible. Note that the implication above is equivalent to stating that
the linear inequality system

Ax ≤ a, Bx = b, 〈∇f(x∗), x〉 < 〈∇f(x∗), x∗〉

is inconsistent. It follows from Theorem 3.17 that there exist multipliers y ∈
Rm, z ∈ Rm such that

∇f(x∗) = AT y +BT z, y ≥ 0. (4.20)

These optimality conditions are referred to as the Karush–Kuhn–Tucker
(KKT) conditions for the problem of minimization of f over the set C =
{x : Ax ≤ a,Bx = b}. This topic will be discussed in great detail in Chap-
ter 9.

If f is a convex function, then the KKT conditions (4.20) are, of course,
necessary and sufficient conditions for a global minimizer of f over C.

4.6 Variational Principles on a Closed Convex Set

If we minimize a differentiable function f : C → R over a convex set in
C ⊆ Rn and f has a local minimizer on C, then the variational inequality
may be applied. If f is bounded from below on C but has no minimizer on C,
then Ekeland’s ε-variational principle may be helpful.

Theorem 4.41. Let C ⊆ Rn be a closed convex set, and f a lower semicon-
tinuous, Gâteaux differentiable function in a neighborhood of C.

If f is bounded from below on C, then there exists a sequence {xk}∞k=1 of
points in C such that

f(xk)→ inf
C
f, and lim

k→∞
〈∇f(xk), d〉 ≥ 0 for all d ∈ rec(C),

where rec(C) is the recession cone of C,

recC := {d ∈ Rn : x+ td ∈ C for all x ∈ C, t ≥ 0}.
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Proof. Applying Theorem 3.2 with λ = 1 and ε = 1/k, we obtain a point
xk ∈ C satisfying the conditions

f(xk) ≤ inf
C
f +

1
k

and f(xk) ≤ f(x) +
‖x− xk‖

k
for all x ∈ C.

Let d ∈ rec(C) and t > 0. Since f is Gâteaux differentiable, we have

f(xk + td) = f(xk) + t〈∇f(xk), d〉+ o(t);

substituting this in the second inequality above and simplifying, we obtain

0 ≤ 〈∇f(xk), d〉+
‖d‖
k

+
o(t)
t
.

Letting t↘ 0, we see that the sequence {xk} satisfies the required properties.
ut

4.7 Exercises

1. Let C be a nonempty set in a vector space E. Show that C is convex if
and only if sC + tC = (s+ t)C for all positive numbers s, t.

2. Let A be a nonempty set in a vector space E, and define cok(A) to be the
set of all k-convex combinations of points from A, that is,

cok(A) :=
{ k∑
i=1

λixi : xi ∈ A, λi ≥ 0,
k∑
i=1

λi = 1
}
.

Show that cok(col(A)) = cokl(A) for any positive integers k and l.
3. Let K1 and K2 be convex cones in a vector space E. Show that K1 +K2

is a convex cone, K1 +K2 ⊆ co(K1 ∪K2), and if both cones contain the
origin, then K1 +K2 = co(K1 ∪K2).

4. Let C,D be two nonempty sets in Rn.
(a) If C is open, show that C +D is open.
(b) If C is open, then so is co(C).
(c) Give an example of a closed set in R2 whose convex hull is not closed.

5. The convexity of a function is a one-dimensional concept in the following
sense. Let f : C → R be a convex function, where C is a convex subset of
a vector space E. For x, y ∈ C, define d = y − x and define the function
h(t) := f(x+ td) on [0, 1]. Show that f is a convex function if and only if
h(t) is a convex function for every pair x, y ∈ C.

6. Let f : C → R be a strictly convex function on a convex set C in a vector
space E. Let xi ∈ C and λi > 0 for i = 1, 2, . . . , k such that

∑k
i=1 λi = 1.

If
f(λ1x1 + · · ·+ λkxk) = λ1f(x1) + · · ·+ λkf(xk),
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then show that x1 = x2 = · · · = xk.
Hint: Use induction on k.
This problem is important for applications of convexity to inequalities
where it is used to characterize when the inequality becomes an equality.

7. Show that the function f(x) := − lnx is strictly convex on (0,∞). For n-
tuples (x1, x2, . . . , xn) and (α1, α2, . . . , αn) such that xk > 0 and αk > 0
for all k, and

∑
αk = 1, show that

xα1
1 xα2

2 · · ·xαnn ≤ α1x1 + α2x2 + · · ·+ αnxn,

with equality holding if and only if x1 = x2 = · · · = xn.
8. Consider the arithmetic–geometric–harmonic mean inequality,

n
1
x1

+ · · ·+ 1
xn

≤ (x1 · · ·xn)1/n ≤ x1 + · · ·+ xn
n

,

where x1, . . . , xn are positive numbers.
(a) Use Exercise 7 to prove the arithmetic–geometric mean inequality,

and characterize when the inequality becomes an equality.
(b) Prove the geometric–harmonic mean inequality, and characterize the

equality case.
9. Let f : I → R be a convex function on an interval I = [a, b].

(a) If x1 < x2 < x3 are three points in I, then show that

f(x2)− f(x1)
x2 − x1

≤ f(x3)− f(x1)
x3 − x1

≤ f(x3)− f(x2)
x3 − x2

.

Moreover, show that the inequalities are strict when f is a strictly
convex function.
Hint: The inequalities may be obtained by purely algebraic means,
but it may be helpful to draw a picture to visualize them.

(b) Use (a) to prove that the one-sided derivatives exist: if x is an interior
point of I, then show that the difference quotient (f(x+ t)− f(x))/t
is an increasing function of t ≥ 0. Use this to show that

f ′+(x) := lim
t↘0

f(x+ t)− f(x)
t

= inf
t↘0

f(x+ t)− f(x)
t

exists and is finite; similarly, show that

f ′−(x) := lim
t↗0

f(x+ t)− f(x)
t

= sup
t↗0

f(x+ t)− f(x)
t

exists and is finite.
(c) If x is an interior point of I, show that f ′−(x) ≤ f ′+(x).
(d) If x is not an interior point of I, show that one of the one-sided

derivatives still makes sense, that it exists, but give an example to
show that it may be infinite (∓∞).
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(e) Let f : C → R be a convex function on a convex set C ⊆ Rn. Consider
a point x ∈ C and a direction d ∈ Rn such that [x, x+δd] ∈ C for some
δ > 0. Recall that the directional derivative at x along d is given by

f ′(x; d) = lim
t↘0

f(x+ td)− f(x)
t

.

Show that the directional derivative exists by proving that

f ′(x; d) = inf
t>0

f(x+ td)− f(x)
t

,

but it may be infinite. Show that if [x−δd, x+δd] ∈ C for some δ > 0,
then f ′(x; d) is finite.
Hint: Use parts (a)–(c).
This proves the important result that a convex function always has di-
rectional derivatives in the interior of its domain, regardless of whether
it is differentiable in any other sense.

10. This problem provides a condition equivalent to the convexity inequality

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y), 0 ≤ t ≤ 1.

(a) Let f : I → R be a function, where I ⊆ R is an interval. Let x, y ∈ I
and let l be the line connecting (x, f(x)) and (y, f(y)). Recall that the
function f is convex if and only if the segment of l between (x, f(x))
and (y, f(y)) lies above the graph of the function f . Show that this is
equivalent to the statement that the remaining part of the line l lies
below the graph, that is,

f((1− t)x+ ty) ≥ (1− t)f(x) + tf(y), t ≥ 1, (1− t)x+ ty ∈ I.

(b) Let f : R → R be a convex differentiable function. Use part (a) to
give a more geometric proof of the convexity inequality

f(y) ≥ f(x) + f ′(x)(y − x)

given in Theorem 4.27 on page 98.
(c) Let f : R→ R be a convex function satisfying f(0) = 0 and f(x) > 0

for some x > 0. Show that limx→∞ f(x) =∞. If, moreover, f(y) > 0
for some y < 0, then show that f is a coercive function.

(d) Generalize parts (b) and (c) to a function f : C → R, where C ⊆ Rn
is a convex set.

11. Let f : C → R be a twice Fréchet differentiable function on a convex open
set C ⊆ Rn. The following statements are known to be equivalent:
(a) f is convex.
(b) f(y) ≥ f(x) + 〈∇f(x), y − x〉 for all x, y ∈ C.
(c) 〈∇f(y)−∇f(x), y − x〉 ≥ 0 for all x, y ∈ C.
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(d) Hf(x) is positive semidefinite at every x ∈ C.
In fact, we have proved that (a), (b), and (d) are equivalent conditions.
Give direct proofs of
(i) (b) implies (c).
(ii) (c) implies (b).

is differentiable and nondecreasing.
(iii) (c) implies (d).
(iv) (d) implies (c).

12. (a) Let f : R→ R be a differentiable function such that the graph of the
function f at every point x ∈ R is supported by a line, that is, there
exists αx ∈ R satisfying

f(y) ≥ f(x) + αx(y − x).

Show that αx = f ′(x), and consequently, that f is a convex function.
(b) Suppose that f : Rn → R is a differentiable function such that the

graph of f at every point x ∈ Rn is supported by a hyperplane, that
is, there exists αx ∈ Rn satisfying

f(y) ≥ f(x) + 〈αx, y − x〉.

Show that αx = ∇f(x), so that f is a convex function.
(c) Prove (a) and (b) without assuming that f is differentiable.

13. (Infimal convolution of convex functions) Let f, g : Rn → R ∪ {∞} be
convex functions. The function

(f ut g)(x) := inf{f(x− y) + g(y) : y ∈ Rn}

is called the infimal convolution of f and g.
Show that f ut g is a convex function.

14. Let C ⊆ Rn be a convex set. Show that the following functions are convex:
(a) The indicator function of C defined by

δC(x) :=

{
0, if x ∈ C,
+∞, otherwise.

(b) The distance function to C defined by

dC(x) := inf{‖z − x‖ : z ∈ C}.

(c) The support function of C defined by

σC(x) := sup{〈z, x〉 : z ∈ C}.

Hint: Consider the epigraph of the function.
Furthermore,

Hint: First, show that the function g(t) :=f(x+t(y−x))−t〈∇f(x),y−x〉
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(d) Show that dC = ‖ · ‖ ut δC , where ‖ · ‖(x) = ‖x‖ is the norm function
on Rn.

15. Let the function f : C → R given by f(x) = 〈a, x〉2/〈b, x〉 be defined on
a convex set C ⊆ Rn such that 〈b, x〉 > 0 on C. Show that f is a convex
function.

16. (a) Show that if g : R → R is a concave function with g(x) > 0, then
f = 1/g is a convex function.

(b) Show that a function f : Rn → R is convex if and only if for any
given x, y ∈ Rn the function h : R → R given by h(t) = f(x + ty) is
convex.

(c) Use (a) and (b) to show that if a function g : Rn → R is concave and
g(x) > 0, then the function f = 1/g is a convex function.

17. Suppose that f : Rn → R is a convex function.
(a) Show that if f(0) = 0 and f is an even function, that is, f(−x) =
f(x), then f(x) ≥ 0 for all x ∈ Rn.
Hint: Compare f(x), f(−x), f(0) using the convexity of f .

(b) Suppose that f is homogeneous of degree p 6= 1, that is, f(tx) =
tpf(x) for all x ∈ Rn and for all t ≥ 0. Show that f(0) = 0 and
f(x) ≥ 0 for all x ∈ Rn.
Hint: Use the convexity inequality for f on the three points −x, tx, 0,
and vary t > 0.

(c) Show that if f is not a constant function, then there exists 0 6= x0 ∈
Rn such that

lim
t→∞

f(tx0) =∞.

Hint: We may assume that f(0) = 0. Show that there exists a point
x0 with f(x0) > 0 and apply the convexity inequality for f at the
points 0, x0, tx0, where t > 1. (If x0 does not exist, then one would
get a contradiction by applying the convexity inequality at x,−x, 0
for any x 6= 0.)

18. Let D be a compact, convex set in Rn, and let C be its projection onto
Rn−1, that is, onto the hyperplane xn = 0. Show that there exist two
convex functions f and g on C such that

D = {(x, λ) : x ∈ C, −g(x) ≤ λ ≤ f(x)}.

19. (Logarithmically convex functions) A positive-valued function f : C → R,
where C ⊆ Rn is a convex set, is called logarithmically convex if g(x) :=
ln f(x) is a convex function.
(a) Let f : [a, b]→ R. Show that f is a convex function if and only if

sup
t∈I
{f(t)− αt} ≤ max

t∈∂I
{f(t)− αt}

for all α ∈ R and all closed subintervals I of [a, b].
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(b) Let f be a positive-valued function on [a, b]. Use part (a) to show
that the function ln f(t) is convex if and only if ectf(t) is a convex
function for every c ∈ R.

(c) Let {fi(t)}k1 be positive-valued functions on [a, b] such that each
ln fi(t) is a convex function. Show that ln

(∑k
i=1 fi(t)

)
is a convex

function.
(d) Show that ln

(∑k
i=1 e

fi(t)
)

is a convex function if the functions {fi}k1
are all convex.
This proves that if {fi}k1 are convex functions, then

∑k
i=1 e

fi(t) is a
logarithmically convex function.

(e) Generalize (d) to show that
∫
ef(t,s)ds is logarithmically convex under

appropriate assumptions on f(t, s).
(f) Generalize parts (c)–(e) to functions on a convex set C ⊆ Rn.

20. (Finite difference characterization of convex functions) Let f : I =
[a, b] → R, and let x1, x2, x3 ∈ I be three distinct points. Define the
finite difference

[x1, x2]f :=
f(x1)− f(x2)

x1 − x2
,

and the second-order finite difference

[x1, x2, x3]f :=
[x1, x2]f − [x2, x3]f

x1 − x3
.

Show that f is a convex function if and only if [x1, x2, x3]f ≥ 0 for all
distinct x1, x2, x3 ∈ I.

21. Jensen’s inequality for convex functions has integral versions. The follow-
ing is an example. Let f : C → R be a continuous convex function on
a convex set C ⊆ Rn. If x : [0, 1] → C is any continuous function with
component functions xi, that is, x(t) = (x1(t), . . . , xn(t)), then prove that

f

(∫ 1

0

x(t)dt
)
≤
∫ 1

0

f(x(t))dt.

Here ∫ 1

0

x(t)dt =
(∫ 1

0

x1(t)dt, . . . ,
∫ 1

0

xn(t)dt
)
.

Hint: Approximate the integral with Riemann sums,∫ 1

0

f(x(t))dt ≈
∑

f(xi)(ti+1 − ti),

and do the same with the integral
∫ 1

0
x(t)dt. Use Jensen’s inequality on

the sums and pass to the limit.
22. (Convexity of the function − ln detX) Consider the function f(X) =
− ln detX on the positive definite cone Pn, the set of symmetric, posi-
tive definite n× n matrices. The purpose of this exercise is to prove that
f is strictly convex, in three different ways.
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(a) In Example 1.27 on page 18, it is shown that Hf(X) = X−1 ⊗X−1.
If D is a symmetric n× n matrix and X ∈ Pn, show that

〈Hf(X)(D), D〉 = tr(X−1DX−1D),

and if D 6= 0, prove that 〈Hf(X)(D), D〉 > 0.
(b) First, show by direct computation that f is strictly convex on the set

of diagonal matrices with positive entries. Next, let X,Y ∈ Pn, and
use Theorem 2.21 on page 42 to write X = ZTΛZ and Y = ZTΣZ,
where Z is an n×n matrix Z and Λ,Σ are diagonal matrices. Combine
the two results to prove that f is strictly convex on Pn.

(c) Let X ∈ Pn and let D be an n× n symmetric matrix. Show that the
function

p(t) := det(X + tD) = detX + det(I + tX−1/2DX−1/2)

is a polynomial that can be written as p(t) = c
∏k

1(1 − tti), where
ti 6= 0 (in fact, t−1

i is an eigenvalue of −X−1/2DX−1/2, thus real).
Show that if D 6= 0, then

〈Hf(X)D,D〉 = (− ln p)′′(0) =
k∑
1

t−2
i > 0.

This approach comes from the theory of hyperbolic polynomials; see
[101, 102, 119, 26].

23. Consider the function F (x) = (x1x2 · · ·xn)1/n on the nonnegative orthant
Rn+ := {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}.
(a) Show that F is a concave function by computing its Hessian Hf(x).
(b) Use (a) to show that

(y1y2 · · · yn)1/n ≤ (x1x2 · · ·xn)1/n
1
n

n∑
i=1

yi
xi
,

and prove that this implies the arithmetic–geometric mean inequality.
(c) Prove the inequality

n∏
1

(xi + yi)1/n ≥
( n∏

1

x
1/n
i

)
+
( n∏

1

y
1/n
i

)
, (4.21)

and show that equality holds if and only if x, y ∈ Rn+ are proportional,
that is, x and y lie on a line through the origin.

24. (Oppenheim); see [127]. The inequality (4.21) has interesting applica-
tions to matrices.
(a) Let A,B be two n × n symmetric, positive definite matrices. Show

that there exists a nonsingular n× n matrix X such that

XTAX = Λ = diag{λ1, . . . , λn} and XTBX = ∆ = diag{δ1, . . . , δn}.
Hint: Use Theorem 2.21.
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(b) Use the inequality (4.21) on (λ1, . . . , λn) and (δ1, . . . , δn) to prove
that

(det(A+B))1/n ≥ (detA)1/n + (detB)1/n,

with equality holding if and only if A and B are multiples of each
other.

(c) If A =
[
A11 A12
A21 A22

]
is a partition of A such that A11 and A22 are r × r

and (n− r)× (n− r) matrices, respectively, then

detA ≤ detA11 · detA22,

with equality holding if and only if A is block diagonal, that is, A12 = 0
and A21 = 0.
Hint: Use (b) with B =

[
A11 −A12
−A21 A22

]
. Why is B positive definite?

(d) Show that

detA ≤
n∏
i=1

aii,

with equality holding if and only if A is a diagonal matrix.
(e) Prove Hadamard’s inequality : if C = [c1, c2, . . . , cn] is a nonsingular
n× n matrix with columns {ci}n1 , then

|detC| ≤
n∏
i=1

‖ci‖,

with equality holding if and only if {ci}, the columns of C, are mutu-
ally orthogonal.
Hint: Apply (d) to A = CTC.

25. (Gauss–Lucas) Let p(z) =
∑n

0 ajz
j be a polynomial with complex co-

efficients aj . Show that the roots of the derivative p′(z) are contained in
the convex hull of the roots of p(z).
Hint: Let {zj}n1 be the roots of p(z). If z is a root of p′ but not of p, show
that

0 =
p′(z)
p(z)

=
n∑
j=1

1
z − zj

=
n∑
j=1

1
z − zj

=
n∑
j=1

z − zj
‖z − zj‖2

.

26. Let p(z) =
∑n

0 ajz
j be a polynomial with complex coefficients aj and let

C ⊂ C = R2 be a closed convex set. Show that

D := {w ∈ C : all solutions z of p(z) = w lie in C}
is a convex set.
Hint: For given positive integers n1, n2 and points w1, w2 ∈ D, define the
polynomial

q(z) = (p(z)− w1)n1(p(z)− w2)n2 ,

and use Exercise 25 to show that all roots of q′ lie in C. Use the known
fact (which you may assume) that the roots of a polynomial depend con-
tinuously on its coefficients to finish the proof.
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27. (Carleman’s inequality) Let
∑∞
i=1 ai <∞, where ai > 0. Show that

∞∑
i=1

(a1a2 · · · an)1/n ≤ e
∞∑
i=1

ai.

Hint: Let{ci}∞1
geometric mean inequality to get

(a1a2 · · · an)1/n ≤ (c1c2 · · · cn)−1/n(ca1ca2 · · · can)1/n

≤ (c1c2 · · · cn)−1/n ca1 + ca2 + · · ·+ can
n

.

Choose cm = (m+1)m

mm−1 , and use the fact that∑
n≥m

1
n(n+ 1)

=
∑
n≥m

( 1
n
− 1
n+ 1

)
=

1
m

and (1 + 1/m)m < e to complete the proof of the inequality.
28. This problem gives an integral representation for a twice differentiable

convex function f : I → R on an interval I = [a, b]. (In fact, a suitable
generalization gives an integral representation for any convex function,
but this involves more general Stieltjes integrals, which we do not consider
here.)
(a) Let I = [0, 1], and define K : I × I → R by

K(x, y) =

{
x(1− y), if x ≤ y,
(1− x)y, if y ≤ x.

(K(x, y) is the Green’s function for the differential equation u′′ = 0.)
Show that if f(0) = f(1) = 0, then

f(x) = −
∫ 1

0

K(x, y)f ′′(y)dy.

(b) Show that in general,

f(x) = xf(0) + (x− 1)f(1)−
∫ 1

0

K(x, y)f ′′(y)dy.

(c) What is K(x, y) if I = [a, b] is a general interval, and what is the
analogue of the equation in (b)?

be a positive, yet unspecified, sequence. Use the arithmetic–





5

Structure of Convex Sets and Functions

This chapter is devoted to investigating the deeper properties of convex sets
and convex functions on fairly general affine and vector spaces. The separation
properties of convex sets are very important in optimization, especially in
duality theory, with more sophisticated separation theorems leading to better
duality results; see for example Theorem 11.15, on the strong duality in convex
programming. In turn, sophisticated separation theorems are obtained by a
careful study of the properties of interior points of convex sets. Since a convex
set is not necessarily full-dimensional, it is important to study the “relative
interior” of convex sets. It turns out that the relative interior of a convex set
can be studied in a purely algebraic setting, without any use of topological
notions, and this leads to a rich theory of the relative algebraic interior of
convex sets. If the space under consideration has a topology, then it turns
out that there is a strong connection between the algebraic and topological
notions of relative interior, and the topological results can be obtained from
the corresponding algebraic ones with relative ease.

The boundary structure of convex sets, especially the properties of extreme
points and directions of convex sets, are useful in many applications, since it
is possible to represent convex sets in terms of these. For example, a theorem
of Minkowski states that a compact convex set in Rn is the convex hull of its
extreme points.

These are among the many reasons that make it worthwhile to undertake
a close study of the finer structure of convex sets.

5.1 Algebraic Interior and Algebraic Closure of Convex
Sets

Definition 5.1. Let C be a convex subset of an affine space A. The algebraic
interior of C, denoted by aiA(C) (ai(C) if A is understood from context), is
the set of all points x ∈ C such that every line ` ⊆ A through x contains a
line segment in C having x in its interior, that is,

DOI 10.1007/978-0-387-68407-9_5,  © Springer Science +Business Media, LLC 2010 
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aiA(C) := {x ∈ C : ∀z ∈ A, ∃δ > 0, [x− δ(z − x), x+ δ(z − x)] ⊆ A}
= {x ∈ C : ∀z ∈ A, ∃δ > 0, [x, x+ δ(z − x)) ⊆ A}.

A convex set C ⊆ A is called a convex algebraic body if aiA(C) 6= ∅.
If the affine set A is aff(C), the affine hull of C, then aiA(C) is called the

relative algebraic interior of C, and is denoted by rai(C).
The algebraic closure of C, denoted by ac(C), is the set of all points z ∈ A

such that [x, z) ⊆ C for some x ∈ C,

ac(C) := {z ∈ A : ∃x ∈ C, [x, z) ⊆ C}.

Lemma 5.2. If C is a convex set in an affine space A, then ai(C) and ac(C)
are also convex sets in A.

Proof. Let x, y ∈ ai(C). If u ∈ A, then there exists δ > 0 such that x+ δ(u−
x)] =: [x, p] ⊂ C and [y, y + δ(u − y)] =: [y, q] ⊂ C; see the first figure in
Figure 5.1. If z := (1− t)x+ ty for some t ∈ (0, 1), then we have that

r := z + δ(u− z) = (1− t)(x+ δ(u− x)) + t(y + δ(u− y)) = (1− t)p+ tq

lies in C; thus [z, r] ⊂ C, meaning that z ∈ ai(C).
Let u, v ∈ ac(C), where and [x, u) ⊆ C and [y, v) ⊆ C; see the middle

figure in Figure 5.1. Let t ∈ (0, 1) and define w := (1 − t)u + tv and z :=
(1− t)x+ ty ∈ C. We claim that [z, w) ⊆ C. Let a := (1− δ)z + δw for some
δ ∈ (0, 1). We have

a = (1− δ)z + δw = (1− δ)((1− t)x+ ty) + δ((1− t)u+ tv)
= (1− t)((1− δ)x+ δu) + t((1− δ)y + δv) ∈ C,

proving the claim and the lemma. ut

Fig. 5.1. Algebraic interior and algebraic closure of a convex set.

Lemma 5.3. If C is a convex set in a finite-dimensional affine space A, then
rai(C) 6= ∅.
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Proof. Let {xi}k1 ⊆ C be an affine basis of aff(C), and let x := (
∑k

1 xi)/k
be the center of the simplex defined by {xi}k1 . We claim that x ∈ rai(C).
Indeed, if u =

∑k
1 tixi, where

∑k
1 ti = 1 is an arbitrary point in aff(C), then

x+ δ(u− x) = (1− δ)x+ δu =
∑k

1 [(1− δ)/k + δti]xi. If δ > 0 is sufficiently
small, then each (1− δ)/k+ δti is positive, and we have x+ δ(u−x) ∈ C. ut

Remark 5.4. Every infinite-dimensional affine space A contains a convex set C
such that rai(C) = ∅. Indeed, let X = {xi}∞1 be a set of affinely independent
points in A and consider the convex hull C = co(X). Suppose that x ∈ rai(C).
Then x ∈ Cm := co({xi}m1 ) for some integer m. If y ∈ C and y 6= x, then
there exists z ∈ C such that x ∈ (y, z). But then y, z ∈ Cn for some n > m,
and it is easy to prove that Cm is a face of Cn. It follows that y, z ∈ Cm
(see Definition 5.24 and Lemma 5.25), and this implies that C = Cm, a
contradiction.

Lemma 5.5. Let C be a convex set in an affine space A. If y ∈ ac(C) and
x ∈ ai(C), then [x, y) ⊂ ai(C).

Proof. First, assume that y ∈ C. Let z := tx + (1 − t)y = y + t(x − y) ∈ C,
t ∈ (0, 1); see the last figure in Figure 5.1. We claim that z ∈ ai(C). Let
d := u−x be an arbitrary direction in A, where u ∈ A. Since x ∈ ai(C), there
exists δ > 0 such that [x, x+ δ(u− x)] =: [x, q] ⊂ C. We have that

w := z + tδ(u− x) = z + t(q − x) = y + t(x− y) + t(q − x) = y + t(q − y)

lies in C; thus [z, w] = [z, z + tδ(u− x)] ⊂ C, proving the claim.
Now assume that y ∈ ac(C) \ C. There exists p ∈ C such that [p, y) ⊂ C.

We claim that [x, y) ∈ ai(C). Let z ∈ (x, y). If p = x, pick z1 ∈ (x, y) such that
z ∈ (z1, x). The first paragraph of the proof shows that z ∈ ai(C). Finally,
suppose that p 6= x. There exists δ > 0 such that [x, x+δ(y−p)] =: [x, q] ⊂ C.
Pick a point r ∈ (y, p) such that [r, q] intersects [y, x] at a point z1 such that
z ∈ (z1, x). It follows again from the first paragraph that z ∈ ai(C). ut

5.2 Minkowski Gauge Function

Definition 5.6. Let C be a convex set in a vector space E such that 0 ∈
rai(C). The (Minkowski) gauge function of C is the function pC defined on
E by the formula

pC(x) := inf{t > 0 : x ∈ tC} = inf{t ≥ 0 : x ∈ tC}.

If C is a convex set in an affine space A and x0 ∈ rai(C), then the gauge
function of C with respect to x0 is the function p(x) := pC−x0(x−x0) defined
on A, that is,

p(x) := inf{t > 0 : x ∈ x0 + t(C − x0)}, where x ∈ A.
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Theorem 5.7. Let C be a convex set in a vector space E such that 0 ∈ rai(C).
The gauge function pC is a nonnegative extended-valued function, pC : E →
R ∪ {+∞}, that is finite-valued precisely on the linear subspace span(C).

Moreover, pC is a sublinear function, that is, for all x, y ∈ E and for all
t ≥ 0,

pC(tx) = tpC(x) and pC(x+ y) ≤ pC(x) + pC(y).

Thus, pC is a convex homogeneous function of degree one.

Proof. Evidently, p(x) := pC(x) ≥ 0 for all x ∈ E. Since 0 ∈ rai(C), there
exists t > 0 such that x ∈ tC if and only if x ∈ L := span(C). Thus p(x) is
finite if and only if x ∈ L.

The homogeneity of p is obvious from its definition, and the convexity of
p is thus equivalent to its subadditivity. To prove the former, let x1, x2 ∈ L
and 0 < t < 1. Given an arbitrary ε > 0, note that xi ∈ (p(xi) + ε)C, i = 1, 2.
We have

(1− t)x1 + tx2 ∈ (1− t)[(p(x1) + ε)C)] + t[(p(x2) + ε)C]
= [(1− t)p(x1) + tp(x2) + ε]C,

where the equality follows since C is a convex set. Since ε > 0 is arbitrary, we
have

p((1− t)x1 + tx2) ≤ (1− t)p(x1) + tp(x2).

ut

Theorem 5.8. If C is a convex set in a vector space E such that 0 ∈ rai(C),
then

rai(C) = rai(rai(C)) = rai(ac(C)) = {x ∈ E : p(x) < 1},
ac(C) = ac(ac(C)) = ac(rai(C)) = {x ∈ E : p(x) ≤ 1}. (5.1)

Proof. Note that without any loss of generality, we may assume that E =
span(C). Then pC is finite-valued, and relative algebraic interiors become
algebraic interiors.

First, it is clear from the definition of p that

{x ∈ E : p(x) < 1} ⊆ C ⊆ {x : p(x) ≤ 1}.

Let x ∈ E be such that p(x) < 1. If y ∈ E is arbitrary, then for small enough
t > 0, we have p(x+ ty) ≤ p(x) + tp(y) < 1; thus [x, x+ ty] ⊂ C, which proves
that x ∈ ai(C). Lemma 5.5 then implies that x+ sy ∈ ai(C) for s ∈ [0, t), and
we have x ∈ ai(ai(C)). Therefore,

{x ∈ E : p(x) < 1} ⊆ ai(ai(C)), (5.2)

and consequently,

ai(ai(C)) ⊆ ai(C) ⊆ {x ∈ E : p(x) < 1}
(5.2)

⊆ ai(ai(C)) ⊆ ai(ac(C)).
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Here the second inclusion follows because if x ∈ ai(C), then there exists t > 1
such that tx ∈ C, implying tp(x) = p(tx) ≤ 1, and hence p(x) < 1. Note that
the first three inclusions above are actually equalities, so that the first line of
(5.1) is proved, except for the inclusion ai(ac(C)) ⊆ {x ∈ E : p(x) < 1}.

To prove the second line of (5.1), assume that x ∈ ac(C), with [u, x) ⊂ C.
If t ∈ [0, 1), then

p(x) = p(u+ t(x− u) + (1− t)(x− u)) ≤ p(u+ t(x− u)) + (1− t)p(x− u)
≤ 1 + (1− t)p(x− u).

Letting t↗ 1, we conclude that p(x) ≤ 1; this proves that

ac(C) ⊆ {x : p(x) ≤ 1}.

Now if x ∈ ac(ac(C)), then since 0 ∈ ai(C) ⊆ ai(ac(C)), Lemma 5.5 implies
that tx ∈ ai(ac(C)) ⊆ ac(C) for t ∈ (0, 1); thus tp(x) = p(tx) ≤ 1, and letting
t↗ 1 leads to p(x) ≤ 1, proving

ac(ac(C)) ⊆ {x ∈ E : p(x) ≤ 1}. (5.3)

Also, if p(x) = 1, we have p(z) < 1 for every z ∈ [0, x), hence [0, x) ⊂
ai(ai(C)) ⊂ ai(C), proving x ∈ ac(ai(C)), so that

{x ∈ E : p(x) = 1} ⊆ ac(ai(C)). (5.4)

These give

ac(C) ⊆ ac(ac(C))
(5.3)

⊆ {x ∈ E : p(x) ≤ 1}
(5.2),(5.4)

⊆ ac(ai(C)) ⊆ ac(C),

and hence all inclusions are equalities, proving the second line in (5.1).
Finally, it remains to prove that ai(ac(C)) ⊆ {x ∈ E : p(x) < 1}. If

x ∈ ai(ac(C)), then there exists t > 1 such that tx ∈ ac(C). Then (5.3)
implies tp(x) = p(tx) ≤ 1, and thus p(x) < 1. The theorem is proved. ut

Corollary 5.9. Let C be a convex algebraic body in an affine space A. Then

rai(C) = rai(rai(C)) = rai(ac(C)) = {x ∈ A : p(x) < 1},
ac(C) = ac(ac(C)) = ac(rai(C)) = {x ∈ A : p(x) ≤ 1},

where p(x) is the gauge function with respect to any point x0 ∈ rai(C).

Proof. Let x0 ∈ rai(C). Evidently, 0 ∈ rai(C−x0) = rai(C)−x0, ac(C−x0) =
ac(C)− x0, and pC(x) = p(C−x0)(x− x0). The corollary follows immediately
from Theorem 5.8. ut
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5.3 Calculus of Relative Algebraic Interior and
Algebraic Closure of Convex Sets

Lemma 5.10. Let {Ci}m1 be convex sets in a vector space E. If ∩m1 rai(Ci) 6=
∅, then

(a) aff(∩m1 Ci) = ∩m1 aff(Ci),
(b) rai(∩m1 Ci) = ∩m1 rai(Ci).

Proof. Write C := ∩m1 Ci and D := ∩m1 aff(Ci). Since C ⊆ D and D is an
affine set, it follows that aff(C) ⊆ D. To prove the reverse inclusion, let
x0 ∈ ∩m1 rai(Ci). If x ∈ D, then x lies in each aff(Ci), and since x0 ∈ rai(Ci),
the line l passing through x and x0 contains an open segment around x0 that
is contained in Ci, hence in C. It follows that x ∈ aff(C), completing the proof
of (a).

We next claim the inclusion rai(C) ⊆ ∩m1 rai(Ci) in (b). Let x ∈ rai(C) and
pick a point x0 ∈ ∩m1 rai(Ci). Since x0 ∈ C and x ∈ rai(C), Lemma 5.5 implies
that there exists z ∈ C such that x ∈ (x0, z). But z ∈ Ci and x0 ∈ rai(Ci) for
each i, and Lemma 5.5 implies x ∈ rai(Ci), proving the claim.

To prove the reverse inclusion ∩m1 rai(Ci) ⊆ rai(C) in (b), let x ∈
∩m1 rai(Ci) and pick a point y ∈ rai(C), y 6= x. (If there is no y 6= x, then
rai(C) = ∩m1 rai(Ci) = {x} and we are done.) Since x ∈ rai(Ci) and y ∈ Ci,
there exists a point zi ∈ Ci such that x ∈ si := (zi, y). Then the open interval
s := ∩m1 si has the form s = (z, y) where z ∈ C. Since y ∈ rai(C) and z ∈ C,
Lemma 5.5 implies that x ∈ rai(C). ut

The condition ∩m1 rai(Ci) 6= ∅ is needed for the validity of the lemma. For
example, both (a) and (b) fail for the sets C1 = [−1, 0], C2 = [0, 1].

Lemma 5.11. Let C and D be two convex sets in a vector space E. If rai(C) 6=
∅ and rai(D) 6= ∅, then rai(C +D) = rai(C) + rai(D).

Proof. Let x ∈ rai(C) and y ∈ rai(D). Given arbitrary points u ∈ C and
v ∈ D, there exist u1 ∈ C and v1 ∈ D such that x ∈ (u, u1) and y ∈ (v, v1).
We may assume that x = (1 − λ)u + λu1 and y = (1 − λ)v + λv1. Then
x + y = (1 − λ)(u + v) + λ(u1 + v1), that is, x + y ∈ (u + v, u1 + v1) with
u+ v and u1 + v1 lying in C +D. Since u+ v ∈ C +D is arbitrary, we have
x+ y ∈ rai(C +D). This proves the inclusion rai(C) + rai(D) ⊆ rai(C +D).

To prove the reverse inclusion, fix x0 ∈ rai(C) and y0 ∈ rai(D). Then
x0 + y0 ∈ rai(C) + rai(D), and since rai(C) + rai(D) ⊆ rai(C + D) as we
proved above, x0 + y0 ∈ rai(C +D). If z 6= x0 + y0 is an arbitrary element of
rai(C + D), then z ∈ (x0 + y0, u + v) for some u + v ∈ C + D, where u ∈ C
and v ∈ D, say z = (1 − λ)(x0 + y0) + λ(u + v) for some λ ∈ (0, 1). Thus,
z = x′+y′, where x′ = (1−λ)x0+λu ∈ (x0, u) and y′ = (1−λ)y0+λv ∈ (y0, v).
It follows from Lemma 5.5 that x′ ∈ rai(C) and y′ ∈ rai(D); consequently, we
have z = x′ + y′ ∈ rai(C) + rai(D). ut
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Definition 5.12. Let E and F be two arbitrary sets. A nonempty subset of
G ⊆ E × F may be considered the graph of a multivalued map A from E to
F . The domain and range of A are defined by

dom(A) := {x ∈ E : ∃y ∈ F, (x, y) ∈ gr(A)},
R(A) := {y ∈ F : ∃x ∈ E, (x, y) ∈ gr(A)},

respectively. If x ∈ E, the set A(x) := {y ∈ F : (x, y) ∈ gr(A)} is the value of
x; thus A(x) 6= ∅ if and only if x ∈ dom(A).

If E and F are affine sets and gr(A) ⊆ E × F is also an affine set, then
A is called a multivalued affine map; then dom(A) and R(A) are both affine
sets.

Lemma 5.13. Let E and F be affine spaces, and A : E → F a multivalued
map whose graph gr(A) = C is a nonempty convex set in E×F . Then a point
(x, y) belongs to rai(gr(A)) if and only if x ∈ rai(dom(A)) and y ∈ rai(A(x)).

Proof. Let us first prove that if (x, y) ∈ rai(gr(A)), then x ∈ rai(dom(A))
and y ∈ rai(A(x)). If x̄ ∈ dom(A), x̄ 6= x, then there exists ȳ ∈ F such that
(x̄, ȳ) ∈ gr(A); see Figure 5.2. Since (x̄, ȳ) 6= (x, y) and (x, y) ∈ rai(gr(A)),
there exists (x1, y1) ∈ gr(A) such that (x, y) ∈ ((x̄, ȳ), (x1, y1)) in E×F . This
proves that x ∈ rai(dom(A)), since we have x1 ∈ dom(A) and x ∈ (x̄, x1). To
prove that y ∈ rai(A(x)), let y2 ∈ A(x), y2 6= y. Then (x, y) 6= (x, y2) ∈ gr(A),
and since (x, y) ∈ rai(gr(A)), there exists a point (x, y3) ∈ gr(A) such that
(x, y) ∈ ((x, y2), (x, y3)). We clearly have y ∈ (y2, y3), and so y ∈ rai(A(x)).

Let us now prove the converse statement that if x ∈ rai(dom(A)) and
y ∈ rai(A(x)), then (x, y) ∈ rai(gr(A)). Let (x̄, ȳ) ∈ gr(A), (x̄, ȳ) 6= (x, y). We
first consider the case x̄ = x. Then ȳ 6= y, and since y ∈ rai(A(x)), there exists
some ŷ ∈ A(x) such that y ∈ (ȳ, ŷ). But then (x, y) ∈ ((x, ȳ), (x, ŷ)). If x̄ 6= x,
then there exists x4 ∈ dom(A) such that x ∈ (x̄, x4). Let (x4, y4) ∈ gr(A); see
again Figure 5.2. We need to prove that there exists a point (x1, y1) ∈ gr(A)
such that the line segment ((x̄, ȳ), (x1, y1)) contains (x, y). If the line segment
((x̄, ȳ), (x4, y4)) already contains (x, y), then the point (x4, y4) can serve as
the point (x1, y1). Otherwise, there exists a point (x, y3) on the line segment
between (x̄, ȳ) and (x4, y4). Since y3 6= y and y ∈ rai(A(x)), there exists
a point y2 ∈ A(x) such that y ∈ (y2, y3). Since (x, y3) ∈ ((x̄, ȳ), (x4, y4))
and (x, y) ∈ ((x, y2), (x, y3)), (x, y) is in the relative interior of the convex
hull of the triangle with vertices {(x̄, ȳ), (x4, y4), (x, y2)}, that is, (x, y) is a
convex combination of these three points with positive weights. But then
(x, y) can be obtained first by taking a nontrivial convex combination of
the vertices {(x, y2), (x4, y4)} to obtain a point (x1, y1), and then taking a
nontrivial convex combination of the points {(x1, y1), (x̄, ȳ)}. Consequently,
(x, y) ∈ ((x̄, ȳ), (x1, y1)). This completes the proof that (x, y) ∈ rai(gr(A)).

ut

Calculus of Relative Algebraic Interior and Algebraic Closure
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Fig. 5.2. Relative algebraic interior of a convex set in a product space.

Corollary 5.14. Let E and F be affine spaces, and A : E → F a multivalued
map whose graph gr(A) = C is a nonempty convex set in E × F . Then

dom rai(gr(A)) ⊆ rai dom(A).

If raiA(x) 6= ∅ for all x ∈ rai dom(A), then

dom rai(gr(A)) = rai dom(A).

In particular, the above equality holds when F has finite dimension.

Proof. The inclusion follows immediately from Lemma 5.13. If x ∈ rai dom(A)
and y ∈ raiA(x) 6= ∅, then Lemma 5.13 implies that (x, y) ∈ rai gr(A), and
we have x ∈ dom rai(gr(A)). If x ∈ rai dom(A) and F is finite-dimensional,
then Lemma 5.3 implies that raiA(x) 6= ∅. ut

Corollary 5.15. Let Ci be a convex set in an affine space Ai, i = 1, . . . , k. If
each rai(Ci) is nonempty, then

rai(C1 × C2 × · · · × Ck) = rai(C1)× rai(C2)× · · · × rai(Ck).

Proof. The proof is trivial for k = 1 and follows immediately from Lemma 5.13
for k = 2. The proof is easily completed by induction on k. ut

It is also possible to give an independent easy proof of the corollary from
scratch.

Lemma 5.16. Let A : E → F be a multivalued affine map between two affine
spaces E and F , and C ⊆ E a convex set such that rai(C) ∩ dom(A) 6= ∅.

Then we always have
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A(rai(C)) ⊆ rai(A(C)).

Moreover, if E is finite-dimensional, or more generally if rai(C∩A−1(y)) 6=
∅ for all y ∈ rai A(C), then

A(rai(C)) = rai(A(C)).

Proof. Consider the multivalued map B : F → E whose graph is the convex
set

gr(B) := gr(A) ∩ (C × F ),

and note that

dom(B) = {y : ∃x ∈ C, y ∈ A(x)} = A(C)

and
B(y) = C ∩A−1(y) for y ∈ dom(B).

We have

rai(gr(B)) = rai(gr(A)) ∩ (rai(C × F )) = gr(A) ∩ (rai(C)× F ) 6= ∅,

where the last relation follows from the assumption rai(C)∩dom(A) 6= ∅, and
the second equation from the equality rai(gr(A)) = gr(A) and Corollary 5.15.
Then the first equality follows from Lemma 5.10. Consequently, we have

dom rai(gr(B)) = {y : ∃x ∈ rai(C), y ∈ A(x)} = A(rai(C)).

With these preparations, the lemma follows immediately from Corol-
lary 5.14. ut

5.4 Topological Interior and Topological Closure of
Convex Sets

In this section we compare the algebraic and topological concepts of interior,
relative interior, and closure for convex sets. As Theorem 5.20 and Corol-
lary 5.21 show, the algebraic and topological concepts agree to a remarkable
degree.

Let us recall some basic topological notions; see [232] for a quick introduc-
tion to general topology, and [161, 45, 46] for comprehensive treatments. Let
X be a set and T a set of subsets of X. Then (X, T ) is called a topological
space if ∅ ∈ T , X ∈ T , and T is closed under unions and finite intersections,
that is, any union of sets in T is in T , and the intersection of two sets in T is
in T . The sets in T are the open sets of the topological space (X, T ). A set
F ⊆ X is called closed if X\F is open. A neighborhood of a point x ∈ X is a set
V ⊆ X that contains an open set U ∈ T such that x ∈ U ⊆ V . The interior
of a set A in X, denoted by int(A), is the set of points x ∈ A such that x has
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a neighborhood that lies entirely in A. The closure of a set A ⊆ X, denoted
by A, is the intersection of all the closed sets containing A. Alternatively, a
point x ∈ A if and only if every neighborhood of x intersects A.

If Y is a subset of X, then (Y,S) inherits the relative topology from (X, T ):
the open sets in S are simply the sets of the form U ∩ Y , where U ∈ T .

A real vector space E is called a topological vector space if there exists a
topology T on E such that the linear operations (x, y) 7→ x+y and (α, x) 7→ αx
are continuous maps from the product topological spaces E × E and R × E
to E, respectively. We refer the reader to any book on functional analysis, for
example [177, 233, 44], for more details.

Let (E, T ) be a topological vector space, and A ⊂ E an affine subset of E.
Then (A,S), S the relative topology inherited from T , is called a topological
affine space.

Definition 5.17. Let C ⊆ A be a convex set in a topological affine space A.
The relative interior of C, denoted by ri(C), is the interior of C in the relative
topology of the affine space aff(C).

If the topology on A is given by a norm, for example, we have

ri(C) := {x ∈ C : ∃ε > 0, Bε(x) ∩ aff(C) ⊆ C}.

Lemma 5.18. Let C be a convex set in a topological affine space A with a
nonempty interior. If x ∈ int(C) and y ∈ C, then [x, y) ⊆ int(C). Conse-
quently, int(C) is a convex set.

Moreover, int(C) ⊆ ai(C).

Proof. Let z := y + t(x − y), t ∈ (0, 1). We claim that z ∈ int(C). Let
U ⊂ C be a neighborhood of x; see Figure 5.3. Since y = (z − tx)/(1 − t) ∈
(z − tU)/(1 − t) =: V and v 7→ (z − tv)/(1 − t) is a homeomorphism, V is
a neighborhood of y. Pick p ∈ C ∩ V , and define u ∈ U by the equation
p = (z − tu)/(1 − t), that is, z = p + t(u − p). Then z lies in the open set
p + t(U − p), which is a subset of C by the convexity of C. This proves the
claim.

The convexity of int(C) follows from this: if x, y ∈ int(C), then [x, y) ⊆
int(C). Since y ∈ int(C) as well, the whole segment [x, y] lies in int(C).

Let x ∈ int(C) such that x ∈ U ⊆ C, where U is a neighborhood of x. If
u ∈ A, then the map t 7→ x + t(u − x) is continuous; thus there exists δ > 0
such that x+ t(u− x) ∈ U for all |t| ≤ δ. This proves that x ∈ ai(C). ut

Lemma 5.19. Let C be a nonempty convex set in a topological affine space
A. Then C is a convex set, and ac(C) ⊆ C.

Proof. Let x, y ∈ C and z := y + t(x − y) = tx + (1 − t)y, t ∈ (0, 1). We
claim that z ∈ C. Let Uz be a neighborhood of z. Since the map (u, v) 7→
tu+ (1− t)v is continuous, there exist neighborhoods Ux 3 x and Uy 3 y such
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Fig. 5.3. Interior of a convex set.

that tUx + (1 − t)Uy ⊂ Uz. Pick px ∈ C ∩ Ux and py ∈ Uy. Then the point
p := tpx + (1− t)py belongs to Uz, and lies in C as well, due to the convexity
of C. This proves the claim.

Let y ∈ ac(C) with [x, y) ⊂ C, and let U be a neighborhood of y. Since the
map t 7→ y+ t(x− y) is continuous, there exists δ > 0 such that y+ t(x− y) ∈
U ∩ C for all 0 < t ≤ δ. This proves that x ∈ C. ut
Theorem 5.20. If C is a convex body in a topological affine space A, that is,
int(C) 6= ∅, then

int(C) = int(C) = ai(C) and C = int(C) = ac(C).

Proof. To prove the equality int(C) = ai(C), it suffices to prove the claim that
ai(C) ⊆ int(C), since the reverse inclusion is already proved in Lemma 5.18.
Let x ∈ ai(C) and y ∈ int(C). There exists a point z ∈ C such that x ∈ (y, z).
Then Lemma 5.18 implies that x ∈ int(C), proving the claim.

To prove the equality int(C) = int(C), it clearly suffices to prove the
inclusion int(C) ⊆ int(C). Let x ∈ int(C) and y ∈ int(C). There exists a
point z ∈ C such that y ∈ (x, z). Then Lemma 5.18 implies that y ∈ int(C).

Next, let us prove the equality C = int(C): let x ∈ int(C) and y ∈ C.
Lemma 5.18 implies that [x, y) ⊂ int(C), which in turn implies y ∈ int(C).
This proves the inclusion C ⊆ int(C), and hence the equality C = int(C),
because the reverse inclusion is trivial.

Finally, we consider the equality ac(C) = C. The inclusion ac(C) ⊆ C is
already proved in Lemma 5.19. To prove the reverse inclusion, let y ∈ C and
pick x ∈ int(C). We have [x, y) ⊆ int(C) ⊆ C, where the first inclusion follows
from Lemma 5.18; this gives y ∈ ac(C), proving the equality ac(C) = C. ut

By considering the relative topology on aff(C), we immediate obtain the
following result.

Corollary 5.21. Let C be a convex set in a topological affine space A. If
ri(C) 6= ∅, then

ri(C) = ri(C) = rai(C) and C = ri(C) = ac(C).
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Lemma 5.22. If C is a nonempty convex set in a finite-dimensional affine
space A, then ri(C) 6= ∅. Moreover, dim(C) = dim(ri(C)).

Proof. Let {xi}k1 ⊂ C be an affine basis for aff(C). Consider the simplices

S :=
{ k∑
i=1

tixi :
k∑
1

ti = 1, ti > 0, i = 1, . . . , k
}
⊂ C,

Sk :=
{

(t1, . . . , tk) ∈ Rk :
k∑
1

ti = 1, ti > 0, i = 1, . . . , k
}
.

Since {xi}k1 is affinely independent, the map

T (t1, . . . , tk) =
k∑
i

tixi

is a one-to-one onto affine transformation from the affine space aff(C) to the
hyperplane H := {t ∈ Rk :

∑k
1 ti = 1}, hence a homoeomorphism between

the two affine spaces. Evidently, Sk is open in H, and thus S = T (Sk) is open
in aff(C). This proves that ri(C) 6= ∅.

Note that we also have dim(C) = k − 1 = dim(ri(C)). ut

Combining Corollary 5.21 and Lemma 5.22, we immediately obtain the
following important result for finite-dimensional convex sets.

6
∅, and

ri(C) = ri(C) = rai(C) and C = ri(C) = ac(C).

5.5 Facial Structure of Convex Sets

In this section, we decompose a closed convex set C in a vector space E as a
Minkowski sum

C = L+K +B,

where L is a linear subspace of E, K is a closed convex cone containing no
lines, and B is a bounded convex set that is the convex hull of the set of
extreme points of a set related to C. We give a further decomposition of
K and B in terms of their extreme directions and points, respectively. The
precise meaning of this decomposition is contained in Theorem 5.37 below.
These decompositions find many applications in optimization and elsewhere.

Definition 5.24. Let C be a nonempty convex set in a vector space E. A face
of C is convex subset F ⊆ C such that if x, y ∈ C and the line segment (x, y)
intersects F , then [x, y] ⊆ F .

Theorem 5.23. If C is a nonempty finite-dimensional convex set, then ri(C) =



5.5 Facial Structure of Convex Sets 129

A point x ∈ C is called an extreme point of C if {x} is a face of C. We
denote the set of extremal points of C by ext(C).

A vector d ∈ E is called an extreme direction of C if there is a point p ∈ C
such that the ray p+ R+d := {p+ td : t ≥ 0} is a face of C.

A vector d ∈ E is called a recession direction of C if there exists a point
p ∈ C such that the ray p+R+d stays in C. The set of all recession directions
of C is called the recession cone of C,

recC := {d ∈ Rn : there exists p ∈ C such that p+ td ∈ C for all t ≥ 0}.

Lemma 5.25. Let F and C be two convex sets such that F ⊂ C. Then F is
a face of C if and only if C \ F is a convex set.

This is an easy consequence of the definition of a face, and can be used as
an alternative definition of a face.

Remark 5.26. It is easy to see that the union of a nested set of faces of C is
a face (the nestedness condition is needed only to ensure the convexity of the
union), and the same is true for the intersection of any set of faces. The face
of a face is a face, that is, if F2 ⊆ F1 ⊆ C with F2 a face of F1 and F1 a face of
C, then F2 is a face of C. Also, if F is a face of C, then ext(F ) = ext(C)∩F .

A face actually satisfies a stronger property given below. This can be used
to show, among other things, that a convex set C can be written as a disjoint
union of relative interiors of different faces of C; see Rockafellar [228], Theorem
18.2.

Lemma 5.27. Let C be a convex set in a vector space E, F a face of C, and
D a convex subset of C. If ri(D) ∩ F 6= ∅, then D ⊆ F .

Proof. Pick z ∈ ri(D) ∩ F . If x ∈ D, then z ∈ ri(D) implies that there exists
y ∈ D such that z ∈ (x, y). Since F is a face of C, we have x ∈ F . ut

As a first step toward the decomposition of a closed convex set, we char-
acterize its affine faces.

Lemma 5.28. Let C be a closed convex set in a vector space E. If 0 6= d ∈ E
is a recession direction of C, then q + R+d ⊆ C for every q ∈ C.

Consequently, C + recC = C.

Proof. Suppose that p + R+d ⊆ C, and let q ∈ C, q 6= p. It is easy to see
geometrically that the convex hull of q and p+R is the union of sets {q} and
[p, q) +R, whose closure is the set [p, q] +R; see Figure 5.4. Since C is closed,
we have q +R ⊆ C. ut

Corollary 5.29. Let C be a closed, convex set in a vector space E. If C
contains an affine subspace K := p + L, where p ∈ C and L is a linear
subspace of E, then C = C + L.
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p

q

C

Fig. 5.4. Recession direction in a convex set.

linear space E. Then C contains an affine face F .
The affine face F is unique, is a maximal affine subspace of C, and has

the form F = p+ LC , where p ∈ C is arbitrary and

LC := {x ∈ E : C + x = C}

is a linear subspace of E.
Moreover, C = C + LC .

Proof. We first demonstrate the existence of an affine face by induction on the
dimension of C. Suppose dim(C) = n and that we have proved the existence
of affine faces for convex sets with dimension less than n. Clearly, we may
assume that C is full-dimensional, that is, E has dimension n. We may also
assume that ∂C 6= ∅; otherwise C = E (C is both closed and open), in which
case the lemma is obviously true. Let p ∈ ∂C. By Theorem 6.8, there exists a
support hyperplane H := H(a,α) at p such that C ⊆ H̄−. Then D := C ∩H is
a convex set in E with dimension less than n, so by the induction hypothesis,
D contains an affine face F . We claim that F is a face of C. By Remark 5.26,
this will follow if we can show that D is a face of C. Suppose that x, y ∈ C with
z ∈ (x, y) ∩D. We have 〈a, x〉 ≤ α, 〈a, y〉 ≤ α, but 〈a, z〉 = α; consequently,
〈a, x〉 = α = 〈a, y〉, which proves that D is a face of C.

Next, we show that an affine face F ⊆ C is a maximal affine subset of C.
Let M be a maximal affine subset of C containing F . If x ∈ M , pick z ∈ F
and consider the line passing through x and z. This line is contained in M , so
that z ∈ (x, y) for some y ∈ M ; since F is a face of C, we have x ∈ F . This
proves that F = M .

If F = p+L is an affine face of C, Corollary 5.29 implies that C = C +L.
Consider the set LC defined in the statement of the theorem. Obviously, L ⊆

Theorem 5.30. Let C be a nonempty, closed, convex set in a finite-dimensional
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LC . We claim that LC is a linear subspace. It will then follow that L = LC . It
is easily seen that LC is convex, closed under addition, and that LC = −LC .
Thus, if x ∈ LC , then kx ∈ LC for every integer k > 0. The convexity of LC
implies that tx ∈ LC for every t > 0, and consequently for every t ∈ R. ut

The linear subspace LC defined above is called the lineality subspace of C,
and its dimension the lineality of C.

Since affine faces are points if and only if LC = {0}, we have the following
corollary.

Corollary 5.31. A nonempty, closed, convex set in a finite-dimensional lin-
ear space contains an extreme point if and only if it is line-free, that is, it
contains no whole lines.

Definition 5.32. Two linear subspaces L,M of a vector space E are called
complementary if E = L + M and L ∩M = {0}, and we denote this by the
notation

E = L⊕M.

If C ⊆ E is a convex set such that C = C1 +C2, where C1 and C2 are convex
subsets of L and M , respectively, we write

C = C1 ⊕ C2.

Lemma 5.33. Let C be a nonempty, closed, convex set in a finite-dimensional
linear space E, and let M be a linear subspace of E complementary to LC .

The set C can decomposed as

C = Ĉ ⊕ LC ,

where Ĉ is a line-free, closed convex set in M .

Proof. Define Ĉ := C∩M . If x ∈ C, we can write x = l+m, where l ∈ LC and
m ∈M ; then we have m ∈ Ĉ, since m ∈M , and m = x− l ∈ C +LC = C by
virtue of Theorem 5.30. This shows that Ĉ 6= ∅, x = m+l ∈ Ĉ+LC , and hence
C ⊆ LC + Ĉ. The reverse inclusion also holds, since LC + Ĉ ⊆ LC + C = C,
so we have C = LC + Ĉ.

Suppose that Ĉ contains a line q + {td : t ∈ R} = q + Rd, where q ∈ Ĉ
and 0 6= d ∈M . Then

q + LC ⊂ q + (Rd+ LC) ⊆ C + LC = C,

where q+ (Rd+LC) is an affine subset of C strictly containing q+LC , which
by Theorem 5.30 contradicts the maximality of the affine subspace q + LC .
This proves that Ĉ is line-free. ut
Lemma 5.34. Let C be a closed convex set C in a finite-dimensional linear
space E. The relative boundary rbd(C) := C \ ri(C) of C is convex if and only
if C is either an affine subspace of E or the intersection of an affine subspace
with a closed half-space.
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Proof. If C is either an affine subset or the intersection of an affine subspace
with a closed half-space, then it is clear that rbd(C) is convex.

To prove the converse, assume without loss of generality that C is full-
dimensional. If the boundary of C is empty, then C = E (C is both open and
closed), and we are done. Otherwise, Theorem 6.16 implies that there exists a
support hyperplane H such that ∂C ⊆ H, C does not lie entirely on H, and
C ⊆ H̄+, where H̄+ is one of the two closed half-spaces bounding H.

We claim that C = H̄+. Pick p ∈ C \ H; then p ∈ H+ := int(H̄+). If
x is in H+ but not in C, then the line segment [x, p] must contain a point
w ∈ ∂C, a contradiction because w ∈ H+; consequently, int(C) = H+ and
C = H̄+. ut

Lemma 5.35. Let C be a nonempty, closed, convex set in a finite-dimensional
linear space E. If C is not an affine subspace or the intersection of an affine
subspace with a closed half-space, then every point in the relative interior of
C lies on a line segment whose endpoints lie on the relative boundary of C;
consequently C = co(rbd(C)).

Proof. Again, we may assume that C is full-dimensional. Since ∂C is not
convex by Lemma 5.34, there exist two points x, y ∈ ∂C such that [x, y]
intersects int(C). It follows from Lemma 5.28 that the line passing through
any point of int(C) and parallel to [x, y] must intersect C in a line segment.

ut

Theorem 5.36. A nonempty, line-free, closed, convex set C in a finite-
dimensional linear space E is the convex hull of its extreme points and extreme
rays, that is, any point x ∈ C has a representation

x =
k∑
i=1

λivi +
l∑

j=1

µjdj , (5.5)

where {vi}k1 and {dj}l1 are extreme points and extreme directions of C, respec-
tively, {λi}k1 , {µj}l1 are nonnegative, and

∑k
i=1 λi = 1.

Proof. We use induction on the dimension of C. Suppose dim(C) = n and
that we have proved the theorem for convex sets with dimension less than n.

First, suppose that x ∈ rbd(C) = C \ ri(C). By Theorem 6.8, there exists
a support hyperplane H at x such that C ⊆ H̄+. Then D := C ∩ H is a
convex set in E with dimension less than n, so by the induction hypothesis,
x has a representation (5.5), where {vi}k1 and {dj}l1 are extreme points and
extreme directions of D, respectively. Since D is a face of C (see the proof of
Theorem 5.30), {vi}k1 and {dj}l1 are also extreme points and directions of C,
respectively.

If x ∈ ri(C), then Lemma 5.35 implies that x ∈ (y, z) for two points
y, z ∈ ∂C. Since y and z both have representations in the form (5.5), so does x.

ut
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Theorem 5.37. Let C be a closed convex set C in a finite-dimensional vector
space E. The set C can be decomposed as

C = LC ⊕ Ĉ,

where LC is a linear subspace and Ĉ is a line-free convex set lying in a linear
subspace complementary to LC . The set of extreme points of Ĉ is nonempty,
and

Ĉ = rec(Ĉ) + co(ext(Ĉ)).

Moreover, we also have the decompositions

recC = LC ⊕ rec(Ĉ) and C = co(ext(Ĉ)) + rec(C).

Proof. The theorem follows immediately from Lemma 5.33 and Theorem 5.36.
ut

We also have the following classical result.

Theorem 5.38. (Minkowski) A compact, convex set in a finite-dimensional
linear space is the convex hull of its extreme points.

Finally, we include the following two interesting results relating the faces
of a sum set to the faces of its summands.

Lemma 5.39. Let C = C1 + C2, where C1 and C2 are nonempty convex
sets. If F is a face of C, then there exist faces Fi of Ci, i = 1, 2, such that
F = F1 + F2.

Proof. Define the sets

F1 = {x ∈ C1 : ∃y ∈ C2, x+ y ∈ F}, F2 = {x ∈ C2 : ∃x ∈ C1, x+ y ∈ F}.

It is easy to verify that F1 and F2 are convex sets. We claim that F1 is a face
of C1. Let x ∈ F1 such that x + y ∈ F for some y ∈ C2. If x ∈ (u1, u2) for
some u1, u2 ∈ C1, then x+ y ∈ (u1 + y, u2 + y), and since F is a face of C, we
have [u1 + y, u2 + y] ⊆ F . It follows from the definition of F1 that u1, u2 ∈ F1,
proving that F1 is a face of C1. Similarly, F2 is a face of C2.

It follows from the definition of F1 and F2 that F ⊆ F1 +F2. To prove the
reverse inclusion F1 + F2 ⊆ F , let x1 ∈ F1 and y2 ∈ F2; it suffices to show
that x1 + y2 ∈ F . If y1 ∈ C2 and x2 ∈ C1 are such that xi + yi ∈ F , i = 1, 2,
then (x1 + y1)/2 + (x2 + y2)/2 = (x1 + y2)/2 + (x2 + y1)/2 ∈ F ; since F is a
face of C, we have x1 + y2 ∈ F . ut

Lemma 5.40. Let C = C1 +C2, where C1 and C2 are nonempty convex sets.
If z is an extreme point of C, then z has a unique representation z = x + y,
where x ∈ C1, y ∈ C2. Moreover, in this representation x is an extreme point
of C1 and y is an extreme point of C2.
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Proof. It follows from Lemma 5.39 that z = x+y, where x and y are extreme
points of C1 and C2, respectively. If z = x + y, where x ∈ C1, y ∈ C2, then
we have z = (x + y)/2 + (x + y)/2, and because z is an extreme point of C,
x+ y = x+ y = z. Comparing this equation with z = x+ y gives x = x and
y = y. ut

5.6 Homogenization of Convex Sets

It is often easier to establish results for convex cones than for the more general
class of convex sets. One may desire to extend an already established result
for convex cones to convex sets. This is usually possible, thanks to a procedure
called homogenization that manufactures a convex cone out of a convex set.
Homogenization is thus a very useful technique for translating results between
convex sets and convex cones.

Let C be a nonempty convex set in a vector space E. We can naturally
identify C with the convex set

Ĉ := {(x, z) ∈ E × R : x ∈ C, z = 1}

lying on the hyperplane H = {(x, 1) : x ∈ E} of the vector space E × R, and
then form the set

K(C) := {t(x, 1) : x ∈ C, t > 0} = cone(Ĉ);

see Figure 5.5. This process is called the homogenization of C. The intersection
of K(C) with the hyperplane xn+1 = 1 is Ĉ, so that C may be considered a
cross section of K(C).

It is clear that K(C) is a cone from the above description. The cone K(C)
is convex, because if ui = (xi, 1) ∈ K(C) with xi ∈ C (i = 1, 2), then

u1 + u2 = 2
(
x1 + x2

2
, 1
)
∈ K(C).

When dealing with a closed convex set C, one often desires to homogenize
C so as to obtain a closed convex cone. The set K(C) defined above does not
contain 0, so it is never closed. If one adds 0 to K(C), then it is easily seen
that the resulting set is {t(x, 1) : x ∈ C, t ≥ 0}, which can be shown to be
closed if C is a compact convex set. However, if C is an unbounded closed
convex set, then K(C) ∪ {0} is not closed. For example, if C = R+ is the
nonnegative real line, then K(C) ∪ {0} = R2

+ \ {(x, 0) : x > 0} is not closed.
Therefore, the following result is of interest.

Lemma 5.41. If C 6= ∅ is a closed convex set in a finite-dimensional vector
space E, then

K(C) = K(C) ∪ {(d, 0) : d ∈ rec(C)}.
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$

z = 1

z = 0

Ĉ

rec(C)

Fig. 5.5. Homogenization of a convex set.

Proof. Denote the set on the right-hand side by D. Let d ∈ rec(C). If x ∈ C,
then xn := x + nd ∈ C, (xn, 1)/n ∈ K(C), and (xn, 1)/n → (d, 0) ∈ K(C),
proving D ⊆ K(C).

To prove the reverse inclusion K(C) ⊆ D, let (d, t) ∈ K(C) be such that
tn(xn, 1) → (d, t). If t > 0, then letting d = tx, we have tn(xn, 1) → t(x, 1).
Thus, xn → x ∈ C, since C is closed, and consequently (d, t) = t(x, 1) ∈
K(C) ⊆ D.

If, however, t = 0, then tnxn → d and tn → 0; we claim that d ∈ rec(C).
Let x ∈ C and s > 0 be arbitrary. We have dn := tn(xn − x) → d, xn =
x+ dn/tn ∈ C, and for large enough n such that 0 ≤ stn ≤ 1,

x+ sdn = (1− stn)x+ stn

(
x+

dn
tn

)
= (1− stn)x+ stnxn ∈ C.

This gives x+ sdn → x+ sd ∈ C, and proves the claim. ut

5.7 Continuity of Convex Functions

There are no continuity assumptions made in the definition of a convex func-
tion. However, it turns out that a convex function is continuous in the relative
interior of its domain, even Lipschitz continuous under a mild boundedness
assumption. In finite dimensions, this boundedness assumption is not needed,
because it is automatically satisfied. These constitute some of the most basic
results on convex functions.

Let f : E → R∪{∞} be a convex function on a normed linear space E, and
define L = aff(dom(f)). Since f is always +∞ off L, in questions regarding
the continuity of f , it makes sense to consider f only on L, since otherwise f
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can never be continuous at any point when L is a proper subset of E. Thus,
in this section, we consider convex functions with full-dimensional domains.

Lemma 5.42. Let f : E → R∪ {∞} be a convex function in a normed linear
space E such that dom(f) has a nonempty interior.

0

then f is bounded from above in a neighborhood of every point of int(dom(f))
(with the bound depending on the point).

Proof. Let Br0(x0) ∈ int(dom(f)) be such that f(x) ≤ a <∞ for x ∈ Br0(x0),
and let x ∈ int(dom(f)) be an arbitrary point. There exists γ > 1 such that
w := x0 + γ(x− x0) ∈ dom(f).

We claim that Br(x) ∈ dom(f), where r = (γ − 1)r0/γ. Geometrically,
this follows from the fact that the convex hull of w and Br0(x0) forms a
truncated conic region that encloses a ball at x whose radius can be computed
using similarity. Analytically, if ‖v − x‖ ≤ r, consider the point u defined by
the equation w =: u + γ(v − u). Then 0 = (1 − γ)(u − x0) + γ(v − x) and
‖u− x0‖ ≤ rγ/(γ − 1) = r0, so that u ∈ dom(f). This proves the claim.

Since v = w/γ + ((γ − 1)/γ)u ∈ dom(f), using the convexity of f , we
obtain

f(v) = f

(
1
γ
w +

γ − 1
γ

u

)
≤ 1
γ
f(w) +

γ − 1
γ

f(u) ≤ 1
γ
f(w) +

γ − 1
γ

a =: b.

Thus f is bounded from above by the constant b on Br(x). ut
Theorem 5.43. Let f : E → R∪{∞} be a convex function on a normed linear
space E. Then f is continuous in ri(dom(f)) if and only if there exists a point
x0 ∈ ri(dom(f)) such that f is bounded from above in a relative neighborhood
of x0 (that is, a neighborhood of x0 in the relative topology of aff(dom(f))).

Proof. Define C = dom(f) and assume that int(dom(f)) 6= ∅, by restricting
f to aff(dom(f)) if necessary. If f is continuous at x0 ∈ int(C), then there
exists a neighborhood x0 ∈ N ⊆ C such that |f(x)− f(x0)| ≤ 1 on N , and f
is bounded from above on N by the constant f(x0) + 1.

Conversely, assume that f(x) ≤ a < ∞ for x in a neighborhood N of x0.
We may assume, if necessary by considering the function x 7→ f(x+x0)−f(x0)
on the set C−x0, that x0 = 0 ∈ int(C) and f(0) = 0. Consider the symmetric
neighborhood S = N ∩ (−N) of 0, and pick any 0 < ε < 1. If z ∈ εS, then
±z/ε ∈ S, and we have

−εa ≤ f(z) ≤ (1− ε)f(0) + εf(z/ε) ≤ εa,
where the second inequality follows from the convexity of f and the first
inequality from

0 = f(0) = f

(
1

1 + ε
z +

ε

1 + ε
(−z/ε)

)
≤ 1

1 + ε
f(z) +

ε

1 + ε
f(−z/ε) ≤ 1

1 + ε
f(z) +

ε

1 + ε
a.

∈ int(dom(f)),If f is bounded from above in a neighborhood of some point x
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This proves the continuity of f at x0 = 0. By virtue of Lemma 5.42, f is
bounded from above on a neighborhood of every point of x ∈ int(C), so that
f is continuous on int(C). ut

It is possible to strengthen the continuity result above.

Definition 5.44. A function f : X → R on a metric space X is called Lip-
schitz continuous if there exists a constant K > 0 such that

|f(x)− f(y)| ≤ Kd(x, y) for all x, y ∈ X.

The function f is called locally Lipschitz continuous if each point x ∈ X has
a neighborhood on which f is Lipschitz continuous.

Theorem 5.45. Let f : E → R ∪ {∞} be a convex function on a normed
linear space E. If there exists a point x0 ∈ ri(dom(f)) such that f is bounded
from above in a relative neighborhood of x0, then the function f is locally
Lipschitz continuous on ri(dom(f)).

Proof. We may again assume that int(dom(f)) 6= ∅. By virtue of Theo-
rem 5.43, f is continuous in a neighborhood Br0(x0). Suppose that

m ≤ f(x) ≤M on Br0(x0),

and pick 0 < r < r0. We claim that f is Lipschitz continuous in Br(x0). Let
v1, v2 ∈ Br(x0), and assume for now that ‖v2 − v1‖ ≤ r0 − r. The function
g(w) := f(v1 + w) − f(v1) is convex and finite-valued, g(0) = 0, and g is
bounded from above in the ball N := Br0−r(0) by the constant M − m.
It follows from the proof of Theorem 5.43 that |g(w)| ≤ ε(M − m) on εN .
Consequently, since v2 − v1 ∈ (‖v2 − v1‖/(r0 − r))N , we have

|f(v2)− f(v1)| = |g(v2 − v1)| ≤ M −m
r0 − r

‖v2 − v1‖. (5.6)

Now if v1, v2 ∈ Br are arbitrary, we can partition the interval [v1, v2] into N
points {uk}N1 in such a way that u1 = v1, uN = v2, and ‖uk−uk−1‖ ≤ r0− r.
Applying (5.6) to each pair (uk−1, uk), k = 2, . . . , N , and adding the results
gives

|f(v2)− f(v1)| ≤
N∑
k=2

|f(uk)− f(uk−1)| ≤
N∑
k=2

M −m
r0 − r

‖uk − uk−1‖

=
M −m
r0 − r

‖v2 − v1‖,

where the equality follows since each vector uk − uk−1 has the same direction
v2 − v1. This proves the claim and the theorem. ut
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In infinite-dimensional vector spaces, the boundedness assumption on the
function f is really necessary, where even the continuity of linear functionals
is tied up with boundedness. However, the situation is different in the finite-
dimensional case.

Lemma 5.46. Let f : E → R ∪ {∞} be a convex function on a finite-
dimensional normed linear space E. If x ∈ ri(dom(f)), then f is bounded
from above in a relative neighborhood of x.

Proof. Let n = dim(E). As in the proof of Theorem 5.43, we may assume that
int(dom(f)) 6= ∅. If x ∈ int(dom(f)), then

x ∈ N = int(∆) =
{n+1∑
i=1

λiui : λi > 0,
n+1∑
i=1

λi = 1
}
,

where {ui}n+1
1 are affinely independent vectors in dom(f), so that ∆ =

co({ui}n+1
1 ) is an n-simplex contained in dom(f). If y =

∑n+1
i=1 λiui ∈ ∆,

then

f(y) = f
(n+1∑
i=1

λiui

)
≤
n+1∑
1=1

λif(ui) ≤ max{f(u1), . . . , f(un+1)},

proving our claim. ut

Corollary 5.47. Let f : E → R ∪ {∞} be a convex function on a finite-
dimensional normed linear space E. If we consider f as a function f :
aff(C)→ R ∪ {∞}, then f is locally Lipschitz continuous on ri(C).

5.8 Exercises

1. (a) Show that

co({xi}k1) + co({yj}l1) = co
(
{xi + yj := 1, . . . , k, j = 1, . . . , l}

)
.

(b) Let C1 and C2 be two nonempty sets in a vector space E. Use (a) to
show that co(C1 + C2) = co(C1) + co(C2).

2. Let C be a k-dimensional convex set in Rn. Given any basis {ei}n1 for Rn,
show that there exists a linear subspace L ⊆ Rn spanned by k of the basis
vectors {ei} such that the projection of C onto L has dimension k.

3. Let C be a convex set and {Ai}k1 affine subspaces in a vector space E. If
C ⊆ A1 ∪A2 ∪ · · · ∪Ak, show that C ⊆ Ai for some i, 1 ≤ i ≤ k.
Hint: Use induction on k.

4. The purpose of this problem is to establish a connection between the
Minkowski gauge function and the support function.
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Let C ⊆ E be a convex body in a finite-dimensional vector space E
containing zero in its interior, and let

C◦ := {x : 〈x, z〉 ≤ 1 for all z ∈ C}

be its polar set , and the function

σC(x) := sup
z∈C
〈z, x〉

the support function of C.
(a) Show that the gauge function of C◦ is the support function of C,

that is,
pC◦(x) = σC(x) for all x ∈ E.

(b) If C is closed, then show that

pC(x) = σC◦(x) for all x ∈ E.

Hint: you may assume that (C◦)◦ = C, a fact that requires an appro-
priate separation argument.

5. Let C ⊆ E be a convex set in a finite-dimensional vector space E such that
C is a relatively open convex in the algebraic sense, that is, rai(C) = C.
Give a direct proof of a result proved in Theorem 5.23, namely, that C is
a relative open convex set in the topological sense, that is, ri(C) = C:
(a) Using the properties of the Minkowski gauge function.
(b) Using an elementary approach, starting with a basis {di}k1 of direc-

tions in E at a point x0 ∈ rai(C), and then using the convexity of C.
6. Let f(x, y) = y2/x, where x > 0.

(a) Show that f is a convex function.
(b) Show that f cannot be made continuous at zero, that is, we cannot

prescribe a value to f(0, 0) so that f becomes continuous at (0, 0).
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Separation of Convex Sets

Separation theorems involving convex sets is an important topic in optimiza-
tion. The duality theory of convex programming depends on them, and the
various optimality conditions in optimization theory, from the Fritz John and
Karush–Kuhn–Tucker (KKT) conditions to the Pontryagin maximum prin-
ciple, can be obtained from them. In addition, the familiar Hahn–Banach
theorem, which is one of the cornerstones in functional analysis with an enor-
mous number of applications in the field, is an analytic form of a separation
theorem.

Most separation theorems in the literature deal with the separation of
two convex sets. However, it is sometimes advantageous to prove theorems
dealing with separation of several convex sets. We will deal with both types
of separation theorems in this chapter.

It is a fact that it is technically easier to prove separation theorems in
finite-dimensional (and Hilbert) spaces than in general vector spaces. Since
our emphasis is more on finite-dimensional spaces, we find it expedient to first
prove separation theorem in the simpler setting of finite-dimensional spaces
(which for the most part can be extended to Hilbert spaces). This is done
in Sections 6.1–6.5. Our proofs are valid verbatim in any finite-dimensional
Euclidean space E equipped with an inner product 〈·, ·〉, but we assume for
convenience that E = Rn equipped with the usual inner product 〈x, y〉 =
xT y. Then in Sections 6.6 and 6.7, we prove separation theorems (involving
both two and several convex sets) in general vector spaces. Our treatment
emphasizes the algebraic approach, which accounts for its generality. The
topological separation theorems are then obtained with ease as corollaries;
see for example the proof of Theorem 6.39. Finally, Section 6.8 deals with the
Hahn–Banach theorem in a general setting.

A reader who is interested in only finite-dimensional spaces may skip Sec-
tions 6.6–6.8 without any loss of continuity.

DOI 10.1007/978-0-387-68407-9_6,  © Springer Science +Business Media, LLC 2010 
141O. Gü  ler, Foundations of Optimization, Graduate Texts in Mathematics 258,  



142 6 Separation of Convex Sets

6.1 Projection of a Point onto a Finite-Dimensional
Closed Convex Set

Let C ⊆ Rn be a closed convex set. If x is a point in Rn, then the point in
C that is closest to x is called the projection of x onto C, and is denoted by
ΠC(x).

Fig. 6.1. Projecting a point onto a convex set.

Figure 6.1 illustrates the situation. We may convince ourselves that for
any z ∈ C, the angle θ between the vectors x−ΠC(x) and z−ΠC(x) must be
obtuse. Since 〈x− x∗, z − x∗〉 = ‖x− x∗‖ · ‖z − x∗‖ cos θ, and since cos θ ≤ 0
when θ is obtuse, we may expect that the following theorem holds.

Theorem 6.1. Let C ⊆ Rn be a nonempty closed convex set. The projection
ΠC(x) of x onto C is characterized by the variational inequality

〈x−ΠC(x), z −ΠC(x)〉 ≤ 0 for all z ∈ C. (6.1)

Proof. Consider the minimization problem

min
z∈C

f(z) :=
1
2
‖z − x‖2.

The function f is clearly coercive on Rn, so that any sublevel set lα(f) :=
{z ∈ C : f(z) ≤ α} is a compact set. It follows from Theorem 2.2 that there
exists a global minimizer of f on C. Since f is a strictly convex function, the
minimizer is unique. Finally, it follows from Theorem 4.33 that the minimizer
x∗ := ΠC(x) is characterized by the variational inequality

〈∇f(x∗), z − x∗〉 ≥ 0 for all z ∈ C.

x

z

θ

C

ΠC(x)
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Since ∇f(x∗) = x∗ − x, this is equivalent to the condition

〈x− x∗, z − x∗〉 ≤ 0 for all z ∈ C.

The theorem is proved. ut

Remark 6.2. The above theorem holds even in Hilbert spaces; notice that we
need to show only that ΠC(x) exists. Let {xn}∞1 be a minimizing sequence,
that is, xn ∈ C such that

‖x− xn‖ → d = dC(x) := inf{‖x− z‖ : z ∈ C}.

The Euclidean distance satisfies the parallelogram equality ‖u − v‖2 + ‖u +
v‖2 = 2(‖u‖2 + ‖v‖2); therefore

‖xm − xn‖2 = 2‖x− xm‖2 + 2‖x− xn‖2 − 4
∥∥∥∥x− xm + xn

2

∥∥∥∥2

≤ 2‖x− xm‖2 + 2‖x− xn‖2 − 4d→ 0,

where the inequality follows from the fact (xm + xn)/2 ∈ C. This shows that
{xm} is a Cauchy sequence and thus converges to a point x∗ ∈ C satisfying
the equality ‖x− x∗‖ = d.

Corollary 6.3. The function ΠC : Rn → C is nonexpansive, that is,

‖ΠC(x2)−ΠC(x1)‖ ≤ ‖x2 − x1‖ for all x1, x2 ∈ Rn.

Consequently, ΠC is a continuous mapping.

Proof. The variational inequality (6.1) gives

〈x1 −ΠC(x1), ΠC(x2)−ΠC(x1)〉 ≤ 0,
〈x2 −ΠC(x2), ΠC(x1)−ΠC(x2)〉 ≤ 0;

rearranging and adding these inequalities, we obtain

〈x1 − x2 +ΠC(x2)−ΠC(x1), ΠC(x2)−ΠC(x1)〉 ≤ 0,

or

‖ΠC(x2)−ΠC(x1)‖2 ≤ 〈x2 − x1, ΠC(x2)−ΠC(x1)〉
≤ ‖x2 − x1‖ · ‖ΠC(x2)−ΠC(x1‖,

where the last inequality follows from the Cauchy–Schwarz inequality. ut
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6.2 Separation of Convex Sets in Finite-Dimensional
Vector Spaces

We start by defining several relevant concepts.

Definition 6.4. A hyperplane H in Rn is an (n−1)-dimensional affine subset
of Rn, that is, H = {x ∈ Rn : `(x) = α} is the level set of a nontrivial linear
function ` : Rn → R. If ` is given by `(x) = 〈a, x〉 for some a 6= 0 in Rn, then

H = H(a,α) := {x ∈ Rn : 〈a, x〉 = α}.

A hyperplane H partitions Rn into two half-spaces.

Definition 6.5. Let H = H(a,α) be a hyperplane in Rn. The closed half-spaces
associated with H are the two closed sets

H̄+
(a,α) = {x ∈ E : 〈a, x〉 ≥ α},

H̄−(a,α) = {x ∈ E : 〈a, x〉 ≤ α}.

Similarly, the open half-spaces associated with H are the two open sets

H+
(a,α) = {x ∈ E : 〈a, x〉 > α},

H−(a,α) = {x ∈ E : 〈a, x〉 < α}.

Definition 6.6. Let C and D be two nonempty sets and H := H(a,α) a hy-
perplane in Rn.

H is called a separating hyperplane for the sets C and D if C is contained
in one of the closed half-spaces determined by H and D in the other, say
C ⊆ H̄+

(a,α) and D ⊆ H̄−(a,α).
H is called a strictly separating hyperplane for the sets C and D if C is

contained in one of the open half-spaces determined by H and D in the other,
say C ⊆ H+

(a,α) and D ⊆ H−(a,α).
H is called a strongly separating hyperplane for the sets C and D if there

exist β and γ satisfying β > α > γ, C ⊆ H̄+
(a,β), and D ⊆ H̄−(a,γ).

H is called a properly separating hyperplane for the sets C and D if H
separates C and D and C and D are not both contained in the hyperplane H.

H is called a support hyperplane of C at a point x ∈ C if x ∈ H and
C ⊆ H̄+.

If there exists a hyperplane H separating the sets C and D in one of
the senses above, we say that C and D can be separated, strictly separated,
strongly separated, properly separated, respectively.

We are ready to study the separation properties of convex sets in Rn. We
begin by considering the separation of a single point from a convex set.
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Theorem 6.7. If C ⊂ Rn is a nonempty convex set and x /∈ ri(C), then there
exists a hyperplane H(a,α) such that x ∈ H(a,α) and C ⊆ H̄+

(a,α), that is,

〈a, x〉 ≥ 〈a, x〉 for all x ∈ C.

Proof. We first assume that x /∈ C. The variational inequality (6.1) gives

〈ΠCx− x, x−ΠCx〉 ≥ 0 for all x ∈ C;

defining a := ΠC(x)− x 6= 0, and writing

x−ΠCx = x− x+ (x−ΠCx) = x− x− a,

we get 〈a, x− x− a〉 ≥ 0, or 〈a, x− x〉 ≥ ‖a‖2 > 0. Therefore,

〈a, x〉 ≥ 〈a, x〉 for all x ∈ C,

and the theorem is proved in this case.
If x ∈ C \ ri(C), then there exists a sequence {xk} of points not in C such

that xk → x. It follows from (6.1) that

〈ΠC(xk)− xk, x−ΠC(xk)〉 ≥ 0 for all x ∈ C.

Since xk /∈ C and ΠC(xk) ∈ C, we have ΠC(xk) 6= xk; defining

ak :=
ΠC(xk)− xk)
‖ΠC(xk)− xk‖

,

we have
〈ak, x−ΠC(xk)〉 ≥ 0 for all x ∈ C. (6.2)

Since the sequence {ak} is bounded, it has a convergent subsequence; to avoid
cumbersome notation, we assume that the sequence {ak} itself converges, say
ak → a, where ‖a‖ = 1. Since xk → x and ΠC is continuous,

ΠC(xk)→ ΠC(x) = x;

thus letting k →∞ in (6.2) gives

〈a, x〉 ≥ 〈a, x〉 for all x ∈ C,

and the theorem is proved. ut
Theorem 6.7 immediately implies the following.

Theorem 6.8. (Support hyperplane theorem) If C ⊆ Rn is a nonempty
convex set and x ∈ C \ri(C), then there exists a support hyperplane to C at x.

The following theorem provides the weakest separation result for two con-
vex sets. It follows easily from Theorem 6.7, because a useful trick reduces
the problem of separating two convex sets to the separation of a point from a
suitably defined convex set.
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Theorem 6.9. Let C and D be two nonempty convex sets in Rn. If C and
D are disjoint, then there exists a hyperplane H(a,α) that separates C and D,
that is,

〈a, x〉 ≤ α ≤ 〈a, y〉 for all x ∈ C, y ∈ D.

Proof. The trick is to define the set

A := C −D = {x− y : x ∈ C, y ∈ D},

and note that 0 /∈ A, due to C ∩ D = ∅. The set A is convex, because A =
C+ (−D) is the Minkowski sum of the convex sets C and −D; it follows from
Theorem 6.7 that there exists a hyperplane H(a,α) with α = 〈a, 0〉 = 0 such
that 〈a, u〉 ≤ 0 for all u ∈ A. Since A = C −D, this means that 〈a, x− y〉 ≤ 0
for all x ∈ C and all y ∈ D, or

〈a, x〉 ≤ 〈a, y〉 for all x ∈ C, y ∈ D.

Then, any hyperplane H(a,α) with α satisfying

sup
x∈C
〈a, x〉 ≤ α ≤ inf

y∈D
〈a, y〉

separates the sets C and D. ut
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Fig. 6.2. Separation of two convex sets by a hyperplane.

Theorem 6.10. (Strong separation theorem) Let C,D be two nonempty,
disjoint, closed, convex sets in Rn. If one of them is compact, then C and D
can be strongly separated.
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Proof. Let us assume for definiteness that D is compact. We note that the
theorem is equivalent to the existence of a hyperplane H(a,α) satisfying the
condition

inf
x∈C
〈a, x〉 > α > max

y∈D
〈a, y〉,

or equivalently the condition

〈a, x〉 > α > 〈a, y〉 for all x ∈ C, y ∈ D.

Define A := C − D. The set A is convex, and we claim that it is closed.
Let uk → u be a convergent sequence with uk ∈ A; we will show that u ∈ A.
Write uk = xk − yk, where xk ∈ C and yk ∈ D. Since D is compact, we can
extract a convergent subsequence from {yk}. To avoid cumbersome notation,
assume that yk → y ∈ D. Since xk − yk → u and yk → y, we see that
xk → x := u+ y ∈ C. Thus, u = x− y ∈ A, and the claim is proved.

Since C ∩ D = ∅, we have 0 /∈ A = A, and it follows from the first part
of the proof of Theorem 6.7 that there exists a hyperplane H(a,0) such that
〈a, u〉 ≥ ‖a‖2 > 0 for all u ∈ A, or 〈a, x− y〉 ≥ ‖a‖2 for all x ∈ C and y ∈ D.
This implies

〈a, x〉 ≥ 〈a, x〉 − ‖a‖
2

2
≥ 〈a, y〉+

‖a‖2
2

> 〈a, y〉 for all x ∈ C, y ∈ D;

it is easy to see that the theorem holds with α = ‖a‖2/2 + maxy∈D〈a, y〉. ut

Remark 6.11. The strong separation theorem breaks down if neither C nor D
is compact. For example, consider the closed convex sets C = {(0, y)} (the y-
axis) and D = {(x, y) : y ≤ lnx}. Neither set is compact, and it is easy to see
that the only hyperplane separating C and D is the y-axis. Since C coincides
with the separating hyperplane, there exists no hyperplane separating C and
D strictly, let alone strongly.

Theorem 6.12. If C ⊆ Rn is a nonempty closed convex set, then C is the
intersection of all the closed half-spaces containing it, that is,

C =
⋂

(a,α)

{
H̄+

(a,α) : C ⊆ H̄+
(a,α)

}
.

Proof. Denote by D the intersection set above. It is clear that D is a closed,
convex set containing C, so it remains to show that D ⊆ C.

If this is not true, then there exists a point x0 ∈ D that does not lie in
C. Applying Theorem 6.10 to the convex sets {x0} and C, we see that there
exists a hyperplane H := H(a,α) such that x0 ∈ H− and C ⊆ H+; but then
H̄+ is one of the closed half-spaces intersected to obtain D, and so D ⊆ H̄+.
Since x0 ∈ D, we obtain x0 ∈ H̄+, which contradicts x0 ∈ H−. The theorem
is proved. ut
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Remark 6.13. The result above provides an “external” or “from outside” char-
acterization of closed convex sets as intersections of closed half-spaces. That
is, all closed convex sets are obtained from half-spaces using the intersection
operation. In contrast, the convex hull operation generates a convex set by
enlargement, “from inside.” This is an instance of a “duality,” which is a
common phenomenon in convexity.

The most useful separation result for two convex sets in a vector space is
perhaps the proper separation theorem (Theorem 6.15 below and its general
version Theorem 6.33 on page 161). It is here that the properties of the relative
interior developed in Chapter 5 prove most useful.

We need the following result in its proof.

Lemma 6.14. Two nonempty convex sets C and D in Rn can be properly
separated if and only if the origin and the convex set K := C − D can be
properly separated.

Proof. Let H := H(a,α) be a hyperplane properly separating C and D such
that C ⊆ H̄+, D ⊆ H̄−, and assume without loss of generality that C does
not lie on H. Then

〈a, x〉 ≥ α ≥ 〈a, y〉 for all x ∈ C, y ∈ D,

and 〈a, x0〉 > α for some x0 ∈ C; it follows that 〈a, z〉 ≥ 0 for all z ∈ K, with
strict inequality holding for some z0 ∈ K. This proves that the hyperplane
H(a,0) properly separates the sets {0} and K.

Conversely, suppose that the sets {0} and K are properly separated by
a hyperplane H(a,α) such that K ⊆ H̄+

(a,α). Then 〈a, x− y〉 ≥ α ≥ 0 for all
x ∈ C and y ∈ D, or

〈a, x〉 ≥ α+ 〈a, y〉 for all x ∈ C, y ∈ D,

and either the first inequality is strict for some x0 ∈ C and y0 ∈ D, or else
α > 0. In the first case, any hyperplane H(a,γ) with γ ∈ R satisfying

inf
x∈C
〈a, x〉 ≥ γ ≥ α+ sup

y∈D
〈a, y〉

properly separates C and D; in the second case we have α > 0 and 〈a, x〉 = α+
〈a, y〉 for any x ∈ C and y ∈ D, so the hyperplane H(a,γ) with γ = α/2+〈a, y〉
properly separates C and D. ut

Theorem 6.15. (Proper separation theorem) Two nonempty convex sets
C and D in Rn can be properly separated if and only if ri(C) and ri(D) are
disjoint.

Proof. Define the convex set K := C − D. It follows from Lemma 5.11 and
Corollary 5.21 that ri(K) = ri(C−D) = ri(C)− ri(D); thus, ri(C)∩ ri(D) = ∅
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and 0 /∈ ri(K) are equivalent statements. Consequently, Lemma 6.14 reduces
the proof of the theorem to proving that the sets {0} and K are properly
separable if and only if 0 /∈ ri(K).

Suppose that the origin and K are properly separated by a hyperplane H,
such that 0 ∈ H̄− and K ⊆ H̄+. We claim that 0 /∈ ri(K). If 0 /∈ H, then
ri(K) ⊆ H̄+, so that 0 /∈ ri(K). Otherwise, 0 ∈ H and there exists a point
x ∈ K \H. If we had 0 ∈ ri(K), there would exist a point y ∈ K such that
0 ∈ (x, y), giving the contradiction y ∈ C ∩H− = ∅. This proves the claim.

Conversely, suppose that 0 /∈ ri(K). Write

L := aff(K) = u0 + span{u1, . . . , uk},
where {ui}k1 is linearly independent. If 0 /∈ L, then {ui}k0 is linearly indepen-
dent, and we can extend it to a basis {ui}n−1

0 of Rn. Then the hyperplane
H := u0 + span{u1, . . . , un−1} does not contain the origin, so it properly
separates {0} and K.

If 0 ∈ L, we apply Theorem 6.9 within the vector space L to the sets
{0} and ri(K), and obtain a hyperplane P in L separating 0 and K such that
ri(K) ⊆ P+

; see Figure 6.3. We may assume that 0 ∈ P ; otherwise the transla-
tion of P so that it passes through the origin also satisfies the same separation
properties. Extending P to the hyperplane H = span{P, uk+1, . . . , un−1}, it
is evident that H properly separates {0} and K. ut

LP

K
0

H

Fig. 6.3. Proper separation of convex sets.

We use Theorem 6.15 to obtain an improved version of Theorem 6.8.

Theorem 6.16. Let C be a nonempty convex set in Rn. If D is a nonempty
convex subset of the relative boundary of C (D ⊆ C̄ \ ri(C)), then there exists
a support hyperplane to C containing D but not all points of C.
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Proof. Since ri(C) ∩ ri(D) ⊆ ri(C) ∩D = ∅, Theorem 6.15 implies that there
exists a hyperplane H := H(a,α) properly separating C and D, say

〈a, x〉 ≤ α ≤ 〈a, y〉 for all x ∈ C, y ∈ D.

If y ∈ D, then 〈a, y〉 ≥ α, but since y ∈ C̄, we also have 〈a, y〉 ≤ α. This means
that 〈a, y〉 = α for all y ∈ D, that is, D ⊆ H. Since H properly separates C
and D, we must have C 6⊆ H. ut

Finally, we present a proper separation theorem involving two convex sets
one of which is an affine set.

Theorem 6.17. Let C ⊂ Rn be a nonempty convex set. If M is an affine set
such that ri(C) and M are disjoint, then M can be extended to a hyperplane
H such that ri(C) and H are disjoint.

Proof. Since M is affine, ri(M) = M , and Theorem 6.15 implies that there
exists a hyperplane H properly separating C and M . If M ⊆ H, we are done;
if not, there exists a point x ∈M \H 6= ∅. The affine sets H and M must be
disjoint; otherwise, there would exist a point u ∈M ∩H, and the line passing
through x and u would intersect both half-spaces H̄+ and H̄−, a contradiction
because the line stays in M , which is included in one of these half-spaces.

If the hyperplane H is shifted parallel to itself so that the new hyperplane
H̃ includes M , then H̃ ∩ ri(C) = ∅. ut

y

x

z

Fig. 6.4. Separation of an affine set and a convex set.

It is perhaps surprising that even when the affine set M and the convex
set C in Theorem 6.17 are disjoint, the hyperplane H ⊃ M may contain
points of C. The example in Figure 6.4 is such a case in which M ⊂ R3 is
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the x-axis and C is the convex hull of the point (0,−1, 0) and the hyperbola
{(x, y, z) : xz = 1, x > 0, y = 1}. Even though C and M have no common
points, the separating hyperplane H is the xy-plane and contains the point
(0,−1, 0).

6.3 Two Applications of Separation Theorems

6.3.1 Dual Cone

Duality is a very important aspect of convex analysis. In this subsection, we
deal with a particular case of duality.

Definition 6.18. If K ⊆ Rn is a nonempty set, the set

K∗ := {y ∈ Rn : 〈x, y〉 ≤ 0 for all x ∈ K}

is called the polar cone of K, or sometimes the dual cone of K.

The cone K∗ is always a closed convex cone, because

K∗ =
⋂
x∈K
{y ∈ Rn : 〈x, y〉 ≤ 0} =

⋂
x∈K

H̄−(x,0),

and each H̄−(x,0) is a closed convex cone.

Theorem 6.19. If K ⊆ Rn is a closed convex cone, then K = K∗∗.

Proof. From the definition of K∗, we see that if x ∈ K, then 〈x, y〉 ≤ 0 for all
y ∈ K∗; this proves that K ⊆ K∗∗. Suppose that the reverse inclusion K∗∗ ⊆
K is not true, and pick a point x ∈ K∗∗ \ K. It follows from Theorem 6.10
that there exists a nonzero vector a ∈ Rn such that

〈a, x〉 > 〈a, z〉 for all z ∈ K. (6.3)

On the one hand, setting z = 0 in (6.3) gives 〈a, x〉 > 0; on the other hand, if
z ∈ K is a fixed point, then tz ∈ K for all t > 0, and (6.3) gives 〈a, x〉 > 〈a, tz〉,
or 〈a, z〉 < 〈a, x〉/t. Letting t→∞, we obtain

〈a, z〉 ≤ 0 for all z ∈ K,

which implies that a ∈ K∗. However, since z ∈ K∗∗, we must have 〈a, x〉 ≤ 0,
which contradicts the fact 〈a, x〉 > 0 proved above. ut

Definition 6.18 and Theorem 6.19, with appropriate modifications, hold in
much more general settings.
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6.3.2 A Convex Barrier Function on an Open Convex Set

Theorem 6.20. Let C ⊂ Rn be a nonempty open convex set. The distance
function

dC(x) := d(x, ∂C) = min{‖x− z‖ : z ∈ ∂C}
is a concave function on C that vanishes on the boundary of C.

Furthermore, the function − ln dC(x) is a convex barrier function on C,
that is,

− ln dC(x)→∞ as x→ ∂C.

Proof. Let x ∈ C. If H+ is an open half-space containing C, then it is a simple
consequence of the definition of dC that dC(x) ≤ dH+(x); thus

dC(x) ≤ inf
C⊆H+

dH+(x),

where the infimum is taken over the set of open half-spaces H+ containing C.
However, dC(x) = ‖x−zx‖ for some zx ∈ ∂C, and it follows from Theorem 6.8
that there exists 0 6= a ∈ Rn such thatH(x)+ := {x : 〈a, x〉 > 〈a, zx〉} contains
C. Clearly

dH(x)+(x) = dC(x),

and this proves that

dC(x) = inf
C⊆H+

dH(x) for x ∈ C. (6.4)

Now, if H+ = H+
(a,α), where ‖a‖ = 1 and x ∈ H+, then it is easily shown

that dH(x) = 〈a, x〉 − α, a linear function. Consequently, dC(x) is a concave
function, being the pointwise infimum of a set of linear functions.

The same argument shows that

− ln dC(x) = sup
C⊆H

− ln dH(x), x ∈ C.

Since the function − ln dH(x) is convex, we see that − ln dC(x) is a convex
function on C, and approaches +∞ on ∂C. ut

The converse statement is also true, that is, if C is an open set and dC is
a concave function (or − ln dC is a convex function), then C is a convex set.
We will not prove this here; the interested reader may consult [47] or [141],
pp. 57–60, for details.

6.4 Proper Separation of a Convex Set and a Convex
Polyhedron

If, in separation theorems, one of the convex sets has a special character,
then it is possible to prove more powerful separation results; see [175, 176] for
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examples of such results. Rockafellar proves a particular separation theorem
when one set is a convex polyhedron; see his Theorem 20.2 in [228]. He uses
it to prove two important results, a convex transposition theorem and as a
corollary the strong duality theorem of convex programming, which more or
less correspond to our Theorems 11.14 and 11.15, respectively.

We here give a simpler proof of Rockafellar’s separation theorem using a
device in [147].

Theorem 6.21. Let C and P be nonempty convex sets in Rn such that P
is a convex polyhedron, that is, P is the intersection of finitely many closed
half-spaces in Rn. There exists a hyperplane separating C and P properly and
not containing C if and only if ri(C) and P are disjoint.

Proof. Suppose that there exists a hyperplane H that separates C and P and
does not contain C. If x ∈ ri(C) ∩ P 6= ∅ as well, then we have x ∈ H, and
if y ∈ C \H, then the line segment [y, x] can be extended beyond x without
leaving C (since x ∈ ri(C)), intersecting both half-paces H+ and H−; this
contradicts the fact that H separates C and P .

To complete the proof, we need to show that if ri(C)∩P = ∅, then we can
find a hyperplane H separating C and P and not containing C. We will do
this by a suitable separation argument. Suppose that P has the representation

P = {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . ,m},

where each hj is an affine function.
A crucial part of the argument involves the introduction of the maximal

set of indices I ⊆ {1, . . . ,m} (which could be the empty set) such that there
exist positive multipliers αj > 0 satisfying the conditions∑

j∈I
αjhj(x) = 0 for all x ∈ ri(C).

An important property of the set I (which is easy to see) is that if a point
x ∈ ri(C) satisfies the linear inequalities hj(x) ≤ 0 for all j ∈ I, then it
satisfies them with equality, that is, hj(x) = 0 for all j ∈ I.

We define a set of “right-hand-side vectors” of the affine functions on ri(C),

R :=
{
z ∈ Rm : ∃x ∈ ri(C), hj(x) ≤ zj , j /∈ I, hj(x) = zj , j ∈ I

}
.

which is clearly a nonempty convex set. We have 0 /∈ R (since any x ∈
ri(C) must satisfy hj(x) = 0 for j ∈ I), and by Theorem 6.17 there exists
a hyperplane H through the origin such that ri(R) ∩ H = ∅. Consequently,
R lies in one of the closed half-spaces defined by H, but not entirely on H.
Thus, there exists a nonzero vector µ ∈ Rm such that 〈µ, z〉 ≥ 0 for all z ∈ R,
and the strict inequality is satisfied for some z ∈ R. This means that∑

j /∈I

µj(hj(x) + tj) +
∑
j∈I

µjhj(x) ≥ 0 for all x ∈ ri(C), t ≥ 0, (6.5)
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and the inequality is strict for some x ∈ ri(C), t ≥ 0.
If µj < 0 for some j /∈ I, then we obtain a contradiction to (6.5) by letting

tj →∞; thus µj ≥ 0 for j /∈ I. Letting tj → 0, we obtain

m∑
j=1

µjhj(x) ≥ 0 for all x ∈ ri(C).

Some components of the multiplier vector µI := (µj , j ∈ I) may be negative,
but adding to it a positive multiple of the vector αI := (αj , j ∈ I) makes all
components of µI positive without changing the above inequality.

The affine function

`(x) :=
m∑
j=1

µjhj(x)

is nonnegative on ri(C) and clearly nonpositive on P . Thus, H := {x : `(x) =
0} is a hyperplane separating ri(C) and P .

The function `(x) does not vanish identically on ri(C): otherwise, in the
case that µj > 0 for some j /∈ I, the maximality of I is violated; and in the
remaining case in which µj = 0 for all j /∈ I, (6.5) implies that `(x) > 0 for
some x ∈ ri(C).

Thus far, we have proved that H separates C and P , and that such ri(C)
does not lie on H. It remains only to verify the claim that `(x) ≥ 0 for all
x ∈ C. If there is a point x ∈ C such that `(x) < 0, then the line segment
[x0, x], where x0 ∈ ri(C), contains a point x1 ∈ (x0, x) such that `(x1) < 0.
Since x1 ∈ ri(C) by Lemma 5.18, this gives a contradiction, proving the claim.

ut

6.5 Dubovitskii–Milyutin Theorem in Finite Dimensions

Dubovitskii and Milyutin [80] devise a general scheme to derive optimality
conditions in very diverse optimization problems, ranging from mathematical
programming to optimal control. In this theory, the optimality conditions are
reduced to the condition that the intersection of a certain set of convex sets
is empty. Then, the Dubovitskii–Milyutin theorem below is invoked to write
the optimality conditions in a more convenient, analytical, form. Two general
versions of the theorem are given in Section 6.7.

We first prove a generalization of this result in finite dimensions following
[124].

Lemma 6.22. Let {Ci}k+1
1 , k ≥ 1, be convex sets in Rn such that 0 ∈ Ci for

i = 1, . . . , k + 1. Consider the conditions

(a) ∩k+1
i=1Ci = ∅.
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(b) There exists l := (l1, . . . , lk+1) 6= 0 such that

〈li, xi〉 ≤ 0 for all xi ∈ Ci,
k+1∑
i=1

li = 0.

Then (a) implies (b). Moreover, if k of the sets, say {Ci}k1 , are open, then
(b) implies (a) as well, and the two conditions are equivalent.

Proof. (a) implies (b): The important idea here is to define the sets

K1 := {(xk+1, . . . , xk+1) : xk+1 ∈ Ck+1},
K2 := C1 × · · · × Ck,

and to note that K1 ∩K2 = ∅, and 0 ∈ Ki, i = 1, 2. Theorem 6.9 implies that
the sets K1 and K2 can be separated, that is, there exists 0 6= (l1, . . . , lk),
li ∈ Rn, such that

k∑
i=1

〈li, xi〉 ≤ 〈
k∑
i=1

li, y〉 for all xi ∈ Ci, i = 1, . . . , k, y ∈ Ck+1. (6.6)

Fix i, 1 ≤ i ≤ k, and let the remaining xj → 0 and y → 0. This gives

〈li, xi〉 ≤ 0 for all xi ∈ Ci, i = 1, . . . , k.

Similarly, letting all xi → 0 in (6.6) shows that lk+1 := −∑k
i=1 li satisfies the

inequality 〈lk+1, y〉 ≤ 0 for all y ∈ Ck+1.
(b) implies (a): We must have li 6= 0 for some i ≤ k, since otherwise

lk+1 = 0 as well, and l = 0. If x ∈ ∩k+1
i=1Ci 6= ∅, then 0 =

∑k+1
i=1 〈li, x〉, and

because 〈li, x〉 ≤ 0, we actually have 〈li, x〉 = 0 for each i ≤ k. Let li 6= 0.
Since Ci is open, there exists ε > 0 such that x+ εli ∈ Ci; but then we have
a contradiction, since

0 ≥ 〈li, x+ εli〉 = ε‖li‖2 > 0.

ut

Theorem 6.23. (Dubovitskii–Milyutin) Let {Ki}k1 be open convex cones,
and Kk+1 a convex cone in Rn. Then

∩k+1
i=1Ki = ∅ (6.7)

if and only if there exist

li ∈ K∗i , {li}k+1
i=1 not all zero, such that l1 + l2 + · · ·+ lk+1 = 0. (6.8)

This finite-dimensional version of the Dubovitskii–Milyutin theorem fol-
lows immediately from Lemma 6.22. The theorem is also true in infinite-
dimensional topological vector spaces; see Section 6.7.
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6.6 Separation of Convex Sets in General Vector Spaces

In this section and the next, we prove separation theorems involving two or
more convex sets in arbitrary vector spaces over R. We first prove separation
theorems using a synthetic, algebraic framework, suggested in the works [167,
168, 169, 177, 17, 18], and especially in the charming book [63], because this
approach brings out the basic ideas behind the separation theorems most
clearly, and gives the most general results. Moreover, this approach effectively
isolates the role of topological considerations in separation theorems, and
makes it possible to prove topological separation theorems with relative ease.

Readers who are not interested infinite-dimensional vector spaces may skip
this section and the next two without any loss of continuity.

We start by defining several relevant concepts.

Definition 6.24. Let E be a real vector space. A hyperplane H in E is the
level set of a nontrivial linear functional ` : E → R, that is,

H = {x ∈ E : `(x) = α}

for some α ∈ R.

The hyperplane H partitions E into two half-spaces; in the definitions
below, “closed” and “open” are algebraic concepts and do not refer to any
topology of E.

Definition 6.25. An algebraically closed half-space in E is a set either of the
form

H̄+
(`,α) := {x ∈ E : `(x) ≥ α},

or of the form
H̄−(`,α) := {x ∈ E : `(x) ≤ α},

where ` is a nonzero linear functional on E and α ∈ R.
Similarly, an algebraically open half-space in E is a set either of the form

H+
(`,α) := {x ∈ E : `(x) > α},

or of the form
H−(`,α) := {x ∈ E : `(x) < α}.

Definition 6.26. Let C and D be two nonempty sets, and H := H(`,α) a
hyperplane in a vector space E.

H is called a separating hyperplane for the sets C and D if C is contained
in one of the algebraically closed half-spaces determined by H and D in the
other, say C ⊆ H̄+

(`,α) and D ⊆ H̄−(`,α).
H is called a strictly separating hyperplane for the sets C and D if C is

contained in one of the algebraically open half-spaces determined by H and D
in the other, say C ⊆ H+

(`,α) and D ⊆ H−(`,α).
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H is called a strongly separating hyperplane for the sets C and D if there
exist β and γ satisfying γ < α < β, such that C ⊆ H̄+

(`,β), and D ⊆ H̄−(`,γ).
H is called a properly separating hyperplane for the sets C and D if H

separates C and D, and C and D are not both contained in the hyperplane H.
If there exists a hyperplane H separating the sets C and D in one of

the senses above, we say that C and D can be separated, strictly separated,
strongly separated, properly separated, respectively.

As in the finite-dimensional case, hyperplanes are proper, maximal affine
subsets. However, when E is a topological vector space, it is no longer true
that every hyperplane is necessarily closed.

Lemma 6.27. Let E be a real vector space. A set H ⊂ E is a hyperplane if
and only if H is a proper maximal affine subset of E.

Moreover, if E is a topological vector space, then the hyperplane H(`,α) is
closed if and only if ` is a continuous linear functional.

Proof. Clearly, a hyperplane H(`,α) is a proper affine subset of E. The max-
imality of H holds: if a ∈ E \ H, then `(a) 6= 0, so that if x ∈ E, we
have `(x) = `((`(x)/`(a))a), that is, x − `(x)/`(a)a ∈ H, proving that
E = span{H, a}.

Conversely, suppose that H is a proper maximal affine subset of E. Assume
without loss of generality that H is a linear subspace of E. If a ∈ E \H, then
E = span{H, a}, so that every x ∈ E has a representation x = u+ ta, where
u ∈ H and t ∈ R. This representation is unique, since x = u1 + t1a = u2 + t2a
implies that u2−u1 = (t1− t2)a ∈ H ∩ span({a}) = {0}, that is, u2 = u1 and
t2 = t1. Define

`(x) = t, where x = u+ ta, u ∈ H, t ∈ R,

which is easily shown to be a linear functional. Clearly, H = H(`,0), proving
that H is a hyperplane.

Now suppose that E is a topological vector space. If ` is continuous, it
is clear that H(`,α) is a (topologically) closed set. Conversely, if H := H(`,α)

is closed, we claim that ` is continuous. Pick a point x in the complement
of H, which is an open set. There exists an open neighborhood N of the
origin such that x + N ⊆ E \ H. We may assume that N is a symmetric
neighborhood, that is, N = −N : since (t, x) 7→ tx is continuous, there exist
δ > 0 and a neighborhood W of the origin such that tV ⊆ N for all |t| < δ.
The set N̄ := ∪|t|<δtW ⊆ N is clearly a symmetric neighborhood of the
origin. If `(N) is unbounded, then it is easy to see that `(N) = R, so that
there exists y ∈ N satisfying `(y) = α − `(x), which gives the contradiction
x + y ∈ (x + N) ∩ H = ∅. Therefore, `(N) is bounded, say |`(x)| ≤ M for
x ∈ N . The continuity of ` follows, because given ε > 0, |`(x)| < ε for every
x ∈ (ε/M)N . ut

Note that the proof above also establishes the following result.
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Corollary 6.28. Let E be a real topological vector space, and H := H(`,α)

a hyperplane. The linear functional ` is continuous if and only if one of the
half-spaces H+, H− contains an open set.

Some form of Zorn’s lemma is needed to prove separation theorems in
general vector spaces. Recall that a partial order � on a set X is a reflexive,
antisymmetric, and transitive relation on X, that is, for x, y, z ∈ X, we have

(a) x � x,
(b) x � y, y � x =⇒ x = y,
(c) x � y, y � z =⇒ x � z.

A subset Y ⊆ X is called totally ordered if any two elements x, y ∈ Y can be
compared, that is, either x � y or y � x. An upper bound of any set Z ⊆ X
is a point x ∈ X such that z � x for every z ∈ Z. A maximal element of a
partially ordered set X is a point x ∈ X such that x � z implies that z = x.

Lemma 6.29. (Zorn’s lemma) A partially ordered set has a maximal ele-
ment if every totally ordered subset of it has an upper bound.

Zorn’s lemma is a basic axiom of set theory equivalent to the axiom of
choice or the well-ordering principle; see for example [125] for more details.

A pair of nonempty convex sets C and D satisfying C∩D = ∅ and C∪D =
E are called complementary convex sets. The following result essentially goes
back to [152] and [248].

Lemma 6.30. If A and B are two nonempty, disjoint convex sets in a vector
space E, then there exist complementary convex sets C and D in E such that
A ⊆ C and B ⊆ D.

Proof. We introduce a relation � on the set C of disjoint convex subsets
(C,D) ⊆ E × E such that A ⊆ C and B ⊆ D by the inclusion relation, that
is, we declare (C,D) � (C′, D′) if C ⊆ C ′ and D ⊆ D′. It is evident that � is
a partial order relation on C. Moreover, if D ⊂ C is any totally ordered subset,
then the union of sets in D is a pair of disjoint convex sets that is an upper
bound for D. Thus, Zorn’s lemma applies, and there exists a maximal element
(C,D) ∈ C, that is, C and D are convex sets satisfying A ⊆ C and B ⊆ D,
and whenever C ′ and D′ are convex sets satisfying C ⊆ C ′ and D ⊆ D′, then
C ′ = C and D′ = D.

We claim that C ∪D = E. If this is not true, pick a point x ∈ E \ (C ∪D).
Since (C,D) is a maximal pair, we have co({x} ∪ C) ∩ D 6= ∅ and co({x} ∪
D) ∩ C 6= ∅. Let y1 ∈ co({x} ∪D) ∩ C and y2 ∈ co({x} ∪ C) ∩D; then there
exist x2 ∈ D such that y1 ∈ (x, x2), and x1 ∈ C such that y2 ∈ (x, x1);
see Figure 6.5. But the intersection point z of the line segments [x1, y1] and
[x2, y2] belongs to both C and D, a contradiction. This proves the claim and
the lemma. ut
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Lemma 6.31. Let (C,D) be complementary convex sets in a vector space E.
The set

L := ac(C) ∩ ac(D)

is either a hyperplane in E or the whole space E.
Moreover,

(a) L = E if and only if ai(C) = ai(D) = ∅, or equivalently if and only if
ac(C) = ac(D) = E.

(b) If L is a hyperplane, then the sets ai(C) and ai(D) are both nonempty,
and the pairs (ai(C), ai(D)) and (ac(C), ac(D)) are the algebraically open
and closed half-spaces associated with L, respectively.

Proof. The set L is convex, because ac(C) and ac(D) are convex sets. The set
L is not empty: let x ∈ C and y ∈ D; there exists a point w ∈ (x, y) such that
[x,w) ⊆ C and [y, w) ⊆ D, implying w ∈ ac(D) ∩ ac(D) 6= ∅.

First, we claim that
ac(C) = E \ ai(D).

If x /∈ ai(D), then there exists u ∈ E such that any point v ∈ E satisfying
x ∈ (u, v) has the property that (x, v] ⊆ E \D = C; thus, x ∈ ac(C), and we
have proved that ac(C) ∪ ai(D) = E. The sets ac(C) and ai(D) are disjoint:
if x ∈ ac(C) ∩ ai(D), then there exists u ∈ C such that [u, x) ⊆ C. Let v
be a point such that x ∈ (u, v); either v ∈ C, in which case [u, v] ⊂ C and
x ∈ ai(D) ⊆ D, which is impossible, or v ∈ D and then [u, x) intersects D,
since x ∈ ai(D), which is also impossible. Our claim is proved, and we have

ac(C) = E \ ai(D), and ac(D) = E \ ai(C). (6.9)

It follows immediately that L = E if and only if ai(C) = ai(D) = ∅, or
equivalently if and only if ac(C) = ac(D) = E, proving (a).

It is now easy to show that L is an affine set. If x, y ∈ L and z satisfies
y ∈ (x, z) and z /∈ L = ac(C)∩ac(D), then z /∈ ac(C), say; but then z ∈ ai(D),
and since x ∈ ac(D), we must have y ∈ ai(D) by Lemma 5.5, which contradicts
the assumption that y ∈ ac(C). Thus, z ∈ L, and L is an affine set.

Finally, assume that L 6= E. Pick p ∈ ai(C) = E \ ac(D), so that p /∈ L;
see Figure 6.6. To prove that L is a hyperplane, it suffices to show that E =
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aff({p} ∪ L). Pick a point r ∈ L and consider a point q = αr − p with α > 1,
that is, r ∈ (p, q). We must have q ∈ ai(D), because otherwise q ∈ ac(C) and
r ∈ ai(C) = E \ ac(D) by Lemma 5.5, contradicting r ∈ L. If x ∈ C \ L is
an arbitrary point, then the segment [x, q] must intersect L; in fact, the point
w ∈ (x, q) satisfying [x,w) ⊆ C and [q, w) ⊆ ai(D) must lie on L, because
w ∈ ac(C) and w ∈ ac(ai(D)) = ac(D). This proves that x ∈ aff({p} ∪ L).
Similarly, if y ∈ D \L is an arbitrary point, then y ∈ aff({p}∪L). Altogether,
we have proved that E = aff({p} ∪ L), that is, L is a hyperplane.

It follows from (6.9) that the sets ai(C), L, ai(D) are disjoint and their
union is E. This proves (b). ut
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Theorem 6.32. Let C and D be nonempty convex sets in a vector space E
such that ai(C) 6= ∅. Then there exists a hyperplane H separating C and D if
and only if ai(C)∩D = ∅, in which case ai(C) lies in one of the algebraically
open half-spaces associated with H.

Proof. Suppose that the hyperplane H separates C and D, such that C ⊆ H̄+

and D ⊆ H̄−. The set C cannot lie on H, since aff(C) = E; hence there exists
a point y ∈ C ∩H+. We must have ai(C) ⊆ H+, because if there is a point
x ∈ ai(C) ∩ H, then there exists a point z ∈ C such that x ∈ (y, z); since
z ∈ C ∩H−, this gives a contradiction.

Conversely, if ai(C) ∩ D = ∅, then Lemma 6.30 implies that there exist
complementary convex sets (C̃, D̃) such that ai(C) ⊆ C̃ and D ⊆ D̃. We
claim that ai(C) ⊆ ai(C̃) 6= ∅. If x ∈ ai(C), then for any y ∈ E, there exists
u ∈ C such that x ∈ (u, y). Since [x, u) ⊆ ai(C) by Lemma 5.5, we may
assume that u ∈ ai(C) ⊆ C̃; this proves the claim. Lemma 6.31 implies that
H := ac(C̃)∩ac(D̃) is a hyperplane that separates C̃ and D̃, hence ai(C) and
D. Supposing ai(C) ⊆ H̄+ and D ⊆ H̄−, we must have C ⊆ H̄+, because if
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x ∈ C∩H− and y ∈ ai(C) ⊆ H̄+, then Lemma 5.5 implies that (y, x) contains
a point z ∈ ai(C) ∩H− = ∅, a contradiction.

We have proved that H separates C and D. ut

Theorem 6.33. (Proper separation theorem) Let C and D be nonempty
convex sets in a vector space E, such that rai(C) 6= ∅ and rai(D) 6= ∅.

Then, there exists a hyperplane H properly separating C and D if and only
if rai(C) ∩ rai(D) = ∅.

Proof. The proof is partly the same as the proof Theorem 6.15. Define the
convex set K := C −D. It follows from Lemma 5.11 that rai(K) = rai(C −
D) = rai(C)− rai(D); thus, rai(C)∩ rai(D) = ∅ and 0 /∈ rai(K) are equivalent
statements. Lemma 6.14 holds in arbitrary vector spaces, as is evident from
its proof. Thus, the proof of the theorem reduces to establishing the fact that
the sets {0} and K are properly separable if and only if 0 /∈ rai(K).

Suppose that the origin and K are properly separated by a hyperplane H,
such that 0 ∈ H̄− and K ⊆ H̄+. We claim that 0 /∈ rai(K). If 0 /∈ H, then
rai(K) ⊆ H̄+, so that 0 /∈ rai(K). Otherwise, 0 ∈ H and there exists a point
x ∈ K \H. If we had 0 ∈ rai(K), there would exist a point y ∈ K such that
0 ∈ (x, y), giving the contradiction y ∈ C ∩H− = ∅. This proves the claim.

To prove the converse implication, suppose that 0 /∈ rai(K), and let L :=
aff(K) be the affine hull of K. If 0 /∈ L, we will show that {0} and L can be
properly separated; this will imply that {0} and K can be properly separated.
Consider the set of all affine subsets of E that contain L but not 0, partially
ordered by set inclusion. Zorn’s lemma guarantees the existence of a maximal
affine subspace H containing L but not 0. We claim that H is a hyperplane;
otherwise, H ′ = aff({0} ∪H) 6= E, and if we pick x ∈ E \H ′, then the affine
set aff({x} ∪H) strictly includes H but does not include 0, contradicting the
maximality of H. This proves the claim. It is clear that H properly separates
{0} and L.

If 0 ∈ L, we apply Theorem 6.32 within the vector space L to the sets
{0} and K, and obtain a hyperplane P in L separating 0 and K such that
rai(K) ⊆ P+; see Figure 6.3. We may again assume that 0 ∈ P (otherwise
the translation of P so that it passes through the origin also satisfies the
same separation properties). Zorn’s lemma implies that there exists a maximal
linear subspace H of E extending P and satisfying P = H ∩L. We claim that
H is a hyperplane in E. Otherwise, pick x ∈ E\H and form the linear subspace
H ′ := span{x,H}, which strictly contains H. We have H ′∩L = P : any y ∈ H ′
can be written as y = αx + h with α ∈ R and h ∈ H; if y ∈ L, then y ∈ H,
and consequently αx ∈ H, which implies that α = 0 and y ∈ H ∩L = P . This
proves that H ′ ∩ L = P (the inclusion P ⊆ H ′ ∩ L is trivial), contradicting
the maximality of H.

We have proved that H is a hyperplane; clearly H properly separates {0}
and K. ut
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Theorem 6.34. Let C be a nonempty convex set in a vector space E. If M
is an affine set such that rai(C) ∩M = ∅, then there exists a hyperplane H
extending M such that rai(C) ∩H = ∅.

Proof. The proof of the theorem is the same as the proof of Theorem 6.17
except that we replace ri(C) in that proof by rai(C) and invoke Theorem 6.33
instead of Theorem 6.15. ut

6.7 Separation of Several Convex Sets

In this section, we deal with separation of several convex sets, in both the
algebraic and topological senses. The algebraic separation theorems give the
most general results, being valid under very mild conditions; they also make
it fairly easy to obtain topological separation from them, since the only thing
that needs proof is the continuity of the linear functional defining the hyper-
plane; see for example the proof of Theorem 6.39 below.

The major results of this section are Theorem 6.37, which characterizes,
under mild conditions, when several convex sets can be properly separated
in the algebraic sense, and Theorems 6.38 and 6.39, which generalize the
Dubovitskii–Milyutin theorem, Theorem 6.23, in the algebraic and topological
senses, respectively.

Readers who are not interested infinite-dimensional vector spaces may skip
this section without any loss of continuity.

Definition 6.35. Let {Ci}k1 be a family of nonempty proper convex sets in a
vector space E. The sets {Ci}k1 are called separable if there exist hyperplanes
{Hi}k1 such that Ci ⊆ H̄−i for all i and the algebraically open half-spaces
{H−i }k1 have an empty intersection, that is, ∩k1H−i = ∅.

The sets {Ci}k1 are called properly separable if they are separable and at
least one set Ci does not lie on the corresponding hyperplane Hi.

Theorem 6.37 below generalizes Theorem 6.33 to more than two convex
sets. We need the following preliminary result in its proof.

Lemma 6.36. Let E be a real vector space, and {`i}k1 a set of linear func-
tionals on E. The system of strict linear inequalities

`i(x) < αi, i = 1, . . . , k, (6.10)

is inconsistent if and only if there exist nonnegative scalars {λi}k1 , not all zero,
such that

k∑
i=1

λi`i = 0,
k∑
i=1

λiαi ≤ 0.
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Proof. Both sets of conditions cannot hold simultaneously, because if x satis-
fies (6.10), then we have the contradiction

0 <
k∑
i=1

λi(αi − `i(x)) =
k∑
i=1

λiαi ≤ 0.

Suppose that (6.10) is inconsistent, and define the sets

L := {u ∈ Rk : ∃x ∈ E, ui = `i(x)− αi, i = 1, . . . , k},
K := {u ∈ Rk : u < 0};

L is affine, and K is an open convex set. Note that K ∩L = ∅; it follows from
Theorem 6.34 (in fact Theorem 6.17 suffices) that there exists a hyperplane
H = H(λ,γ) ⊂ Rk such that L ⊆ H and K ⊆ H−. On the one hand, the fact
K ⊆ H− gives

〈λ, v〉 < γ for all v ∈ Rk, v < 0,

which implies that λ ≥ 0 and γ ≥ 0; on the other hand, the fact L ⊆ H means
that ( k∑

i=1

λi`i

)
(x)−

k∑
i=1

λiαi =
k∑
i=1

λi(`i(x)− αi) = γ for all x ∈ E,

which implies that
∑k
i=1 λi`i = 0 and

∑k
i=1 λiαi = −γ ≤ 0. ut

An independent proof of the lemma can be found in Appendix A.

Theorem 6.37 gives both analytic and geometric characterizations of the
disjointness condition ∩k1 raiCi = ∅ of k proper nonempty sets {Ci}k1 under
the mild conditions raiCi 6= ∅ for all i = 1, . . . , k, which are always satisfied
in the finite-dimensional case.

Theorem 6.37. Let {Ci}k1 , k > 1, be proper convex sets in a vector space E
such that raiCi 6= ∅ for all i = 1, . . . , k.

The following conditions are equivalent:

(a) ∩k1 raiCi = ∅.
(b) There exist linear functionals {`i}k1 on E, not all identically zero, and

scalars {αi}k1 such that

`i(xi) ≤ αi for all xi ∈ Ci, i = 1, . . . , k,
k∑
1

`i = 0,
k∑
1

αi ≤ 0,

and there exists a point x belonging to a set Ci with corresponding `i 6= 0
such that `i(xi) < αi.

(c) The sets {Ci}k1 are properly separable.
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Proof. We first prove the equivalence of parts (a) and (b). We start by proving
(a) implies (b), the longest part of the whole theorem. Suppose that (a) is true.
We prove (b) by induction on k. If k = 2, Theorem 6.33 implies that there
exists a hyperplane H = H(`,α) such that `(x1) ≤ α for all x1 ∈ C1, `(x2) ≥ α
for all x2 ∈ C2, and C1 ∪ C2 6⊆ H; (b) is clearly satisfied with the choices
`1 = `, `2 = −`, α1 = α, and α2 = −α.

Assume that k > 2, and that we have proved (a) implies (b) for all integers
smaller than k. If the relative algebraic interiors of k−1 of the sets have empty
intersection, say ∩k2 raiCi = ∅, then by the induction hypothesis, there exist
{(`i, αi)}k2 satisfying (b). If we define `1 = 0 and α1 = 0, then (b) is satisfied
with {(`i, αi)}k1 .

Thus, we may assume that ∩k2 raiCi 6= ∅. Define the sets

K1 := {(x1, x1, . . . , x1) : x1 ∈ C1},
K2 := C2 × · · · × Ck.

We have, by elementary arguments,

raiK1 = {(x1, x1, . . . , x1) : x1 ∈ raiC1} 6= ∅,
raiK2 = raiC2 × · · · × raiCk 6= ∅.

Since ∩k1 raiCi = ∅, we see that raiK1 ∩ raiK2 = ∅. Theorem 6.33 implies
that there exists (`, α) = ((`2, . . . , `k), α), ` 6= 0, such that

`2(x2)+· · ·+`k(xk) ≤ α ≤
( k∑

2

`i

)
(x1) for all xi ∈ Ci, i = 1, . . . , k, (6.11)

and strict inequality holds in one of the inequalities above for some choice of
x1, . . . , xk.

Define αi := supxi∈Ci `i(xi) for i = 2, . . . , k, and `1 := −∑k
2 `i, α1 := −α.

It follows from (6.11) that α2 + · · · + αk ≤ α. Since we have `i 6= 0 for
some 2 ≤ i ≤ k, (b) holds except possibly when `i(xi) = αi for all xi ∈ Ci,
i = 2, . . . , k, and

∑k
2 αi = α. However, in this last case we have α < `1(x̄1) for

some x̄1 ∈ C1 and α ≤ `1(x1) for all x1 ∈ C1. We must have `1 6= 0, because
otherwise letting xi = x ∈ ∩k2 rai(Ci) gives

0 = (
k∑
1

`i)(x) =
k∑
2

`i(x) = α < `1(x̄1) = 0,

a contradiction. Thus, (b) holds in this case as well.
Conversely, let us prove that (b) implies (a). Suppose that (b) is true but

(a) is false, that is, there exists a point x ∈ ∩k1 raiCi 6= ∅. If the set Ci is such
that `i 6= 0 and Ci does not lie on the hyperplane Hi := H(`i,αi), we have
rai(Ci) ⊆ H−i ; otherwise, there exist w ∈ rai(Ci) ∩Hi and u ∈ Ci such that
w ∈ (xi, u), and this gives a contradiction because u ∈ C∩H+

i = ∅. Therefore,
we have
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0 >
k∑
i=1

(`i(x)− αi) = −
k∑
i=1

αi ≥ 0,

a contradiction, which proves that (a) must be true.
It remains to demonstrate that parts (b) and (c) are equivalent. It follows

immediately from Lemma 6.36 that (c) implies (b). Conversely, suppose that
(b) is true. Define I := {i : 1 ≤ i ≤ k, `i 6= 0} and Hi := H(`i,αi) for i ∈ I. We
have Ci ⊆ H̄−i . The open half-spaces {H−i }i∈I must already have an empty
intersection, because x ∈ ∩i∈IH−i 6= ∅ gives the contradiction

0 >
k∑
i=1

(`i(x)− αi) = −
k∑
i=1

αi ≥ 0.

It remains to show that every Ci, i /∈ I, is contained in a half-space. Pick
a point x /∈ Ci and invoke Theorem 6.34 to obtain a hyperplane Hi such
that rai(Ci) ⊆ H−i . The hyperplanes {Hi}k1 properly separate the sets {Ci}k1 ,
proving (c). ut

The next theorem is a vast generalization of the Dubovitskii–Milyutin
theorem, whose finite-dimensional versions were given in Lemma 6.22 and
Theorem 6.23. The cone version of the theorem, with a different proof, is
given in [82].

Theorem 6.38. (Dubovitskii–Milyutin) Let {Ci}k1 , k > 1, be nonempty
convex sets in a vector space E, such that {Ci}k−1

1 are algebraically open, that
is, ai(Ci) = Ci, i = 1, . . . , k − 1.

The following conditions are equivalent:

(a) ∩k1Ci = ∅.
(b) There exist linear functionals {`i}k1 on E, not all identically zero, and

scalars {αi}k1 such that

`i(xi) ≤ αi for all xi ∈ Ci, i = 1, . . . , k,
k∑
1

`i = 0,
k∑
1

αi ≤ 0.

Proof. We first prove that (a) implies (b). Define the sets

K1 := {(xk, xk, . . . , xk) : xk ∈ Ck},
K2 := C1 × · · · × Ck−1.

We have, by elementary arguments,

aiK2 = aiC1 × · · · × aiCk−1 = C1 × · · · × Ck−1 = K2,

so that K2 is algebraically open. Clearly, K1 ∩K2 = ∅, so by Theorem 6.32
there exists (`, α) = ((`1, . . . , `k−1), α), ` 6= 0, such that
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`1(x1) + · · ·+ `k−1(xk−1) < α ≤
(k−1∑

1

`i

)
(xk) for all xi ∈ Ci, i = 1, . . . , k.

Define αi := supxi∈Ci `i(xi) for i = 1, . . . , k − 1, so that α1 + · · ·+ αk−1 ≤ α,
and `k := −∑k−1

1 `i, αk := −α; this proves (b).
Conversely, let us assume (b) and prove (a). If (a) is false, then there exists

a point x ∈ ∩k1Ci 6= ∅ that satisfies (b). On the one hand, we have

0 =
k∑
1

`i(x) ≤
k∑
1

αi ≤ 0,

so that `i(x) = αi for all i = 1, . . . , k, and
∑k

1 αi = 0. On the other hand, if z ∈
E is an arbitrary point, then there exists ε > 0 such that [x− εz, x+ εz] ⊆ Ci
for i = 1, . . . , k−1, because Ci is algebraically open. This gives `i(x∓εz) ≤ αi,
so that

αi ∓ ε`i(z) = `i(x)∓ ε`i(z) = `i(x∓ εz) ≤ αi,
which means that `i(z) = 0, that is, the linear functions {`i}k−1

1 are identically
zero, and hence all the {`i}k1 are identically zero, which contradicts (b). This
proves that (a) must be true. ut

The topological version of Theorem 6.38 is now easy to establish. The
following proof should serve as a model for obtaining a topological separation
theorem from an algebraic one.

Theorem 6.39. (Dubovitskii–Milyutin) Let {Ci}k1 , k > 1, be nonempty
convex sets in a topological vector space E, such that {Ci}k−1

1 are open, that
is, int(Ci) = Ci, i = 1, . . . , k − 1.

The following conditions are equivalent:

(a) ∩k1Ci = ∅.
(b) There exist continuous linear functionals {`i}k1 on E, not all identically

zero, and scalars {αi}k1 such that

`i(xi) ≤ αi for all xi ∈ Ci, i = 1, . . . , k,
k∑
1

`i = 0,
k∑
1

αi ≤ 0.

Proof. By virtue of Theorem 5.20, int(Ci) = ai(Ci) for i = 1, . . . , k − 1, so it
follows from Theorem 6.38 that we need to prove only that if (a) is true, then
the linear functionals {`i}k1 in (b) are continuous; in fact, since `k = −∑k−1

1 `i,
it suffices to prove the continuity of ` := (`1, . . . , `k−1).

Suppose that (a) holds. As shown in the proof of Theorem 6.38, there is a
hyperplane H := H(`,α) such that the open convex set C1 × · · · ×Ck−1 lies in
the algebraically open half-space H−; ` is continuous by Corollary 6.28. ut
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6.8 Hahn–Banach Theorem

The Hahn–Banach theorem is a cornerstone of functional analysis. Its proof is
given in every book in functional analysis, following almost verbatim its orig-
inal proof given by Banach [20]. Earlier results of Helly [129] and Hahn [123]
were important in the development of the Hahn–Banach theorem. The arti-
cle [52] gives a survey of the Hahn–Banach theorem and related results and
includes 351 references.

It will be apparent in this section that the Hahn–Banach theorem is inti-
mately related to Theorem 6.34; it is in fact an analytic formulation of it.

Here is an algebraic version of the Hahn–Banach theorem, which we prove
using Theorem 6.34.

Theorem 6.40. (Hahn–Banach theorem) Let E be a vector space, and
p : E → R a sublinear functional,

p(x+ y) ≤ p(x) + p(y), p(λx) = λp(x) for all x, y ∈ E, λ ≥ 0.

If L ⊂ E is a linear subspace, and g : L → R is a linear functional
majorized by p, that is,

g(y) ≤ p(y) for all y ∈ L,

then there exists a linear functional f : E → R that extends g and that is
majorized by p, that is,

f(y) = g(y) for all y ∈ L and f(x) ≤ p(x) for all x ∈ E.

Moreover, if E is a real topological vector space and p is a continuous
function, then f is also continuous.

Proof. Define the following sets in the vector space E × R:

A := epi(p) = {(x, α) ∈ E × R : p(x) ≤ α},
B := gr(g) = {(x, α) ∈ L× R : g(x) = α}.

Since p is a convex function and g is a linear functional, A is a convex set (in
fact a convex cone) and B is a linear subspace of E × R. By Lemma 5.13,

rai(A) = {(x, α) ∈ E ×R : p(x) < α}.

We have rai(A) ∩ B = ∅, because if (y, α) ∈ L × R is in the intersection set,
then we have the contradiction p(y) < α = g(y).

It follows from Theorem 6.34 that there exists a hyperplane H extending
B, and disjoint from rai(A). Let

H := H(`,m,0) = {(x, α) : `(x) +mα = 0},
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where the nonzero linear functional (`,m) on E × R is given by

(`,m)(x, α) := `(x) +mα,

and suppose that A ⊆ H̄−. Then

`(y) +mg(y) = 0 for all y ∈ L,
`(x) +mα < 0 for all (x, α) ∈ E × R, p(x) < α.

(6.12)

We must have m ≤ 0, since otherwise we get a contradiction in the inequality
above by letting α → ∞. If m = 0, then `(x) < 0 for all x ∈ E, which is
impossible, since `(0) = 0. Thus, m < 0, and we may assume that m = −1;
then the linear functional f : E → R defined by

f(x) := `(x)

satisfies f(y) = g(y) for y ∈ L, that is, f extends g. Finally, the inequality
in (6.12) gives f(x) < α for all α > p(x); it follows that f(x) ≤ p(x) for all
x ∈ E, meaning that p dominates f .

If E is a real topological vector space and p is continuous, then f(x) ≤ p(x)
implies that

{x ∈ E : p(x) < α} ⊆ {x ∈ E : f(x) < α} = H−(f,α),

so thatH−(f,α) contains an open set; Corollary 6.28 implies that f is continuous.
ut

Next, we give an independent, analytic proof of a general algebraic form
of the Hahn–Banach theorem, which is in the spirit of the original proof by
Banach.

Theorem 6.41. (Extended Hahn–Banach theorem) Let E be a vector
space, p : E → R ∪ {∞} a convex function, L ⊂ E a linear subspace, and
g : L→ R is a linear functional.

If
g(y) ≤ p(y) for all y ∈ L and rai(dom p) ∩ L 6= ∅,

then there exists a linear function f : E → R that extends g and that is
majorized by p,

f(y) = g(y) for all y ∈ L and f(x) ≤ p(x) for all x ∈ E.
Proof. Fix a point x ∈ E \ L. For u, v ∈ L and scalars α > 0, β < 0, we have

αg(u)− βg(v) = g(αu− βv)

= (α− β)g
( α

α− β u−
β

α− β v
)

≤ (α− β)p
( α

α− β u−
β

α− β v
)

= (α− β)p
( α

α− β (u+ x/α)− β

α− β (v + x/β)
)

≤ αp(u+ x/α)− βp(v + x/β).
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Consequently,

β[p(v + x/β)− g(v)] ≤ α[p(u+ x/α)− g(u)] ∀ u, v ∈ L, α > 0, β < 0,

so that

−∞ < sup
v∈L, β<0

β[p(v + x/β)− g(v)] ≤ inf
u∈L,α>0

α[p(u+ x/α)− g(u)].

We claim that there exists c ∈ R such that

β sup
v∈L, β<0

[p(v + x/β)− g(v)] ≤ c ≤ inf
u∈L,α>0

α[p(u+ x/α)− g(u)]. (6.13)

Clearly, the claim holds unless both the infimum and supremum above are
equal to +∞, in which case picking u ∈ rai(dom p)∩L, we have p(u+λ0x) ∈ R
for some λ0 < 0 but p(u+ λx) =∞ for all λ > 0, in contradiction to the fact
that u ∈ rai(dom p).

Define f(x) := c, where c is given in (6.13); this determines f on all of the
linear subspace M = span{L, x}: any w ∈ M has the form w = u + λx for
some λ ∈ R, and

f(w) = f(u+ λx) = f(u) + λf(x) = g(u) + λc.

If λ < 0, (6.13) implies [p(u + λx) − g(u)]/λ ≤ c, and if λ > 0, [p(u + λx) −
g(u)]/λ ≥ c; in either case, we have

f(u+ λx) = g(u) + λc ≤ p(u+ λx),

which proves that the linear functional f can be extended from the linear
subspace L to a linear subspace M strictly containing L in such a way that f
is still dominated by p on M .

Consider the set A = {(f,W )}, where W is a linear subspace of E con-
taining L and f : W → R is a linear functional that agrees with g on L
and is dominated by p on W , and define the relation � on A by declaring
(f1,W1) � (f2,W2) if W1 ⊆ W2 and g2 is an extension of f1 to W2. Clearly,
� is a partial order, and it is easy to see that if {(fα,Wα)} is a chain in the
partial order, then the pair (f,W ), where W = ∪Wα and f agrees with fα on
Wα, is an upper bound to the chain. It follows from Zorn’s lemma that the
partial order has a maximal element (f,W ). We must have W = E, because
otherwise g can be extended from W to a strictly larger subspace as shown
above, contradicting the maximality of W . ut

A proof of Theorem 6.41 can be given that employs a separation argument;
see Exercise 13.

To complete the proof of the equivalence of Theorems 6.41 and 6.34, we
now deduce the latter theorem from the former.
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Corollary 6.42. Let C be a nonempty convex set in a vector space E, such
that rai(C) 6= ∅. If M ⊂ E is an affine set satisfying rai(C) ∩M = ∅, then
there exists a hyperplane H ⊇M extending M such that rai(C) ∩H = ∅.
Proof. We assume without any loss of generality that 0 ∈ rai(C). Define the
linear subspace L := spanM ; then M is a hyperplane in L given by the
formula M = {x ∈ L : g(x) = 1}, where g is a linear functional on L. Recall
that the Minkowski function pC : E → R∪{∞} is a convex function satisfying

dom pC = aff(C) = spanC

and
rai(C) = {x ∈ E : pC(x) < 1}.

Since rai(C) and M are disjoint, we have g(y) ≤ pC(y) for all y ∈M .
Let x = ty be an arbitrary point in L, where y ∈ M and t ∈ R. If t > 0,

then by the homogeneity of g and pC , we have g(ty) = tg(y) ≤ tpC(y) =
pC(ty), so that g(x) ≤ pC(x), and if t ≤ 0, then g(x) = tg(y) ≤ 0 ≤ pC(x);
therefore

g(x) ≤ pC(x) for all x ∈ L.
We have

0 ∈ rai(dom pC) ∩ L = span(C) ∩ P 6= ∅,
and Theorem 6.41 implies that there exists a linear functional f : E → R
satisfying

f(x) ≤ pC(x) for all x ∈ E.
The hyperplane H = {x ∈ E : f(x) = 1} is clearly an extension of M , and we
have raiC ∩H = {x ∈ E : pC(x) < 1 = f(x)} = ∅. ut

6.9 Exercises

1. Let f : Rn → R be a differentiable convex function, C ⊂ Rn a closed
convex set, and α ≥ 0. Prove that x∗ ∈ C solves the problem minx∈C f(x)
if and only if x∗ = ΠC(x∗ − α∇f(x∗)).

2. Let C ⊆ Rn be a closed convex set, x ∈ Rn \ C, ΠC(x) the projection of
x onto C, and dC(x) = ‖x−ΠC(x)‖ the distance from x to C.
(a) Show that if D is a closed convex set containing C, then dD(x) ≤
dC(x). Conclude that if the half-space

H = H̄−(d,α) := {z ∈ Rn : 〈d, z〉 ≤ α}, d 6= 0,

contains C, then dH(x) ≤ dC(x).
(b) Consider the particular half-space H = H̄−(d,α), where d = x−ΠC(x)

and α = 〈d,ΠC(x)〉. Show that the variational inequality characteri-
zation of ΠC(x) implies that

(i) C ⊆ H, (ii) dC(x) = dH(x).
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(c) Show that these results lead to the following geometrically appealing
“duality” result: the minimum distance from a point x to a convex
set C not containing x is equal to the maximum among the distances
from x to the closed half-spaces containing C.

3. Let C,D be nonempty convex sets in Rn such that a hyperplane H prop-
erly separates C and D, C ⊆ H̄+, but C 6⊆ H. Show that ri(C) ⊆ H+.
Hint: Pick x0 ∈ C \H. Show that the assumption x ∈ ri(C) ∩H leads to
a contradiction.

4. Let f : Rn → R be a concave function such that f(0) = 0 and

C = {x ∈ Rn : f(x) > 0} 6= ∅.

Let 〈l, x〉 be a linear functional on Rn. Show that the following statements
are equivalent:
(a) f(x) > 0 implies 〈l, x〉 > 0,
(b) ∃λ > 0, 〈l, x〉 ≥ λf(x) for all x ∈ Rn.

Moreover, show that equality holds above if f is a linear functional.
Hint: Define

D = {(〈l, x〉, f(x)− t) : x ∈ Rn, t ≥ 0} ⊆ R2;

show that D is a convex set, and that 0 /∈ ri(D) when (a) holds; then use
an appropriate separation argument.

5. Let {Ki}m1 be closed cones in Rn such that the conical hull of their union
is not closed, that is, K := cone(∪m1 Ki) is not closed. Show that there
exist vectors xi ∈ Ki, not all zero, such that

x1 + x2 + · · ·+ xm = 0.

Hint: Pick x ∈ K \ K, and let yk ∈ K converge to x. Write yk = yk1 +
· · · + ykm, where yki ∈ Ki, and define ak := max{‖yk1‖, . . . , ‖ykm‖}. Argue
that ak →∞. Finally, consider the convergence behavior of the sequence
xk := yk/ak as k →∞.

6. (Stiemke’s theorem) Prove that the system

m∑
i=1

xiai = 0, xi > 0, i = 1, . . . ,m,

has no solution if and only if the system

〈ai, y〉 ≤ 0, i = 1, . . . ,m, not all zero,

has a solution.
Hint: Use the finite-dimensional version of the Dubovitskii–Milyutin the-
orem.
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7. Let A,B,C be compact convex sets in Rn such that A + C = B + C.
The purpose of this problem is to prove that A = B. Define the support
function

σA(x) := max{〈x, u〉 : u ∈ A}.
(a) Show that σA is a convex function defined for all x ∈ Rn.
(b) Show that

σA+B = σA + σB .

(c) Show that if F,G ⊆ E are compact convex sets such that σF = σG,
then F = G (this requires a separation argument).

(d) Prove that A = B.
How far can we relax the assumptions that the sets A,B,C are compact?
Can we remove the compactness hypothesis altogether?

8. Let C ⊆ Rn be a compact convex set and assume that 0 ∈ int(C). Define
the polar body

C◦ := {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ C}.

(a) Show that Br(0)◦ = B1/r(0).
(b) Show that if C1 ⊆ C2, then C◦2 ⊆ C◦1 .
(c) Show that C◦ is a compact, convex body with 0 ∈ int(C◦).
(d) Show that (C◦)◦ = C.

Hint: This will involve a separation argument.
(e) Show that the polar body of the unit cube {x ∈ Rn : |xi| ≤ 1, i =

1, . . . , n} is the cross polytope {x ∈ Rn :
∑n
i=1 |xi| ≤ 1}.

9. Let K be a nonempty convex cone in Rn.
(a) Show that ri(K) and − ri(K∗) must intersect, that is, ri(K) ∩

(− ri(K∗)) 6= ∅.
Hint: use a separation argument.

(b) Show that K ∩ (−K∗) = {0} if and only if K (hence K∗) is a linear
subspace of Rn.
Hint: to prove the harder part of the statement, show that if K ∩
(−K∗) = {0}, then the origin lies in ri(K). Consequently, prove that
if x is in K, then so is −x.

10. Let ` be a linear functional on a topological vector space. Show that if `
is nonnegative on an open set, then ` is continuous.

11. (Krein’s theorem) Let K be a convex cone in a topological vector space
E, containing interior points. Let L ⊂ E be a linear subspace such that
L ∩ int(K) 6= ∅, and f : L→ R a linear functional that is nonnegative on
L ∩K, that is, f(x) ≥ 0 for all x ∈ L ∩K.
Krein’s theorem states that there exists a continuous linear functional
f : E → R extending f such that f is nonnegative on K.

Prove the theorem by completing the following steps:
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(a) Define M := {x ∈ L : f(x) = 0}. If M = L, show that f = 0 satisfies
the requirements of Krein’s theorem. Assume that M 6= L, that is, f
is not identically zero on L.

(b) Show that int(K) ∩M = ∅.
(c) Use a separation argument to prove that there exists a hyperplane
H ⊂ E extending M such that int(K) ∩H = ∅.

(d) Let g : E → R be a linear functional such that H = {x ∈ E : g(x) =
0}. Show that g is either positive or negative on int(K). Assume the
first possibility.

(e) Show that g is a continuous linear functional.
(f) Notice that {x ∈ L : f(x) = 0} ⊆ {x ∈ L : g(x) = 0} (because

the first set is M and g extends f). Show that the two sets are either
equal or g is identically zero on L (recall that M is a hyperplane in
L). Show that the second possibility is impossible. Deduce that there
exists λ such that f(x) = λg(x) for all x ∈ L. Show that λ > 0.

(g) Show that the functional f := λg on E satisfies the required proper-
ties.

12. Prove Lemma 6.36 using Theorem 6.38. (Notice that the proof of the
theorem does not depend on the lemma, so there is no circular reasoning
involved.)
Is it possible to prove the results of Appendix A (Theorem A.3 and its
affine version) using Theorem 6.38?

13. Give a separation proof of Theorem 6.41 by mimicking the proof of The-
orem 6.40.
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Convex Polyhedra

In this chapter, we develop the basic results of the theory of convex polyhe-
dra. This is a large area of research that has been studied from many different
points of view. Within optimization, it is very important in linear program-
ming, especially in connection with the simplex method for solving linear
programs. The choice of the topics we treat in this chapter is dictated mostly
by the needs of optimization. However, we do not have space to treat the
extensive body of work concerning the combinatorial theory of convex poly-
hedra, some of which is intimately related to the simplex method and its
variants. The interested reader may consult the books [115, 50, 274] for more
information on this topic and the book [5] for differential-geometric questions
regarding convex polyhedra.

In this chapter, E will be a finite-dimensional vector space.

7.1 Convex Polyhedral Sets and Cones

Definition 7.1. Let {aj}kj=1 be a given set of vectors in E. A cone K ⊆ E is
called a convex polyhedral cone if it has the form

K = {x : 〈aj , x〉 ≤ 0, j = 1, . . . , k} = ∩kj=1H̄
−
aj ,0

,

that is, a polyhedral cone is the intersection of finitely many half-spaces passing
through the origin.

A convex cone K is called finitely generated if it has the form

K :=
{ k∑
j=1

taj : tj ≥ 0, j = 1, . . . , k
}
,

that is, a finitely generated cone is a finite sum of rays, K = R+a1+· · ·+R+ak.

We first prove an important result on finitely generated cones.
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Lemma 7.2. A finitely generated cone is a closed set.

Proof. Let K be a finitely generated cone:

K =
{ k∑
j=1

tjaj : tj ≥ 0, j = 1, . . . , k
}
.

By Carathéodory’s theorem (Theorem 4.21, p. 94), any point x ∈ K can be
written as

x =
k∑
j=1

δjbj , δj ≥ 0,

where {bj}p1 is a linearly independent subset of {ai}k1 . It follows that x ∈
{∑p

1 δjbj : δj ≥ 0}, a simplical cone that is the image of the nonnegative
orthant Rp+ under the linear map

T (δ) =
k∑
j=1

δjbj .

Since {bj}p1 is linearly independent, T is a homeomorphism, and since Rp+ is
closed, so is the simplical cone. The cone K is a union of such simplical cones,
which are finitely many in number, so must be closed. ut

It follows from this lemma that {∑k
1 δiai : δi ≥ 0} = cl cone(a1, . . . , ak).

We will denote this set by cone(a1, . . . , ak); thus

cone(a1, . . . , ak) := cl cone(a1, . . . , ak).

Lemma 7.3. The dual of finitely generated cone K = cone(a1, . . . , ak) is the
polyhedral cone L = ∩kj=1{x : 〈aj , x〉 ≤ 0}.
Proof. Clearly, we have

K∗ =

{
x :
〈 k∑
j=1

tjaj , x
〉
≤ 0 for all tj ≥ 0

}
⊇ ∩k1{x : 〈aj , x〉 ≤ 0}.

If x ∈ K∗, choosing tj = 1 and all other ti = 0 implies 〈aj , x〉 ≤ 0, proving
that K∗ ⊆ L. ut

7.1.1 Convex Polyhedral Cones

Theorem 7.4. Let a1, . . . , ak ∈ E. The finitely generated cone

K = cone(a1, . . . , ak)

and the polyhedral cone

L = {x : 〈aj , x〉 ≤ 0, j = 1, . . . , k}
are polars of each other, that is, K∗ = L and L∗ = K.
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Proof. It follows from Lemma 7.3 that K∗ = L. Since K is closed by
Lemma 7.2, Theorem 6.19 implies that K = (K∗)∗ = L∗. ut

If E is endowed with a basis, the above theorem takes the following form.

Corollary 7.5. Let A be an n× k matrix. Then the cones K = {Av : v ≥ 0}
and L = {x : ATx ≤ 0} are polars of each other.

Proof. Let A = [a1 . . . , ak], where {ai} are the columns of A. Then K =
cone(a1, . . . , ak) and L = {x : 〈aj , x〉 ≤ 0, j = 1, . . . , k}. ut
Theorem 7.6. (Farkas’s lemma, homogeneous version) Let a1, . . . , ak
be given vectors in E. The following statements are equivalent:

(a) If x ∈ E satisfies the inequalities 〈ai, x〉 ≤ 0, i = 1, . . . , k, then it also
satisfies the inequality 〈b, x〉 ≤ 0. In other words,

[〈ai, x〉 ≤ 0, i = 1, . . . , k] =⇒ [〈b, x〉 ≤ 0] .

(b) The vector b is a nonnegative linear combination of {ai}k1 , that is, b =∑k
i=1 tiai for some ti ≥ 0, i = 1, . . . , k.

Proof. This is essentially a restatement of Theorem 7.4. Define

K = {x : 〈ai, x〉 ≤ 0, i = 1, . . . , k}.
Part (a) is equivalent to the statement, b ∈ K∗, whereas part (b) states that
b ∈ cone(a1, . . . , ak). We have K∗ = cone(a1, . . . , ak) by Theorem 7.4. ut

The general, affine version of Farkas’s lemma is given in Theorem 7.20 on
page 185.

Corollary 7.7. Let c1, . . . , ck, a1, . . . , al be given vectors in E. The following
statements are equivalent:

(a)

[〈ci, x〉 = 0, i = 1, . . . , k, 〈aj , x〉 ≤ 0, j = 1, . . . , l] =⇒ [〈b, x〉 ≤ 0] .

(b) There exist ti ∈ R (i = 1, . . . , k) and sj ≥ 0 (j = 1, . . . , l) such that

b =
k∑
i=1

tici +
l∑

j=1

sjaj .

Proof. The equality 〈ci, x〉 = 0 is equivalent to the inequalities 〈ci, x〉 ≤ 0 and
〈−ci, x〉 ≤ 0. By Farkas’s lemma, part (a) is equivalent to

b ∈ cone(c1, . . . ,−c1, . . . ,−ck, a1, . . . , al) := L.

An arbitrary element of x ∈ L can be written as x =
∑k
i=1(αi − βi)ci +∑l

j=1 sjaj with αi ≥ 0, βi ≥ 0 (i = 1, . . . , k), and sj ≥ 0 (j = 1, . . . , l).
Since ti : αi − βi can be any real number, we see that parts (a) and (b) are
equivalent. ut
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The following important result establishes the equivalence of finitely gen-
erated and polyhedral cones.

Theorem 7.8. Every finitely generated cone K is a convex polyhedral cone,
and vice versa.

Proof. We first show that every finitely generated cone K is a polyhedral cone.
Let K = cone(a1, . . . , ak) ⊆ E be a finitely generated cone. We claim that K
is a polyhedral cone using induction on k. If k = 1, then K = {ta : t ≥ 0}. If
a = 0 ∈ E, then

K = {0} = {x : xi = 0, i = 1, . . . , n} = {x : 〈ei, x〉 = 0, i = 1, . . . , n},

where {ei}n1 is a basis of E, and each equation 〈ei, x〉 = 0 can be written as two
inequalities 〈ei, x〉 ≤ 0 and 〈−ei, x〉 ≤ 0. This proves that K is a polyhedral
cone. If 0 6= a ∈ E, then K is a half-line. In this case, pick a basis {ei}n1 of E
such that e1 = a and {ei}n2 is a basis of {a}⊥. Then we can write K in the
form

K = {x : 〈−e1, x〉 ≤ 0, 〈ei, x〉 = 0, i = 2, . . . , n},
proving that K is again a polyhedral cone.

Supposing that the claim is proved for k − 1, we will prove it for k. Let
K = cone(a, a1, . . . , ak−1). Define K1 := cone(a1, . . . , ak−1). Any x ∈ K can
be written as x = y + ta, where y ∈ K and t ≥ 0. This means that

K = {x ∈ E : ∃t ≥ 0, x− ta ∈ K1}.

By the induction hypothesis, there exist {bj}m1 such that

K1 = {x ∈ E : 〈bj , x〉 ≤ 0, j = 1, . . . ,m}.

Consequently, we have

K = {x ∈ E : ∃t ≥ 0, 〈bj , x− ta〉 ≤ 0, j = 1, . . . ,m}
= {x ∈ E : ∃t ≥ 0, 〈bj , x〉 ≤ t〈bj , a〉, j = 1, . . . ,m}. (7.1)

We will write K as a polyhedral cone by “eliminating” the variable t in these
inequalities. Define the index sets I+ := {j : 〈bj , a〉 > 0}, I− := {j : 〈bj , a〉 <
0}, and I0 := {j : 〈bj , a〉 = 0}. The conditions in (7.1) can then be written as
〈bi, x〉/〈bi, a〉 ≤ t for i ∈ I+, 〈bj , x〉/〈bj , a〉 ≥ t for j ∈ I−, and 〈bl, x〉 ≤ 0 for
j ∈ I0. Therefore,

K =
{
x ∈ E : ∃t ≥ 0,

〈bi, x〉
〈bi, a〉

≤ t ≤ 〈bj , x〉〈bj , a〉
, 〈bl, x〉 ≤ 0, i ∈ I+, j ∈ I−, l ∈ I0

}
.

Clearly, a variable t ≥ 0 exists above if and only if

max
i∈I+

〈bi, x〉
〈bi, a〉

≤ min
j∈I−

〈bj , x〉
〈bj , a〉

, min
j∈I−

〈bj , x〉
〈bj , a〉

≥ 0.



7.1 Convex Polyhedral Sets and Cones 179

Since 〈bj , a〉 < 0 for j ∈ I−, the second inequality above is equivalent to the
condition that 〈bj , a〉 ≤ 0 for all j ∈ I−. It follows that

K =
{
x ∈ E : 〈bl, x〉 ≤ 0,

〈bi, x〉
〈bi, a〉

≤ 〈bj , x〉〈bj , a〉
, l ∈ I− ∪ I0, i ∈ I+, j ∈ I−

}
,

which proves that K is a polyhedral cone.
Conversely, suppose that K is a polyhedral cone. It follows from Theo-

rem 7.4 that K∗ is finitely generated. The above argument shows that K∗ is
polyhedral. Theorem 7.4 again implies that K = (K∗)∗ is finitely generated.

ut

Remark 7.9. The method of elimination of the variable t from (7.1) is called
the Fourier–Motzkin elimination method . It is a powerful tool that can be
used to derive most theoretical results for systems of linear equalities and
inequalities, including the derivation of (various forms of) Farkas’s lemma;
see [180]. The elimination method can also be used to solve systems of linear
equalities and inequalities numerically. However, it is a very inefficient tool in
this respect, since the elimination of a single variable typically leads to the
creation of many additional equations and inequalities.

Remark 7.10. A more general version of the elimination of variables idea ap-
plies to systems of polynomial equations and inequalities, and goes by the
name Tarski–Seidenberg principle; see [34]. This is an indispensable theo-
retical tool in real algebraic geometry. Unfortunately, the Tarski–Seidenberg
principle is also a very inefficient computational tool for solving systems of
polynomial equations and inequalities, for the same reasons.

Remark 7.11. Another elimination procedure is at work in multilinear algebra.
Let V and W be vector spaces over R and consider bilinear maps f(v, w) from
V ×W into an arbitrary vector space Z. Thus, f is a map that is linear in
each of the variables separately, that is, f(α1v1 + α2v2, w) = α1f(u1, w) +
α2f(u2, w) and f(v, β1w1+β2w2) = β1f(u, , w1)+β2f(u,w2). It is well known
in multilinear algebra that the condition

α1f(v1, w1) + α2f(v2, w2) + · · ·+ αnf(vn, wn) = 0
for all bilinear maps f : V ×W → Z

(7.2)

is equivalent to the condition that

α1(v1 ⊗ w1) + α2(v2 ⊗ w2) + · · ·+ αn(vn ⊗ wn) = 0.

Consequently, the elimination of the quantifier “for all f” in (7.2) leads to the
concept of tensor products.
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7.2 Convex Polyhedra

Definition 7.12. A nonempty set P ⊆ E is called a convex polyhedron if P
is the intersection of finitely many closed half-spaces, that is,

P = {x ∈ E : 〈aj , x〉 ≤ αj , j = 1, . . . ,m}, (7.3)

where {aj}m1 are given vectors in E and {αj}m1 are given scalars.
The polyhedron P is called a convex polytope if P is a bounded set.

We note that

P =
m⋂
j=1

{x : 〈aj , x〉 ≤ αj} =
m⋂
j=1

H̄−aj ,αj .

Fig. 7.1. A convex polytope (icosahedron).

Theorem 7.13 below, due to Minkowski [198] and Weyl [266, 267], is the
fundamental theorem of convex polyhedral theory, giving a basic decomposition
of a convex polyhedron in terms of vertices and directions.

Theorem 7.13. (Minkowski–Weyl) A nonempty set P ⊆ E is a convex
polyhedron if and only if there exist vectors {vi}k1 and {dj}l1 such that

P = co(v1, . . . , vk) + cone(d1, . . . , dl)

=
{ k∑
i=1

λivi +
l∑

j=1

µjdj :
k∑
i=1

λi = 1, λi ≥ 0, µj ≥ 0
}
.

(7.4)
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Proof. Let P be a convex polyhedron, say in the form (7.3). We show that P
has the form (7.4). Define the polyhedral cone

K := {(x, t) ∈ E × R : 〈aj , x〉 ≤ αjt, t ≥ 0, j = 1, . . . ,m}
= {(x, t) ∈ E × R : 〈aj , x〉 − αjt ≤ 0, t ≥ 0, j = 1, . . . ,m}.

Theorem 7.8 implies that K is a finitely generated cone, say in the form

K = cone {(vi, 1), (dj , 0), i = 1, . . . , k, j = 1, . . . , l} .
But P = {x : (x, 1) ∈ K}, and a simple calculation shows that P has the
form (7.4).

Conversely, let P have the form given in (7.4). Define the cone

K :=
{ k∑
i=1

λi(vi, 1) +
l∑

j=1

µj(dj , 0) : λi ≥ 0, µj ≥ 0, i = 1, . . . , k, j = 1, . . . , l.
}

= cone((vi, 1), (dj , 0), i = 1, . . . , k, j = 1, . . . , l).

Theorem 7.8 implies that K is a polyhedral cone, say in the form

K = {(x, t) : x ∈ E, t ≥ 0, 〈aj , x〉 ≤ tαj , j = 1, . . . ,m} .
We have

P = {x : (x, 1) ∈ K} = {x ∈ E : 〈aj , x〉 ≤ αj , j = 1, . . . ,m}.
The theorem is proved. ut

It should be possible to prove Theorem 7.13 using the techniques in Sec-
tion 5.5. In particular, it should be possible to prove that a convex polyhe-
dron P = {x : Ax ≤ b} has finitely many vertices and finitely many extreme
directions. The duality arguments as above would then prove the complete
Theorem 7.13.

7.2.1 Homogenization of Convex Polyhedra

For completeness, we include here descriptions of K(P ), the closure of the
homogenization of a convex polyhedron P , when P is given either in the form
(7.3) in terms of linear inequalities or in the form (7.4) in terms of vertices
and directions. It should be noted that the cones coneK(P ) in Lemmas 7.14
and 7.15 are precisely the cones attached to the polyhedron P in the proof of
Theorem 7.13. This extra information was not used for the sake of a simple
proof.

Lemma 7.14. If

P = {x ∈ E : 〈aj , x〉 ≤ αj , j = 1, . . . ,m}
is a nonempty polyhedron, then

K(P ) = {(x, t) : x ∈ E, t ≥ 0, 〈aj , x〉 ≤ tαj , j = 1, . . . ,m} .
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Proof. We claim that

rec(P ) = {d : 〈aj , d〉 ≤ 0, j = 1, . . . ,m}.
Let x0 ∈ P . If d ∈ recP , then x0 +td ∈ P for t > 0, that is, 〈aj , x0 + td〉 ≤ αj .
Dividing both sides by t and letting t→∞ proves that 〈aj , d〉 ≤ 0. Conversely,
if this inequality is satisfied, then x0 + td ∈ P , since

〈aj , x0 + td〉 ≤ 〈aj , x0〉+ t〈aj , d〉 ≤ αj .
Consequently, Lemma 5.41 (p. 134) implies that

K(P ) = {t(x, 1) : x ∈ E, t > 0} ∪ {(x, 0) : x ∈ rec(P )}
= {(x, t) : 〈aj , x〉 ≤ tαj , t > 0, j = 1, . . . ,m}
∪ {(x, 0) : 〈aj , x〉 ≤ 0, j = 1, . . . ,m}

= {(x, t) : 〈aj , x〉 ≤ tαj , t ≥ 0, j = 1, . . . ,m} .
ut

Lemma 7.15. Let

P = co(v1, . . . , vk) + cone(d1, . . . , dl)

=
{ k∑
i=1

λivi +
l∑

j=1

µjdj :
k∑
i=1

λi = 1, λi ≥ 0, µj ≥ 0
}
.

Then
K(P ) = cone {(vi, 1), (dj , 0), i = 1, . . . , k, j = 1, . . . , l} . (7.5)

Proof. We claim that rec(P ) = cone{dj : j = 1, . . . , l} =: L. Clearly, we have
that each dj belongs to rec(P ), proving the inclusion L ⊆ rec(P ). Conversely,
if d ∈ rec(P ), t > 0, and x0 ∈ P , then x0 + td ∈ P , so that

x0 + td = wt +
l∑

j=1

µj(t)dj ,

where wt ∈ co(v1, . . . , vk). Now wt is bounded, since ‖wt‖ ≤ max{‖vi‖ : 1 ≤
i ≤ k}. Also, d+ x0−wt

t is in L and converges to d, and we have d ∈ L, since
L is closed. This proves rec(P ) ⊆ L, and hence the claim.

By Lemma 5.41, we have

K(P ) = {t(x, 1) : x ∈ P, t > 0} ∪ {(x, 0) : x ∈ rec(P )}

=
{

(
k∑
1

λivi +
l∑
1

µjdj , t) :
k∑
1

λi = t > 0, λi ≥ 0, µj ≥ 0
}

∪
{

(
l∑
1

δjdj , 0) : δj ≥ 0
}

= cone {(vi, 1), (dj , 0), i = 1, . . . , k, j = 1, . . . , l.} .
ut
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7.3 Linear Inequalities

In this section, we prove the basic results on linear inequalities using separa-
tion theorems of convex analysis. These include Gordan’s lemma, the affine
version of Farkas’s lemma, and the affine version of Motzkin’s transposition
theorem. These are important results in their own right; our interest in them
stems from their utility in deriving optimality conditions in various con-
strained optimization problems. These results were proved in Section 3.3 using
Ekeland’s ε-variational principle. Another, elementary, approach to proving
these results is given in Appendix A. Each approach is independent of the
other two, which provides more insight into the subject and gives more flexi-
bility in covering the material.

The central result on linear inequalities is the homogeneous version of
Motzkin’s transposition theorem, Theorem 7.17 below. It will be seen that all
other results on linear inequalities are more or less straightforward applica-
tions of it.

We first need a preliminary result.

Lemma 7.16. For a given vector 0 6= a ∈ E, consider the open half-space

C := {d ∈ E : 〈a, d〉 < 0}.

The dual cone C∗ is given by

C∗ = cone(a) = {ta : t ≥ 0}.

Proof. It is easily verified that C∗ = (C)∗ for any set C, and it is equally easy
to see that C = {d ∈ E : 〈a, d〉 ≤ 0}. It then follows from Theorem 7.4 that
C∗ = cone(a). ut
Theorem 7.17. (Motzkin’s transposition theorem, homogeneous ver-
sion) Let A,B,C be matrices with the same number of rows. Then either
the system

(a) ATx < 0, BTx ≤ 0, CTx = 0,

is consistent, or the system

(b) Ay +Bz + Cw = 0, y ≥ 0, y 6= 0, z ≥ 0,

is consistent, but not both.

Proof. Let A = [a1, . . . , al], B = [b1, . . . , bm], C = [c1, . . . , cp], where {ai}l1,
{bj}m1 , {ck}p1, are the columns of A, B, and C, respectively.

We first show that (a) and (b) cannot both be consistent. If (b) is consistent
and x satisfies (a), we have the contradiction

0 = 〈x,Ay +Bz + Cw〉 = 〈ATx, y〉+ 〈BTx, z〉+ 〈CTx,w〉

=
l∑
1

yi〈ai, x〉+
m∑
1

zj〈bj , x〉 < 0,
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since 〈bj , x〉 ≤ 0 and zj ≥ 0 for all j, 〈ai, x〉 < 0 and yi ≥ 0 for all i, and some
yi > 0.

It remains to prove the claim that if (a) is inconsistent, then (b) must
be consistent. First, suppose that C1 := {x : Ax < 0} = ∅. Applying
Theorem 6.23 on page 155 to the open cones Ki := {x : 〈ai, x〉 < 0},
C1 = ∩l1Ki, and using Lemma 7.16, we see that there exists a nonnegative
vector 0 ≤ y ∈ Rl, y 6= 0, such that

∑l
1 yiai = Ay = 0. Then (b) is satisfied

with (y, z, w) = (y, 0, 0).
In the remaining case C1 6= ∅, and C1 is disjoint from the cone C2 := {x :

BTx ≤ 0, CTx = 0} 6= ∅. Theorem 6.9 implies that there exist ` 6= 0 and α
such that

〈`, u〉 ≤ α ≤ 〈`, v〉 for all u ∈ C1, v ∈ C2.

Letting u → 0 and setting v = 0 gives α = 0. Thus, we have ` ∈ C∗1 and
−` ∈ C∗2 .

The inclusion ` ∈ C∗1 is equivalent to the assertion that the system

〈−`, u〉 < 0, 〈ai, u〉 < 0, i = 1, . . . , l

is inconsistent. By the argument above in the first case, there exist multipliers
{yi}l0, not all zero, such that −y0`+

∑l
1 yiai = 0. If y0 = 0, then

∑l
1 yiai = 0,

and Theorem 6.23 implies that the system Ax < 0 is inconsistent, a contradic-
tion. Therefore, y0 > 0, and we may assume that y0 = 1 by scaling. This gives
` =

∑l
1 yiai 6= 0, and y := (y1, . . . , yl) 6= 0. The second inclusion −` ∈ C∗2

is precisely the statement that if v satisfies all the inequalities BT v ≤ 0 and
CT v = 0, then 〈−`, v〉 ≤ 0. Farkas’s lemma (Theorem 7.6) implies that there
exist multipliers z ≥ 0 and w such that −` =

∑m
1 zjbj +

∑p
1 wkck. Summa-

rizing, we have

l∑
1

yiai +
m∑
1

zjbj +
p∑
1

wkck = 0, y ≥ 0, y 6= 0, z ≥ 0.

The theorem is proved. ut

We obtain Gordan’s lemma as an easy corollary.

Corollary 7.18. (Gordan’s lemma) Let {ai}ki=1, {bj}lj=1 be given vectors
in E. Then

{d : 〈ai, d〉 < 0, i = 1, . . . , k, 〈bj , d〉 = 0, j = 1, . . . , l} = ∅

if and only if there exist vectors λ := (λ1, . . . , λk) ≥ 0 and µ := (µ1, . . . , µl)
satisfying λ 6= 0, and

k∑
i=1

λiai +
l∑

j=1

µjbj = 0.
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Theorem 7.19. (Motzkin’s transposition theorem, affine version)
Let A, B, and C be matrices with the same number of rows. The linear system

ATx < a, BTx ≤ b, CTx = c (7.6)

is inconsistent if and only if the system

Ay +Bz + Cw = 0, 〈a, y〉+ 〈b, z〉+ 〈c, w〉+ y0 = 0,
(y0, y, z) ≥ 0, (y0, y) 6= 0

(7.7)

is consistent.

Proof. The system (7.6) is consistent if and only if the homogeneous system

t > 0, ATx < ta, BTx ≤ tb, CTx = tc

in the variables (x, t), that is, the system

(0,−1)
(
x
t

)
< 0, [AT ,−a]

(
x
t

)
< 0, [BT ,−b]

(
x
t

)
≤ 0, [CT ,−c]

(
x
t

)
= 0,

is consistent. The theorem follows immediately from Theorem 7.17. ut

7.4 Affine Version of Farkas’s Lemma

The following, affine, version of Farkas’s lemma is essentially equivalent to the
strong duality theorem of linear programming; see Theorem 8.6.

Theorem 7.20. (Farkas’s lemma, affine version) Let {ai}m1 , ai ∈ E,
{αi}m1 , αi ∈ R, be given vectors and scalars. Suppose that the linear inequali-
ties

〈ai, x〉 ≤ αi, i = 1, . . . ,m,

are consistent. Then the following statements are equivalent:

(a) [〈ai, x〉 ≤ αi, i = 1, . . . ,m, ] =⇒ [〈c, x〉 ≤ γ] ,

(b) ∃(y1, . . . , ym) ≥ 0 such that
∑
i=1

aiyi = c,

m∑
i=1

yiαi ≤ γ.

Proof. Define A = [a1, . . . , am], a = (α1, . . . , αm)T . Then (a) is equivalent to
the inconsistency of the system

ATx ≤ a, −cTx < −γ.
By the affine version of Motzkin’s transposition theorem (Theorem 7.19), this
is equivalent to the consistency of the system

Ay − z1c = 0, 〈a, y〉 − z1γ + z0 = 0, y ≥ 0, (z0, z1) ≥ 0, (z0, z1) 6= 0.

Since Ax ≤ a is consistent, we cannot have z1 = 0. Thus, z0 is positive, and
we may assume that it is one. The theorem is proved. ut
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7.4.1 An Example of Farkas’s Lemma

Here we work out a numerical example in order to develop an intuitive un-
derstanding of Farkas’s lemma. Consider the system (L) of linear inequalities
and equalities

x1 − x2 − x3 + 3x4 ≤ 1,
5x1 + x2 + 3x3 + 8x4 ≥ 55,
−x1 + 2x2 + 3x3 − 5x4 = 3,

x1 ≥ 0,
x3 ≥ 0,
x4 ≤ 0.

(7.8)

A linear inequality (M) of the form

c1x1 + c2x2 + c3x3 + c4x4 ≤ β (C)

is called a consequence of L if every point x = (x1, x2, x3, x4) satisfying L
must satisfy C. Obviously, any of the linear inequalities (or the equality) in
(7.8) is a consequence of (7.8). The inequality −2x1 + 2x2 + 2x3 − 6x4 ≥ −2
is also a consequence of (7.8), since it is obtained from the second inequality
in (7.8) by multiplying both sides by −2 and reversing the direction of the
inequality.

Another way to obtain a consequence inequality is by aggregation. For
example, multiplying the first three inequalities by 5, the equality by −4, and
the sign inequality x1 ≥ 0 by −10, we obtain the valid consequence inequality

−x1 − 13x2 − 17x3 + 35x4 ≤ −7.

Of course, to obtain an inequality of the form (C) with direction ≤, we need
to multiply a ≤ inequality by a nonnegative number, a ≥ inequality by a
nonpositive number. To obtain a consequence inequality with the direction
≥, the signs on the multipliers are reversed. An equality constraint may be
multiplied by any number.

We can also relax a consequence inequality to obtain a valid consequence
inequality; for example, the inequality

−x1 − 13x2 − 17x3 + 35x4 ≤ 3

is a consequence inequality.
Now note that Farkas’s lemma (Theorem 7.20) can be paraphrased as

stating that any valid consequence inequality to a linear inequality/equality
system such as (7.8) must have been obtained by aggregation and then pos-
sibly a relaxation. For example, the inequality

2x1 − 45x2 − 78x3 + 90x4 ≤ −100
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is a consequence of the system (7.8), although it may not be easy to see this
by inspection. In fact, this inequality is obtained from (7.8) by aggregating it
using the multipliers 2, −3, −20, −5, −7, 8, respectively, and then relaxing the
obtained right-hand side constant −223 to −100. The validity of this inequal-
ity can be numerically verified by solving the linear programming problem of
maximizing the objective function 2x1 − 45x2 − 78x3 + 90x4 subject to the
constraint that x satisfies the linear system (7.8). One then needs only to
check that the optimal objective value of the linear program is at most −100.

Remark 7.21. In a vector space endowed with a coordinate system with respect
to a basis, Farkas’s lemma can be stated in a more compact way. Let n be the
dimension of E. Then E can be identified with Rn. Let A be the m×n matrix
having ai as ith row, and define a = (α1, . . . , αm)T and y = (y1, . . . , ym)T .
Then (a) and (b) become

(a) 〈c, x〉 ≤ β for all x satisfying Ax ≤ a,
(b) there exists y ∈ Rm, y ≥ 0 such that AT y = c and 〈a, y〉 ≤ β.

7.4.2 Application of Farkas’s Lemma to Optimization

Recall that the variational inequality

〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ C,

for minimizing a function f over a closed convex set C, is a set of conditions
for every x ∈ C, hence infinitely many in number. In the case that C is
a polyhedron, Farkas’s lemma is a useful tool to turn these infinitely many
conditions into a set of much more manageable, finitely many conditions.

Theorem 7.22. Let f be a Gâteaux differentiable function. Consider the op-
timization problem

min f(x)
s. t. 〈ai, x〉 ≥ βi, i = 1, . . . ,m.

If x∗ is a local minimizer of f , then there exist nonnegative multipliers
{λi}m1 such that

m∑
i=1

λiai = ∇f(x∗),
m∑
i=1

λibi ≥ 〈∇f(x∗), x∗〉. (7.9)

If f is a convex function, then conditions (7.9) are also sufficient for x∗

to be a global minimizer of f .

Proof. The variational inequality for this problem is

[〈ai, x〉 ≥ βi, i = 1, . . . ,m] =⇒ [〈∇f(x∗), x〉 ≥ 〈∇f(x∗), x∗〉] .
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It follows from Farkas’s lemma (Theorem 7.20) that there exist nonnegative
multipliers {λi}m1 such that (7.9) holds. Since the variational inequality is a
sufficient condition for optimality in case f is convex, the rest of the theorem
follows. ut

7.5 Tucker’s Complementarity Theorem

Theorem 7.23. (Tucker [255]) If L ⊆ Rn is a linear subspace and L⊥ its
orthogonal complement, then there exist vectors x∗ ∈ L and y∗ ∈ L⊥ such that
x∗ and y∗ are strictly complementary, that is, x∗ ≥ 0, y∗ ≥ 0, and for each
index 1 ≤ i ≤ n, either x∗i > 0 and y∗i = 0 or x∗i = 0 and y∗i > 0. Moreover,
the indices I(x∗) = {i : x∗i > 0}, J(y∗) = {i : y∗i > 0} are independent of
(x∗, y∗), and are uniquely determined by L.

Proof. Write L = {x : Ax = 0}, where A is an m × n matrix. Then LT =
AT (Rm) is the range of AT . For each index i, 1 ≤ i ≤ n, it follows from the
homogeneous version of Motzkin’s transposition theorem (Theorem 7.17) that
exactly one of the systems

Ax = 0, x ≥ 0, xi > 0; AT δ = µ+ λei, µ ≥ 0, λ > 0,

is consistent. Define y := AT δ ∈ L⊥, and denote the sets of indices such that
the first or the second system is consistent by I and J , respectively, and the
corresponding solution to the consistent system by (xi)∗ or (yi)∗. The vectors

x∗ :=
∑
i∈I

(xi)∗ and y∗ :=
∑
i∈J

(yi)∗

satisfy the requirements of the theorem. The independence of the indices on
x∗ and y∗ is also clear. ut

A closely related result states that if a linear program min{cTx : Ax = b}
and its dual max{bT y : AT y + s = c, s ≥ 0} both have optimal solutions,
then there exists an optimal solution pair (x∗, (y∗, s∗)) such that (x∗, s∗) are
strictly complementary, that is, x∗ + s∗ > 0; see Section 8.5. This fact has
important applications in interior point methods for linear programming.

7.6 Exercises

1. Using Farkas’s lemma or otherwise, determine the polar of the cone

K = {(x, y, z) : x+y−z ≤ 0,−2x+3y ≥ 0, x+2y−4z = 0, x ≤ 0, y ≥ 0}.
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2. Consider the cone

x1 + x2 − x3 ≤ 0,
x3 ≥ 0,

2x1 − x2 + x3 ≥ 0.

Determine the polar cone. Find the extreme directions of the polar cone.
3. Determine the polar cone K∗, where K = {x ∈ Rn : Ax = 0, x ≥ 0}.
4. If C ⊆ E is a closed convex set, define

C◦ = ∩x∈C{u ∈ E : 〈u, x〉 ≤ 1}.

Since C◦ is the intersection closed half-spaces, it is closed and convex.
Prove the following:
(a) If

C = co(v1, . . . , vk) + cone(d1, . . . , dl),

describe C◦ in terms of {vi, dj}. Consequently, show that C◦ is a
polyhedral set. If C is a polytope, determine the conditions under
which C◦ is also a polytope.

(b) If C is cone, show that C◦ = C∗, the polar cone.
(c) Determine C◦ explicitly (in terms of A, b) if C = {x : Ax ≤ b}.
(d) Show that the polar of the cube {x ∈ R3 : |xi| ≤ 1, i = 1, 2, 3} is the

octahedron {x ∈ R3 : |x1|+ |x2|+ |x3| ≤ 1}.

Fig. 7.2. A pair of polar polytopes (cube and octahedron).

5. If C = {x : xTQx ≤ 1}, where Q is a symmetric, positive semidefinite
n× n matrix, describe C◦.

6. Let K1,K2 be polyhedral convex cones. Show that their Minkowski sum
K = K1 +K2 is also a polyhedral convex cone.



190 7 Convex Polyhedra

7. Consider the convex polytope

P = {x ∈ E : 〈ai, x〉 ≤ bi, i = 1, . . . , k}. (I)

(a) Theorem 7.13 on page 180 gives a representation of P . Show that the
cone C in that proposition is null in our situation, that is, C = {0}.
Thus, P can also be written as

P =
{
x : x =

m∑
j=1

µjvj ,
m∑
j=1

µj = 1, µj ≥ 0, j = 1, . . . ,m
}
. (II)

Use either the representation (I) or (II), whichever is more convenient,
to prove the following statements. (The point of this problem is that
the proof of each of these statements is simplified greatly if one uses
the appropriate representation.)

(b) Every intersection of a polytope with an affine subspace is a polytope.
Thus, a cross section of a polytope is a polytope.

(c) Every intersection of a polytope with a polyhedron is a polytope.
(d) The Minkowski sum of two polytopes is a polytope, that is, if P1 and
P2 are polytopes, then the sum

P = P1 + P2 = {x1 + x2 : xi ∈ Pi, i = 1, 2}

is a polytope.
(e) An affine image of a polytope is a polytope.
(f) A projection of a polytope onto an affine subspace is a polytope.
(g) If A : Rn → Rm is an affine mapping and P is a polytope in Rm,

then A−1(P ) is a polyhedron in Rn. Show that the result is true even
if P is a polyhedron.

8. If P is a polytope and A,B nonempty convex sets such that A+B = P ,
show that A and B are polytopes.
Hint: Let {pi}k1 be the vertices of P and pi = ai + bi, where ai ∈ A and
bi ∈ B, i = 1, . . . , k. Define A′ = co(a1, . . . , ak), B′ = co(b1, . . . , bk), and
show that A′ +B′ = P . Finally, argue that A = A′ and B = B′.

9. Find explicitly the projection of a point x ∈ Rn
(a) onto the nonnegative orthant

K = {x ∈ Rn : x = (x1, . . . , xn)T , xi ≥ 0, i = 1, ..., n}.

(Of course, the projection ΠK(x) is the unique solution to the mini-
mization problem min{‖z − x‖ : z ∈ K}.)

(b) onto the unit cube

C = {x ∈ Rn : x = (x1, . . . , xn)T , 0 ≤ xi ≤ 1, i = 1, . . . , n}.

10. (Projection onto a simplex) Find the projection of a point a ∈ Rn onto
the standard unit simplex ∆n−1 in Rn. (Recall that ∆n−1 := {x =
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(x1, . . . , xn) ∈ Rn : x1 + · · · + xn = 1, xi ≥ 0, . . . , xn ≥ 0}.) There is
no simple, explicit formula for the projection x∗ = Π∆n−1(a). Neverthe-
less, Farkas’s lemma simplifies the problem to a manageable form.
(a) Show that Farkas’s lemma applied to the variational inequality for

the projection problem gives a system that is equivalent to the system

x∗ − λ = a− µe, x∗ ≥ 0, λ ≥ 0, and 〈x∗, λ〉 = 0,

where λ ∈ Rn and µ ∈ R.
(b) Show that

x∗ − λ = (a− µe)+, and λ = −(a− µe)−;

x∗ and λ are thus the positive and negative parts of the vector a−µe,
respectively, that is, x∗i = (ai − µ)+ := max{0, ai − µ} and λi =
−(ai − µ)− := −min{0, ai − µ}, i = 1, . . . , n.

(c) Consequently, show that x∗ is characterized by the condition

∃µ ∈ R,
n∑
1

(ai − µ)+ = 1.

(d) Devise a search routine to compute µ and hence the projection x∗ =
Π∆n−1(a).

11. Let {vi}m1 be given vectors in Rn. Show that the following conditions are
equivalent:
(a) If x 6= 0, then 〈vi, x〉 > 0 for some i.
(b) cone(v1, . . . , vm) = Rn.
(c) 0 ∈ int(co(v1, . . . , vm)).

Hint: Let {ei}n1 be the standard unit vectors in Rn. To prove that (b)
implies (c), show that some positive multiples of the vectors ∓ek lie in
co(v1, . . . , vm).

12. Let A be an m × n matrix. Recall that Gordan’s lemma states that the
system

{d : Ad < 0}
is inconsistent if and only if the system

λ ≥ 0 ∈ Rm, λ 6= 0, ATλ = 0

is consistent. Prove this instead using the following direct approach: let
C be the convex hull of the rows of A, that is, C = co(a1, . . . , am) ⊆ E,
where ai is the ith row of A.
(a) Show that the consistency of the second system is equivalent to the

statement that 0 ∈ C.
(b) Use a separation argument to prove that {d : Ad < 0} 6= ∅ if and

only if 0 /∈ C, thereby proving Gordan’s lemma.
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13. Show that exactly one of the following two systems has a solution:

(a) 0 6= Bx ≥ 0 for some x ∈ Rn,
(b) BT y = 0 for some 0 < y ∈ Rm,

where B is an m× n matrix.
14. Prove the following version of Farkas’s lemma: for compatible matri-

ces A,B,C and vectors u, v, w, either there exists a solution vector x
satisfying

Ax = u, Bx ≥ v, Cx ≤ w,
or there exist solution vectors a, b, c with

ATa+BT b+ CT c = 0, b ≤ 0, c ≥ 0, 〈a, u〉+ 〈b, v〉+ 〈c, w〉 < 0.

Hint: Reformulate the problem so that it reduces to a well-known version
of Farkas’s lemma.

15. This problem shows how to obtain Gordan’s lemma directly from Farkas’s
lemma. Recall that Gordan’s lemma states that either the system

Ax < 0

or the system
ATu = 0, u ≥ 0, u 6= 0

has a solution but never both. Prove this by reducing it to Farkas’s lemma.
Hint: Let ai be the ith row of A. First, show that Ax < 0 has no solution
x if and only if [

〈ai, x〉 ≤ t for all i
]

=⇒ t ≥ 0.

Then, apply Farkas’s lemma to this system in the variables (x, t).
16. Assume that the linear system involving {ai}m1 is consistent in each of

the following systems. In each case, characterize (c, γ) that makes the
corresponding implication true:

(a) 〈ai, x〉 < αi, i = 1, . . . ,m =⇒ 〈c, x〉 < γ.

(b) 〈ai, x〉 ≤ αi, i = 1, . . . ,m =⇒ 〈c, x〉 < γ.

(c) 〈ai, x〉 < αi, i = 1, . . . ,m =⇒ 〈c, x〉 ≤ γ.
(d) 〈ai, x〉 = αi, i = 1, . . . ,m =⇒ 〈c, x〉 < γ.

(e) 〈ai, x〉 ≤ αi, i = 1, . . . ,m =⇒ 〈c, x〉 = γ.

17. Prove Carver’s theorem: the linear system Ax < a is consistent if and
only if y = 0 is the only solution for the system y ≥ 0, AT y = 0, and
〈a, y〉 ≤ 0.
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18. Prove by a direct separation argument involving two convex sets that the
following two statements are equivalent:

(i) Ax ≥ a is consistent;

(ii) λ ≥ 0, ATλ = 0 ] =⇒ 〈a, λ〉 ≤ 0.

Hint: The harder part is to prove that (ii) implies (i). Assume that (i)
is inconsistent and let A be an m × n matrix. Form the affine set S =
{Ax− a : x ∈ Rn} and write it in the form S = {y : By = b}. Show that
the set C := {y : y ∈ S, y ≥ 0} is a closed convex set and does not contain
b. Then use an appropriate separation theorem to prove the existence of
a λ that violates the conditions of (ii).

19. (Von Neumann–Morgenstern) The following “theorem of alterna-
tive” plays an important role in game theory in the famous book [212].
Let A be an m × n matrix. Let ∆n−1 and ∆m−1 denote the standard
unit simplices in Rn and Rm, respectively. Prove that either there exists
a vector x ∈ Rn satisfying

Ax ≤ 0, x ∈ ∆n−1, (I)

or there exists a vector y ∈ Rm satisfying

AT y > 0, y ∈ ∆m−1, (II)

but not both.
Hint: Use Motzkin’s transposition theorem.

20. (Strong separation of two disjoint convex polyhedra) Let P1 = {x :
ATx ≤ a} and P2 = {x : BTx ≤ b} be two nonempty convex polyhedra
in Rn. Show that P1 and P1 can be strongly separated by completing the
following steps:
(a) Use Motzkin’s transposition theorem (Theorem 7.19) to prove that

there exist nonnegative, nonzero multipliers y and z such that

Ay +Bz = 0, 〈a, y〉+ 〈b, z〉 < 0.

(b) Show that in fact, Ay 6= 0 and Bz 6= 0.
(c) Define l := Ay = −Bz 6= 0, and show that a suitable hyperplane
H(l,γ) = {x : 〈l, x〉 = γ} separates P1 and P2 strongly.
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Linear Programming

A linear program is a problem of minimization (or maximization) of a linear
function subject to linear equalities or inequalities, that is, the optimization
of a linear function over a polyhedron. It is probably the most practical and
important class of practical optimization problems, having wide applications
in industry.

We have developed enough theory by now to give the fundamental exis-
tence and duality results in this subject. There is a huge literature on linear
programming and its applications. For more information on linear program-
ming, the simplex method for solving it, and its wide-ranging applications,
the reader can profitably consult the books [67, 58, 238] and the references
therein. For interior-point methods for solving linear programs; see the book
[270].

8.1 Fundamental Theorems of Linear Programming

In this section, we present the fundamental results in linear programming,
concerning the existence of solutions and the duality theory of linear pro-
gramming.

For concreteness, we focus on the linear program

max 〈c, x〉
s. t. 〈ai, x〉 ≤ bi, i = 1, . . . ,m,

(P )

but our results here can be generalized to any linear program.
Let us first consider the existence of solutions.

Lemma 8.1. Assume that the linear program (P ) has a nonempty feasible
region. Then (P ) has a solution if and only if its objective function 〈c, x〉 is
bounded from above on the constraint set.

195
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Proof. Denote by

C := {x : 〈ai, x〉 ≤ bi, i = 1, . . . ,m}
the constraint set of (P ), and suppose that the objective function is bounded
from above by a constant M <∞. By Theorem 7.13, C has a representation

C = co(v1, . . . , vk) + cone(d1, . . . , dl).

Since v1 +tdj ∈ C for all t ≥ 0, we have 〈c, v1 + tdj〉 ≤M . Dividing both sides
of this inequality by t and letting t → ∞ gives 〈c, dj〉 ≤ 0 for j = 1, . . . , l.
Now, the supremum of the objective function over C equals

sup
{ k∑
i=1

λi〈c, vi〉+
l∑

j=1

δj〈c, dj〉 : λ ∈ ∆m−1, δj ≥ 0, j = 1, . . . , l
}

= sup
{ k∑
i=1

λi〈c, vi〉 : λ ∈ ∆m−1

}
= max{〈c, vi〉 : i = 1, . . . ,m},

where ∆m−1 is the standard unit simplex in Rm. This proves that the supre-
mum of the objective function is attained, and attained at some vertex vi. ut

The next result points to the existence of a duality theory for linear pro-
gramming.

Theorem 8.2. Let the linear program (P ) have a solution. A feasible point
x∗ is a solution to (P ) if and only if there exist multipliers {y∗i }m1 such that

m∑
i=1

y∗i ai = c, y∗i ≥ 0, and 〈b, y∗〉 = 〈c, x∗〉. (8.1)

Proof. Let x∗ and y∗ satisfy (8.1). If x is feasible, then

〈c, x〉 =
〈 m∑
i=1

y∗i ai, x
〉

=
m∑
i=1

y∗i 〈ai, x〉 ≤
m∑
i=1

y∗i bi = 〈c, x∗〉,

proving that x∗ is a solution of (P ).
Conversely, let x∗ be a solution of (P ). Since every feasible point x satisfies

〈c, x〉 ≤ 〈c, x∗〉, that is,

〈ai, x〉 ≤ bi, i = 1, . . . ,m =⇒ 〈c, x〉 ≤ 〈c, x∗〉,
it follows from Lemma 7.20 (Farkas’s lemma) that there exist nonnegative
{y∗i }m1 satisfying

∑m
i=1 y

∗
i ai = c and 〈b, y∗〉 ≤ 〈c, x∗〉. Moreover,

〈c, x∗〉 − 〈b, y∗〉 =
m∑
i=1

y∗i 〈ai, x∗〉 − 〈b, y∗〉 =
m∑
i=1

y∗i (〈ai, x∗〉 − bi) ≤ 0,

where the inequality follows since y∗i ≥ 0 and 〈ai, x∗〉 ≤ bi. This gives 〈c, x∗〉 ≤
〈b, y∗〉, and we conclude that 〈c, x∗〉 = 〈b, y∗〉. ut
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Remark 8.3. The multipliers {y∗i }m1 serve as “certificates of optimality” for
x∗: to convince a skeptic that x∗ is really an optimal solution of (P ), all we
need to do is to verify is that x∗ is feasible for (P ) and y∗ satisfies (8.1).
This amounts to verifying that (x∗, y∗) satisfies some linear equations and
inequalities, a trivial task in comparison to computing a solution to a linear
program from scratch.

Corollary 8.4. Suppose that the linear program (P ) has a solution. A feasi-
ble point x∗ is a solution to (P ) if and only if there exist multipliers {y∗i }m1
satisfying the conditions

m∑
i=1

y∗i ai = c, y∗i ≥ 0, i = 1, . . . ,m,

and the complementarity conditions

for each i = 1, . . . ,m, either y∗i = 0 or 〈ai, x∗〉 = bi.

This follows immediately from the proof of the theorem above, since the con-
dition 〈c, x∗〉 = 〈b, y∗〉 is equivalent to

〈b, y∗〉 − 〈c, x∗〉 =
m∑
i=1

y∗i (〈ai, x∗〉 − bi) = 0; (8.2)

and since y∗i ≥ 0 and 〈ai, x∗〉 − bi ≤ 0, each term in the sum above is zero.
The optimality condition

〈c, x〉 ≤ 〈c, x∗〉 = 〈b, y∗〉, for all x ∈ C,
makes it intriguing to consider the linear program

min 〈b, y〉

s. t.
m∑
i=1

yiai = c,

yi ≥ 0, i = 1, . . . ,m.

(D)

Concerning the linear program pair (P ) and (D), we have the following
fundamental results.

Theorem 8.5. (Weak duality theorem for linear programming) If x
is a feasible solution to (P ) and y is a feasible solution to (D), then

〈c, x〉 ≤ 〈b, y〉.
Proof. This follows from the observation, already used above, that

〈b, y〉 − 〈c, x〉 = 〈b, y〉 −
m∑
i=1

yi〈ai, x〉 =
m∑
i=1

yi(bi − 〈ai, x〉) ≥ 0,

where the inequality follows from yi ≥ 0 and 〈ai, x〉 ≤ bi. ut
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The expression
〈b, y〉 − 〈c, x〉

is called the duality gap. Thus, the weak duality theorem states that if x and
y are feasible, then their duality gap is nonnegative.

Theorem 8.6. (Strong duality theorem for linear programming) If
(P ) has an optimal solution x∗, then (D) has an optimal solution y∗ and the
optimal objective values of (P ) and (D) are the same, that is,

〈c, x∗〉 = 〈b, y∗〉.

This follows immediately from Theorem 8.2.

The linear programs (P ) and (D) can be written in more compact form
using matrices. Denoting by A the m× n matrix whose rows are aTi , that is,
AT = [a1, a2, . . . , am], we have

max 〈c, x〉
s. t. Ax ≤ b, (P )

min 〈b, y〉
s. t. AT y = c

y ≥ 0,

(D)

8.2 An Intuitive Formulation of the Dual Linear
Program

In this section, we provide an intuitive method to formulate the dual of a
linear program. Consider the linear program

max 4x1 + x2 + 5x3 + 3x4

s. t. x1 − x2 − x3 + 3x4 ≤ 1
5x1 + x2 + 3x3 + 8x4 ≥ 15
− x1 + 2x2 + 3x3 − 5x4 = 3
x1 ≥ 0, x2 free, x3 ≥ 0, x4 ≤ 0.

(P )

Let us try to estimate the optimal objective value z∗ of (P ) by finding
lower and upper bounds for it. To find a lower bound, it suffices to find a
feasible point of (P ). For example, the feasible point x = (3, 0, 2, 0)T allows
us to obtain a lower bound of 4x1 + 2x3 = 4× 3 + 5× 2 = 2; thus z∗ ≥ 22.

Determining an upper bound for z∗ relies on a different strategy, and this
will motivate the formulation of the dual linear program (D) corresponding
to (P ). We proceed as follows: multiply each of the three constraints of (P )
by some numbers y1, y2, y3, respectively, and add the resulting inequalities.
We would like the resulting constraint to have the form

lhs ≤ rhs,
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where lhs and rhs denote its left-hand side and right-hand side, respectively.
We then compare lhs with the objective function 4x1 + x2 + 5x3 + 3x4: we
would like to have the inequality 4x1 + x2 + 5x3 + 3x4 ≤ lhs. Since lhs ≤ rhs,
this will imply that

4x1 + x2 + 5x3 + 3x4 ≤ rhs for all feasible x = (x1, x2, x3, x4)T .

Clearly, rhs will then be an upper bound for the objective value z∗ = max(P ).
Since we would like to have lhs ≤ rhs and the first constraint x1−x2−x3+

3x4 ≤ 1 has the same direction ≤, this forces us to choose y1 ≥ 0. However, the
second inequality has the direction ≥, so we multiply it by y2 ≤ 0 to convert
it to the form ≤. Since the third constraint is an equality, y3 is unconstrained,
or free. Adding the resulting constraints leads to the inequality

y1(x1 − x2 − x3 + 3x4) + y2(5x1 + x2 + 3x3 + 8x4)
+ y3(−x1 + 2x2 + 3x3 − 5x4)

≤ y1 + 15y2 + 3y3,

which we rewrite by collecting each xi term separately,

lhs := (y1 + 5y2 − y3)x1 + (−y1 + y2 + 2y3)x2

+ (−y1 + 3y2 + 3y3)x3 + (3y1 + 8y2 − 5y3)x4

≤ y1 + 15y2 + 3y3
=: rhs .

Now, to enforce the condition 4x1 +x2 +5x3 +3x4 ≤ lhs, that is, the condition

4x1 + x2 + 5x3 + 3x4 ≤ (y1 + 5y2 − y3)x1 + (−y1 + y2 + 2y3)x2

+ (−y1 + 3y2 + 3y3)x3 + (3y1 + 8y2 − 5y3)x4,

we compare, for each i, the two xi terms on both sides of the inequality. First,
let us see how to ensure the inequality

4x1 ≤ (y1 + 5y2 − y3)x1.

Since x1 ≥ 0, we can guarantee this condition only when 4 ≤ y1 + 5y2 − y3.
Next, we would like to have

x2 ≤ (−y1 + y2 + 2y3)x2;

since x2 is free, this can be guaranteed only when

1 = −y1 + y2 + 2y3.

Finally, we would like to have

3x4 ≤ (3y1 + 8y2 − 5y3)x4;
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since x4 ≤ 0, we can guarantee this inequality only when

3 ≥ 3y1 + 8y2 − 5y3.

Summarizing, we see that as long as y1, y2, y3 satisfy the inequalities

y1 + 5y2 − y3 ≥ 4,
−y1 + y2 + 2y3 = 1,
−y1 + 3y2 + 3y3 ≥ 5,
3y1 + 8y2 − 5y3 ≤ 3,

y1 ≥ 0, y2 ≤ 0, y3 free,

1 2 3 4
T ,

we have
4x1 + x2 + 5x3 + 3x4 ≤ lhs ≤ y1 + 15y2 + 3y3.

In other words, the value y1 + 15y2 + 3y3 is an upper bound for z∗.
Suppose we want as tight an upper bound as possible, meaning that we

would like to minimize the upper bound y1 + 15y2 + 3y3. This leads us to the
dual linear program

min y1 + 15y2 + 3y3
s. t. y1 + 5y2 − y3 ≥ 4

− y1 + y2 + 2y3 = 1
− y1 + 3y2 + 3y3 ≥ 5
3y1 + 8y2 − 5y3 ≤ 3
y1 ≥ 0, y2 ≤ 0, y3 free.

(D)

8.3 Duality Rules in Linear Programming

The rules above for formulating the dual of a linear program can be summa-
rized as follows:

Primal Linear Program Dual Linear Program
Objective: Maximize Objective: Minimize
ith constraint: ≤ ith variable: ≥ 0
ith constraint: = ith variable: unconstrained
ith constraint: ≥ ith variable: ≤ 0
jth variable: ≥ 0 jth constraint: ≥
jth variable: unconstrained jth constraint: =
jth variable: ≤ 0 jth constraint: ≤ 0

We emphasize that a linear program and its dual form a primal–dual pair.
Either of the two linear programs may be designated as the primal one; then

we have an upper bound for (P ), since for any feasible point x = (x , x , x , x )
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the other one is called its dual. The choice is arbitrary. What is important is
the fact that the direction and the sign conventions depend on whether the
LP is a maximization or a minimization problem.

It may be more convenient to remember the following table, which shows
the usual situation:

Primal Linear Program Dual Linear Program
Objective: Maximize Objective: Minimize
ith constraint: ≤ ith variable: ≥ 0
jth variable: ≥ 0 jth constraint: ≥

In other words, in a maximization problem, the usual constraint has the
direction ≤ and the usual variable is nonnegative, and in a minimization prob-
lem, the usual constraint has the direction ≥ and the usual variable is non-
negative. If a constraint (variable) has the opposite direction (sign), then the
corresponding dual variable (constraint) has the opposite sign (direction). If
a constraint is an equality, then the corresponding dual variable is uncon-
strained, and vice versa.

A programming pair with the usual constraints and variables is written in
matrix notation in the form

max 〈c, x〉
s. t. Ax ≤ b

x ≥ 0,
(P )

min 〈b, y〉
s. t. AT y ≥ c

y ≥ 0,

(D)

where A is an m × n matrix, c, x ∈ Rn are n-vectors, and b, y ∈ Rm are
m-vectors. This primal–dual pair of linear programs is said to be in symmet-
ric form. One may verify, using the above duality rules, that the following
programming problems also form a primal–dual pair:

min 〈c, x〉
s. t. Ax = b

x ≥ 0,
(P )

max 〈b, y〉
s. t. AT y ≤ c.

(D)

Such a pair of primal–dual linear programs is said to be in standard form. The
simplex method for linear programming is applied to a linear program (P ) in
standard form. If a linear program is not in standard form, then slack and
surplus variables must be added to transform it into a standard-form linear
program.

8.4 Geometric Formulation of Linear Programs

In the primal–dual linear programming pairs discussed above, the two linear
programs do not appear to be symmetric. For example, in the last standard
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linear programming pair above, the primal variable x lies in Rn, while the
dual variable y lies in Rm. We will show in this section that the asymmetry
of the two programs is due to their particular representation. When properly
viewed geometrically, the two programs will have exactly the same form. This
holds for any pair of primal–dual programs, but we will demonstrate it only
for the standard linear programming pair above.

We introduce a slack variable s in (D) and rewrite the linear programs in
the form

min 〈c, x〉
s. t. Ax = b

x ≥ 0,
(P )

max 〈b, y〉
s. t. AT y + s = c

s ≥ 0.

(D)

Suppose that the linear equations in (P ) and (D) are feasible, and pick x0

and (y0, s0) satisfying them,

Ax0 = b and AT y0 + s0 = c.

The constraint Ax = b is then equivalent to A(x − x0) = 0, or x ∈ x0 + L,
where L := N(A). We can rewrite the objective function as well:

〈c, x〉 = 〈AT y0 + s0, x〉 = 〈y0, Ax〉+ 〈s0, x〉 = 〈b, y0〉+ 〈s0, x〉.

Similarly, in the dual program, the constraint AT y + s = c = AT y0 + s0 has
the form

s− s0 = AT (y0 − y) ∈ R(AT ) = L⊥,

and the objective function the form

〈b, y〉 = 〈Ax0, y〉 = 〈x0, A
T y〉 = 〈x0, c− s〉 = 〈c, x0〉 − 〈x0, s〉. (8.3)

With these changes, the linear programs take on their geometric form

min 〈s0, x〉
s. t. x ∈ x0 + L

x ≥ 0,
(GP )

min 〈x0, s〉
s. t. s ∈ s0 + L⊥

s ≥ 0,

(GD)

in which the primal and dual programs are in exactly the same form.
Several remarks should be made here. First of all, note that the original

variable y no longer appears in (GD). This shows that the duality is really
between the primal variables x and the dual slack variables s, with y playing
a secondary role.

Secondly, while the feasible and optimal solution sets of (P ) and (GP ) are
the same, we have

min(P ) = 〈b, y0〉+ min(GP ).

The differences between (D) and (GD) are a bit more substantial. The sets
of dual feasible (optimal) slack variables remain the same; hence the set of
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dual feasible (optimal) y can be recovered from (GD), if desired. Moreover,
the dual program (GD) is now a minimization problem by virtue of (8.3),
and we have

max(D) = 〈c, x0〉 −min(GD).

Since min(P ) = max(D), and c = AT y0 + s0, b = Ax0, we have

min(GP )+min(GD) = 〈c, x0〉−〈b, y0〉= 〈AT y0 + s0, x0〉−〈Ax0, y0〉 = 〈x0, s0〉,

which is the duality gap of the feasible points x0 and s0.

8.5 Strictly Complementary Optimal Solutions

Theorem 8.7. If both programs in the primal–dual pair of linear programs

min 〈c, x〉
s. t. Ax = b

x ≥ 0,
(P )

max 〈b, y〉
s. t. AT y + s = c

s ≥ 0,

(D)

have solutions, then they have a strictly complementary solution, that is, there
exists a solution x∗ to (P ) and (y∗, s∗) to (D) such that x∗ + s∗ > 0.

Proof. Let A be an m × n matrix and z∗ := 〈c, x∗〉 = 〈b, y∗〉 the common
optimal value of (P ) and (D). Fix an index i, 1 ≤ i ≤ n. We claim that either
there exists a solution x∗ to (P ) such that x∗i > 0, or there exists a solution
(y∗, s∗) to (D) such that s∗i > 0. Consider the systems

(a) Ax = b, x ≥ 0, 〈c, x〉 ≤ z∗, 〈−ei, x〉 < 0,

(b)
−AT y − µ+ µ0c− λ1ei = 0, −〈b, y〉+ µ0z

∗ + λ0 = 0,
(µ0, µ, λ0, λ1) ≥ 0, (λ0, λ1) 6= 0.

It follows from Theorem 3.17 that exactly one of the systems is consistent.
If (a) is consistent and has a solution x∗, then x∗ is clearly a solution of

(P ) with x∗i > 0, and the claim is proved.
Otherwise, (b) is consistent, with a solution (y, λ0, λ1, µ0, µ). We need to

show that there exists a solution (y∗, s∗) to (D) such that s∗i > 0. We examine
separately the cases µ0 > 0 and µ0 = 0.

If µ0 > 0, we can assume that µ0 = 1. Then AT y + (µ + λ1ei) = c, and
〈b, y〉 = z∗ + λ0 ≥ z∗. We conclude that (y∗, s∗) := (y, µ + λ1ei) ≥ 0 is a
solution to (D). Moreover, we have in fact 〈b, y∗〉 = z∗ and λ0 = 0 and hence
λ1 > 0. This proves that s∗i > 0, proving the claim in this case, too.

If µ0 = 0, then AT y = −µ− λ1ei ≤ 0 and 〈b, y〉 = λ0. If x is feasible, then

0 ≥ 〈x,AT y〉 = 〈Ax, y〉 = 〈b, y〉 = λ0 ≥ 0,
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and we conclude again that λ0 = 0, and hence λ1 > 0. Now if (y, s) is a
solution to (D), then we have

AT (y + y) + (s+ µ+ λ1ei) = c, 〈b, y + y〉 = z∗,

so that (y∗, s∗) := (y + y, s + µ + λ1ei) is an optimal solution to (D) with
s∗i > 0.

We have established that for a given index i, there exists an optimal solu-
tion pair (xi, yi, si) to the pair (P ) and (D) such that either xi > 0 or si > 0
(but not both by complementarity). Then the optimal solution pair

x∗ :=
n∑
i=1

xi, (y∗, s∗) =
n∑
i=1

(yi, si)

satisfies x∗ + s∗ > 0. ut
This result is due to Goldman and Tucker [105]. One of its consequences is

that interior-point methods for linear programming generally produce strictly
complementary optimal solutions [122]. This result has many important ap-
plications in interior-point methods; see Ye [270].

8.6 Exercises

1. Formulate the dual to the linear program

min x1 − 3x2 − x3

s. t. 3x1 − x2 + 2x3 ≥ 1
− 2x1 + 4x2 ≤ 12
− 4x1 + 3x2 + 3x3 = 14

without transforming the linear program in any way.
2. Formulate the dual to the linear program

min 2x1 + 3x2

s. t. x1 ≥ 125
x1 + x2 ≥ 350
2x1 + x2 ≤ 600
x1 ≥ 0, x2 ≥ 0.

3. Consider the linear program

min − x2

s. t. x1 + x2 ≤ 4
x1 − x2 ≥ −2
2x1 + x2 ≤ 4
x1 ≥ 0, x2 ≥ 0.
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(a) Convert the linear program into one in standard form.
(b) Determine the dual linear program to the standard form LP in (a).

4. Let A = [a1, . . . , an] be an m× n matrix such that the linear program

min cTx

s. t. Ax = b,

x ≥ 0,
(P )

is feasible. It is well known that the simplex method is an iterative method
that moves from a vertex (extreme point) of the polyhedron X := {x ∈
Rn : Ax = b, x ≥ 0} to an adjacent one, along the edges of X.
This problem provides an algebraic characterization of the vertices of X.
The support of a point x ∈ X is the set of indices of the positive compo-
nents of x, that is,

supp(x) := {i : xi > 0}.
Prove that a point x satisfies

x ∈ X is a vertex of X if and only if
{ai}i∈supp(x) is linearly independent,

by completing the following steps:
(a) If x is a vertex of X, show that {ai}i∈supp(x) is linearly independent.

Hint: Otherwise, pick a nontrivial solution δ ∈ Rn, δj = 0 for j /∈
supp(x), to the equation

∑n
i=1 δiai = 0. Show that if ε > 0 is small

enough, then the vectors y = x + εδ and y = x − εδ belong to X,
y 6= z, and satisfy x = (y + z)/2.

(b) Conversely, suppose that x is a point in X such that {ai}i∈supp(x) is
linearly independent. Suppose that x = (1−t)y+tz for some 0 < t < 1,
x ∈ X, y ∈ X. Prove that

supp(x) = supp(y) ∪ supp(z),∑
i∈supp(x)

xiai =
∑

i∈supp(y)

yiai =
∑

i∈supp(z)

ziai = 0,

and show that these imply x = y = z.
5. Consider the primal–dual linear programming pair

min cTx

s. t. Ax = b

x ≥ 0,
(P )

max bT y

s. t. AT y ≤ c,
(D)

where A is an m× n matrix.
(a) Suppose that (D) has a bounded, nonempty, feasible solution set.

Show that A({x : x ≥ 0}) = Rm. Thus, in particular, A has linearly
independent rows.
Hint: Show that (D) has an optimal solution when b ∈ Rm is arbitrary,
and then use the strong duality theorem of linear programming.
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(b) What can you conclude about A when (P ) has a bounded feasible
solution set?

(c) Suppose that both (P ) and (D) are feasible linear programs, that
is, their feasible solution sets are nonempty. Introduce slack variables
0 ≤ s ∈ Rm in (D) such that AT y + s = c. Consider the pair (xi, si),
where xi is the ith coordinate of a feasible x for (P ) and si is the ith
coordinate of a feasible s for (D).
Prove that for each i, one of xi, si must be bounded, the other un-
bounded.
Hint: Suppose, say, xi is bounded. Then (P ), but with the objective
function −xi, has an optimal solution. Then use LP duality. Use a
similar argument when si is bounded.

6. Let A be an m× n matrix and p ∈ Rn. Consider the linear program

min t

s. t. Ay = 0,

pT y − t = −1,
y ≥ 0, t ≥ 0.

(P )

(a) Formulate the dual program (D) as an explicitly written linear
program.

(b) Show that both (P ) and (D) have optimal solutions.
Hint: Use LP duality.

(c) Let v∗ be the common optimal objective value of (P ) and (D). Show
that it follows from (P ) and (a) that 0 ≤ v∗ ≤ 1. In fact, show that
v∗ is equal to either zero or one.
Hint: Use complementarity for the last part.

7. (Klain and Rota [166]) Let c1 ≥ c2 ≥ · · · ≥ cn > 0 be given positive
constants. Consider the linear program

min
n∑
k=1

xk
ck

0 ≤ xk ≤ ck,
n∑
k=1

xk ≥
r∑
i=1

ci.

(P )

Show that the optimal objective value of (P ) is r, that is, min(P ) = r;
moreover, if c1 > c2 > · · · > cn > 0, then the optimal solution to (P ) is
unique, and is given by xi = ci for i = 1, . . . , r and xi = 0 for i > r.
Note that this proves the inequality that

∑n
k=1

xk
ck
≥ r for all xk satisfying

the conditions 0 ≤ xk ≤ ck and x1 + x2 + · · ·+ xn ≥ c1 + c2 + · · ·+ cr.
Hint: Formulate the dual linear program. Define the index sets I1 = {i :
xi = ci, i = 1, . . . , n}, I2 = {i : 0 < xi < ci, i = 1, . . . , n}, I3 = {i :
xi = 0, i = 1, . . . , n}, and the dual variables yi, λ corresponding to the
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constraints xi ≤ ci and x1 + x2 + · · · + xn ≥ c1 + · · · + cr, respectively.
Show that λ 6= 0 and determine yi. Show that we can always choose
I1 ⊆ {1, . . . , r}, and that we have equality if I2 = ∅.
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Nonlinear Programming

A nonlinear program, or a mathematical program, is a constrained optimiza-
tion (say minimization) problem having the form

min f(x)
s. t. gi(x) ≤ 0, i = 1, . . . , r,

hj(x) = 0, j = 1, . . . ,m,
(P ) (9.1)

where f , {gi}r1, and {hj}m1 are real-valued functions defined on some subsets of
Rn. The function f is called the objective function of (P ), and the inequalities
and equalities involving gi and hj , respectively, are called the constraints of
the problem. The feasible region (or constraint set) of (P ) is the set of all
points satisfying all the constraints,

F(P ) =
{
x ∈ Rn : gi(x) ≤ 0, i = 1, . . . , r, hj(x) = 0, j = 1, . . . ,m

}
.

Definition 9.1. A feasible point x∗ ∈ F(P ) is called a local minimizer of (P )
if x∗ is a minimizer of f on a feasible neighborhood of x∗, that is, there exists
ε > 0 such that

f(x∗) ≤ f(x) for all x ∈ F(P ) ∩Bε(x∗).

The point x∗ is called a global minimizer of (P ) if

f(x∗) ≤ f(x) for all x ∈ F(P ).

Local and global maximizers are defined similarly, by changing the directions
of the above inequalities.

The geometry of the feasible set F(P ) around a local minimizer x∗ ∈ F(P )
dictates the optimality conditions that x∗ has to satisfy. For example, it should
be clear that if gi(x∗) < 0, then the constraint function gi plays no role in
determining whether x∗ is a local minimizer of (P ). We call such a constraint
inactive. More formally, if x ∈ F(P ), we denote by
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I(x) := {i : gi(x) = 0}

the index set of the active constraints at x. If i /∈ I(x), then gi is an inactive
constraint at x.

The purpose of this section is to give necessary and sufficient conditions
for a feasible point x∗ to be a local minimizer of (P ).

Toward this goal, we first define some relevant concepts. Recall (Defini-
tion 2.28) that a vector d ∈ Rn is called a tangent direction of a nonempty
set M ⊆ Rn at the point x ∈M if there exist a sequence xn ∈M converging
to x and a nonnegative sequence αn such that limn→∞ αn(xn − x) = d. We
also say that d is a tangent direction of the sequence {xn}.

Definition 9.2. Let x∗ be a feasible point of (P ) in (9.1). A tangent direction
of F(P ) at x∗ is called a feasible direction of (P ) at x∗. We denote the set of
feasible directions of (P ) at x∗ by FD(x∗).

A vector d ∈ Rn is called a descent direction for f at x∗ if there exists
a sequence of points xn → x∗ in Rn (not necessarily feasible) with tangent
direction d such that f(xn) ≤ f(x∗) for all n. If f(xn) < f(x∗) for all n, we
call d a strict descent direction for f at x∗. We denote the set of strict descent
directions at x∗ by SD(f ;x∗).

Lemma 9.3. If x∗ ∈ F(P ) is a local minimum of (P ), then

FD(x∗) ∩ SD(f ;x∗) = ∅.

Proof. The lemma is obvious: if the intersection is not empty, then there
exists a sequence of feasible points xn → x∗ such that f(xn) < f(x∗), which
contradicts our assumption that x∗ is a local minimizer of (P ). ut

Although this lemma is very important from a conceptual point of view,
it is hard to extract meaningful results from it, since the sets FD(x∗) and
SD(f ;x∗) are difficult to describe in a useful way, unless the functions f , gi,
hj appearing in (P ) have additional useful properties, such as differentiability.

9.1 First-Order Necessary Conditions (Fritz John
Optimality Conditions)

The Fritz John (FJ) conditions are first-order necessary conditions for a lo-
cal minimizer in the nonlinear program (P ) in (9.1) when all the functions
involved, f, gi, hj , are continuously differentiable in an open neighborhood of
the feasible region F(P ).

Let us define the linearized versions of the feasible and strict descent di-
rections defined above,
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LFD(x∗) := {d : 〈∇gi(x∗), d〉 < 0, i = 1, . . . , r,
〈∇hj(x∗), d〉 = 0, j = 1, . . . ,m, },

LSD(f ;x∗) := {d : 〈∇f(x), d〉 < 0}.

To motivate these definitions, let F be a differentiable function defined on
an open set in Rn. If d ∈ LSD(F ;x), then

F (x+ td) = F (x) + t

[
〈∇F (x), d〉+

o(t)
t

]
< F (x),

for all t > 0 small, since 〈∇F (x), d〉 < 0 and limt→0 o(t)/t = 0, so that the
term inside the brackets is negative. Thus, if d ∈ LFD(x∗)∩LSD(f ;x∗) and
t > 0 is small enough, then f(x∗ + td) < f(x∗) and gi(x∗ + td) < gi(x∗) = 0
for an active constraint function gi. The requirement that 〈∇hj(x), d〉 = 0 is
more delicate and will be handled below.

Theorem 9.4. (Fritz John) If a point x∗ is a local minimizer of (P ),
then there exist multipliers (λ, µ) := (λ0, λ1, . . . , λr, µ1, . . . , µm), not all zero,
(λ0, λ1, . . . , λr) ≥ 0, such that

λ0∇f(x∗) +
r∑
i=1

λi∇gi(x∗) +
m∑
j=1

µj∇hj(x∗) = 0, (9.2)

λi ≥ 0, gi(x∗) ≤ 0, λigi(x∗) = 0, i = 1, . . . , r. (9.3)

Proof. Because of the “complementarity conditions” (9.3), we may write (9.2)
in the form

λ0∇f(x∗) +
∑

j∈I(x∗)

λj∇gj(x∗) +
m∑
j=1

µj∇hj(x∗) = 0.

If the vectors {∇hi(x∗)}m1 are linearly dependent, then there exist multipliers
µ := (µ1, . . . , µm) 6= 0 such that

∑m
j=1 µj∇hj(x∗) = 0. Then setting λ :=

(λ0, . . . , λr) = 0, we see that the theorem holds with the multipliers (λ, µ) 6= 0.
Assume now that {∇hj(x∗)}mj=1 are linearly independent. We claim that{

d : 〈∇f(x∗), d〉 < 0, 〈∇gi(x∗), d〉 < 0, i ∈ I(x∗),

〈∇hj(x∗), d〉 = 0, j = 1, . . . ,m
}

= ∅.
(9.4)

Suppose that (9.4) is false, and pick a direction d, ‖d‖ = 1, in the set
above. Since {∇hj(x∗)}m1 is linearly independent, it follows from Lyusternik’s
theorem (see Theorem 2.29 or Theorem 3.23) that there exists a sequence
xn → x∗ that has tangent direction d and satisfies the equations hj(xn) = 0,
j = 1, . . . ,m. We also have

f(xn) = f(x∗) +
[
〈∇f(x∗),

xn − x∗
‖xn − x∗‖

〉+
o(xn − x∗)
‖xn − x∗‖

]
· ‖xn − x∗‖,
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where (xn−x∗)/‖xn−x∗‖ → d, and o(xn−x∗)/‖xn−x∗‖ → 0 as n→∞. It
follows that the term inside the brackets is negative and thus f(xn) < f(x∗) for
sufficiently large n. The same arguments show that if gi is an active constraint
function at x∗, then gi(xn) < gi(x∗) = 0 for sufficiently large n. We conclude
that {xn}∞1 is a feasible sequence for (P ) such that f(xn) < f(x∗) for large
enough n. This contradicts our assumption that x∗ is a local minimizer of
(P ), and proves (9.4).

The theorem follows immediately from (9.4) using the homogeneous ver-
sion of Motzkin’s transposition theorem; see Theorem 3.15, Theorem 7.17, or
Theorem A.3. ut

Definition 9.5. The function

L(x;λ, µ) := λ0f(x) +
r∑
i=1

λigi(x) +
m∑
j=1

µjhj(x) (λi ≥ 0, i = 0, . . . , r)

is called the weak Lagrangian function for (P ).
If λ0 > 0, then we may assume without loss of generality that λ0 = 1, and

the resulting function,

L(x, λ, µ) = f(x) +
r∑
i=1

λigi(x) +
m∑
j=1

µjhj(x), λi ≥ 0, i = 1, . . . , r,

is called the Lagrangian function.

The Lagrangian function is named in honor of Lagrange, who first in-
troduced an analogue of the function L in the eighteenth century in order
investigate optimality conditions in calculus of variations problems.

We remark that the equality (9.3) in the FJ conditions can be written as

∇xL(x, λ, µ) = 0.

The conditions expressed in (9.3) are called complementarity conditions,
since

λigi(x∗) = 0, λi ≥ 0, gi(x∗) ≤ 0,

imply that either λi = 0 or gi(x∗) = 0. In particular, if gi(x∗) < 0, that is, gi
is inactive at x∗, then λi = 0. It is possible that a constraint is active and the
corresponding multiplier is zero. For example, in Exercise 17 on page 245, this
happens at every KKT point. Otherwise, we say that strict complementarity
holds at x∗. In every linear program with an optimal solution, there always
exists a strictly complementary solution; see Theorem 8.7 on page 203. This
fact, first proved by Goldman and Tucker [105], plays an important role in
interior-point methods for linear programming.

The Fritz John theorem is remarkable, since it always holds at a local
minimizer. However, we will see later (Example 9.8, page 218) an example of
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an abnormal nonlinear program in which λ0 = 0. This is an awkward situation,
since the objective function f is not involved in the first necessary optimality
conditions! Additional assumptions on (P ) must be made in order to rule out
this possibility. Such assumptions that ensure λ0 > 0 (in fact λ0 = 1) are
called constraint qualifications, and the resulting optimality conditions are
called Karush–Kuhn–Tucker (KKT) conditions.

Corollary 9.6. If the vectors

{∇gi(x∗), i ∈ I(x∗), ∇hj(x∗), j = 1, . . . ,m}

are linearly independent, then λ0 > 0 and we have

∇f(x∗) +
∑r
i=1 λi∇gi(x∗) +

∑m
j=1 µj∇hj(x∗) = 0, (9.5)

λi ≥ 0, gi(x∗) ≤ 0, λigi(x∗) = 0, i = 1, . . . , r, (9.6)
hj(x∗) = 0, j = 1, . . . ,m. (9.7)

Proof. If λ0 = 0, then

∑
i∈I(x∗)

λi∇gi(x∗) +
m∑
j=1

µj∇hj(x∗) = 0.

The linear independence hypothesis of the vectors implies that the multipliers
{λi}r1 and {µj}m1 are all zero. But then the entire multiplier vector (λ, µ) is
zero, contradicting the above theorem. ut

The conditions (9.5)–(9.7) in Corollary 9.6 are the Karush–Kuhn–Tucker
(KKT) conditions for the problem (P ). The assumption of the linear indepen-
dence of the gradient vectors in the statement of the corollary is an example
of constraint qualification. There are other, less stringent, constraint qualifi-
cations that imply the KKT conditions. These will be discussed in Section 9.5
below.

9.2 Derivation of Fritz John Conditions Using Penalty
Functions

The derivation of the FJ conditions using penalty functions originates from
McShane’s article [195], and uses little beyond elementary calculus. Never-
theless, we remark that the penalty function approach has close connections
with the previous approach outlined above, since the implicit function theo-
rem and Lyusternik’s theorem can also be proved using this kind of approach;
see Theorem 2.26 on page 45.

We now prove Theorem 9.4 using a penalty function approach.
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Proof. Consider the penalty function

Fk(x) = f(x) +
k

2

r∑
i=1

g+
i (x)2 +

k

2

m∑
j=1

h2
j (x) +

1
2
‖x− x∗‖2,

where g+
i (x) = max{0, gi(x)} and k > 0 is a parameter. Pick an ε > 0 small

enough that f(x∗) ≤ f(x) for all feasible x ∈ Bε(x∗).
Let xk be a global minimizer of Fk over Bε(x∗), which exists by the Weier-

strass theorem. Since Fk(x∗) = f(x∗), we have

f(xk) ≤ f(xk) +
k

2

r∑
i=1

g+
i (xk)2 +

k

2

m∑
j=1

h2
j (xk) +

1
2
‖xk − x∗‖2

= Fk(xk) ≤ Fk(x∗) = f(x∗).

(9.8)

The functions g+
i , hj , and f are all bounded on Bε(x∗), and (9.8) shows that

kg+
i (xk)2/2, kh2

j (xk)/2 are also bounded. Thus, we have g+
i (xk) → 0 and

hj(xk) → 0 as k → ∞. Let x ∈ Bε(x∗) be a limit point of the sequence
{xk}∞0 . We have g+

i (x) = 0 (that is, gi(x) ≤ 0) and hj(x) = 0. This proves
that x is a feasible point of (P ).

Taking limits in (9.8), we obtain

f(x) ≤ f(x) +
1
2
‖x− x∗‖2 ≤ f(x∗).

Since f(x∗) ≤ f(x) for all feasible x ∈ Bε(x∗), we have also f(x∗) ≤ f(x).
This and the above inequalities immediately imply that ‖x − x∗‖2 = 0, that
is, x = x∗.

Consequently, the minimization problem

min{Fk(x) : x ∈ Bε(x∗)}

becomes an unconstrained optimization problem for large enough k. There-
fore, ∇Fk(xk) = 0, that is,

∇f(xk) +
r∑
i=1

(kg+
i (xk))∇gi(xk) +

m∑
j=1

(khj(x∗k))∇hj(xk)

+ (xk − x∗) = 0.

(9.9)

Define αi,k = kg+
i (xk) and βj,k = khj(x∗k), scale the vector

(1, α1,k, . . . , αr,k, β1,k, . . . , βm,k, 1)

so that the sum of the absolute values of the entries is 1 (that is, divide
the entries by γk := 2 +

∑r
i=1 λi,k +

∑m
j=1 |βj,k|), and denote the resulting

vector by
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αk := (λ0,k, λ1,k, . . . , λr,k, µ1,k, . . . , µm,k, λ0,k).

Dividing both sides of (9.9) by γk gives

λ0,k∇f(xk) +
r∑
i=1

λi,k∇gi(xk) +
m∑
j=1

µj,k∇hj(xk) + λ0,k(xk − x∗) = 0.

Since the entries of αk are bounded, we may assume that they converge as
k → ∞ (otherwise, we can take a convergent subsequence). Taking the limit
as k → ∞, we define λi,k → λi (i = 0, . . . , r), µj,k → µj (j = 1, . . . ,m). We
also have λ0,k(xk − x∗)→ 0, since λ0,k is bounded and xk → x∗. Thus,

λ0∇f(x∗) +
r∑
i=1

λi∇gi(x∗) +
m∑
j=1

µj∇hj(x∗) = 0.

Finally, we note that λi = 0 for an inactive constraint due to the fact that
xk → x∗ and thus kgi(xk)+ = 0 for large enough k. The theorem is proved.

ut

9.3 Derivation of Fritz John Conditions Using Ekeland’s
ε-Variational Principle

In this section, we give a third, independent proof of the Fritz John conditions
for the nonlinear program (9.1) using Ekeland’s ε-variational principle. The
only other tool used is Danskin’s theorem; hence the proof below could have
been given as early as in Chapter 3. Moreover, it has the added merit that
it is valid in a Banach space, that is, if the functions f, gi, hj are defined in
a Banach space; see [86] for the original proof. There are variants of the FJ
optimality conditions for suitable nonsmooth functions that are proved using
Ekeland’s ε-variational principle; see [59, 60].

The proof below is an adaptation of the one in [60].

Proof. Let x∗ be a local minimizer of problem (9.1), where f(x∗) ≤ f(x) for
all feasible x in a closed ball C = Br(x∗) = {x : ‖x− x∗‖ ≤ r}. Define the set

T :=
{

(λ0, λ, µ) ∈ R× Rr × Rm : (λ0, λ) ≥ 0, ‖(λ0, λ, µ)‖ = 1
}
,

and for a given ε > 0, where
√
ε < r, define the function

F (x) := max
T

{
λ0

(
f(x)− f(x∗) + ε

)
+

r∑
i=1

λigi(x) +
m∑
j=1

µjhj(x)
}
. (9.10)

It is easy to see that F (x∗) = ε. Moreover, the function F is positive on C,
because if x ∈ C and F (x) ≤ 0, then choosing λ0 = 1, λi = 1, and |µj | = 1,
respectively, we obtain f(x) ≤ f(x∗) − ε, gi(x) ≤ 0, and hj(x) = 0, that is,

Derivation of Fritz John Conditions Using Ekeland’s ε-Variational Principle
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x is feasible for problem (9.1). This is a contradiction, since x∗ is a global
minimizer of problem (9.1) on C. Therefore, we have

F (x∗) ≤ inf
C
F (x) + ε.

It follows from Ekeland’s ε-variational principle (Corollary 3.3) that there
exists a point xε satisfying ‖xε − x∗‖ ≤

√
ε and

F (xε) ≤ F (x) +
√
ε‖x− xε‖ for all x ∈ C.

Thus, the point xε minimizes the function

G(x) := F (x) +
√
ε‖x− xε‖

on the ball C = Br(x∗). Since ‖xε − x∗‖ ≤
√
ε < r, we have xε ∈ int(C),

and since F (xε) > 0, the maximum in (9.10) is achieved at a unique point(
λ0(ε), λ(ε), µ(ε)

)
∈ T . It follows from Danskin’s theorem (Theorem 1.29) that

if d is any unit vector in Rn, then

G′(xε; d) =
〈
λ0(ε)∇f(xε) +

r∑
i=1

λi(ε)∇gi(xε) +
m∑
j=1

µj(ε)∇hj(xε), d
〉

+
√
ε

= 0,

where we used the fact that the function N(x) = ‖x − xε‖ has directional
derivative N ′(xε; d) = ‖d‖ = 1. It follows that ‖∇F (xε‖ ≤

√
ε, that is,∥∥∥λ0(ε)∇f(xε) +

r∑
i=1

λi(ε)∇gi(xε) +
m∑
j=1

µj(ε)∇hj(xε)
∥∥∥ ≤ √ε.

By the compactness of T , as ε → 0, there exists a convergent sequence
(λ0(ε), λ(ε), µ(ε))→ (λ0, λ, µ) ∈ T . Since xε → x∗, we obtain

λ0∇f(x∗) +
r∑
i=1

λi∇gi(x∗) +
m∑
j=1

µj∇hj(x∗) = 0.

It is clear from (9.10) that if gi(x∗) < 0, then λi(ε) = 0 for small enough ε;
hence the complementarity condition λigi(x∗) = 0 holds. ut

9.4 First-Order Sufficient Optimality Conditions

In this short section, we give a sufficient condition for local minimizer in a
nonlinear programming problem that seems to have been overlooked in the
optimization literature but deserves to be better known. Perhaps it has been
neglected because in a constrained optimization problem, one often imagines
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second-order sufficient optimality conditions and not first-order ones, analo-
gous to the situation in unconstrained optimization. The original version of
this optimality condition is due to Fritz John [148] and deals with a semi-
infinite programming problem (see Chapter 12) in which he deals with only
inequality constraints. It is interesting that the optimality condition below is
valid even in abnormal cases in which λ0 = 0.

Theorem 9.7. Let x∗ be a feasible solution to the optimization problem (P )
in (9.1), satisfying the FJ conditions (9.2) and (9.3), where we write (9.2) in
the form

λ0∇f(x∗) +
∑

i∈I(x∗)

λi∇gi(x∗) +
m∑
j=1

µj∇hj(x∗) = 0.

If the totality of the vectors

λ0∇f(x∗), {λi∇gi(x∗)}i∈I(x∗), {∇hj(x∗)}m1 ,
span Rn, then x∗ is a local minimizer of (P ).

Proof. Suppose that x∗ is not a local minimizer of (P ). Then there exists
a feasible sequence of points xk → x∗ satisfying f(xk) < f(x∗). Writing
xk = x∗ + tkdk with tk > 0, ‖dk‖ = 1, we have

0 > f(x∗ + tkdk)− f(x∗) = tk〈∇f(x∗), dk〉+ o(tk),
0 ≥ gi(x∗ + tkdk) = tk〈∇gi(x∗), dk〉+ o(tk), i ∈ I(x∗),
0 = hj(x∗ + tkdk) = tk〈∇hj(x∗), dk〉+ o(tk), j = 1, . . . ,m.

Since ‖dk‖ = 1, we can assume, by taking a subsequence if necessary, that
dk → d, ‖d‖ = 1. Dividing both sides of all equalities and inequalities above
by tk and letting tk → 0 gives 〈∇f(x∗), d〉 ≤ 0, 〈∇gi(x∗), d〉 ≤ 0, and
〈∇hj(x∗), d〉 = 0. Since

〈λ0∇f(x∗), d〉+
∑

i∈I(x∗)

λi〈∇gi(x∗), d〉+
m∑
j=1

µj〈∇hj(x∗), d〉 = 0,

we have 〈λ0∇f(x∗), d〉 = 0, 〈λi∇gi(x∗), d〉 = 0, and 〈∇hj(x∗), d〉 = 0. By
virtue of our assumption on the gradient vectors, the vector d is orthogonal
to every vector in Rn. This implies d = 0, contradicting ‖d‖ = 1. ut

9.5 Constraint Qualifications

As we discussed above, it is of interest whether λ0 is zero or positive in the
FJ conditions for optimality conditions. If λ0 = 0, then f(x) plays no role
in determining the local optimizer, a very peculiar situation indeed, since we
expect f , the function to be optimized, to be present in the FJ conditions.

However, there exist problems in which λ0 = 0, as the following example
shows.
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Example 9.8. (Failure of the KKT conditions)
Consider the problem

min −x
s. t. (x− 1)3 + y ≤ 0,

x ≥ 0, y ≥ 0.

We make the definitions f(x, y) = −x, g1(x, y) = (x− 1)3 + y ≤ 0, g2(x, y) =
−x ≤ 0, and g3(x, y) = −y ≤ 0. It is clear from a picture of the feasible region
that the point (1, 0) is the (global) minimizer of the problem. Thus, the FJ
conditions must hold there.

The gradients of the objection function and the two active constraints are
∇f(1, 0) = (−1, 0), ∇g1(1, 0) = (0, 1), and ∇g3(1, 0) = (0,−1). The equation

λ0∇f(1, 0) + λ1∇g1(1, 0) + λ3∇g3(1, 0) = (−λ0, λ1 − λ3) = (0, 0)

gives λ0 = 0. Thus, the KKT conditions fail at the optimal point (1, 0).

Consequently, it is useful to identify additional conditions on the objective
function f , and especially on the constraint functions gi and hj that guarantee
that λ0 > 0, that is, the KKT conditions hold. Any such condition is called a
constraint qualification. Several such conditions are known in the literature.
We already met one such condition in Corollary 9.6. We discuss some more
conditions below.

First, however, we give a necessary and sufficient condition for the exis-
tence of the KKT multipliers.

Theorem 9.9. Let x∗ be an FJ point for problem (P ) in (9.1). The KKT
conditions

∇f(x∗) +
∑

i∈I(x∗)

λi∇gi(x∗) +
m∑
j=1

µ0∇hj(x∗) = 0 (9.11)

hold at x∗ if and only if{
d : 〈∇f(x∗), d〉 < 0

}
∩
{
d : 〈∇gi(x∗), d〉 ≤ 0, i ∈ I(x∗)

}
∩
{
d : 〈∇hj(x∗), d〉 = 0, j = 1, . . . ,m

}
= ∅.

(9.12)

Proof. The equivalence of (9.12) and (9.11) follows immediately from the
homogeneous version of Motzkin’s transposition theorem. ut

We remark that the difference between the FJ and KKT conditions is
seemingly very small. In the FJ conditions, at a local minimizer x∗ we must
have {

d : 〈∇f(x∗), d〉 < 0
}
∩
{
d : 〈∇gi(x∗), d〉 < 0, i ∈ I(x∗)

}
∩
{
d : 〈∇hj(x∗), d〉 = 0, j = 1, . . . ,m

}
= ∅,
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whereas in the KKT conditions we demand somewhat stronger conditions in
that the strict inequalities 〈∇gi(x∗), d〉 < 0 for active constraints gi(x) are
replaced by the weak inequalities 〈∇gi(x∗), d〉 ≤ 0.

Corollary 9.10. (Concave and linear constraints) Let x∗ be a local min-
imizer of problem (P ) in (9.1). The KKT conditions hold at x∗ if the active
constraints {gi}i∈I(x∗) are concave functions in a convex neighborhood of x∗

and the equality constraints {hj}m1 are affine functions on Rn.
In particular, the KKT conditions hold at every local minimizer if all the

constraint functions gi and hj are affine, that is,

gi(x) = 〈ai, x〉+ αi, hj(x) = 〈bj , x〉+ βj .

Proof. Let d satisfy the conditions

〈∇gi(x∗), d〉 ≤ 0, i ∈ I(x∗), 〈∇hj(x∗), d〉 = 0, j = 1, . . . ,m.

The point x(t) = x∗ + td is feasible for small t > 0, since

gi(x∗ + td) ≤ gi(x∗) + t〈∇gi(x∗), d〉 ≤ 0,

by Theorem 4.27; similarly

hj(x∗ + td) = hj(x∗) + 〈∇hj(x∗), d〉 = 0,

because hj is an affine function. Since x∗ is a local minimizer of the problem
(P ), we have f ′(x; d) = 〈∇f(x∗), d〉 ≥ 0 and (9.12) holds. It follows from
Theorem 9.9 that the KKT conditions hold. ut

We next prove the Mangasarian–Fromovitz constraint qualification.

Theorem 9.11. (Mangasarian–Fromovitz [193]) Let x∗ be an FJ point
for problem (P ) in (9.1). If the gradients {∇hj(x∗)}m1 of the equality con-
straints are linearly independent and there exists a direction d satisfying the
conditions

〈∇gi(x∗), d〉 < 0, i ∈ I(x∗), 〈∇hj(x∗), d〉 = 0, j = 1, . . . ,m, (9.13)

then the KKT conditions are satisfied at x∗.

Proof. On the one hand, since (9.13) is consistent, the homogeneous version
of Motzkin’s transposition theorem implies that in any solution 0 ≤ λ := (λi :
i ∈ I(x∗)) and µ : (µ1, . . . , µm) to the equation∑

i∈I(x∗)

λi∇gi(x∗) +
m∑
j=1

µj∇hj(x∗) = 0, (9.14)

we must have λ = 0, and then µ = 0 as well, since the gradients ∇hj(x∗) are
linearly independent.

On the other hand, Theorem 9.4 implies that if λ0 = 0, then (9.14) has a
solution with (λ, µ) 6= 0. It follows that λ0 > 0. ut
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One of the earliest and best known constraint qualifications is Slater’s
constraint qualification, which applies to nonlinear programs with convex con-
straints.

Corollary 9.12. (Slater [243]) Let the functions {gi}r1 in (9.1) be convex,
and the functions {hj}r1 affine. Let x∗ be a local minimizer of problem (P ). If
there exists a feasible point x0, strictly feasible for the active constraints gi,
that is,

gi(x0) < 0, i ∈ I(x∗),

then the KKT conditions are satisfied at x∗.

Proof. Let hj(x) = 〈aj , x− x0〉, j = 1, . . . ,m. If {aj}m1 is linearly dependent,
then we can choose a linearly independent subset of it, say {aj}k1 , such that
span{a1, . . . , ak} = span{a1, . . . , am}. Note that keeping only the constraints
{hi}k1 in the formulation of (P ) does not change its feasible region.

Thus, we may assume that the gradient vectors {∇hj(x∗)}m1 are linearly
independent. We have

0 > gi(x0) ≥ gi(x∗) + 〈∇gi(x∗), x0 − x∗〉, i ∈ I(x∗),
0 = hj(x0) = hj(x∗) + 〈∇hj(x∗), x0 − x∗〉, j = 1, . . . ,m,

where the second inequality follows from Theorem 4.27. We see that the di-
rection d := x0 − x∗ satisfies the Mangasarian–Fromovitz constraint qualifi-
cations, and Theorem 9.11 implies that the KKT conditions hold. ut

9.6 Examples of Nonlinear Programs

Example 9.13. This problem and its first-order necessary conditions were con-
sidered in the nineteenth century by the great American physicist J. W. Gibbs,
one of the founders of thermodynamics:

min
n∑
i=1

fi(xi)

s. t.
n∑
i=1

xi = 1,

x ≥ 0.

Since the constraint functions are all linear, it follows from Corollary 9.10 that
the KKT conditions hold. We write the Lagrangian function

L(x, λ, µ) =
n∑
i=1

fi(xi)−
n∑
i=1

λixi+µ
(

1−
n∑
i=1

xi

)
, λi ≥ 0, i = 1, . . . , n, µ ∈ R.
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The KKT conditions are

(a)
∂L

∂xi
= f ′i(xi)− µ− λi = 0, i = 1, . . . , n,

(b)
n∑
i=1

xi = 1,

(c) xi ≥ 0, λi ≥ 0, xiλi = 0, i = 1, . . . , n.

If xi > 0, then (c) implies that λi = 0, and then (a) implies f ′i(x
∗
i ) = µ.

If x∗i = 0, then we have f ′i(x
∗
i ) = µ + λi ≥ µ. Thus, we have the following

optimality conditions that were known to Gibbs:

f ′i(x
∗
i ) = µ for all i such that xi > 0,

f ′i(x
∗
i ) ≥ µ for all i such that xi = 0.

Note that the problem of projecting a point A ∈ Rn onto the standard
unit simplex (see Exercise 10, p. 190) is a particular case of this problem in
which fi(xi) = (xi − ai)2/2, i = 1, . . . , n.

Example 9.14. We consider two related problems.

(i)

min x2 + 4y2 + 16z2

s. t. xy = 1.

Since the objective function is coercive, there exist global minimizer(s)
to the problem. The constraint function h(x, y, z) = xy − 1 = 0 has the
gradient ∇h(x, y, z) = (y, x, 0) 6= 0 on the constraint set xy = 1. It follows
from Corollary 9.6 that the KKT conditions hold. Thus, the Lagrangian
function is

L = x2 + 4y2 + 16z2 + λ(xy − 1),

and the KKT conditions are

(a) ∂L
∂x = 2x+ λy = 0,

(b) ∂L
∂y = 8y + λx = 0,

(c) ∂L
∂z = 32z = 0.

Multiplying (a) and (b) by x and y, and using xy = 1, gives

2x2 = −λ = 8y2 =
8
x2
.

This gives x = ∓
√

2. If x = ∓
√

2, then y = 1/x = ∓1/
√

2. Thus, the
KKT points are
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√

2
1√
2

0

 ,

−
√

2
− 1√

2

0

 .

The objective value is the same at both points, so they are both global
minimizers.

(ii)

min x2 + 4y2 + 16z2

s. t. xyz = 1.

As in part (i), the constraint function h(x, y, z) = xyz − 1 = 0 has a
nonzero gradient ∇h(x, y, z) = (yz, xz, xy) on the constraint set xyz = 1,
and we may assume that λ0 = 1 by virtue of Corollary 9.6. The Lagrangian
function can be written as

L = x2 + 4y2 + 16z2 + λ(xyz − 1),

and the KKT conditions are

(a) ∂L
∂x = 2x+ λyz = 0,

(b) ∂L
∂y = 8y + λxz = 0,

(c) ∂L
∂z = 32z + λxy = 0,

(d) xyz = 1.

Multiplying (a)–(c) by x, y, and z, respectively, and using (d), we obtain

x2 = 4y2 = 16z2 = −λ
2
> 0.

These give x6 = 64x2y2z2 = 64, that is, x = ∓2. Since there are four
possible choices for the signs of x and y (the sign of z is then determined
by (d)), the KKT points are 2

1
1/2

 ,

 2
−1
−1/2

 ,

 −2
1
−1/2

 ,

−2
−1
1/2

 ,

which are all global minimizers of the problem.

Example 9.15. We examine the problem

max (x+ 1)2 + (y + 1)2

s. t. x2 + y2 ≤ 2,
y ≤ 1.

To avoid developing the FJ and KKT conditions for a maximization problem,
we first convert our problem to a minimization problem:
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min
−1
2

(x+ 1)2 − 1
2

(y + 1)2

s. t. x2 + y2 − 2 ≤ 0,
y − 1 ≤ 0.

The latter problem has global minimizers, since the constraint region is com-
pact. Since the constraints are convex functions, and there exists a strictly
feasible solution (for example, the point (x0, y0) = (0, 0)), Slater’s conditions
hold. It follows from Corollary 9.12 that the KKT conditions must hold at
any local minimizer. Thus, we have the Lagrangian function

L(x, y, λ) = −1
2

(x+ 1)2 − 1
2

(y + 1)2 +
λ1

2
(x2 + y2 − 2) + λ2(y − 1),

and the KKT conditions

(a)
∂L

∂x
= −(x+ 1) + λ1x = 0,

(b)
∂L

∂y
= −(y + 1) + λ1y + λ2 = 0,

(c) λ1 ≥ 0, x2 + y2 ≤ 2, λ1(x2 + y2 − 2) = 0,
(d) λ2 ≥ 0, y ≤ 1, λ2(y − 1) = 0.

Now equations (a) and (b) simplify to the conditions

x =
1

λ1 − 1
, y =

1− λ2

λ1 − 1
. (9.15)

The complementarity conditions in (c) and (d), λ1(x2 + y2 − 2) = 0 and
λ2(y− 1) = 0, are combinatorial conditions signifying that at least one of the
multipliers in each equation must be zero. Thus, we are forced to examine the
different possibilities. This can be done by examining all the possible choices
of active constraints, or by examining all the possible choices for the signs of
the multipliers. We choose the latter strategy in this problem; the reader is
encouraged to try the former.

(i) λ1 > 0 and λ2 > 0: Note that (c) and (d) imply x2 + y2 = 2 and y = 1,
which give x = ∓1 and y = 1, that is, the two points (x, y) = (1, 1)
and (x, y) = (−1, 1). In the first case, we have x = y, and (9.15) implies
λ2 = 0. This contradicts our assumption that λ2 > 0. In the second case,
(x, y) = (−1, 1), which implies −1 = λ1 − 1 or λ1 = 0, which is again
impossible. We see that it is impossible to have both multipliers λ1 and
λ2 positive.



224 9 Nonlinear Programming

(ii) λ1 > 0 and λ2 = 0: The condition (c) implies x2 + y2 = 2, and the
equations (9.15) give x = y = 1/(λ1 − 1). Thus, the points (x, y) = (1, 1)
and (x, y) = (−1,−1) are the possible KKT points. At the point (x, y) =
(1, 1), we have 1 = 1/(λ1−1), or λ1 = 2. Therefore, the point (x, y) = (1, 1)
is a KKT point with the corresponding multipliers (λ1, λ2) = (2, 0). We
note that (x, y) = (1, 1) is a feasible point. At the point (x, y) = (−1,−1),
we have −1 = 1/λ1 − 1 or λ1 = 0, which is impossible.

(iii) λ1 = 0 and λ2 > 0: The complementarity condition in (d) implies
that y = 1, and the equations (9.15) imply x = −1 and λ2 = 2. Thus, the
point (−1, 1) is a KKT point with the corresponding multipliers (λ1, λ2) =
(0, 2). We note that (−1, 1) is a feasible point.

(iv) λ1 = 0 and λ2 = 0: The equations (9.15) give the point (x, y) =
(−1,−1), which is a KKT point. We note that this is a feasible point.

Therefore, the three KKT points and their corresponding multipliers are(
1
1

)
, λ =

(
2
0

)
;
(
−1
1

)
, λ =

(
0
2

)
;
(
−1
−1

)
, λ =

(
0
0

)
.

It is obvious that the points (1, 1) and (−1,−1) are the global minimizer
and maximizer, respectively, of the minimization problem, hence the global
maximizer and minimizer, respectively, of the original, maximization problem.
What about the point (−1, 1)? It is not possible to apply Theorem 9.7, since
its conditions are not satisfied at any of the three KKT points, as the reader
may verify. In Section 9.8, we will apply below second-order tests to obtain
more information about this KKT point.

It should be instructive to draw the feasible region and illustrate the KKT
conditions pictorially.

Example 9.16. Consider the problem

max (x+ 1)2 + (y + 1)2

s. t. x2 + y2 ≤ 3,
−x2 + 2y ≤ 0.

The problem has global maximizers, since the constraint region is compact.
The gradients of the constraints are ∇g1(x, y) = 2(x, y) and ∇g2(x, y) =

2(−x, 1). Note that the second gradient is always nonzero, and the first one is
zero only at the origin, where g1 is not active. Thus, the KKT conditions hold
at any local minimizer (x∗, y∗) that has at most one active constraint. If both
constraints are active, the equalities x2 + y2 = 3 and x2 = 2y ≥ 0 give y = 1,
and the gradients {∇g1(x, y),∇g2(x, y)} are linearly independent. Thus, the
KKT conditions must hold at all possible KKT points.

We can also demonstrate that λ0 > 0 by an independent algebraic argu-
ment in the following way. We form the weak Lagrangian function

L = −λ0

2
((x+ 1)2 + (y + 1)2) +

λ1

2
(x2 + y2 − 3) +

λ2

2
(−x2 + 2y),
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and write down the FJ conditions

(a) −λ0(x+ 1) + λ1x− λ2x = 0, λ0 ≥ 0,
(b) −λ0(y + 1) + λ1y + λ2 = 0, (λ0, λ1, λ2) 6= 0,
(c) λ1 ≥ 0, x2 + y2 ≤ 3, λ1(x2 + y2 − 3) = 0,
(d) λ2 ≥ 0, 2y ≤ x2, λ2(−x2 + 2y) = 0.

We claim that λ0 > 0. If λ0 = 0, then (a) and (b) become

(a′) (λ1 − λ2)x = 0, (b′) λ1y + λ2 = 0.

These imply that

λ1 = λ2 > 0, y < 0 or x = 0, λ1 > 0, y ≤ 0.

The first case is impossible, because we saw above that y = 1 when both
constraints are active. In the second case, we have x = 0, and the equation
x2 + y2 = 3 implies that y = −

√
3. But then g2 is inactive, λ2 = 0, and (b′)

implies that λ1 = 0. This contradiction proves the claim, and we may assume
that λ0 = 1.

The conditions (a) and (b) give

x =
1

λ1 − λ2 − 1
, (λ1 − 1)y = 1− λ2. (9.16)

Let us consider all the possible cases for the signs of the multipliers:

(i) λ1 > 0 and λ2 > 0: The complementarity conditions in (c) and (d) give
x2 + y2 = 3, y = 1 and x2 = 2y = 2, that is, x = ∓

√
2. Thus, the points

(
√

2, 1) and (−
√

2, 1) are the possible KKT points, but we need to verify
that their multipliers are not negative.
At the point (

√
2, 1), solving the linear equations in (9.16) gives λ1 =

3/2 + 1/(2
√

2) > 0, λ2 = 2 − λ1 = 1/2 − 1/(2
√

2) > 0. At the second
point (−

√
2, 1), the same equations give λ1 = 3/2 − 1/(2

√
2) > 0, λ2 =

1/2 + 1/(2
√

2) > 0. Therefore, both points are KKT points.
(ii) λ1 > 0 and λ2 = 0: The condition (c) implies x2 + y2 = 3, and the

equations (9.16) imply x = 1
λ1−1 = y. Thus, the possible KKT points

are (
√

3/2,
√

3/2) and (−
√

3/2,−
√

3/2). In the first case, we have λ1 =

1 +
√

2
3 > 0. However, this point is not feasible, since it violates the

constraint −x2 + 2y ≤ 0. In the second case, λ1 = 1 −
√

2
3 > 0, and the

point (−
√

3/2,−
√

3/2) is feasible, hence a KKT point.
(iii) λ1 = 0 and λ2 > 0: The complementarity condition in (d) implies

x2 = 2y, and the equations in (9.16) give x = 1/(−λ2 − 1) and y =
λ2 − 1. Thus, the equation x2 = 2y gives 1/(λ2 + 1)2 = 2(λ2 − 1), that
is, λ3

2 + λ2
2 − λ2 − 3

2 = 0. Solving this cubic equation approximately (say
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with Newton’s method), we obtain λ2 ≈ 1.11208. This gives the point
(x, y) = (−0.473465, 0.1120849). It is a feasible point, hence satisfies the
KKT conditions.

(iv) λ1 = 0 and λ2 = 0: The equations in (9.16) give (x, y) = (−1,−1),
which is a KKT point.

Summarizing, we list the five KKT points with their multipliers:(√
2

1

)
, λ =

(
3
2 + 1

2
√

2
1
2 − 1

2
√

2

)
;
(
−
√

2
1

)
, λ =

(
3
2 − 1

2
√

2
1
2 + 1

2
√

2

)
;
(
−1
−1

)
, λ =

(
0
0

)
;−√3

2

−
√

3
2

 , λ =

(
1−

√
2
3

0

)
;
(
−0.473465
0.1120849

)
, λ =

(
0

1.1120849

)
.

At these points, the objective function f(x, y) := (x + 1)2 + (y + 1)2 of
the maximization problem has values 9.828, 4.1715, 0, 0.101020, and 1.51397,
respectively. Hence, the point (

√
2, 1) is the global maximizer of f over the

feasible region, whereas (−1,−1) is clearly the point where f is minimized over
the same feasible set. We leave it to the reader to work out how Theorem 9.7
applies to the KKT points. It can be shown that only the first two KKT points,
(∓
√

2, 1), satisfy the conditions of this theorem. This proves that the KKT
point (−

√
2, 1) is a local minimizer of the function −f over the feasible region,

hence a local maximizer of the original maximization problem. In Section 9.8,
we will apply second-order tests to determine further the nature of all five
KKT points.

Example 9.17. This is an interesting problem whose solution rests upon a novel
observation:

min
1
3

n∑
i=1

x3
i

s. t.
n∑
i=1

xi = 0,

n∑
i=1

x2
i = n.

The feasible region is compact, so the Weierstrass theorem implies that
the problem has a global minimizer and a global maximizer.

The gradients ∇g1(x) = (1, . . . , 1) = e and ∇g2(x) = 2x of the constraint
functions are linearly dependent only when x is a multiple of e, but there is
no such feasible point. Thus, we may assume that λ0 = 1.

We write the Lagrangian function
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L(x, λ) =
1
3

n∑
i=1

x3
i + λ1

n∑
i=1

xi +
λ2

2

( n∑
i=1

x2
i − n

)
,

and the KKT conditions

(a)
∂L

∂xi
= x2

i + λ1 + λ2xi = 0, i = 1, . . . , n,

(b)
n∑
i=1

xi = 0,

(c)
n∑
i=1

x2
i = n.

Summing (a) over i gives

0 =
n∑
i=1

x2
i + nλ1 + λ2

n∑
i=1

xi = n+ nλ1,

that is, λ1 = −1. Next, multiplying (a) by xi and summing over i gives

n∑
i=1

x3
i + λ1

n∑
i=1

xi + λ2

n∑
i=1

x2
i =

n∑
i=1

x3
i + nλ2 = 0,

that is, λ2 = −∑n
i=1 x

3
i /n. However, this does not seem to help much.

In this problem, the key observation for determining xi is to perceive that
when λ1 and λ2 are fixed, the equation (a) in the KKT conditions is a quadratic
equation in xi, so that each xi can have at most two values,

xi =
−λ2 ∓

√
λ2

2 + 4
2

,

one positive x+, one negative x−. Since all the functions in the optimization
problem are symmetric in the variables xi, we may assume, without loss of
generality, that

x := (x1, . . . , xn) = (x+, . . . , x+︸ ︷︷ ︸
k times

, x−, . . . , x−︸ ︷︷ ︸
n−k times

).

Then the equation (b) in the KKT conditions becomes kx+ +(n−k)(x−) = 0,
giving

x− =
k

k − nx+,

and the equation (c) gives n = kx2
+ + (n − k)x2

−, which upon simplification
becomes (x+)2 = (n− k)/k. Thus,

x+ =

√
n− k
k

, x− = − k

n− k

√
n− k
k

= −
√

k

n− k .
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Since x contains at least one positive and one negative entry, the possible
values for k are k = 1, . . . , n− 1.

We have

n∑
i=1

x3
i = kx3

+ + (n− k)x3
− = k

(√
n− k
k

)3

+ (n− k)

(
−
√

k

n− k

)3

= (n− k)

√
n− k
k
− k
√

k

n− k .

Note that the first term on the right-hand side of the equation is minimized
and the second term is maximized at k = n−1, and thus the objective function
is minimized for k = n − 1. (Similarly, it is maximized at k = 1.) Therefore,
the global minimizer of the problem is the point

x∗ =
( 1√

n− 1
, . . . ,

1√
n− 1

,−
√
n− 1

)
,

and the global maximizer of the problem is the point

x∗ =
(√

n− 1,− 1√
n− 1

, . . . ,− 1√
n− 1

)
.

We will apply second-order tests in Section 9.8 to determine the nature of
all the KKT points.

Example 9.18. Let Q be an n × n symmetric matrix, c ∈ Rn, and ∆ > 0.
Consider the problem

min q(x) :=
1
2
〈Qx, x〉+ 〈c, x〉

s. t. ‖x‖ ≤ ∆.
(9.17)

This problem appears in trust region methods for the numerical solution of
an unconstrained minimization problem. In this context, suppose that we are
trying to find numerically a local minimizer of a nonlinear function f(x) of n
variables. If xk is a given approximate minimizer of f , then we can attempt to
find a better approximate minimizer xk+1 by approximating f by its quadratic
Taylor series at xk and then minimizing this surrogate function in a suitable
disk B(xk, ∆) around xk. We end up with the optimization problem equivalent
to (9.17). See [244, 201, 213, 62] for much more information on trust region
methods and the numerical methods for solving (9.17).

Since the constraint function has a nonzero gradient at every point of the
feasible region, we may assume that λ0 = 1. We change the constraint to
‖x‖2 ≤ ∆2, and write the Lagrangian function

L =
1
2
〈Qx, x〉+ 〈c, x〉+

λ

2
(‖x‖2 −∆2).
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At a global minimizer x∗ of (9.17), we have the KKT conditions

(a) ∇xL = (Q+ λI)x∗ + c = 0,
(b) λ ≥ 0, ‖x∗‖ ≤ ∆, λ(‖x∗‖ −∆) = 0.

We claim that the conditions (a) and (b), together with the second-order
condition

(c) Q+ λI is positive semidefinite,

characterize a global minimizer of (9.17).
First, assume that x∗ is a global minimizer of (9.17). We need only to

verify the condition (c). If ‖x∗‖ < ∆, then λ = 0 and x∗ is an unconstrained
local minimizer of q, and hence Q is positive semidefinite by Theorem 2.12. If
‖x∗‖ = ∆ and ‖x‖ = ∆ is any feasible point, then q(x)− q(x∗) ≥ 0, and

q(x)− q(x∗)

= 〈∇q(x∗), x− x∗〉+
1
2
〈Q(x− x∗), x− x∗〉

= − λ〈x∗, x− x∗〉+
1
2
〈Q(x− x∗), x− x∗〉

=
1
2
〈(Q+ λI)(x− x∗), x− x∗〉 − λ

2
(
‖x− x∗‖2 + 2〈x∗, x− x∗〉

)
=

1
2
〈(Q+ λI)(x− x∗), x− x∗〉 − λ

2
(‖x‖2 − ‖x∗‖2),

(9.18)

where the second equality follows from (a). This immediately implies that
〈(Q+ λI)(x− x∗), x− x∗〉 ≥ 0 for all ‖x‖ = ∆. Since 〈x∗, x− x∗〉 ≤ 0, we
have 〈(Q+ λI)d, d〉 ≥ 0 for all d satisfying 〈x∗, d〉 ≤ 0, hence for all d ∈ Rn,
proving that Q+ λI is positive semidefinite.

Conversely, suppose that the conditions (a)–(c) are satisfied. If ‖x∗‖ < ∆,
then λ = 0, and (9.18) shows that x∗ is a global minimizer of q on Rn. If
‖x∗‖ = ∆, the same equations (9.18) shows that x∗ is a global minimizer of q
on the disk B(0, ∆).

9.7 Second-Order Conditions in Nonlinear Programming

We reconsider the nonlinear program (9.1),

min f(x)
s. t. gi(x) ≤ 0, i = 1, . . . , r,

hj(x) = 0, j = 1, . . . ,m
(P )

where this time we assume that the functions f, gi, hj have continuous second-
order partial derivatives in an open set containing the feasible region of (P ).
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The FJ and KKT conditions are first-order necessary conditions for a local
minimizer. Thus, any local minimizer must satisfy these. However, the con-
verse statement is false: a point satisfying these conditions is not necessarily
a local minimizer.

The second-order conditions give us additional restrictions that help us
narrow down the search for local minimizers of (P ). As in the unconstrained
optimization case, these are either necessary or sufficient conditions. Every
local minimizer of (P ) must satisfy the first-order conditions and the second-
order necessary conditions, but not every point satisfying these is necessarily
a local minimizer. By contrast, every point satisfying the first-order conditions
and a second-order sufficient condition must be a local minimizer.

The second order optimality conditions given in this section have their
origins in a paper by McCormick (see [96]), and contain some improvements.
They are applicable, under some restrictions, at a KKT point x∗ for (9.1)
which has associated Lagrange multipliers λ∗, µ∗. It should be noted that
the optimality conditions are stated in a form suitable for the minimization of
the Lagrangian function L(x, λ∗, µ∗) and not the minimization of the objective
function f(x). Since the passage from f to L is not straightforward, this should
explain the need for care (see, for example, the statements of Lemma 9.19 and
Theorem 9.20) in formulating the correct form of the optimality conditions.

The research on second-order optimality conditions is active even today.
More sophisticated second-order conditions, for a wide variety of optimization
problems, are available; see for example [28] and [39].

9.7.1 Second-Order Necessary Conditions

Denote by ∇2
xL(x, λ, µ) the Hessian of the Lagrangian function L with respect

to the decision variables x, that is,

∇2
xL(x, λ, µ) = ∇2f(x) +

r∑
i=1

λi∇2gi(x) +
m∑
j=1

µj∇2hj(x).

Lemma 9.19. Let x∗ be a local minimizer of (P ) satisfying the KKT condi-
tions with multipliers λ∗, µ∗. If d ∈ Rn is a feasible direction at x∗ with the
property that there exists a sequence of feasible points xk → x∗ satisfying the
conditions (xk − x∗)/‖xk − x∗‖ → d, gi(xk) = 0, i ∈ I(x∗), and hj(xk) = 0,
then 〈∇2

xL(x∗, λ∗, µ∗)d, d〉 ≥ 0.

Proof. Let d and {xk} satisfy the assumptions of the lemma. Defining dk =
xk − x∗, we have
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0
≤ f(xk)− f(x∗)
= L(xk, λ∗, µ∗)− L(x∗, λ∗, µ∗)

= 〈∇xL(x∗, λ∗, µ∗), dk〉+
1
2
〈∇2

xL(x∗, λ∗, µ∗)dk, dk〉+ o(‖dk‖2)

=
1
2
〈∇2

xL(x∗, λ∗, µ∗)dk, dk〉+ o(‖dk‖2),

where the inequality follows because x∗ is a local minimizer of (P ), the second
equality follows from Taylor’s expansion, and the last equality follows because
∇xL(x∗, λ∗, µ∗) = 0 from the KKT conditions. Dividing the above inequality
by ‖dk‖2 and letting k →∞, we conclude that 〈∇2

xL(x∗, λ∗, µ∗)d, d〉 ≥ 0. ut

Theorem 9.20. Let x∗ be a local minimizer of (P ) satisfying the KKT con-
ditions with multipliers λ∗, µ∗. If the active gradient vectors,

∇gi(x∗), i ∈ I(x∗), ∇hj(x∗), j = 1, . . . ,m

are linearly independent, then ∇2
xL(x∗, λ∗, µ∗) must be positive semidefinite

on the linear subspace

M = (span{∇gi(x∗), i ∈ I(x∗),∇hj(x∗), j = 1, . . . ,m})⊥ .

That is, if a direction d satisfies

〈d,∇gi(x∗)〉 = 0, i ∈ I(x∗), 〈d,∇hj(x∗)〉 = 0, j = 1, . . . ,m,

then
〈
∇2
xL(x∗, λ∗, µ∗)d, d

〉
≥ 0.

We provide two proofs for this theorem, one based on feasible directions
and Lyusternik’s theorem, and the other using a penalty function approach.

Proof. Since the active gradients at x∗ are linearly independent, it follows from
Lyusternik’s theorem that M coincides with the set of tangent directions to
the set

{x : gi(x) = 0, i ∈ I(x∗), hj(x) = 0, j = 1, . . . ,m}
at the point x∗. If x is a point near x∗ belonging to this set, then x is clearly
a feasible point for (P ). The theorem follows immediately from Lemma 9.19.

ut

Here is a second, independent proof of the same theorem based on the
penalty function approach.

Proof. We use the twice continuously differentiable penalty function

Fk(x) = f(x) +
k

3

r∑
i=1

g+
i (x)3 +

k

2

m∑
j=1

h2
j (x) +

1
4
‖x− x∗‖4.
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The same arguments used earlier in the penalty function approach to derive
the FJ conditions applies here: xk → x∗, where xk is global minimum of Fk
over a small ballBε(x∗). Thus,∇Fk(xk) = 0 and∇2Fk(xk) is positive semidef-
inite for large enough k. Toward computing the expressions for ∇Fk(xk) and
∇2Fk(xk), we compute the Taylor expansions of the component functions in
Fk(xk + td).

Define the function α(t) = (t+)3/3. It is easy to verify that α′(t) = (t+)2

and α′′(t) = 2t+. Thus,

1
3
g+
i (x+ td)3 = α(gi(x+ td))

= α

(
gi(x) + t〈∇gi(x), d〉+

t2

2
〈∇2gi(x)d, d〉+ o(t2)

)
= α(gi(x)) + α′(gi(x))

[
t〈∇gi(x), d〉+

t2

2
〈∇2gi(x)d, d〉

]
+

1
2
α′′(gi(x))[t〈∇gi(x), d〉]2 + o(t2)

=
1
3
g+
i (x)3 + t

[
g+
i (x)2〈∇gi(x), d〉

]
+
t2

2
[
g+
i (x)2〈∇2gi(x)d, d〉+ 2g+

i (x)〈∇gi(x), d〉2
]

+ o(t2),

hj(x+ td)2 =
[
hj(x) + t〈∇hj(x), d〉+

t2

2
〈∇2hj(x)d, d〉+ o(t2)

]2
= hj(x)2 + 2hj(x)

[
t〈∇hj(x), d〉+

t2

2
〈∇2hj(x)d, d〉

]
+ t2〈∇hj(x), d〉2 + o(t2)

= hj(x)2 + 2t[hj(x)〈∇hj(x), d〉]
+ t2

[
hj(x)〈∇2hj(x)d, d〉+ 〈∇hj(x), d〉2

]
+ o(t2),

and

‖x+ td‖4 = 〈x+ td, x+ td〉2 =
[
‖x‖2 + 2t〈x, d〉+ t2‖d‖2

]2
= ‖x‖4 + 2‖x‖2

[
2t〈x, d〉+ t2‖d‖2

]
+ t2[2〈x, d〉+ t‖d‖2]2

= ‖x‖4 + 4t
[
‖x‖2〈x, d〉

]
+ 2t2

[
‖x‖2 · ‖d‖2 + 2〈x, d〉2

]
+ o(t2).

Putting all these together, we obtain

∇Fk(xk) = ∇f(xk) +
r∑
i=1

kg+
i (xk)2∇gi(xk) +

m∑
j=1

khj(xk)∇hj(xk)

+ ‖xk − x∗‖2(xk − x∗) = 0

(9.19)

and
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〈∇2Fk(xk)d, d〉

=
〈[
∇2f(xk) +

r∑
i=1

kg+
i (xk)2∇2gi(xk) +

m∑
j=1

khj(xk)∇2hj(xk)
]
d, d
〉

+
[ r∑
i=1

2kg+
i (xk)〈∇gi(xk), d〉2 +

m∑
j=1

k〈∇hj(xk), d〉2
]

+
[
‖xk − x∗‖2 · ‖d‖2 + 2〈xk − x∗, d〉2

]
(9.20)

Now we use the linear independence hypothesis: define the matrices

A := [∇gi(x∗), i ∈ I(x∗), ∇hj(x∗), j = 1, . . . ,m],
Ak := [∇gi(xk), i ∈ I(x∗), ∇hj(xk), j = 1, . . . ,m].

We have M = N(AT ) and

πM = πN(AT ) = I − πR(A) = I −A(ATA)−1AT .

(ATA is nonsingular since the columns of A are linearly independent.) Since
xk → x∗, we have ATkAk → ATA, so that ATkAk is nonsingular for large k.

For a vector d ∈M , define

dk := πN(ATk )d = (I −Ak(ATkAk)−1ATk )d.

Note that dk is orthogonal to the vectors ∇gi(xk) (i ∈ I(x∗)) and ∇hj(xk)
(j = 1, . . . ,m), and that (this is the most crucial point) dk → d. More-
over, since the KKT conditions hold by Corollary 9.6, the scaling argu-
ment in the penalty function proof of Theorem 9.4 shows that the sequences
{kg+

i (xk)2}∞k=1 and {khj(xk)}∞k=1 are bounded. Thus, there exist convergent
subsequences λ∗i = liml→∞ klg

+
i (xkl)

2 and µ∗j = liml→∞ klhj(xkl) such that
λ∗i = 0 for i /∈ I(x∗). Letting l→∞ in the expression 〈∇2Fkl(xkl)dkl , dkl〉 ≥ 0
and using (9.19) and (9.20), we see that

∇xL(x∗) = ∇f(x∗) +
r∑
i=1

λ∗i∇gi(x∗) +
m∑
j=1

µ∗j∇hj(x∗) = 0,

and for all d ∈M ,〈[
∇2f(x∗) +

r∑
i=1

λ∗i∇2gi(x∗) +
m∑
j=1

µ∗j∇2hj(x∗)
]
d, d
〉
≥ 0.

ut

9.7.2 Second-Order Sufficient Conditions

Theorem 9.21. Let x∗ be a feasible point for (P ) that satisfies the KKT
conditions with multipliers λ∗, µ∗. If
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〈∇2
xL(x∗, λ∗, µ∗)d, d〉 > 0 (9.21)

for all d 6= 0 satisfying the conditions

〈d,∇gi(x∗)〉 ≤ 0, i ∈ I(x∗),
〈d,∇gi(x∗)〉 = 0, i ∈ I(x∗) and λ∗i > 0,
〈d,∇hj(x∗)〉 = 0, j = 1, . . . ,m,

(9.22)

then x∗ is a strict local minimizer of (P ), and there exist a constant c > 0
and a ball Bε(x∗) such that

f(x) ≥ f(x∗) + c‖x− x∗‖2 for all feasible x ∈ Bε(x∗). (9.23)

Proof. Suppose that (9.23) is not satisfied, and let εk be a sequence positive
numbers converging to zero. Then there exists a sequence of feasible points
xk → x∗ such that f(xk) < f(x∗) + εk‖xk − x∗‖2. Define dk = xk − x∗ and
assume without any loss of generality that dk/‖dk‖ → d, ‖d‖ = 1. On the one
hand, we have

εk‖dk‖2

> [f(xk)− f(x∗)] +
∑

i∈I(x∗)

λ∗i gi(xk)

= L(xk, λ∗, µ∗)− L(x∗, λ∗, µ∗)

= 〈∇xL(x∗, λ∗, µ∗), dk〉+
1
2
〈∇2

xL(x∗, λ∗, µ∗)dk, dk〉+ o(‖dk‖2)

=
1
2
〈∇2

xL(x∗, λ∗, µ∗)dk, dk〉+ o
(
‖dk‖2

)
,

x
∗ ∗ ∗

0. Dividing the above inequalities by ‖dk‖2/2 and letting k →∞, we obtain

〈∇2
xL(x∗, λ∗, µ∗)d, d〉 ≤ 0,

that is, d does not satisfy (9.21).
On the other hand,

εk‖dk‖2 > f(xk)− f(x∗) = 〈∇f(x∗), dk〉+ o(‖dk‖),
0 ≥ gi(xk)− gi(x∗) = 〈∇gi(x∗), dk〉+ o(‖dk‖), i ∈ I(x∗),
0 = hj(xk)− hj(x∗) = 〈∇hj(x∗), dk〉+ o(‖dk‖),

and dividing the inequalities by ‖dk‖ and letting k →∞ gives

〈∇f(x∗), d〉 ≤ 0, 〈∇gi(x∗), d〉 ≤ 0, 〈∇hj(x∗), d〉 = 0.

These imply that d satisfies (9.22), since multiplying the above inequalities
by 1, λ∗i , µ

∗
j , respectively (i ∈ I(x∗), j = 1, . . . ,m) gives

where the last equality follows because of the KKT conditions∇ L(x , λ , µ ) =
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0 = 〈∇xL(x∗λ∗, µ∗), d〉 =
〈
∇f(x∗) +

r∑
i=1

λ∗i∇gi(x∗) +
m∑
j=1

µ∗j∇hj(x∗), d
〉

= 〈∇f(x∗), d〉+
r∑
i=1

λ∗i 〈∇gi(x∗), d〉,

which implies that λ∗i 〈∇gi(x∗), d〉 = 0 for each i ∈ I(x∗).
We have produced a vector d that satisfies (9.22) but not (9.21), contra-

dicting the assumptions of the theorem. The theorem is proved. ut

Corollary 9.22. Let x∗ be a feasible point satisfying the KKT conditions with
multipliers λ∗, µ∗. If λ∗i > 0 for all i ∈ I(x∗) (this is called the strict comple-
mentarity condition) and the Hessian ∇2

xL(x∗, λ∗, µ∗) is positive definite in
the subspace

{d : 〈d,∇gi(x∗)〉 = 0, i ∈ I(x∗), 〈d,∇hj(x∗)〉 = 0, j = 1, . . . ,m},

then x∗ is a strict local minimizer of (P ).

The corollary follows immediately from Theorem 9.21.
For some special classes of problems, it is possible to obtain stronger re-

sults.

Lemma 9.23. Let x∗ be a KKT point of the quadratic program

min{f(x) :=
1
2
〈Qx, x〉+ 〈c, x〉 : Ax ≤ b}. (P )

If 〈Qd, d〉 ≥ 0 for all directions d satisfying the condition that 〈ai, d〉 ≤ 0 for
all i ∈ I(x∗), then x∗ is a local minimizer of (P ).

Proof. The individual linear constraints of the program are 〈ai, x〉 ≤ bi where
{ai} are the rows of A. Let x be a feasible point in a small enough neighbor-
hood of x∗ and define d = x− x∗. We have

f(x)− f(x∗) = 〈∇f(x∗), d〉+
1
2
〈Qd, d〉 = −

∑
i∈I(x∗)

λ∗i 〈ai, d〉+
1
2
〈Qd, d〉

≥ 1
2
〈Qd, d〉 ≥ 0,

where the first equation follows since f is a quadratic function, the second
equation is due to the KKT condition, and the first inequality follows since
〈ai, d〉 = 〈ai, x− x∗〉 = 〈ai, x〉 − bi ≤ 0 for i ∈ I(x∗). ut

Remark 9.24. If the quadratic program contains only equations, then it is clear
from the above proof that a point x∗ satisfying the conditions of Lemma 9.23
is actually a global minimizer of the quadratic program; see also Exercise 12.
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9.8 Examples of Second-Order Conditions

Example 9.25. (Continuation of Example 9.15)
We recall that for this problem on page 222, we have

L = −1
2

((x+ 1)2 + (y + 1))2 +
λ1

2
(x2 + y2 − 2) + λ2(y − 1),

∇g1(x, y) = 2
(
x
y

)
, ∇g2(x, y) =

(
0
1

)
, H := ∇2

(x,y)L = (λ1 − 1)I,

and the KKT points are(
1
1

)
, λ =

(
2
0

)
;
(
−1
1

)
, λ =

(
0
2

)
;
(
−1
−1

)
, λ =

(
0
0

)
.

At the KKT point (1, 1), we have H = I; hence the second-order necessary
and sufficient conditions are trivially satisfied. Thus, the point (1, 1) is a strict
local minimizer of the reformulated (minimization) problem, hence a local
maximizer of the original (maximization) problem.

At the KKT point x = (−1, 1), both constraints are active, and the
gradients of the active constraints are linearly independent. We also have
H = −I. Since M = 0, the second-order necessary conditions in Theorem 9.20
trivially hold. A vector d in the cone T (−1, 1) must satisfy the conditions
〈(−1, 1), (d1, d2)〉 = −d1 + d2 ≥ 0 and 〈(0, 1), (d1, d2)〉 = d2 ≥ 0. For exam-
ple, the vector d = (1, 1) is in the cone and satisfies 〈Hd, d〉 < 0. It follows
from Theorem 9.20 that (−1, 1) is not a local minimizer of the reformulated
problem, hence not a local maximizer of the original problem.

At the KKT point x = (−1,−1), only the first constraint is active with
the gradient ∇g1(−1, 1) = 2(−1,−1) 6= 0, and H = −I. Since the subspace M
in Theorem 9.20 is a line through the origin, the second-order necessary con-
ditions fail. Thus, the point (−1,−1) is not a local maximizer of the original
problem.

Example 9.26. (Continuation of Example 9.16)
We recall (see page 224) that in this problem

L = −1
2

(x+ 1)2 − 1
2

(y + 1)2 +
λ1

2
(x2 + y2 − 3) +

λ2

2
(−x2 + 2y),

∇g1(x, y) = 2
(
x
y

)
, ∇g2(x, y) = 2

(
−x
1

)
,

H = ∇2
(x,y)L =

[
−1 + λ1 − λ2 0

0 −1 + λ1

]
,

and the KKT points are
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2

1

)
, λ =

(
3
2 + 1

2
√

2
1
2 − 1

2
√

2

)
;
(
−
√

2
1

)
, λ =

(
3
2 − 1

2
√

2
1
2 + 1

2
√

2

)
;
(
−1
−1

)
, λ =

(
0
0

)
;−√3

2

−
√

3
2

 , λ =

(
1−

√
2
3

0

)
;
(
−0.473465
0.1120849

)
, λ =

(
0

1.1120849

)
.

At the KKT point (
√

2, 1), both constraints are active, λ > 0, the gradients
∇g1(

√
2, 1) = (2

√
2, 2) and ∇g2(

√
2, 1) = (−2

√
2, 2) are linearly independent,

and the Hessian matrix H = diag(1/
√

2, (2+
√

2)/2) is positive definite. Thus,
the assumptions of Corollary 9.22 are satisfied, and the point (

√
2, 1) is a strict

local minimizer of the reformulated (minimization) problem, that is, a strict
local maximizer of the original (maximization) problem.

At the KKT point (−
√

2, 1), both constraints are active, λ > 0, the gra-
dients ∇g1(−

√
2, 1) = (−2

√
2, 2) and ∇g2(−

√
2, 1) = (2

√
2, 2) are linearly

independent, but the Hessian matrix H = diag(−1/
√

2, (2 −
√

2)/4) is not
positive semidefinite. However, since M = 0 in Corollary 9.22, the second-
order sufficient conditions are trivially satisfied, and the point (−

√
2, 1) is a

strict local maximizer of the original problem.
At the point (−1,−1), both constraints are inactive and the Hessian matrix

H = diag(−1,−1) is negative definite. Therefore, this point is not a local
maximizer of the original problem. We remark that since there are no active
constraints at (−1,−1), the second-order necessary conditions for constrained
and unconstrained optimization problems coincide.

At the point (−
√

3/2,−
√

3/2), only the first constraint is active, and the
gradient of g1 is not zero. Thus, M is a line through the origin. Since the Hes-
sian matrix H = diag(−

√
2/3,−

√
2/2)/2) is negative definite, Theorem 9.20

implies that the second-order necessary conditions fail. Thus, this KKT point
is not a local maximizer of the original problem.

Finally, at the point (−0.473465 . . . , 0.1120849 . . .), only the second con-
straint is active, with a nonzero gradient, and the Hessian matrix H =
diag(−2.1120849,−1) is negative definite. As in the preceding situation, this
KKT point is not a local maximizer of the original problem.

In summary, we see that the only local maximizers of the original (maxi-
mization) problem are the two KKT points (∓

√
2, 1), which are actually strict

local maximizers. The point (
√

2, 1) is, of course, the global maximizer of the
original problem.

Example 9.27. (Continuation of Example 9.17)
We reconsider this problem on page 226,

min
{

1
3

n∑
i=1

x3
i :

n∑
i=1

xi = 0,
n∑
i=1

x2
i = n

}
,

with the intention of applying to it the second-order necessary and sufficient
tests in order to isolate its local minimizers (and maximizers). We recall that
the KKT points of the problem consist of the vectors
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x = (x1, . . . , xn) = (x+, . . . , x+︸ ︷︷ ︸
k times

, x−, . . . , x−︸ ︷︷ ︸
n−k times

), k = 1, . . . , n− 1,

and all their permutations, where

x+ =

√
n− k
k

, x− = −
√

k

n− k ,

with the multipliers

λ1 = −1, λ2 =
k

n

√
k

n− k −
n− k
n

√
n− k
k

.

The constraint functions have the gradients

∇h1(x) = e = (1, . . . , 1), ∇h2(x) = 2x.

These gradients are linearly independent at each KKT point. We see that
the assumptions of Theorem 9.20 are satisfied. In order to determine whether
second-order necessary conditions are satisfied, we need to verify whether the
Hessian matrix ∇2

xL(x, λ) is positive semidefinite on the subspace {e, x}⊥.
We have

L(x, λ) =
1
3

n∑
i=1

x3
i + λ1

n∑
i=1

xi +
λ2

2

( n∑
i=1

x2
i − n

)
,

so that ∇2
xL(x, λ) = 2 diag(x) + λ2I, and

〈∇2
xL(x, λ)d, d〉 =

n∑
i=1

(2xi + λ2)d2
i . (9.24)

The conditions for a vector d to be orthogonal to the vectors {e, x} are

0 = 〈d, e〉 =
n∑
i=1

di = 0,

0 = 〈d, x〉 =
k∑
i=1

dixi +
n∑

i=k+1

dixi =

√
n− k
k

k∑
i=1

di −
√

k

n− k
n∑

i=k+1

di.

Therefore, d is characterized by the equation
∑k
i=1 di = 0 =

∑n
i=k+1 di. Thus,

(9.24) can be rewritten in the form

〈∇2
xL(x, λ)d, d〉 =

(
2

√
n− k
k

+ λ2

)
k∑
i=1

d2
i +

(
λ2 − 2

√
k

n− k

)
n∑

i=k+1

d2
i

=

(
n+ k

n

√
n− k
k

+
k

n

√
k

n− k

)
k∑
i=1

d2
i

−
(

2n− k
n

√
k

n− k +
n− k
n

√
n− k
k

)
n∑

i=k+1

d2
i .
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Each term in the parentheses is positive, so that 〈∇2
xL(x, λ)d, d〉 ≥ 0 only

when
∑n
i=k+1 d

2
i = 0. Thus, the only local minimizer occurs exactly when

k = n − 1, in which case
∑n−1
i=1 di = dn = 0. It follows from Theorem 9.20

that the KKT points corresponding to k 6= n − 1 are not local minimizers.
It is easily seen that the second-order sufficiency conditions in Corollary 9.22
are satisfied at the KKT point corresponding to k = n− 1 (provided λ2 6= 0,
that is, except for the trivial case n = 2) at the point

x =
(

1√
n− 1

, . . . ,− 1√
n− 1

,−
√
n− 1

)
.

This is the only local (actually strict, global) minimizer of the problem.
In the same way, the quadratic form 〈∇2

xL(x, λ)d, d〉 is less than or equal
to zero only when k = 1. Therefore, the vector

x =
(√

n− 1,− 1√
n− 1

, . . . ,− 1√
n− 1

)
is the only local (global, strict) maximizer of the problem.

We already know from the previous analysis of the problem that the KKT
point corresponding to k = n − 1 (k = 1) is a global, hence local, minimizer
(maximizer) of the problem. The new results we uncovered are the facts that
these are strict optimizers, and that the remaining KKT points are not local
optimizers.

9.9 Applications of Nonlinear Programming to
Inequalities

Optimization often provides effective tools for proving inequalities. To illus-
trate the idea, we describe here one example. Many other possibilities exist
and can be explored; see the exercises at the end of the chapter for some
examples.

Consider the optimization problem

min{f(x) : g(x) = 1}, (9.25)

where f and g are positively homogeneous of degree α and β, respectively,
that is,

f(tx) = tαf(x), g(tx) = tβg(x), for t ≥ 0.

Suppose that (9.25) has a global minimizer x∗ with optimal objective value
z∗ := f(x∗). Then f(x) ≥ z∗ for all x satisfying g(x) = 1, which we can write
in the form

f(x)1/α

g(x)1/β
≥ (z∗)1/α for all x, g(x) = 1.
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Note that above ratio is homogeneous of degree 0, that is, it is unchanged if
x is replaced by tx, t > 0. This means that we have

f(x)1/α ≥ (z∗)1/αg(x)1/β , for all x, g(x) > 0. (9.26)

Frequently, it happens that g is a nonnegative function, and that (9.26) is also
satisfied when g(x) = 0. Then, there is a one-to-one correspondence between
the optimization problem (9.25) and the inequality (9.26). Furthermore, note
that if (P ) has a unique optimal solution x∗, then (9.26) becomes an equality
only at x∗. This is useful, since often it is important to determine when an
inequality becomes an equality.

As an example, we consider the well-known Cauchy–Schwarz inequality ,
sometimes called the Cauchy–Schwarz–Buniakovsky inequality, which states
that

|〈x, y〉| ≤ ‖x‖ · ‖y‖ for all x, y ∈ Rn, (9.27)

with equality holding if and only if the vectors x and y have the same direction.
We can prove this inequality by solving the optimization problem

max{〈x, z〉 : ‖z‖2 = 1},

where x ∈ Rn is a fixed nonzero (the case x = 0 is trivial) vector, say ‖x‖ = 1.
Since the constraint set is compact, there exists a global maximizer. The

gradient of the constraint function is never zero on the feasible set, so that
the KKT conditions are satisfied at any local minimizer of the problem. We
have

L(z, µ) = −〈x, z〉+
µ

2
(‖z‖2 − 1),

and the KKT conditions are

−x+ µz = 0, ‖z‖ = 1.

Thus, µz = x, and taking the norms of both sides of this equality, we obtain
µ = ±1, giving the KKT points z = ±x. Since 〈x, z〉 = µ‖x‖2 = µ ≥ 0 at a
global maximizer, we see that the point z = x is the unique global maximizer.

This proves the Cauchy–Schwarz inequality (9.27), and at the same time
characterizes when it holds as an equality.

The well-known Hölder’s inequality can be proved in the same way; see
Exercise 29 on page 248.

9.10 Exercises

1. Find the minimal value of the function f(x, y) = (x−2)2+(y−1)2 subject
to the conditions that y ≥ x2 and x+ y ≤ 2.
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2. The problem

min −xy
s. t. x+ y = 8,

x ≥ 0, y ≥ 0

codifies the problem of finding the rectangle of maximum area with
perimeter 16.
(a) Write down the FJ conditions, and show algebraically that λ0 6= 0,

and thus the KKT conditions are satisfied at all points satisfying the
FJ conditions.

(b) Show that the point (x, y) = (4, 4) satisfies the KKT conditions.
(c) Determine all the KKT points of the problem.
(d) Show that the point (x, y) = (4, 4) satisfies an appropriate second-

order sufficient condition, thus is a local (indeed global) minimizer of
the problem.

3. Consider the problem max{x2 + (y + 1)2 : −x2 + y ≥ 0, x+ y ≤ 2}.
(a) Write down the FJ conditions, and argue that λ0 6= 0.
(b) Sketch the feasible region, and graphically determine the optimal

solution(s).
(c) Determine all the points satisfying the KKT conditions; then deter-

mine (global) maximizer(s) among these.
4. In the problem

min
n∑
j=1

cj
xj

s. t.
n∑
j=1

ajxj = b,

xj ≥ 0, j = 1, . . . , n,

aj , cj , b are all positive constants. Write the FJ, and if applicable the KKT,
conditions. Then solve for the optimal solution(s) x∗ = (x∗1, . . . , x

∗
n).

5. Consider the problem

min x2 + y2 + z2

s. t. xyz ≥ 8,
x ≥ 0, y ≥ 0, z ≥ 0.

(a) Find all the points satisfying the KKT conditions.
(b) Use appropriate second-order tests to locate all the local and global

minimizers.
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6. Consider the problem

min lnx− y
s. t. x2 + y2 ≤ 4

x ≥ 1.

(a) Find all the points satisfying the FJ conditions.
(b) Find all the points satisfying the KKT conditions.
(c) Which of the KKT point(s) have the lowest objective value?
(d) Verify whether an appropriate second-order sufficient condition is

satisfied at each KKT point.
7. (Absence of KKT points) Consider the problem

min x2 + y2

s. t. x2 − (y − 1)3 = 0.

(a) Solve the problem geometrically.
(b) Show that there exist no points satisfying the KKT conditions.
(c) Find all the points satisfying the FJ conditions.
(d) One may be tempted to solve the optimization problem by substi-

tuting x2 = (y − 1)3 in the objective, thereby reducing it to the un-
constrained problem min y2 + (y − 1)3. But something is wrong with
this approach. What is it, and how can it be corrected?

8. In the optimization problem

min (x+ 1)2 − y2

s. t. x+ y ≤ 0,

x2 + y2 = 1,

starting from different initial points, a numerical algorithm returns the
following points (x∗, y∗) as candidates for a local minimizer:

(i)
(−1√

2
,

1√
2

)
, (ii) (−1, 0), (iii) (0, 0), (iv)

(
−1
2
,
−
√

3
2

)
.

(a) Determine which of these points satisfy the KKT conditions.
(b) Determine which KKT points satisfy a version of the second-order

necessary conditions.
(c) Determine which KKT points satisfy a version of the second-order

sufficient conditions.
9. Consider the maximization problem

max x2 + y

s. t. x2 + y2 ≤ 9,
x+ y ≤ 1.
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(a) Sketch the feasible region and the level curves of the objective func-
tion. Based on this, guess the global maximizer of the problem.

(b) Justify why KKT must hold at local maximizers.
(c) Write down the KKT conditions, and use them to determine all the

KKT points.
(d) Determine which KKT points satisfy the second-order (necessary and

sufficient) conditions.
10. Consider the problem

max x3
1 + x3

2 + · · ·+ x3
n

s. t. x2
1 + x2

2 + · · ·+ x2
n = 1.

(a) Prove that the KKT conditions must be satisfied at each local max-
imizer.

(b) Determine all the KKT points.
(c) Determine the global maximizers of the problem.
(d) Use (c) to prove the inequality

n∑
i=1

|xi|3 ≤
( n∑
i=1

x2
i

)3/2

for all (x1, . . . , xn) ∈ Rn.

(e) If there are KKT points other than global maximizers, determine
which ones are local maximizers.

11. Consider the following variant of Exercise 10:

max x3
1 + x3

2 + · · ·+ x3
n

s. t. x4
1 + x4

2 + · · ·+ x4
n = 1.

Answer the corresponding questions, and take care to formulate and prove
the correct form of the inequality in part (c).

12. The equality constrained quadratic program

min q(x) = 1
2 〈Qx, x〉+ 〈c, x〉

s. t. Ax = b

has a symmetric n× n matrix Q and a vector c ∈ Rn.
(a) Show that a local minimizer x∗ must satisfy the KKT conditions
Qx∗ + c ∈ R(AT ) and Ax∗ = b.

(b) Show that a local minimizer x∗ must satisfy the second-order neces-
sary condition that Q is positive semidefinite on the subspace N(A),
the null space of A.

(c) Show that a KKT point satisfying the second-order necessary condi-
tion in (b) is in fact a global minimizer of the quadratic program.

13. Consider the nonlinear program (P ) as in (9.1) but with only inequality
constraints, and where the functions f, gi are continuously differentiable
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in a neighborhood of the feasible region. Let x∗ be a local minimizer of
(P ).
The purpose of this problem is to show the validity of the FJ conditions
at x∗ via Danskin’s theorem. Define the function

ϕ(x) := max{f(x)− f(x∗), g1(x), . . . , gr(x)}.

(a) Show that x∗ is a local minimizer of ϕ.
(b) Show that Theorem 1.29 implies that for any d ∈ Rn,

0 ≤ ϕ′(x∗; d) = max{〈∇f(x∗), d〉, 〈∇gi(x∗), d〉, i ∈ I},

where I is the index set of active constraints at x∗.
(c) Show that (b) implies that the system

〈∇f(x∗), d〉 < 0, 〈∇gi(x∗), d〉 < 0, i ∈ I,

is inconsistent. Use this fact to prove that the FJ conditions hold
at x∗.

14. (Second-order conditions) In the problem

min x2 + (y − 1)2

s. t. −y + x2

k ≥ 0,

show that (x∗, y∗) = (0, 0) is a KKT point for all values of the parameter
k > 0. However, the nature of the point depends on the value of k. Use the
available second-order conditions to determine the values of k for which
(0, 0) is a local minimum. What is the status of the point for the remaining
values of the parameter k > 0?

15. Consider the problem

min (x− 2)2 + y2

s.t. x2 ≤ ky2 + 1
x ≥ 0,

where k ∈ R is a parameter of the problem.
(a) Sketch the feasible region of the problem for k > 0, k = 0, and k < 0.
(b) Determine the status of the point (1, 0) for each value of k. For what

values of k is the point (1, 0) is a KKT point, local minimizer, global
minimizer?

16. Sketch the constraint set of the optimization problem

min x

s. t. (x− 3)2 + (y − 2)2 ≥ 13,
(x− 4)2 + y2 ≤ 16.

Then,
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(a) Find all the points satisfying the KKT conditions.
(b) Verify which second-order sufficient conditions, if any, are satisfied

at each KKT point.
17. (Absence of strict complementarity) In the problem

min xy

s. t. x2 + y2 ≤ 2,
x+ y ≥ 0,

show that the KKT conditions are satisfied at every local minimizer. Com-
pute all the KKT points. Show that strict complementarity is satisfied at
no KKT point. Finally, use the available second-order necessary/sufficient
conditions to determine which KKT points are local minimizers.

18. Consider the problem of covering the triangle with vertices at the points
(0, 0), (0, 1), and (1, 0) with a ball of smallest radius.
(a) By geometric considerations, show that the optimal ball has center

at the point (1/2, 1/2) and radius 1/
√

2.
(b) Show that the problem can be formulated as the nonlinear program

min r

s. t. x2 + y2 ≤ r
(x− 1)2 + y2 ≤ r
x2 + (y − 1)2 ≤ r.

(c) Solve the above program.
19. Inscribe a triangle in the disk {(x, y) : x2 + y2 ≤ 1} with maximum area.

(If you get stuck; see the general form of the problem on page 271.)
20. Inscribe a tetrahedron in the sphere {(x, y, z) : x2 + y2 + z2 ≤ 1} with

maximum-volume. (If you get stuck; see the general form of the problem
on page 271.)

21. Prove that if −1 ≤ xi ≤ 0, i = 1, 2, . . . , n, then

(1 + x1)(1 + x2) · · · (1 + xn) ≥ 1 + x1 + x2 + · · ·+ xn,

and investigate when equality holds.
(a) Set up an appropriate optimization problem such that the optimal

solutions x∗ to this problem give equality in the above inequality.
(b) Show that each component x∗i has only two possible values.
(c) Use second-order conditions to isolate the optimal solution(s) among

the KKT points.
22. Let x1, x2, . . . , xn be real numbers such that

∑n
1 xi = 0. Show that the

inequality

(xn − x1)2 +
n−1∑

1

(xi − xi+1)2 ≥ 4 sin2(π/n) ·
n∑
1

x2
i

holds.
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(a) Formulate the problem as an optimization problem and verify it for
n = 3, 4, 5.

(b) Verify the inequality for all n.
Hint: The inequality can be viewed as an eigenvalue problem.

23. This problem has appeared in connection with Karmarkar’s potential func-
tion for linear programming. For a fixed parameter α satisfying 0 < α < 1,
consider the minimization problem

min
n∏
i=1

xi

s. t.
n∑
i=1

xi = 1

n∑
i=1

(
xi −

1
n

)2

=
α2

n(n− 1)
.

(a) Show that constraints of the problem imply that each feasible vector
x is positive, that is, xi > 0 for all i = 1, . . . , n. Thus, if we like, we
may replace the objective function by its logarithm.
Hint: The fact that xi > 0 may be verified by solving an optimization
problem!

(b) Write down the FJ conditions for a local minimizer x∗, and show
that λ0 > 0 at each FJ point.

(c) Find all the KKT points. Determine which KKT point(s) are global
minimizers by comparing their objective values.

(d) Determine whether any second-order conditions (necessary and suf-
ficient) hold at the global minimizer(s) that you found in part (c).

(e) Consider the problem of maximizing the objective function over the
constraint set. Repeat parts (b)–(d) for this problem.

24. Let a, b ∈ Rn be given nonzero vectors. It is known that if x ∈ Rn satisfies
‖x‖ = 1 and 〈a, x〉 = 0, then

〈b, x〉 ≤
∑

1≤i<j≤n(aibj − ajbi)2
‖a‖2 .

(You may assume that {a, b} are linearly independent, since otherwise the
inequality is trivial.) Reduce the inequality to an appropriate constrained
optimization problem. Find the optimizer(s) of this problem; and finally
show that the inequality follows.

25. This problem concerns inscribing into a given circle a triangle such that
the sum of the squares of the sides of the triangle is maximized. This can
be formulated as an optimization problem as follows:

max ‖x− y‖2 + ‖x− d‖2 + ‖y − d‖2

s. t. ‖x‖2 = 1,

‖y‖2 = 1.
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Here, we have assumed that the circle is the unit circle with center at the
origin, one of the vertices of the inscribed triangle is at the point d = (0, 1),
and x and y are the remaining, unknown vertices of the triangle.
(a) Write down the FJ conditions, and show that all points satisfying

the FJ conditions must be KKT points.
(b) Determine all the KKT points.
(c) Determine the optimal solutions among the KKT points. What can

you say about the lengths of the sides of the optimal triangle? Are the
second-order sufficient conditions satisfied at the optimal solution(s)?

26. (Fagnano) Find a point on each side of a given triangle A such that the
triangle B formed by these three points has the smallest perimeter. Prove
that if all three angles of A are acute, then the vertices of the triangle B
are the base points of the perpendicular lines dropped from the vertices
A onto the opposite sides of A.
Hint: One way to formulate the problem is to assume that one vertex of A
is at the origin and the two sides adjacent to it form linearly independent
vectors a, b ∈ R2. The vertices of B are then at the points sa, tb, and
a+ u(b− a), say, where 0 ≤ s, t, u ≤ 1.

27. The goal of this problem is to prove the inequality∑n
i=1 xi
n

·
∑n
i=1 yi
n

≤
∑n
i=1 xiyi
n

(9.28)

whenever xi and yi are nonincreasing,

x1 ≥ x2 ≥ · · · ≥ xn−1 ≥ xn, y1 ≥ y2 ≥ · · · ≥ yn−1 ≥ yn, (9.29)

and characterize its cases of equality.
Prove (9.28) by maximizing the function

( n∑
i=1

xi

)
·
( n∑
i=1

yi

)
subject to the constraint

∑n
i=1 xiyi = n and the constraints in (9.29).

Note that it suffices to show that the objective value of the optimization
problem is n2.
Form the (weak) Lagrangian

L = −λ0(
n∑
i=1

xi) (
n∑
i=1

yi) + λ(
n∑
i=1

xiyi − n) +
n−1∑
i=1

δi(xi+1 − xi)

+
n−1∑
i=1

ξi(yi+1 − yi), (λ0, δ, ξ) ≥ 0.

(a) Write the FJ conditions, and use them to prove that
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nλ = λ0

( n∑
i=1

x∗i

)
·
( n∑
i=1

y∗i

)
.

(This is the crucial result.)
(b) Use this to show that λ0 6= 0; thus the KKT conditions must hold.

Put λ0 = 1, and use the KKT conditions to show that

(λ− n)
( n∑
i=1

y∗i

)
= (λ− n)

( n∑
i=1

x∗i

)
= 0.

Argue that
λ = n.

(c) By considering the form of the optimization problem, argue that any
(x∗, y∗) above cannot be a (local) minimizer, and then argue that it
must be a global maximizer. Conclude that the inequality (9.28) must
hold.

(d) Show that the optimal solution (x∗, y∗) must have x∗1 = · · · = x∗n
and y∗1 = · · · = y∗n. Conclude that the inequality (9.28) holds as an
equality if and only if x1 = · · · = xn and y1 = · · · = yn.

28. Let x1, . . . , xn (n ≥ 2) be real numbers subject to the conditions

n∑
1

xi = 0, max
1≤i≤n

|xi| = 1.

Set xn+1 = x1, and define

µ(x) = max
1≤i≤n

|xi − xi+1|.

(a) Show that the minimum of µ(x) on Rn equals 4/n if n is even, and
4n/(n2 − 1) if n is odd.

(b) Determine the optimal solution(s) x∗ = (x∗1, . . . , x
∗
n) in each case.

Hint: The symmetry of the problem allows one to set any x∗i = 1; this
simplifies the formulation of the optimization problem.

29. (Hölder’s inequality) Let p > 1, q > 1 be such that p−1 + q−1 = 1. Then

|〈x, y〉| ≤ ‖x‖p · ‖y‖q for all x, y ∈ Rn,

with equality holding if and only if x and y are parallel vectors. Here the
p-norm, ‖x‖p, is defined by ‖x‖pp = |x1|p + · · ·+ |xn|p.
Prove Hölder’s inequality by solving the optimization problem

max
{
〈z, y〉 :

n∑
i=1

|zi|p = 1
}
,

where y ∈ Rn is a fixed nonzero vector, say ‖y‖q = 1.
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30. Solve the optimization problem

max
{ n∑
i=1

|xi|p :
n∑
i=1

|xi|q = 1
}
,

where q ≥ p > 1, and use it to prove the inequality(
1
n

n∑
i=1

|xi|p
)1/p

≤
(

1
n

n∑
i=1

|xi|q
)1/q

, q ≥ p > 1,

and determine when equality holds.
31. (Waterhouse [263]) Determine the optimal value of the problem

min (r − 1)2 +
(s
r
− 1
)2

+
(
t

s
− 1
)2

+
(

4
t
− 1
)2

s. t. 1 ≤ r ≤ s ≤ t ≤ 4.

Hint: Introduce new variables r, s/r, t/s, and 4/t.
32. (Waterhouse [263]) Consider the following symmetric optimization

problem:

min /max f(x)
s. t. gi(x) = 0, 1 ≤ i ≤ m,

where f and {gi}m1 are symmetric, continuously differentiable functions
defined on Rn. The aim of this problem is to show that symmetric problems
generically admit symmetric solutions.
Suppose that there exists a feasible point x0 = (α, α, . . . , α).
(a) Show that x0 is a KKT point (except possibly when ∇gi(x0) = 0

(i = 1, . . . ,m) and ∇f(x0) 6= 0).
(b) Assuming that x0 is a KKT point, investigate when x0 satisfies the

second-order sufficient conditions for a local optimizer (minimizer or
maximizer) of the problem. Conclude that x0 is generically a local
optimizer. What can the second-order conditions tell us when the
second-order sufficient conditions fail?

Hint: Let h : Rn → R be a symmetric function, σ a permutation of
the set {1, 2, . . . , n}, and σ : Rn → Rn the linear map σ(x1, . . . , xn) =
(xσ(1), . . . , xσ(n)). Define x := σx and d := σd. Compare the Taylor ex-
pansions of h(σ(x+ td)) and h(x+ td) and relate 〈∇h(x), d〉 to 〈∇h(x), d〉
and ∇2h(x)[d, d] to ∇2h(x)[d, d]. Conclude that ∇h(x0) is a multiple of
e := (1, . . . , 1) and that ∇2h(x0) is a symmetric matrix with a diagonal a
multiple of e and off-diagonal elements all equal.
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33. (Waterhouse [263]) Consider the symmetric optimization problem

min /max x4yz + xy4z + xyz4

s. t. x3y3 + x3z3 + y3z3 − 3 = 0.

Show that x0 = (1, 1, 1) is a KKT point, but not a local minimizer or
maximizer. (This is a degenerate problem that forms an exception to part
(b) of the above problem.)
Hint: Consider the values of f(x(t)) where x(t) = (st, s, s), t is close to 1,
and s = s(t) is chosen to make x(t) a feasible curve.
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Structured Optimization Problems

In this chapter, we solve several important well-known problems using opti-
mization techniques. These include the extensive theories of the eigenvalues of
symmetric matrices and the singular values of a matrix, an optimization prob-
lem in Broyden’s method for solving nonlinear systems of equations, an opti-
mization problem appearing in quasi-Newton methods for unconstrained min-
imization of a nonlinear function, the inequalities of Kantorovich, Hadamard,
and Hilbert, and the problem of inscribing a maximum-volume ellipsoid in a
convex polytope in Rn. The variational approach to the eigenvalues and sin-
gular values are especially important, both in finite and infinite dimensions,
since they can be used to prove various inequalities among the eigenvalues
(and the singular values), and to establish the spectral decomposition of com-
pact operators in Hilbert spaces, for example.

Many other important problems can be treated by variational means.

10.1 Spectral Decomposition of a Symmetric Matrix

The eigenvalues and eigenvectors of a symmetric matrix can be obtained by
variational means, by solving certain optimization problems. This approach
avoids the use of determinants, and is particularly important in infinite-
dimensional Hilbert spaces, where determinants are not always meaningful.
The variational approach is due to Hilbert, who at the beginning of the twen-
tieth century, developed the spectral theory of compact operators in Hilbert
spaces using such an approach; see the book [227], Chapter 6, for a lucid
presentation. Here we deal only with the finite-dimensional situation.

Let A be a symmetric n × n matrix. We will prove Theorem 2.19, the
spectral decomposition of A, using nonlinear programming.

Consider the minimization of the quadratic form 〈Ax, x〉 over the unit
sphere,
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min 〈Ax, x〉
s. t. ‖x‖2 = 1.

Since the gradient of the constraint function is nonzero on the feasible region,
the KKT conditions hold. Thus, we have the Lagrangian function

L(x, λ) = 〈Ax, x〉+ λ1(1− ‖x‖2).

Since the constraint set is compact, there exists a global minimizer u1 on the
unit sphere that is the solution to the KKT conditions

∇xL = 2Au1 − 2λ1u1 = 0, ‖u1‖ = 1.

Thus, Au1 = λ1u1 and ‖u1‖ = 1, that is, λ1 is the eigenvalue of A correspond-
ing to the eigenvector u1.

We have 〈Au1, u1〉 = 〈λ1u1, u1〉 = λ1, and if a unit vector x is any eigen-
vector of A with the corresponding eigenvalue λ, then

λ = 〈λx, x〉 = 〈Ax, x〉 ≥ 〈Au1, u1〉 = λ1.

Thus, λ1 is the smallest eigenvalue of A and u1 is a corresponding eigenvector.
Now consider sequentially the following problems:

min 〈Ax, x〉
s. t. ‖x‖2 = 1,

〈ui, x〉 = 0, i = 1, . . . , k − 1,

(Pk)

for k = 2, . . . , n, where the vector ui in the last set of constraints is an optimal
solution to problem (Pi), i < k.

Note that the vectors {ui}k−1
1 form an orthonormal set. Since the con-

straint set is compact, there exists a global minimizer x∗ on the unit sphere;
the gradients {−2x, u1, . . . , uk−1} of the constraints are orthogonal, hence
linearly independent. It follows from Corollary 9.10 that the KKT conditions
hold, and we have the Lagrangian function

L(x, λ, δ1, . . . , δk−1) =
1
2
〈Ax, x〉+

λ

2
(1− ‖x‖2) +

k−1∑
i=1

δki 〈ui, x〉.

The KKT conditions are

Ax∗ − λx∗ +
k−1∑
i=1

δki ui = 0, ‖x∗‖ = 1,

〈x∗, ui〉 = 0, i = 1, . . . , k − 1.

(10.1)

We claim that the multiplier vector δk := (δk1 , . . . , δ
k
k−1) is zero. We prove

this by induction on k. For k = 1, there is nothing to prove. Suppose that
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the induction hypothesis is true for all integers less than k. Taking the inner
product of both sides of the first equation in (10.1) with uj (j < k), we obtain

〈Ax∗, uj〉 − δkj = 〈x∗, Auj〉 − δkj = 〈x∗, λjuj〉 − δkj = 0,

where the first equality follows because A is a symmetric matrix, and the
second equality follows from the induction hypothesis. (If the induction hy-
pothesis holds, then δj = 0 and (10.1) above shows that uj is an eigenvalue
of A.)

This proves the claim. Thus, uk := x∗ is an eigenvector of A with the
corresponding eigenvector λk := λ, which is the kth-smallest eigenvalue of A.

Define U := [u1, u2, . . . , un] and Λ = diag(λ1, . . . , λn). We have Aui =
λiui, i = 1, . . . , n, so that

AU = A[u1, . . . , un] = [Au1, . . . , Aun] = [λ1u1, . . . , λnun]
= [u1, . . . , un] diag(λ1, . . . , λn) = UΛ.

Since {ui}n1 is an orthonormal set of vectors, the matrix U is orthogonal, that
is, UUT = UTU = I.

In summary, we have proved Theorem 2.19.

Remark 10.1. It may appear quite remarkable that the multiplier vector δ
vanishes in the optimization problem (Pk). This may be explained by the fact
that A is invariant on the subspace

Lk−1 := {u1, . . . , uk−1}

and on its orthogonal complement L⊥k−1, that is, A(Lk−1) ⊆ Lk−1) and
A(L⊥k−1) ⊆ L⊥k−1). The invariance on Lk−1 is easy to see, and if x ∈ L⊥k−1 and
j ≤ k − 1, then

〈Ax, uj〉 = 〈x,Auj〉 = λj〈x, uj〉 = 0,

proving the invariance on L⊥k−1.
Thus, we may recast the problem (Pk) as the optimization problem

min{〈Ax, x〉 : ‖x‖2 = 1, x ∈ Ek}

within the vector space Ek = LTk−1. Then problem (Pk) looks exactly like
(P1), which has no linear constraints, and it is seen as in (P1) that the optimal
solution uk is an eigenvector of A. This is the original argument in [227].

The spectral decomposition above can be used to give further variational
characterizations of the eigenvalues of a symmetric matrix.

Theorem 10.2. (Courant–Fischer) Let A be an n×n symmetric real ma-
trix with eigenvalues

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A)
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arranged in ascending order. Then

λk(A) = max
Lk−1

min
x∈L⊥k−1,‖x‖=1

〈Ax, x〉, k = 1, . . . , n,

where the maximization is over the set of all (k − 1)-dimensional linear sub-
spaces of Rn. Furthermore,

λk(A) = min
Ln−k

max
x∈L⊥n−k,‖x‖=1

〈Ax, x〉, k = 1, . . . , n.

Proof. We will prove only the first equality, since the second one follows from
the first applied to the matrix −A. Let ui be the eigenvector corresponding
to λi obtained in problem (Pi). Denote by L∗k the linear span of {ui}k1 , and
note that

λk+1 = min
x∈(L∗k)

⊥,‖x‖=1
〈Ax, x〉 ≤ max

Lk
min

x∈L⊥k ,‖x‖=1
〈Ax, x〉.

It remains to prove the reverse inequality. Let Lk be an arbitrary k-
dimensional linear subspace of Rn. It follows from dimensional considerations
that the subspace L∗k+1 ∩ L⊥k is nontrivial. Pick a unit vector u =

∑k+1
i=1 δiui

in this subspace. We note that 1 = ‖u‖2 =
∑k+1
i=1 δ

2
i , and

min
x∈L⊥k ,‖x‖=1

〈Ax, x〉 ≤ 〈Au, u〉 =
〈k+1∑
i=1

λiδiui,
k+1∑
i=1

δiui

〉
=
k+1∑
i=1

λiδ
2
i ≤ λk+1.

This proves the reverse inequality

max
Lk

min
x∈L⊥k ,‖x‖=1

〈Ax, x〉 ≤ λk+1,

and the theorem. ut
Corollary 10.3. (Weyl) Let A,B be n × n symmetric real matrix, and
{λi(A)}n1 , {λi(B)}n1 , and {λi(A+B)}n1 the eigenvalues of A, B, and A+B,
respectively. Then

λi(A) + λ1(B) ≤ λi(A+B) ≤ λi(A) + λn(B), i = 1, . . . , n.

Proof. We prove only the first inequality; the second one is proved similarly:

λi(A+B) = max
Li−1

min
x∈L⊥i−1,‖x‖=1

〈(A+B)x, x〉

≥ max
Li−1

(
min

x∈L⊥i−1,‖x‖=1
〈Ax, x〉+ min

x∈L⊥i−1,‖x‖=1
〈Bx, x〉

)
≥ max

Li−1

(
min

x∈L⊥i−1,‖x‖=1
〈Ax, x〉+ min

x∈Rn,‖x‖=1
〈Bx, x〉

)
= λi(A) + λ1(B).

ut
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Remark 10.4. There are many other inequalities satisfied by the eigenvalues of
A, B, and A+B. Horn’s conjecture [142] states that a certain set of inequalities
gives the complete set of inequalities between these three sets of eigenvalues.
Horn’s conjecture has only recently been settled, in the affirmative, using
advanced algebraic techniques. See Fulton [100] for an exposition of Horn’s
conjecture and its proof.

The Courant–Fischer equalities can be used to prove other interesting
results.

Corollary 10.5. Let A be an n × n symmetric real matrix, and Ak a k ×
k principal submatrix of A that is obtained by deleting n − k rows and the
corresponding columns of A. If {λi(A)}n1 and {λi(Ak)}k1 are the eigenvalues
of A and Ak respectively, arranged in ascending order, then

λi(A) ≤ λi(Ak) ≤ λn−k+i(A), i = 1, . . . , k.

Proof. We have

λi(Ak) = max
Mi−1

min
x∈M⊥i−1,‖x‖=1

〈Akx, x〉

≤ max
Ln−k+i−1

min
x∈L⊥n−k+i−1,‖x‖=1

〈Akx, x〉 = λn−k+i(A),

where Mi−1 varies over the set of all (i − 1)-dimensional subspaces of Rk,
and Ln−k+i−1 varies over the set of all (n− k + i− 1)-dimensional subspaces
of Rn. The equalities above follow from Theorem 10.2, and the inequality
follows from the fact that the set of subspaces Mi−1 is a restricted set of
(n− k + i− 1)-dimensional subspaces of Rn.

This proves the second inequality of the corollary; the first inequality is
proved similarly. ut

An immediate consequence of the corollary is the interlacing property be-
tween the eigenvalues of A and An−1, an (n−1)× (n−1) principal submatrix
An−1 of A:

λ1(A) ≤ λ1(An−1) ≤ λ2(A) ≤ λ2(An−1) ≤ · · ·
≤ λn−1(A) ≤ λn−1(An−1) ≤ λn(A).

10.2 Singular-Value Decomposition of a Matrix

Let A be an m×n matrix. The singular-value decomposition (SVD) expresses
A in the form A = UΣV T , where U ∈ Rm×m and V ∈ Rn×n are orthog-
onal matrices and Σ is an m × n diagonal matrix with nonnegative entries.
The singular-value decomposition is a very important tool in numerical linear
algebra; see for example [108]. Here we give a derivation of the SVD using op-
timization techniques similar to the orthogonal decomposition of a symmetric
matrix above.
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Theorem 10.6. (Singular-value decomposition of a matrix) Let A be
an m×n real matrix. There exist an orthogonal m×m matrix U , an orthogonal
n×n matrix V , and an m×n matrix Σ whose only nonzero elements are the
diagonal entries Σii = σi, i = 1, . . . , p := min{m,n},

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0

such that
A = UΣV T .

The scalars {σi}p1 are called the singular values of A. Note that AAT =
U(ΣΣT )UT is the orthogonal decomposition of the positive semidefinite ma-
trix AAT . Similarly, ATA = V (ΣTΣ)V T is the orthogonal decomposition
of the positive semidefinite matrix ATA. We see that the vectors {ui}p1 and
{vi}p1 are the eigenvectors of AAT and ATA, respectively, both with the corre-
sponding eigenvalues {σ2

i }p1. The remaining vectors {ui} and {vi} (if any) are
also the eigenvectors of AAT and ATA, respectively, with the corresponding
eigenvalues equal to zero.

Proof. We consider the optimization problem

min − 〈Ax, y〉
s. t. ‖x‖2 − 1 = 0,

‖y‖2 − 1 = 0.

Since the feasible set is compact, there exists a global minimizer (x∗, y∗) =
(v1, u1). The gradients of the constraint functions, {(xT , 0T )T , (0T , yT )T }, are
clearly linearly independent, and thus the KKT conditions hold. We have the
Lagrangian function

L(x, y; δ, µ) = −〈Ax, y〉+
δ

2
(‖x‖2 − 1) +

µ

2
(‖y‖2 − 1)

and the corresponding KKT conditions

ATu1 = δv1, Av1 = µu1, ‖u1‖ = 1, ‖v1‖ = 1.

First of all, we have

δ = 〈δv1, v1〉 = 〈ATu1, v1〉 = 〈u1, Av1〉 = 〈u1, µu1〉 = µ ≥ 0,

where the inequality follows since the optimal objective value −〈Av1, u1〉 is
clearly nonpositive. We set

σ1 := δ = µ ≥ 0.

Note that the KKT conditions give AATu1 = σ1Av1 = σ2
1u1, and similarly

ATAv1 = σ2
1v1, that is, v1 and u1 are the eigenvalues of the positive semidef-

inite matrices AAT and ATA, respectively, corresponding to the same eigen-
value σ2

1 .
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Next, we consider sequentially the following problems:

min − 〈Ax, y〉
s. t. ‖x‖2 − 1 = 0, ‖y‖2 − 1 = 0,

〈vi, x〉 = 0, 〈ui, y〉 = 0, i = 1, . . . , k − 1,

(Pk)

for k = 2, . . . , p, where (vi, ui) in the last two sets of constraints is an optimal
solution to problem (Pi), i < k.

Again the constraint set is compact, and there exists a global minimizer
(vk, uk). The gradient vectors of the constraints,(

vi
0

)
,

(
0
ui

)
, i = 1, . . . , k,

are linearly independent, since {vi}k1 and {ui}k1 are both sets of orthonormal
vectors. Thus, the KKT conditions hold. We write the Lagrangian function

L(x, y; δ, µ, α, β) = −〈Ax, y〉+
δ

2
(‖x‖2 − 1) +

µ

2
(‖y‖2 − 1)

+
k−1∑
1

αi〈vi, x〉+
k−1∑
1

βi〈ui, y〉.

Setting the optimal solution (x∗, y∗) = (vk, uk), the KKT conditions give the
equations

ATuk = δvk +
k−1∑
1

αivi, Avk = µuk +
k−1∑
1

βiui, ‖vk‖ = 1, ‖uk‖ = 1.

We claim that the multiplier vectors α, β are zero. We prove this by induc-
tion on k. For k = 1, there is nothing to prove. Suppose that the induction
hypothesis is true for all integers less than k. We have for a fixed j < k,

αj = 〈ATuk, vj〉 = 〈Avj , uk〉 = σj〈uj , uk〉 = 0,

where the first equality follows from the first KKT condition above, the third
equality follows from the induction hypothesis, and the last equality follows
because of the constraints in problem (Pk). Thus α = 0, and a similar proof
shows that β = 0, proving the claim. Consequently, we have

Avi = σiui, ATui = σivi, i = 1, . . . , p.

These can be written more compactly in matrix notation. First, assume that
n ≤ m. Then p = n, and we have

AV = A[v1, v2, . . . , vn] = [σ1u1, σ2u2, . . . , σnun]
= [u1, u2, . . . , un] diag(σ1, σ2, . . . , σn) = UnΣn,
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where we have defined V := [v1, v2, . . . , vn]n×n, Un := [u1, u2, . . . , un]m×n,
and Σn := diag(σ1, σ2, . . . , σn)n×n. Extend the orthonormal vectors {ui}n1 to
a full set of mutually orthogonal vectors {ui}m1 in Rm, say by the Gram–
Schmidt process, and define the matrices

U := [u1, u2, . . . , un, un+1, . . . , um] := [Un|U ′]

and

Σ :=
[
Σn
0

]
m×n

.

We thus have the singular-value decomposition of A,

AV = UnΣn = [Un|U ′]
[
Σn
0

]
= UΣ,

or
A = UΣV T , (10.2)

where U and V are orthogonal matrices and Σ is an m× n diagonal matrix.
If n > m, we have the singular-value decomposition of AT , say in the form

AT = V ΣTUT . Transposing both sides yields (10.2) once more. ut

We note that the largest singular value σ1 is the `2-norm of A, that is,

‖A‖ := max
‖x‖=1

‖Ax‖ = max
‖x‖=1

max
‖y‖=1

〈Ax, y〉.

Remark 10.7. It may again appear remarkable that the multiplier vectors α, β
vanish in the optimization problem (Pk). This can be explained as follows: A
feasible vector x in (Pk) is orthogonal to the vectors {vi}k−1

1 . Thus, if j < k,
then

〈Ax, uj〉 = 〈x,ATuj〉 = 〈x, σjvj〉 = 0,

which means that the linear map x 7→ Ax maps the linear subspace Lk−1 :=
{v1, . . . , vk−1}⊥ ⊆ Rn into the subspace Mk−1 := {u1, . . . , uk−1}⊥ ⊆ Rm, that
is, A(Lk−1) ⊆Mk−1. Consequently, the problem (Pk) can be rewritten as

min − 1
2
〈Ax, y〉

s. t. ‖x‖2 − 1 = 0, x ∈ Lk−1,

‖y‖2 − 1 = 0, y ∈Mk−1,

thereby avoiding the need for the multiplier vectors α and β altogether.
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10.3 Variational Problems in Quasi-Newton Methods

Example 10.8. (Broyden’s method)
This problem appears in Broyden’s method for approximating a root of a

nonlinear system of equations G(x) = 0, where G : Rn → Rn is a nonlinear
map. It is the problem

min ‖X‖2F
s. t. Xa = b,

where X = (xij) is an m × n matrix, a ∈ Rn, 0 6= b ∈ Rm, and where the
Frobenius (or Hilbert–Schmidt) norm ‖X‖F is given by

‖X‖2F =
m∑
i=1

n∑
j=1

x2
ij .

This norm is a Euclidean norm that comes from the trace inner product

〈X,Y 〉 = tr(XTY ) =
n∑

i,j=1

xijyij

on Rn×n, the vector space of n× n matrices. Thus,

‖X‖2F = 〈X,X〉.

Since the objective function is coercive, there exists a global minimizer. The
constraint functions are linear, so it follows from Corollary 9.10 that the KKT
conditions must hold at any local minimizer.

We form the Lagrangian

L =
1
2

m∑
i=1

n∑
j=1

x2
ij +

m∑
i=1

λi

(
bi −

n∑
j=1

xijaj

)
.

The KKT conditions are given by

(a)
∂L

∂xij
= xij − λiaj = 0, i = 1, . . . ,m, j = 1, . . . , n,

(b)
n∑
j=1

xijaj = bi, i = 1, . . . ,m.

Multiplying (a) by aj and summing over j, we obtain

bi =
n∑
1

xijaj = λi

n∑
j=1

a2
j = λi‖a‖2, i = 1, . . . ,m,
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where the first equality follows from (b).
The condition (a) implies that xij = λiaj , that is,

X = [xij ] = [λiaj ] = λaT = λ⊗ a.

Since bi = λi‖a‖2, we have λi = bi/|a‖2, that is, λ = b/‖a‖2. This gives

X =
baT

‖a‖2 =
b⊗ a
‖a‖2 .

Example 10.9. (Symmetric matrix updates in quasi-Newton methods)

We now consider the symmetric version of the preceding problem,

min ‖X‖2F
s. t. Xa = b,

XT = X,

where X is an n× n symmetric matrix, b, c ∈ Rn, and b 6= 0. Slight modifica-
tions of the above problem appear in the variational characterization of the
matrix updates in quasi-Newton methods such as those of Davidon–Fletcher–
Powell (DFP) and Broyden–Fletcher–Goldfarb–Shanno (BFGS). We refer the
reader to [97, 73, 74, 213, 120] for more details.

The symmetry constraint XT = X on the matrix X can be enforced
through the system of constraints xij = xji for 1 ≤ i < j ≤ n. We arrive at
the Lagrangian

L =
1
2

n∑
i,j=1

x2
ij +

n∑
i=1

λi

(
bi −

n∑
j=1

xijaj

)
+
∑
i<j

δij(xij − xji).

We leave to the reader to solve the problem using this Lagrangian.
The problem may be solved more elegantly by setting it up within the

vector space Sn of the space of n× n symmetric matrices equipped with the
trace inner product inherited from Rn×n,

〈X,Y 〉 = tr(XTY ) = tr(XY ) =
n∑

i,j=1

xijyij .

In this setup, the vector constraint equation Xa = b will enter into the La-
grangian in the term 〈λ, b−Xa〉 = λT b − 〈λ,Xa〉, where λ ∈ Rn is the
Lagrange multiplier and the inner product is the usual one in Rn. We can
write the last as an inner product in Sn: note that

〈λ,Xa〉 = λT (Xa) = tr(λT (Xa)) = tr(X(aλT )) = 〈X,λaT 〉,

where the last inner product is the trace inner product in Rn×n, the vector
space of n × n matrices not in Sn, since the matrix λaT is not symmetric.
However,
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〈X,λaT 〉 = tr(X(aλT )) = tr((λaT )X) = 〈X, aλT 〉,

and we have

〈λ,Xa〉 =
〈
X,

aλT + λaT

2

〉
,

which is an inner product in Sn, since both matrices X and aλT + λaT are
symmetric.

We thus obtain the Lagrangian function

L =
1
2
〈X,X〉 −

〈
X,

aλT + λaT

2

〉
+ 〈b, λ〉.

The KKT conditions are ∇XL = X − (aλT + λaT ) = 0, or

X = aλT + λaT .

Then
b = Xa = (aλT + λaT )a = (λTa)a+ ‖a‖2λ

and
bTa = (λTa)‖a‖2 + ‖a‖2(λTa) = 2‖a‖2 (λTa).

The last equation gives λTa = aT b/2‖a‖2, and substituting it into the first
equation yields the equality

λ =
b

‖a‖2 −
aT b

2‖a‖4 a.

Finally, substituting this value of λ into the equation X = aλT + λaT , we
obtain

X =
abT + baT

‖a‖2 − aT b

‖a‖4 aa
T =

1
‖a‖2 (a⊗ b+ b⊗ a)− 〈a, b〉‖a‖4 a⊗ a.

10.4 Kantorovich’s Inequality

Let A be an n× n symmetric positive definite matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

Kantorovich’s inequality states that

max{〈Ax, x〉 · 〈A−1x, x〉 : ‖x‖ = 1} ≤ (λ1 + λn)2

4λ1λn
.

A proof of this inequality is given in Lemma 14.8 on page 369. Here we give
a perhaps more natural proof by setting it up as an optimization problem.

Consider the problem
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max 〈Ax, x〉 · 〈A−1x, x〉
s. t. ‖x‖2 = 1.

Kantorovich’s inequality will follow if we can show that the optimal objective
value of this problem is (λ1 +λn)2)/(4λ1λn). Considering the spectral decom-
position A = UΛUT , U orthogonal and Λ = diag{λ1, . . . , λn} and noting that
‖x‖ = 1 if and only if ‖Ux‖ = 1, the optimization problem reduces to maxi-
mizing

(∑n
j=1 λjx

2
j

)
·
(∑n

j=1 λ
−1
j x2

j

)
subject to the constraint

∑n
j=1 x

2
j = 1.

A further substitution yi = x2
i yields the optimization problem

max
( n∑
j=1

λjyj

)
·
( n∑
j=1

λ−1
j yj

)
s. t.

n∑
j=1

yj = 1,

y ≥ 0.

From the Lagrangian function (for the equivalent minimization problem)

L(y, δ, µ) = −
( n∑
j=1

λjyj

)
·
( n∑
j=1

λ−1
j yj

)
+ δ
( n∑
j=1

yj − 1
)
− 〈µ, y〉,

we deduce the KKT conditions (the KKT conditions hold since the constraints
are linear)

−λi
( n∑
j=1

λ−1
j yj

)
− λ−1

i

( n∑
j=1

λjyj

)
+ δ − µi = 0, i = 1, . . . , n,

n∑
1

yj = 1, y ≥ 0, µ ≥ 0, 〈µ, y〉 = 0.

(10.3)

Multiplying the first equation above by yi, summing up over i, and using the
feasibility and complementarity conditions, we get

δ = 2
( n∑
j=1

λ−1
j yj

)
·
( n∑
j=1

λjyj

)
. (10.4)

If i ∈ I := {i : yi > 0}, then µi = 0 by complementarity. Dividing both
sides of the first equation in (10.3) by

(∑n
j=1 λ

−1
j yj

)
·
(∑n

j=1 λjyj

)
and using

(10.4) gives
λi∑n

j=1 λjyj
+

λ−1
i∑n

j=1 λ
−1
j yj

= 2, i ∈ I. (10.5)

If i, j ∈ I, then
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λi∑n
k=1 λkyk

+
λ−1
i∑n

k=1 λ
−1
k yk

=
λj∑n

k=1 λkyk
+

λ−1
j∑n

k=1 λ
−1
k yk

,

which upon simplification becomes

λiλj =
∑n
k=1 λkyk∑n
k=1 λ

−1
k yk

, i, j ∈ I, λi 6= λj . (10.6)

Solving (10.5) and (10.6) for
∑n
k=1 λkyk and

∑n
k=1 λ

−1
k yk gives

2 =
λi∑n

1 λkyk
+

λ−1
i∑n

1 λkyk
λiλj

=
λi + λj∑n

1 λkyk
,

that is,
n∑
1

λkyk =
λi + λj

2

and
n∑
1

λ−1
k yk =

∑n
k=1 λkyk
λiλj

=
λi + λj
2λiλj

.

Thus, the objective function value is( n∑
1

λkyk

)
·
( n∑

1

λ−1
k yk

)
=

(λi + λj)2

4λiλj
.

Setting t = λi/λj , the right-hand side equals (1/2) + (t + t−1)/4, and is
maximized, in the worst case, at the extreme eigenvalues λ1 and λn.

10.5 Hadamard’s Inequality

Let X = (xij) = [x1, . . . , xn] be an n× n matrix with columns {xi}n1 . We
consider the problem

max detX

s. t. ‖xi‖2 = 1, i = 1, . . . , n.

Since the n-volume of a parallelepiped with side vectors x1, . . . , xn is known
to be |detX|, this problem is equivalent to the problem of finding the largest-
volume parallelepiped with unit sides. Geometric intuition tells us that the
solution must be a cube, that is, the sides of the parallelepiped must be
mutually orthogonal.

The gradient vectors of the constraints are linearly independent, because
each one contains different columns of the matrix X. It follows from Corol-
lary 9.10 that the KKT conditions hold at each local optimizer.
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We write the Lagrangian for the equivalent minimization problem,

L = −detX +
n∑
j=1

λj
2

( n∑
i=1

x2
ij − 1

)
.

Toward obtaining the KKT conditions, we first calculate the derivatives of
the determinant function (see also Exercise 22 on page 29). Recall the Laplace
expansion formula for determinants,

detX =
n∑
j=1

(−1)i+jxijXij ,

where Xij is the ij-minor of X, that is, the determinant of the matrix obtained
from X by striking out the ith row and jth column of X. Thus,

∂ detX
∂xij

= bij := (−1)i+jXij ,

ij

(a) − bij = λjxij , i, j = 1, . . . , n,

(b)
n∑
i=1

x2
ij = 1, j = 1, . . . , n.

Recall that B = (bji) = [b1, . . . , bn]T := Adj(X) is called the adjoint matrix
of X and is characterized by the equation

X ·Adj(X) = (detX)I.

Thus, in matrix notation, (a) can be written as

(a′) Adj(X) = XΛ,

where Λ = diag(λ1, . . . , λn). These give −(detX)I = −XT Adj(X) = XTXΛ,
meaning that XTX is a diagonal matrix, that is, the matrix X has orthogonal
columns. In fact, since the columns Xi have unit length, we have XTX = I,
so that X is an orthogonal matrix. This implies that |detX| = 1.

Consequently, we obtain Hadamard’s inequality

|detX| ≤ ‖x1‖ · · · ‖xn‖ for all X = [x1, . . . , xn] ∈ Rn×n,

with equality holding if and only if the columns {xi}n1 are mutually orthogonal.
See also Exercise 24 on page 113 for a different treatment of Hadamard’s

inequality.

where the expression b is called the ij-cofactor ofX, and the KKT conditions are
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10.6 Maximum-Volume Inscribed Ellipsoid in a
Symmetric Convex Polytope

Let
P = {x ∈ Rn : |〈ak, x〉| ≤ 1, k = 1, . . . , p}

be a symmetric polytope (in the sense that P = −P , that is, if x lies in P ,
then so does −x). Suppose

E = {x ∈ Rn : xTX−1x ≤ 1}

is the ellipsoid with maximal volume contained (inscribed) in P , where X
is an n × n symmetric, positive semidefinite matrix. (The uniqueness of the
ellipsoid is well known and assuming that the center of the optimal ellipsoid
is the origin, follows from the fact that the optimization problem (10.8) below
is a convex programming problem with a strictly convex objective function.)

We show here, using optimization techniques, that the ellipsoid
√
nE con-

tains P , that is,
E ⊆ P ⊆ √nE, (10.7)

an important inequality essentially due to Fritz John [148].

E
P

Fig. 10.1. Inscribed ellipsoid in a polytope.

The problem of finding the maximum-volume ellipsoid can be set up as an
optimization problem as follows. Let X1/2 be the symmetric square root of
X. (X1/2 is the unique symmetric matrix whose square is X. If X = UΛUT

is the spectral decomposition of X, then X1/2 = UΛ1/2UT , where Λ1/2 =
diag(

√
λ1, . . . ,

√
λn).) We have

E = {x ∈ Rn : ‖X−1/2x‖ ≤ 1} = {X1/2y ∈ Rn : ‖y‖ ≤ 1} = X1/2(Bn),



266 10 Structured Optimization Problems

where Bn = {x ∈ Rn : ‖x‖ ≤ 1} is the unit ball in Rn. Thus, vol(E) =
det(X1/2) vol(Bn). The condition E ⊆ P can be turned into a constraint
as follows: if xTX−1x = ‖X−1/2x‖ ≤ 1, then we want to have |〈ak, x〉| =
|〈X1/2ak, X

−1/2x〉| ≤ 1. This is equivalent to requiring that

〈X1/2ak, y〉| ≤ 1 for all y, ‖y‖ ≤ 1,

or to the constraint ‖X1/2ak‖ ≤ 1.
Thus, we arrive at the optimization problem

min − ln detX
s. t. 〈Xak, ak〉 ≤ 1, k = 1, . . . , p.

(10.8)

Since the constraints are linear, it follows from Corollary 9.10 that the KKT
conditions hold at each local optimizer.

The Lagrangian of the above problem is

L(X,λ) = − ln detX +
p∑
k=1

λk(〈Xak, ak〉 − 1)

= − ln detX +
〈
X,
∑
k

λkaka
T
K

〉
−

p∑
k=1

λk,

where 〈·, ·〉 on the last line is the trace inner product in Sn. The KKT condi-
tions imply that there exists a multiplier vector λ ≥ 0 such that

∇L(X,λ) = −X−1 +
p∑
k=1

λkaka
T
k = 0

(we have used the fact that the gradient of − ln detX is X−1; see Example 1.27
on page 18) and the complementarity conditions λk(〈Xak, ak〉 − 1) = 0 hold.
We may assume that λk > 0 for all k ≥ 1 by simply omitting any λk = 0 from
the KKT conditions. In summary, the KKT conditions are

X−1 =
l∑

k=1

λkaka
T
k , 〈Xak, ak〉 = 1, k = 1, . . . , l.

The first equation gives I =
∑l
k=1 λkXaka

T
k , and taking traces of both sides,

we obtain

n = tr(I) = tr
( l∑
k=1

λkXaka
T
k

)
=

l∑
k=1

λk〈Xak, ak〉 =
l∑

k=1

λk.

We can now finish the proof. If x ∈ P , that is, 〈x, ak〉2 ≤ 1, then

〈X−1x, x〉 =
l∑

k=1

λk〈ak, x〉2 ≤
l∑

k=1

λk = n,
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which immediately implies that x ∈ √nE, proving (10.7).
The problem of inscribing a maximum-volume ellipsoid into an arbitrary

convex body K ⊂ Rn is treated in Section 12.4 using semi-infinite program-
ming. Chapter 12 also treats the problem of circumscribing a minimum-volume
ellipsoid around K.

10.7 Hilbert’s Inequality

Consider the Hilbert space of square summable sequences,

l2 =
{
x = {xi}∞0 :

∞∑
i=0

x2
i <∞

}
.

The inner product and the norm in l2 are given by

〈x, y〉 =
∞∑
0

xiyi, ‖x‖2 =
( ∞∑

0

x2
i

)1/2

.

Let {xi}∞0 and {yj}∞0 be nonnegative sequences in l2. Hilbert’s inequality
states that

∞∑
i,j=0

xiyj
i+ j + 1

< π ·
( ∞∑
i=0

x2
i

)1/2

·
( ∞∑
j=0

y2
j

)1/2

= π · ‖x‖2 · ‖y‖2,

unless {xi} or {yj} is identically zero. This is an important inequality in
analysis, treated extensively in the book Inequalities by Hardy, Littlewood,
and Polya [127].

Hilbert’s inequality can be extended to lp spaces. Let p > 1 and q > 1 be
conjugate exponents, that is,

1
p

+
1
q

= 1.

The space lp is the p-summable sequences

lp =
{
x = {xi}∞0 :

∞∑
i=0

|xi|p <∞
}
.

The norm of a sequence x ∈ lp is given by

‖x‖p =
( ∞∑

0

|xi|p
)1/p

.

Recall that Hölder’s inequality states

〈x, y〉 ≤ ‖x‖p · ‖y‖q for all x ∈ lp, y ∈ lq.

Hilbert’s inequality is a weighted version of Hölder’s inequality.
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Theorem 10.10. (Hilbert’s inequality) If {xi}∞0 and {xj}∞0 are nonneg-
ative sequences in conjugate spaces lp and lq, respectively, then

∞∑
i,j=0

xiyj
i+ j + 1

<
π

sin(π/p)
· ‖x‖p · ‖y‖q,

unless {xi} or {yj} is identically zero.

Proof. Consider the finite-dimensional optimization problem

max 〈Ax, y〉

s. t.
k∑
i=0

xpi = 1,
k∑
j=0

yqj = 1,

x ≥ 0, y ≥ 0,

where x ∈ Rk+1, y ∈ Rk+1, and

〈Ax, y〉 :=
k∑

i,j=0

xiyj
i+ j + 1

.

Note that A is a symmetric matrix with ij entry 1/(i+ j + 1), a well-known
matrix in numerical linear algebra. We form the (weak) Lagrangian (for the
equivalent minimization problem):

L = −λ0〈Ax, y〉+
δ

p

( k∑
i=0

xpi − 1
)

+
γ

q

( k∑
j=0

yqj − 1
)
− 〈λ, x〉 − 〈µ, y〉.

The FJ conditions are

− λ0Ay + δxp−1 − λ = 0,

− λ0Ax+ γyq−1 − γ = 0,
x ≥ 0, y ≥ 0, 〈λ, x〉 = 0 = 〈µ, y〉,
(λ0, δ, γ, λ, µ) 6= 0, (λ0, λ, µ) ≥ 0,

where xp−1 = (xp−1
1 , . . . , xp−1

k ), and where yq−1 is defined similarly. Taking
the inner product of the first equation by x and using the above conditions,
we obtain λ0〈Ax, y〉 = δ. Similarly, λ0〈Ax, y〉 = γ, and thus δ = γ.

Now if λ0 = 0, then we immediately obtain δ = 0 = γ, and also λ = 0 = µ
by the FJ conditions, so that all the multipliers are zero, contradicting the
FJ conditions. Therefore, the KKT conditions hold, and we may take λ0 = 1.
Thus, we have

δ = 〈Ax, y〉 = γ.

We now estimate δ. If xi > 0, the KKT conditions give
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δxp−1
i = 〈ei, Ay〉 =

k∑
j=0

yj
i+ j + 1

,

and similarly if yj > 0,

δyq−1
j =

k∑
i=0

xi
i+ j + 1

.

Let i∗ and j∗ be indices maximizing {(i + 1/2)1/pxi : 0 ≤ i ≤ k} and {(j +
1/2)1/qyj : 0 ≤ j ≤ k}, respectively. We have

δxp−1
i∗ =

k∑
j=0

yj
i∗ + j + 1

=
k∑
j=0

yj(j + 1/2)1/q

(i∗ + j + 1)(j + 1/2)1/q

≤
(
yj∗(j∗ + 1/2)1/q

)
·
k∑
j=0

1
(i∗ + j + 1)(j + 1/2)1/q

.

Now

k∑
j=0

1
(i∗ + j + 1)(j + 1/2)1/q

≤
∫ k+1

0

dx

(i∗ + 1/2 + x)x1/q

≤ (i∗ + 1/2)−1/q

∫ 2k+2

0

dy

y1/q(y + 1)
,

where the second inequality follows by substituting y = x/(i∗+1/2) and using
y ≤ (k + 1)/(i∗ + 1/2) ≤ 2(k + 1). These give us

δ xp−1
i∗ ≤ yj∗(j∗ + 1/2)1/q · (i∗ + 1/2)−1/q

∫ 2k+2

0

dy

y1/q(y + 1)
,

and taking qth powers of both sides and using p+ q = pq,

δq xpi∗ ≤ yqj∗(j∗ + 1/2) · (i∗ + 1/2)−1 ·
(∫ 2k+2

0

dy

y1/q(y + 1)

)q
.

Similarly, we also have

δp yqj∗ ≤ xpi∗(i∗ + 1/2) · (j∗ + 1/2)−1 ·
(∫ 2k+2

0

dy

y1/p(y + 1)

)p
.

Multiplying the last two inequalities and simplifying gives

δpq = δp+q ≤
(∫ 2k+2

0

dy

y1/p(y + 1)

)p
·
(∫ 2k+2

0

dy

y1/q(y + 1)

)q
,
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or equivalently,

δ ≤
(∫ 2k+2

0

dy

y1/p(y + 1)

)1/q

·
(∫ 2k+2

0

dy

y1/q(y + 1)

)1/p

.

Now let k →∞. It can be shown, by contour integration for example, that∫ ∞
0

dy

y1/p(y + 1)
=

π

sin(π/p)
.

Thus, we obtain δ ≤ π/ sin(π/p).
It is known that the constant π/ sin(π/p) is optimal in Hilbert’s inequality;

see [127]. ut

The proof of Hilbert’s inequality given above is due to Cassels [56]. It
should be noticed that even though optimization techniques help, the proof
of Hilbert’s inequality requires considerable ingenuity.

10.8 Exercises

1. Example 10.8 may be solved more efficiently by expressing its Lagrangian
in terms of the trace inner product on Rn×n.
(a) Show that the Lagrangian has the form L = ‖X‖2/2 + 〈λ, b−Xa,〉.
(b) Show that the term 〈λ,Xa〉 in L can be written as λTXa =

tr(aλTX) = 〈X,λ⊗ a〉, giving

L =
1
2
‖X‖2 − 〈X,λ⊗ a〉+ 〈b, λ〉.

(c) Proceed as in Example 10.9 and solve Example 10.8 in a coordinate-
free manner.

2. (Simultaneous diagonalization of two symmetric matrices) Let A,B be
two symmetric n × n matrices, where B is also positive definite. Imitate
the procedure in Section 10.1 to obtain a spectral decomposition of A with
respect to B, by replacing the constraint ‖x‖2 = 1 with 〈Bx, x〉 = 1, and
the constraints 〈x, uj〉 = 0 with 〈Bx, uj〉 = 0. Show that this leads to the
following results:
(i) The n×n matrix U := [u1, . . . , un] satisfies the conditions 〈Bui, ui〉 =

1, 〈Bui, uj〉 = 0, Aui = λiBui for i, j = 1, . . . , n, i 6= j.
(ii) Define Λ := diag(λ1, . . . , λn). Prove that (i) implies that we have the

simultaneous diagonalization of A and B,

UTAU = Λ, and UTBU = I.



10.8 Exercises 271

3. (Abu Ali al-Hasan ibn al-Haytham, 965–1039) There are two balls
on a circular billiard table with center O at the origin and radius r; see
Figure 10.2. The balls are at the points p = (a, b) and q = (c, d). How
should one strike the ball p so that it hits the ball q after rebounding from
the cushion? The problem can be posed as the problem of minimizing the
distance traveled by the ball p, that is,

min ‖z − p‖+ ‖z − q‖
s. t. ‖z‖ = r,

where z = (x, y) is the point where p hits the cushion. It is well known
(Snell’s law) that the point z is characterized by the condition that the
angles α and β are equal. The object of this problem is to prove this fact,
and then characterize the four possible points z = (x, y) based on this
condition.
(a) Show that the KKT conditions hold at an optimal point z, and give

the equation
z − p
‖z − p‖ +

z − q
‖z − q‖ = λ

z

‖z‖ .

(b) Show that the equation in (a) implies that α = β.
Hint: Obtain two equations, first by taking the inner product of both
sides with z, and then square of the norms of both sides. Use the fact
‖z‖ = r and simplify.

(c) Show that the four possible (in general) optimal points z lie in the
intersection of the circle x2 + y2 = r2 and the hyperbola

A(x2 − y2) +Bxy + r2(Cx+Dy) = 0,

where A = ad+ bc, B = 2(bd− ac), C = −(b+ d), and D = a+ c.
Hint: Let γ, θ, and δ be the angles the lines pz, Oz, and qz make
with the positive x-axis. Show that α = θ − γ, β = δ − θ. Thus,
tan(θ − α) = tan(δ − θ). Use the formula tan(φ1 − φ2) = (tanφ1 −
tanφ2)/(1 + tanφ1 tanφ2), and substitute the expressions for tan γ,
tan θ, and tan δ.

4. (Inscribe a maximum-volume simplex in an n-dimensional sphere) This
can be set up as an optimization problem. We take as our sphere the unit
sphere with center at en = (0, . . . , 0, 1) ∈ Rn, that is, B = {x ∈ Rn :
‖x− en‖ ≤ 1}. Let {x1, . . . , xn, xn+1} be the n+ 1 vertices of the desired
simplex ∆, where we assume that xn+1 = 0. Then

∆ =

{
n+1∑

1

λixi :
n+1∑

1

λi = 1, λi ≥ 0, i = 1, . . . , n+ 1

}

=

{
n∑
1

λixi :
n∑
1

λi ≤ 1, λi ≥ 0, i = 1, . . . , n

}
.



272 10 Structured Optimization Problems

Fig. 10.2. Al-Haytham’s problem

(a) Show that ∆ = T (S1), where T (λ) = Xλ, X = [x1, . . . , xn], and
S1 := {λ ∈ Rn : λ ≥ 0,

∑n
1 λi ≤ 1} is the solid unit simplex in Rn.

(b) Show that {xi}n1 are linearly independent and T in (a) is a one-to-one
linear map. Conclude that vol(∆) = |detX| vol(S1) by the change of
variables formula.
Consequently, determining the largest-volume simplex ∆ can be set
up as the constrained optimization problem

max{detX : ‖xi − en‖ ≤ 1, i = 1, . . . , n}.

(c) Write the Lagrangian (for the equivalent minimization problem) as

L(X,λ) = −detX +
n∑
j=1

λj
2

(‖xj − en‖2 − 1).

Give a theoretical justification as to why we have taken λ0 = 1 in L.
(d) Show that the KKT conditions give

〈xi, xj − en〉 = 0, 1 ≤ i, j ≤ n, i 6= j.

Hint: Expand L(X + tH, λ) using Exercises 22 and 23 in Chapter 1.
(e) Use the results of (d) above to prove that for some α,

‖xi − xj‖2 = 2α, 1 ≤ i, j ≤ n+ 1, i 6= j,

and

〈xi − xj , xi − xk〉 = α, 1 ≤ i, j, k ≤ n+ 1, i, j, k distinct.

(f) Conclude from (e) that the optimal simplex has edges of equal lengths,
and the angle between any two adjacent edges is 60 degrees.

p

q

z

O

βα
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5. This problem is inspired by electrostatics. Loosely speaking, it is the prob-
lem of how to place n point charges on a given set so that the charges are
as “far away” from each other as possible. Its generalizations, when the
number of points charges is large, lead to important problems that are
still unsolved. One form of the general problem is

max
∏

1≤i<j≤n

‖xi − xj‖

s. t. xi ∈ D, i = 1, . . . , n,
(P )

where D ⊂ Rn is a given bounded set. In this generality, the problem is
unsolved, that is, no explicit solution is known at present.
In this problem, we take D = [−1, 1] ⊆ R; the solution is known in this
case. We reformulate the problem as the maximization of the function∏

1≤i<j≤n(xi − xj) subject to the conditions −1 ≤ xn ≤ xn−1 ≤ · · · ≤
x1 ≤ 1.
(a) Show that the problem can be solved as an unconstrained minimiza-

tion problem.
Hint: Use logarithms.

(b) Show that we must have x1 = 1 and xn = −1.
(c) Solve the problem for n = 4.
(c) Solve the problem for n = 5.

6. Solve the problem (P ) for the square D = {(x, y) : 0 ≤ x, y ≤ 1} ⊂ R2 for
n = 3 charges.
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Duality Theory and Convex Programming

The theory of duality is an important tool in optimization, both in theory and
in computation. Although duality is not universally applicable in optimiza-
tion, it holds under mild regularity assumptions in some important classes of
problems such as convex programs and some of its close relatives.

The beginnings of duality theory go back a long time. Already in 1921,
E. Helly [130] gave necessary and sufficient conditions for the solvability of a
linear system in an infinite-dimensional normed space subject to some norm
conditions. This was a preliminary step in the evolution to the Hahn–Banach
theorem in functional analysis.

The famous minimax theorem of von Neumann [211] is also a kind of du-
ality theorem. This theorem from 1928 was the starting point of game theory.

Theorem 11.1. Let L : C1×C2 → R be a continuous function where C1 ⊂ Rn
and C2 ⊂ Rm are compact convex sets. If L is a convex–concave function, that
is, x 7→ L(x, y) is convex for fixed y, and y 7→ L(x, y) is concave for fixed x,
then

min
x∈C1

max
y∈C2

L(x, y) = max
y∈C2

min
x∈C1

L(x, y).

Shortly after the simplex method for linear programming was invented in
1947, the existence of a duality theory was hinted at by von Neumann; see
Dantzig [68]. In 1951, this duality theorem was extended to convex program-
ming by Kuhn and Tucker [182], who also brought to light the connection
between duality and saddle points.

11.1 Perspectives on Duality

In this chapter, we treat duality through the Lagrangian function and the
minimax theorems for such functions. For this approach to succeed in a given
optimization (say minimization) problem (P ), one needs somehow to devise
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a Lagrangian function L(x, y) such that (P ) is equivalent to the minimax
problem minx maxy L(x, y), and then show that the minimax theorem holds,

inf
x

sup
y
L(x, y) = sup

y
inf
x
L(x, y),

that is, the optimal values of the minimax and maximin problems are equal.
One can then denote the maximin problem supy infx L(x, y) by (D), call it
the dual of (P ), and declare that the strong duality theorem holds for the pair
(P ) and (D). We treat several classes of problems in this chapter using this
approach, and additional examples are given in the exercises at the end of the
chapter.

It is possible to reverse this process: if L : A × B → R is any function,
then we can define a primal problem (P ) by infx∈A supy∈B L(x, y) (say) and a
dual problem (D) by supy∈B infx∈A L(x, y), and state that the strong duality
holds for (P ) and (D) if the minimax theorem is valid for L.

Within convex programming, there is another approach to duality, called
the Fenchel duality . This approach depends on the Fenchel transform within
the class of proper, lower semicontinuous functions. Such a function f : Rn →
R ∪ {∞} achieves a finite value somewhere, and epi(f) = {(x, α) ∈ Rn × R :
f(x) ≤ α} is a closed convex set in Rn+1. Denote the class of proper, lower
semicontinuous convex functions on Rn by Γ0(Rn). If f ∈ Γ0(Rn), its Fenchel
dual function (or Fenchel conjugate function) [93, 94] is the function

f∗(x∗) := sup
{
〈x∗, x− f(x) : x ∈ Rn

}
,

which is also in Γ0(Rn). The most important property of the Fenchel transform
is that it is an involution on Γ0(Rn), that is, f∗∗ := (f∗)∗ = f . (In this respect,
it is similar to the Fourier transform. The recent paper [9] characterizes the
Fenchel transform in terms of involution and order-reversing properties.)

To successfully apply the Fenchel duality approach, one first writes a con-
vex programming problem (P ) as the “unconstrained” minimization of a func-
tion f ∈ Γ0(Rn). If f0 is the objective function of (P ), then the function f
defined simply by setting f(x) = f0(x) if x is a feasible point in (P ), and
f(x) = ∞ otherwise. The next step is somehow to embed f into a function
Φ(x, p) ∈ Γ0(Rn+m) such that Φ(x, 0) = f(x). Here the variable p is regarded
as a perturbation. Finally, one defines the dual problem (D) as the minimiza-
tion problem

max
p∗
−Φ∗(0, p∗). (D)

The Lagrangian and Fenchel duality approaches are theoretically equiva-
lent within the class of convex programming. In fact, one can switch between
the Lagrangian function L and the Fenchel transform Φ∗ by the partial Fenchel
conjugation. Both approaches and the connection between them are developed
in Rockafellar’s book [228]. A short, elegant, but complete treatment of the
basic theory can be found in the book Ekeland and Temam [89], Chapters 1–3,
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6, in a general setting. The short book [107] treats the Lagrangian approach
and some associated minimax theorems.

While they are theoretically equivalent, the Lagrangian and Fenchel dual-
ity approaches may offer different advantages in practice. On the one hand,
the Fenchel duality approach offers valuable sensitivity analysis information
through the use of subgradients and subdifferentials, and also explains why
we should expect the strong duality theorem to hold generically. On the other
hand, a Lagrangian function may be easier to obtain than a perturbation
function for a given convex program, and the Lagrangian approach offers a
connection between optimization and game theory. Finally, the Fenchel du-
ality theory is valid only within convex programming, but the Lagrangian
approach may extend beyond it, since there exist several version of minimax
theorems that hold beyond convex–concave Lagrangian functions.

11.2 Saddle Points and Their Properties

Consider a function
L : A× B → R,

where A and B are arbitrary sets and L is an arbitrary function. We associate
with L the primal and dual problems

inf
x∈A

sup
y∈B

L(x, y), (P )

sup
y∈B

inf
x∈A

L(x, y). (D)

We start with the following elementary result.

Theorem 11.2. (Weak duality theorem) If (P ) and (D) are the associated
primal and dual programs with L, then

sup(D) ≤ inf(P ),

that is,
sup
y∈B

inf
x∈A

L(x, y) ≤ inf
x∈A

sup
y∈B

L(x, y).

Proof. It is easy to see that

inf
x∈A

L(x, y) ≤ L(u, y) for all u ∈ A, y ∈ B.

This implies that

sup
y∈B

inf
x∈A

L(x, y) ≤ sup
y∈B

L(u, y) for all u ∈ A,

and
sup
y∈B

inf
x∈A

L(x, y) ≤ inf
u∈A

sup
y∈B

L(u, y) = inf
x∈A

sup
y∈B

L(x, y).

This proves the theorem. ut
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The weak duality theorem already gives us some useful information con-
cerning the problems (P ) and (D). In particular, we have the following.

Corollary 11.3. Let L be a Lagrangian function, and let (P ) and (D) be the
associated primal and dual programs with L. If the primal minimization prob-
lem (P ) is unbounded, then the dual maximization problem (D) is infeasible.

Proof. (P ) is unbounded if and only if inf(P ) = −∞. Then sup(D) = −∞ as
well, which means that (D) is has an empty feasible region. ut

The difference in the objective values,

inf(P )− sup(D) ≥ 0,

is called the duality gap. It is of great importance to know when the duality
gap is zero, that is, when the optimal objective values of the primal and dual
problems coincide.

Definition 11.4. A point (x∗, y∗) ∈ A× B is a saddle point of L if

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) for all x ∈ A, y ∈ B. (11.1)

The following fundamental theorem gives a characterization of saddle
points.

Theorem 11.5. (Saddle point theorem) Let L : A×B → R and (x∗, y∗) ∈
A× B. The following conditions are equivalent:

(a) (x∗, y∗) is a saddle point of L(x, y).
(b) x∗ is a solution of (P ), y∗ is a solution of (D), and min(P ) = max(D),

that is,
min
x∈A

sup
y∈B

L(x, y) = max
y∈B

inf
x∈A

L(x, y). (11.2)

The minimization on the left-hand side is achieved at x∗, and the maxi-
mization on the right-hand side is achieved at y∗.

Furthermore, if either (a) or (b) is satisfied, then the common optimal value
of (P ) and (D) must be L(x∗, y∗).

Proof. Suppose that (a) holds. We have

sup
y∈B

L(x∗, y) = max
y∈B

L(x∗, y) = L(x∗, y∗) = min
x∈A

L(x, y∗) = inf
x∈A

L(x, y∗),

where the middle equalities follow directly from (11.1), and the first and last
equalities are trivial. Then,

inf
x∈A

sup
y∈B

L(x, y) ≤ sup
y∈B

L(x∗, y) = L(x∗, y∗) = inf
x∈A

L(x, y∗)

≤ sup
y∈B

inf
x∈A

L(x, y) ≤ inf
x∈A

sup
y∈B

L(x, y),
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where the last inequality follows from the weak duality theorem, Theo-
rem 11.2. Since the first and the last terms in the above inequalities are the
same, we must have equalities throughout. This proves (b) and the fact that
the common optimal value of (P ) and (D) equals L(x∗, y∗).

Conversely, suppose that (b) holds. Then (11.2) gives

inf
x∈A

L(x, y∗) = sup
y∈B

L(x∗, y),

which in turn implies

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) for all x ∈ A, y ∈ B,
proving (a). ut

The theorem reveals the intimate connection between saddle points and a
pair of primal–dual optimization problems. This connection was first brought
to light by Kuhn and Tucker [182], inspired by the linear programming duality
and the game theory results of von Neumann [211].

Corollary 11.6. The set of saddle points of L : A×B → R is a direct product
A0 × B0, where A0 ⊆ A and B0 ⊆ B.

Proof. This result follows immediately from Theorem 11.5. An independent
proof runs as follows: suppose (x∗1, y

∗
1) and (x∗2, y

∗
2) are saddle points of L. We

need to show that the points (x∗1, y
∗
2) and (x∗2, y

∗
1) are also saddle points of L.

We have

L(x∗1, y
∗
2) ≤ L(x∗1, y

∗
1) ≤ L(x∗2, y

∗
1) ≤ L(x∗2, y

∗
2) ≤ L(x∗1, y

∗
2),

where the first two inequalities follow from (11.1) applied to the saddle point
(x∗1, y

∗
1), and the remaining ones from applying (11.1) to (x∗2, y

∗
2). Since the end

terms are equal, we must have equalities throughout, L(x∗1, y
∗
2) = L(x∗1, y

∗
1) =

L(x∗2, y
∗
1) = L(x∗2, y

∗
2). These imply

L(x∗1, y) ≤ L(x∗1, y
∗
1) = L(x∗1, y

∗
2) = L(x∗2, y

∗
2) ≤ L(x, y∗2) for all x ∈ A, y ∈ B,

where the inequalities follow from (11.1) applied to the saddle points (x∗i , y
∗
i ),

i = 1, 2. In particular, we have

L(x∗1, y) ≤ L(x∗1, y
∗
2) ≤ L(x, y∗2) for all x ∈ A, y ∈ B,

which proves that (x∗1, y
∗
2) is a saddle point. A similar proof shows that (x∗2, y

∗
1)

is a saddle point. ut
We also have the following result, useful in convex programming.

Lemma 11.7. Let A ⊆ Rn and B ⊆ Rm be convex sets, and let L(x, y) be a
convex–concave function.

The set of saddle points of L is a set of the form A0 × B0, where A0 and
B0 are convex sets.

Moreover, if A0 × B0 6= ∅, and L is strictly convex in x (strictly concave
in y), then A0 (B0) is a singleton.
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Proof. We prove only the statements concerning A0; the corresponding proofs
for B0 are the same. Let y∗ ∈ B0, and x∗1, x

∗
2 ∈ A0, and 0 < λ < 1. Define

the point x∗λ := (1− λ)x∗1 + λx∗2. Since (x∗i , y
∗) (i = 1, 2) is a saddle point by

Corollary 11.6, it follows that

L(x∗i , y) ≤ L(x∗i , y
∗) ≤ L(x, y∗), i = 1, 2, for all x ∈ A, y ∈ B.

We multiply the above inequality for i = 1 by 1 − λ, the one for i = 2 by λ,
and add them, and use the convexity of L in x to obtain

L(x∗λ, y) ≤ (1− λ)L(x∗1, y) + λL(x∗2, y) ≤ (1− λ)L(x∗1, y
∗) + λL(x∗2, y

∗)
= L(x∗i , y

∗) ≤ L(x∗λ, y
∗) (i = 1, 2), for all y ∈ B.

Here the equality follows since L(x∗1, y
∗) = L(x∗2, y

∗), a consequence of the fact
that the points (x∗i , y

∗) (i = 1, 2) are saddle points, and the last inequality
follows, again since (x∗i , y

∗) is a saddle point.
Next, we have

L(x∗λ, y
∗) ≤ (1− λ)L(x∗1, y

∗) + λL(x∗2, y
∗) ≤ (1− λ)L(x, y∗) + λL(x, y∗)

= L(x, y∗) for all x ∈ A,

where the first inequality follows from the convexity of L in x, the second one
since the points (x∗i , y

∗) (i = 1, 2) are saddle points. The two facts above give

L(x∗λ, y) ≤ L(x∗λ, y
∗) ≤ L(x, y∗) for all x ∈ A, y ∈ B,

meaning that (x∗λ, y
∗) is a saddle point. Consequently, A0 is a convex set.

Suppose that L be strictly convex in x and A0 × B0 6= ∅. Let x∗1, x
∗
2 ∈ A0

and y∗ ∈ B0. If x∗1 6= x∗2, then

L
(x∗1 + x∗2

2
, y∗
)
<
L(x∗1, y

∗)
2

+
L(x∗2, y

∗)
2

= L(x∗1, y
∗) = L(x∗2, y

∗).

This is a contradiction, since A0 is convex, so that the point (x∗1 + x∗2)/2
belongs to A0, and it follows from Corollary 11.6 that ((x∗1 + x∗2)/2, y∗) is a
saddle point. Thus A0 must be a singleton, and the lemma is proved. ut

11.3 Nonlinear Programming Duality

Consider the nonlinear program

min f(x)
s. t. gi(x) ≤ 0, i = 1, . . . , r,

hj(x) = 0, j = 1, . . . ,m,
x ∈ C.

(P )
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We associate with (P ) the Lagrangian function

L(x, λ, µ) = f(x)+
r∑
i=1

λigi(x)+
m∑
j=1

µjhj(x), x ∈ C, λ ≥ 0, µ ∈ Rm. (11.3)

Note that

sup
λi≥0

λigi(x) =

{
0, if gi(x) ≤ 0,
∞, otherwise.

Similarly,

sup
µj∈R

µjhj(x) =

{
0, if hj(x) = 0,
∞, otherwise.

Thus, we have

sup
0≤λ∈Rr, µ∈Rm

L(x, λ, µ) =


f(x), if gi(x) ≤ 0, i = 1, . . . , r,

hj(x) = 0, j = 1, . . . ,m,
+∞, otherwise.

Consequently, we can write (P ) in the form

inf
x∈C

sup
0≤λ∈Rr, µ∈Rm

L(x, λ, µ). (P )

We formulate the dual program to (P ) by switching the orders of inf and
sup above,

sup
0≤λ∈Rr, µ∈Rm

inf
x∈C

L(x, λ, µ). (D)

We call (P ) a convex program or a convex programming problem if the
functions f , {gi}r1 are convex, {hj}m1 affine, and C ⊆ Rn is a nonempty convex
set. In Section 11.4, we describe the important and deep duality relationships
between a convex program (P ) and its dual. In the rest of the chapter, we will
work out the duality relationships in some special classes of convex programs
and closely related problems.

We now undertake a more detailed study of the Lagrangian function
L(x, λ, µ) in (11.3).

Theorem 11.8. A point (x∗, λ∗, µ∗) is a saddle point of the Lagrangian L,
that is,

L(x∗, λ, µ)≤ L(x∗, λ∗, µ∗)≤ L(x, λ∗, µ∗) for all x ∈ C, 0 ≤ λ ∈ Rr, µ ∈ Rm,

if and only if

(i) x∗ is a (global) minimizer of (P ),
(ii) (λ∗, µ∗) is a (global) maximizer of (D),

(iii) min(P ) = max(D).
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Furthermore, if (x∗, λ∗, µ∗) is a saddle point, then

(iv) min(P ) = L(x∗, λ∗, µ∗) = max(D),

or equivalently

(v) λ∗i gi(x
∗) = 0, i = 1, . . . , r.

Consequently, if (x∗, λ∗) is a saddle point, then the complementarity condi-
tions hold,

λ∗i ≥ 0, gi(x∗) ≤ 0, λ∗i gi(x
∗) = 0, i = 1, . . . , r.

Proof. Theorem 11.5 implies immediately that (x∗, λ∗, µ∗) is a saddle point if
and only if (i)–(iii) hold, and if (x∗, λ∗, µ∗) is a saddle point, then (iv) holds,
that is,

f(x∗) = L(x∗, λ∗, µ∗) = f(x∗) +
r∑
i=1

λ∗i gi(x
∗) +

m∑
j=1

µ∗jhj(x
∗).

Since hj(x∗) = 0 (j = 1, . . . ,m), we get

m∑
i=1

λ∗i gi(x
∗) = 0.

Since λ∗i ≥ 0 and gi(x∗) ≤ 0, we conclude that λ∗i gi(x
∗) = 0. This proves (v).

ut
Corollary 11.9. If the functions f , {gi}r1, and {hj}m1 are differentiable, and
C = Rn, then the KKT conditions hold,

0 = ∇xL(x∗, λ∗, µ∗) = ∇f(x∗) +
r∑
i=1

λ∗i∇gi(x∗) +
m∑
j=1

µ∗j∇hj(x∗).

Proof. The inequality L(x∗, λ∗, µ∗) ≤ L(x, λ∗, µ∗) shows that x∗ minimizes
L(x, λ∗, µ∗) over Rn. This immediately implies the corollary. ut
Remark 11.10. Since the Lagrangian function for (P ) is an affine function
of the multipliers (λ, µ), it follows that the objective function of the dual
program (D),

q(λ, µ) := min
x∈C

L(x, λ, µ),

is a concave function, being the pointwise infimum of the family of affine
functions {qx}x∈C , where qx(λ, µ) = L(x, λ, µ). Thus, (D) is equivalent to the
minimization of the convex function −q over its domain, which is a convex
subset of {(λ, µ) : λ ≥ 0}. Thus, (D) is a convex programming problem,
regardless of whether (P ) is. Thus, in order to obtain symmetric duality results
between (P ) and (D), such as the results in Section 11.4, one needs to impose
some convexity conditions on the primal program (P ).
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The following result gives an interesting method to construct a constrained
optimization problem out of an unconstrained one.

Lemma 11.11. Let λ∗ ∈ Rr+ and µ∗ ∈ Rm be arbitrary. If x∗ ∈ C is a global
minimizer of the function

L(x, λ∗, µ∗) = f(x) +
r∑
i=1

λ∗i gi(x) +
m∑
j=1

µ∗jhj(x)

on C, then x∗ is a global minimizer of the nonlinear program

min f(x)
s. t. gi(x) ≤ gi(x∗), i = 1, . . . , r,

hj(x) = hj(x∗), j = 1, . . . ,m,
x ∈ C ⊆ Rn.

(P )

Proof. If x satisfies the constraints of (P ), then

f(x∗) = L(x∗, λ∗, µ∗)−
r∑
i=1

λ∗i gi(x
∗)−

m∑
j=1

µ∗jhj(x
∗)

≤ L(x, λ∗, µ∗)−
r∑
i=1

λ∗i gi(x
∗)−

m∑
j=1

µ∗jhj(x
∗)

= f(x) +
r∑
i=1

λ∗i (gi(x)− gi(x∗)) +
m∑
j=1

µ∗j (hj(x)− hj(x∗))

≤ f(x),

proving that x∗ is a global minimizer of (P ). ut
Remark 11.12. The above theorem leads to a simple method to construct a
constrained minimization problem whose Lagrangian has a saddle point, and
thus to construct an optimization problem for which no duality gap exists. It
was discovered by Everett [90] in connection with finding approximate solu-
tions to some integer programming problems.

11.4 Strong Duality in Convex Programming

In this section, we will be concerned with the duality theory of the convex
programming problem

min f(x)
s. t. gi(x) ≤ 0, i = 1, . . . , r,

hj(x) ≤ 0, j = 1, . . . ,m,
x ∈ C,

(P ) (11.4)
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where C ⊆ Rn is a nonempty convex set, f and {gi}r1 are convex functions on
C, and {hj}m1 are affine functions, say

hj(x) = 〈aj , x〉+ βj , j = 1, . . . ,m,

with aj ∈ Rn and βj ∈ R. Associated with (P ), we have the Lagrangian
function

L(x, λ, µ) = f(x) +
r∑
i=1

λigi(x) +
m∑
j=1

µjhj(x), x ∈ C, λ ∈ Rr+, µ ∈ Rm+ .

Recall that the dual program is given by

max g(λ, µ)
s. t. λ ∈ Rr+, µ ∈ Rm+ ,

(D)

where
g(λ, µ) := inf

x∈C
L(x, λ, µ).

The main result of this section, indeed of the whole chapter, is the deep
result that under minor restrictions, the optimal multipliers (λ, µ) exist, and
there is no duality gap between the primal–dual programming pair (P ) and (D).
The proof of this fundamental result will be based on a nonlinear analogue of
Motzkin’s transposition theorem for a system of nonlinear convex inequalities
and linear inequalities. It is necessary to single out linear constraints, since
it will be seen that the nonlinear constraints need a Slater-type constraint
qualification, but the linear ones do not.

We first prove a technical lemma.

Lemma 11.13. Let l be a nonnegative affine function on a convex set C ⊆
Rn. If l(x0) = 0 at some point in x0 ∈ ri(C), then l is identically zero on C.

Proof. Suppose that l(x) > 0 at some point x ∈ C. Since x0 ∈ ri(C), there
exists t > 1 such that the point x1 = x+t(x0−x) = (1−t)x+tx0 is in C. This
gives the contradiction 0 ≤ l(x1) = (1− t)l(x) + tl(x0) = (1− t)l(x) < 0. ut

The theorem below is a nonlinear generalization of the homogeneous ver-
sion of Motzkin’s transposition theorem; see Theorem 3.15, Theorem 7.17, or
Theorem A.3.

Theorem 11.14. (Convex transposition theorem) Let C ⊆ Rn be a
nonempty convex set, {gi}r1 convex functions, {hj}m1 affine functions on Rn,
such that dom(gi) contain C, i = 1, . . . , r. Assume that there exists a point
x∗ ∈ ri(C) satisfying the linear inequalities, that is,

x∗ ∈ ri(C), hj(x∗) ≤ 0, j = 1, . . . ,m. (11.5)

Then exactly one of the following alternatives holds:
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(a) ∃ x ∈ C, gi(x) < 0, i = 1, . . . , r, hj(x) ≤ 0, j = 1, . . . ,m,

(b) ∃ (λ, µ) ≥ 0, λ 6= 0,
r∑
i=1

λigi(x) +
m∑
j=1

µjhj(x) ≥ 0 for all x ∈ C.

Proof. The statements (a) and (b) cannot both be true: if x ∈ C satisfies (a)
and (λ, µ) satisfies (b), then we have a contradiction

0 ≤
r∑
i=1

λigi(x) +
m∑
j=1

µjhj(x) < 0,

where the first inequality follows from (b) and the second one follows from
(a), the nonnegativity of the multipliers, and the fact that λ 6= 0.

Suppose that (a) is false. We will show that (b) must hold, using a separa-
tion argument. We define a set of “right-hand-side vectors” of the constraint
functions on C,

R :=
{

(y, z) ∈ Rr × Rm : ∃x ∈ C, gi(x) < yi, i = 1, . . . , r,

hj(x) = zj , j = 1, . . . ,m.
}
.

Since C ⊆ dom(gi) for all i = 1, . . . , r, R is a nonempty convex set. Since (a)
is false, we clearly have that the set R is disjoint from the nonpositive orthant

N := {(u, v) ∈ Rr × Rm : u ≤ 0, v ≤ 0}.

Since N is a polyhedral set, it follows from Theorem 6.21 that there exists
a hyperplane H(λ,µ,α) separating R and N and not containing R, say

〈λ, y〉+ 〈µ, z〉 ≥ α ≥ 〈λ, u〉+ 〈µ, v〉 for all (y, z) ∈ R, (u, v) ∈ N,

such that the first inequality is strict for some (y, z) ∈ R. Setting (u, v) = (0, 0)
gives α ≥ 0. Moreover, if λi < 0, then picking (u, v) = (tei, 0), t → −∞
contradicts the second inequality above; thus, λ ≥ 0, and similarly, µ ≥ 0.
Since C ⊆ dom(gi) for each i = 1, . . . ,m, this means that

r∑
i=1

λi(gi(x) + si) +
m∑
j=1

µjhj(x) ≥ α ≥ 0, for all x ∈ C, s > 0, (11.6)

and the first inequality is strict for some x ∈ C, s > 0. Letting si → 0 gives

l(x) :=
r∑
i=1

λigi(x) +
m∑
j=1

µjhj(x) ≥ 0 for all x ∈ C.

The proof will be complete once we establish the claim that λ 6= 0. Suppose
that λ = 0. Then the affine function l(x) is nonnegative on C, and it follows
from assumption (11.5) that l(x∗) = 0. Lemma 11.13 implies that l(x) is
identically zero on C (and that α = 0). However, this contradicts the fact in
(11.6) that l(x) > 0 for some x ∈ C. This proves the claim. ut
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It is now easy to prove the following fundamental duality theorem of convex
programming.

Theorem 11.15. (Strong duality theorem of convex programming)
Suppose that the convex program (P ) in (11.4) has a finite infimum, that
is, −∞ < inf(P ) < ∞, and the conditions C ⊆ dom(f), C ⊆ dom(gi),
i = 1, . . . ,m hold.

If Slater’s conditions are satisfied, that is,

∃x ∈ ri(C), gi(x) < 0, i = 1, . . . , r, hj(x) ≤ 0, j = 1, . . . ,m, (11.7)

then there exist multipliers (λ∗, µ∗) ∈ Rr+ × Rm+ such that

inf(P ) = inf
x∈C

{
f(x) +

r∑
i=1

λ∗i gi(x) +
m∑
j=1

µ∗jhj(x)
}
.

The multiplier vector (λ∗, µ∗) is an optimal solution to the dual program
(D), and

inf(P ) = max(D).

Furthermore, if (P ) has an optimal solution x∗, then (x∗, λ∗, µ∗) is a saddle
point of the Lagrangian function L(x, λ, µ).

We emphasize that Slater’s conditions (11.7) put no restrictions on the
linear constraints.

Proof. Define f∗ := inf(P ), and consider the system of constraints

f(x)− f∗ < 0,
gi(x) < 0, i = 1, . . . , r,
hj(x) ≤ 0, j = 1, . . . ,m,

x ∈ C.

Theorem 11.14 applies to the above system, since C ⊆ dom(f), C ⊆ dom(gi),
= 1, . . . , r, and Slater’s conditions (11.7) hold. Since f∗ ≤ f(x) for any fea-
sible solution of (P ), the system is inconsistent; thus there exists a vector
(λ∗0, λ

∗
1, . . . , λ

∗
r , µ
∗
1, . . . , µ

∗
m) ≥ 0, (λ∗0, λ

∗
1, . . . , λ

∗
r) 6= 0, such that

λ∗0(f(x)− f∗) +
r∑
i=1

λ∗i gi(x) +
m∑
j=1

µ∗jhj(x) ≥ 0 for all x ∈ C. (11.8)

We claim that λ∗0 6= 0. Otherwise, (λ∗1, . . . , λ
∗
r) 6= 0,

r∑
i=1

λ∗i gi(x) +
m∑
j=1

µ∗jhj(x) ≥ 0 for all x ∈ C,
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and therefore by Theorem 11.14, the system

x ∈ C, gi(x) < 0, (1 ≤ i ≤ r), hj(x) ≤ 0 (1 ≤ j ≤ m)

cannot have a solution, contradicting Slater’s condition (11.7). This proves
that λ∗0 > 0, and we set λ∗0 = 1.

The inequality (11.8) gives that for all x ∈ C,

inf(P ) =: f∗ ≤ f(x) +
r∑
i=1

λ∗i gi(x) +
m∑
j=1

µ∗jhj(x) = L(x, λ∗, µ∗).

Thus, we have

inf(P ) ≤ inf
x∈C

L(x, λ∗, µ∗) ≤ sup
(λ,µ)≥0

inf
x∈C

L(x, λ, µ) = sup(D) ≤ inf(P ),

where the last inequality follows the weak duality theorem, Theorem 11.2. This
proves that all inequalities above are equalities, that (λ∗, µ∗) is an optimal
solution to (D), and that inf(P ) = max(D).

If x∗ is an optimal solution to (P ), it follows from Theorem 11.5 that
(x∗, λ∗, µ∗) is a saddle point of L. ut
Remark 11.16. A special version of the convex transposition theorem, Theo-
rem 11.14, in which the affine functions do not appear, was first proved by
Fan, Glicksberg, and Hoffman [91]. Theorems 11.14 and 11.15 in the gen-
erality stated above seem to have first been proved by Rockafellar [228] as
Theorem 21.2 and Theorem 28.2, respectively, under slightly more general
assumptions than C ⊆ dom(f),dom(gi). His proof of Theorem 11.14 uses the
special separation result, Theorem 6.21, in which one of the convex sets is a
polyhedral set. Later, several direct proofs of Theorem 11.15 were published
avoiding the use of this special separation theorem, but utilizing other tricks
[247, 221, 214, 147]. Our proof of Theorem 11.14 is essentially the same as
Rockafellar’s, but we have simplified the proof of its main ingredient, Theo-
rem 6.21, using a device in [147].

Corollary 11.17. Let the convex program (P ) have only linear constraints;

min f(x)
s. t. hj(x) ≤ 0, j = 1, . . . ,m,

x ∈ Rn,
(P )

and an objective function f with dom(f) = Rn.
If (P ) has a finite infimum, then there exists a multiplier vector µ∗ ≥ 0 in

Rm that is an optimal solution to the dual program (D), and strong duality
holds, that is, inf(P ) = max(D).

Furthermore, if (P ) has an optimal solution x∗, then (x∗, µ∗) is a saddle
point of the Lagrangian function

L(x, µ) = f(x) +
m∑
j=1

µjhj(x).
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11.4.1 Failure of Strong Duality in Convex Optimization

We now give an example of a convex programming problem for which there
exist no optimal multipliers and that has a positive duality gap.

Consider the following convex program in which the convex set C is the
nonnegative quadrant C = {(x1, x2) : x1 ≥ 0, x2 ≥ 0},

min f(x) = e−
√
x1x2

s. t. x2 = 0,
x = (x1, x2) ∈ C.

(P )

We note that any point x∗ = (x∗1, 0), x∗1 ≥ 0, is an optimal solution for (P )
and that min(P ) := f∗ = f(x∗) = 1. The dual problem is

max
λ∈R

g(λ), (D)

where
g(λ) := inf

x≥0
e−
√
x1x2 + λx2.

Note that if λ ≥ 0, then e−
√
x1x2 + λx2 → 0 as x2 → 0 and x1x2 →∞. Also,

if λ < 0, then e−
√
x1x2 + λx2 → −∞ as x2 →∞. Thus, we have

g(λ) =

{
0, if λ ≥ 0,
−∞, if λ < 0.

Consequently, the dual program is

max g(λ)
s. t. λ ≥ 0,

(D)

where g(λ) ≡ 0 is the zero function. Any λ ≥ 0 is an optimal solution to
(D), and we have sup(D) = 0. Therefore, we have a positive duality gap
inf(P )− sup(D) = 1− 0 = 1.

Of course, Slater’s conditions are not satisfied, since int(C) = {(x1, x2) :
x1 > 0, x2 > 0}, and an optimal point (x1, 0) to (P ) does not belong to it.

11.5 Examples of Dual Problems

In this section, we consider the duality theory of several special common
classes of problems in detail.
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11.5.1 Linear Programming

The duality theory of linear programming is developed in Chapter 8 using
Farkas’s lemma and the theory of convex polyhedra. The development below
offers a different perspective, and is largely independent of the previous treat-
ment, although in the final analysis, both approaches depend on separation
of convex sets.

Consider the linear program

min 〈c, x〉
s. t. Ax = b,

x ≥ 0,
(P )

where A is an m× n matrix, c ∈ Rn, and b ∈ Rm.
Define C = Rn+. (The reader is encouraged to work out the formulation of

the dual problem by choosing C = Rn.) We have the Lagrangian function

L(x, µ) = 〈c, x〉+ 〈µ, b−Ax〉 = 〈b, µ〉+ 〈c−ATµ, x〉.

The dual problem is, by definition,

sup
µ∈Rm

inf
x≥0

L(x, µ). (D)

Let us give an explicit description of (D). We first deal with the inner
minimization problem in (D). We have

inf
x≥0

L(x, µ) = 〈b, µ〉+ inf
x≥0
〈c−ATµ, x〉 =

{
〈b, µ〉, if c−ATµ ≥ 0,
−∞, otherwise.

Therefore, (D) can be written as

sup
µ∈Rm

{〈b, µ〉 : c−ATµ ≥ 0}.

In other words, (D) is the linear programming problem (replacing µ with y)

max 〈b, y〉
s. t. AT y ≤ c.

(D)

If (P ) is unbounded, then Corollary 11.3 (weak duality theorem) implies
that (D) is infeasible. If (P ) is feasible and bounded from below, then Corol-
lary 11.17 implies that (D) has an optimal solution, and the duality gap is
zero. Furthermore, Lemma 8.1 on page 195 implies that (P ) has an optimal
solution. The same result can be obtained more easily by observing that (P )
is the dual of (D) and applying Corollary 11.17.
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Finally, if (P ) is infeasible, then the above considerations show that (D)
is either unbounded or infeasible. There are examples showing that each of
these two cases is possible.

We leave to the reader as an exercise to calculate the dual to the linear
program

min 〈c, x〉
s. t. Ax ≥ b,

x ≥ 0.

11.5.2 Quadratic Programming

We now consider the convex quadratic program

min
1
2
〈Qx, x〉+ 〈c, x〉

s. t. Ax = b,

x ≥ 0,

(P )

where Q is an n × n symmetric positive semidefinite matrix, A an m × n
matrix, c ∈ Rn, and b ∈ Rm.

Defining C = Rn (the reader is invited to work out the dual problem by
choosing C = Rn+), we have the Lagrangian function

L(x, λ, µ) =
1
2
〈Qx, x〉+ 〈c, x〉+ 〈µ, b−Ax〉 − 〈λ, x〉

= 〈b, µ〉+
1
2
〈Qx, x〉 − 〈ATµ+ λ− c, x〉.

The dual problem (D) is, by definition,

sup
µ∈Rm,0≤λ∈Rn

inf
x∈Rn

L(x, λ, µ).

The inner optimization problem is the unconstrained minimization of the
convex quadratic function

q(x) :=
1
2
〈Qx, x〉 − 〈ATµ+ λ− c, x〉

on Rn. It follows from Corollary 4.30 on page 99 that q is bounded from below
if and only if it has a minimizer, and this happens if and only if the equation

Qx = ATµ+ λ− c (11.9)

is solvable for x. The set X of solutions to this linear equation is then the set
of minimizers of q. Note the important fact that



11.5 Examples of Dual Problems 291

〈Qx∗, x∗〉 = 〈ATµ+ λ− c, x∗〉 = −2 min
Rn

q for all x∗ ∈ X.

Consequently, the dual program (D) is given by

max 〈b, µ〉 − 1
2
〈ATµ+ λ− c, x∗〉

s. t. ATµ+ λ− c = Qx∗,

µ ∈ Rm, Rn 3 λ ≥ 0,

where x∗ is any point satisfying the equation (11.9). We can choose x∗ as a
linear function of λ, µ; for example, we can choose

x∗ = Q†(ATµ+ λ− c),

where Q† is the pseudoinverse or Moore–Penrose inverse of Q. We recall that

Q† = UΛ†UT , Λ† = diag{λ†1, . . . , λ†n},

where Q = UΛUT is the spectral decomposition of Q, λ†i = (λi)−1 if λi 6= 0,
and λ†i = 0 when λi = 0; see Golub and van Loan [108] and [218]. Since Q is
positive semidefinite, we see that Q† is also positive semidefinite. Thus, the
dual program is

max 〈b, µ〉 − 1
2
〈
Q†(ATµ+ λ− c), ATµ+ λ− c

〉
s. t. ATµ+ λ− c ∈ R(Q), λ ≥ 0.

(D)

This is a maximization quadratic program whose objective function is a con-
cave function; thus (D) is equivalent to the convex quadratic program

min
1
2
〈
Q†(ATµ+ λ− c), ATµ+ λ− c

〉
− 〈b, µ〉

s. t. ATµ+ λ− c ∈ R(Q), λ ≥ 0.

If one wishes, one can further eliminate µ from this formulation by minimizing
over µ ∈ Rm.

In the case that Q is positive definite, then Q† = Q−1, and (D) becomes

max 〈b, µ〉 − 1
2
〈Q−1(ATµ+ λ− c), ATµ+ λ− c〉

s. t. λ ≥ 0, µ.

We summarize the strong duality properties of the primal–dual pair (P )
and (D):

Theorem 11.18. Let (P ) be the convex quadratic program above. The dual
program is also a convex quadratic program.
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If (P ) is unbounded, then (D) is infeasible.
If (P ) is feasible and bounded from below, then both (P ) and (D) have

optimal solutions that are then the saddle points of the Lagrangian function
L(x, λ, µ).

Finally, if (P ) is infeasible, then (D) is either unbounded or infeasible.

Proof. If (P ) is unbounded, then Corollary 11.3 implies that (D) is infeasible.
If (P ) is feasible and bounded from below, then Corollary 11.17 on page 287
implies that the dual program (D) has an optimal solution (λ∗, µ∗). Since
the dual of (D) is (P ), applying the same theorem, this time to (D), shows
that (P ) also has an optimal solution x∗. Then Theorem 11.5 shows that
(x∗, λ∗, µ∗) is a saddle point of L(x, λ, µ), and conversely.

Finally, if (P ) is infeasible, then the above considerations show that (D)
is either unbounded or infeasible. Furthermore, since linear programming is a
quadratic program with Q = 0, there are examples showing that each of these
two cases is possible. ut

Remark 11.19. Part of the above theorem asserts that if a convex quadratic
program is bounded from below, then it has a (global) minimizer. The same
result is true for any quadratic programming problem regardless of whether
the quadratic objective function is convex. This was first proved by Frank
and Wolfe [98] in 1956 and has been re-proved numerous times since then. A
particularly interesting solution to this problem is given in [99].

We leave to the reader as an exercise (see Exercise 7 on page 303) to
compute the dual of the quadratic program

min
1
2
〈Qx, x〉+ 〈c, x〉

s. t. Ax ≥ b.

11.5.3 A Minimax Problem

Consider the problem

min
x∈Rn

max{f1(x), . . . , fm(x)}, (P )

where fi : Rn → R are convex functions. We will reformulate (P ) in order to
first define a Lagrangian function for it. We begin with a preliminary result.

Lemma 11.20. Let a1, . . . , am be real numbers. We have

max{a1, . . . , am} = max
λ∈∆m−1

m∑
i=1

λiai,

where ∆m−1 is the standard unit simplex in Rm.
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Proof. We may assume that a1 = max{a1, . . . , am} without any loss of gen-
erality. If λ ∈ Σm, we clearly have

m∑
i=1

λiai ≤
m∑
i=1

λia1 = a1.

This proves that

max
λ∈Σm

m∑
i=1

λiai ≤ max{a1, . . . , am}.

We achieve equality in the above inequality by taking λ = (1, 0, . . . , 0) ∈ Σm.
The lemma is proved. ut

Using this result, we have

max{f1(x), . . . , fm(x)} = max
λ∈Σm

m∑
i=1

λifi(x),

so that (P ) can be rewritten in the form

min
x∈Rn

max
λ∈Σm

m∑
i=1

λifi(x).

A natural Lagrangian function for (P ) is then

L(x, λ) =
m∑
i=1

λifi(x), x ∈ Rn, λ ∈ Σm.

We note that the Lagrangian L is linear, thus concave in λ; since the functions
{fi(x)}m1 are convex, L is convex in x.

The dual of the problem (P ) is

max
λ∈Σm

min
x∈Rn

m∑
i=1

λifi(x). (D)

Let (x∗, λ∗) be a saddle point of L. We have

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) for all x ∈ Rn, λ ∈ Σm.

Note that if all the functions fi are differentiable, then the second inequality
above gives

m∑
i=1

λ∗i∇fi(x∗) = 0.

Also, it follows immediately from Theorem 11.5 that x∗ is a minimizer of (P ).
Define I(x∗) := {i : fi(x∗) = max{f1(x∗), . . . , fm(x∗)}}, that is, I(x∗) is

the indices of fi that attain the maximum value maxi≤j≤m{fj(x∗)}.
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Lemma 11.21. If i /∈ I(x∗), then λ∗i = 0.

Proof. We have

f∗ := max
i∈I(x∗)

fi(x∗) = max
1≤i≤m

fi(x∗) =
m∑
i=1

λ∗i fi(x
∗)

=
( ∑
i∈I(x∗)

λ∗i

)
f∗ +

∑
i/∈I(x∗)

λ∗i fi(x
∗),

where the third equality follows because (x∗, λ∗) is a saddle point of L. If
λ∗k > 0 for an index k /∈ I(x∗), then we have λ∗kfk(x∗) < λ∗kf

∗, and the above
equalities imply

f∗ < (
∑

i∈I(x∗)

λ∗i )f
∗ +

∑
i/∈I(x∗)

λ∗i f
∗ = f∗,

a contradiction. ut

Remark 11.22. An alternative approach to dualizing (P ) is to reformulate it
as the constrained optimization problem

min z

s. t. fi(x)− z ≤ 0, i = 1, . . . ,m,

and then apply the standard Lagrangian approach to obtain a dual for it. This
approach leads to the same dual (D) obtained above; we leave the details
to the reader. In addition, we can now apply the strong duality theorem,
Theorem 11.15: since the constraints satisfy Slater’s condition (pick any point
x0 and z0 large enough that fi(x0)−z0 < 0), we see that if (P ) is feasible and
inf(P ) > −∞, then (D) has an optimal solution and inf(P ) = max(D).

11.6 Conic Programming Duality

Let E be a finite Euclidean space. Thus, E is a finite-dimensional vector space
over R equipped with an inner product 〈·, ·〉 and the associated Euclidean norm
‖ · ‖ given by ‖x‖2 = 〈x, x〉. A closed, convex cone in E with a nonempty
interior and containing no whole lines is called a regular convex cone.

In recent years, interior-point methods have made it popular to consider
conic programs and their duality theory. A conic-form programming problem
is a programming problem on the vector space E that generalizes a linear
program in that the linear constraints x ≥ 0 in the linear program are replaced
by a constraint of the form x ∈ K, where K is a regular convex cone in E.
Linear programming corresponds to the choices E = Rn and K = Rn+.

Thus, a conic programming problem has the form
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min 〈c, x〉
s. t. 〈ai, x〉 = bi, i = 1, . . . ,m,

x ∈ K,
(P ) (11.10)

where c and {ai}m1 are vectors in E, {bi}m1 are real scalars, and K is a regular
convex cone in E. The program (P ) is a convex program in which the only
nonlinearities appear in the cone constraint x ∈ K.

Important examples of conic programming beyond linear programming in-
clude semidefinite programming , in which E is the space of n× n symmetric
matrices equipped with the trace inner product 〈X,Y 〉 = tr(XY ) and K is the
cone of symmetric positive semidefinite matrices, and second-order cone pro-
gramming, in which E = Rn+1 equipped with the usual inner product and K
is the second-order or Lorentz cone K = {x ∈ Rn+1 : ‖(x1, . . . , xn)‖ ≤ xn+1}.
These are important examples of symmetric cone programming in which K is
a symmetric (homogeneous self-dual) cone [118, 210, 226]. Still more general
examples in interior-point methods include homogeneous cone programming
[118], hyperbolic cone programming [119], and several others.

In the theorem below,

K∗ = {z ∈ E : 〈x, z〉 ≥ 0 for all x ∈ K}

is the (modified) dual cone, which is the reflection through the origin of the
usual dual cone. We use the notation K∗ (in this section only) for the modified
cone out of respect for the established terminology in conic programming. The
primal problem (P ) is represented in the form below in order to bring out the
similarity between (P ) and (D).

Theorem 11.23. Let E and F be two finite-dimensional Euclidean spaces.
Let A : E → F be a linear operator, A∗ : F → E its adjoint, c ∈ E, b ∈ F ,
and K ⊂ E a regular convex cone in E. Consider the conic programming pairs

min 〈c, x〉
s. t. Ax = b

x ∈ K,
(P )

max 〈b, y〉
s. t. A∗y + s = c

s ∈ K∗,
(D)

The conic programs (P ) and (D) form a primal–dual pair. If (P ) has an
interior feasible point x ∈ int(K) and inf(P ) > −∞, then (D) has an optimal
solution, and the strong duality theorem holds, that is, inf(P ) = max(D).

Similarly, If (D) has an interior feasible point s ∈ int(K∗) and sup(D) <
∞, then (P ) has an optimal solution, and the strong duality theorem holds,
that is, min(P ) = sup(D).

Consequently, if both programs (P ) and (D) have interior feasible solu-
tions, then both programs have optimal solutions, and min(P ) = max(D).

Proof. Consider the Lagrangian function L : K × F → R,

L(x, y) := 〈c, x〉+ 〈b−Ax, y〉 = 〈b, y〉+ 〈c−A∗y, x〉,
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and observe that (P ) can be written as the minimax problem

min
x∈K

max
y∈F

L(x, y).

The Lagrangian dual of (P ) with respect to L is given by

max
y∈F

min
x∈K

L(x, y) = max
y∈F

{
〈b, y〉+ min

x∈K
〈c−A∗y, x〉

}
= max

{
〈b, y〉 : c−A∗y ∈ K∗

}
,

where the second equality follows by setting s := c−A∗y and noting that the
term minx∈K〈s, x〉 has value zero if s ∈ K∗, and −∞ otherwise. This proves
that (P ) and (D) form a primal–dual pair.

Now suppose that (P ) has a feasible point x ∈ int(K) and that inf(P ) >
−∞. Theorem 11.15 implies that (D) has an optimal solution and strong
duality holds, that is, inf(P ) = max(D). Since (P ) is the dual of (D), the
same argument shows that if (D) has a feasible point s ∈ int(K∗) (an easy
argument show that K∗ is a regular convex cone) and sup(D) <∞, then (P )
has an optimal solution and strong duality holds, that is, min(P ) = sup(D).

ut

Corollary 11.24. Consider the conic programming pairs

min 〈c, x〉 max
∑m
i=1 biyi

s. t. 〈ai, x〉 = bi, i = 1, . . . ,m (P ) s. t.
∑m
i=1 yiai + s = c, (D)

x ∈ K, s ∈ K∗.

The conic programs (P ) and (D) form a primal–dual pair. If (P ) has an
interior feasible point x ∈ int(K) and inf(P ) > −∞, then (D) has an optimal
solution, and the strong duality theorem holds, that is, inf(P ) = max(D).

Similarly, If (D) has an interior feasible point s ∈ int(K∗) and sup(D) <
∞, then (P ) has an optimal solution, and the strong duality theorem holds,
that is, min(P ) = sup(D).

Consequently, if both programs (P ) and (D) have interior feasible solu-
tions, then both programs have optimal solutions, and min(P ) = max(D).

The corollary follows immediately from Theorem 11.23 by defining the
linear operator A : E → Rm by

Ax := (〈a1, x〉, . . . , 〈a1, x〉)T ,

and noting that

〈Ax, y〉 =
m∑
i=1

yi〈ai, x〉 =
〈
x,

m∑
i=1

yiai

〉
= 〈x,A∗y〉,

so that A∗y =
∑m
i=1 yiai.
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11.7 The Fermat–Torricelli–Steiner Problem

Here we consider how to formulate a dual problem to the minimization
problem

min
x∈Rn

‖x− a1‖+ · · ·+ ‖x− ak‖, (P ) (11.11)

where {ai}ki=1 are given vectors in Rn and ‖ · ‖ is the Euclidean norm.
The case n = 3 is called the Fermat–Torricelli–Steiner problem and has a

distinguished history.
This type of problem occurs in plant location problems, for example. The

vectors ai could then be the locations of existing plants, and we may want to
locate a new plant at x such that the sum of the distances from the new plant
to the existing ones is as short as possible.

It is a fact of life that most problems cannot be dualized easily in the
sense that the dual problem cannot be given explicitly (or computed easily).
Here, too, there does not seem to be a straightforward approach to dualize
the problem.

The following trick permits us to obtain a workable dual problem. Observe
that ‖u‖ = max‖y‖≤1〈u, y〉 for any vector u ∈ Rn. Thus, we can write (P ) as
the minimax problem

min
x∈Rn

max
‖yi‖≤1

k∑
i=1

〈ai − x, yi〉, (11.12)

with the Lagrangian function

L(x, y) = L(x, y1, . . . , yk) :=
k∑
i=1

〈ai − x, yi〉.

Clearly, the objective function f(x) := ‖x−a1‖+ · · ·+ ‖x−ak‖ of the primal
problem is coercive, and we may assume that x lies in a compact set, say in
{x : f(x) ≤ f(0) = ‖a1‖+ · · ·+ ‖ak‖}. By von Neumann’s minimax theorem,
Theorem 11.1, there exists a saddle point (x∗, y∗1 , . . . , y

∗
k). Therefore, we have

min
x∈Rn

max
‖yi‖≤1

L(x, y) = max
‖yi‖≤1

min
x∈Rn

L(x, y),

and we can regard the maximin problem on the right-hand side as the dual
problem to (P ). When simplified, the dual problem becomes

max
{ k∑
i=1

〈ai, yi〉 : ‖yi‖ ≤ 1, 1 ≤ i ≤ k,
k∑
i=1

yi = 0
}
. (D) (11.13)

Observe that the knowledge of a dual optimal solution y∗ = (y∗1 , . . . , y
∗
k)

does not help us determine the primal one x∗, since the problem minx L(x, y∗)



298 11 Duality Theory and Convex Programming

becomes vacuous. However, if we have a primal optimal solution x∗, then we
can explicitly compute y∗ by solving the simple optimization problem

max
‖yi‖≤1

k∑
i=1

〈ai − x∗, yi〉.

The dual problem (D) has a nice form that can be exploited in numerical
algorithms. Indeed, if it did not have the coupling constraint

∑k
i=1 yi = 0, then

(D) would be separated into k simple subproblems. There exist algorithms
that exploit this fact and try to solve (D) in parallel. There are also algorithms
that try to solve (P ) and (D) together, using proximal-point methods.

Interior-point methods can be used to solve (P ). We reformulate (P ):

min
k∑
i=1

ti

s. t. ‖x− ai‖ ≤ ti, i = 1, . . . , k.

Each constraint may be written as x− ai ∈ K, where

K := {(x, t) ∈ Rn × R : ‖x‖ ≤ t}

is the second-order, or Lorentz, cone. Thus, (P ) reduces to a second-order
cone problem

min
k∑
i=1

ti

s. t. (x− ai, ti) ∈ K, i = 1, . . . , k.

Its standard dual is also a second-order cone program. The primal, dual, or
primal–dual pair can be solved in polynomial time. See [269] for more details.

120◦ 120◦

120◦

Fig. 11.1. Torricelli point of a triangle.
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Remark 11.25. When n = 2 and k = 3, and {ai} form the vertices of a triangle
T whose angles at the vertices are smaller than 120◦, then the optimal solution
x∗ is the Torricelli point, which is the point inside T such that the angle
between the two lines connecting x∗ to any two vertices of T is 120◦; see
Figure 11.1. Also, the dual problem is equivalent to determining the largest
equilateral triangle circumscribing the given triangle; see [71], pp. 325–326.
This dual problem was apparently known to Torricelli as early as 1810–1811.

11.8 Hoffman’s Lemma

Let P be a nonempty polyhedron in Rn given in the form

P := {z ∈ Rn : Az ≤ b},
where A ∈ Rm×n. Suppose that we have a point x not lying in P but that
almost satisfies the inequalities Az ≤ b defining P . What can we say about
x? For example, is it close to the polyhedron P?

In this section, we give an estimate of the Euclidean distance from such
a point x to P , that is, we estimate the optimal value of the minimization
problem

d(x, P ) := min{‖z − x‖ : z ∈ P}
in terms of the size of the residual vector (Ax − b)+ = ΠRn+(Ax − b), the
nonnegative part of the vector Ax− b, obtained from Ax− b by replacing its
negative entries by zero.

Theorem 11.26. (Hoffman’s lemma) There exists a constant c(A) > 0,
which depends only on the matrix A defining the polyhedron P = {z : Az ≤ b},
such that

d(x, P ) ≤ c(A)‖(Ax− b)+‖ for all x ∈ Rn. (11.14)

We emphasize that this is a nontrivial result. For example, in the ill-
conditioned polyhedron in Figure 11.2, the point x almost satisfies both of
the inequalities defining the shaded polyhedron, but is far away from the
polyhedron. Thus, the constant c(A) can get arbitrarily large as the angle
between the two lines gets smaller.

x

Fig. 11.2. An ill-conditioned polyhedron.

Hoffman’s lemma shows that the size of the vector (Ax− b)+ can be used
as a stopping criterion in algorithms: if ‖(Ax− b)+‖ is small, then x is almost
feasible, optimal, etc., depending on the nature of the polyhedron P .
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Theorem 11.26 was first proved in Hoffman [136], and has led to many sub-
sequent results in the optimization literature; see for example [121]. Hoffman’s
original proof is not very transparent, but later studies have shown that such
estimates are deeply connected with the duality theory of convex analysis.

Proof. In its broad outlines, the idea of the proof is simple. The most im-
portant idea is the second equation below, which follows from the fact that
‖v‖ = max‖z‖≤1〈v, z〉 for a vector in Rn. Assuming that equality holds in the
minimax problem (the third equation below), we would have

d(x, P ) = min
Az≤b

‖x− z‖

= min
Az≤b

max
‖u‖≤1

〈x− z, u〉

= max
‖u‖≤1

min
Az≤b
〈x− z, u〉

= max
‖u‖≤1

min
Aw≥b

〈w, u〉 [w := x− z, b := Ax− b]

= max
‖u‖≤1

max{〈b, λ〉 : ATλ = u, λ ≥ 0}

= max{〈Ax− b, λ〉 : ‖ATλ‖ ≤ 1, λ ≥ 0},

(11.15)

where the fifth equality follows from linear programming duality. These would
then give us the formula

d(x, P ) = max{〈Ax− b, λ〉 : ‖ATλ‖ ≤ 1, λ ≥ 0}. (11.16)

The estimate (11.14) then follows from an appropriate estimation of the right-
hand side above.

There exist minimax theorems, such as the lop-sided minimax theorem in
[10], p. 319, that show that in fact equality holds in the third equation in
(11.15); however, we prefer to give a simple, self-contained proof of this fact.

Note that the weak duality theorem (Theorem 11.2) applied to the mini-
max problem in (11.15) already gives

d(x, P ) ≥ max{〈Ax− b, λ〉 : ‖ATλ‖ ≤ 1, λ ≥ 0}.

To prove the reverse inequality, define the convex sets

C1 := {w : ‖w‖ ≤ d(x, P )}, C2 := {w : Aw ≥ b},

and notice that C0
1 ∩ C2 = ∅. By Theorem 6.15, C1 and C2 can be properly

separated. Thus, there exists a vector µ ∈ Rn, ‖µ‖ = 1, such that

〈µ,w1〉 ≤ 〈µ,w2〉 for all w1 ∈ C1, w2 ∈ C2. (11.17)

This gives
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d(x, P ) = max
w∈C1

〈µ,w〉 ≤ min
Aw≥b

〈µ,w〉 = max{〈λ, b〉 : λ ≥ 0, ATλ = µ}

≤ max{〈Ax− b, λ〉 : ‖ATλ‖ ≤ 1, λ ≥ 0},
where the first inequality follows from (11.17), the last equality from linear
programming duality, and last inequality from the fact ‖µ‖ = 1. This proves
(11.16). Thus, all the inequalities above are actually equalities, and we have

d(x, P ) = max{〈Ax− b, λ〉 : ATλ = µ, λ ≥ 0}.
The linear program above has an optimal solution λ∗ that is an extreme

point (vertex) of the polyhedron

P∗ := {λ : ATλ = µ, λ ≥ 0}.
An extreme point λ∗ ∈ P∗ is given by

λ∗ =
(
λ∗B
0

)
, BTλ∗B = µ,

where AT = (BT , NT ) and BT a nonsingular matrix. Thus, A =
[
B
N

]
, that

is, B is a nonsingular submatrix of A whose rows are selected from the rows
of A. (It is assumed here, for notational convenience, that the rows of AT are
ordered so that AT = (BT , NT ).) We then have

d(x, P ) = 〈Ax− b, λ∗〉 ≤ 〈(Ax− b)+, λ∗〉
= 〈(Ax− b)+B , λ∗B〉 ≤ ‖λ∗B‖ · ‖(Ax− b)+B‖
≤ ‖λ∗B‖ · ‖(Ax− b)+‖.

The norm of the vector λ∗B is dependent only on the submatrix B, since
BTλ∗B = µ, B is nonsingular, and ‖µ‖ = 1. This completes the proof of the
theorem. ut
Remark 11.27. Some estimates in the spirit of Hoffman’s lemma, but distinct
from it, appear in Lemma 4 in Rosenbloom’s paper [231]. His results, estab-
lished almost at the same time as Hoffman’s lemma, and which deserve to be
better known, use essentially duality techniques similar to the ones we have
used above. This is noteworthy, since the machinery of convex duality theory
in its full generality was developed a decade later.

Hoffman’s lemma can also be proved using Ekeland’s variational principle
and metric regularity; see [144, 145, 15].

11.9 Exercises

1. Consider the convex programming problem

min − lnx− ln y

s. t. (x− 1)2 + y2 ≤ 1.
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(a) Give a theoretical reason as to why we can assert that λ0 6= 0 in the
FJ conditions.

(b) Write the KKT conditions for the program, and find all solutions to
the problem by solving the KKT conditions.

(c) Use the Lagrangian function with C = R2 to explicitly determine
the dual problem (D), which should not contain any of the primal
variables x, y in its final form.

2. Consider the optimization problem

min
1
2
x2

1 +
1
2

(x2 − 3)2

s. t. x2
1 − x2 ≤ 0
− x1 + x2 ≤ 2.

(a) Is this a convex programming problem? Justify your answer.
(b) Solve the problem geometrically.
(c) Give a theoretical reason why there should exist KKT points. Give a

theoretical reason for the uniqueness of the KKT point.
(d) Write down the KKT conditions and solve them to determine the

KKT point.
(e) Write the Lagrangian for the problem using C = R2, and use it to

determine explicitly the dual problem. The primal variables x1, x2

should not appear in the dual program.
(f) Determine an optimal solution to the dual problem on the basis of

the information obtained in parts (a)–(e).
3. Use Lagrangian duality to determine the dual to the linear program

min x1 − 3x2 − x3

s. t. 3x1 − x2 + 2x3 ≥ 1
− 2x1 + 4x2 ≤ 12
− 4x1 + 3x2 + 3x3 = 14.

Do not transform the above linear program into any other format (say
into the standard form LP) before applying duality.

4. Consider the optimization problem

min
1
2
〈Qx, x〉

s. t. 〈a, x〉 ≤ b,
(P )

where Q is an n × n symmetric, positive definite matrix, 0 6= a ∈ Rn,
and b < 0.
(a) Formulate explicitly the dual program (D) corresponding to (P ) in

such a way that the primal variable x does not appear in (D).
(b) Determine whether the strong duality theorem holds between (P )

and (D), justifying carefully your reasoning.
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(c) Solve the dual program (D), that is, determine its optimal solutions λ∗.
(d) Use (c) to determine the primal optimal solution x∗.

5. Consider the convex quadratic program

min
{1

2
〈Qx, x〉+ 〈c, x〉 : x ≥ 0

}
, (P )

where Q is an n× n symmetric positive semidefinite matrix.
(a) Let (P ) have an optimal solution x∗. Argue that there exists λ∗ ≥ 0

in Rn such that (x∗, λ∗) is a saddle point of the Lagrangian function
corresponding to (P ).

(b) Show that the variational inequality holds at x∗:

〈Qx∗ + c, x− x∗〉 ≥ 0 for all x ≥ 0,

and deduce from it the equality 〈Qx∗ + c, x∗〉 = 0.
(c) Alternatively, show that the KKT conditions for (P ) result in the

linear complementarity problem

x∗ ≥ 0, Qx∗ + c ≥ 0, and 〈Qx∗ + c, x∗〉 = 0.

(d) Using the Lagrangian function, construct the dual program to (P ).
6. Consider the quadratic program pair in Section 11.5.2. If both programs

have optimal solutions, then show that

Qx∗ = ATµ∗ + λ∗ − c = α

is a constant for all optimal solutions x∗ to (P ) and for all optimal solu-
tions (λ∗, µ∗) to (D).
Hint: Use Corollary 11.6.

7. Consider the convex quadratic program

min
1
2
〈Qx, x〉+ 〈c, x〉

s. t. Ax ≥ b,
(P )

where A is an m×n matrix, and Q an n×n positive semidefinite matrix.
Work out the dual program (D), following the example in Section 11.5.2.
In particular, answer the following questions:
(a) Write the Lagrangian and formulate its dual program (D).
(b) Assume that −∞ < inf(P ) < +∞. State the strong duality for the

pair (P ) and (D). Does this theorem hold for (P ) and (D)? Explain
and justify your answer.

(c) Assume that Q is positive definite. Show that (P ) has an optimal
solution.

(d) Assuming again that Q is positive definite, formulate the dual prob-
lem explicitly, that is, write its objective function in terms of only the
dual variables.
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(e) Repeat part (d), assuming only that Q is positive semidefinite.
8. The problem

min
1
2
‖x‖2

s. t. Ax = b, x ≥ 0
(P )

seeks the point in the polyhedron {x : Ax = b, x ≥ 0} closest to the origin.
(a) Write down the KKT conditions for (P ).
(b) Calculate (determine explicitly) the dual program (D).
(c) Use the variational inequality to show that a feasible point x∗ solves

(P ) if and only if x∗ is a solution to the linear program

min (x∗)Tx
s. t. Ax = b, x ≥ 0.

9. Consider the constrained optimization problem

min
{
f(x) : gi(x) ≤ 0, i = 1, . . . ,m

}
, (11.18)

where f, gi : Rn → R are continuous functions. Denote by X∗ the set of
(global) optimal solutions to (11.18), and assume that X∗ 6= ∅.
(a) Suppose that x∗ ∈ X∗ is and there exists a multiplier λ∗ ≥ 0 ∈ Rm

such that (x∗, λ∗) form a saddle point of the Lagrangian function

L(x, λ) = f(x) +
m∑
i=1

λigi(x).

Show that if K > ‖λ∗‖, then X∗ coincides with the optimal solution
set X∗∗ of the unconstrained optimization problem

min
x∈Rn

{
f(x) +K‖g+(x)‖

}
, (11.19)

where g+(x) = (g+
1 (x), . . . , g+

m(x)) and g+
i (x) = max{0, gi(x)}.

Hint: Use the definition of saddle points. It is easier to show that
X∗ ⊆ X∗∗.

(b) Suppose that f, gi are convex functions and that there exists x0 such
that gi(x0) < 0, i = 1, . . . ,m. Show that there exist saddle points of
the Lagrangian function L. Show that if K is large enough, then X∗

coincides with X∗∗.
(c) Suppose f, gi are linear functions (so that (11.18) is a linear program).

Show that there exist saddle points of the Lagrangian function L, and
that if K is large enough, then X∗ coincides with X∗∗.
Discuss the advantages and challenges associated with trying to solve
the linear program (11.18) by solving an unconstrained minimization
problem (11.19).
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10. Compute the dual of the problem in Section 11.5.3 using the nonlinear
programming approach outlined at the end of that section.

11. Consider the primal–dual linear programming pair

min 〈c, x〉
s. t. Ax = b

x ≥ 0,
(P )

max 〈b, y〉
s. t. AT y + s = c

s ≥ 0,

(D)

where A is an m × n matrix. Assume that both programs have interior
feasible points, that is, there exist a feasible point x > 0 for (P ) and a
feasible point (y, s) for (D) such that s > 0.
A class of interior-point methods, called path-following methods, attempt
to follow the primal–dual central path {(x(t), y(t), s(t)) : t > 0} by New-
ton’s method, where x(t) and (y(t), s(t)) are the solutions to the pair of
primal–dual convex programming pair (Pt) and (Dt), respectively, where

min
{
〈c, x〉 − t

n∑
j=1

lnxj : Ax = b
}
, (Pt)

and

max
{
〈b, y〉+ t

n∑
j=1

ln sj : AT y + s = c
}
. (Dt)

It is well known that the primal–dual central path exists for (P ) and
(D) under the interior-point assumptions above, and converges to specific
optimal solutions of (P ) and (D) as t ↓ 0; see for example Ye [270].
(a) Show that (Pt) and (Dt) form a primal–dual convex programming

pair.
(b) Show that there exist a unique solution x(t) to (Pt) and a solution

to (Dt) where s(t) is unique.
(c) Determine the KKT conditions that characterize (x(t), y(t), s(t)) on

the central path.
12. Consider the minimax problem

min
x∈Rn

max
1≤i≤m

{
|〈ai, x〉| : 〈c, x〉 = 1

}
,

where A is an m × n matrix, ai, i = 1, . . . ,m are the rows of A, and
c ∈ Rn, c 6= 0.
(a) Formulate the problem as a minimization problem using the sugges-

tion in Remark 11.22.
(b) Argue that the KKT conditions must hold for a minimizer x∗, and

write down the KKT conditions.
(c) Let z∗ be the optimal objective value of the minimax problem. Prove

that the multiplier δ corresponding to the constraint 〈c, x〉 = 1 cannot
be zero. Prove that, in fact, δ = z∗.
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13. (von Neumann) In this problem, the famous von Neumann minimax
theorem for bimatrix games will be proved using linear programming du-
ality. This result, which von Neumann [211] proved in 1928 by advanced
methods (Brouwer’s fixed point theorem), was the starting point of game
theory.
Let A be an m × n matrix and denote by ∆m−1 and ∆n−1 the unit
simplices, where

∆n−1 =
{
x ∈ Rn : x ≥ 0,

n∑
j=1

xj = 1
}
,

and where ∆m−1 is defined similarly. The von Neumann minimax theorem
states that

min
x∈∆n−1

max
y∈∆m−1

〈Ax, y〉 = max
y∈∆m−1

min
x∈∆n−1

〈Ax, y〉. (11.20)

Denote by ai and aj the ith row and jth column of A, respectively.
(a) Show that

max
y∈∆m−1

〈Ax, y〉 = max
1≤i≤m

{〈ai, x〉},

so that

min
x∈∆n−1

max
y∈∆m−1

〈Ax, y〉 = min
x∈∆n−1

max
1≤i≤m

{〈ai, x〉}.

(b) Show that the right-hand side of the last equation above can be
written as a linear program

min
{
z : 〈ai, x〉 ≤ z, i = 1, . . . ,m,

n∑
j=1

xj = 1, x ≥ 0
}
,

in the variables (x, z).
(c) Show that the dual of the above linear program is

max
{
δ :

m∑
i=1

yia
i − δe ≥ 0,

m∑
i=1

yi = 1, y ≥ 0
}
,

in the variables (y, δ). Here e ∈ Rn is the vector with all components 1.
Hint: One way to proceed is to write the Lagrangian function

L(x, z; y, δ) = z +
m∑
i=1

yi(〈ai, x〉 − z) + δ(1− 〈e, x〉)

on the set X × Λ, where X = {x : x ≥ 0} and Λ = {(y, δ) : y ≥ 0},
and to formulate the dual using L.



11.9 Exercises 307

(d) Using the already encountered techniques in parts (a) and (b), show
that the dual linear program above is equivalent to the right-hand side
of (11.20), thereby proving von Neumann’s minimax theorem.

14. (M. Riesz; see Rosenbloom [231]) Let K ⊂ Rn be a closed convex cone.
(a) For u ∈ Rn, consider the problem

max 〈u, y〉
s. t. ‖y‖ ≤ 1,

y ∈ K,
(P )

and the equalities

max
‖y‖≤1,y∈K

〈u, y〉 = max
‖y‖≤1

{
〈u, y〉 − max

w∈K∗
〈y, w〉

}
= max
‖y‖≤1

min
w∈K∗

〈u− w, y〉

= min
w∈K∗

max
‖y‖≤1

〈u− w, y〉

= min
w∈K∗

‖u− w‖. (D)

Show that a saddle point (y∗, w∗), ‖y∗‖ ≤ 1, w∗ ∈ K∗, exists for
this minimax problem and justify all the equations above. Show that
u = (u−w∗)+w∗ is a decomposition of u into two elements u−w∗ ∈ K
and w∗ ∈ K∗ that are orthogonal, 〈w∗, u− w∗〉 = 0.

(b) Show that if K is the polyhedral cone

K = {y ∈ Rn : 〈ai, y〉 = 0, i = 1, . . . , r, 〈ai, y〉 ≥ 0, i = r + 1, . . . , s},

then the dual problem is given by

min
{∥∥∥u+

s∑
1

ciai

∥∥∥ : ci ≥ 0, i = r + 1, . . . , s
}
. (D)

15. (Teboulle [252]) Consider the minimization problem

min −
n∑
i=1

lnxi

s. t.
1
2
〈Qx, x〉+ 〈b, x〉+ c ≤ 0,

(P )

where Q is an n× n symmetric positive definite matrix. Assume that the
constraint set contains a vector x > 0 such that 1

2 〈Qx, x〉+ 〈b, x〉+ c < 0.
(a) Show that (P ) has a minimizer.
(b) The direct approach to formulating the dual will lead to a problem

that is hard to write down explicitly. The following trick will lead to
a manageable dual problem. Since Q is positive semidefinite, it has a
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square root, that is, an n×n positive semidefinite matrix A such that
A2 = Q. Introducing the variable u = Ax, we can rewrite (P ) in the
form

min −
n∑
i=1

lnxi

s. t.
1
2
‖u‖2 + 〈b, x〉+ c ≤ 0,

Ax− u = 0.

(P ′)

Using the standard Lagrangian approach, formulate the dual problem
explicitly, that is, as a maximization problem in which the objective
function is given explicitly.

(c) Suppose an optimal solution to the dual problem is somehow found.
Use this knowledge to determine the optimal solution x∗ ∈ Rn to the
original problem (P ).
Hint: Use Theorem 11.5.

(d) Using the above approach, formulate the dual problem when (P ) has
more than one (k > 1) convex quadratic inequality.

16. This problem is about different ways to dualize the problem of projecting
a point a ∈ Rn onto a linear subspace L in Rn.
(a) One way to formulate the projection problem is

min
1
2
‖x− a‖2

s. t. Ax = 0,
(P1)

where A is a matrix such that L = {x : Ax = 0}.

(i) Formulate the Lagrange dual (D1) of (P1), and prove whether
strong duality between (P1) and (D1) holds.

(ii) The dual problem (D1) has a geometric interpretation similar to
that of (P1); describe it.

(b) A second way to formulate the projection problem is

min ‖x− a‖
s. t. x ∈ L. (P2)

(i) Using the fact that ‖u‖ = max‖y‖≤1〈u, y〉 for any u ∈ Rn, write
(P2) as a minimax problem.

(ii) Write the dual (D2) of the minimax problem above, and show
that it can be written as
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max 〈a, y〉
s. t. ‖y‖ ≤ 1, y ∈M,

where M is a certain subset of Rn. Give a description of M . Prove
that the strong duality theorem holds between (P2) and (D2).

17. (The von Neumann economic growth problem) This is an early duality
result formulated by von Neumann for an important economic growth
problem. Consider the problem

max γ

s. t. B − γA)x ≥ 0
n∑
1

xi = 1, x ≥ 0,

where A,B are nonnegative m×n matrices such that Ax > 0, Bx > 0 for
all x in the standard unit simplex ∆n−1 in Rn. Denote by ai, bi ∈ Rn the
rows of A,B, respectively.
(a) Show that the vector constraints can be written as

γ ≤ 〈bi, x〉〈ai, x〉
.

Use this to transform the minimization problem into the form

max
x∈∆n−1

min
1≤i≤m

〈bi, x〉
〈ai, x〉

.

(b) Show that the auxiliary problem

min
y∈∆m−1

∑m
1 βiyi∑m
1 αiyi

,

where the denominator
∑m

1 αiyi is positive on ∆m−1, has the optimal
value

min
1≤i≤m

βi
αi
.

Use this to prove that the optimization problem in (a) can be written
in the form

max
x∈∆n−1

min
y∈∆m−1

∑m
1 yi〈bi, x〉∑m
1 yi〈ai, x〉

. (P )

Von Neumann proved that the minimax theorem holds, that is, the
optimal value of the maximin problem (P ) equals the optimal value
of the minimax problem

min
y∈∆m−1

max
x∈∆n−1

∑m
1 yi〈bi, x〉∑m
1 yi〈ai, x〉

, (D)
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so that (D) can be regarded as the dual problem to (P ) and thus to
the original economic growth problem. Also, the function

L(x, y) =
∑m

1 yi〈bi, x〉∑m
1 yi〈ai, x〉

, x ∈ ∆n−1, y ∈ ∆m−1,

can be considered a Lagrangian function (albeit an unusual one).
(c) Retrace the arguments in (a) and (b) and prove that the dual problem

can be written in the form

min ν

s. t. (νA−B)T y ≥ 0
m∑
1

yj = 1, y ≥ 0.

The novelty of this problem and the duality result is that the Lagrangian
function L is not a concave–convex function, that is, x 7→ L(x, y) is not a
concave function for a fixed y, and y 7→ L(x, y) is not a convex function
for a fixed x. However, L is a quasi-concave–convex function, that is, the
level sets {x : L(x, y) ≥ α} and {y : L(x, y) ≤ α} are convex sets for
a fixed y and x, respectively. Minimax theorems generally apply to such
functions on compact spaces; see [242], for example.

18. Consider Fermat’s problem

min
x∈R2

‖x− a1‖+ ‖x− a2 + ‖x− a3‖,

where a1, a2, and a3 are the vertices of a triangle T in R2, and ‖ · ‖ is the
Euclidean norm.
(a) Suppose that the optimal solution x∗ is not at a vertex. Show that
x∗ must be the Torricelli point of the triangle; see Figure 11.1.
Hint: Use the constraints of (11.13) and argue that ‖y∗i ‖ = 1.

(b) If the angle at a vertex of T is at least 120◦, then show that this
vertex is the optimal solution.

(c) Show that the dual of Fermat’s problem is equivalent to determining
the largest equilateral triangle circumscribing T .

19. (Courant–Hilbert [64]) Consider the Euclidean distance problem

min
1
2
‖p− p0‖2

s. t. p ∈ q0 + L,
(11.21)

where L ⊂ Rn is a linear subspace.
(a) Show that the dual of (11.21) is equivalent to the Euclidean distance

problem
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min
1
2
‖q − q0‖2

s. t. q ∈ p0 + L⊥,
(11.22)

where
L⊥ = {z ∈ Rn : 〈x, z〉 = 0 for all x ∈ L}

is the orthogonal complement of L.
Hint: Write L = N(A) = {x : Ax = 0} for some linear map A : Rn →
Rm, and construct the Lagrangian dual of (11.21).

(b) Show that the (unique) solutions to (11.21) and (11.22) are identical,
that is, if p∗ is the solution to (11.21) and q∗ is the solution to (11.22),
then p∗ = q∗; see Figure 11.3.
Hint: Use the optimality conditions of the two optimization problems
to obtain p∗ − q∗ ∈ L and p∗ − q∗ ∈ L⊥.

(c) Show that if p primal feasible (p ∈ q0 + L) and q is dual feasible
(q ∈ p0 + L⊥), then ∥∥∥p∗ − p+ q

2

∥∥∥ =
1
2
‖p− q‖.

(d) Generalize the above results to the problem

min
1
2

∥∥∥Q(p− p0)
∥∥∥2

s. t. p ∈ q0 + L,

where Q is a symmetric positive definite matrix, and L ⊂ Rn is a
linear subspace.
Hint: Define the inner product 〈u, v〉Q := 〈Qu, v〉 and the correspond-
ing norm ‖u‖2Q = 〈Qu, u〉.

20. (Projection onto the standard unit simplex) Consider once more the prob-
lem of projecting onto a simplex previously treated on page 190. Write
the problem as the optimization problem

min{‖x− a‖2/2 : 〈e, x〉 = 1, x ≥ 0}.

Formulate the dual problem, and simplify it by eliminating the multiplier
vector λ∗ corresponding to the constraints x ≥ 0. Solve the resulting
search problem for the remaining multiplier µ∗ as before.
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p0 + L

q0 + L

p0

p0 + L⊥

q0

p∗ = q∗

Fig. 11.3. Primal–dual least squares problem.



12

Semi-infinite Programming

Semi-infinite programs are constrained optimization problems in which the
number of decision variables is finite, but the number of constraints is infi-
nite. In this chapter, we treat a class semi-infinite programming problems in
which the constraints are indexed by a compact set. We will demonstrate the
usefulness of such problems by casting several important optimization prob-
lems in this form and then using semi-infinite programming techniques to
solve them. Historically, Fritz John [148] initiated semi-infinite programming
precisely to deduce important results about two such geometric problems: the
problems of covering a compact body in Rn by the minimum-volume disk and
the minimum-volume ellipsoid. In the same landmark paper, he derived what
are now called Fritz John optimality conditions for this class of semi-infinite
programs.

12.1 Fritz John Conditions for Semi-infinite
Programming

We need the following technical result.

Lemma 12.1. Let K ⊂ Rn be a compact set. Then 0 ∈ co(K) if and only if

{h : 〈x, h〉 < 0 for all x ∈ K} = ∅. (12.1)

Proof. If 0 ∈ co(K), then
∑
i λixi = 0 for some xi ∈ K and 0 ≤ λ 6= 0. Then∑

i λi〈xi, h〉 = 0 and we cannot have 〈xi, h〉 < 0 for all i. Thus (12.1) holds.
Conversely, suppose that 0 /∈ co(K). It follows from Corollary 4.15 that

co(K) is compact, and from Theorem 6.10 that there exists h ∈ Rn such that
〈h, x〉 < 0 for all x ∈ co(K), hence for all x ∈ K. ut

Theorem 12.2. Consider the semi-infinite program

DOI 10.1007/978-0-387-68407-9_12,  © Springer Science +Business Media, LLC 2010 
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min
x∈X

max
y∈Y

f(x, y)

s. t. g(x, z) ≤ 0, z ∈ Z,

where f(x, y) and ∇xf(x, y) are continuous functions defined on the set X×Y ,
where X ⊆ Rn is open and Y is a compact set in some topological space E,
and g(x, z) and ∇xg(x, z) are continuous functions defined on the set X ×Z,
where Z is a compact set in a topological space F .

If x∗ is a local minimizer, then there exist vectors {yi}i∈I , {zj}j∈J , at
most n+ 1 in number, satisfying

f(x∗, yi) = max
y∈Y

f(x∗, y), g(x∗, zj) = 0,

and a nonzero, nonnegative vector (λ, µ) such that∑
i∈I

λi∇xf(x∗, yi) +
∑
j∈J

µj∇xg(x∗, zj) = 0.

Proof. Define the functions

ϕ(x) := max
y∈Y

f(x, y),

γ(x) := max
z∈Z

g(x, z),

ϑ(x) := max{ϕ(x)− ϕ(x∗), γ(x)}.

Note that ϑ(x∗) = 0. If ϑ(x) < 0 for some x ∈ X, then we must have ϕ(x) <
ϕ(x∗) and g(x, z) < 0 for all z ∈ Z. Since x∗ is a local minimizer, this cannot
happen if x is sufficiently close to x∗. Thus, we see that x∗ is a local minimizer
of ϑ. It follows from Theorem 1.29 (Danskin’s theorem) that

0 ≤ ϑ′(x∗;h)

= max
{

max
y∈Y (x∗)

〈∇xf(x∗, y), h〉, max
z∈Z(x∗)

〈∇xg(x∗, y), h〉
}

for all h ∈ Rn,

where
Y (x∗) = arg max

y∈Y
f(x∗, y), Z(x∗) = arg max

z∈Z
g(x∗, z).

This implies that there exists no direction h ∈ Rn satisfying the conditions

〈∇xf(x∗, y), h〉 < 0, y ∈ Y (x∗), 〈∇xg(x∗, z), h〉 < 0, z ∈ Z(x∗).

Since Y (x∗) and Z(x∗) are compact, so is the set

K := {∇xf(x∗, y), y ∈ Y (x∗), ∇xg(x∗, z), z ∈ Z(x∗)}.

It follows from Lemma 12.1 that 0 ∈ co(K). Theorem 4.13 implies that there
exist at most n+1 vectors from K such that zero is in the convex hull of these
vectors. ut
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The following two theorems are special cases of the above theorem.

Theorem 12.3. Consider the minimax problem

min
x∈X

max
y∈Y

f(x, y),

where X ⊆ Rn is an open set, Y is a compact set in some topological space,
and f(x, y), ∇xf(x, y) are continuous functions.

If x∗ is a local minimizer, then there exist at most n + 1 points {yi}k1
satisfying

f(x∗, yi) = max
y∈Y

f(x∗, y),

and a nontrivial, nonnegative multiplier vector

0 6= λ = (λ1, . . . , λk) ≥ 0

such that
k∑
i=1

λi∇xf(x∗, yi) = 0.

Theorem 12.4. Consider the optimization problem

min f(x)
s. t. g(x, y) ≤ 0, y ∈ Y, (12.2)

where f(x) is a continuously differentiable function defined on an open set
X ⊆ Rn, and g(x, y) and ∇xg(x, y) are continuous functions defined on X×Y ,
where Y is a compact set in some topological space.

If x∗ is a local minimizer of (12.2), then there exist k active constraints
{g(x, yi)}k1 (that is, g(x∗, yi) = 0), and a nontrivial, nonnegative multiplier
vector

λ∗ := (λ∗0, λ
∗
1, . . . , λk) with at most n+ 1 positive entries

such that

λ∗0∇f(x∗) +
k∑
i=1

λ∗i∇xg(x∗, yi) = 0.

In the following sections, we treat several important problems from geom-
etry and analysis using semi-infinite programming techniques. These should
serve as convincing examples of the power and importance of semi-infinite
programming.
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12.2 Jung’s Inequality

We start with Jung’s theorem on the relationship between the diameter and
the inradius of a compact set S ⊂ Rn. This is one of the problems treated
in John’s paper [148]. It is solved there by converting it to the semi-infinite
program

min
x,z
{z : ‖x− y‖2 − z ≤ 0 for all y ∈ S},

which is in a form suitable for applying Theorem 12.4. The details of the
solution below are very similar to John’s, but we formulate the problem in a
somewhat more natural form and apply Theorem 12.3 instead.

Define the diameter of S as

D(S) := max{‖x− y‖ : x, y ∈ S},

and the inradius the radius of the smallest ball containing S,

R(S) := min
x∈Rn

max
y∈S
‖x− y‖.

Theorem 12.5. (Jung’s inequality) Let S be a compact set in Rn. The
inequality

D(S) ≥
√

2(n+ 1)
n

R(S) (12.3)

holds between the diameter D(S) and the inradius R(S).

Proof. Notice that R(S)2 = z∗, where z∗ is the optimal objective value of the
minimax problem

min
x∈Rn

max
y∈S
‖x− y‖2.

Define
ϕ(x) = max

y∈S
‖x− y‖2.

Evidently, ϕ(x) is coercive, and so has a global minimizer x∗ by the Weier-
strass theorem. It follows from Theorem 12.3 that there exist k (k ≤ n + 1)
points {yi}k1 in S satisfying ϕ(x∗) = ‖x∗ − yi‖2, and multipliers 0 6= λ =
(λ1, . . . , λk) ≥ 0 such that

k∑
i=1

λi(x∗ − yi) = 0.

Without loss of generality, we assume that λi > 0 for all i and
∑k
i=1 λi = 1.

Thus,

x∗ =
k∑
i=1

λiy
∗
i ,
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that is, x∗, the center of the enclosing optimal ball, is in the convex hull of
the points {yi}k1 .

We compute∑
1≤i6=j≤k

λiλj‖yi − yj‖2 =
∑

1≤i,j≤k

λiλj‖yi − yj‖2

=
∑

1≤i,j≤k

λiλj‖(yi − x∗)− (yj − x∗)‖2

=
k∑
j=1

λj

( k∑
i=1

λi‖yi−x∗‖2
)

+
k∑
i=1

λi

( k∑
j=1

λj‖yj − x∗‖2
)

−2
〈 k∑
i=1

λi(yi − x∗),
k∑
j=1

λj(yj − x∗)
〉

= 2z∗ = 2R(S)2.

By the Cauchy–Schwarz inequality,

1 =
( k∑
i=1

λi

)2

≤ k
k∑
i=1

λ2
i ,

so that ∑
1≤i 6=j≤k

λiλj = 1−
k∑
1

λ2
i ≤ 1− 1

k
=
k − 1
k

.

Consequently, we have

2R(S)2 =
∑

1≤i6=j≤k

λiλj‖yi − yj‖2 ≤
( ∑

1≤i6=j≤k

λiλj

)
·max
i,j
‖yi − yj‖2

≤ k − 1
k

D(S)2.

The theorem is proved. ut

The inequality (12.3) is sharp and is attained for the standard unit sim-
plex. In this case, we have D(∆n) = ‖(1, 0, . . . , 0) − (0, 1, 0, . . . , 0)‖ =

√
2,

R(∆n) = ‖1/(n+ 1)(1, 1, . . . , 1)− (1, 0, . . . , 0)‖ =
√
n/(n+ 1), and D(∆n) =√

2(n+ 1)/nR(∆n).

12.3 The Minimum-Volume Circumscribed Ellipsoid
Problem

The circumscribed ellipsoid problem is the problem of finding a minimum-
volume ellipsoid circumscribing a convex body K in Rn. This is the main
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problem treated in Fritz John [148]. In that paper, John shows that such
an ellipsoid exists and is unique; let us denote it by EK . John introduces
semi-infinite programming and develops his optimality conditions to prove
the following deep result about the ellipsoid EK : the ellipsoid with the same
center as EK but shrunk by a factor n is contained in K, and if K is symmetric
(K = −K), then EK needs to be shrunk by the smaller factor

√
n to be

contained K. This fact is very important in the geometric theory of Banach
spaces. In that theory, a symmetric convex body K is considered the unit
ball of a Banach space, and if K is an ellipsoid, then the Banach space is
a Hilbert space. Consequently, the shrinkage factor indicates how close the
Banach space is to being a Hilbert space. In this context, it is not important
to compute the exact ellipsoid EK .

However, in some convex programming algorithms including the ellipsoid
method and its variants, the exact or nearly exact ellipsoid EK needs to
be computed. If K is sufficiently simple, EK can computed analytically. In
more general cases, interior-point-type algorithms can be developed to ap-
proximately compute EK . This, however, is a relatively challenging task.

In this section, we deal with the EK problem more or less following John’s
approach. However, in the interest of brevity and clarity, we use more modern
notation and give new and simpler proofs for some of the technical results,
including for John’s containment results mentioned above.

Fig. 12.1. Circumscribed ellipsoid around a convex body.

An ellipsoid E with center c is an affine image of the unit ball

B := {u ∈ Rn : ‖u‖ ≤ 1},

that is, E = c + A(B), where A is a nonsingular n × n matrix. We may
assume that A is a symmetric positive definite matrix: if A = UΛV T is the
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singular-value decomposition of A, we can write

A = (UΛUT )(UV T ) = XO,

where X := UΛUT is a symmetric positive definite matrix and O = UV T is an
orthogonal matrix. Since O(B) = B, we have E = c+X(O(B)) = c+X(B).

For technical reasons, we will represent E in the form E = c+X−1/2(B),
where X a symmetric positive definite matrix. Setting v = c + X−1/2u, that
is, u = X1/2(v − c), we have E = {v : ‖X1/2(v − c)‖ ≤ 1}. We denote this
ellipsoid by E(X, c),

E(X, c) := {v : 〈X(v − c), v − c〉 ≤ 1}. (12.4)

Since E(X, c) = c+X−1/2(B),

vol(E(X, c)) = (detX)−1/2ωn, (12.5)

where ωn = vol(B). Consequently, we can set up the circumscribed ellipsoid
problem as a semi-infinite program

min − ln detX
s. t. 〈X(y − c), y − c〉 ≤ 1, y ∈ K, (12.6)

in which the decision variables are (X, c) ∈ Sn × Rn, where Sn is the vector
space of n× n symmetric matrices.

Lemma 12.6. If K ⊂ Rn is a convex body, then there exists an ellipsoid of
minimum volume circumscribing K.

Proof. We claim that the feasible sublevel sets in the problem (12.6) are com-
pact; then the Weierstrass theorem implies that (12.6) has an optimal solution.
Being a convex body, K contains a ball of radius r, which is then contained
in every ellipsoid E(X, c) ⊇ K containing K. Note that every such ellipsoid
E(X, c) contains the ball of radius r centered at c. This means that every
vector u ∈ Rn, ‖u‖ = r, must satisfy the inequality 〈Xu, u〉 ≤ 1. Picking
u = rei gives 0 < Xii ≤ 1/r2, for all i = 1, . . . , n. Since X is symmetric
positive definite, a 2 × 2 submatrix

[
Xii Xij
Xij Xjj

]
is positive semidefinite. This

implies that X2
ij ≤ XiiXjj ≤ 1/r4, meaning that all entries of X are bounded

above by 1/r2 in absolute value. Thus, the feasible matrices X in problem
(12.6) form a compact set. As the norm of the center c of an ellipsoid E(X, c)
circumscribing K goes to infinity, the volume of the ellipsoid must obviously
go to infinity as well. This proves the claim and the lemma. ut

We now derive the optimality conditions for (12.6).

Theorem 12.7. Let K ⊂ Rn be a convex body. There exists an ellipsoid of
minimum volume circumscribing K. If E(X, c) is such an ellipsoid, then there
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exist a multiplier vector λ = (λ1, . . . , λk) > 0, 0 ≤ k ≤ n(n+3)/2, and contact
points {ui}k1 in K such that

X−1 =
k∑
i=1

λi(ui − c)(ui − c)T ,

0 =
k∑
i=1

λi(ui − c),

ui ∈ ∂K ∩ ∂E(X, c), i = 1, . . . , k,
K ⊆ E(X, c).

(12.7)

Proof. The existence of a minimum-volume ellipsoid has already been proved
in Lemma 12.6. Let E(X, c) be such an ellipsoid. Since the constraints in
(12.6) are indexed by y ∈ K, a compact set, Theorem 12.4 applies. Therefore,
there exist a nonzero multiplier vector (λ0, λ1, . . . , λk) ≥ 0, where k ≤ n(n+
1)/2 + n = n(n+ 3)/2, λi > 0 for i > 0, and points {ui}k1 in K such that the
Lagrangian function

L(X, c, λ) := −λ0 ln detX +
k∑
i=1

λi〈X(ui − c), ui − c〉

= −λ0 ln detX +
〈
X,

k∑
i=1

λi(ui − c)(ui − c)T
〉
,

where the inner product on the last line is the trace inner product on Sn,
satisfies the optimality conditions

0 = ∇cL(X, c, λ) = X
k∑
i=1

λi(ui − c),

0 = ∇XL(X, c, λ) = −λ0X
−1 +

k∑
i=1

λi(ui − c)(ui − c)T .

Here we used the first formula for L(X, c, λ) to differentiate L with respect to
c, and the second formula for L(X, c, λ) together with (1.13) to differentiate
it with respect to X.

If λ0 = 0, then 0 = tr(
∑k
i=1 λi(ui − c)(ui − c)T ) =

∑k
i=1 λi‖ui − c‖2. This

implies that λi = 0 for all i, contradicting λ 6= 0. We let λ0 = 1 without loss
of generality, and arrive at the Fritz John conditions (12.7). ut

For most theoretical purposes, we may assume that the optimal ellipsoid is
the unit ball E(I, 0). This can be accomplished by an affine change of coordi-
nates, if necessary. This results in the more transparent optimality conditions

I =
k∑
i=1

λiuiu
T
i ,

k∑
i=1

λiui = 0,

ui ∈ ∂K ∩ ∂B, i = 1, . . . , k, K ⊆ B.
(12.8)
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Taking traces of both sides in the first equation above gives

n = tr(I) = tr
( k∑
i=1

λiuiu
T
i

)
=

k∑
i=1

λiu
T
i ui =

k∑
i=1

λi.

In this section and the next, convex duality will play an important role. If
C ⊂ Rn is a convex body, the Minkowski support function is defined by

sC(d) := max
u∈C
〈d, u〉.

It is obviously defined on Rn and is a convex function, since it is a maximum
of linear functions indexed by u. By duality results of convex programming,
two convex bodies satisfy C ⊆ D if and only if sC ≤ sD. (In fact, sC = δ∗C ,
where δC is the indicator function of C, and ∗ denotes the Fenchel dual. By the
fundamental theorem on the Fenchel dual functions, we have s∗C = δ∗∗ = δC ;
see [228] or [89] for further details. This implies our assertions.) We compute

sE(X,c)(d) = max {〈d, u〉 : 〈X(u− c), u− c〉 ≤ 1}
= max

{
〈d, c+X−1/2v〉 : ‖v‖ ≤ 1〉

}
= 〈c, d〉+ max

‖v‖≤1
〈X−1/2d, v〉 = 〈c, d〉+ ‖X−1/2d‖

= 〈c, d〉+ 〈X−1d, d〉1/2,

(12.9)

where we have defined v := X1/2(u− c), or u = c+X−1/2v.
The polar the set C is defined by

C∗ := {d : sC(d) ≤ 1} = {x : 〈x, u ≤ 1 for all u ∈ C}.

An easy calculation shows that(
co
(
{ui}k1)

))∗
= {x : 〈x, ui〉 ≤ 1, i = 1, . . . , k}.

The following key result shows that the optimality conditions (12.8) are
powerful enough to prove the uniqueness of the minimum-volume circum-
scribing ellipsoid in this section and the uniqueness of the maximum-volume
inscribed ellipsoid in the next section.

Lemma 12.8. Let {ui}k1 be set of unit vectors in Rn satisfying the conditions∑k
i=1 λiuiu

T
i = I and

∑k
i=1 λiui = 0. Define the polytope P = co

(
{ui}k1)

)
and

its polar P ∗ = {x : 〈ui, x〉 ≤ 1, i = 1, . . . , k}. The unit ball is both the unique
minimum-volume ellipsoid circumscribing P and the unique maximum-volume
ellipsoid inscribed in P ∗.

Proof. Let E(X, c) be any ellipsoid covering the points {ui}k1 . We have
〈X(ui − c), ui − c〉 ≤ 1 and
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n =
k∑
i=1

λi ≥
k∑
i=1

λi〈X(ui − c), ui − c〉 =
〈
X,

k∑
i=1

λi(ui − c)(ui − c)T
〉

=
〈
X,

k∑
i=1

λiuiu
T
i

〉
−
〈
X,

k∑
i=1

λicu
T
i

〉
−
〈
X,

k∑
i=1

λiuic
T
〉

+
〈
X,
( k∑
i=1

λi
)
ccT
〉

= 〈X, I〉+ n〈X, ccT 〉 = tr(X) + n〈Xc, c〉
≥ n

(
det(X)1/n + 〈Xc, c〉

)
.

Here the fourth equality follows from (12.8), and the last inequality follows
from the fact that det(X)1/n ≤ tr(X)/n, which is precisely the arithmetic–
geometric mean inequality applied to the eigenvalues of X. Thus

det(X)1/n + 〈Xc, c〉 ≤ 1,

and the equality det(X) = 1 holds if and only if c = 0, 〈X(ui − c), ui − c〉 = 1
for all i = 1, . . . , k, and the arithmetic–geometric mean inequality holds as an
equality. The last condition holds if and only if X is a positive multiple of the
identity matrix (and then det(X) = 1 implies X = I). Thus, the minimum-
volume ellipsoid covering the points {ui}k1 must be the unit ball.

Next, let E(X, c) be any ellipsoid inscribed in P ∗. By (12.5), vol(E(X, c)) =
det(X−1)ωn. By virtue of (12.9), the inclusion E(X, c) ⊆ P ∗ implies

sE(X,c)(ui) = 〈c, ui〉+‖X−1/2ui‖ ≤ sP∗(ui) = max
j
〈ui, uj〉 ≤ 1, i = 1, . . . , k.

By the Cauchy–Schwarz inequality, we have 〈X−1/2ui, ui〉 ≤ ‖X−1/2ui‖ ·
‖ui‖ = ‖X−1/2ui‖; therefore,

n =
k∑
i=1

λi ≥
k∑
i=1

λi

(
〈c, ui〉+ 〈X−1/2ui, ui〉

)
=
〈
X−1/2,

k∑
i=1

λiuiu
T
i

〉
= tr(X−1/2) ≥ n det(X)−1/2n,

where the last inequality follows from the arithmetic–geometric mean inequal-
ity applied to the eigenvalues of X−1/2. Thus detX ≥ 1, and the equality
detX = 1 holds if and only if (i) X is a positive multiple of the identity ma-
trix (and then det X = 1 implies X = I), and (ii) 1 = 〈c, ui〉+〈X−1/2ui, ui〉 =
〈c, ui〉 + 1, that is, 〈c, ui〉 = 0 for all i = 1, . . . , k. Then the equation∑k
i=1 λiuiu

T
i = I implies that ‖c‖2 =

∑k
i=1 λi〈c, ui〉2 = 0. The lemma is

proved. ut

Theorem 12.9. Let K be a convex body in Rn. The minimum-volume ellip-
soid circumscribing K is unique. Moreover, the optimality conditions (12.7)
are necessary and sufficient for an ellipsoid E(X, c) to be the minimum-volume
ellipsoid circumscribing K.
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Proof. The necessity of the conditions (12.7) has already been proved in The-
orem 12.7. To prove the sufficiency, we assume, without loss of generality, that
E(I, 0) = B satisfies the optimality conditions (12.8) for some set of multipli-
ers {λi}. Let E ⊇ K be a minimum-volume ellipsoid circumscribing K. Since
P ⊆ K ⊆ E, P ⊆ K ⊆ B, and E is the optimal covering ellipsoid for K,
we have vol(E) ≤ vol(B). Similarly, since B is the optimal covering ellipsoid
for P by Lemma 12.8, vol(B) ≤ vol(E). These give vol(E) = vol(B), and the
uniqueness of the covering ellipsoid for P implies E = B. ut

Remark 12.10. The uniqueness of the circumscribed ellipsoid EK can be seen
by recasting problem (12.6) by setting X = Y 2 and d := Y −1c. Then we have
the semi-infinite program

min − ln detY

s. t. ‖Y y − d‖2 ≤ 1, y ∈ K,
(12.10)

with decision variables (Y, d). This is a convex semi-infinite program, since
the objective function is strictly convex in Y by (1.13), and the constraint for
each parameter y ∈ K is convex. This proves the sufficiency of the conditions
in (12.7) and the uniqueness of the matrix X in E(X, c). The uniqueness of
the center c can then be completed by a special argument.

We end this section by proving Fritz John’s results mentioned at the be-
ginning of the chapter. Our proof is simpler, and uses ideas from Ball [19] and
Juhnke [150].

Theorem 12.11. Let K be a convex body in Rn and E(X, c) = EK its optimal
circumscribing ellipsoid. The ellipsoid with the same center c but shrunk by
a factor n is contained in K. If K is symmetric, that is, K = −K, then the
ellipsoid with the same center c but shrunk by a factor of only

√
n is contained

in K.

Proof. Without loss of generality, we assume that EK = E(I, 0) = B. The
theorem states that n−1B ⊆ K. Let

P = co
(
{ui}k1

)
be the convex hull of the contact points. We claim that the stronger statement
n−1B ⊆ P holds. Since P ⊆ K, we will then have n−1B ⊆ K. By duality, the
claim is equivalent to showing that the polar sets satisfy P ∗ ⊆ (n−1B)∗ = nB.
Let x ∈ P ∗. Since −‖x‖ = −‖x‖ · ‖ui‖ ≤ 〈x, ui〉 ≤ 1, we have

0 ≤
k∑
i=1

λi(1− 〈x, ui〉)(‖x‖+ 〈x, ui〉)

=
( k∑
i=1

λi

)
‖x‖ −

k∑
i=1

λi(〈x, ui〉)2 = n‖x‖ − ‖x‖2,
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where the second equality follows from
∑
i λi = n and (12.8). This implies

‖x‖ ≤ n, and proves that P ∗ ⊆ nB.
If K is symmetric, we define Q = co

(
{±ui}k1

)
⊆ K, and claim that

n−1/2B ⊆ Q, or equivalently, that Q∗ ⊆ (n−1/2B)∗ =
√
nB. It is easily shown

that Q∗ = {x : |〈x, ui〉| ≤ 1, i = 1, . . . , k}. Let x ∈ Q∗. Since −1 ≤ 〈x, ui〉 ≤ 1,
we have

0 ≤
k∑
i=1

λi(1− 〈x, ui〉)(1 + 〈x, ui〉) = n− ‖x‖2.

This gives ‖x‖ ≤ √n and proves the claim. ut

12.4 The Maximum-Volume Inscribed Ellipsoid Problem

The inscribed ellipsoid problem is the problem of finding a maximum-volume
ellipsoid inscribed in a convex body K in Rn. It will be seen that this ellipsoid
is unique as well, and we denote it by EK . This ellipsoid is referred to as the
John ellipsoid in the Banach space literature, and a reference is given to Fritz
John [148], although the inscribed ellipsoid problem is not treated in John’s
paper.

In this section, we again use semi-infinite programming to treat this prob-
lem. The inscribed ellipsoid has properties similar to those of the circum-
scribed ellipsoid. For example, the ellipsoid with the same center but blown
up n times contains K, and in the case K = −K is symmetric, the ellipsoid
needs to be blown up by a smaller factor

√
n. The ellipsoid EK is very useful

in the geometric theory of Banach spaces. It is also useful in some convex
programming algorithms, such as the inscribed ellipsoid method of Tarasov,
Erlikh, and Khachiyan [251].

As a first step, using (12.5), we can formulate the inscribed ellipsoid prob-
lem as a semi-infinite program

max{detX : E(X, c) ⊆ K}.

However, this is hard to work with, due to the inconvenient form of the con-
straints E(X, c) ⊆ K. Using support functions, we convert them into inequal-
ities

〈c, d〉+ 〈X−1d, d〉1/2 = sE(X,c)(d) ≤ sK(d), ‖d‖ = 1,

where we restrict d to the unit sphere, since support functions are homoge-
neous (of degree 1).

Defining Y = X−1, we can therefore rewrite our semi-infinite program in
the form

min − ln detY

s. t. 〈c, d〉+ 〈Y d, d〉1/2 ≤ sK(d), ‖d‖ = 1,
(12.11)
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in which the decision variables are (Y, c) ∈ Sn × Rn and we have infinitely
many constraints indexed by the unit vector ‖d‖ = 1.

Since sK is a convex function on Rn, it is continuous. Therefore, there
exists a positive constant M > 0 such that if (Y, c) is a feasible decision
variable, then |〈c, d〉| ≤M , and 〈Y d, d〉 ≤M for all ‖d‖ = 1. This proves that
the feasible set of (Y, c) for (12.11) is compact, and implies that there exists
a maximum-volume ellipsoid inscribed in K.

We derive the optimality conditions for the maximum-volume inscribed
ellipsoid.

Theorem 12.12. Let K ⊂ Rn be a convex body. There exists an ellipsoid of
maximum-volume inscribed in K. If E(X, c) is such an ellipsoid, then there
exist a multiplier vector λ = (λ1, . . . , λk) > 0, 0 ≤ k ≤ n(n+3)/2, and contact
points {ui}k1 such that

X−1 =
k∑
i=1

λi(ui − c)(ui − c)T ,

0 =
k∑
i=1

λi(ui − c),

ui ∈ ∂K ∩ ∂E(X, c), i = 1, . . . , k,
E(X, c) ⊆ K.

(12.12)

Proof. The existence of a maximum-volume ellipsoid inscribed in K has al-
ready been proved above. Let E(X, c) denote this ellipsoid, and define Y =
X−1. Since the constraints in (12.11) are indexed by ‖d‖ = 1, Theorem 12.4
applies. Therefore, there exist a nonzero multiplier vector (δ0, δ1, . . . , δk) ≥ 0,
where k ≤ n(n + 3)/2, δi > 0 for i > 0, and directions {di}k1 , ‖di‖ = 1,
satisfying the conditions

〈c, di〉+ 〈Y di, di〉1/2 = sK(di)

such that the Lagrangian function

L(Y, c, δ) := −δ0 ln detY + 2
k∑
i=1

δi

[
〈c, di〉+ 〈Y di, di〉1/2 − sK(di)

]
satisfies the optimality the conditions

0 =
1
2
∇cL(Y, c, δ) =

k∑
i=1

δidi,

0 = ∇Y L(Y, c, δ) = −δ0Y −1 +
k∑
i=1

δi
〈Y di, di〉1/2

did
T
i .
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Recalling that ‖di‖ = 1 and taking the trace of the right-hand side of the last
equation above gives δ0 tr(Y −1) =

∑k
i=1 δi〈Y di, di〉−1/2. If δ0, then all δi = 0,

which contradicts δ 6= 0. Therefore, δ0 6= 0, and we let δ0 = 1. Define

ui := c+
Y di

〈Y di, di〉1/2
, λi := 〈Y di, di〉1/2δi, i = 1, . . . , k.

Note that

sE(X,c)(di) = sK(di) = 〈c, di〉+ 〈Y di, di〉1/2 = 〈di, ui〉,

which means that ui ∈ ∂K∩∂E(X, c), that is, ui is a contact point. Rewriting
the above optimality conditions in terms of {ui} and {λi} and simplifying, we
arrive at the conditions (12.12). ut

As in the circumscribed ellipsoid case, we can simplify these conditions by
assuming that the optimal ellipsoid is the unit ball E(I, 0). Then the Fritz
John conditions become

I =
k∑
i=1

λiuiu
T
i , 0 =

k∑
i=1

λiui,

ui ∈ ∂K ∩ ∂B, i = 1, . . . , k, K ⊆ B.
(12.13)

We note that the optimality conditions (12.13) are exactly the same as the
corresponding optimality conditions (12.8) in the circumscribed ellipsoid case,
except for the feasibility constraint K ⊆ B.

Theorem 12.13. Let K be a convex body in Rn. The maximum-volume ellip-
soid inscribed in K is unique. Furthermore, the optimality conditions (12.12)
are necessary and sufficient for an ellipsoid E(X, c) to be the maximum-
volume ellipsoid inscribed in K.

The proof uses Lemma 12.8. It is omitted, since it is very similar to the proof
of Theorem 12.9.

We end this section by proving an analogue of Fritz John’s containment
results concerning EK .

Theorem 12.14. Let K be a convex body in Rn and let E(X, c) = EK be its
optimal inscribed ellipsoid. The ellipsoid with the same center c but blown up
by a factor n contains K. If K = −K is symmetric, then the ellipsoid with
the same center c but blown up by a factor

√
n contains K.

Proof. The proof here is similar to the proof of Theorem 12.11. Without loss
of generality, we assume that EK = E(I, 0) = B. The first part of the theorem
follows if we can prove the claim that

K ⊆ P ∗ ⊆ nB.
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Since 1 = sB(ui) = sK(ui) = maxx∈K〈ui, x〉, the first inclusion holds. If
x ∈ P ∗, then −‖x‖ = −‖x‖ · ‖ui‖ ≤ 〈x, ui〉 ≤ 1, and

0 ≤
k∑
i=1

λi(1− 〈x, ui〉)(‖x‖+ 〈x, ui〉) = n‖x‖ − ‖x‖2,

where the equality follows from
∑
i λi = n and (12.13). This implies ‖x‖ ≤ n,

and proves the second inclusion in the claim.
If K is symmetric, we define Q = co

(
{±ui}k1

)
⊆ K and claim that K ⊆

Q∗ ⊆ √nB. Since 1 = sK(±ui), we have |〈ui, x〉| ≤ 1, and the first inclusion
follows. To prove the second inclusion in the claim, let x ∈ Q∗. We have
|〈x, ui〉| ≤ 1, and the rest of the proof follows as in the proof of Theorem 12.11.

ut

12.5 Chebyshev’s Approximation Problem

In this section, we solve Chebyshev’s approximation problem using semi-
infinite programming techniques. Another interesting approach to tackling
this and similar problems is given in Section 13.2.1 using Helly’s theorem in
convex analysis.

Let I := [α, β] be an interval. The supremum norm of a continuous function
f : I → R is

‖f‖ := max
t∈[α,β]

|f(t)|.

Chebyshev’s approximation problem is one of the central problems in ap-
proximation theory . One version of it is formulated as follows. Let γ be a point
not in I. We are looking for the nth-degree polynomial q(t) whose supremum
norm is minimal among all nth-degree polynomials p(t) that satisfy the con-
dition p(γ) = 1.

Mathematically, this is the minimax problem

min
p∈Pn

max
t∈[α,β]

|p(t)|, (12.14)

where
Pn := {p(t) = ant

n + · · ·+ a1t+ a0 : p(γ) = 1}.
The solution is given by Chebyshev’s polynomials as described below.

Theorem 12.15. Let I = [α, β] be an interval and γ a point not in I. The
optimal solution of the problem (12.14) is given by the polynomial

q(t) =
Tn

(
1 + 2 t−ββ−α

)
Tn

(
1 + 2 γ−ββ−α

) , (12.15)
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where
Tn(t) := cos(n cos−1 t)

is Chebyshev’s polynomial of the first kind of degree n.
Moreover, the optimal objective value of the problem (12.14) is

‖q‖ =
1∣∣∣Tn (1 + 2 γ−ββ−α

)∣∣∣ =
1∣∣∣Tn (2 γ−µβ−α

)∣∣∣ ,
where µ = α+β

2 is the midpoint of the interval [α, β].

Proof. Note that the linear transformation l(t) = 1 + 2 t−ββ−α maps the interval
[α, β] into the interval [−1, 1] and sends the point γ into the point γ̄ = 1 +
2 γ−ββ−α . If q(t) and q̄(t) are the optimal solutions of (12.15) with parameters
([α, β], γ) and ([−1, 1], γ̄), respectively, then q̄(t) = q(l(t)). Thus, it suffices
to consider the case ([−1, 1], γ) from the start, and show that the optimal
solution is q(t) = Tn(t)/Tn(γ) and ‖q‖ = 1

|Tn(γ)| in that case.
We first demonstrate the existence of a solution. This will follow if we can

show that a sublevel set of polynomials Lη := {p ∈ Pk : ‖p‖ ≤ η} is compact.
Let {pi}∞1 be a sequence of polynomials in Lη. We claim that the sequence
of the coefficient vectors ai = (ain, . . . , a

i
1, a

i
0) is bounded. If the claim is true,

then a subsequence {aij} can be extracted from {ai} converging to a vector
ā = (ān, . . . , ā1, ā0). Then the polynomials pij converge to p(t) =

∑n
k=0 ākt

k

in Lη, and this will show that Lη is compact. Suppose that the claim is not
true. Then we there exists a subsequence {ij} such that ‖aij‖ → ∞ and
aij/‖aij‖ → ā 6= 0. We have

pij (t)
‖aij‖ =

n∑
k=0

a
ij
k

‖aij‖ t
k.

As j → ∞, the left-hand side of the equality above approaches zero on
[−1, 1], while the right-hand side approaches the nonzero polynomial p(x) =∑n
k=0 ākt

k, a contradiction. This proves the claim.
Next, we reformulate the minimax problem as an optimization problem.

We introduce an extra variable z, and write it as a semi-infinite program in
the variables (z, a),

min z

s. t. − z ≤ (antn + an−1t
n−1 + · · ·+ a1t+ a0) ≤ z, t ∈ [−1, 1]

anγ
n + an−1γ

n−1 + · · ·+ a1γ + a0 = 1.

(12.16)

At the optimal solution (z∗, a) ∈ Rn+2, it follows from a slight extension of
Theorem 12.4 (to take into account the last, equality, constraint above) that
there exist s ≤ n+ 2 values of t (s ≤ n+ 1 if λ0 > 0 below)
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−1 ≤ t1 < t2 < · · · < ts ≤ 1

for which the inequality constraints in the problem are active. We form the
(weak) Lagrangian

L(z, a;λ, δ) = λ0z +
s∑
i=1

λi

(
n∑
k=0

akt
k
i − sgn(λi)z

)
+ δ

(
n∑
k=0

akγ
k − 1

)

=

(
λ0 −

n∑
i=1

|λi|
)
z +

n∑
k=0

ak

(
s∑
i=1

λit
k
i + δγk

)
− δ,

where sgn(t) = 1 if t > 0 and sgn(t) = −1 if t < 0. The multipliers satisfy
the conditions (λ, δ) := (λ0, λ1, . . . , λs, δ) 6= 0, λ0 ≥ 0, and λi is nonnegative
or nonpositive depending on whether the corresponding constraint is of the
form tni +

∑n−1
k=0 akt

k
i ≤ z or −(tni +

∑n−1
k=0 akt

k
i ) ≤ z, respectively. The FJ

conditions consist of these conditions on the multipliers and the equations

s∑
i=1

|λi| = λ0,
s∑
i=1

λit
k
i + δγk = 0, k = 0, . . . , n. (12.17)

If λ0 = 0, then all the multipliers {λi}s1 and δ are zero, contradicting the
FJ conditions. We set λ0 = 1 and obtain

∑s
i=1 |λi| = 1. The second set of

equalities in (12.17) becomes


1 1 · 1 1
t1 t2 · ts γ
...

...
...

...
...

tn1 t
n
2 · tns γn



λ1

λ2

...
λs
δ

 = 0, (λ1, . . . , λs, δ) 6= 0.

We must have s = n+ 1, since otherwise s ≤ n and the Vandermonde matrix
above has full rank s + 1 (for example, its submatrix consisting of the first
s + 1 rows is a nonsingular Vandermonde matrix), implying that λ = 0 and
δ = 0.

At the points {ti}n+1
1 , the optimal polynomial q(t) :=

∑n
k=0 akt

k achieves
its supremum

ν := z∗ = max
t∈[−1,1]

|q(t)|.

Since the derivative q′ is a polynomial of degree at most n − 1, the number
of ti in the open interval (−1, 1) can be at most n − 1. This means that the
number of such ti is exactly n−1 and that endpoints −1, 1 of I are also among
the ti’s. Thus, we have

−1 = t1 < t2 < · · · < tn < tn+1 = 1.

Next, we see that the polynomial (1− t2)(q′)2 has the 2n roots
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−1, t2, t2, . . . , tn, tn, 1.

The polynomial ν2 − q(t)2 is of degree 2n, also with roots {ti}n+1
1 . Since

(ν2 − q(t)2)′ = −2q(t)q′(t) = 0 at an interior root ti, each such ti is a double
root of ν2 − q(t)2. Thus, the two polynomials are multiples of each other. By
comparing the coefficients of their highest terms, we obtain

n2(ν2 − q(t)2) = (1− t2)q′(t)2.

The problem of determining q(t) is thus reduced to solving this equation.
Let J = (ti, ti+1) be an interval where ti, ti+1 are in (−1, 1) such that

q′(t) > 0 on J . The above equation can be written as

q′(t)√
ν2 − q(t)2

=
n√

1− t2
.

Integration both sides, and making a substitution u = q(t)/ν on the left-hand
side, we obtain

cos−1

(
q(t)
ν

)
= cos−1(u) =

∫
du√

1− u2
= n

∫
dt√

1− t2
= c+ n cos−1(t),

giving

q(t) = ν cos(c+ n cos−1(t)) = ν cos(c) cos(n cos−1 t)− ν sin(c) sin(n cos−1 t).

Since the function sin(n cos−1 t) is not a polynomial, the right-hand side above
can be a polynomial only when sin c = 0, implying that cos c = ∓1. We set
cos c = 1 without losing any generality. Thus, q(t) = νTn(t) and q(γ) = 1
implies ν = 1/Tn(γ). This proves that q(t) = Tn(t)

Tn(γ) . Since ‖Tn‖ = 1 on
[−1, 1], we also have ‖q‖ = 1

|Tn(γ)| . ut

12.6 Kirszbraun’s Theorem and Extension of Lipschitz
Continuous Functions

Kirszbraun’s theorem [165] states that if S ⊂ Rm and f : S → Rn is a Lip-
schitz continuous function, then f can be extended to a Lipschitz continuous
function f̃ : Rm → Rn without changing its Lipschitz constant. Kirszbraun’s
theorem is valid in infinite-dimensional Hilbert spaces as well, but may fail in
spaces with non-Euclidean norms.

Kirszbraun’s theorem has important applications, for example in the the-
ory of maximal monotone operators, where it is used to establish Minty’s
theorem, which forms the cornerstone of that field; see for example [10, 48].

The key ingredients in the proof of Kirszbraun’s theorem (Theorem 12.18
below) are the following two related results due to Schoenberg [237]. The first
is an appealing, and geometrically plausible, result.
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Lemma 12.16. Let {Di}l1 and {D′i}l1 be disks in Rn and Rm, respectively,
where

Di := Bri(xi), D′i := Bri(yi) (i = 1, . . . , l).

If the disks {Di}l1 have nonempty intersection, and the centers of the disks
D′i are closer together than the centers of Di, that is,

‖yi − yj‖ ≤ ‖xi − xj‖ (1 ≤ i, j ≤ l), (12.18)

then the disks {D′i}l1 also have nonempty intersection.

This lemma is equivalent to the following result, which states that a non-
expansive function defined on a finite set S can be extended to a nonexpansive
function on a set containing S and one more point:

Lemma 12.17. Let {xi}l1 ⊂ Rn and {yi}l1 ⊂ Rm be points satisfying (12.18).
Let x ∈ Rn be given. There exists a point y ∈ Rm such that

‖y − yi‖ ≤ ‖x− xi‖ (i = 1, . . . , l). (12.19)

Lemma 12.16 implies Lemma 12.17: consider Di = B‖x−xi‖(xi). Each Di

contains the point x; hence Lemma 12.16 implies that there exists a point
y ∈ ∩B‖x−xi‖(yi). Clearly, y satisfies (12.19).

Conversely, Lemma 12.17 implies Lemma 12.16: if x ∈ ∩Bri(xi), then
(12.19) states that there exists a point y satisfying ‖y − yi‖ ≤ ‖x− xi‖ ≤ ri.
Thus, y ∈ ∩Bri(yi) 6= ∅.

We proceed with the proof of Lemma 12.17.

Proof. If x = xj for some j, then the lemma holds with the choice of y = yj ;
thus we consider the case that x is distinct from {xi}l1. Consider the minimax
problem

min
v∈Rm

max
1≤i≤l

‖v − yi‖2
‖x− xi‖2

. (12.20)

The function

ϕ(v) := max
i

‖v − yi‖2
‖x− xi‖2

is coercive, since we clearly have ϕ(v) → ∞ as ‖v‖ → ∞. Thus, (12.20) has
an optimal solution y.

Let {1, . . . , k} be the set of “active constraints,” that is, ϕ(y) = ‖y −
yi‖2/‖x − xi‖2 if and only if i ≤ k. It follows from Theorem 12.3 that there
exists a nonzero vector 0 ≤ δ ∈ Rk such that

k∑
i=1

λi(y − yi) = 0, (12.21)

where λi := δi/‖x− xi‖2. Thus, y ∈ co({yi}k1).
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The lemma is proved if we can show that ϕ(y) ≤ 1. Suppose this is not
true. Then, defining

ui := xi − x, vi := yi − y (1 ≤ i ≤ k),

we have ‖ui‖2 < ‖vi‖2. Note that (12.18) implies ‖vi − vj‖2 ≤ ‖ui − uj‖2.
Upon expanding this inequality and using ‖ui‖2 < ‖vi‖2, we get

‖ui‖2 + ‖uj‖2 − 2〈vi, vj〉 < ‖vi‖2 + ‖vj‖2 − 2〈vi, vj〉
≤ ‖ui‖2 + ‖uj‖2 − 2〈ui, uj〉,

or simply 〈vi, vj〉 > 〈ui, uj〉. Then we have

0 =
∥∥∥ k∑
i=1

λjvi

∥∥∥2

=
k∑

i,j=1

λiλj〈vi, vj〉 >
k∑

i,j=1

λiλj〈ui, uj〉 =
∥∥∥ k∑
i=1

λiui

∥∥∥2

,

where the first equality follows from (12.21). This is a contradiction, which
proves that ϕ(y) ≤ 1. ut

Theorem 12.18. If S ⊂ Rm and f : S → Rn is Lipschitz continuous, then
f has an extension to a function f̃ : Rm → Rn having the same Lipschitz
constant as f .

Proof. Without loss of generality, we may assume that f is nonexpansive, that
is, ‖f(x1)− f(x2)‖ ≤ ‖x1 − x2‖ for all x1, x2 ∈ S. By Zorn’s lemma, f has a
maximal extension to a nonexpansive function f̃ : T → Rn.

We will show that if T 6= Rn and p /∈ T , then there exists a point q ∈ Rm
satisfying

‖q − f̃(x)‖ ≤ ‖p− x‖ for all x ∈ T. (12.22)

If this is true, then the domain of f̃ can be extended to include p. This
contradicts the maximality of f̃ , and proves that T = Rn.

Now, (12.22) is equivalent to the statement that⋂
x∈T

B‖p−x‖(f̃(x)) 6= ∅.

Since the disks B‖p−x‖(f̃(x)) are compact, it is sufficient to show that every
finite intersection of such disks is nonempty. But every such finite intersection
is nonempty by Lemma 12.17. The theorem is proved. ut

Remark 12.19. Theorem 12.18 also holds for Lipschitz functions of order α,
0 < α < 1, that is, for functions satisfying the condition

‖f(x)− f(y)‖ ≤ L‖x− y‖α for all x, y ∈ S.

The proof is similar, but is a bit more involved.
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12.7 Exercises

1. (First-order sufficient conditions for a local minimizer) Consider the semi-
infinite program

min{f(x) : g(x, y) ≤ 0, y ∈ Y, h(x, z) = 0, z ∈ Z}, (P )

where f(x), g(x, y), and h(x, z) are functions continuously differentiable
with respect to x, and defined on X, X×Y , and X×Z, respectively, where
X ⊆ Rn is an open set, and Y , Z are compact sets in some topological
spaces. Let x∗ be a feasible point of (P ) such that

λ0∇f(x∗) +
k∑
i=1

λi∇g(x, yi) +
l∑

j=1

µj∇h(x∗, zj) = 0,

for some λ0 ≥ 0, λi > 0, yi ∈ Y , g(x∗, yi) = 0, i = 1, . . . , k, and µj 6= 0,
zj ∈ Z, j = 1, . . . , l. Show that if the gradients

λ0∇f(x∗),∇g(x, yi), i = 1, . . . , k,∇h(x∗, zj) = 0, j = 1, . . . , l,

span Rn, then x∗ is a local minimizer of (P ), thereby generalizing Theo-
rem 9.7.

2. Let K ⊂ Rn be a convex body. Show that the equation
∑k
i=1 λi(ui−c) = 0

implies that the contact points of EK (EK) cannot lie on one side of any
hyperplane passing through the center of EK (EK).

3. Use the equations
∑k
i=1 λiuiu

T
i = I and

∑k
i=1 λiui = 0 in (12.8) or (12.13)

to prove that the vectors {ui}k1 span Rn. Show that this implies k ≥ n+1.
Conclude that the number of contact points must be at least n+1 in both
the circumscribed and inscribed ellipsoid problems.

4. Let E be an ellipsoid and K ⊂ Rn. The inclusion K ⊆ E is equivalent to
the inequalities

sE(d) ≥ sK(d) for all d, ‖d‖ = 1.

Use the method in Section 12.4 to develop an alternative semi-infinite
programming method to derive the optimality conditions (12.7) for the
minimum-volume ellipsoid circumscribing K.

5. Let C be a compact, convex set in Rn with nonempty interior. Let b(C)
be the breadth of C, that is, the minimum among the distances of two
parallel support hyperplanes of C. Define also r(C) to be the radius of
the largest ball contained in C. Prove that

r(C) ≥
√
n+ 2

2n+ 2
b(C), n = 2k,

and
r(C) ≥ 1

2
√
n
b(C), n = 2k + 1,

by setting up an appropriate semi-infinite programming problem.
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6. Let C ⊂ Rn be a closed set, and dC(x) := minz∈Rn ‖x − z‖ the distance
function to C, where ‖x‖ =

√
xTx is the Euclidean norm. Show that:

(a) The function f(x) = dC(x)2 is directionally differentiable, with

f ′(x;h) = min{〈x− z, h〉 : ‖x− z‖ = dC(x)}.

(b) If C is convex, then f(x) is continuously differentiable. Compute
∇f(x).

(c) If C is convex, then dC(x) is also continuously differentiable on Rn\C.
Compute ∇dC(x).

7. (Pólya) Let 0 < a < b be given. Solve the following problems using
semi-infinite programming:
(a) minx maxy∈[a,b](x− y)2,

(b) minx maxy∈[a,b]
(x−y)2
y2 .

8. Determine the nth-degree polynomial p(t) = tn+an−1t
n−1 + · · ·+ait+a0

whose supremum norm ‖p‖ := max|t|≤1 |p(t)| on the interval I = [−1, 1]
is minimum. This is the problem of best approximation of the monomial
tn by an (n− 1)th-degree polynomial on the interval [−1, 1].
Show that the solution of this problem is Tn(t)

2n−1 , where Tn is Chebyshev’s
polynomial.
Hint: Mimic the proof of Theorem 12.15.

9. Show that Theorem 12.15 can be solved by ordinary nonlinear program-
ming using Helly’s theorem in Chapter 13 or one of its consequences.

10. Let f : A ⊂ X → R be a Lipschitz continuous function on a subset A of
a metric space (X, d), that is,

|f(x)− f(y)| ≤ Ld(x, y) for all x, y ∈ A.

Show that f can be extended to a Lipschitz continuous function g : X → R
with the same constant L.
Hint: Show that g(x) = inf{f(y) + Ld(x, y) : y ∈ A} satisfies the desired
properties.
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Topics in Convexity

In this chapter, we probe several topics that use significant ideas from convex-
ity theory and that have significant applications in various fields. In particular,
we prove theorems of Radon, Helly, Kirchberger, Bárány, and Tverberg on the
combinatorial structure of convex sets, application of Helly’s theorem to semi-
infinite programming, in particular to Chebyshev’s approximation problem,
homogeneous convex functions, and their applications to inequalities, attain-
ment of optima in maximization of convex functions, decompositions of convex
cones, and finally the relationship between the norms of a homogeneous poly-
nomial and its associated symmetric form. The last result has an immediate
application to self-concordant functions in interior-point algorithms.

Many interesting applications of the topics can be found in the exercises
at the end of the chapter.

13.1 Combinatorial Theory of Convex Sets

Intersections of convex sets have interesting combinatorial properties. We start
with three classical results by Radon, Helly, and Kirchberger dating back to
the early part of the twentieth century.

Theorem 13.1. (Radon) If A ⊆ Rn is an affinely dependent set, then A
can be partitioned into two sets B,C such that co(B) ∩ co(C) 6= ∅.

Proof. Pick an affinely dependent set {xi}k1 in A; then there exists λ :=
(λ1, . . . , λk) 6= 0 such that

k∑
i=1

λixi = 0 and
k∑
i=1

λi = 0.

Suppose that λi ≥ 0 for 1 ≤ i ≤ j and λi < 0 for i = j + 1, . . . , k. Defining
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λ :=
j∑
i=1

λi = −
k∑

i=j+1

λi 6= 0,

we see that the vector

x :=
j∑
i=1

λi
λ
xi =

k∑
i=j+1

−λi
λ
xi

belongs to co({x1, . . . , xk}) ∩ co({xj+1, . . . , xk}). Clearly, B := {x1, . . . , xk}
and C := A \B satisfy co(B) ∩ co(C) 6= ∅. ut

Theorem 13.2. (Helly) Let {Ai}ki=1 be a finite collection of convex sets in
Rn. If the intersection of any n+1 sets from this collection is nonempty, then
∩ki=1Ai 6= ∅.

Proof. The theorem is trivially true for k ≤ n + 1, so we consider the case
k > n+1. The proof is by induction on k. Suppose that the theorem has been
proved for k − 1, and let {Ai}k1 be a collection of convex sets satisfying the
hypothesis of the theorem. By the induction hypothesis any k − 1 of the sets
have nonempty intersection; pick

xi ∈ ∩j 6=iAj 6= ∅, i = 1, . . . , k.

The set A := {xi}k1 is affinely dependent, so Theorem 13.1 implies that A =
B ∪ C, where B = {x1, . . . , xj} and C = {xj+1, . . . , xk}, say, such that

x ∈ co({x1, . . . , xj}) ∩ co({xj+1, . . . , xk}).

If i ≤ j, then xi ∈ ∩kj+1Al, so that x ∈ co({x1, . . . , xj}) ⊆ ∩kj+1Al; similarly,
x ∈ ∩j1Al. We conclude that x ∈ ∩k1Al 6= ∅. ut

Here are some quick applications of Helly’s theorem; more substantial ex-
amples, some important in optimization, will be given in Section 13.2 and in
the exercises at the end of the chapter.

Example 13.3. Let K and {Ci}ki=1, k > n+ 1, be convex sets in Rn.

(a) If the intersection of every n+ 1 of the sets Ci contains a translated copy
of K, then ∩k1Ci must also contain a translated copy of K.

(b) If the intersection of every n+1 of the sets Ci is contained in a translated
copy of K, then ∩k1Ci must also be contained in a translated copy of K.

(c) If the intersection of every n+1 of the sets Ci intersects a translated copy
of K, then ∩k1Ci must also intersect a translated copy of K.

To prove (a), define the sets Di := {x ∈ Rn : K ⊆ x + Ci}; it is easy to
verify that the set Di is convex. Since x ∈ Di means that −x +K ⊆ Ci, the
statement x ∈ ∩n+1

j=1Dij 6= ∅ is equivalent to −x+K ⊆ ∩n+1
j=1Cij , which holds
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for some x by our assumption. It follows by Theorem 13.2 that ∩k1Di 6= ∅, so
there exists a point a ∈ Rn such that a+K ⊆ ∩kiCi. This proves our claim.

The proofs of (b) and (c) are similar; define the sets Di := {x ∈ Rn :
x + Ci ⊆ K} and Di := {x ∈ Rn : (x + Ci) ∩ K 6= ∅} for (b) and (c),
respectively. The verification of the details is left to the reader.

Corollary 13.4. Let {Aα}α∈A be any collection of closed convex sets in Rn
such that some finite intersection of sets from this collection is bounded and
nonempty. If the intersection of any n+1 sets from this collection is nonempty,
then ∩α∈AAα 6= ∅.

Proof. If F is any finite subset of A, it follows from Theorem 13.2 that
∩α∈FAα 6= ∅. Let A0 := ∩i∈F0Ai 6= ∅ be a bounded set, and define
Âα := Aα ∩ A0. Each set Âα is compact, and {Âα}α∈A has the property
that any finite intersection of sets from this collection is nonempty. It follows
from the finite intersection property of compact sets that ∩α∈AÂα 6= ∅. Thus,

∩α∈AAα = ∩α∈AÂα 6= ∅.

ut

Theorem 13.5. (Kirchberger) Let S and T be two finite subsets of Rn. The
sets S and T can be strictly separated if and only if every subset of S and T ,
consisting of at most n+ 2 points can be strictly separated.

Here is an amusing application of Kirchberger’s theorem [114]. Suppose
that in a flock consisting of black sheep and white sheep, any four sheep may
be separated by a straight fence, that is, black and white sheep lie on different
sides of the fence. Then the whole flock can be separated by a straight fence.

Proof. We may assume that |S ∪ T | ≥ n+ 2. For each s ∈ S and each t ∈ T ,
define the open half-spaces in Rn+1

Is := {(λ0, λ) ∈ R×Rn : 〈s, λ〉 > λ0},
Jt := {(λ0, λ) ∈ R×Rn : 〈t, λ〉 < λ0}.

By assumption, each n+ 2 members of the family {Is : s ∈ S} ∪ {Jt : t ∈ T}
have a nonempty intersection. Theorem 13.2 implies that there exists a point
(λ0, λ) ∈ ∩s∈SIs ∩ ∩t∈TJt; this means that the sets S and T are strictly
separated by the hyperplane {x : 〈λ, x〉 = λ0} in Rn. ut

Helly’s theorem and its relatives, Radon’s, Carathéodory’s, and Kircher-
berger’s theorems among others, are the beginnings of an extensive literature
on the combinatorial properties of convex sets. The reader is directed to the
survey articles [69, 83, 156] for more information on this subject.
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13.2 Applications of Helly’s Theorem to Semi-infinite
Programming

Helly’s theorem has important applications to optimization, especially when
the number of constraints is infinite (semi-infinite programming); see [224],
[187], [228].

The theorem below is the main result of this section.

Theorem 13.6. Consider the problem

ρ := inf
{
f(x) : g(x, y) ≤ 0, y ∈ Y

}
, (P )

where x belongs to a convex set in Rn, f(x) and g(x, y) are lower semicon-
tinuous convex functions in x, Y is a (possibly infinite) index set, and the
feasible set

F := {x : g(x, y) ≤ 0, for all y ∈ Y }
is not empty. Assume that

there exists a finite subset Z ⊂ Y such that
{x : g(x, y) ≤ 0, y ∈ Z} is a bounded set.

(13.1)

Let Ωn be the collection of all sets ω ⊆ Y of cardinality at most n, and for
each ω ∈ Ωn, define the subproblem

ρ(ω) := inf
{
f(x) : g(x, y) ≤ 0, y ∈ ω

}
. (Pω)

Then

(a) ρ = supω∈Ωn ρ(ω), that is,

inf
{
f(x) : g(x, y) ≤ 0, y ∈ Y

}
= sup
ω∈Ωn

inf
{
f(x) : g(x, y) ≤ 0, y ∈ ω

}
.

Moreover, if ρ is finite, then:

(b) If each subproblem (Pω) has an optimal solution, then problem (P ) also
has an optimal solution.

(c) If each subproblem (Pω) has an optimal solution x∗(ω) and the maximum
of ρ(ω) is achieved at a set ω∗ ∈ Ωn, then the point x∗ := x∗(ω∗) is an
optimal solution of (P ) provided it is a feasible solution of (P ).

(d) If each subproblem (Pω) has an optimal solution x∗(ω), the maximum of
ρ(ω) is achieved at a (possibly nonunique) set ω∗ ∈ Ωn, and the optimal
solution x∗0 := x∗(ω∗0) to at least one (Pω∗0 ) is unique, then the point x∗0
is the unique optimal solution of (P ).
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Proof. We assume that |Y | > n; otherwise the theorem is trivial. For each
subset Z ⊂ Y , define the corresponding feasible set FZ := {x : g(x, y) ≤
0, for all y ∈ Z}; for convenience, set Fy := F{y}. Define

ρ̄ := sup
ω∈Ωn

ρ(ω).

If ω ∈ Ωn, then F ⊆ Fω and ρ(ω) ≤ ρ; consequently ρ̄ ≤ ρ. We claim that
the reverse inequality ρ̄ ≥ ρ also holds. This is trivially true when ρ = −∞,
so assume that ρ ∈ R ∪ {∞}. If ρ ∈ R, for ε > 0, define the set

Cε := {x : f(x) ≤ ρ− ε}.

Note that Cε ∩ F = Cε ∩ ∩y∈Y Fy = ∅, but ∩y∈Y Fy 6= ∅. It follows from
Corollary 13.4 that there exists a subset ω ∈ Ωn such that Cε ∩ Fω = ∅; this
gives ρ̄ ≥ ρ(ω) ≥ ρ − ε for all ε > 0, proving the claim. If ρ = ∞ (that is,
(P ) is infeasible), we want to prove that ρ̄ = ∞. If ρ̄ < M < ∞, then define
D := {x : f(x) ≤M} and note that D∩Fω 6= ∅ for every ω ∈ Ωn; this implies
that D ∩ F 6= ∅ and gives the contradiction ρ ≤M <∞.

To prove part (b), note that if ω ∈ Ωn, then

{x : f(x) ≤ ρ(ω)} ∩ Fω ⊆ {x : f(x) ≤ ρ} ∩ Fω = C0 ∩ Fω 6= ∅,

since the first intersection is nonempty by hypothesis, and the inclusion follows
because ρ(ω) ≤ ρ. By Corollary 13.4, C0 ∩ F 6= ∅, and any point x in this
intersection is clearly a minimizer of (P ).

Part (c) is trivial: f(x∗) = ρ̄ = ρ and x∗ is feasible for (P ) by assumption.
It remains to prove part (d). We know by part (b) that (P ) has an optimal

solution x̄. Clearly, x̄ is a feasible solution to (Pω∗0 ), and we have

f(x̄) = ρ = ρ̄ = ρ(ω∗0) = f(x∗0),

which proves that x̄ = x∗0 is the unique optimal solution to (P ). ut

We remark that it is possible to obtain results similar to Theorem 13.6
by imposing compactness assumptions on the index set Y instead of the as-
sumption (13.1) on the feasible set; see Levin [187] (Theorem 1) for more
details.

13.2.1 Chebyshev’s Approximation Problem

Let f(x) be a continuous function on the interval [a, b], and n a given positive
integer. Chebyshev’s approximation problem we consider here is concerned
with approximating the function f(x) on [a, b] by a polynomial p of degree at
most n− 1 such that the uniform norm

‖f − p‖∞ := max
x∈[a,b]

|f(x)− p(x)|
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is minimized. This is a central problem in approximation theory . A variant of
the problem is solved explicitly in Section 12.5 by semi-infinite programming
techniques. Following [224], we use Theorem 13.6 to solve Chebyshev’s prob-
lem. Many other important problems in approximation theory, and in general
in semi-infinite programming, can be solved similarly using Helly’s theorem
as a main tool.

Our problem is a minimax problem

min
p∈Pn−1

max
x∈[a,b]

|f(x)− p(x)|, (13.2)

where Pn−1 is the vector space of polynomials of degree at most n − 1. We
can write it as the semi-infinite (linear) program

min
(z,a)∈Rn+1

{
z : −z ≤ f(x)−

n−1∑
i=0

aix
i ≤ z, x ∈ [a, b]

}
. (13.3)

We give a characterization of the solution in Theorem 13.10. As dictated by
Theorem 13.6, we first need to solve a finite-constraint version of Chebyshev’s
approximation problem. This is done in the following two lemmas.

For x ∈ Rk, we define

‖x‖∞ = max{|xi| : i = 1, . . . , k}.

Lemma 13.7. Consider the problem

min{‖x‖∞ : 〈b, x〉 = β},

where b = (b0, b1, . . . , bn), and bi 6= 0 for all i.
The optimal solution x∗ is unique, and x∗ and the optimal objective value

ρ are given by

ρ =
|β|∑n
i=0 |bi|

, x∗i = ρ sgn(βbi), i = 0, . . . , n.

Proof. Clearly, we can assume that β ≥ 0. We have

β =
n∑
i=0

bixi ≤
n∑
i=0

|bi| · |xi| ≤ ‖x‖∞
( n∑
i=0

|bi|
)
,

and ‖x‖∞ is minimized only when the inequalities above are equalities, which
happens if and only if ρ = β/(

∑n
i=0 |bi|) and bixi = |bi| · |xi| = |bi|ρ for all i,

that is, xi = sgn(bi)ρ for all i. ut

The next result gives the best approximating polynomial on a finite set of
points.
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Lemma 13.8. Let {(xi, yi)}ni=0 be n+ 1 given points in the plane such that

x0 < x1 < · · · < xn,

and consider the minimax problem

min
p∈Pn−1

max
i
|yi − p(xi)|, (13.4)

which seeks a polynomial p(x) = an−1x
n−1 + · · ·+ a1x+ a0 of degree at most

n− 1 that best fits the data points {(xi, yi)} in the sense that it minimizes the
quantity

ρ(x0, x1, . . . , xn) := max
i
|yi − p(xi)|.

The optimal objective value ρ(x0, x1, . . . , xn) is the absolute value of the
quantity ∣∣∣∣∣∣∣∣∣

y0 1 x0 . . . x
n−1
0

y1 1 x1 . . . x
n−1
1

...
yn 1 xn . . . xn−1

n

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣

1 1 x0 . . . x
n−1
0

−1 1 x1 . . . x
n−1
1

...
(−1)n 1 xn . . . xn−1

n

∣∣∣∣∣∣∣∣∣
−1

,

and there exists a unique polynomial p∗ achieving ρ(x0, x1, . . . , xn), which is
characterized by the condition that the discrepancies {yi−p∗(xi)}ni=0 are equal
in absolute value to ρ(x0, x1, . . . , xn) and alternate in sign.

In light of Theorem 13.6, it is perhaps not surprising that the characteristic
alternation property of the optimal solution in Chebyshev’s approximation
problem (see Theorem 13.10 and Lemma 13.11) is already present in this
finite-dimensional approximation subproblem.

Proof. Writing ui = yi − p(xi) for the discrepancies, problem (13.4) becomes
the optimization problem

min ‖u‖∞
s. t. Xa = y − u (13.5)

in the decision variables a and u, where

X =


1 x0 . . . x

n−1
0

1 x1 . . . x
n−1
1

...
1 xn . . . xn−1

n

 , a =


a0

a1

...
an−1

 , y =


y0
y1
...
yn

 , and u =


u0

u1

...
un

 .

Since the vector a can be chosen at will, the vectors u in the constraint
Xa = y − u fill the affine space y + R(X). The matrix X has linearly in-
dependent columns, since augmenting it with the column (xn0 , . . . , x

n
n)T yields

a Vandermonde matrix with determinant
∏
i>j(xi−xj) > 0. This implies that
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y + R(X) is an n-dimensional affine space in Rn+1, hence a hyperplane, and
can thus be described by a single linear equation in u. This equation is∣∣∣∣∣∣∣∣∣

u0 − y0 1 x0 . . . x
n−1
0

u1 − y1 1 x1 . . . x
n−1
1

...
un − yn 1 xn . . . xn−1

n

∣∣∣∣∣∣∣∣∣ = 0,

which simply expresses the linear dependence of the vectors consisting of y−u
and the columns of X. Therefore, the constraint of (13.5) is given by∣∣∣∣∣∣∣∣∣

u0 1 x0 . . . x
n−1
0

u1 1 x1 . . . x
n−1
1

...
un 1 xn . . . xn−1

n

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
y0 1 x0 . . . x

n−1
0

y1 1 x1 . . . x
n−1
1

...
yn 1 xn . . . xn−1

n

∣∣∣∣∣∣∣∣∣ .
Denoting the right-hand by β and expressing the left-hand side by expanding
the determinant using the first column, we can write this equation in the form∑n
i=0 biui = β, where

|bi| = (−1)ibi = det[(xk)l]k 6=i,0≤l≤n =
∏

k>l;k,l 6=i

(xk − xl) > 0

and

n∑
i=0

|bi| =

∣∣∣∣∣∣∣∣∣
1 1 x0 . . . x

n−1
0

−1 1 x1 . . . x
n−1
1

...
(−1)n 1 xn . . . xn−1

n

∣∣∣∣∣∣∣∣∣ .
The lemma is completed by invoking Lemma 13.7. The optimal polynomial
p∗ is unique, since a can be determined uniquely from y − u. ut
Theorem 13.9. Let f(x) be a bounded (not necessarily continuous) function
on the interval [a, b], and n a given positive integer.

The problem
min{‖f − p‖∞ : p ∈ Pn−1}

has an optimal solution p∗ ∈ Pn−1, and

ρ∗ := ‖f − p∗‖∞ = sup{ρ(x0, x1, . . . , xn) : a ≤ x0 < x1 < · · · < xn ≤ b}.
The supremum is achieved at some {xi}n0 , and the optimal value ρ∗ is the

absolute value of∣∣∣∣∣∣∣∣∣
f(x0) 1 x0 . . . x

n−1
0

f(x1) 1 x1 . . . x
n−1
1

...
f(xn) 1 xn . . . xn−1

n

∣∣∣∣∣∣∣∣∣÷
∣∣∣∣∣∣∣∣∣

1 1 x0 . . . x
n−1
0

−1 1 x1 . . . x
n−1
1

...
(−1)n 1 xn . . . xn−1

n

∣∣∣∣∣∣∣∣∣ .
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Proof. We write our problem as the semi-infinite linear program (13.3) in the
decision variables (z, a) = (z, a0, . . . , an−1) ∈ Rn+1. We can clearly assume
that |z| ≤ supx∈[a,b] |f(x)| (pick p = 0), and if we choose a ≤ x0 < x1 < · · · <
xn ≤ b, then it is easy to show, using the invertibility of the Vandermonde
matrix, that the linear constraints

−z ≤ f(xk)−
n−1∑
i=0

aix
i
k ≤ z, i = 0, . . . , n,

have a bounded set of feasible a. The theorem follows immediately from part
(b) of Theorem 13.6 and Lemma 13.8. ut

Theorem 13.10. (Chebyshev’s theorem) Let f(x) be a continuous func-
tion on the interval [a, b], and n a given positive integer.

There exists a unique polynomial p∗ of degree at most n − 1 minimizing
the norm ‖f − p‖∞ on [a, b].

Moreover, there exist n + 1 distinct points x0 < x1 < · · · < xn in [a, b]
such that the minimum norm ρ∗ := ‖f − p∗‖∞ satisfies

ρ∗ = ρ(x0, x1, . . . , xn),

and the discrepancies f(xi) − p∗(xi) are equal to ρ∗ in absolute value and
alternate in sign.

Proof. Theorem 13.9 guarantees everything except the uniqueness of p∗. Ex-
tend the function ρ(x0, x1, . . . , xn) to all of [a, b]n+1 by defining it to be zero
when {xi}n0 are not all distinct. Note that the uniqueness will follow from part
(d) of Theorem 13.6, provided we can show that ρ(x0, x1, . . . , xn) is continuous
on [a, b]n+1.

We may assume ρ∗ > 0, because otherwise f itself is a polynomial of degree
at most n− 1, p∗ = f , and the function ρ is identically zero. The formula for
ρ(x0, x1, . . . , xn) in Lemma 13.8 shows that it is a continuous function if all
xi are distinct. To prove that it is everywhere continuous, let

x(k) :=
(
x

(k)
0 , x

(k)
1 , . . . , x(k)

n

)
→ x := (x0, x1, . . . , xn),

where the components of x are not all distinct. By the Lagrange interpolation
formula, there exists p ∈ Pn−1 such that p(xi) = f(xi) for i = 0, . . . , n. Since
f is continuous, we have for i = 0, . . . , n,

ρ(x(k)) ≤ |f(x(k)
i )− p(x(k)

i )| → |f(xi)− p(xi| = 0,

proving ρ(x(k))→ ρ(x). ut

The alternation property in Theorem 13.10 actually characterizes the op-
timal solution to Chebyshev’s approximation theorem. The following result
goes back to de la Vallée-Poussin.
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Lemma 13.11. Let f(x) be a continuous function on the interval [a, b], and
n a given positive integer.

Let p∗ ∈ Pn−1 be a polynomial of degree at most n−1 such that there exist
n + 1 distinct points x0 < x1 < · · · < xn in [a, b] with the property that the
discrepancies f(xi)− p∗(xi) alternate in sign and their absolute value is equal
to a constant µ > 0.

Then p is an optimal solution to Chebyshev’s approximation problem (13.2),
and µ is the optimal deviation µ = ρ∗ := minp∈Pn−1 ‖f − p‖∞.

Proof. Suppose that there exists p ∈ Pn−1 satisfying ‖f −p‖∞ < µ. Then the
polynomial r := p− p∗ ∈ Pn−1 has the property that

r(xi) = (f(xi)− p∗(xi))− (f(xi)− p(xi)) ∈ ∓µ+ (−µ, µ), i = 0, . . . , n,

so that two consecutive values r(xi) and r(xi+1) lie in the disjoint intervals
(−2µ, 0) and (0, 2µ), thus are nonzero and alternate in sign. By the interme-
diate value theorem, r must have n distinct roots in [a, b]. This means that
r(x) is identically zero, a contradiction. We have proved that ρ∗ ≥ µ, and
since |f(xi)− p∗(xi)| = µ, we must have ρ∗ = µ. ut

13.3 Bárány’s and Tverberg’s Theorems

We describe two results here, one by Bárány [22] generalizing Theorem 4.13
(Carathéodory’s theorem) and the other by Tverberg [257] generalizing Theo-
rem 13.1 (Radon’s theorem). The proofs below are taken from [63]; the elegant
proof of Tverberg’s theorem uses an idea from [235].

Theorem 13.12. (Bárány) Let {Ai}n+1
i=1 be n + 1 nonempty sets in Rn. If

x ∈ Rn belongs to the convex hull of each set Ai, then there exists a point
xi ∈ Ai such that x belongs to the convex hull of {x1, . . . , xn+1}.

Note that the theorem reduces to Carathéodory’s theorem if A1 = A2 =
· · · = An+1. Bárány’s theorem is referred to as the colorful Carathéodory’s
theorem for the following reason: assume that all points of Ai are given a
certain color, say red, all points of Ai are given a certain color, say blue,
etc. The theorem states that if the convex hulls of all monochromatic sets Ai
have a common point x, then x must be in the convex hull of a colorful set
A = {a1, . . . , an+1} with ai ∈ Ai.

Proof. We may assume, without loss of generality, that x = 0, and by virtue
of Theorem 4.13 that each Ai contains at most n + 1 affinely independent
points. Consider the collection A of all colorful sets A = {x1, . . . , xn+1} with
xi ∈ Ai; A is a finite collection of sets. For a set A ∈ A, define

d(A) = min{‖x‖ : x ∈ co(A)}.
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Since co(A) is compact, the minimum is achieved, say at point a ∈ co(A).
Suppose that d(A) > 0 for all A ∈ A; we will obtain a contradiction by

showing that if A ∈ A is the set with the smallest d(A) > 0, we can find
A ∈ A such that d(A) < d(A). Since a ∈ A is the closest point to zero, a lies
in a proper face of A, so that a ∈ co(A \ {aj}) for some aj ∈ Aj . The set
{x ∈ Rn : 〈x− a, a〉 < 0} contains the point zero. Some point âj ∈ Aj must
also lie in this set, since otherwise we have 〈y − a, a〉 ≥ 0 for all y ∈ Aj , and
since 0 ∈ co(Aj), this leads to the contradiction 〈−a, a〉 = −‖a‖ ≥ 0. Now
define the set A that is obtained from A by replacing aj with aj . We have
[a, aj ] ∈ A, because a, aj ∈ A; if t > 0 is small enough, we obtain

‖(1− t)a+ taj‖2 = ‖a‖2 + 2t〈a, aj − a〉+ t2‖aj − a‖2 < ‖a‖2.

This proves the claim and the theorem. ut

Theorem 13.13. (Tverberg) Let r > 1 be an integer, and A ⊂ Rn a set
with (r − 1)(n + 1) + 1 distinct elements. Then A can be partitioned into r
sets whose convex hulls have a common point.

Proof. The proof utilizes Bárány’s theorem. Define k := (r − 1)(n + 1). Let
A = {a0, a1, . . . , ak} and define

A = {a0, a1, . . . , ak}, ai :=
(
ai
1

)
∈ Rn+1, i = 0, 1, . . . , k.

For each ai, associate the set

Âi := {Mi1,Mi2, . . . ,Mir−1,Mir}
=
{

[ai, 0, . . . , 0], [0, ai, 0, . . . , 0], . . . , [0, . . . , 0, ai], [−ai,−ai, . . . ,−ai]
}

of (n+ 1)× (r − 1) matrices; note that we have Mi1 + · · ·+Mir = 0, so that
0 ∈ co(Âi), i = 1, . . . , r. Identifying Rk with the vector space of (n+1)×(r−1)
matrices, Theorem 13.12 implies that there exist matrices Miji ∈ Âi and
λi ≥ 0,

∑k
i=0 λi = 1, such that

∑k
i=0 λiMiji = 0. Define

Ij := {i : ji = j, 0 ≤ i ≤ k}, j = 1, . . . , r.

Then {Ij}r1 is a partition of the index set {0, 1, . . . , k}, and we have

0 =
r∑
j=1

∑
i∈Ij

λiMij

=
∑
i∈I1

λi[ai, 0, . . . , 0] +
∑
i∈I2

λi[0, ai, 0, . . . , 0] + · · ·+
∑
i∈Ir−1

λi[0, . . . , ai]

+
∑
i∈Ir

λi[−ai, . . . ,−ai].
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This implies that

a :=
∑
i∈I1

λiai =
∑
i∈I2

λiai = · · · =
∑
i∈Ir

λiai,

and recalling that the last component of each ai is 1, we also have∑
i∈I1

λi =
∑
i∈I2

λi = · · · =
∑
i∈Ir

λi =
1
r
.

Define
Aj := {ai : i ∈ Ij}, j = 1, . . . , r.

We see that {Aj}r1 is a partition of A into r sets such that ra ∈ ∩rj=1 co(Aj).
The theorem is proved. ut

Note that the theorem reduces to Radon’s theorem when r = 2. It can
be given a colorful interpretation: if A ⊂ Rn has (r − 1)(n + 1) + 1 distinct
elements, then A can be partitioned into r monochromatic sets whose convex
hulls have a common point. It is known that (r − 1)(n + 1) + 1 is the best
constant, so that the theorem is false for any smaller integer.

The computational complexity of these colorful theorems and related prob-
lems are discussed in [23].

13.4 Homogeneous Convex Functions

Let K ⊆ Rn be a convex cone containing the origin, and p > 0. A function
f : K → R is homogeneous of degree p if

f(tx) = tpf(x) for all t ≥ 0, x ∈ K.

A convex homogeneous function of degree one is called a sublinear function.
The usual definition of strict convexity is not meaningful for a sublinear func-
tion, because if x and y are positively collinear, say y = αx for some α > 0,
then

f(x+y) = f(x+αx) = f((1+α)x) = (1+α)f(x) = f(x)+αf(x) = f(x)+f(y);

thus it is more natural to call a sublinear function f strictly convex if

f(x+ y) < f(x) + f(y) for all x, y not positively collinear.

Recall that if f is a convex function, then the directional derivatives always
exist (but may be ∓∞); in fact,

f ′(x; d) := lim
t↘0

f(x+ td)− f(x)
t

= inf
t>0

f(x+ td)− f(x)
t

,

see Exercise 9 on page 108.
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Lemma 13.14. The directional derivative of a convex function f is sublinear,
that is,

f ′(x; d1 + d2) ≤ f ′(x; d1) + f ′(x; d2).

Proof. We have

f
(
x+

t

2
(d1 + d2)

)
= f

(1
2

(x+ td1) +
1
2

(x+ td2)
)

≤ 1
2
f(x+ td1) +

1
2
f(x+ td2),

which implies

f
(
x+ t

2 (d1 + d2)
)
− f(x)

t/2
≤ f(x+ td1)− f(x)

t
+
f(x+ td2)− f(x)

t
;

we obtain the lemma by taking the limits of both sides as t↘ 0. ut

Lemma 13.15. A sublinear function f : K → R is strictly convex if and
only if

f(y) > f ′(x; y) for all x, y not positively collinear.

Proof. Let x, y be not positively collinear. If f is sublinear, then f(x+ ty) <
f(x) + f(ty) = f(x) + tf(y), and this implies for any t0 > 0,

f ′(x; y) = inf
t>0

f(x+ ty)− f(x)
t

≤ f(x+ t0y)− f(x)
t0

< f(y).

Conversely, we have f(x) > f ′(x+ y;x) and f(y) > f ′(x+ y; y). Since f ′(x; ·)
is sublinear by the previous lemma, we obtain

f(x) + f(y) > f ′(x+ y;x+ y) = f(x+ y),

where the last equality follows because

f ′(z; z) = inf
t>0

f(z + tz)− f(z)
t

= inf
t>0

(1 + t)f(z)− f(z)
t

= f(z).

ut

Lemma 13.16. Let f : K → [0,∞) be a convex function on a convex cone
K ⊆ Rn, 0 ∈ K, such that f(x) > 0 for x 6= 0.

If f is homogeneous of degree p, then g(x) = f(x)1/p is a sublinear function
on K. If f is strictly convex in the sense that

f((1− t)x+ ty) < (1− t)f(x) + tf(y),

where 0 < t < 1 and x, y are not positively collinear, then g is also strictly
convex.
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Proof. Since g is homogeneous of degree one, it suffices to prove the inequality

g(x+ y) ≤ g(x) + g(y), (13.6)

because we then have

g((1− t)x+ ty) ≤ g((1− t)x) + g(ty) = (1− t)g(x) + tg(y).

The inequality (13.6) is clearly true if x = 0 or y = 0. If x and y are both
nonzero, then g(x) > 0 and g(y) > 0; letting t = g(y)/(g(x) + g(y)) (and
1− t = g(x)/(g(x) + g(y)), and using the convexity of f , we obtain

g

(
x+ y

g(x) + g(y)

)
= g

(
(1− t) x

g(x)
+ t

y

g(y)

)
= f

(
(1− t) x

g(x)
+ t

y

g(y)

)1/p

≤
(

(1− t)f(
x

g(x)
) + tf(

y

g(y)
)
)1/p

.

Note that

f

(
x

g(x)

)
=

1
g(x)p

f(x) =
f(x)
f(x)

= 1;

similarly f(y/g(y)) = 1. Thus, we have

g

(
x+ y

g(x) + g(y)

)
≤ ((1− t) + t)1/p = 1,

proving (13.6). If f is strictly convex, x and y are not positively collinear, and
0 < t < 1, then we have strict inequalities above, and g is strictly convex. ut

We use the above lemma to give a quick proof of Minkowski’s inequality,
which is an important result in analysis. Let p > 0. If x = (x1, x2, . . . , xn), we
define

‖x‖p =
( n∑
i=1

|xi|p
)1/p

.

Minkowski’s inequality states that ‖x‖p is a sublinear function, so that ‖x‖p
is a norm in Rn.

Corollary 13.17. (Minkowski’s inequality) Let p > 1. Then

‖x+ y‖p ≤ ‖x‖p + ‖y‖p for all x, y ∈ Rn,

with equality holding if and only if the vectors x and y are proportional, y = αx
or x = αy, with α ≥ 0.
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Proof. The function t 7→ tp is strictly convex for t ≥ 0, since its derivative
ptp−1 is strictly increasing. It follows that the function f(x) =

∑n
i=1 x

p
i is

convex on Rn+ (it is a sum of convex functions), and it is easy to verify that f
is strictly convex. Thus, the function g(x) = f(x)1/p = ‖x‖p is strictly convex
on Rn+, proving Minkowski’s inequality in Rn+,

‖x+ y‖p ≤ ‖x‖p + ‖y‖p for all x, y ∈ Rn+,

with equality holding if and only if x and y are proportional.
If x, y ∈ Rn are arbitrary, denote by u and v the vectors with components

|xi| and |yi|, respectively. Applying Minkowski’s inequality u, v gives

‖x+ y‖p ≤ ‖u+ v‖p ≤ ‖u‖p + ‖v‖p = ‖x‖p + ‖y‖p,

where the first inequality follows from |xi + yi| ≤ |xi|+ |yi|. Now the second
inequality holds with equality if and only if the vectors u and v are propor-
tional, and the first one if and only if |xi+yi| = |xi|+|yi| for all i = 1, . . . , n. It
is easy to see these two conditions are equivalent to the condition that y = αx
or x = αy with α ≥ 0. ut

13.5 Attainment of Optima in Mathematical
Programming

The following result [135] gives a nice illustration of the use of the decomposi-
tion theorem, Theorem 5.37, in the investigation of attainment of an optimizer.

Theorem 13.18. Let f : C → R be a convex function that is bounded from
above on a closed convex set C ⊆ Rn. Then,

(a) The function f is constant along any direction on the lineality space LC
of C.

(b) The function f is nonincreasing along a recession direction of C.

Consequently,

(c) The function f attains its maximum on C if and only if it attains its
maximum on the set ext(Ĉ), where C = co(ext(Ĉ)) + rec(C) is the de-
composition of C given in Theorem 5.37.

Proof. Let M = supx∈C f(x) < ∞. Pick a point x ∈ C, and consider the
convex function g(l) := f(l + x) on the lineality subspace LC of C. Since
l = (1/t)(tl) + (1− 1/t)0, we have for t ≥ 1,

g(l) ≤ 1
t
g(tl) +

(
1− 1

t

)
g(0) ≤ 1

t
M +

(
1− 1

t

)
g(0).

Letting t→∞ gives g(l) ≤ g(0). Since −l ∈ LC , we also have
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g(0) ≤ 1
2
g(l) +

1
2
g(−l) ≤ 1

2
g(l) +

1
2
g(0),

or g(0) ≤ g(l). Therefore, we have g(l) = g(0), that is, f(x+ l) = f(x) for all
x ∈ C and l ∈ LC , proving (a).

Next, pick x ∈ C and d ∈ rec(C). Since x+ d = (1− 1
t )x+ 1

t (x+ td), the
convexity of f gives, for t ≥ 1,

f(x+ d) ≤
(

1− 1
t

)
f(x) +

1
t
f(x+ td) ≤

(
1− 1

t

)
f(x) +

1
t
M,

and letting t→∞ gives f(x+ d) ≤ f(x), proving (b)
Finally, if x1, x2 ∈ ext(Ĉ) are two extreme points and 0 < t < 1, then

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2) ≤ max{f(x1), f(x2)}.

Since C = co(ext(Ĉ)) + rec(C) by Theorem 5.37, the proof is complete. ut

Corollary 13.19. Let f : C → R be a convex function bounded from above
on a closed convex set C ⊆ Rn.

If C is a convex polyhedron, then f attains a maximum on C. The same
result is true if ext(C) is compact and f is upper semicontinuous on C.

Proof. If C is a convex polyhedron, then Theorem 7.13 implies that f attains
its maximum on {vi}k1 . The rest of the corollary follows immediately from
Theorems 13.18 and 2.3. ut

13.6 Decomposition of Convex Cones

In this section, we show that any pointed (line-free) convex cone decomposes
into a direct sum of indecomposable or irreducible components in a unique
fashion. This is a special case of a result in [113]; the more general result there
is in an affine setting, which renders the proof more technically involved. The
proof here is more accessible.

Recall that the Minkowski sum of a collection {Ai}mi=1 of sets of E is
defined as

A1 + · · ·+Am :=
{ m∑
i=1

xi : xi ∈ Ai
}
.

If all of the Ai = Ei are linear subspaces {0} 6= Ei ⊆ E that satisfy E =
E1 + · · ·+Em and Ei ∩ (

∑
j 6=iEj) = {0}, then we say that E is a direct sum

of {Ei}m1 and write
E = E1 ⊕ E2 ⊕ · · · ⊕ Em.

In this section we assume that every cone contains the origin.
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Definition 13.20. Let K ⊆ E be a pointed convex cone. K is called decom-
posable if there exist cones {Ki}mi=1, m ≥ 2, such that K = K1 + · · · + Km,
where each Ki lies in a linear subspace Ei ⊂ E, and where the spaces {Ei}mi=1

decompose E into a direct sum E = E1 ⊕E2 ⊕ · · · ⊕Em. Each Ki is called a
direct summand of K, and K is called the direct sum of the {Ki}. We write

K = K1 ⊕K2 ⊕ · · · ⊕Km (13.7)

to denote this relationship between K and {Ki}mi=1. K is called indecompos-
able or irreducible if it cannot be decomposed into a nontrivial direct sum.

Let us define Êi := ⊕j 6=iEj and K̂i := ⊕j 6=iKj . If K is the direct sum
(13.7), then every x ∈ K has a unique representation x = x1 + · · ·+ xm with
xi ∈ Ki ⊆ Ei. Thus, xi = ΠEix, where ΠEi is the projection of E onto Ei
along Êi. Also, since 0 ∈ Ki, we have Ki = Ki +

∑
j 6=i{0} ⊆

∑m
j=1Kj = K.

Therefore,
ΠEiK = Ki ⊆ K.

This implies that Ki = ΠEiK is a convex cone. Similarly, we have

(I −ΠEi)K = ΠÊi
K = K̂i ⊆ K.

We first prove a useful technical result.

Lemma 13.21. Let K be a pointed convex cone that decomposes into the
direct sum (13.7). If x ∈ Ki is a sum x = x1 + · · ·+ xk of elements xj ∈ K,
then each xj ∈ Ki.

Proof. We have 0 = ΠÊi
x = ΠÊi

x1 + · · · + ΠÊi
xk. Each term x̂j := ΠÊi

xj

belongs to K̂i ⊆ K, so that x̂j ∈ K and −x̂j =
∑
l 6=j x̂l ∈ K. Since K contains

no lines, we have x̂j = 0, that is, xj = ΠEixj ∈ Ki, j = 1, . . . , k.

Theorem 13.22. Let K ⊆ E be a decomposable pointed convex cone. The
irreducible decompositions of K are identical modulo indexing, that is, the set
of cones {Ki}mi=1 is unique. Moreover, the subspaces Ei corresponding to the
nonzero cones Ki are also unique.

If K is a solid cone, then all the cones Ki are nonzero and the subspaces
{Ei}m1 are unique.

Proof. Suppose that K admits two irreducible decompositions

K =
m⊕
i=1

Ki ⊆
m⊕
i=1

Ei and K =
q⊕
j=1

Cj ⊆
q⊕
j=1

Fj .

Note that each nonzero summand in either decomposition of K must lie in
span(K) and that the subspace corresponding to each zero summand must
be one-dimensional, for otherwise the summand would be decomposable.
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This implies that the number of zero summands in both decompositions is
codim

(
span(K)

)
.

We may thus concentrate our efforts on span(K), that is, we can assume
that K is solid and all the summands of both decompositions of K are nonzero.
By (13.7), each x ∈ Cj ⊆ K has a unique representation x = x1 + · · · + xm,
where xi = ΠEix ∈ Ki ⊆ K. Also, Lemma 13.21 implies that xi ∈ Cj ,
and hence xi ∈ Ki ∩ Cj . Consequently, every x ∈ Cj lies in the set (K1 ∩
Cj) + · · · + (Km ∩ Cj). Conversely, we have Ki ∩ Cj ⊆ Cj , implying that
(K1 ∩ Cj) + · · ·+ (Km ∩ Cj) ⊆ Cj ; therefore,

Cj = (K1 ∩ Cj) + · · ·+ (Km ∩ Cj).

Note that Ki ∩ Cj ⊆ Ei ∩ Fj , Fj = (E1 ∩ Fj) + · · · + (Em ∩ Fj), and
that the intersection of any two distinct summands in the last sum is the
trivial subspace {0}. The above decompositions of Fj and Cj are therefore
direct sums. Since Cj is indecomposable, exactly one of the summands in the
decomposition of Cj is nontrivial. Thus, Cj = Ki∩Cj , and hence Cj ⊆ Ki for
some i. Arguing symmetrically, we also have Ki ⊆ Cl for some l, implying that
Cj ⊆ Cl. Therefore, j = l, for otherwise Cj ⊆ Fj ∩ Fl = {0}, contradicting
our assumption above. This shows that Cj = Ki. The theorem is proved by
repeating the above arguments for the cone K̂i = ⊕k 6=iKk = ⊕l 6=jCl. ut

Theorem 13.22 is reminiscent of the Krull–Remak–Schmidt theorem in
algebra; see [184].

13.7 Norms of Polynomials and Multilinear Maps

Let E,F be two vector spaces over R or C endowed with some norms. A
mapping p : E → F is called a polynomial if for fixed x, y ∈ E, the map
t 7→ p(x + ty) is a polynomial in t. A homogeneous polynomial of degree k
induces a k-multilinear symmetric mapping p̃ : Ek → F such that

p(x) = p̃(x, x, . . . , x).

In fact, it is a well-known result of Mazur and Orlicz [194] that

p̃(x1, . . . , xk) =
1
k!

∑
ε∈{0,1}k

(−1)k+
∑k

1 εj p
( k∑

1

εjxj

)
; (13.8)

see [35] and [141], p. 393. One may associate two norms with such a mapping,

‖p‖ := sup {‖p(x)‖ : ‖x‖ = 1} = sup {‖p̃(x, . . . , x)‖ : ‖x‖ = 1} ,
‖p̃‖ = sup {‖p̃(x1, . . . , xk)‖ : ‖x1‖ ≤ 1, . . . , ‖xk‖ ≤ 1} .

Of course, ‖p‖ ≤ ‖p̃‖; conversely, the formula (13.8) implies that if ‖xi‖ = 1,
i = 1, . . . , k, then
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‖p̃(x1, . . . , xk)‖ ≤ 1
k!

∑
ε∈{0,1}k

‖p‖ ·
∥∥∥ k∑

1

εjxj

∥∥∥k ≤ (2k)k

k!
‖p‖,

that is,

‖p̃‖ ≤ (2k)k

k!
‖p‖.

If E,F are finite vector spaces over R and E is a Euclidean space, then the
above norms are in fact equal. This result plays an important role in deriving
some properties of self-concordant barrier functions in the book by Nesterov
and Nemirovski [209] and is proved there in Appendix 1. It has an interesting
history and seems to have been rediscovered many times. The first proof seems
to have been given by Kellogg [162]. Subsequently, independent proofs have
been given in [258, 21, 139, 35, 264, 209], and possibly others.

The following simple and elegant proof of the result is in Bochnak and
Siciak [35] and is attributed to Lojasiewicz.

Theorem 13.23. Let E be a finite-dimensional real Euclidean space, and F
a real normed space. Then

‖p‖ = ‖p̃‖.

Proof. It suffices to show that ‖p̃‖ ≤ ‖p‖. Let S = {x ∈ E : ‖x‖ = 1} be the
unit ball in E.

First, consider the case k = 2. If x, y ∈ S such that ‖p̃(x, y)‖ = ‖p̃‖, we
claim that

‖p̃(x+ y, x+ y)‖ = ‖p̃‖ · ‖x+ y‖2.
Otherwise, ‖p̃(x+y, x+y)‖ < ‖p̃‖·‖x+y‖2; since ‖p̃(x−y, x−y)‖ ≤ ‖p̃‖·‖x−y‖2
and

p̃(x, y) =
p̃(x+ y, x+ y)− p̃(x− y, x− y)

4
,

we have

‖p̃‖ = ‖p̃(x, y)‖ < ‖p̃‖
4

(‖x+ y‖2 + ‖x− y‖2)

=
‖p̃‖
4

(2‖x‖2 + 2‖y‖2) = ‖p̃‖,

a contradiction.
Next, we assume k > 2. There exist x̃1, . . . , x̃k ∈ S such that ‖p̃‖ =

‖p̃(x̃1, . . . , x̃k)‖. We can find a ∈ S such that the inner products 〈a, x̃i〉 are
nonzero for all i = 1, . . . , k. Consequently, by replacing xi by −xi if necessary,
we see that there exists ε > 0 such that the set

Aε :=
{

(x1, . . . , xk) ∈ Sk : 〈a, xi〉 ≥ ε, ∀i, ‖p̃(x1, . . . , xk)‖ = ‖p̃‖
}

is a nonempty compact set. There exists a point (x∗1, . . . , x
∗
k) ∈ Aε that max-

imizes the linear functional
∑k
i=1〈a, xi〉 over Aε; we claim that
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x∗1 = · · · = x∗k,

which will prove the theorem.
Suppose that x∗i 6= x∗j for a pair of indices i, j. Note that x∗i 6= −x∗j ,

otherwise, we would have the contradiction

ε < 〈a, x∗j 〉 = −〈a, x∗i 〉 ≤ −ε < 0.

The parallelogram law

‖x∗i + x∗j‖2 + ‖x∗i − x∗j‖2 = 2‖x∗i ‖2 + 2‖x∗j‖2 = 4

implies that 0 < ‖x∗i + x∗j‖ < 2. Consider the point (x′1, . . . , x
′
k) ∈ Sk, where

x′i = x′j =
x∗i + x∗j
‖x∗i + x∗j‖

, x′l = x∗l , l 6= i, j,

which lies in Aε, because ‖x∗i + x∗j‖ ≤ 2. In fact, ‖x∗i + x∗j‖ < 2, and we have

k∑
l=1

〈a, x′l〉 >
k∑
l=1

〈a, x∗l 〉,

which contradicts the maximality of (x∗1, . . . , x
∗
k). ut

We remark that the lemma also holds in the case that E is a real or
complex Hilbert space.

13.8 Exercises

1. Suppose that a convex set C ⊆ Rn is covered by a finite family of open
(or closed) half-planes {Hα}α∈A, that is, C ⊆ ∪α∈AHα. Show that C can
be covered by at most n+ 1 of the half-planes.
Hint: Show that the sets H̃α := C \Hα, α ∈ A, have empty intersection.

2. Let {Si}mi=1 be vertical line segments in the plane, Si = {(xi, y) : αi ≤
y ≤ βi} = {xi} × [αi, βi].
(a) If any three of the segments Si can be cut by a line, then there is a

line that cuts all of the line segments {Si}m1 .
Hint: Let Li = {(a, b) : αi ≤ axi + b ≤ βi} ⊆ R2 be the set of lines
that cut the segment Si.

(b) If any k+2 of the line segments can be cut by a kth-degree polynomial
curve {(x, y) : y = a0x

k+a1x
k−1+· · ·+ak}, then there is a kth-degree

polynomial curve that cuts all of the line segments {Si}m1 .
3. A slab of width d in Rn is the region between two parallel hyperplanes in

Rn that are d-distance apart. The width of a set A ⊂ Rn is the smallest
width of a slab containing A. Let {Ci}k1 be convex sets in Rn such that
the intersection of every n + 2 of them has width at least d. Show that
the width of the intersection ∩k1Ci is at least d.
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4. An interesting consequence of Helly’s theorem is the following result [69].
Let C ⊂ Rn be a convex body. Show that there exists a point x̄ ∈ C such
that each chord [u, v] in C passing through x̄ is divided by x̄ into two
parts satisfying the condition

‖x̄− v‖
‖x̄− u‖ ≥

1
n
.

Thus, x̄ is a sufficiently “central” point of C.
Hint: For each x ∈ C, define the set

Cx = x+
n

n+ 1
(C − x).

If {xi}n0 are arbitrary points in C, prove that the point y = (x0 + · · · +
xn)/(n + 1) lies in the intersection ∩ni=0Cxi . Then show that the set
∩x∈CCx is nonempty, and that any point x̄ in this set satisfies the re-
quired conditions.

5. State and prove a version of Theorem 13.6 for a finite set Y without the
lower semicontinuity assumptions on the functions f and g, and without
assuming that {x : g(x, y) ≤ 0, y ∈ Z} is a bounded set for a finite subset
Z ⊂ Y .

6. State and prove an analogue of Theorem 13.6 for the minimax problem

inf
x∈C

sup
α∈A

ϕα(x),

where all ϕα are lower semicontinuous convex functions on a convex set
C in Rn.
Hint: Convert the minimax problem into the minimization problem inf{z :
ϕα(x)− z ≤ 0, α ∈ A} as in Section 13.2.1.

7. This problem outlines a straightforward proof of a result of Bohnenblust,
Karlin, and Shapley (see [157], Theorem 1), which the last two authors use
to prove a number of interesting results in convex sets (including Helly’s
theorem) and in approximation theory [157].
Let F := {ϕα}α∈A be a family of continuous convex functions on a com-
pact convex set K ⊂ Rn. Assume that

for each x ∈ K, ϕ(x) is positive for some function ϕ ∈ F . (13.9)

Prove that there exist k ≤ n+1 positive numbers {λi}k1 satisfying
∑k

1 λi =
1, and functions {ϕi}k1 ⊂ F such that the function

ϕ(x) :=
k∑
i=1

λiϕi(x) is positive on K. (13.10)

Prove this result by the following steps:
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(a) Show that the assumption (13.9) is equivalent to

inf
x∈K

sup
α∈A

ϕα(x) > 0. (13.11)

(b) Convert the minimax problem into the minimization problem

inf{z : ϕα(x)− z ≤ 0, α ∈ A},

and use Theorem 13.6 to prove that there exist ϕi(x) ∈ F , i = 1, . . . , k,
where k ≤ n+ 1 such that the function

ϕ(x) := max
1≤i≤k

ϕi(x)

is positive on K.
(c) Let ∆k−1 be the standard unit simplex in Rk. Note that ϕ(x) =

maxλ∈∆k−1

∑k
i=1 λiϕi(x). The proof of (13.10) then follows from

min
x∈K

ϕ(x) = min
x∈K

max
λ∈∆k−1

k∑
i=1

λiϕi(x) = max
λ∈∆k−1

min
x∈K

k∑
i=1

λiϕi(x),

where the last equality follows from an appropriate minimax theorem;
see Chapter 6 in Aubin and Ekeland [10].

8. The result of Bohnenblust, Karlin, and Shapley described in the previous
problem is equivalent to Helly’s theorem. In particular, show that it im-
plies the version of the Helly’s theorem in Corollary 13.4 in which each set
in the family is compact. (In fact, part (c) of the previous problem is not
needed.) Since the proof of Corollary 13.4 is done in two stages, first for
a family compact sets, then in the general case, we obtain its full proof in
this way.
Hint: Define the function ϕα(x) := d(x,Aα) = minz∈Aα ‖x − z‖, the dis-
tance function to the set Aα.
We remark that Rademacher and Schoenberg [224] give a geometric proof
of Helly’s theorem in a similar manner, by characterizing (in a different
way) the optimal solution to a minimax problem minx∈Rn maxi d(x,Ki),
where {Ki} is a finite family of compact convex sets in Rn.

9. The purpose of this problem is to prove Jung’s inequality

D(S) ≥
√

2(n+ 1)/n R(S)

using Helly’s theorem. (The same problem is treated in Section 12.2 by
semi-infinite programming techniques.)
Let S ⊂ Rn be a compact set. Define the diameter of S as D(S) :=
max{‖x− y‖ : x, y ∈ S}, and the inradius R(S) := minx∈Rn maxy∈S ‖x−
y‖, the radius of the smallest ball containing S.
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(a) Prove the claim that if Jung’s inequality holds for sets with cardinality
at most n+ 1, then it holds for all compact sets.
Hint: For x ∈ S, define the closed ball B(x) := B√

n/(2(n+1))D(S)
(x).

Show that the hypothesis of the claim implies that ∩x∈ωB(x) 6= ∅ for
all ω = {x1, . . . , xn+1} ⊆ S.

(b) Let S = {y1, . . . , yn+1} ⊂ Rn. Show that there exists a point x∗

minimizing the function ϕ(x) := maxi ‖x− yi‖.
(c) Show that the point x∗ in (b) lies in co(S), so that

∑n+1
i=1 λi(x

∗−yi) =
0 for some nonnegative λi, not all zero.
Hint: If not, then separate x∗ and co(S) by a hyperplane H; then,
moving x∗ orthogonally slightly toward H, we can decrease the dis-
tance between x∗ and each yi. Why?

(d) Complete the problem using the technique in the proof of Theo-
rem 12.5 starting with the equations

∑
i,j λiλj‖yi − yj‖2 = · · · =

2R(S)2.
10. State and prove versions of Bárány’s and Tverberg’s theorems for convex

cones.
11. It is customary to prove Hölder’s inequality and then deduce Minkowski’s

inequality from it. In this problem, we reverse the order of the proofs. Let
p > 1 and q > 1 be conjugate exponents, that is,

1
p

+
1
q

= 1, p > 1, q > 1.

Hölder’s inequality states

〈x, y〉 ≤ ‖x‖p · ‖y‖q

for all nonnegative, nonzero x, y ∈ Rn.
(a) Assuming Minkowski’s inequality, prove that Lemma 13.15 implies

‖y‖q ≥ ‖z‖1−qq

〈
(zq−1

1 , . . . , zq−1
n ), (y1, . . . , yn)

〉
,

for all z, y ∈ Rn+\{0}, with equality holding if and only if z and y are
proportional.

(b) Define x = (zq−1
1 , . . . , zq−1

n ), and show that ‖x‖pp = ‖z‖qq. Use these
and (a) to conclude that Hölder’s inequality holds for x, y ∈ Rn+, with
equality holding if and only if the vectors (xp1, . . . , x

p
n) and (yq1, . . . , y

q
n)

are proportional.
(c) Show that Hölder’s inequality holds for vectors in Rn, with equality

holding if and only if the vectors (|x1|p, . . . , |xn|p) and (|y1|q, . . . , |yn|q)
are proportional.

12. Let p > 1, and define the homogeneous function of degree one

fp(x) = (xp1 − |x2|p − · · · − |xn|p)1/p
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on the set

Kp =
{
x = (x1, x̃) = (x1, x2, . . . , xn) : x1 ≥ ‖x̃‖p

}
.

The goal of this problem is to show that fp is a concave function on Kp.
(a) Show that Kp is a convex cone. (When p = 2 and n = 4, this is the

forward light cone, or the Lorentz cone, in physics.)
(b) The hypograph of f is the set

hypo(fp) := {(x, µ) : x ∈ K, fp(x) ≥ µ}.

Note that fp(x) ≥ 0, and use it to show that fp is a concave function
if and only if hypo(f) ∩ {(x, µ) : µ ≥ 0} is convex.

(c) Show that

hypo(fp) ∩ {(x, µ) : µ ≥ 0} = {(x1, x̃, µ) : µ ≥ 0, x1 ≥ ‖(µ, x̃)‖p}.

Show that this set is convex; conclude that fp is a superlinear function,

fp(x+ y) ≥ fp(x) + fp(y) for all x, y ∈ Kp.

This is called Bellman’s inequality .
(d) Show that the above results and Lemma 13.15 imply Popoviciu’s

inequality

x1y1 − x2y2 − · · · − xnyn ≥ fp(x) · fq(y) ∀x ∈ Kp, y ∈ Kq,

where p, q > 1 are conjugate exponents, that is, p−1 + q−1 = 1.
13. (Hilbert metric) Let K be a compact convex body in Rn. Let us first

define an asymmetric distance function D(a, b) on C = intK,

D(a, b) = ln
|bf |
|af | ;

see Figure 13.1. Note that D(a, b)→∞ if a→ ∂K. Show that

D(a, c) ≤ D(a, b) +D(b, c),

by verifying the following assertions:
(a) Define a = (1 − α)f + αb; then D(a, b) = − lnα. Similarly, define
b = (1−β)g+βc, a = (1−γ)k+γc, and k = (1− δ)f + δg. Show that

γ = αβ, k =
1− α

1− αβ f +
α(1− β)
1− αβ g.

(b) Show that

D(a, c) ≤ ln
|ck|
|ak| = − ln(αβ) = D(a, b) +D(b, c).
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Fig. 13.1. Hilbert metric on a convex body.

Consequently, D(a, b) satisfies the triangular inequality, and it is clear
that D(a, b) = 0 if and only a = b. However, D(a, b) 6= D(b, a), so D is
not a metric in the usual sense. It is easy to fix this defect by defining a
new distance

d(a, b) := D(a, b) +D(b, a) = ln
( |bf | · |ah|
|af | · |bh|

)
.

(c) Show that d(a, b) is a metric in the usual sense.
It is called the Hilbert metric on C. Note that d(a, b) → ∞ when a or b
approaches the boundary of C.

14. This problem constructs an interesting isomorphism between Rn and an
open convex polyhedral cone, and another one between Rn and the interior
of a solid convex polytope.
Consider the functions f, g : Rn → R,

f(x) =
k∑
i=1

αie
〈ui,x〉 and g(x) = ln f(x),

where {αi}ki=1 are positive numbers. Assume that the convex cone

K =
{ k∑
i=1

µiui : µi > 0, i = 1 . . . , k
}

is a proper (K 6= Rn) and open polyhedral cone in Rn.
Define the maps

F (x) := ∇f : Rn → Rn and G(x) := ∇g : Rn → Rn.

(a) Show that the function f is strictly convex.
Hint: Use the Taylor series for f(x+ td) to compute dTHf(x)d, and
prove that dTHf(x)d = dTDF (x)d = 0 implies d = 0.
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(b) Use (a) to prove that the mapping F (x) is one-to-one. Use the inverse
function theorem to prove that the range F (Rn) is an open set.

(c) If u1 is an extreme direction of the polyhedral cone K, then show
that u1 ∈ F (Rn).
Hint: Argue that the ray {tu1 : t ≥ 0} is an exposed face of K, so
that there exists a vector v such that 〈u1, v〉 = 0, but 〈ui, v〉 < 0 for
j = 2, . . . , k. See what happens to F (w+ tv) as t→∞, and show that
one can choose w ∈ Rn such that F (w + tv)→ u1 as t→∞.

(d) Prove that F (Rn) is almost convex in the sense that the sets F (Rn)
and intF (Rn) are both convex.
Hint: Use Proposition 11 in Section 6.7 of Aubin and Ekeland [10];
even better, prove the assertion directly.

(e) So far, it has been shown that F (Rn) is an open convex set contained
in K whose closure is K. Prove that F (Rn) = K. Argue that F is an
analytic isomorphism between Rn and K.

(f) Prove that the function g(x) is convex.
Hint: Either compute the Hessian Hg(x) using the Taylor series for
g(x+ td), or use Exercise 19 on p. 111.

(g) Show that

G(x) = ∇g(x) =
k∑
i=1

αi
f(x)

e〈ui,x〉ui

maps Rn one-to-one onto the interior of the convex polytope P =
co(u1, . . . , uk).
Hint: Let K̃ be the open polyhedral cone generated by the vectors
{(ui, 1)}ki=1 in Rn+1 and use the results above to show that

F (x, xn+1) := exn+1

( k∑
i=1

αie
〈ui,x〉ui,

k∑
i=1

αie
〈ui,x〉

)
maps Rn+1 one-to-one onto K̃. To finish the proof, note that P can
be considered as the intersection of K̃ with the plane yn+1 = 1.
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Three Basic Optimization Algorithms

This chapter has a different focus from that of the rest of the book. While
all the other chapters deal with the theory of optimization, this chapter deals
with numerical algorithms for finding solutions of optimization problems. Al-
though, for space reasons, we cannot go into this vast, central aspect of opti-
mization in great depth, it is important to give an introduction to it, and to
show how numerical methods and the theory of optimization fit together.

In this chapter, we discuss three central algorithms: the steepest-descent
method, Newton’s method, and the conjugate-gradient method. The first two
are chosen because many algorithms in optimization are based on them. The
last algorithm is a powerful method for solving the very specific problem
of minimizing convex quadratic functions in Rn (or equivalently for solving
linear equations Ax = b where A is a symmetric positive definite matrix). It
is chosen because of its intrinsic importance, and to show that, sometimes,
a simple modification of a slow algorithm (in this case the steepest-descent
method) can lead to a method with much better theoretical and practical
properties.

The steepest-descent method is indeed a very slow algorithm and is not
used much in practice. Its merit lies in the fact that it is simple and reliable.
Once we choose any starting point and an appropriate line-search routine, the
method will decrease the value of the function we are minimizing and even-
tually will find a local minimizer. The success of an optimization algorithm
often hinges on the quality of its line-search algorithm, and the line-search
routines we discuss here are also useful in other algorithms.

We discuss the convergence rate of the steepest-descent method for min-
imizing a very simple function, a strongly convex quadratic function. The
estimate we give, due to Kantorovich, hints that the steepest-descent method
may be very slow; a later result of Akaike [2] confirms that the steepest-descent
method often performs at the rate given by Kantorovich’s estimate.

We also examine the steepest-descent method for minimizing a class of con-
vex functions, and show that it is possible to extend the convergence rate re-
sults for quadratic functions to this class of problems. Moreover, it is even pos-
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sible to obtain conjugate-gradient-like methods for the same class of problems
with improved convergence rates; see for example [206, 204, 207, 117, 208].

Newton’s method (sometimes called the Newton–Raphson method) is ac-
tually a method for the more general problem of finding solutions to a system
of nonlinear equations. It is a local method, meaning that it is guaranteed to
work in a neighborhood (perhaps a very small neighborhood) of a solution; it
could even be chaotic far away from a solution. It has the merit is that it is
a very fast method; in technical terms, it converges quadratically in a neigh-
borhood of the solution. The celebrated theory of Kantorovich can be used
to estimate the size of the quadratic convergence region. We give an account
of his theory in this chapter. There have been two important recent advances
in Newton methods that we do not treat here. One is Smale’s theory [33] for
estimating the quadratic convergence region using data (function values and
derivatives) at a single point, and the other is the theory of self-concordant
functions due to Nesterov and Nemirovski [209], which is the cornerstone of
the theory of interior-point methods. Self-concordant functions are a very spe-
cial class of convex functions for which Newton’s method converges globally,
at a predetermined linear rate far away from a solution and at a quadratic
rate locally. The interested reader can find a wealth of information in the book
[209] and a concise introduction in [226].

The conjugate-gradient method of Hestenes and Stiefel [132] was originally
a method for minimizing a strongly convex quadratic function. In this context,
it is a vast improvement over the steepest-descent method discussed above.
Although it has been extended to more general classes of functions as discussed
above, its properties are most remarkable and best understood in its original
setting, and we restrict our treatment to this case. Nowadays, the conjugate-
gradient method is a very important numerical method. It is used in practice
as an iterative numerical method for solving a linear system of equations
Ax = b, where A in an n × n symmetric, positive definite matrix, with A
sparse and n large.

We provide a fairly complete treatment of the conjugate-gradient method
here. We derive the algorithm, show its remarkable properties, and give a
complete derivation of a convergence-rate estimate for it. To a beginner, the
conjugate-gradient method may seem intricate and hard to understand. In
Section 14.10, we give an independent treatment of the method that we believe
is fairly straightforward, certainly shorter.

14.1 Gradient-Descent Methods

Let U be a nonempty open subset of Rn, and f : U → R a function with
continuous partial derivatives ∂f/∂xi, i = 1, . . . , n; we recall that such a
function is Fréchet differentiable.

Gradient-descent methods try numerically to find a local minimizer of
f iteratively, using only the function value and gradient information; they
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generate a sequence of points {xk}∞0 ⊆ U such that if xk is not already a
local minimizer of f , then

xk+1 = F (xk,∇f(xk))

for a suitable function F such that

f(xk+1) < f(xk).

Thus, the function values decrease at each step of the method.

14.1.1 Descent Directions

Definition 14.1. Let x ∈ U such that ∇f(x) 6= 0, so that x is not a critical
point of f . A descent direction for f is a nonzero vector d ∈ Rn such that
there exists t > 0 with the property

f(x+ td) < f(x) for all t, 0 < t < t. (14.1)

Thus, f strictly decreases along the half-line R++d := {x + td : t > 0} for
sufficiently small step sizes t > 0.

If f is differentiable, it is easy to characterize descent directions by calculus.

Lemma 14.2. Let x ∈ U be a noncritical point of f , and d ∈ Rn a nonzero
vector.

If 〈∇f(x), d〉 < 0 (d makes an obtuse angle with the gradient ∇f(x)), then
d is a descent direction of f at x.

Conversely, if d is a descent direction of f at x, then 〈∇f(x), d〉 ≤ 0.

Proof. Since f is Gâteaux differentiable,

f(x+ td) = f(x) + t〈∇f(x), d〉+ o(t). (14.2)

Thus, if d satisfies 〈∇f(x), d〉 < 0, then f(x + td) < f(x) for all sufficiently
small t > 0; conversely, if f(x+ td) < f(x) for all sufficiently small t > 0, then
letting t ↓ 0 in (14.2) gives 〈∇f(x), d〉 ≤ 0. ut

Remark 14.3. If x(t) is a curve on the level set f−1(α) = {x : f(x) = α}, then
differentiating the equation f(x(t)) = α gives

〈∇f(x(t)), x′(t)〉 = 0.

Since x′(t) is tangent to the level set f−1(α), we see that the gradient∇f(x(t))
is a normal vector to the tangent plane of f−1(α) at the point x.
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The Steepest-Descent Direction

In (14.2), we have

f(x+ td) ≈ f(x) + t〈∇f(x), d〉 for small t > 0.

Thus, it seems that we can make the most decrease in the function value
of f for a fixed small t > 0 if we minimize the quantity 〈∇f(x), d〉 over all
directions d ∈ Rn with ‖d‖ = 1.

Since
〈∇f(x), d〉 = ‖∇f(x)‖ · ‖d‖ cos θ = ‖∇f(x)‖ cos θ,

we would choose cos(θ) = −1, that is,

d = − ∇f(x)
‖∇f(x)‖ ;

this is the reason why the (unnormalized) direction d = −∇f(x) is called the
steepest-descent direction of f at the point x.

14.1.2 Step-Size (Step-Length) Selection Rules

Once a descent direction dk is somehow chosen at the point xk, the next
iterate is given by

xk+1 := xk + tkdk, tk > 0,

where the step size tk is a suitably chosen quantity. One must exercise great
caution in choosing tk; improperly chosen tk may in fact lead to methods that
do not converge to a local minimizer.

We list here some step-length rules that have been proposed over the years:

1. (Exact minimization rule) Choose tk such that

f(xk + tkdk) ≤ f(xk + tdk) for all t ≥ 0,

that is, xk + tkdk is the global minimizer of t on the half-line {xk + tdk :
t ≥ 0}. This rule may be very expensive or even impossible, except for
some special classes of functions such as the quadratic function we will
encounter in Section 14.2.

2. (Limited minimization rule) Choose tk such that

f(xk + tkdk) ≤ f(xk + tdk) for all 0 ≤ t ≤ s,

where s > 0 is some predetermined quantity.
3. (Constant step-length rule)

xk+1 = xk + αdk,

where α > 0 is a fixed, predetermined constant.
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This rule works for some functions having special properties. For example,
if ∇f(x) is a Lipschitz continuous function, that is, there exists a constant
L > 0 such that

‖∇f(y)−∇f(x)‖ ≤ L‖x− y‖,
then one can choose αk = ‖∇f(xk)‖/L, that is, xk+1 = xk −∇f(xk)/L;
see Theorem 14.13 on page 373.

4. (Armijo’s rule) Fix s > 0, 0 < β < 1, and 0 < σ < 1, and test the
inequality

f(xk)− f(xk + βisdk) ≥ −σ(βis)〈∇f(xk), dk〉, i = 0, 1, 2, . . . , (14.3)

iteratively, starting with i = 0.
The idea here is that the decrease f(xk) − f(xk+1) in the function value
should be sufficiently large. We first test the inequality (14.3) with i = 0,
that is, with step size s,

f(xk)− f(xk + sdk) ≥ −σs〈∇f(xk), dk〉.

If the above inequality is satisfied, we set xk+1 = xk + sdk; otherwise,
the decrease f(xk) − f(xk+1) in the function value is deemed not large
enough, and we cut back the step size to βs: we set xk+1 := xk + βsdk
and test the inequality (14.3) with i = 1,

f(xk)− f(xk + βsdk) ≥ −σ〈∇f(xk), βsdk〉,

etc. This method is very practical. However, we need to prove the implicit
claim that the iterations (14.3) will eventually terminate. Suppose the
claim is false. If i in (14.3) is large, then t := βis > 0 is small, and (14.3)
gives

f(xk + tdk) > f(xk) + σt〈∇f(xk), dk〉.
Comparing this with

f(xk + tdk) = f(xk) + t〈∇f(xk), dk〉+ o(t),

we obtain

(σ − 1)〈∇f(xk), dk〉+
o(t)
t

< 0;

letting t↘ 0 gives
(σ − 1)〈∇f(xk), dk〉 ≤ 0,

a contradiction, because σ − 1 < 0 and 〈∇f(xk), dk〉 < 0. The claim is
proved.

5. (Goldstein’s rule) Fix c ∈ (0, 1/2). Choose tk such that

f(xk) + (1− c)tk〈∇f(xk), dk〉 ≤ f(xk + tdk)
≤ f(xk) + ctk〈∇f(xk), dk〉.
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As in Armijo’s rule, the second inequality here requires that the function
value of f decrease sufficiently in going from the point xk to the new point
xk+ tkdk. The first inequality can be thought of as requiring that the step
size tk not be too small.

6. (Wolfe’s rule) Fix two constants 0 < c1 < c2 < 1. Choose tk such that

f(xk + tdk) ≤ f(xk) + c1tk〈∇f(xk), dk〉,
〈∇f(xk + tdk), dk〉 ≥ c2〈∇f(xk), dk〉.

(14.4)

The first inequality requires that the function value of f decrease suffi-
ciently, and the second one requires that the step size tk be not too small;
see Figure 14.1.
This is a popular step-size selection rule in quasi-Newton methods.

Fig. 14.1. Wolfe’s step-length selection rule.

14.1.3 Convergence of Descent Methods

In this section we prove the convergence of descent methods under several
step-size rules, including the popular Armijo’s and Wolfe’s rules.

Let the descent direction dk satisfy the condition that the angle θk between
the vectors −∇f(xk) and dk is positive and bounded away from zero, that is,
there exists ε > 0 such that

cos θk :=
〈−∇f(xk), dk〉
‖∇f(xk)‖ ∈ (ε, 1], ‖dk‖ = 1. (14.5)

line of sufficient decrease

acceptable regions

desired slope
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Theorem 14.4. Let {xk}∞0 be the sequence of vectors generated by a descent
method

xk+1 = xk + αkdk,

where dk satisfies (14.5), and αk is chosen by the Armijo rule with parameters
s, β, σ. If limi→∞ xki = x∗ is a limit point of the iteration sequence {xk}∞0 ,
then x∗ is a critical point of f , that is, ∇f(x∗) = 0.

Proof. By taking a further subsequence if necessary, we may assume that dki
converges to some direction vector d∗, ‖d∗‖ = 1. Since the ith step is successful
in (14.3), we have

f(xki)− f(xki + αkidki) ≥ −σαki〈∇f(xki , dki〉 ≥ εσαki‖∇f(xki‖, (14.6)

and if there is a previous unsuccessful step, we also have

f(xki)− f
(
xki +

αki
β
dki

)
< −σαki

β
〈∇f(xki), dki〉. (14.7)

Suppose that ∇f(x∗) 6= 0. Since xki → x∗ and f(xk) is a decreasing
sequence, we have f(xki) ↘ f(x∗) and the left-hand side of (14.6) converges
to zero as i → ∞. The other two terms of the same inequality converge to
zero as well, and by virtue of our assumption (14.5), we obtain

〈∇f(x∗), d∗〉 < 0 and αki = ‖xki+1 − xki‖ → 0, (14.8)

and the second fact implies that step-length selection requires backtracking
at xki when i is large.

We can use (14.7) to arrive at a contradiction: by the mean value theorem,

−αki
β
〈∇f(zki), dki〉 < −σ

αki
β
〈∇f(xki), dki〉

for some zki ∈ (xki , xki + αkiβ
−1dki). We have limi→∞ zki = x∗; simplifying

the above inequality, and taking limits as i→∞, we obtain 〈∇f(x∗), d∗〉 ≥ 0.
This contradicts (14.8) and proves that ∇f(x∗) = 0. ut

Corollary 14.5. Suppose that the search directions satisfy (14.5). If the step
size is chosen by the exact minimization rule or limited minimization rule,
then any limit x∗ of the sequence {xk}∞0 is a critical point of f , that is,
∇f(x∗) = 0.

Proof. Suppose that limi→∞ xki = x∗, but ∇f(x∗) 6= 0. Let x̂ki = xki+α̂kidki
be the point that would be chosen using an Armijo-type rule. Then

f(xki)− f(xki+1) ≥ f(xki)− f(x̂ki+1) ≥ −σα̂ki〈∇f(xki), dki〉.

Since f(xk) ↘ f(x∗), we have f(xki) − f(xki+1) ↘ 0, and as in the proof of
the previous theorem, we obtain limi→∞ α̂ki = 0. Also, we have, from (14.7)
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f(xki)− f(xki +
α̂ki
β
dki) < −σ

α̂ki
β
〈∇f(xki), dki〉.

As in the previous theorem, we arrive at a contradiction to the descent con-
dition 〈∇f(x∗), d∗〉 < 0. ut

Finally, we consider the convergence of descent methods under Wolfe’s
step-size selection rule. We start with

Lemma 14.6. (Zoutendijk) Let f be a function bounded from below on the
sublevel set M := {x : f(x) ≤ f(x0)}, with a Lipschitz continuous gradient
there, that is, for some L > 0,

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖ for all x, y ∈M.

Let {xk}∞0 be the sequence of points generated by a descent algorithm using
Wolfe’s step-selection rule (14.4). Then

∞∑
k=0

cos2 θk‖∇f(xk)‖2 <∞,

where θk is defined in (14.5).

Proof. Recalling ‖dk‖ = 1, we have

(c2 − 1)
〈
∇f(xk), dk

〉
≤
〈
∇f(xk+1)−∇f(xk), dk

〉
≤ tkL,

where the inequalities follow from the second condition in Wolfe’s rule and
the Lipschitz condition on f , respectively. This gives a lower bound for the
step size,

tk ≥
1− c2
L
〈−∇f(xk), dk〉,

and substituting it into the first condition in Wolfe’s rule (14.4) gives

f(xk)− f(xk+1) ≥ c1(1− c2)
L

|〈∇f(xk), dk〉|2

=
c1(1− c2)

L
cos2 θk‖∇f(xk)‖2.

The lemma follows, since

f(x0)− f(xK) =
K−1∑
k=0

[f(xk)− f(xk+1)] ≥ c1(1− c2)
L

K−1∑
k=0

cos2 θk‖∇f(xk)‖2

and f(x0)− f(xK) ≤ f(x0)− infM f <∞. ut
We immediately have the following corollary.

Corollary 14.7. Let f be a function satisfying the conditions of Lemma 14.6.
If the search directions {dk} satisfy the condition (14.5) and x∗ ∈M is a limit
point of the sequence {xk}, then ∇f(x∗) = 0.
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14.2 Convergence Rate of the Steepest-Descent Method
on Convex Quadratic Functions

The results above on the gradient-descent methods above have been very
modest; we have showed only that if the minimizing sequence {xi}∞0 has a
limit point x∗, then x∗ is a critical point. Any result on the rate of convergence
to x∗ has been absent. In fact, it is impossible to give such results for general
problems. The situation is radically different for convex problems. Since the
introduction of the famous ellipsoid method of Nemirovski and Yudin [205],
we know that there are methods to solve convex programming problems in
polynomial time.

In this section, we analyze the convergence rate of the steepest-descent
algorithm on the minimization of a strongly convex quadratic function.

Consider the quadratic function

q(x) =
1
2
〈Qx, x〉 − 〈b, x〉+ a, (14.9)

where Q is an n × n symmetric positive definite matrix, b ∈ Rn, and a ∈ R.
We write

r(x) := ∇q(x) = Qx− b
throughout this subsection.

Of course, the global minimizer x∗ of q over Rn satisfies r(x∗) = Qx∗−b =
0, that is, x∗ = Q−1b. The steepest-descent method for minimizing q does not
need any line searches; if xk is at hand, then xk+1 may be computed exactly
by minimizing q on the line ` = {xk − αrk : α ∈ R}. It is easy to compute
xk+1: letting

h(α) := q(xk − αrk) = q(xk)− α‖rk‖2 +
α2

2
〈Qrk, rk〉,

we see that the exact minimizer αk of h is given by

0 = h′(αk) = −‖rk‖2 + αk〈Qrk, rk〉;

thus

xk+1 = xk − αkrk, where αk =
‖rk‖2
〈Qrk, rk〉

.

We need the following technical result for estimating the convergence rate
of the steepest-descent algorithm for minimizing q.

Lemma 14.8. (Kantorovich’s inequality) If Q is a symmetric positive
definite n× n matrix with eigenvalues {λi}n1 in the interval [m,M ], then

〈Qx, x〉 · 〈Q−1x, x〉
‖x‖4 ≤ (m+M)2

4mM
.
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Proof. Since the above inequality remains unchanged if we replace each Q
with τQ, where τ is any positive constant, we assume that mM = 1. Let
Q = UTΛU be the spectral decomposition of Q, where Λ = diag(λ1, . . . , λn).
Setting s = Ux, where ‖x‖ = ‖s‖ = 1, and defining ti = s2i , i = 1, . . . , n, the
lemma reduces to proving the inequality

( n∑
i=1

tiλi

)
·
( n∑
i=1

ti
λi

)
≤
(
m+ 1

m

)2
4

for all ti ≥ 0,
n∑
i=1

ti = 1,

where λi ∈ [m, 1/m], i = 1, . . . , n.
This inequality follows from the claim that

( n∑
i=1

tiλi

)
·
( n∑
i=1

ti
λi

)
≤

(∑n
i=1 ti(λi + λ−1

i )
)2

4
≤
(
m+ 1

m

)2
4

.

The first inequality follows because of the inequality ab ≤ (a + b)2/4; the
second inequality follows since λi + λ−1

i ≤ m+m−1, due to the fact that the
maximum of the function λ+λ−1 over the interval [m, 1/m] is attained at the
endpoints m and 1/m. ut

A different proof of Kantorovich’s inequality is given in Section 10.4 using
nonlinear programming techniques.

Theorem 14.9. In the steepest-descent method for minimizing a strongly con-
vex quadratic function q(x) in (14.9), the optimality gap E(x) = q(x)−minRn q
decreases at a geometric rate,

E(xk+1) ≤
(κ− 1
κ+ 1

)2

E(xk),

where κ = λmax/λmin is the condition number of the matrix Q.

Proof. Since xk+1 − xk = −αkrk, we have

E(xk+1) = E(xk)− αk‖rk‖2 +
α2
k

2
〈Qrk, rk〉 = E(xk)− 1

2
‖rk‖4
〈Qrk, rk〉

,

where the first equality follows from Taylor’s formula and the second equality
follows because αk = ‖rk‖2/〈Qrk, rk〉. We also have

E(xk) = E(x∗) + 〈∇E(x∗), xk − x∗〉+
1
2
〈Q(xk − x∗), xk − x∗〉

=
1
2
〈Q−1rk, rk〉,

where the first equation is Taylor’s formula, the second one follows because
E(x∗) = 0, ∇E(x∗) = 0, and rk = Q(xk − x∗). We deduce that
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E(xk+1)
E(xk)

= 1− ‖rk‖4
〈Qrk, rk〉 · 〈Q−1rk, rk〉

≤ 1− 4mM
(M +m)2

=
(M −m
M +m

)2

=
(κ− 1
κ+ 1

)2

,

where the inequality follows from Lemma 14.8. ut
Corollary 14.10. In the steepest-descent method for minimizing a strongly
convex quadratic function q on Rn, the optimality gap E(x) = q(x)−minRn q
is halved in every O(κ) iterations, where κ = λmax/λmin is the condition
number of the matrix Q.

Proof. Letm be the smallest integer satisfying the condition (1−2/(κ+1))m ≤
1/2. We have E(xm)

E(x0)
≤ 1

2 , and if κ is large, then

− ln 2 ≈ m ln
(

1− 2
κ+ 1

)
≈ −2m
κ+ 1

≈ −2m
κ

,

where we have used

ln(1− t) =
∫

dt

1− t =
∫

(1 + t+ t2 + · · · ) dt = t+
t2

2
+ · · · ≈ t

for small |t|. This proves that m = O(κ). ut
The convergence rates given in Theorem 14.9 and Corollary 14.10 suggest

that the steepest-descent method converges very slowly. For example, if Q has
a condition number κ = 106, then our estimates indicate that the steepest-
descent method would require on the order of a million iterations to reduce
the initial optimality gap E(x0) by half. Numerical computations support
this pessimistic view. Moreover, it was shown by Akaike [2] that the estimate
given in Theorem 14.9 is actually realized most of the time. Consequently,
the steepest-descent method is a very slow algorithm, even for minimizing a
convex quadratic function.

Convergence rate estimates for E(x) can also be given for minimizing a
convex quadratic function that is not strongly convex, that is, the matrix Q is
positive semidefinite but not positive definite. We do not derive this estimate
here, since a similar estimate is given in Section 14.3 for a much larger class
of problems.

We will see in Section 14.7 that the conjugate-gradient method, which is
a simple modification of the steepest-descent method, is a vast improvement
upon the steepest-descent method for minimizing convex quadratic functions.

14.3 Convergence Rate of the Steepest-Descent Method
on Convex Functions

Let f : Rn → R be a convex function with a Lipschitz continuous derivative,
that is, there exists a constant L > 0 such that

Convergence Rate of the Steepest-Descent Method on Convex Functions
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‖∇f(x)−∇f(y)‖ ≤ L‖y − x‖ for all x, y ∈ Rn.

In this section, we consider a version of the steepest-descent method for min-
imizing f , and provide a convergence-rate estimate in terms of the optimality
gap E(x) = f(x)−minRn f .

We start with some technical results.

Lemma 14.11. If f is a convex function with a Lipschitz continuous deriva-
tive satisfying

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn,

then
f(y) ≤ f(x) + 〈∇f(x), y − x〉+

L

2
‖y − x‖2.

Proof. Define the function g(t) := f(x+ t(y − x)), and note that

g(1)− g(0) =
∫ 1

0

g′(t)dt = g′(0) +
∫ 1

0

(g′(t)− g′(0))dt.

Since g(1) = f(y), g(0) = f(x), and g′(t) = 〈∇f(x+ t(y − x)), y − x〉, we
obtain

f(y)− f(x)− 〈∇f(x), y − x〉 =
∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉dt

≤ ‖y − x‖
∫ 1

0

‖∇f(x+ t(y − x))−∇f(x)‖ dt

≤ L‖y − x‖2
∫ 1

0

t dt =
L

2
‖y − x‖2.

ut

Lemma 14.12. Let f : C → R be a differentiable convex function on the
convex set C. The following conditions are equivalent:

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖ for all x, y ∈ C. (14.10)

1
2L
‖∇f(y)−∇f(x)‖2 ≤ f(y)− f(x)− 〈∇f(x), y − x〉

≤ L

2
‖y − x‖2 for all x, y ∈ C.

(14.11)

1
L
‖∇f(y)−∇f(x)‖2 ≤ 〈∇f(y)−∇f(x), y − x〉

≤ L‖y − x‖2 for all x, y ∈ C.
(14.12)
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Proof. (14.10)⇒ (14.11): Notice that Lemma 14.11 gives the second inequal-
ity in (14.11); to prove the first inequality, define the function

g(y) := f(y)− 〈∇f(x), y〉,

with the gradient ∇g(y) = ∇f(y) − ∇f(x). Since ∇g(x) = 0, x is a global
minimizer of g, and we have

g(x) ≤ g
(
y − ∇g(y)

L

)
≤ g(y)− ‖∇g(y)‖2

2L
,

where the second inequality follows from Lemma 14.11. The first inequality
in (14.11) is obtained by substituting the values of g(x), g(y), and ∇g(y), and
rearranging the terms of the resulting inequality.

(14.11) ⇒ (14.12): Obtain an inequality by switching x and y in (14.11),
and add it term by term to (14.11), and simplify.

(14.12)⇒ (14.10): This is immediate. ut

The first inequality in (14.11) seems to be due to Nesterov [208].

We are now ready to state our convergence-rate result.

Theorem 14.13. Let f : Rn → R be a convex differentiable function with
Lipschitz continuous derivative, that is,

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖ for all x, y ∈ Rn,

where L > 0. Suppose that f has a minimizer on Rn, and consider the follow-
ing gradient-descent method for minimizing f :

x0 given,

xk+1 = xk −
1
L
∇f(xk), k ≥ 0.

(14.13)

Then the minimizing sequence {xk}∞0 converges to a minimizer x∗ of f ,
‖xk−x∗‖ is a strictly decreasing sequence converging to zero, and we have the
global convergence rate estimates

f(xk)− f(x∗) ≤ 5L

2
∑k−1
i=0 ‖xi − x∗‖−2

, (14.14)

f(xk)− f(x∗) = o(1/k). (14.15)

Proof. Lemma 14.11 gives the estimate

f(xi+1)− f(xi) ≤
−1
L
‖∇f(xi)‖2 +

L

2
‖L−1∇f(xi)‖2

=
−1
2L
‖∇f(xi)‖2 =

−L
2
‖xi − xi+1‖2.

(14.16)

Convergence Rate of the Steepest-Descent Method on Convex Functions



374 14 Three Basic Optimization Algorithms

Since f is convex, we also have

f(x∗) ≥ f(xi) + 〈∇f(xi), x∗ − xi〉.

For brevity, let us define wi := f(xi)− f∗; the above inequality gives

wi ≤ ‖∇f(xi)‖ · ‖xi − x∗‖ = L‖xi − xi+1‖ · ‖xi − x∗‖,

and it follows from this inequality and (14.16) that

f(xi)− f(xi+1) = wi − wi+1 ≥
L

2
‖xi − xi+1‖2

≥ L

2

(
wi

L‖xi − x∗‖

)2

=
w2
i

2L‖xi − x∗‖2

≥ w2
i+1

2L‖xi − x∗‖2
,

which we rewrite in the form

w−1
i ≤ w−1

i+1

(
1 +

wi+1

2L‖xi − x∗‖2
)−1

. (14.17)

Note that
wi+1 ≤ wi ≤

L

2
‖xi − x∗‖2,

where the second inequality follows from Lemma 14.11; thus, the fraction in
(14.17) is at most 1/4. Using calculus, it is easily verified that (1 + t)−1 ≤
1− (4t)/5 when 0 ≤ t ≤ 1/4; plugging this in (14.17) gives

w−1
i ≤ w−1

i+1 −
2

5L‖xi − x∗‖2
.

Summing this inequality from i = 0 to i = k − 1, we get

0 ≤ w−1
0 ≤ w−1

k −
2

5L

k−1∑
i=0

‖xi − x∗‖−2.

Recalling wk = f(xk)− f(x∗), we arrive at (14.14).
Next, we show that the sequence ‖xk − x∗‖ is strictly decreasing, that is,

‖xk+1 − x∗‖ < ‖xk − x∗‖: this follows from

‖xk+1 − x∗‖2 = ‖xk − x∗ −∇f(xk)/L‖2

= ‖xk − x∗‖2 +
‖∇f(xk)‖2

L2
− 2
L
〈xk − x∗,∇f(xk)−∇f(x∗)〉

≤ ‖xk − x∗‖2 +
‖∇f(xk)‖2

L2
− 2
‖∇f(xk)‖2

L2

< ‖xk − x∗‖2,
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where the first inequality follows from Lemma 14.12.
Consequently, the sequence {xk}∞1 is bounded, and there exists a subse-

quence xki converging to a point x̃. Taking the limit in (14.16) as ki → ∞
gives 0 ≤ −‖∇f(x̃)‖2/L, or ∇f(x̃) = 0, meaning that x̃ is a minimizer of f .
Since ‖xk − x̃‖ is decreasing as shown above, we see that the whole sequence
{xk} converges to x̃.

It remains to prove (14.15). Let us take x∗ to be the point x̃, so that
‖xk − x∗‖ → 0. Define ak := ‖xk − x∗‖−2, and note that ak is an increasing
sequence diverging to infinity. Let us rewrite (14.14) in the form

k(f(xk)− f∗) ≤ 5L
2

(1
k

k−1∑
i=0

ai

)−1

. (14.18)

We claim that ak := (
∑k−1
i=0 ai)/k →∞. Let M > 0 be arbitrary and suppose

that ai ≥M for all i ≥ N . Then

a2N =
1

2N

2N−1∑
i=0

ai ≥
1

2N

2N−1∑
i=N

ai ≥
M

2
.

It is easily verified that {ak} is an increasing sequence, and hence the claim is
proved. Consequently, the right-hand side of (14.18) goes to zero as k → ∞,
proving (14.15). ut

Remark 14.14. One may wonder why the convergence rate above is given in
terms of the optimal value gap f(xk)−f(x∗), and not in terms of the distance
of the iterates to the optimal solution set. It turns out that under the assump-
tions of the theorem, it is not possible to give convergence-rate estimates in
terms of ‖xk−x∗‖ unless some strong convexity conditions are present in the
function f .

It is possible to design algorithms for the same class of problems with an
improved complexity estimate f(xk) − f(x∗) = O(1/k2); see [205, 220, 206,
207, 208].

It is even possible to give the same kinds of complexity estimates, either
f(xk) − f(x∗) = o(1/k) or f(xk) − f(x∗) = O(1/k2), for minimization of
nondifferentiable convex functions, by regularizing f through the proximal
mapping

fλ(x) := min
z

{
f(z) +

1
2λ
‖x− z‖2

}
,

which gives a differentiable, convex function fλ whose derivative is Lipschitz
continuous with constant 1/λ. The resulting algorithms are the proximal-point
methods [116, 117], or more general proximal-point methods [57]. Using convex
duality, these algorithms make it possible to give global convergence rates for
augmented Lagrangian methods for general convex programming.

Convergence Rate of the Steepest-Descent Method on Convex Functions
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14.4 Gradient Projection Method

This algorithm is an extension of the gradient-descent method to the mini-
mization of a function over a closed convex set C ⊆ Rn.

It has the following description:

Step 0: Choose x0 ∈ C, s > 0, β > 0, and 0 < σ < 1.
Step k: Given xk, compute

xk = (xk − s∇f(xk))+ := ΠC(xk − s∇f(xk)).

Perform an Armijo-type line search by recursively testing the inequality

f(xk)− f
(
xk + βm(xk − xk)

)
≥ −σβm〈∇f(xk), xk − xk〉, (14.19)

for m = 0, 1, . . ., until it is satisfied, say at mk := m.
Set

xk+1 = xk + βmk(xk − xk).

We need the following technical result.

Lemma 14.15. Let C ⊆ Rn be a closed convex set, and f : C → R a differen-
tiable function. Let s > 0. A point x∗ ∈ C satisfies the variational inequality

〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ C (14.20)

if and only if

(x∗ − s∇f(x∗))+ := ΠC(x∗ − s∇f(x∗)) = x∗. (14.21)

Proof. By Theorem 6.1, ΠC(x∗ − s∇f(x∗)) = x∗ if and only if〈(
x∗ − s∇f(x∗)

)
− x∗, x− x∗

〉
≤ 0 for all x ∈ C,

which is clearly equivalent to (14.20). ut

Theorem 14.16. Let C ⊆ Rn be a closed convex set, and f : C → R a
differentiable function. Let {xk}∞0 be a sequence generated by the gradient
projection method with Armijo’s step-size selection rule described above.

If x∗ is a limit point of the sequence {xk}∞0 , then x∗ is a critical point,
that is, it satisfies the necessary condition for a local minimizer of f on C
given by the variational inequality (14.20).

Proof. The inequality (14.19) gives

f(xk)− f(xk+1) = f(xk)− f(xk + αkdk) ≥ −σαk〈∇f(xk), dk〉, (14.22)

where
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dk := xk − xk = (xk − s∇f(xk))+ − xk and αk = βmk .

First, we show that dk is a descent direction (assuming that xk is not a
local minimizer of f on C, in which case we would stop the algorithm at xk).
Theorem 6.1 implies〈

xk − s∇f(xk)− (xk − s∇f(xk))+, xk − (xk − s∇f(xk))+
〉
≤ 0,

and recalling the definition of dk, this gives 〈dk + s∇f(xk), dk〉 ≤ 0; therefore

0 < ‖dk‖2 ≤ −s〈∇f(xk), dk〉, (14.23)

where the first inequality follows from Lemma 14.15 because xk is not a local
minimizer of f on C. This proves that dk is a strict descent direction at xk.

Let {xki} be a subsequence of {xk} converging to x∗. Since dk is a strict
descent direction, the right-hand side of (14.22) is positive. Thus, f(xki) >
f(xki+1) ≥ f(xki+1), and since limi→∞ f(xki) = f(x∗), the left-hand side of
(14.22) converges to zero. This implies that

lim
i→∞

αki〈∇f(xki), dki〉 = 0. (14.24)

We have xki → x∗, dki → d∗ := x∗ − (x∗ − s∇f(x∗))+, and by virtue of
(14.23),

0 ≤ ‖d∗‖2 ≤ −s〈∇f(x∗), d∗〉. (14.25)

We claim that 〈∇f(x∗), d∗〉 = 0. If αki does not converge to zero, then the
claim follows from (14.24); if αki → 0, then the mean value theorem implies

f(xki + αkidki)− f(xki) = 〈∇f(xki + tkidki), dki〉,

and letting i→∞, both sides of the equation converge to zero, and we have
again proved the claim.

Finally, (14.25) implies that d∗ = 0, and Lemma 14.15 implies that x∗

satisfies (14.20). ut

14.5 Newton’s Method

Newton’s method (or the Newton–Raphson method) is a method for finding
roots of systems of equations. In its more general form, it could be applied,
for example, to finding solutions to a nonlinear equation

f(x) = y0,

where f : U → Y is a differentiable map from an open set U in a Banach
space X into another Banach space Y , and y0 ∈ Y is given, under conditions
that will be spelled out in Section 14.6.
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In this section, we consider Newton’s method in finite dimensions, where
the map f : U → Rn is defined on an open set U ⊆ Rn.

By replacing f(x) with f(x)−y0, we will assume from now on that y0 = 0,
that is, we are solving an equation

f(x) = 0.

Newton’s method is an iterative method having the form

xk+1 = xk −Df(xk)−1f(xk), k ≥ 0, (14.26)

starting from an initial solution x0 ∈ U . Thus, Df(xk) must be invertible at
each step k.

For functions of a single variable (n = 1), Newton’s method is normally
written in the form

xk+1 = xk −
f(xk)
f ′(xk)

. (14.27)

The geometric interpretation of Newton’s method stems from Taylor’s for-
mula. At an approximate solution xk, we replace the graph of the function f
with its tangent line

`k(x) = f(xk) + f ′(xk)(x− xk),

and determine the next approximate solution xk+1 by solving the linear equa-
tion `k(x) = 0; that is, we expand f(x) in a Taylor series around xk to the
linear term, and set it to zero:

f(x) ≈ f(xk) + f ′(xk)(x− xk) = 0.

If we define

Nf (x) = x− f(x)
f ′(x)

,

then Newton’s method for f is the discrete dynamical system obtained by
iterating Nf (x), that is,

xk+1 = Nf (xk).

Note that if f ′(x) 6= 0, f(x) = 0 is equivalent to Nf (x) = x, so that a root of
f is a fixed point of Nf , and vice versa.

Assuming that f ′′ exists, we calculate

N ′f (x) = 1− f ′(x)2 − f(x)f ′′(x)
f ′(x)2

=
f(x)f ′′(x)
f ′(x)2

.

If f(x∗) = 0, we have Nf (x∗) = x∗ and N ′f (x∗) = 0; Taylor’s formula gives

Nf (x) = Nf (x∗) +N ′f (x∗)(x− x∗) +
1
2
N ′′f (z)(x− x∗)2

= x∗ +
1
2
Nf (z)(x− x∗)2
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for some z ∈ (x∗, x). Putting x = xk in the above equation gives

xk+1 = Nf (xk) = x∗ +
1
2
N ′′f (zk)(xk − x∗)2,

that is,

xk+1 − x∗ =
1
2
N ′′f (zk)(xk − x∗)2.

Assuming that xk is close to x∗, and N ′′f is continuous, we have ‖ 1
2N
′′
f (zk)‖ ≤

M for some M > 0, so that

‖xk+1 − x∗‖ ≤M(xk − x∗)2; (14.28)

this shows that Newton’s method is quadratically convergent in a neighbor-
hood of the root x∗, under the assumption that f ′(x∗) 6= 0.

The inequality (14.28) shows why Newton’s method is extremely fast: if
|xk − x∗| ≈ 10−d, that is, xk and x∗ have d common digits after the decimal
point, then |xk+1 − x∗| ≈ 10−2d, meaning that xk+1 and x∗ have 2d common
digits. Thus, Newton’s method approximately doubles the number of accurate
digits at every step.

We give an illustration of this: consider approximating the numerical value
of
√

2. This can be done by applying Newton’s method to the equation f(x) =
0, where f(x) = x2 − 2. In this case, Newton’s method has the form

xk+1 = xk −
f(xk)
f ′(xk)

= xk −
x2
k − 2
2xk

=
xk
2

+
1
xk
.

Starting from the initial point x0 = 1, we generate the following table:

k xk xk −
√

2
0 1 −0.414213562
1 1.5 0.085786438
2 1.41666 0.002453105
3 1.414215686 0.2124× 10−5

4 1.414213562 0

Note that in this case f ′(x∗) = 2
√

2 6= 0.

Remark 14.17. The quadratic convergence of Newton’s method is not guar-
anteed when f ′(x∗) = 0. For example, the root of the equation f(x) = x2 is
x∗ = 0. In this case Newton’s method generates the sequence

xk+1 = xk −
x2
k

2xk
=
xk
2
,

which is only a linear rate of convergence. If x0 = 1, then x∗20 ≈ 0.38× 10−5,
much slower than a quadratic rate of convergence.
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We now consider the multidimensional version of Newton’s method. Let
f(x) = (f1(x), ..., fn(x) with the coordinate functions fi(x), i = 1, . . . , n.
Again, we develop f(x) in a Taylor series around xk ∈ R, cut off at the linear
term, and determine the solution of the approximate, linear, map. This can
be done coordinatewise:

fi(xk+1) ≈ fi(xk) + 〈∇fi(xk), xk+1 − xk〉 = 0, i = 1, . . . , n,

or in vector notation,f1(xk)
...

fn(xk)

+

∇f1(xk)T
...

∇fn(xk)T

 (xk+1 − xk) = 0;

the matrix is the Jacobian Df(xk), so that this gives

f(xk) +Df(xk)(xk+1 − xk) = 0. (14.29)

If Df(xk) is invertible, we multiply the above equation on the left by
Df(xk)−1 to obtain Newton’s method (14.26) for solving f(x) = 0.

We can expect fast convergence of Newton’s method here, too.

Theorem 14.18. Let f : U → Rn be a continuously differentiable function
on an open set B ⊆ Rn. If x∗ ∈ U is a root of f , that is, f(x∗) = 0, such that
Df(x∗) is invertible, then

(a) There exists an open ball B := Bδ(x∗) around x∗ such that if x0 ∈ B, then
Newton’s method initiated at x0 is well defined, and the iterates {xk}∞0
stay in B and converge to x∗ superlinearly, that is,

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0. (14.30)

(b) If Df(x) is Lipschitz continuous in B, that is, there exists L > 0 such
that

‖Df(y)−Df(x)‖ ≤ L‖y − x‖ for all x, y ∈ B, (14.31)

then Newton’s method converges quadratically, that is, there exists K > 0
such that

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2. (14.32)

Let us first prove a useful technical result.

Lemma 14.19. If f and x∗ are as in the above theorem, then

f(x) =
∫ 1

0

Df(x∗ + t(x− x∗))(x− x∗) dt.
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Proof. For the coordinate function fi, define α(t) = fi(x∗ + t(x − x∗)). We
have α′(t) = 〈∇fi(x∗ + t(x− x∗)), x− x∗〉 by the chain rule. Since α(1) −
α(0) =

∫ 1

0
α′(t)dt by the fundamental theorem of calculus, and α(1) = fi(x),

α(0) = fi(x∗) = 0, we have

fi(x) =
∫ 1

0

〈∇fi(x∗ + t(x− x∗)), x− x∗〉 dt, i = 1, . . . , n;

the lemma follows when we write these equations in matrix notation. ut

We now prove Theorem 14.18.

Proof. We calculate

xk+1 − x∗

= xk − x∗ −Df(xk)−1f(xk)

= Df(xk)−1
(
Df(xk)(xk − x∗)− f(xk)

)
= Df(xk)−1

(
Df(xk)(xk − x∗)−

∫ 1

0

Df(x∗ + t(xk − x∗))(xk − x∗) dt
)

= Df(xk)−1

∫ 1

0

[Df(xk)−Df(x∗ + t(xk − x∗))] · (xk − x∗) dt.

This implies

‖xk+1 − x∗‖ ≤ ‖Df(xk)−1‖ · ‖xk − x∗‖

×
∫ 1

0

‖Df(xk)−Df(x∗ + t(xk − x∗))‖ dt.

If ‖Df(x)−1‖ ≤M on B, and δ defining B = Bδ(x∗) is small enough that
‖Df(xk) −Df(x∗ + t(xk − x∗))‖ < 1/2M , then ‖xk+1 − x∗‖ < ‖xk − x∗‖/2
and all Newton’s iterates {xk}∞0 stay in B and converge to x∗ geometrically.
Since

‖xk+1 − x∗‖
‖xk − x∗‖

≤M
∫ 1

0

‖Df(xk)−Df(x∗ + t(xk − x∗))‖ dt, (14.33)

and the integrand above will be as small as desired as k → ∞, we see that
(14.30) holds.

If Df is Lipschitz continuous, then (14.31) and (14.33) imply

‖xk+1 − x∗‖
‖xk − x∗‖

≤M
∫ 1

0

L‖xk − (x∗ + t(xk − x∗))‖ dt

= ML‖xk − x∗‖
∫ 1

0

(1− t) dt

=
ML

2
‖xk − x∗‖;
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setting K = ML/2, we obtain

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2.

This proves the theorem. ut
Here is a numerical example illustrating the quadratic convergence of the

method for a function of two variables. Let us try to compute a solution to
the system of equations

3x2y + y2 = 1,
x4 + xy3 = 1.

We apply Newton’s method to the function

f(x, y) = (3x2y + y2 − 1, x4 + xy3 − 1) :

k (xk, yk) (xk − x∗, yk − x∗)
0 (.98, .32) (−.01277, .0135)
1 (.99309, .3060802) (.00031,−.00036)
2 (.9927801, .3064402) (.18× 10−6,−.21× 10−6)
3 (.9927799948, .306440465) (10−10, 10−10)
4 (.9927799949, .306440466) (0, 0)

Let us point out the use of Newton’s method in optimization. Let f : U →
R be a function with continuous second partial derivatives ∂2f/∂xi∂xj . A local
minimizer (or a maximizer) x∗ ∈ U is a critical point, that is, ∇f(x∗) = 0,
which means that x∗ is a root of the map F : U → Rn,

F (x) = ∇f(x).

Newton’s method applied to F (x) = 0 is given by

xk+1 = xk −DF (xk)−1F (xk).

Since F (xk) = ∇f(xk) and

DF (x) =

∇F1(x)T
...

∇Fn(x)T

 =


∂
∂x1

(∂f(x)
∂x1

) · · · ∂
∂xn

(∂f(x)
∂x1

)
...

...
...

∂
∂x1

(∂f(x)
∂xn

) · · · ∂
∂xn

(∂f(x)
∂xn

)



=


∂2f(x)
∂x2

1
· · · ∂2f(x)

∂xn∂x1

...
...

...
∂2f(x)
∂x1∂xn

· · · ∂2f(x)
∂x2
n

 = Hf(x),

Newton’s method for finding a critical point of f becomes
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xk+1 = xk −HF (xk)−1∇f(xk).

This Newton’s method is also connected with Taylor’s series:

f(x) ≈ f(xk) +∇f(xk)(x− xk) +
1
2

(x− xk)THf(xk)(x− xk)

=: q(x),

and the quadratic function q(x) has the gradient

∇q(x) = ∇f(xk) +Hf(xk)(x− xk),

and the critical point x satisfies ∇f(xk) +Hf(xk)(x− xk) = 0, that is,

Hf(xk)−1∇f(xk) + x− xk = 0.

Therefore,
x = xk −Hf(xk)−1∇f(xk) = xk+1,

that is, xk+1 is the critical point of the second-order Taylor approximation

f(xk) +∇f(xk)(x− xk) +
1
2

(x− xk)Hf(xk)(x− xk).

14.6 Convergence Theory of Kantorovich

In Theorem 14.18, we need to know that a root x∗ exists, and we do not know
the size of the convergence region of quadratic convergence around x∗. There
exist more sophisticated results on the convergence of Newton’s method that
remove these drawbacks. A famous class of such results was initiated by Kan-
torovich [154, 155]. Another approach, with a different set of assumptions, was
advanced by Smale; see [33]. Moreover, there exist very sophisticated versions
of Newton’s method that are known as the “hard” implicit function theorems
due to Nash and Moser that have important applications to partial differen-
tial equations, differential geometry (embedding of Riemannian manifolds into
Rn), and dynamical systems (KAM theory, the stability of the solar system);
see [239, 126, 71].

Another important application of Newton’s method occurs in interior-
point methods, where Newton’s method with a step-size selection rule is
applied to minimize a very special class of convex functions called self-
concordant functions on a convex set, in such a manner that enables us to
obtain polynomial-time algorithms for a large class of convex programming
problems. The two important properties of the self-concordant functions re-
sponsible for these desirable outcomes are the inequalities

D3F (x)[h, h, h] ≤ 2D2F (x)[h, h]3/2,

DF (x)[h]2 ≤ θD2F (x)[h, h],
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among the first three directional derivatives of F at the point x along the
direction h, and where θ > 0 is a characteristic property of f called the self-
concordance parameter, which is responsible for the speed of the algorithm.
We do not go into more detail regarding these important methods; the inter-
ested reader will find a wealth of information in the books [209, 226]. However,
one remark should be made: the distinguishing feature of self-concordant func-
tions that sets them apart from all other Newton’s methods we are aware of,
is the idea that the norm used to measure distances should come from the
function itself (this requires that F be strongly convex), and should change
from point to point. The self-concordant functions use the Euclidean norm
that comes from the Hessian D2F , by defining the local norm at x by the
formula

‖u‖2x := 〈D2F (x)u, u〉;
the directional derivative inequalities are best viewed in terms of these local
norms.

The theorem below and its assumptions belong to the circle of ideas ini-
tiated by Kantorovich. The proof below is an adaptation of the one given
in [71]; however, we have formulated the hypotheses of the theorem in an
affine invariant manner, following [75]. Affine invariance simply means that
since Newton’s method is affine invariant, that is, Newton’s method applied
to F (x) and G(x) = AF (x), where A is an invertible linear map, generates
in both cases the same solution sequence {xn}, the hypotheses (14.34) of the
theorem should remain the same if we replace F (x) with the map G(x).

The natural setting of the following theorem below is in Banach spaces. A
reader who is interested only in finite dimensions may simply assume through-
out that X and Y are finite-dimensional Euclidean spaces, say X = Y = Rn.
For brevity, we will denote the derivative DF by F ′ in this section.

Theorem 14.20. Let F : D → Y be a Fréchet differentiable map with contin-
uous derivative from an open, convex set D in a Banach space X to a Banach
space Y . Let x0 ∈ D be a point such that F ′(x0) be invertible, and assume
that

‖F ′(x0)−1F (x0)‖ ≤ α,
‖F ′(x0)−1(F ′(y)− F ′(x))‖ ≤ κ‖y − x‖ for all x, y ∈ D,

ακ <
1
2
,

B2α(x0) ⊂ D.

(14.34)

Then F has a unique root x∗ in B2α(x0), and the Newton iterates {xn}∞0
converge quadratically to x∗ such that

‖xn − x∗‖ ≤
α

2n−1
q2
n−1, where q = 2ακ < 1. (14.35)
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Proof. Consider the map

G(x) := F ′(x0)−1F (x).

Since Newton’s method is affine invariant, applying it to the map G(x) gener-
ates the same sequence {xn}. The hypotheses of the theorem can be rewritten
in the form

(a) ‖G(x0)‖ ≤ α,
(b) ‖G′(x)−G′(y)‖ ≤ κ‖x− y‖ for all x, y ∈ D,

(c) ακ <
1
2

and B2α(x0) ⊂ D.

Define the quantities

∆xn := xn+1 − xn,
αn := ‖xn+1 − xn‖ = ‖∆xn‖,
βn := ‖G′(xn)−1‖,
γn := αnβnκ.

The idea of the proof is to estimate αn, then βn, and then use these two
estimates to obtain a recurrence for γn. Since G(xn−1)+G′(xn−1)∆xn−1 = 0,
from Newton’s formula we have

αn = ‖G′(xn)−1G(xn)‖ ≤ βn‖G(xn)‖
= βn‖G(xn)−G(xn−1)−G′(xn−1)∆xn−1‖

= βn

∥∥∥∫ 1

0

[G′(xn−1 + t∆xn−1)−G′(xn−1)]∆xn−1 dt
∥∥∥

≤ βn
∫ 1

0

‖[G′(xn−1 + t∆xn−1)−G′(xn−1)]∆xn−1‖ dt

≤ βnκ‖∆xn−1‖2
∫ 1

0

t dt =
α2
n−1βnκ

2
.

(14.36)

Since

G′(xn) = G′(xn−1) + (G′(xn)−G′(xn−1))
= G′(xn−1)

[
I +G′(xn−1)−1(G′(xn)−G′(xn−1))

]
,

we also have

βn = ‖G′(xn)−1‖
≤ βn−1

∥∥∥[I +G′(xn−1)−1(G′(xn)−G′(xn−1))
]−1
∥∥∥

≤ βn−1

1− ‖G′(xn−1)−1‖ · ‖G′(xn)−G′(xn−1)‖

≤ βn−1

1− βn−1καn−1
=

βn−1

1− γn−1
,

(14.37)
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where in the second inequality we used Neumann’s formula (I + A)(I − A+
A2 − A3 + · · · ) = I for an operator satisfying ‖A‖ < 1, and the resulting
inequality

‖(I +A)−1‖ =
∥∥∥ ∞∑
i=0

(−1)iAi
∥∥∥ ≤ ∞∑

i=0

‖A‖i =
1

1− ‖A‖ .

The inequalities (14.36) and (14.37) imply

αn ≤
κα2

n−1βn−1

2(1− γn−1)
=

γn−1

2(1− γn−1)
αn−1

and

γn = καnβn ≤ κ
γn−1

2(1− γn−1)
· αn−1 ·

βn−1

1− γn−1
=

γ2
n−1

2(1− γn−1)2
.

In summary, we have proved that

αn ≤
γn−1

1− γn−1
· αn−1

2
,

γn ≤
γ2
n−1

2(1− γn−1)2
.

(14.38)

Note that β0 = 1 and thus γ0 = ακ < 1
2 . Using induction, it follows from

(14.38) that

γn <
1
2

and αn ≤
αn−1

2
for all n ≥ 1;

this proves that αn ≤ α/2n, and

‖xn − x0‖ ≤ ‖xn − xn−1‖+ · · ·+ ‖x1 − x0‖
≤ ‖x1 − x0‖(1 + 2−1 + 2−2 + · · · )
= 2α,

which shows that the sequence {xn}∞0 is well defined. Similarly,

‖xn − xm‖ ≤ ‖xn − xn−1‖+ · · ·+ ‖xm+1 − xm‖
≤ ‖xm+1 − xm‖(2−m + 2−m−1 + · · · )
≤ α

2m−1
,

so that {xn}∞0 is a Cauchy sequence, with limit x∗ ∈ B2α(x0). Since

‖G(xn)‖ ≤ ‖G′(xn)‖ · ‖G′(xn)−1G(xn)‖ = αn‖G′(xn)‖ → 0,

because {G′(xn)}∞0 is bounded, we see that G(x∗) = 0.
Using the technique in the proof of Theorem 14.18, we can prove that



14.7 Conjugate-Gradient Method 387

‖xn+1 − x∗‖ ≤ c‖xn − x∗‖2 with c = κmax{βn}/2;

therefore {xn}∞0 is quadratically convergent to x∗; here c <∞ because βn →
‖G′(x∗)−1‖ <∞.

If x̃ ∈ B2α(x0) is another root of G, then G(x̃) = G(x∗) = 0, G′(x0) = I,
and

‖x̃− x∗‖ = ‖G(x̃)−G(x∗)−G′(x0)(x̃− x∗)‖

≤
∫ 1

0

∥∥[G′(x∗ + t(x̃− x∗))−G′(x0)](x̃− x∗)
∥∥ dt

≤ κ‖x̃− x∗‖
∫ 1

0

‖x∗ + t(x̃− x∗)− x0‖ dt

≤ 2ακ‖x̃− x∗‖;

since 2ακ < 1, we have x̃ = x∗, proving the uniqueness of the root of F in
B2α(x0).

It remains to prove the estimate (14.35). Define

δn :=
γn

1− γn
.

Then, (14.38) and the fact that γn < 1/2 for all n imply δn ≤ δ2n−1, which
in turn implies by induction that δn ≤ (δ0)2

n

for all n ≥ 0; therefore (14.38)
gives

αn ≤
1
2
αn−1δ

2n−1

0 ≤ · · · ≤ 2−nδ2
n−1

0 α0 ≤ 2−nq2
n−1α

and

‖xn − x∗‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − xn+2‖+ · · · =
∞∑
i=n

αi

≤ 2 · 2−nq2n−1α =
α

2n−1
q2
n−1.

The theorem is proved. ut

14.7 Conjugate-Gradient Method

Throughout this section, we consider solving the system of linear equations

Qx = b, (14.39)

where Q is an n × n symmetric positive definite matrix. Hestenes and
Stiefel [132] invented the conjugate-gradient method (CGM) in order to solve
this system, especially when Q is a sparse large-scale matrix. Such large-
scale, sparse linear systems come up, for example, in the numerical solution
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of partial differential equations. The conjugate-gradient method is an impor-
tant iterative method, with many desirable properties that will be highlighted
below.

Note that the equation (14.39) is equivalent to minimizing the strongly
convex quadratic function

q(x) =
1
2
〈Qx, x〉 − 〈b, x〉+ a, (14.40)

where a ∈ R, because ∇q(x) = Qx − b; thus the equation Qx = b has the
variational characterization ∇q(x) = 0. We set

r(x) := ∇q(x)

throughout this section.
The conjugate-gradient method has been extended to nonquadratic mini-

mization problems; see for example [190, 213] for further information.

14.7.1 Q-Inner Product and Q-Norm

Definition 14.21. Let Q be a symmetric, positive definite n×n matrix. The
Q-inner product on Rn is given by

〈x, y〉Q := 〈Qx, y〉;

then (Rn, 〈·, ·Q〉) is a finite-dimensional Euclidean space. The corresponding
norm is called the Q-norm,

‖x‖Q :=
√
〈Qx, x〉.

This inner product can also be viewed as follows: let Q = UΛUT

be the spectral decomposition of Q. (Recall that U = [u1, . . . , un], Λ =
diag(λ1, . . . , λn), where ui, ‖ui‖ = 1, is an eigenvector of Q with the cor-
responding eigenvalue λi.) The matrix R = U diag(

√
λ1, . . . ,

√
λn)UT is the

unique symmetric matrix satisfying R2 = Q; it is called the square root of Q,
and denoted by Q1/2. Thus,

〈x, y〉Q = 〈Q1/2x,Q1/2y〉 and ‖x‖Q = ‖Q1/2x‖,

that is, ‖x‖Q is simply the ordinary Euclidean norm of the vector Q1/2x and
〈x, y〉Q is the ordinary inner product of the vectors Q1/2x and Q1/2y.

Definition 14.22. A set of directions {di}ki=1 ⊂ Rn is called Q-conjugate or
Q-orthogonal if they are orthogonal in the Q-inner product, that is,

‖di‖Q 6= 0, 〈di, dj〉Q = 0 for all i 6= j, i, j = 1, . . . , k. (14.41)

Lemma 14.23. A set {di}ki=1 of Q-conjugate directions is linearly indepen-
dent.
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Proof. If α1d1 + · · ·+ αkdk = 0, then

0 =
〈 k∑
i=1

αidi, Qdj

〉
=

k∑
i=1

αi〈di, Qdj〉 = αj〈dj , Qdj〉;

since 〈dj , Qdj〉 6= 0, it follows that αj = 0 for all j, j = 1, . . . , k. ut

An important feature of conjugate directions {di}k1 is that if we have them
at hand, then it is trivial to minimize the quadratic function q(x) on an affine
subspace A = x0 + span({di}ki=1): if x = x0 +

∑k
i=1 γidi ∈ A, then by Taylor’s

formula,

q(x) = q(x0) +
k∑
i=1

γi〈r0, di〉+
1
2

k∑
i,j=1

γiγj〈Qdi, dj〉

= q(x0) +
k∑
i=1

[
γi〈r0, di〉+

1
2

k∑
i=1

γ2
i 〈Qdi, di〉

]
,

where the second equation follows since the vectors {di}k1 are Q-conjugate.
Thus, the minimizer x∗ of q on A can be obtained by minimizing separately
over each γi; we have

x∗ = x0 +
k∑
i=1

γidi, where γi = − 〈r0, di〉〈Qdi, di〉
. (14.42)

Gram–Schmidt Process

Suppose we are given linearly independent vectors {ri}k0 . The Gram–Schmidt
orthogonalization process generates a set of Q-conjugate direction {di}k0 out
of {ri}k0 such that span({ri}k0) = span({di}k0).

The process starts by setting d0 = r0; if {di}i−1
0 is at hand, then we define

di = ri +
i−1∑
j=0

βjdj ,

where the coefficients βj are determined as follows: since we require 〈di, dl〉Q =
0 for l < i, we must have

0 = 〈di, dl〉Q =
〈
ri +

i−1∑
j=1

βjdj , dl

〉
Q

= 〈ri, dl〉Q +
i−1∑
j=1

βj〈dj , dl〉Q = 〈ri, dl〉Q + βl〈dl, dl〉Q,
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where the last equation follows because 〈dj , dl〉Q = 0 for j 6= l; therefore
βl = −〈ri, dl〉Q/〈dl, dl〉Q, and

di = ri −
i−1∑
j=1

〈ri, dj〉Q
〈dj , dj〉Q

dj = ri −
i−1∑
j=1

〈Qri, dj〉
〈Qdj , dj〉

dj .

14.7.2 Conjugate-Direction Methods

It is useful to discuss a more general class of algorithms known as conjugate-
direction methods before studying the conjugate-gradient method in detail.

Let {di}n−1
i=0 be set of Q-conjugate search directions, either preselected,

or selected recursively, somehow, as the algorithm proceeds. A conjugate-
direction method simply minimizes q(x) in (14.40) by successively minimizing
it using {dk} as search directions.

The precise description of the method follows.

Conjugate-Direction Method

Let x0 be a point and {di}n−1
i=0 a set of Q-conjugate directions in Rn.

For k = 0, 1 . . . , n− 1, set

xk+1 = xk −
〈rk, dk〉
〈Qdk, dk〉

dk, where rk = ∇q(xk). (14.43)

Here xk+1 is the exact minimizer of the function q on the line ` = {xk +
αdk : α ∈ R}, because defining

h(α) := q(xk + αdk) = q(xk) + α〈rk, dk〉+
α2

2
〈Qdk, dk〉,

we see that the exact minimizer αk of h is given by the equation h′(αk) =
〈rk, dk〉+ αk〈Qdk, dk〉 = 0.

We now come to one of the key results in the theory of the conjugate-
gradient method.

Theorem 14.24. Let {di}n−1
i=0 be a set of Q-conjugate directions in Rn, and

{xi}n−1
i=0 the points generated by the conjugate-direction method using these

directions.
Then xk is the global minimizer of q on the k-dimensional affine subspace

Mk := x0 + span({di}k−1
0 );

consequently, the solution to the equation Qx = b can be found in at most n
steps of the conjugate-direction method.

Moreover, rk is orthogonal to the directions {di}k−1
0 , that is, 〈rk, di〉 = 0

for i = 0, . . . , k − 1.
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Proof. Let x = x0 + γ0d0 + · · ·+ γk−1dk−1 be the minimizer of q on Mk. We
will show that γi = αi, i = 0, . . . , k − 1, which will imply the first statement
of the theorem.

By (14.42), we have

γi = − 〈r0, di〉〈Qdi, di〉
, i = 0, . . . , k − 1.

Now, if x ∈Mi such that x = x0 + δ0d0 + · · ·+ δi−1di−1, then

∇q(x) = Qx0 + δ0Qd0 + · · ·+ δi−1Qdi−1 − b
= r0 + δ0Qd0 + · · ·+ δi−1Qdi−1,

and

〈∇q(x), di〉 = 〈r0, di〉+
i−1∑
j=0

δj〈Qdj , di〉 = 〈r0, di〉;

this shows that

〈∇q(x), di〉 = 〈r0, di〉 for all x ∈Mi,

and setting x = xi ∈ Mi gives 〈ri, di〉 = 〈r0, di〉. It follows from (14.43) that
γi = αi, i = 0, 1, . . . , k − 1.

To prove the second statement, note that xk is minimizes the function

h(δ0, . . . , δk−1) := q(x0 + δ0d0 + · · ·+ δk−1dk−1)

on Rk. This implies

0 =
∂h(γ)
∂δi

= 〈∇q(xk), di〉 = 〈rk, di〉, i = 0, . . . , k − 1.

This completes the proof of the theorem. ut

14.7.3 The Conjugate-Gradient Method

The conjugate-gradient method (CGM) of Hestenes and Stiefel is a conjugate-
direction method that successively manufactures the Q-conjugate directions
{di}k0 out of the negative gradient directions {−ri}k0 = {−∇q(xi)}k0 encoun-
tered during the running of the algorithm, using the Gram–Schmidt process
described above. Note that this is possible, since the Gram–Schmidt process
never looks ahead; only the knowledge of {−rj}k0 is needed to generate dk.

Consequently, we have the following, preliminary version of the conjugate-
gradient method:

Choose a point x0 ∈ Rn; define d0 = −∇q(x0) := −r0.
while rk 6= 0,
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dk = −rk +
k−1∑
j=0

〈Qrk, dj〉
〈Qdj , dj〉

dj , (14.44)

αk =
‖rk‖2
〈Qdk, dk〉

, (14.45)

xk+1 = xk + αkdk. (14.46)

end (while)

We note that the formula for αk in (14.45) follows, because Theorem 14.24
implies

〈rk, dk〉 = 〈rk,−rk + β0d0 + · · ·+ βk−1dk−1〉 = −‖rk‖2.

As it stands, the above algorithm is not practical, because the computation
of dk by the Gram–Schmidt process requires too much computational effort.
Happily, (14.44) can be simplified considerably; this is the magical feature of
the CGM.

Theorem 14.25. Let the gradient vectors {ri}ki=0 be all nonzero. Then {ri}ki=0

are mutually orthogonal, that is,

〈ri, rj〉 = 0 for all i 6= j. (14.47)

Moreover,

dk = −rk + βkdk−1, where βk =
‖rk‖2
‖rk−1‖2

.

Thus, the search direction dk at the kth step of CGM is a linear combina-
tion of the current gradient vector ∇q(xk) and the last search direction dk−1.

Proof. Note that the vectors {di}k−1
0 are generated from the vectors {ri}k−1

0

by the Gram–Schmidt process, so that

span{d0, . . . , dk−1} = span{r0, . . . , rk−1}.

Since {di}k−1
i=0 are Q-conjugate, Theorem 14.24 implies that rk ⊥ {di}k−1

i=0 ;
thus,

rk ⊥ {r0, r1, . . . , rk−1},
proving the first statement of the theorem.

We can now simplify equation (14.44). We must have αj 6= 0 in the equa-
tion xj+1 = xj + αjdj , because otherwise rk+1 = rk, and this contradicts
(14.47); then

Qdj = Q
(xj+1 − xj

αj

)
=

(Qxj+1 − b)− (Qxj − b)
αj

=
rj+1 − rj

αj
. (14.48)
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Therefore, we have in (14.44)

〈Qrk, dj〉 = 〈rk, Qdj〉 =
1
αj
〈rk, rj+1 − rj〉, j = 0, . . . , k − 1.

Consequently,

〈Qrk, dj〉 = 0 for all j < k − 1,

〈Qrk, dk−1〉 =
‖rk‖2
αk−1

.

Substituting these in (14.44) gives

dk = −rk +
‖rk‖2

αk−1〈Qdk−1, dk−1〉
dk−1 = −rk +

‖rk‖2
‖rk−1‖2

dk−1,

where the second equality follows from (14.45). ut

Here is the final description of the conjugate-gradient method.

The Conjugate-Gradient Method

Choose a point x0 ∈ Rn; define d0 = −∇q(x0) =: −r0.
while rk 6= 0,

αk =
‖rk‖2
〈Qdk, dk〉

,

xk+1 = xk + αkdk,

rk+1 = rk + αkQdk,

βk+1 =
‖rk+1‖2
‖rk‖2

,

dk+1 = −rk+1 + βk+1dk,

(14.49)

end (while)

For easy reference, we state some of the important results we proved above.

Corollary 14.26. Suppose the CGM generates the points {xi}k+1
0 , where the

last point xk+1 is the optimal solution. The vectors {ri}k0 (ri = ∇q(xi)) are
orthogonal, the directions {di}k0 are Q-conjugate, and

span{r0, . . . , ri} = span{d0, . . . , di}, i = 0, . . . , k.
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14.8 Convergence Rate of the Conjugate-Gradient
Method

In theory, the conjugate-gradient method (14.49) terminates in at most n steps
by Theorem 14.24. This is rarely true in practice, however, because of numer-
ical roundoff errors. Since the 1970s, the prevailing view is that the conjugate-
gradient method is an iterative method for solving linear equations Qx = b,
where the matrix Q is large-scale, sparse, symmetric, and positive definite (or
positive semidefinite). Viewed from this perspective, it becomes important to
estimate the convergence rate of the algorithm based on the properties of the
matrix Q, not merely its dimension n, and to obtain convergence-rate results
that are independent of n. It even becomes relevant to investigate the behav-
ior the conjugate-gradient method for solving a linear equation Qx = b where
Q : H → H is a self-adjoint positive semidefinite operator on an infinite-
dimensional Hilbert space H. Theorem 14.24 will be a key tool in this section.

A consequence of Corollary 14.26, which in turn is a consequence of The-
orem 14.24 and Theorem 14.25, is the following result.

Corollary 14.27. Let {xi}ki=0, {ri}ki=0, and {di}ki=0 be the iterates, gradients,
and conjugate direction vectors, respectively, generated by a conjugate-gradient
method.

If all the gradient vectors ri are nonzero, then

span{d0, d1, . . . , dk} = span{r0, r1, . . . , rk} = span{r0, Qr0, . . . , Qkr0}.

Proof. The first equality was already proved in Corollary 14.26; to prove the
second, we use induction on k. The equality is trivially true for k = 0; as-
suming that it is true for k − 1, let us prove its truth for k. Let {ri}ki=0

all be nonzero vectors. It suffices to show that span{ri}k0 ⊆ span{Qir0}k0 ,
because span{ri}k0 has dimension k + 1 by Corollary 14.26, while the sub-
space span{Qir0}k0 has dimension at most k + 1. By the induction hypoth-
esis, we have span{ri}k−1

0 = span{Qir0}k−1
0 , so it suffices to prove that

rk ∈ span{Qir0}k0 ; this last assertion is true, because rk = rk−1 +αk−1Qdk−1

from the description of CGM, and both rk−1 and dk−1 lie in span{Qir0}k−1
0

by the induction hypothesis. ut

Definition 14.28. Let A be an n×n matrix and d ∈ Rn a vector. The Krlov
subspace of A of order k in the direction d is the linear subspace

K(A, d, k) := span{d,Ad, . . . , Ak−1d}.

Let
E(x) := q(x)− q(x∗)

be the objective value gap q(x)−q(x∗) at the point x, where x∗ is the minimizer
of q on Rn. By Taylor’s formula,
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E(x) = q(x)− q(x∗) =
1
2
〈Q(x− x∗), x− x∗〉 =

1
2
‖x− x∗‖2Q. (14.50)

We now come to perhaps the most central result concerning the conjugate-
gradient method, sometimes called the expanding subspace theorem. We shall
use it in Section 14.10 to give a short and independent derivation of the
conjugate-gradient method itself.

Theorem 14.29. (Expanding subspace theorem)The point xk generated
by the conjugate-gradient method has the variational characterization

E(xk) =
1
2

min
{
‖p(Q)(x0 − x∗)‖2Q : p ∈ Pk, p(0) = 1

}
,

where Pk is the vector space of polynomials of degree at most k.

Proof. It follows from Theorem 14.24 and Corollary 14.27 that xk is the min-
imizer q on the affine subspace Mk−1 = x0 + K(Q, r0, k − 1). If x ∈ Mk−1,
write

x = x0 + γ0r0 + γ1Qr0 + · · ·+ γk−1Q
k−1r0 = x0 + p(Q)r0,

where p is the polynomial

p(t) := γ0 + γ1t+ · · ·+ γk−1t
k−1.

Since r0 = Qx0 − b = Qx0 −Qx∗ = Q(x0 − x∗), this gives

x− x∗ = (x0 − x∗) + p(Q)r0 = [I +Qp(Q)](x0 − x∗); (14.51)

thus x− x∗ = p̄(Q)(x0 − x∗), where p̄(t) = 1 + tp(t) ∈ Pk and p̄(0) = 1. ut

Theorem 14.29 is a powerful result on the convergence rate of the conjugate-
gradient method. However, it has the drawback that the gap E(xk+1) is esti-
mated by the displacement vector x0 − x∗; it may be preferable to estimate
the gap in terms of a known similar quantity instead, say E(x0). This is done
below.

Theorem 14.30. Let xk+1 be the (k+ 1)th point generated by the conjugate-
gradient method. If {λi}ni=1 are the eigenvalues of the matrix Q, then

E(xk+1)
E(x0)

≤ min
p∈Pk

max
i

(
1 + λip(λi)

)2
.

Proof. Let Q = UΛUT be the spectral decomposition of Q, where Λ =
diag(λ1, . . . , λn), and write x0 − x∗ = Uδ.

If p ∈ Pk is such that 1 + tp(t) is the polynomial realizing the minimum
in Theorem 14.29, then p(Q) = Up(Λ)UT , and we have
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Q(I + p(Q)Q)(x0 − x∗), (I + p(Q)Q)(x0 − x∗)

〉
=
〈
Λ(I + p(Λ)Λ)δ, (I + p(Λ)Λ)δ

〉
=

n∑
i=1

(1 + λip(λi))2λiδ2i

≤
(

max
i

(1 + λip(λi))2
) n∑
i=1

λiδ
2
i .

Theorem 14.29 implies that

E(xk+1) ≤
(

max
i

(1 + λip(λi))2
)
·
(1

2

n∑
i=1

λiδ
2
i

)
=
(

max
i

(1 + λip(λi))2
)
E(x0),

where the equality follows from

2E(x0) = ‖x0 − x∗‖2Q = ‖Uδ‖2Q = 〈Λδ, δ〉 =
n∑
i=1

λiδ
2
i .

ut

Corollary 14.31. Let xk be the kth point generated by the conjugate-gradient
method. Let κ = λmax/λmin be the condition number of Q, where λmax and
λmin are the largest and smallest eigenvalues of Q, respectively.

Then
E(xk)
E(x0)

≤ 1

Tk

(
κ+1
κ−1

) ≤ 2
(√

κ− 1√
κ+ 1

)k
, (14.52)

where Tk is Chebyshev’s polynomial given by

Tk(x) = cos(k cos−1 x).

Proof. Write m = λmin and M = λmax. Theorem 14.30 implies

E(xk)
E(x0)

≤ min
p

max
i

p(λi)2 ≤ min
p

max
x∈[m,M ]

p(x)2,

where the minimization is over polynomials p ∈ Pk satisfying p(0) = 1.
The minimax problem minp maxx∈[m,M ] p(x)2 above is a classical problem

in approximation theory whose solution is the polynomial given by

p(x) =
Tk

(
1 + 2 x−M

M−m

)
Tk

(
1 + 2 −MM−m

) =
Tk

(
1 + 2 x−M

M−m

)
Tk

(
−κ+1
κ−1

)
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with
max

x∈[m,M ]
|p(x)| = 1∣∣∣Tk (−κ+1

κ−1

)∣∣∣ =
1

Tk

(
κ+1
κ−1

) ;

see Theorem 12.15 on page 327. The last equality above follows from the fact
that Tk is an even or odd function, according to whether k is even or odd. (It
is easy to prove this using T0(x) = 1, T1(x) = x, and the recursive formulas
Tk+1(x) = 2xTk(x)− Tk−1(x).) This proves the first inequality in (14.52).

Toward proving the second inequality in (14.52), we express Tk(x) in a
different form. Defining θ = cos−1 x, we have

eiθ = cos θ + i sin θ = cos θ + i
√

1− cos2 θ = cos θ +
√

cos2 θ − 1

= x+
√
x2 − 1

and

Tk(x) = cos(kθ) =
eikθ + e−ikθ

2
=

(
eiθ
)k +

(
e−iθ

)−k
2

=

(
x+
√
x2 − 1

)k
+
(
x+
√
x2 − 1

)−k
2

.

Thus, we have

Tk

(
κ+ 1
κ− 1

)
≥ 1

2

(
κ+ 1
κ− 1

+

√(κ+ 1
κ− 1

)2 − 1

)k
=

1
2

(
κ+ 1 + 2

√
κ

κ− 1

)k
=

1
2
·
(√κ+ 1√

κ− 1

)k
.

The corollary is proved. ut
In general, it is impossible to improve upon the convergence-rate estimates

given in Corollary 14.31; see for example [153], pp. 373–374. Another “optimal-
ity” property of the conjugate-gradient method is given in [205], pp. 261–263,
where it is shown that the conjugate-gradient method is essentially an optimal
algorithm in the black-box, oracle model of computational complexity for op-
timization problems. Nevertheless, as one would expect from Theorem 14.30,
it is possible to obtain better convergence rates for the conjugate-gradient
method if one knows more about the distribution of the eigenvalues of Q. The
interested reader is referred to the extensive literature on the subject for more
information.

Corollary 14.32. The optimality gap E(x) = q(x)− q(x∗) is halved in every
O(
√
κ) iterations of the conjugate-gradient method.

Proof. See the proof of Corollary 14.10. ut
Thus, if κ = 106, say, then the conjugate-gradient method is a thousand

fold improvement over the steepest-descent method.
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14.9 The Preconditioned Conjugate-Gradient Method

We have seen that the convergence rate of the conjugate-gradient method for
solving the equation Qx = b is proportional to the square root of the condition
number of the matrix Q. For ill-conditioned matrices, this rate may still be
slow. In order to accelerate the convergence rate, we may instead solve an
equivalent linear system

Q̄x̄ = b̄, (14.53)

where
Q̄ = C−1QC−T , x̄ = CTx, b̄ = C−1b, (14.54)

where C is an invertible n×n matrix and C−T = (C−1)T = (CT )−1, such that
the matrix Q̄ has smaller, hopefully much smaller, condition number than Q.

It will be seen below (see (14.56)) that the matrix C itself is not needed in
the preconditioned CGM; we need only to solve linear equations of the form
Mz = r, where

M = CCT

for z. The matrix C should be chosen so that the equation Mz = r is easy
to solve, and of course Q̄, equivalently M−1Q, has reasonably small condition
number. There exists an extensive literature on how to choose C, but we
cannot pursue this topic in any depth here; see for example [14, 234].

The quadratic function corresponding to (Q̄, b̄) is given by

q̄(x̄) :=
1
2
〈Q̄x̄, x̄〉 − 〈b̄, x̄〉.

Note that we have

q̄(x̄) =
1
2
〈C−1QC−T (CTx), CTx〉 − 〈C−1b, CTx〉

=
1
2
〈Qx, x〉 − 〈b, x〉

= q(x)

and

r̄(x̄) = Q̄x̄− b̄ = C−1QC−T (CTx)− C−1b = C−1r(x). (14.55)

The conjugate-gradient method applied to (14.53) becomes

Choose a point x̄0 ∈ Rn. Define d̄0 = −r̄0 = −∇q̄(x̄0).
while r̄k 6= 0,
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αk =
‖r̄k‖2
〈Q̄d̄k, d̄k〉

,

x̄k+1 = x̄k + αkd̄k,

r̄k+1 = r̄k + αkQ̄d̄k,

βk+1 =
‖r̄k+1‖2
‖r̄k‖2

,

d̄k+1 = −r̄k+1 + βk+1d̄k.

end (while)

We can describe the above algorithm in the original variables. For this purpose,
we first define

xk = C−T x̄k, rk = Cr̄k,

in accordance with the equations (14.54) and (14.55). We also define

dk = C−T d̄k,

so that the equation x̄k+1 = x̄k + αkd̄k transforms into the equation xk+1 =
xk + αkdk, that is, dk is the direction of movement from xk to xk+1. Finally,
we need an auxiliary variable zk, which we define as zk := (CCT )−1rk, that
is, zk is the solution of the linear system

Mzk = rk, where M = CCT .

above, we arrive at the following description.

The Preconditioned Conjugate-Gradient Method

Choose a point x0 ∈ Rn. Define d0 = −∇q(x0) := −r0, and solve
Mz0 = r0 for z0.
while rk 6= 0,

αk =
〈zk, rk〉
〈Qdk, dk〉

,

xk+1 = xk + αkdk,

rk+1 = rk + αkQdk,

solve Mzk+1 = rk+1 for zk+1,

βk+1 =
〈zk+1, rk+1〉
〈zk, rk〉

,

dk+1 = −zk+1 + βk+1dk.

(14.56)

end (while)

By making these substitutions in the preconditioned conjugate-gradient method
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14.10 The Conjugate-Gradient Method and Orthogonal
Polynomials

We now give an independent derivation of the conjugate-gradient method,
inspired by the expanding subspace theorem, Theorem 14.29. This approach to
the conjugate-gradient method has considerable advantages: the derivation is
short, clear, self-contained, and provides a link between the conjugate-gradient
method and orthogonal polynomials.

Choose a point x0 ∈ Rn, and consider the algorithm for minimizing q(x)
such that it generates the sequence {xk}, where xk is the global minimizer
q(x) on the affine subspace

Mk := x0 +K(Q, r0, k) = x0 + span{r0, Qr0, . . . , Qk−1r0}, k ≥ 1,

where r0 = ∇q(x0) = Qx0 − b.
A priori, this is a conceptual algorithm, because it is not clear how to

minimize q(x) on Mk effectively. (Of course, we know by Theorem 14.29 that
xk can be computed recursively, and the resulting algorithm is the conjugate-
gradient method, but we do not need or use this knowledge here.)

Denote by
ek := xk − x∗

the displacement vector at step k, where x∗ is the minimizer of q on Rn; then

r0 = Qx0 − b = Q(x0 − x∗) = Qe0.

Now, any point x ∈Mk has a representation

x = x0 + c1r0 + c2Qr0 + · · ·+ ckQ
k−1r0

= x∗ + e0 + c1Qe0 + · · ·+ ckQ
ke0

= x∗ + p(Q)e0,

where
p(t) = 1 + c1t+ · · ·+ ckt

k ∈ Pk, p(0) = 1.

We denote by pk the polynomial corresponding to xk, that is, xk = x∗ +
pk(Q)e0. We conclude that

ek = pk(Q)e0 and rk = pk(Q)r0, (14.57)

where the second equation follows since rk = Qek = Qpk(Q)e0 = pk(Q)Qe0 =
pk(Q)r0.

If r(t) ∈ Pk−1, then the polynomials pk and pk(t) + εtr(t) are both in Pk
and have value 1 at t = 0. Since

E(x) =
1
2
‖x− x∗‖2Q =

1
2
‖p(Q)(e0)‖2Q,
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where the first equation follows from (14.50) and E(x) is minimized at pk, it
follows that

0 ≤ ‖[pk(Q) + εr(Q)Q]e0‖2Q − ‖pk(Q)e0‖2Q
= 2ε〈pk(Q)e0, r(Q)Qe0〉Q + ε2 ‖r(Q)Qe0‖2Q

for all ε ∈ R, which is possible if and only if

〈pk(Q)e0, r(Q)Qe0〉Q = 〈pk(Q)r0, r(Q)r0〉 = 0

for all polynomials r(t) ∈ Pk−1.
Now we define an inner product on polynomials as follows:

〈p, q〉P := 〈p(Q)r0, q(Q)r0〉. (14.58)

Then
〈pk, r〉P = 0 for all r ∈ Pk−1,

that is, the polynomials {pk} are orthogonal in the inner product 〈·, ·〉P .
Note that (14.57) and (14.58) give

〈pi, pj〉P = 〈ri, rj〉.

The vectors {rk}l−1
0 thus form an orthogonal set of vectors (hence a basis)

in K(Q, r0, l) as long as they are nonzero. Similarly, the polynomials {pk}l−1
0

are also linearly independent, and the polynomial pk(t) thus has degree k.
Therefore, our algorithm stops precisely at step m, where m is the dimension
of the Krylov space K(Q, r0) := span{Qir0 : i ≥ 1}, that is, the first time we
have Mk = Mk+1.

Write

tpk(t) =
k+1∑
i=0

ck,ipi(t);

we have
〈tpk, pi〉P = 〈pk, tpi〉P = 0

for i = 0, . . . , k − 2, so that only the last three coefficients ck,k−1, ck,k, and
ck,k+1 may be nonzero. In fact, ck,k+1 6= 0, since tpk(t) has degree k+ 1. (We
remark that this three-term recurrence for {pk} is a characteristic property of
orthogonal polynomials; see [250].)

Let us write pk+1(t) = (γkt+ ξk)pk(t) + δkpk−1(t). Since all three polyno-
mials take the value 1 at t = 0, we have ξk = 1− δk, and

pk+1(t) = [γkt+ (1− δk)]pk(t) + δkpk−1(t). (14.59)

It follows from (14.57) and (14.59) that
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xk+1 − x∗ = ek+1 = pk+1(Q)e0
= γkQpk(Q)e0 + (1− δk)pk(Q)e0 + δkpk−1(Q)e0
= γkrk + (1− δk)ek + δkek−1

= γkrk + (1− δk)(xk − x∗) + δk(xk−1 − x∗).

Therefore,

xk+1 = xk + γkrk − δk(xk − xk−1),
rk+1 = rk + γkQrk − δk(rk − rk−1).

(14.60)

The coefficients γk and δk can be computed as follows: since 〈rk+1, rk〉 = 0
and 〈rk+1, rk−1〉 = 0, we have, using (14.60), the equations

γk〈Qrk, rk〉+ (1− δk)‖rk‖2 = 0, γk〈Qrk, rk−1〉+ δk‖rk−1‖2 = 0,

which have the solution

βk =
‖rk‖2
‖rk−1‖2

,

γk =
−‖rk‖2

〈Qrk, rk + βkrk−1〉
,

δk =
βk〈Qrk, rk−1〉

〈Qrk, rk + βkrk−1〉
.

(14.61)

The equations (14.60) and (14.61) give an alternative description of the
conjugate-gradient method.

In the remainder of this section, we show the exact correspondence between
the data of the algorithm here and the one given in (14.49). (This is not strictly
necessary but rounds out our treatment of the conjugate-gradient method.)

First, note that the sequences {xk}m−1
0 and {rk}m−1

0 are the same, since
xk minimizes q(x) on Mk in both algorithms and rk = Qxk − b. Next, we
claim that γk = −αk, where αk is defined in (14.49). Using the last equation
in (14.49), we have

〈Qrk, rk〉 = 〈Q(dk − βkdk−1), dk − βkdk−1〉
= 〈Qdk, dk〉+ β2

k〈Qdk−1, dk−1〉,

where the second equation follows by the Q-conjugacy of the vectors {di} in
(14.49); similarly,

〈Qrk, rk−1〉 = 〈Q(dk − βkdk−1), dk−1 − βk−1dk−2〉
= −βk〈Qdk−1, dk−1〉.

Adding, we get
〈Qrk, rk + βkrk−1〉 = 〈Qdk, dk〉.
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It follows from (14.61) that γk = −‖rk‖2/〈Qdk, dk〉 = −αk, proving our claim.
Similarly,

δk =
−β2

k〈Qdk−1, dk−1〉
〈Qdk, dk〉

=
−αkβk
αk−1

. (14.62)

We define dk as in (14.49) by the formula

xk+1 = xk + αkdk (or equivalently, rk+1 = rk + αkQdk).

Then we have

dk =
xk+1 − xk

αk
=
γk
αk
rk −

δk
αk

(αk−1dk−1) = −rk + βkdk−1,

where the second equality follows from (14.60). This proves the last equation
in (14.49) (with k + 1 replaced by k), and completes the equivalence of the
formulas (14.60) and (14.61) with (14.49).

Remark 14.33. The attentive reader will note that all the results of this sec-
tion can be worked out without orthogonal polynomials ever being mentioned.
However, the connection between the conjugate-gradient method and orthog-
onal polynomials is important and should be kept in mind. We remark that
this connection was noted already in [132], the first paper on the subject,
and is treated in more detail later in [246]. The classic book [250] is still a
good reference on orthogonal polynomials. The inspiration to write this sec-
tion comes from the book [186], but we have removed the restrictions there
on the matrix Q.

14.11 Exercises

1. Consider the steepest-descent method to compute a minimizer of the func-
tion f(x, y) = x4+y2−8y starting at the point (x0, y0) = (0, 1). Determine
the next iterate (x1, y1) using several of the step-size selection rules.

2. Newton’s method is used to compute a solution to the system 3x2y+y2 =
1, x4 + xy3 = 1 starting at the point (x0, y0) = (1, 1). Determine the next
iterate (x1, y1).

3. Consider the function f(x, y) = 2x2 + y2 − 2xy + 2x3 + x4.
(a) Determine all the critical points of f .
(b) Suppose we initiate the Newton’s method for minimizing f at a point

(x0, y0). Write down the equation describing this Newton’s method.
(c) Suppose that the Newton’s method in (b) is initiated at the point

(−1, 0). Compute numerically the next point (x1, y1).
(d) Near which critical points can we expect a quadratic convergence

rate from Newton’s method?
4. Consider using Newton’s method for finding roots of the function

f(x, y) = (x2 − y − 1, x+ y2 − 1).
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(a) If the initial point is (1, 1), compute the next iterate.
(b) Note that the points (1, 0) and (0,−1) are roots of f . If the initial

point (x0, y0) is very close to any of these roots, will Newton’s method
be fast in the sense that it will converge quadratically?

(c) Find all other roots of f , if they exist.
5. Here is a problem in which we have quadratic convergence even if we

modify Newton’s method, such that

xk+1 = xk − g(xk)f(xk),

where g is a suitable function.
Suppose we would like to invert a nonsingular matrix A ∈ Rn×n. We can
view this problem as solving the equation

F (X) = 0, where F (X) = I −AX, F : Rn×n → Rn×n.

Since F is linear, we have DF (X) = −A. Obviously, if we apply Newton’s
method, we obtain

Xk+1 = Xk −DF (Xk)−1F (Xk) = Xk +A−1(I −AXk) = A−1,

that is, Newton’s method converges in one step. The drawback is, of
course, that calculating DF (Xk)−1 = −A−1 is computationally costly.
Suppose we replace DF (Xk)−1 by G(XK) := −Xk. (Since DF (X)−1 =
−A−1 and Xk ≈ A−1, this is reasonable.)
(a) Show that if X0 is close enough to A−1, then the method

Xk+1 = Xk +XkF (Xk) = Xk +Xk(I −AXk) = Xk(2I −AXk)

is quadratically convergent, in the sense that

‖F (Xk+1)‖ ≤ ‖F (Xk)‖2.

How would you quantify the “closeness” criterion for X0 so that the
method actually converges, that is, what conditions do you need on
X0 so that the above “Newton’s method” converges and converges
quadratically?
Hint: Find an equation connecting F (Xk) and F (Xk+1).

(b) How can we choose Xk+1 so that the resulting method is cubically
convergent in the sense that

‖F (Xk+1)‖ ≤ ‖F (Xk)‖3?

(c) How can we choose Xk+1 so that the method is nth-order convergent?
6. Prove the following facts about the conjugate-gradient method using its

description in (14.49):
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(a) dk = −
k∑
i=0

‖rk‖2
‖ri‖2

ri.

(b) ‖dk‖2 = ‖rk‖2 + β2
k‖dk−1‖2 =

k∑
i=0

‖rk‖4
‖ri‖2

.

(c) 〈dk, dl〉 =
k∑
i=0

‖rk‖2 · ‖rl‖2
‖ri‖2

=
‖rl‖2
‖rk‖2

· ‖dk‖2 for k ≤ l.

Thus, ‖dk‖ increases with k, and the angle between two different directions
dk and dl is acute.

7. Prove the following facts about the conjugate-gradient method:

(a) αk =
|rk|2

〈Qdk, dk〉
=
−〈rk, dk〉
〈Qdk, dk〉

=
−〈r0, dk〉
〈Qdk, dk〉

,

(b) βk+1 =
|rk+1|2
|rk|2

=
〈rk+1, Qdk〉
〈Qdk, dk〉

=
−〈rk+1, Qrk〉
〈Qdk, dk〉

.

8. Prove the following three-term recurrence formulas for {dk} and {rk} in
the conjugate-gradient method:

(a)
d1 = (1 + β1)d0 − α0Qd0,

dk+1 = (1 + βk+1)dk − αkQdk − βkdk−1, k > 0,

(b)

r1 = r0 − α0Qr0,

rk+1 =
(

1 +
αkβk
αk−1

)
rk − αkQrk −

αkβk
αk−1

rk−1, k > 0.

9. Prove that in the conjugate-gradient method, the iterates xk get closer
to the optimal solution x∗ at each step, that is, ‖xk − x∗‖ is a strictly
decreasing sequence.
Hint: Prove that 〈x∗ − xk, xk − xk−1〉 > 0 by expressing the vectors x∗ −
xk and xk − xk−1 as linear combinations of {di} and using the property
〈di, dj〉 > 0, i 6= j, indicated in Exercise 6 on page 404.





A

Finite Systems of Linear Inequalities in Vector
Spaces

In this appendix, we characterize the consistency of finitely many linear
inequalities in an arbitrary vector space E over R by proving the central
Motzkin’s transposition theorems in this setting. This is done using elemen-
tary combinatorial techniques that go back at least to the work of Carver [55]
in the 1920s. A significant merit of this approach, besides its elementary char-
acter, is the fact that the completeness of R is not used, so that the proofs
can be extended to vector spaces over other fields, say the field Q of rational
numbers.

We first need a definition and a technical lemma.

Definition A.1. Let E be a real vector space. A system of inequalities and
equalities

`i(x) < αi, i ∈ I, `j(x) ≤ αj , j ∈ J, `k(x) = αk, k ∈ K,

where `i, `j , `k : E → R are linear functionals and the index sets I, J,K are
finite, is called irreducibly inconsistent if it has no solution, but dropping any
one of the constraints leads to a system that has a solution.

Lemma A.2. Let E be a real vector space, and let {`i}k1 be linear functionals
on E. The set

L := {y ∈ Rk : yi = `i(x), i = 1, . . . , k}
is a linear subspace of Rk, which is a proper subspace of Rk if and only if
{`i}k1 is linearly dependent.

Proof. The fact that L is a linear subspace of Rk is an immediate consequence
of the linearity of {`i}k1 . We have L 6= Rk if and only if there exists a nonzero
λ ∈ Rk such that λ is orthogonal to L, that is,

∑k
i=1 λi`i(x) = 0 for all x ∈ E,

which is equivalent to the linear dependence of {`i}k1 . ut

We are ready to state and prove the homogeneous version of Motzkin’s
transposition theorem.
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Theorem A.3. (Motzkin’s transposition theorem, homogeneous ver-
sion) Let E be a real vector space, and let {`i}i∈I , {`j}i∈J , and {`i}k∈K be
linear functionals on E, where I, J,K are finite sets.

Then the linear system

`i(x) < 0, i ∈ I, `j(x) ≤ 0, j ∈ J, `k(x) = 0, k ∈ K, (A.1)

is inconsistent if and only if there exist multipliers λ := (λi : i ∈ I), µ := (µj :
j ∈ J), and δ := (δk : k ∈ K) such that∑

i∈I
λi`i +

∑
j∈J

µj`j +
∑
k∈K

δk`k = 0, (λ, µ) ≥ 0, λ 6= 0. (A.2)

Proof. If x ∈ E satisfies (A.1) and the multipliers (λ, µ, δ) satisfy (A.2), then

0 =
( l∑

1

λi`i +
m∑
1

µj`j +
p∑
1

δk`k

)
(x)

=
∑
i∈I

λi`i(x) +
∑
j∈J

µj`j(x) +
∑
k∈K

δk`k(x)

≤
∑
i∈I

λi`i(x) < 0,

where the last inequality follows since at least one λi is positive.
To complete the proof of the theorem, it remains to prove the claim that

if (A.1) is inconsistent, then there exist multipliers (λ, µ, δ) satisfying (A.2).
Let us make some observations that will simplify the proof of the claim.

First of all, we may assume that K = ∅. Suppose that we have succeeded
in proving our claim for this case. If K 6= ∅, then each equality `k(x) = 0,
k ∈ K, can be written as two inequalities `k(x) ≤ 0 and −`k(x) ≤ 0, thus
reducing (A.1) to a system with no equality constraints, and obtain multipliers
(λ, µ), including the multipliers µk1 ≥ 0 and µk2 ≥ 0 corresponding to the
inequalities `k(x) ≤ 0 and −`k(x) ≤ 0, respectively. If we let δk := µk1 − µk2
be the multiplier for the equality `k(x) = 0, then it is clear that the multipliers
(λ, {µj}j∈J , δ) satisfy the required properties, proving the claim in the case
K 6= ∅.

Secondly, we may assume that the system (A.1) is irreducibly inconsistent,
if necessary by getting rid of constraints one at a time while still preserving
the inconsistency of the system. If we succeed in proving the claim in this case,
then it is clear that setting the multipliers to zero for the omitted inequalities
proves the claim for the original case.

Thirdly, we may assume that |I| = 1, that is, there exists exactly one
strict inequality in (A.1). Suppose that |I| > 1; pick p ∈ I and consider the
system obtained by relaxing all strict inequalities except `p(x) < 0 to non-
strict inequalities,

`p(x) < 0, `i(x) ≤ 0, i ∈ I \ {p}, `j(x) ≤ 0, j ∈ J. (A.3)
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If this system is consistent, then there is a point a ∈ E satisfying it, and since
(A.1) (with K = ∅) is irreducibly inconsistent, there exists a point b ∈ E
satisfying the inequalities

`p(b) ≥ 0, `i(b) < 0, i ∈ I \ {p}, `j(b) ≤ 0, j ∈ J.

But then a point c ∈ (a, b) sufficiently near a satisfies all the inequalities
in (A.1), a contradiction. This proves that (A.3) is inconsistent, in fact irre-
ducibly inconsistent, since (A.1) is.

Thus far, we have succeeded in reducing our claim to proving that if the
system

`(x) < 0, `j(x) ≤ 0, j ∈ J, (A.4)

is irreducibly inconsistent, then there exist multipliers λ > 0, µj ≥ 0, j ∈ J ,
such that

λ`+
∑
j∈J

µj`j = 0; (A.5)

this is a special case of Farkas’s lemma. Note that if ` = 0, then J = ∅, and
the claim is obvious. We consider the remaining case in the rest of the proof,
where ` 6= 0, J 6= ∅, and `j 6= 0 for every j ∈ J .

For any two distinct indices r, k ∈ J , there exist, by virtue of irreducible
inconsistency of (A.4), a, b ∈ E such that

`(a) < 0, `r(a) > 0, `k(a) ≤ 0, `j(a) ≤ 0, j ∈ J \ {r, k},
`(b) < 0, `r(b) ≤ 0, `k(b) > 0, `j(a) ≤ 0, j ∈ J \ {r, k}.

If we move on the line segment [a, b] from a to b, we obtain a point c satisfying
the equality `k(c) = 0; the point c satisfies the inequalities

`(c) < 0, `r(c) > 0, `k(c) = 0, `j(x) ≤ 0, j ∈ J \ {r, k},

where the second inequality follows because (A.4) is inconsistent.
Next, consider two consistent systems like the one above,

`(x) < 0, `r(x) > 0, `k1(x) = 0, `k2(x) ≤ 0, `j(x) ≤ 0, j ∈ J \ {r, k1, k2},
`(x) < 0, `r(x) ≤ 0, `k1(x) = 0, `k2(x) > 0, `j(x) ≤ 0, j ∈ J \ {r, k1, k2},

and apply the same idea to obtain a consistent system

`(x) < 0, `r(x) > 0, `k1(x) = 0, `k2(x) = 0, `j(x) ≤ 0, j ∈ J \ {r, k1, k2}.

In this manner, we can replace, one at a time, all but one of the nonstrict
inequalities with equality, and arrive at the consistent system, for any k ∈ J ,

`(x) < 0, `k(x) > 0, `j(x) = 0, j ∈ J \ {k}. (A.6)

Since (A.4) is inconsistent, Lemma A.2 implies that the linear functionals
{`} ∪ {`j}j∈J are linearly dependent; thus there exist scalars {λ, µj , j ∈ J},
not all zero, such that
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λ`+
∑
j∈J

µj`j = 0.

Clearly, at least two multipliers are nonzero, and we may assume without loss
of generality that µr > 0 for some r ∈ J . If a ∈ E satisfies (A.6) for k = r,
then

λ`(a) = −µr`r(a) < 0,

and since `(a) < 0, we have λ > 0.
Finally, if s ∈ J is arbitrary, and b ∈ E satisfies (A.6) for k = s, then

µs`s(b) = −λ`(b) > 0,

and since `s(b) > 0, we have µs > 0. The theorem is proved. ut

Note that two other proofs of Theorem A.3 in the case that E is a finite-
dimensional vector space over R have been given in Theorem 3.15 on page 72
and Theorem 7.17 on page 183. All three proofs are independent of one an-
other. The proof above is the most general one, and has the added virtue that
it needs no prerequisites.

Now that the central result Theorem A.3 is established, the following four
results follow as easy corollaries.

Corollary A.4. (Gordan’s lemma) Let E be a real vector space, and let
{`i}i∈I , {`j}j∈J be a finite set of linear functionals on E. Then

{d : `i(d) < 0, i ∈ I, `j(d) = 0, j ∈ J} = ∅

if and only if there exist a nonnegative, nonzero vector λ ∈ R|I| and a vector
µ ∈ R|J| such that ∑

i∈I
λi`i +

∑
j∈J

µj`j = 0.

Corollary A.5. (Farkas’s lemma, homogeneous version) Let E be a
real vector space, and let {`i}ki=1, {`} be linear functionals on E. The following
statements are equivalent:

(a) any x ∈ E satisfying `i(x) ≤ 0, i = 1, . . . , k, also satisfies `(x) ≤ 0,

(b) there exists λ ≥ 0 such that ` =
∑k

i=1
λi`i.

Proof. Note that (a) is equivalent to the inconsistency of the system

−`(x) < 0, `i(x) ≤ 0, i = 1, . . . , k.

ut
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Theorem A.6. (Motzkin’s transposition theorem, affine version) Let
E be a vector space over R. Let {`i}i∈I , {`j}j∈J , and {`k}k∈K be linear func-
tionals on E, and let {αi}i∈I , {αj}j∈J , and {αk}k∈K be real scalars, where
I, J,K are finite sets.

The linear system

`i(x) < αi, i ∈ I, `j(x) ≤ αj , j ∈ J, `k(x) = αk, k ∈ K, (A.7)

is inconsistent if and only if there exist multipliers λ0 ∈ R, λ ∈ R|I|, µ ∈ R|J|,
δ ∈ R|K|, satisfying∑

i∈I
λi`i +

∑
j∈J

µj`j +
∑
k∈K

δk`k = 0,

∑
i∈I

λiαi +
∑
j∈J

µjαj +
∑
k∈K

δkαk + λ0 = 0,

(λ0, λ, µ) ≥ 0, (λ0, λ) 6= 0.

(A.8)

Proof. The inconsistency of the system (A.7) is equivalent to that of the
homogenized system t > 0, `i(x) < tαi, i ∈ I, `j(x) ≤ tαj , j ∈ J , and
`k(x) = tαk, k ∈ K, that is, of the homogeneous linear system in the vector
space E × R,

˜̀
0(x, t) < 0, ˜̀

i(x, t) < 0, ˜̀
j(x, t) ≤ 0, ˜̀

k(x, t) = 0, (i, j, k) ∈ I×J×K, (A.9)

where ˜̀
0(x, t) = −t, ˜̀

i(x, t) = `i(x) − tαi, i ∈ I ∪ J ∪ K. This follows from
the fact that if x solves (A.7), then (x, 1) solves (A.9), and conversely, if (x, t)
solves (A.9), then x/t solves (A.7). Theorem A.3 implies that there exist
nonnegative multipliers λ0 ∈ R, λ ∈ R|I|, µ ∈ R|J|, and a multiplier δ ∈ R|K|
such that (λ0, λ) 6= 0 and

λ0
˜̀
0 +

∑
i∈I

λi ˜̀i +
∑
j∈J

µj ˜̀
j +

∑
k∈K

δk ˜̀
k = 0.

Setting (x, t) = (x, 0) gives the first equality in (A.8), while setting (x, t) =
(0, 1) gives the second one. ut
Theorem A.7. (Farkas’s lemma, affine version) Let E be a real vector
space. Let {`i}ki=1, ` be linear functionals on E, and let {αi}ki=1, γ be real
scalars. Suppose that the linear inequality system

`i(x) ≤ αi, i = 1, . . . , k,

is consistent.
Then the following statements are equivalent:

(a) any x ∈ E satisfying `i(x) ≤ αi, 1 ≤ i ≤ k, also satisfies `(x) ≤ γ,

(b) ∃(λ1, . . . , λk) ≥ 0 such that
∑k

i=1
λi`i = `,

∑k

i=1
λiαi ≤ γ.
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Proof. Note that (a) is equivalent to the inconsistency of the system

−`(x) < −γ, `i(x) ≤ αi, i = 1, . . . , k.

By Theorem A.6, there exist nonnegative multipliers {λi}ki=−1 such that
(λ−1, λ0) 6= 0 and

−λ−1`+
k∑
i=1

λi`i = 0, −λ−1γ +
k∑
i=1

λiαi + λ0 = 0.

Since the system `i(x) ≤ αi, i = 1, . . . , k, is consistent, we must have λ−1 > 0
by Theorem A.6, and we may set λ−1 = 1. The theorem follows. ut
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Descartes’s Rule of Sign

In this appendix, we give a simple proof of Descartes’s rule of sign following
Vinberg [260].

Recall Definition 2.22:

Definition B.1. Let a0, a1, . . . , an be a sequence of real numbers. If all the
numbers in the sequence are nonzero, the total number of variations of sign in
the sequence, denoted by V (a0, a1, . . . , an), is the number of times consecutive
numbers ak−1 and ak differ in sign, that is,

V (a0, a1, . . . , an) := |{k : ak−1ak < 0, k = 1, . . . , n}|.

If the sequence a0, a1, . . . , an contains zeros, then V (a0, a1, . . . , an) is defined
to be the variations of the reduced sequence by ignoring all zero elements in
the sequence. Also, we define V (a0) = 0 for any a0 ∈ R.

Let p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n be a polynomial of degree n with
real coefficients. We write

Vp := V (a0, a1, . . . , an).

We recall Theorem 2.23:

Theorem B.2. (Descartes’s rule of sign) Let p(x) = a0 + a1x+ a2x
2 +

· · ·+anx
n be a nonzero polynomial of degree n with real coefficients. Then the

number of positive roots Np(0,∞) of p is given by

Np(0,∞) = Vp − 2κ,

where κ is a nonnegative integer.
Moreover, if the roots of p are all real, then κ = 0, that is, Np(0,∞) = Vp.

The following simple technical lemmas will be used in its proof.
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Lemma B.3. Let p(x) = a0 + a1x + · · · + anx
n be a polynomial with real

coefficients such that a0 6= 0 and an > 0. Then Vp and Np(0,∞) differ by an
even integer.

Proof. We have p(0) = a0 and p(x) > 0 for large enough x. As we move along
the real line to the right, p(x) changes sign when we pass a simple root. When
we pass a root of multiplicity k, the sign of p(x) changes (−1)k times. This
means that Np(0,∞) is even if a0 > 0 and odd if a0 < 0. A little thought
shows that the same thing is true about Vp. ut
Lemma B.4. Np(0,∞) ≤ Np′(0,∞) + 1 and Vp′ ≤ Vp.

Proof. The second inequality is clear; to prove the first, note that by Rolle’s
theorem, there exists a root of p′ strictly between two distinct roots of p,
and if x is a root of p with multiplicity k > 1, then x is a root of p′ with
multiplicity k − 1. ut

The number of negative roots of the polynomial p is equal to the number
of positive roots of the polynomial

p(x) := p(−x).

Lemma B.5. Vp + Vp ≤ n.

Proof. A change of sign occurs in the sequence a0, . . . , ak−1, ak, . . . , an of p at
the kth position if and only if no change of sign occurs in the coefficients of
p at the kth position. If all ai are nonzero, we have Vp + Vp = n; in the case
that some ai = 0, we have Vp + Vp ≤ n. ut

We are ready to give the proof of Theorem B.2.

Proof. We first prove the inequality Np(0,∞) ≤ Vp by induction on the degree
of the polynomial p. If deg p = 0, then Np(0,∞) = Vp = 0. If deg p = n > 0,
then deg p′ = n− 1, and we have

Np(0,∞) ≤ Np′(0,∞) + 1 ≤ Vp′ + 1 ≤ Vp + 1,

where the first and last inequalities follow from Lemma B.4, and the middle
one from the induction hypothesis. Lemma B.3 implies that Np(0,∞) = Vp+1
is impossible. This establishes the first statement of the theorem.

If all roots of p are real, we can assume that 0 is not a root of p. Then,

n = Np(0,∞) +Np(0,∞) ≤ Vp + Vp ≤ n;

thus Np(0,∞) = Vp and Np(0,∞) = Vp. ut
Let p be a polynomial of degree n with real coefficients. For a < b, let

Np(a, b] be the number of roots of p in the interval (a, b], and if c ∈ R, let
Vp(c) = V (p(c), p′(c), . . . , p(n)(c)). It is easy to verify that Vp(c) is the number
of sign variations in the coefficients of the polynomial x 7→ p(x+ c).

The following two results follow easily from Theorem B.2.
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Theorem B.6. (Budan–Fourier) If p is a polynomial of degree n with real
coefficients, then

Np(a, b] = Vp(a)− Vp(b)− 2κ,

where κ ≥ 0 is a nonnegative integer.

Theorem B.7. (Loewy–Curtiss) Let p be a polynomial of degree n with real
coefficients. Then

Np(a, b] = Vp(a)− Vp(b)
for every real interval (a, b] if and only if all roots of p are real.

Chapter 10 of the book [225] is a good resource for the root-counting
results on polynomials.

B.1 Exercises

1. Prove Theorem B.6.
2. Prove Theorem B.7.



C

Classical Proofs of the Open Mapping and
Graves’s Theorems

Theorem C.1. (Open mapping theorem) Let X and Y be Banach spaces
and let A : X → Y be a continuous linear mapping onto Y .

Then there exists τ > 0 such that

τBY ⊆ A(BX), (C.1)

where BX = {x ∈ X : ‖x‖ < 1} and BY = {y ∈ Y : ‖y‖ < 1} are the open
unit balls in Xand Y , respectively.

Consequently, A is an open mapping, that is, if O ⊆ X is open set, then
A(O) is open set in Y .

Proof. Since A is a linear map, it suffices to prove (C.1). Since A is an onto
mapping, we have

Y = A(X) = A(∪∞n=1nBX) = ∪∞n=1A(nBX) = ∪∞n=1nA(BX).

It follows from the Baire category theorem that at least one set nA(BX)
contains an open set, or equivalently, A(BX) contains an open set, say O1 =
y + τBY ⊆ A(BX). Since BX = −BX , we have O2 = −y − τBY = −y +
τBY ⊆ A(BX). If z ∈ Y such that ‖z‖ < τ , then there exist {uk}∞1 and
{vk}∞1 in X such that y + z = limAuk and −y + z = limAvk, and thus
z = limA(uk + vk)/2 ∈ A(BX). This proves that

τBY ⊆ A(BX). (C.2)

It remains to show that A(BX) contains some open ball θBY . We claim
that this is true for any 0 < θ < τ . Pick an arbitrary y ∈ Y , ‖y‖ < θ. We
have y ∈ A(rBX), where r = θ/τ , so that there exists x1 ∈ rBX such that
‖y − Ax1‖ < αθ, where 0 < α < 1 is chosen such that θ < τ(1 − α). Next,
y−Ax1 ∈ A((αθ/τ)rBX) = A(α2rBX), so there exists x2 ∈ α2rBX such that
‖y − Ax1 − Ax2‖ < α2θ. Continuing in this manner, we obtain a sequence
{xn}∞1 in X such that
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‖xn‖ < αnr, and ‖y −A(x1 + · · ·+ xn)‖ < αnθ, n ≥ 1.

Then the point x :=
∑∞

1 xn satisfies Ax = y and

‖x‖ ≤ r + αr + α2r + · · · = r

1− α =
θ

τ(1− α)
< 1.

This proves our claim. ut

We remark that the inclusion (C.1) also holds if the open balls BX and
BY are replaced by the closed units balls BX = {x ∈ X : ‖x‖ ≤ 1} and
BY = {y ∈ Y : ‖y‖ ≤ 1}: if 0 < τ ′ < τ , then (C.1) gives

τ ′BY ⊆ τBY ⊆ A(BX) ⊆ A(BX).

The following theorem, proved first by Graves [110] (see also Dontchev [79]),
is an important generalization of the open mapping theorem.

Theorem C.2. (Graves’s theorem) Let X and Y be Banach spaces, r > 0,
and let f : rBX → Y be a mapping such that f(0) = 0. Let A : X → Y be a
continuous linear mapping onto Y satisfying

τBY ⊆ A(BX). (C.3)

Let f − A be Lipschitz continuous on rBX with a constant δ, 0 ≤ δ < τ ,
that is,

‖f(x1)− f(x2)−A(x1 − x2)‖ ≤ δ‖x1 − x2‖ for all x1, x2 ∈ rBX . (C.4)

Then
(τ − δ)rBY ⊆ f(rBX),

that is, the equation y = f(x) has a solution ‖x‖ ≤ r whenever ‖y‖ ≤ (τ−δ)r.

Proof. Define c := τ − δ and let y ∈ Y be any point satisfying ‖y‖ ≤ cr. We
will show that there exists x ∈ rBX such that f(x) = y. Toward that goal,
we recursively generate a sequence {xn}∞0 in rBX converging to x.

We start with x0 = 0, and using (C.3), pick a point x1 satisfying

Ax1 = y, and ‖x1‖ ≤
‖y‖
τ
≤ cr

τ
< r.

Assuming that {xj}k0 has been generated, we generate xk+1 from the equation

A(xk+1 − xk) = (A− f)(xk)− (A− f)(xk−1), k ≥ 1. (C.5)

Here, the right-hand-side vector above has norm at most δ‖xk − xk−1‖ by
(C.4), so that by virtue of (C.3), we can choose xk+1 such that τ‖xk+1−xk‖ ≤
δ‖xk − xk−1‖. Thus,
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‖xk+1 − xk‖ ≤
δ

τ
‖xk − xk−1‖

and

‖xn − xn−1‖ ≤
(
δ

τ

)n−1

‖x1‖, n ≥ 1.

Since δ/τ < 1, {xn} is a Cauchy sequence, and hence converges to a point
x ∈ X. In addition, we have

‖xn‖ ≤
n∑
k=1

‖xk − xk−1‖ ≤
n∑
k=1

(
δ

τ

)k−1

‖x1‖ ≤
‖x1‖
1− δ

τ

≤ cr

τ − δ = r.

Thus, xk+1 satisfies the required property. We also have ‖x‖ ≤ r.
Summing the equation (C.5) from k = 1 to k = n− 1, and using the facts

Ax1 = y and (A−f)(x0) = (A−f)(0) = 0, we obtain Axn−y = (A−f)(xn−1).
Since xn → x, and A, f are continuous, we have f(x) = y. ut
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129. E. Helly, Über linearer Funktionaloperationen, Akad. Wiss. Wien 121 (1912),
265–297.
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Geom. 36 (1995), no. 1, 17–24.

152. S. Kakutani, Ein Beweis des Satzes von M. Edelheit über konvexe Mengen,
Proceedings of the Imperial Academy of Tokyo 13 (1937), 93–94.

153. Shmuel Kaniel, Estimates for some computational techniques in linear algebra,
Math. Comp. 20 (1966), 369–378.

154. L. V. Kantorovich, Functional analysis and applied mathematics, NBS Rep.
1509, U. S. Department of Commerce National Bureau of Standards, Los An-
geles, Calif., 1952, translated by C. D. Benster.

155. L. V. Kantorovich and G. P. Akilov, Functional analysis, second ed., Pergamon
Press, Oxford, 1982, translated from the Russian by H. L. Silcock.

156. R. N. Karasev, Topological methods in combinatorial geometry, Uspekhi Mat.
Nauk 63 (2008), no. 6(384), 39–90.

157. S. Karlin and L. S. Shapley, Some applications of a theorem on convex func-
tions, Ann. of Math. (2) 52 (1950), 148–153.

158. S. Karlin and W. J. Studden, Tchebycheff systems: With applications in anal-
ysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience Pub-
lishers John Wiley & Sons, New York-London-Sydney, 1966.

159. N. Karmarkar, A new polynomial-time algorithm for linear programming, Com-
binatorica 4 (1984), no. 4, 373–395.

160. W. Karush, Minima of functions of several variables with inequalities as side
conditions, Master’s thesis, Department of Mathematics, The University of
Chicago, 1939.

161. J. L. Kelley, General topology, Springer-Verlag, New York, 1975, Reprint of the
1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics,
No. 27.

162. O. D. Kellogg, On bounded polynomials in several variables, Math. Zeit. 27
(1927), 55–64.



References 429

163. L. G. Khachiyan, A polynomial algorithm in linear programming, Dokl. Akad.
Nauk SSSR 244 (1979), no. 5, 1093–1096.

164. L. G. Khachiyan and M. J. Todd, On the complexity of approximating the max-
imal inscribed ellipsoid for a polytope, Math. Programming 61 (1993), no. 2,
Ser. A, 137–159.
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Morse theory, 32
Morse’s lemma, 45, 49
multilinear algebra, 179
multivalued map, 123

affine, 123

neighborhood, 125
notation

Landau’s, 6

optimality condition
first-order

necessary, 35, 102
sufficient, 102

Fritz John, 210
Karush–Kuhn–Tucker, 106, 213
second-order

necessary, 37, 230, 231
saddle point, 39
sufficient, 38, 233, 235

optimizer, 33

Palais–Smale condition, 83
parallelogram law, 58
partial order, 158

maximal element of, 158
point

critical, 5
extreme, 129
projection, 142
Torricelli, 310

polar
cone, 151
set, 139

polynomial, 352
Chebyshev’s, 327, 396
Hermite, 36
hyperbolic, 113
orthogonal, 36, 400

polytope
cross, 172

positive
combination, 93
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primal program
of a Lagrangian, 277

primal–dual central path, 305
problem

Chebyshev’s approximation, 327, 339
circumscribed ellipsoid, 317
Fermat–Torricelli–Steiner, 297
inscribed ellipsoid, 265, 324
linear complementarity, 104
minimax, 292
plant location, 297

program
convex, VIII, 281

quadratic, 290
dual, 281

of a Lagrangian, 277
linear, VIII, 187, 195, 289

duality gap, 198
mathematical, VII, 209
nonlinear, 209
quadratic, 104
second-order cone, 295, 298
semi-infinite, VIII
semidefinite, 295
semi-infinite, 313

projection
onto a simplex, 190, 311

pseudoinverse
of a matrix, 291

recession
cone, 106, 129
direction, 129

saddle point, 32, 278
separating hyperplane, 144, 156

properly, 144, 157
strictly, 144, 156
strongly, 144, 157

separation
strong

of two disjoint convex polyhedra,
193

set
diameter, 316, 356
homogenization, 134
inradius, 316, 356
interior of, 125
partially ordered, 158

totally ordered, 158
simplex, 119, 138, 271

standard unit, 92, 190, 193, 196, 221,
292, 309, 311, 317, 356

singular values
of a matrix, 256

singular-value decomposition
of a matrix, 255

space
Euclidean, 294

spectral decomposition, 40
step-size selection rules

Armijo’s , 365
constant length, 364
exact minimization, 364
Goldstein’s, 365
limited minimization, 364
Wolfe’s, 366

strictly complementary
feasible solution, 188
optimal solution, 203

strong slope, 76
superlinear

function, 358
support function, 321
support hyperplane, 144

tangent
cone, 47
direction, 47, 210

Taylor’s formula
Cauchy’s form, 4
Lagrange’s form, 1
multivariate, 15

tensor product, 179
theorem

Banach fixed point, 68
Budan–Fourier, 415
Bárány’s, 344
Carathéodory’s, 91

homogeneous form of, 94
Caristi fixed point, 82
Carver’s, 192
Chebyshev’s, 343
convex transposition, 284
Courant–Fischer, 253
Danskin’s, 20
duality

weak, 277



Index 439

Dubovitskii–Milyutin, 155, 162, 165,
166

Frank-Wolfe, 292
fundamental theorem of algebra, 34
Graves’s, 76, 77, 418
Hahn–Banach, 167, 168
Helly’s, 336
Hirsch-Hoffman, 349
implicit function, 32, 45, 76, 81
inverse function, 32, 47, 76, 80
Kirchberger’s, 337
Kirszbraun’s, 332
Krein’s, 172
Loewy–Curtiss, 415
lop-sided minimax, 300
Lyusternik’s, 32, 47, 76, 79, 211
mean value, 3, 7
Minkowski–Weyl, 180
Minty’s, 330
Motzkin’s transposition

affine version, 74, 183, 185, 411
homogeneous version, 72, 183, 408

open mapping, 76, 79, 417
proper separation, 148, 161

Rockafellar’s, 153
Radon’s, 335
saddle point, 278

simultaneous diagonalization, 42
singular-value decomposition

of a matrix, 256
spectral decomposition

of a symmetric matrix, 40, 251
Stiemke’s, 171
strong duality

in convex programming, 286
Sylvester’s, 43
Tucker’s complementarity, 188
Tverberg’s, 345
von Neumann

minimax, 275, 306
Weierstrass, 33

topological
affine space, 126
space, 125
vector space, 126

topology
relative, 126

update
symmetric quasi-Newton, 260

variation in sign
number of, 42, 413

variational inequality, 102
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