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Preface

This is an introduction to the modern theory of probability and stochas-
tic processes. The aim is to enable the student to have access to the many
excellent research monographs in the literature. It might be regarded as an
updated version of the textbooks by Breiman, Chung, and Neveu, just to
name three.

The book is based on the lecture notes for a two-semester course which I
have offered for many years. The course is fairly popular and attracts grad-
uate students in engineering, economics, physics, and mathematics, and a
few overachieving undergraduates. Most of the students had familiarity with
elementary probability, but it was safer to introduce each concept carefully
and in a uniform style.

As Martin Barlow put it once, mathematics attracts us because the need
to memorize is minimal. So, only the more fundamental facts are labeled as
theorems; they are worth memorizing. Most other results are put as propo-
sitions, comments, or exercises. Also put as exercises are results that can be
understood only by doing the tedious work necessary. I believe in the Chinese
proverb: I hear, I forget; I see, I remember; I do, I know.

I have been considerate: I do not assume that the reader will go through
the book line by line from the beginning to the end. Some things are re-
called or re-introduced when they are needed. In each chapter or section, the
essential material is put first, technical material is put toward the end. Sub-
headings are used to introduce the subjects and results; the reader should
have a quick overview by flipping the pages and reading the headings.

The style and coverage is geared toward the theory of stochastic processes,
but with some attention to the applications. The reader will find many in-
stances where the gist of the problem is introduced in practical, everyday
language, and then is made precise in mathematical form. Conversely, many
a theoretical point is re-stated in heuristic terms in order to develop the
intuition and to provide some experience in stochastic modeling.

The first four chapters are on the classical probability theory: random
variables, expectations, conditional expectations, independence, and the clas-
sical limit theorems. This is more or less the minimum required in a course
at graduate level probability. There follow chapters on martingales, Poisson
random measures, Lévy processes, Brownian motion, and Markov processes.

v



vi Preface

The first chapter is a review of measure and integration. The treatment
is in tune with the modern literature on probability and stochastic pro-
cesses. The second chapter introduces probability spaces as special measure
spaces, but with an entirely different emotional effect; sigma-algebras are
equated to bodies of information, and measurability to determinability by
the given information. Chapter III is on convergence; it is routinely classi-
cal; it goes through the definitions of different modes of convergence, their
connections to each other, and the classical limit theorems. Chapter IV is
on conditional expectations as estimates given some information, as projec-
tion operators, and as Radon-Nikodym derivatives. Also in this chapter is
the construction of probability spaces using conditional probabilities as the
initial data.

Martingales are introduced in Chapter V in the form initiated by P.-A.
Meyer, except that the treatment of continuous martingales seems to contain
an improvement, achieved through the introduction of a “Doob martingale”,
a stopped martingale that is uniformly integrable. Also in this chapter are two
great theorems: martingale characterization of Brownian motion due to Lévy
and the martingale characterization of Poisson process due to Watanabe.

Poisson random measures are developed in Chapter VI with some care.
The treatment is from the point of view of their uses in the study of point
processes, discontinuous martingales, Markov processes with jumps, and, es-
pecially, of Lévy processes. As the modern theory pays more attention to
processes with jumps, this chapter should fulfill an important need. Various
uses of them occur in the remaining three chapters.

Chapter VII is on Lévy processes. They are treated as additive processes
just as Lévy and Itô thought of them. Itô-Lévy decomposition is presented
fully, by following Itô’s method, thus laying bare the roles of Brownian motion
and Poisson random measures in the structure of Lévy processes and, with a
little extra thought, the structure of most Markov processes. Subordination
of processes and the hitting times of subordinators are given extra attention.

Chapter VIII on Brownian motion is mostly on the standard material:
hitting times, the maximum process, local times, and excursions. Poisson
random measures are used to clarify the structure of local times and Itô’s
characterization of excursions. Also, Bessel processes and some other Markov
processes related to Brownian motion are introduced; they help explain the
recurrence properties of Brownian motion, and they become examples for the
Markov processes to be introduced in the last chapter.

Chapter IX is the last, on Markov processes. Itô diffusions and jump-
diffusions are introduced via stochastic integral equations, thus displaying the
process as an integral path in a field of Lévy processes. For such processes, we
derive the classical relationships between martingales, generators, resolvents,
and transition functions, thus introducing the analytic theory of them. Then
we re-introduce Markov processes in the modern setting and explain, for Hunt
processes, the meaning and implications of the strong Markov property and
quasi-left-continuity.
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Over the years, I have acquired indebtedness to many students for their
enthusiastic search for errors in the manuscript. In particular, Semih Sezer
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Frequently Used

Notation

N = {0, 1, . . .}, N = {0, 1, . . . ,+∞}, N
∗ = {1, 2, . . .}.

R = (−∞,+∞), R = [−∞,+∞], R+ = [0,∞), R+ = [0,+∞].

(a, b) is the open interval with endpoints a and b; the closed version is
[a, b]; the left-open right-closed version is (a, b].

exp x = ex, exp− x = e−x, Leb is the Lebesgue measure.

R
d is the d-dimensional Euclidean space, for x and y in it,

x · y = x1y1 + · · · + xdyd, |x| =
√
x · x .

(E,E) denotes a measurable space, E is also the set of all E-measurable
functions from E into R, and E+ is the set of positive functions in E.

1A(x) = δx(A) = I(x,A) is equal to 1 if x ∈ A and to 0 otherwise.

BE is the Borel σ-algebra on E when E is topological.

C(E �→ F ) is the set of all continuous functions from E into F .

C2
K = C2

K(Rd �→ R) is the set of twice continuously differentiable functions,
from R

d into R, with compact support.

E(X |G) is the conditional expectation of X given the σ-algebra G.

EtX = E(X |Ft) when the filtration (Ft) is held fixed.

ix
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2 Itô Diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
3 Jump-Diffusions . . . . . . . . . . . . . . . . . . . . . . . . . 473
4 Markov Systems . . . . . . . . . . . . . . . . . . . . . . . . . 498
5 Hunt Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 505
6 Potentials and Excessive Functions . . . . . . . . . . . . . . . 518
7 Appendix: Stochastic Integration . . . . . . . . . . . . . . . . 525



Contents xiii

Notes and Comments 533

Bibliography 541

Index 551





Chapter I

Measure and Integration

This chapter is devoted to the basic notions of measurable spaces,
measure, and integration. The coverage is limited to what probability theory
requires as the entrance fee from its students. The presentation is in the
form and style attuned to the modern treatments of probability theory and
stochastic processes.

1 Measurable Spaces

Let E be a set. We use the usual notations for operations on subsets of E:

A ∪B, A ∩B, A \B1.1

denote, respectively, the union of A and B, the intersection of A and B,
and the complement of B in A. In particular, E \ B is called simply the
complement of B and is also denoted by Bc. We write A ⊂ B or B ⊃ A to
mean that A is a subset of B, that is, A is contained in B, or equivalently,
B contains A. Note that A = B if and only if A ⊂ B and A ⊃ B. For an
arbitrary collection {Ai : i ∈ I} of subsets of E, we write

⋃

i∈I

Ai,
⋂

i∈I

Ai1.2

for the union and intersection, respectively, of all the sets Ai, i ∈ I.
The empty set is denoted by ∅. Sets A and B are said to be disjoint if

A ∩ B = ∅. A collection of sets is said to be disjointed if its every element
is disjoint from every other. A countable disjointed collection of sets whose
union is A is called a partition of A.

A collection C of subsets of E is said to be closed under intersections if
A ∩ B belongs to C whenever A and B belong to C. Of course, then, the

E. Çınlar, Probability and Stochastics, Graduate Texts 1
in Mathematics 261, DOI 10.1007/978-0-387-87859-1 1,
c© Springer Science+Business Media, LLC 2011



2 Measure and Integration Chap. 1

intersection of every non-empty finite collection of sets in C is in C. If the
intersection of every countable collection of sets in C is in C, then we say that
C is closed under countable intersections. The notions of being closed under
complements, unions, and countable unions, etc. are defined similarly.

Sigma-algebras

A non-empty collection E of subsets ofE is called an algebra onE provided
that it be closed under finite unions and complements. It is called a σ-algebra
on E if it is closed under complements and countable unions, that is, if

1.3 a) A ∈ E ⇒ E \A ∈ E,
b) A1, A2, . . . ∈ E ⇒ ⋃

nAn ∈ E.

Since the intersection of a collection of sets is the complement of the union
of the complements of those sets, a σ-algebra is also closed under countable
intersections.

Every σ-algebra on E includes E and ∅ at least. Indeed, E = {∅, E} is
the simplest σ-algebra on E; it is called the trivial σ-algebra. The largest
is the collection of all subsets of E, usually denoted by 2E; it is called the
discrete σ-algebra on E.

The intersection of an arbitrary (countable or uncountable) family of
σ-algebras on E is again a σ-algebra on E. Given an arbitrary collection
C of subsets of E, consider all the σ-algebras that contain C (there is at least
one such σ-algebra, namely 2E); take the intersection of all those σ-algebras;
the result is the smallest σ-algebra that contains C; it is called the σ-algebra
generated by C and is denoted by σC.

If E is a topological space, then the σ-algebra generated by the collection
of all open subsets of E is called the Borel σ-algebra on E; it is denoted byBE

or B(E); its elements are called Borel sets.

p-systems and d-systems

A collection C of subsets of E is called a p-system if it is closed under
intersections; here, p is for product, the latter being an alternative term for
intersection, and next, d is for Dynkin who introduced these systems into
probability. A collection D of subsets of E is called a d-system on E if

1.4 a) E ∈ D,
b) A,B ∈ D and A ⊃ B ⇒ A \B ∈ D,
c) (An) ⊂ D and An ↗ A ⇒ A ∈ D.

In the last line, we wrote (An) ⊂ D to mean that (An) is a sequence of
elements of D and we wrote An ↗ A to mean that the sequence is increasing
with limit A in the following sense:

A1 ⊂ A2 ⊂ . . . , ∪nAn = A.1.5
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It is obvious that a σ-algebra is both a p-system and a d-system, and the
converse will be shown next. Thus, p-systems and d-systems are primitive
structures whose superpositions yield σ-algebras.

1.6 Proposition. A collection of subsets of E is a σ-algebra if and only
if it is both a p-system and a d-system on E.

Proof. Necessity is obvious. To show the sufficiency, let E be a collection
of subsets of E that is both a p-system and a d-system. First, E is closed
under complements: A ∈ E ⇒ E \ A ∈ E, since E ∈ E and A ⊂ E and E is a
d-system. Second, it is closed under unions: A,B ∈ E ⇒ A ∪B ∈ E, because
A∪B = (Ac ∩Bc)c and E is closed under complements (as shown) and under
intersections by the hypothesis that it is a p-system. Finally, this closure
extends to countable unions: if (An) ⊂ E, then B1 = A1 and B2 = A1 ∪ A2

and so on belong to E by the preceding step, andBn ↗ ⋃
nAn, which together

imply that
⋃

nAn ∈ E since E is a d-system by hypothesis. �

The lemma next is in preparation for the main theorem of this section.
Its proof is left as an exercise in checking the conditions 1.4 one by one.

1.7 Lemma. Let D be a d-system on E. Fix D in D and let

D̂ = {A ∈ D : A ∩D ∈ D}
Then, D̂ is again a d-system.

Monotone class theorem

This is a very useful tool for showing that certain collections are
σ-algebras. We give it in the form found most useful in probability theory.

1.8 Theorem. If a d-system contains a p-system, then it contains also
the σ-algebra generated by that p-system.

Proof. Let C be a p-system. Let D be the smallest d-system on E that
contains C, that is, D is the intersection of all d-systems containing C. The
claim is that D ⊃ σC. To show it, since σC is the smallest σ-algebra containing
C, it is sufficient to show that D is a σ-algebra. In view of Proposition 1.6, it
is thus enough to show that the d-system D is also a p-system.

To that end, fix B in C and let

D1 = {A ∈ D : A ∩B ∈ D}.
Since C is contained in D, the set B is in D; and Lemma 1.7 implies that D1

is a d-system. It also contains C: if A ∈ C then A∩B ∈ C since B is in C and
C is a p-system. Hence, D1 must contain the smallest d-system containing C,
that is, D1 ⊃ D. In other words, A ∩B ∈ D for every A in D and B in C.

Consequently, for fixed A in D, the collection

D2 = {B ∈ D : A ∩B ∈ D}
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contains C. By Lemma 1.7, D2 is a d-system. Thus, D2 must contain D.
In other words, A ∩ B ∈ D whenever A and B are in D, that is, D is a
p-system. �

Measurable spaces

A measurable space is a pair (E,E) where E is a set and E is a σ-algebra on
E. Then, the elements of E are called measurable sets . When E is topological
and E = BE , the Borel σ-algebra on E, then measurable sets are also called
Borel sets.

Products of measurable spaces

Let (E,E) and (F,F) be measurable spaces. For A ⊂ E and B ⊂ F , we
write A×B for the set of all pairs (x, y) with x in A and y in B; it is called
the product of A and B. If A ∈ E and B ∈ F, then A × B is said to be a
measurable rectangle. We let E⊗F denote the σ-algebra on E×F generated by
the collection of all measurable rectangles; it is called the product σ-algebra.
The measurable space (E × F,E ⊗ F) is called the product of (E,E) and
(F,F), and the notation (E,E) × (F,F) is used as well.

Exercises

1.9 Partition generated σ-algebras.
a) Let C = {A,B,C} be a partition of E. List the elements of σC.
b) Let C be a (countable) partition of E. Show that every element of

σC is a countable union of elements taken from C. Hint: Let E be the collection
of all sets that are countable unions of elements taken from C. Show that E

is a σ-algebra, and argue that E = σC.
c) Let E = R, the set of all real numbers. Let C be the collection of

all singleton subsets of R, that is, each element of C is a set that consists of
exactly one point in R. Show that every element of σC is either a countable
set or the complement of a countable set. Incidentally, σC is much smaller
than B(R); for instance, the interval (0, 1) belongs to the latter but not to
the former.
1.10 Comparisons. Let C and D be two collections of subsets of E. Show the
following:

a) If C ⊂ D then σC ⊂ σD

b) If C ⊂ σD then σC ⊂ σD

c) If C ⊂ σD and D ⊂ σC, then σC = σD

d) If C ⊂ D ⊂ σC, then σC = σD

1.11 Borel σ-algebra on R. Every open subset of R = (−∞,+∞), the real
line, is a countable union of open intervals. Use this fact to show that BR is
generated by the collection of all open intervals.
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1.12 Continuation. Show that every interval of R is a Borel set. In particular,
(−∞, x), (−∞, x], (x, y], [x, y] are all Borel sets. For each x, the singleton
{x} is a Borel set.

1.13 Continuation. Show that BR is also generated by any one of the following
(and many others):

a) The collection of all intervals of the form (−∞, x].
b) The collection of all intervals of the form (x, y].
c) The collection of all intervals of the form [x, y].
d) The collection of all intervals of the form (x,∞).

Moreover, in each case, x and y can be limited to be rationals.

1.14 Lemma 1.7. Prove.

1.15 Trace spaces . Let (E,E) be a measurable space. Fix D ⊂ E and let

D = E ∩D = {A ∩D : A ∈ E}.
Show that D is a σ-algebra on D. It is called the trace of E on D, and (D,D)
is called the trace of (E,E) on D.

1.16 Single point extensions. Let (E,E) be a measurable space, and let Δ be
an extra point, not in E. Let Ē = E ∪ {Δ}. Show that

Ē = E ∪ {A ∪ {Δ} : A ∈ E}
is a σ-algebra on Ē; it is the σ-algebra on Ē generated by E.

1.17 Product spaces. Let (E,E) and (F,F) be measurable spaces. Show that
the product σ-algebra E ⊗ F is also the σ-algebra generated by Ê ∪ F̂, where

Ê = {A× F : A ∈ E}, F̂ = {E ×B : B ∈ F}.
1.18 Unions of σ-algebras. Let E1 and E2 be σ-algebras on the same set E.
Their union is not a σ-algebra, except in some special cases. The σ-algebra
generated by E1∪E2 is denoted by E1∨E2. More generally, if Ei is a σ-algebra
on E for each i in some (countable or uncountable) index set I, then

EI =
∨

i∈I

Ei

denotes the σ-algebra generated by
⋃

i∈I Ei (a similar notation for intersection
is superfluous, since

⋂
i∈I Ei is always a σ-algebra). Let C be the collection of

all sets A having the form
A =

⋂

i∈J

Ai

for some finite subset J of I and sets Ai in Ei, i ∈ J . Show that C contains
all Ei and therefore

⋃
I Ei. Thus, C generates the σ-algebra EI . Show that C

is a p-system.
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2 Measurable Functions

Let E and F be sets. A mapping or function f from E into F is a rule that
assigns an element f(x) of F to each x in E, and then we write f : E → F
to indicate it. If f(x) is an element of F for each x in E, we also write
f : x → f(x) to name the mapping involved; for example, f : x → x2 + 5 is
the function f from R into R+ satisfying f(x) = x2 + 5. Given a mapping
f : E → F and a subset B of F , the inverse image of B under f is

f−1B = {x ∈ E : f(x) ∈ B}.2.1

We leave the proof of the next lemma as an exercise in ordinary logic.

2.2 Lemma. Let f be a mapping from E into F . Then,

f−1∅ = ∅, f−1F = E, f−1(B \ C) = (f−1B) \ (f−1C),

f−1
⋃

i

Bi =
⋃

i

f−1Bi, f−1
⋂

i

Bi =
⋂

i

f−1Bi

for all subsets B and C of F and arbitrary collections {Bi : i ∈ I} of subsets
of F .

Measurable functions

Let (E,E) and (F,F) be measurable spaces. A mapping f : E → F is
said to be measurable relative to E and F if f−1B ∈ E for every B in F. The
following reduces the checks involved.

2.3 Proposition. In order for f : E → F to be measurable relative to E

and F, it is necessary and sufficient that, for some collection F0 that generates
F, we have f−1B ∈ E for every B in F0.

Proof. Necessity is trivial. To prove the sufficiency, let F0 be a collection
of subsets of F such that σF0 = F, and suppose that f−1B ∈ E for every B
in F0. We need to show that

F1 = {B ∈ F : f−1B ∈ E}
contains F and thus is equal to F. Since F1 ⊃ F0 by assumption, once we
show that F1 is a σ-algebra, we will have F1 = σF1 ⊃ σF0 = F as needed.
But checking that F1 is a σ-algebra is straightforward using Lemma 2.2. �

Composition of functions

Let (E,E), (F,F), and (G,G) be measurable spaces. Let f be a mapping
from E into F , and g a mapping from F into G. The composition of f and
g is the mapping g◦f from E into G defined by

g◦f(x) = g(f(x)), x ∈ E.2.4
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The next proposition will be recalled by the phrase “measurable functions of
measurable functions are measurable”.

2.5 Proposition. If f is measurable relative to E and F, and g relative
to F and G, then g ◦ f is measurable relative to E and G.

Proof. Let f and g be measurable. For C in G, observe that (g ◦
f)−1C = f−1(g−1C). Now, g−1C ∈ F by the measurability of g and,
hence, f−1(g−1C) ∈ E by the measurability of f . So, g ◦ f is measurable. �

Numerical functions

Let (E,E) be a measurable space. Recall that R = (−∞,+∞), R̄ =
[−∞,+∞], R+ = [0,+∞), R̄+ = [0,+∞]. A numerical function on E is a
mapping from E into R̄ or some subset of R̄. If all its values are in R, it is
said to be real-valued. If all its values are in R̄+, it is said to be positive.

A numerical function on E is said to be E-measurable if it is measurable
relative to E and B(R̄), the latter denoting the Borel σ-algebra on R̄ as
usual. If E is topological and E = B(E), then E-measurable functions are
called Borel functions.

The following proposition is a corollary of Proposition 2.3 using the fact
that B(R̄) is generated by the collection of intervals [−∞, r] with r in R. No
proof seems needed.

2.6 Proposition. A mapping f : E → R̄ is E-measurable if and only if,
for every r in R, f−1[−∞, r] ∈ E.

2.7 Remarks. a) The proposition remains true if [−∞, r] is replaced
by [−∞, r) or by [r,∞] or by (r,∞], because the intervals [−∞, r) with r in
R generate B(R̄) and similarly for the other two forms.

b) In the particular case f : E → F , where F is a countable subset of R̄,
the mapping f is E-measurable if and only if f−1{a} = {x ∈ E : f(x) = a}
is in E for every a in F .

Positive and negative parts of a function

For a and b in R̄ we write a ∨ b for the maximum of a and b, and a ∧ b
for the minimum. The notation extends to numerical functions naturally: for
instance, f ∨ g is the function whose value at x is f(x) ∨ g(x). Let (E,E) be
a measurable space. Let f be a numerical function on E. Then,

f+ = f ∨ 0, f− = −(f ∧ 0)2.8

are both positive functions and f = f+ − f−. The function f+ is called the
positive part of f , and f− the negative part.

2.9 Proposition. The function f is E-measurable if and only if both f+

and f− are.
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Proof is left as an exercise. The decomposition f = f+ − f− enables
us to obtain many results for arbitrary f from the corresponding results for
positive functions.

Indicators and simple functions

Let A ⊂ E. Its indicator, denoted by 1A, is the function defined by

1A(x) =
{

1 if x ∈ A,
0 if x /∈ A.

2.10

We write simply 1 for 1E. Obviously, 1A is E-measurable if and only if A ∈ E.
A function f on E is said to be simple if it has the form

f =
n∑

1

ai1Ai2.11

for some n in N
∗ = {1, 2, . . .}, real numbers a1, . . . , an, and measurable sets

A1, . . . , An (belonging to the σ-algebra E). It is clear that, then, there exist
m in N

∗ and distinct real numbers b1, . . . , bm and a measurable partition
{B1, . . . , Bm} of E such that f =

∑m
1 bi1Bi ; this latter representation is

called the canonical form of the simple function f .
It is immediate from Proposition 2.6 (or Remark 2.7b) applied to the

canonical form that every simple function is E-measurable. Conversely, if f
is E-measurable, takes only finitely many values, and all those values are real
numbers, then f is a simple function. In particular, every constant is a simple
function. Finally, if f and g are simple, then so are

f + g, f − g, fg, f/g, f ∨ g, f ∧ g,2.12

except that in the case of f/g one should make sure that g is nowhere zero.

Limits of sequences of functions

Let (fn) be a sequence of numerical functions on E. The functions

inf fn, sup fn, lim inf fn, lim sup fn2.13

are defined on E pointwise: for instance, the first is the function whose value
at x is the infimum of the sequence of numbers fn(x). In general, limit inferior
is dominated by the limit superior. If the two are equal, that is, if

lim inf fn = lim sup fn = f,2.14

say, then the sequence (fn) is said to have a pointwise limit f and we write
f = lim fn or fn → f to express it.
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If (fn) is increasing, that is, if f1 ≤ f2 ≤ . . ., then lim fn exists and is
equal to sup fn. We shall write fn ↗ f to mean that (fn) is increasing and
has limit f . Similarly, fn ↘ f means that (fn) is decreasing and has limit f .

The following shows that the class of measurable functions is closed under
limits.

2.15 Theorem. Let (fn) be a sequence of E-measurable functions. Then,
each one of the four functions in 2.13 is E-measurable. Moreover, if it exists,
lim fn is E-measurable.

Proof. We start by showing that f = sup fn is E-measurable. For every x
in E and r in R, we note that f(x) ≤ r if and only if fn(x) ≤ r for all n.
Thus, for each r in R,

f−1[−∞, r] = {x : f(x) ≤ r} =
⋂

n

{x : fn(x) ≤ r} =
⋂

n

f−1
n [−∞, r].

The rightmost member belongs to E: for each n, the set f−1
n [−∞, r] ∈ E by

the E-measurability of fn, and E is closed under countable intersections. So,
by Proposition 2.6, f = sup fn is E-measurable.

Measurability of inf fn follows from the preceding step upon observing
that inf fn = − sup(−fn). It is now obvious that

lim inf fn = sup
m

inf
n≥m

fn, lim sup fn = inf
m

sup
n≥m

fn

are E-measurable. If these two are equal, the common limit is the definition
of lim fn, which is E-measurable. �

Approximation of measurable functions

We start by approximating the identity function on R̄+ by an increasing
sequence of simple functions of a specific form (dyadic functions). We leave
the proof of the next lemma as an exercise; drawing dn for n = 1, 2, 3
should do.

2.16 Lemma. For each n in N
∗, let

dn(r) =
n2n∑

k=1

k − 1
2n

1[ k−1
2n , k

2n )(r) + n1[n,∞](r), r ∈ R̄+.

Then, each dn is an increasing right-continuous simple function on R̄+, and
dn(r) increases to r for each r in R̄+ as n→ ∞.

The following theorem is important: it reduces many a computation about
measurable functions to a computation about simple functions followed by
limit taking.
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2.17 Theorem. A positive function on E is E-measurable if and only if
it is the limit of an increasing sequence of positive simple functions.

Proof. Sufficiency is immediate from Theorem 2.15. To show the necessity
part, let f : E → R̄+ be E-measurable. We are to show that there is a sequence
(fn) of positive simple functions increasing to f . To that end, let (dn) be as in
the preceding lemma and put fn = dn ◦ f . Then, for each n, the function fn

is E-measurable, since it is a measurable function of a measurable function.
Also, it is positive and takes only finitely many values, because dn is so. Thus,
each fn is positive and simple. Moreover, since dn(r) increases to r for each
r in R̄+ as n→ ∞, we have that fn(x) = dn(f(x)) increases to f(x) for each
x in E as n→ ∞.

Monotone classes of functions

Let M be a collection of numerical functions on E. We write M+ for the
subcollection consisting of positive functions in M, and Mb for the subcollec-
tion of bounded functions in M.

The collection M is called a monotone class provided that it includes the
constant function 1, and Mb is a linear space over R, and M+ is closed under
increasing limits; more explicitly, M is a monotone class if

2.18 a) 1 ∈ M,
b) f, g ∈ Mb and a, b ∈ R ⇒ af + bg ∈ M,
c) (fn) ⊂ M+, fn ↗ f ⇒ f ∈ M.

The next theorem is used often to show that a certain property holds for
all E-measurable functions. It is a version of Theorem 1.8, it is called the
monotone class theorem for functions.

2.19 Theorem. Let M be a monotone class of functions on E. Suppose,
for some p-system C generating E, that 1A ∈ M for every A in C. Then,
M includes all positive E-measurable functions and all bounded E-measurable
functions.

Proof. We start by showing that 1A ∈ M for every A in E. To this end, let

D = {A ∈ E : 1A ∈ M}.
Using the conditions 2.18, it is easy to check that D is a d-system. Since
D ⊃ C by assumption, and since C is a p-system that generates E, we must
have D ⊃ E by the monotone class theorem 1.8. So, 1A ∈ M for every A in E.

Therefore, in view of the property 2.18b, M includes all simple functions.
Let f be a positive E-measurable function. By Theorem 2.17, there exists

a sequence of positive simple functions fn increasing to f . Since each fn is in
M+ by the preceding step, the property 2.18c implies that f ∈ M.

Finally, let f be a bounded E-measurable function. Then f+ and f− are
in M by the preceding step and are bounded obviously. Thus, by 2.18b, we
conclude that f = f+ − f− ∈ M. �
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Standard measurable spaces

Let (E,E) and (F,F) be measurable spaces. Let f be a bijection from
E onto F , and let f̂ denote its functional inverse (f̂(y) = x if and only if
f(x) = y). Then, f is said to be an isomorphism of (E,E) and (F,F) if f is
measurable relative to E and F and f̂ is measurable relative to F and E. The
measurable spaces (E,E) and (F,F) are said to be isomorphic if there exists
an isomorphism between them.

A measurable space (E,E) is said to be standard if it is isomorphic to
(F,BF ) for some Borel subset F of R.

The class of standard spaces is surprisingly large and includes almost all
the spaces we shall encounter. Here are some examples: The spaces R, R

d,
R

∞ together with their respective Borel σ-algebras are standard measurable
spaces. If E is a complete separable metric space, then (E,BE) is standard.
If E is a Polish space, that is, if E is a topological space metrizable by a
metric for which it is complete and separable, then (E,BE) is standard. If E
is a separable Banach space, or more particularly, a separable Hilbert space,
then (E,BE) is standard. Further examples will appear later.

Clearly, [0, 1] and its Borel σ-algebra form a standard measurable space;
so do {1, 2, . . . , n} and its discrete σ-algebra; so do N = {0, 1, . . .} and its
discrete σ-algebra. Every standard measurable space is isomorphic to one of
these three (this is a deep result).

Notation

We shall use E both for the σ-algebra and for the collection of all the
numerical functions that are measurable relative to it. Recall that, for an ar-
bitrary collection M of numerical functions, we write M+ for the subcollection
of positive functions in M, and Mb for the subcollection of bounded ones in M.
Thus, for instance, E+ is the collection of all E-measurable positive functions.

A related notation is E/F which is used for the class of all functions
f : E → F that are measurable relative to E and F. The notation E/F is
simplified to E when F = R̄ and F = B(R).

Exercises and complements

2.20 σ-algebra generated by a function. Let E be a set and (F,F) a measur-
able space. For f : E → F , define

f−1F = {f−1B : B ∈ F}
where f−1B is as defined in 2.1. Show that f−1F is a σ-algebra on E. It is
the smallest σ-algebra on E such that f is measurable relative to it and F.
It is called the σ-algebra generated by f . If (E,E) is a measurable space, then
f is measurable relative to E and F if and only if f−1F ⊂ E; this is another
way of stating the definition of measurability.
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2.21 Product spaces. Let (E,E), (F,F), (G,G) be measurable spaces. Let
f : E → F be measurable relative to E and F, and let g : E → G be
measurable relative to E and G. Define h : E → F ×G by

h(x) = (f(x), g(x)), x ∈ E.

Show that h is measurable relative to E and F ⊗ G.

2.22 Sections. Let f : E × F → G be measurable relative to E ⊗ F and G.
Show that, for fixed x0 in E, the mapping h : y → f(x0, y) is measurable
relative to F and G. (Hint: Note that h = f ◦ g where g : F → E × F is
defined by g(y) = (x0, y) and show that g is measurable relative to F and
E ⊗ F.) The mapping h is called the section of f at x0.

2.23 Proposition 2.9. Prove.

2.24 Discrete spaces. Suppose that E is countable and E = 2E , the discrete
σ-algebra on E. Then, (E,E) is said to be discrete. Show that every function
on E is E-measurable.

2.25 Suppose that E is generated by a countable partition of E. Show that,
then, a numerical function on E is E-measurable if and only if it is constant
over each member of that partition.

2.26 Elementary functions. A function f on E is said to be elementary if it
has the form

f =
∞∑

1

ai1Ai ,

where ai ∈ R̄ and Ai ∈ E for each i, the Ai being disjoint. Show that every
such function is E-measurable.

2.27 Measurable functions. Show that a positive function f on E is
E-measurable if and only if it has the form

f =
∞∑

1

an1An ,

for some sequence (an) ⊂ R̄+ and some sequence (An) ⊂ E, disjointedness
not required.

2.28 Approximation by simple functions. Show that a numerical function f
on E is E-measurable if and only if it is the limit of a sequence (fn) of simple
functions. Hint: For necessity, put fn = f+

n − f−
n , where f+

n = dn ◦ f+ and
f−

n = dn ◦ f− with dn as in Lemma 2.16.

2.29 Arithmetic operations. Let f and g be E-measurable. Show that, then,
each one of

f + g, f − g, f · g, f/g

is E-measurable provided that it be well-defined (the issue arises from the
fact that +∞−∞, (+∞)(−∞), 0/0, ∞/∞ are undefined). Recall, however,
that 0 · ∞ = 0 is defined.
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2.30 Continuous functions. Suppose that E is topological. Show that every
continuous function f : E → R̄ is a Borel function. Hint: If f is continuous,
then f−1B is open for every open subset of R̄.
2.31 Step functions, right-continuous functions. a) A function f : R+ → R̄

is said to be a right-continuous step function if there is a sequence (tn) in
R+ with 0 = t0 < t1 < · · · and lim tn = +∞ such that f is constant over
each interval [tn, tn+1). Every such function is elementary and, thus, Borel
measurable. b) Let f : R+ → R̄ be right-continuous, that is, f(rn) → f(r)
whenever (rn) is a sequence decreasing to r. Show that f is Borel measurable.
Hint: Note that f = lim fn, where fn = f ◦ d̄n for n in N

∗ with

d̄n(r) =
∞∑

k=1

k

2n
1[k−1

2n , k
2n )(r), r ∈ R+.

Extend this to f : R → R̄ by symmetry on R \ R+. Similarly, every left-
continuous function is Borel.
2.32 Increasing functions. Let f : R → R̄ be increasing. Show that f is Borel
measurable.
2.33 Measurability of sets defined by functions. We introduce the notational
principle that {f ∈ B}, {f > r}, {f ≤ g}, etc. stand for, respectively,

{x ∈ E : f(x) ∈ B}, {x ∈ E : f(x) > r}, {x ∈ E : f(x) ≤ g(x)},
etc. For instance, {f ≤ g} is the set on which f is dominated by g.

Let f and g be E-measurable functions on E. Show that the following sets
are in E:

{f > g}, {f < g}, {f �= g}, {f = g}, {f ≥ g}, {f ≤ g}.
Hint: {f > g} is the set of all x for which f(x) > r and g(x) < r for some
rational number r.
2.34 Positive monotone classes. This is a variant of the monotone class the-
orem 2.19: Let M+ be a collection of positive functions on E. Suppose that

a) 1 ∈ M+

b) f, g ∈ M+ and a, b ∈ R and af + bg ≥ 0 ⇒ af + bg ∈ M+

c) (fn) ⊂ M+, fn ↗ f ⇒ f ∈ M+.
Suppose, for some p-system C generating E that 1A ∈ M+ for each A in C.
Then, M+ includes every positive E-measurable function. Prove.
2.35 Bounded monotone classes. This is another variant of the monotone
class theorem. Let Mb be a collection of bounded functions on E. Suppose
that

a) 1 ∈ Mb,
b) f, g ∈ Mb and a, b ∈ R ⇒ af + bg ∈ Mb,
c) (fn) ⊂ Mb, fn ≥ 0, fn ↗ f, and f is bounded ⇒ f ∈ Mb.

Suppose, for some p-system C generating E that 1A ∈ Mb for each A in C.
Then, Mb includes every bounded E-measurable function. Prove.
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3 Measures

Let (E,E) be a measurable space, that is, E is a set and E is a σ-algebra
on E. A measure on (E,E) is a mapping μ : E → R̄+ such that

3.1 a) μ(∅) = 0,
b) μ(

⋃
nAn) =

∑
n μ(An) for every disjointed sequence (An) in E.

The latter condition is called countable additivity. Note that μ(A) is al-
ways positive and can be +∞; the number μ(A) is called the measure of A;
we also write μA for it.

A measure space is a triplet (E,E, μ), where (E,E) is a measurable space
and μ is a measure on it.

Examples

3.2 Dirac measures. Let (E,E) be a measurable space, and let x be a fixed
point of E. For each A in E, put

δx(A) =
{

1 if x ∈ A,
0 if x /∈ A.

Then, δx is a measure on (E,E). It is called the Dirac measure sitting at x.
3.3 Counting measures. Let (E,E) be a measurable space. Let D be a fixed
subset of E. For each A in E, let ν(A) be the number of points in A ∩ D.
Then, ν is a measure on (E,E). Such ν are called counting measures. Often,
the set D is taken to be countable, in which case

ν(A) =
∑

x∈D

δx(A), A ∈ E.

3.4 Discrete measures. Let (E,E) be a measurable space. Let D be a
countable subset of E. For each x in D, let m(x) be a positive number.
Define

μ(A) =
∑

x∈D

m(x) δx(A), A ∈ E.

Then, μ is a measure on (E,E). Such measures are said to be discrete. We
may think of m(x) as the mass attached to the point x, and then μ(A) is
the mass on the set A. In particular, if (E,E) is a discrete measurable space,
then every measure μ on it has this form.
3.5 Lebesgue measures. A measure μ on (R,BR) is called the Lebesgue mea-
sure on R if μ(A) is the length of A for every interval A. As with most
measures, it is impossible to display μ(A) for every Borel set A, but one can
do integration with it, which is the main thing measures are for. Similarly, the
Lebesgue measure on R

2 is the “area” measure, on R
3 the “volume”, etc. We

shall write Leb for them. Also note the harmless vice of saying, for example,
Lebesgue measure on R

2 to mean Lebesgue measure on (R2,B(R2)).
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Some properties

3.6 Proposition. Let μ be a measure on a measurable space (E,E).
Then, the following hold for all measurable sets A, B, and A1, A2, . . .:

Finite additivity: A ∩B = ∅ ⇒ μ(A ∪B) = μ(A) + μ(B).

Monotonicity: A ⊂ B ⇒ μ(A) ≤ μ(B).

Sequential continuity: An ↗ A ⇒ μ(An) ↗ μ(A).

Boole’s inequality: μ(
⋃

nAn) ≤ ∑
n μ(An).

Proof. Finite additivity is a particular instance of countable additivity of
μ: take A1 = A, A2 = B, A3 = A4 = . . . = ∅ in 3.1b. Monotonicity follows
from finite additivity and the positivity of μ: for A ⊂ B, we can write B as
the union of disjoint sets A and B \A, and hence

μ(B) = μ(A) + μ(B \A) ≥ μ(A),

since μ(B \ A) ≥ 0. Sequential continuity follows from countable additivity:
Suppose that An ↗ A. Then, B1 = A1, B2 = A2\A1, B3 = A3\A2, . . .
are disjoint, their union is A, and the union of the first n is An. Thus, the
sequence of numbers μ(An) increases and

limμ(An) = limμ(∪n
1Bi) = lim

n∑

1

μ(Bi) =
∞∑

1

μ(Bi) = μ(A).

Finally, to show Boole’s inequality, we start by observing that

μ(A ∪B) = μ(A) + μ(B \A) ≤ μ(A) + μ(B)

for arbitrary A and B in E. This extends to finite unions by induction:

μ(∪n
1Ai) ≤

n∑

1

μ(Ai).

Taking limits on both sides completes the proof since the left side has limit
μ(∪∞

1 Ai) by sequential continuity. �

Arithmetic of measures

Let (E,E) be a measurable space. If μ is a measure on it and c > 0 is a
constant, then cμ is again a measure on it. If μ and ν are measures on it,
then so is μ + ν. If μ1, μ2, . . . are measures, then so is

∑
n μn; this can be

checked using the elementary fact that, if the numbers amn are positive,
∑

m

∑

n

amn =
∑

n

∑

m

amn.
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Finite, σ-finite, Σ-finite measures

Let μ be a measure on a measurable space (E,E). It is said to be finite
if μ(E) < ∞; then μ(A) < ∞ for all A in E by the monotonicity of μ. It is
called a probability measure if μ(E) = 1. It is said to be σ-finite if there exists
a measurable partition (En) of E such that μ(En) < ∞ for each n. Finally,
it is said to be Σ-finite if there exists a sequence of finite measures μn such
that μ =

∑
n μn. Every finite measure is obviously σ-finite. Every σ-finite

measure is Σ-finite; see Exercise 3.13 for this point and for examples.

Specification of measures

Given a measure on (E,E), its values over a p-system generating E deter-
mine its values over all of E, generally. The following is the precise statement
for finite measures. Its version for σ-finite measures is given in Exercise 3.18.

3.7 Proposition. Let (E,E) be a measurable space. Let μ and ν be mea-
sures on it with μ(E) = ν(E) <∞. If μ and ν agree on a p-system generating
E, then μ and ν are identical.

Proof. Let C be a p-system generating E. Suppose that μ(A) = ν(A)
for every A in C, and μ(E) = ν(E) < ∞. We need to show that, then,
μ(A) = ν(A) for every A in E, or equivalently, that

D = {A ∈ E : μ(A) = ν(A)}

contains E. Since D ⊃ C by assumption, it is enough to show that D is
a d-system, for, then, the monotone class theorem 1.8 yields the desired
conclusion that D ⊃ E. So, we check the conditions for D to be a d-system.
First, E ∈ D by the assumption that μ(E) = ν(E). If A,B ∈ D, and A ⊃ B,
then A \B ∈ D, because

μ(A \B) = μ(A) − μ(B) = ν(A) − ν(B) = ν(A \B),

where we used the finiteness of μ to solve μ(A) = μ(B) + μ(A \ B) for
μ(A \ B) and similarly for ν(A \ B). Finally, suppose that (An) ⊂ D and
An ↗ A; then, μ(An) = ν(An) for every n, the left side increases to μ(A) by
the sequential continuity of μ, and the right side to ν(A) by the same for ν;
hence, μ(A) = ν(A) and A ∈ D. �

3.8 Corollary. Let μ and ν be probability measures on (R̄,B(R̄)).
Then, μ = ν if and only if μ[−∞, r] = ν[−∞, r] for every r in R.

Proof is immediate from the preceding proposition: μ(R̄) = ν(R̄) = 1
since μ and ν are probability measures, and the intervals [−∞, r] with r in
R form a p-system generating the Borel σ-algebra on R̄.
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Atoms, purely atomic measures, diffuse measures

Let (E,E) be a measurable space. Suppose that the singleton {x} belongs
to E for every x in E; this is true for all standard measurable spaces. Let μ
be a measure on (E,E). A point x is said to be an atom of μ if μ{x} > 0.
The measure μ is said to be diffuse if it has no atoms. It is said to be purely
atomic if the set D of its atoms is countable and μ(E \D) = 0. For example,
Lebesgue measures are diffuse, a Dirac measure is purely atomic with one
atom, discrete measures are purely atomic.

The following proposition applies to Σ-finite (and therefore, to finite and
σ-finite) measures. We leave the proof as an exercise; see 3.15.

3.9 Proposition. Let μ be a Σ-finite measure on (E,E). Then,

μ = λ+ ν,

where λ is a diffuse measure and ν is purely atomic.

Completeness, negligible sets

Let (E,E, μ) be a measure space. A measurable set B is said to be neg-
ligible if μ(B) = 0. An arbitrary subset of E is said to be negligible if it is
contained in a measurable negligible set. The measure space is said to be com-
plete if every negligible set is measurable. If it is not complete, the following
shows how to enlarge E to include all negligible sets and to extend μ onto the
enlarged E. We leave the proof to Exercise 3.16. The measure space (E, Ē, μ̄)
described is called the completion of (E,E, μ). When E = R and E = BR and
μ = Leb, the elements of Ē are called the Lebesgue measurable sets.

3.10 Proposition. Let N be the collection of all negligible subsets of E.
Let Ē be the σ-algebra generated by E ∪ N. Then,

a) every B in Ē has the form B = A ∪N , where A ∈ E and N ∈ N,
b) the formula μ̄(A ∪N) = μ(A) defines a unique measure μ̄ on Ē, we

have μ̄(A) = μ(A) for A ∈ E, and the measure space (E, Ē, μ̄) is complete.

Almost everywhere

If a proposition holds for all but a negligible set of x in E, then we say
that it holds for almost every x, or almost everywhere. If the measure μ used
to define negligibility needs to be indicated, we say μ-almost every x or μ-
almost everywhere. If E is replaced by a measurable set A, we say almost
everywhere on A. For example, given numerical functions f and g on E, and
a measurable set A, saying that f = g almost everywhere on A is equivalent
to saying that {x ∈ A : f(x) �= g(x)} is negligible, which is then equivalent
to saying that there exists a measurable set M with μ(M) = 0 such that
f(x) = g(x) for every x in A \M .
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Exercises and complements

3.11 Restrictions and traces. Let (E,E) be a measurable space, and μ a
measure on it. Let D ∈ E.

a) Define ν(A) = μ(A∩D), A ∈ E. Show that ν is a measure on (E,E);
it is called the trace of μ on D.

b) Let D be the trace of E on D (see 1.15). Define ν(A) = μ(A) for
A in D. Show that ν is a measure on (D,D); it is called the restriction of μ
to D.

3.12 Extensions. Let (E,E) be a measurable space, let D ∈ E, and let (D,D)
be the trace of (E,E) on D. Let μ be a measure on (D,D) and define ν by

ν(A) = μ(A ∩D), A ∈ E.

Show that ν is a measure on (E,E). This device allows us to regard a “measure
on D” as a “measure on E”.

3.13 σ-and Σ-finiteness

a) Let (E,E) be a measurable space. Let μ be a σ-finite measure on
it. Then, μ is Σ-finite. Show. Hint: Let (En) be a measurable partition of E
such that μ(En) < ∞ for each n; define μn to be the trace of μ on En as in
Exercise 3.11a; show that μ =

∑
n μn.

b) Show that the Lebesgue measure on R is σ-finite.
c) Let μ be the discrete measure of Example 3.4 with (E,E) discrete.

Show that it is σ-finite if and only if m(x) <∞ for every x in D. Show that
it is always Σ-finite.

d) Let E = [0, 1] and E = B(E). For A in E, define μ(A) to be 0 if
LebA = 0 and +∞ if LebA > 0. Show that μ is not σ-finite but is Σ-finite.

e) Let (E,E) be as in (d) here. Define μ(A) to be the counting measure
on it (see Example 3.3 and take D = E). Show that μ is neither σ-finite nor
Σ-finite.

3.14 Atoms. Show that a finite measure has at most countably many atoms.
Show that the same is true for Σ-finite measures. Hint: If μ(E) < ∞ then
the number of atoms with μ{x} > 1

n is at most nμ(E).

3.15 Proof of Proposition 3.9. Let D be the set of all atoms of the given Σ-
finite measure μ. Then, D is countable by the preceding exercise and, thus,
measurable by the measurability of singletons. Define

λ(A) = μ(A \D), ν(A) = μ(A ∩D), A ∈ E.

Show that λ is a diffuse measure, ν purely atomic, and μ = λ+ ν. Note that
ν has the form in Example 3.4 with m(x) = μ{x} for each atom x.

3.16 Proof of Proposition 3.10. Let F be the collection of all sets having
the form A ∪ N with A in E and N in N. Show that F is a σ-algebra on
E. Argue that F = Ē, thus proving part (a). To show (b), we need to show
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that, if A ∪ N = A′ ∪ N ′ with A and A′ in E and N and N ′ in N, then
μ(A) = μ(A′). To this end pick M in E such that μ(M) = 0 and M ⊃ N ,
and pick M ′ similarly for N ′. Show that A ⊂ A′ ∪M ′ and A′ ⊂ A ∪M . Use
this, monotonicity of μ, Boole’s inequality, etc. several times to show that
μ(A) = μ(A′).

3.17 Measurability on completions. Let (E,E, μ) be a measure space, and
(E, Ē, μ̄) its completion. Let f be a numerical function on E. Show that f
is Ē-measurable if and only if there exists an E-measurable function g such
that f = g almost everywhere. Hint: For sufficiency, choose M in E such
that μ(M) = 0 and f = g outside M , and note that {f ≤ r} = A ∪ N
where A = {g ≤ r} \M and N ⊂ M . For necessity, assuming f is positive
Ē-measurable, write f =

∑∞
1 an1An with An ∈ Ē for each n (see Exercise 2.27)

and choosing Bn in E such that An = Bn ∪Nn for some negligible Nn, define
g =

∑∞
1 an1Bn , and show that {f �= g} ⊂ ⋃

nNn = N , which is negligible.

3.18 Equality of measures. This is to extend Proposition 3.7 to σ-finite mea-
sures. Let μ and ν be such measures on (E,E). Suppose that they agree on
a p-system C that generates E. Suppose further that C contains a partition
(En) of E such that μ(En) = ν(En) <∞ for each n. Then, μ = ν. Prove this.

3.19 Existence of probability measures. Let E be a set, D an algebra on it,
and put E = σD. Suppose that λ : D → [0, 1] is such that λ(E) = 1 and
λ(A ∪ B) = λ(A) + λ(B) whenever A and B are disjoint sets in D. Is it
possible to extend λ to a probability measure on E? In other words, does
there exist a measure μ on (E,E) such that μ(A) = λ(A) for every A in D?
If such a measure exists, then it is unique by Proposition 3.7, since D is a
p-system that generates E.
The answer is provided by Caratheodory’s extension theorem, a classical re-
sult. Such a probability measure μ exists provided that λ be countably addi-
tive on D, that is, if (An) is a disjointed sequence in D with A =

⋃
nAn ∈ D,

then we must have λ(A) =
∑

n λ(An), or equivalently, if (An) ⊂ D and
An ↘ ∅ then we must have λ(An) ↘ 0.

4 Integration

Let (E,E, μ) be a measure space. Recall that E stands also for the col-
lection of all E-measurable functions on E and that E+ is the sub-collection
consisting of positive E-measurable functions. Our aim is to define the “in-
tegral of f with respect to μ” for all reasonable functions f in E. We shall
denote it by any of the following:

μf = μ(f) =
ˆ

E

μ(dx)f(x) =
ˆ

E

f dμ.4.1
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As the notation μf suggests, integration is a kind of multiplication; this will
become clear when we show that the following hold for all a, b in R+ and
f, g, fn in E+:

4.2 a) Positivity: μf ≥ 0; μf = 0 if f = 0.
b) Linearity: μ(af + bg) = a μf + b μg.
c) Monotone convergence theorem: If fn ↗ f , then μfn ↗ μf .

We start with the definition of the integral and proceed to proving the prop-
erties 4.2 and their extensions. At the end, we shall also show that 4.2 char-
acterizes integration.

4.3 Definition. a) Let f be simple and positive. If its canonical form
is f =

∑n
1 ai1Ai , then we define

μf =
n∑

1

ai μ(Ai).

b) Let f ∈ E+. Put fn = dn ◦ f , where the dn are as in Lemma 2.16.
Then each fn is simple and positive, and the sequence (fn) increases to f
as shown in the proof of 2.17. The integral μfn is defined for each n by the
preceding step, and the sequence of numbers μfn is increasing (see Remark
4.4d below). We define

μf = limμfn.

c) Let f ∈ E. Then, f+ = f ∨ 0 and f− = −(f ∧ 0) belong to E+, and
their integrals μ(f+) and μ(f−) are defined by the preceding step. Noting that
f = f+ − f−, we define

μf = μ(f+) − μ(f−)

provided that at least one term on the right side be finite. Otherwise, if
μ(f+) = μ(f−) = +∞, then μf is undefined.

4.4 Remarks. Let f, g, etc. be simple and positive.

a) The formula for μf remains the same even when f =
∑
ai 1Ai is

not the canonical representation of f . This is easy to check using the finite
additivity of μ.

b) If a and b are in R+, then af + bg is simple and positive, and the
linearity property holds:

μ(af + bg) = a μf + b μg.

This can be checked using the preceding remark.
c) If f ≤ g then μf ≤ μg. This follows from the linearity property

above applied to the simple positive functions f and g − f :

μf ≤ μf + μ(g − f) = μ(f + g − f) = μg.

d) In step (b) of the definition, we have f1 ≤ f2 ≤ . . .. The preceding
remark on monotonicity shows that μf1 ≤ μf2 ≤ . . .. Thus, limμfn exists as
claimed (it can be +∞).
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Examples

a) Discrete measures. Fix x0 in E and consider the Dirac measure δx0

sitting at x0. Going through the steps of the definition of the integral, we
see that δx0f = f(x0) for every f in E. This extends to discrete measures: if
μ =

∑
x∈D m(x)δx for some countable set D and positive masses m(x), then

μf =
∑

x∈D

m(x) f(x)

for every f in E+. A similar result holds for purely atomic measures as well.
b) Discrete spaces. Suppose that (E,E) is discrete, that is, E is

countable and E = 2E. Then, every numerical function on E is E-measurable,
and every measure μ has the form in the preceding example with D = E and
m(x) = μ{x}. Thus, for every positive function f on E,

μf =
∑

x∈E

μ{x}f(x).

In this case, and especially when E is finite, every function can be thought
as a vector, and similarly for every measure. Further, we think of functions
as column vectors and of measures as row vectors. Then, the integral μf is
seen to be the product of the row vector μ and the column vector f . So, the
notation is well-chosen in this case and extends to arbitrary spaces in a most
suggestive manner.

c) Lebesgue integrals. Suppose that E is a Borel subset of Rd for some
d ≥ 1 and suppose that E = B(E), the Borel subsets of E. Suppose that μ
is the restriction of the Lebesgue measure on R

d to (E,E). For f in E, we
employ the following notations for the integral μf :

μf = LebE f =
ˆ

E

Leb(dx) f(x) =
ˆ

E

dx f(x),

the last using dx for Leb(dx) in keeping with tradition. This integral is called
the Lebesgue integral of f on E.

If the Riemann integral of f exists, then so does the Lebesgue integral, and
the two integrals are equal. The converse is false; the Lebesgue integral exists
for a larger class of functions than does the Riemann integral. For example,
if E = [0, 1], and f is the indicator of the set of all rational numbers in E,
then the Lebesgue integral of f is well-defined by 4.3a to be zero, but the
Riemann integral does not exist because the discontinuity set of f in E is E
itself and LebE = 1 �= 0 (recall that a Borel function is Riemann integrable
over an interval [a, b] if and only if its points of discontinuity in [a, b] form a
set of Lebesgue measure 0).

Integrability

A function f in E is said to be integrable if μf exists and is a real num-
ber. Thus, f in E is integrable if and only if μf+ < ∞ and μf− < ∞, or
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equivalently, if and only if the integral of |f | = f++f− is a finite number. We
leave it as an exercise to show that every integrable function is real-valued
almost everywhere.

Integral over a set

Let f ∈ E and let A be a measurable set. Then, f1A ∈ E, and the
integral of f over A is defined to be the integral of f1A. The following nota-
tions are used for it:

μ(f1A) =
ˆ

A

μ(dx)f(x) =
ˆ

A

f dμ.4.5

The following shows that, for each f in E+, the set function A → μ(f1A) is
finitely additive. This property extends to countable additivity as a corollary
to the monotone convergence theorem 4.8 below.

4.6 Lemma. Let f ∈ E+. Let A and B be disjoint sets in E with union
C. Then

μ(f1A) + μ(f1B) = μ(f1C).

Proof. If f is simple, this is immediate from the linearity property of
Remark 4.4b. For arbitrary f in E+, putting fn = dn ◦ f as in Definition
4.3b, we get

μ(fn1A) + μ(fn1B) = μ(fn1C)

since the fn are simple. Observing that fn1D = dn ◦ (f1D) for D = A,B,C
and taking limits as n → ∞ we get the desired result through Definition
4.3b. �

Positivity and monotonicity

4.7 Proposition. If f ∈ E+, then μf ≥ 0. If f and g are in E+ and
f ≤ g, then μf ≤ μg.

Proof. Positivity of μf for f positive is immediate from Definition 4.3. To
show monotonicity, let fn = dn ◦f and gn = dn ◦g as in step 4.3b. Since each
dn is an increasing function (see Lemma 2.16), f ≤ g implies that fn ≤ gn

for each n which in turn implies that μfn ≤ μgn for each n by Remark 4.4c.
Letting n→ ∞, we see from Definition 4.3b that μf ≤ μg. �

Monotone Convergence Theorem

This is the main theorem of integration. It is the key tool for interchanging
the order of taking limits and integrals. It states that the mapping f → μf
from E+ into R̄+ is continuous under increasing limits. As such, it is an
extension of the sequential continuity of measures.

4.8 Theorem. Let (fn) be an increasing sequence in E+. Then,

μ(lim fn) = limμfn.
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Proof. Let f = lim fn; it is well-defined since (fn) is increasing. Clearly,
f ∈ E+, and μf is well-defined. Since (fn) is increasing, the integrals μfn

form an increasing sequence of numbers by the monotonicity property shown
by Proposition 4.7. Hence, limμfn exists. We want to show that the limit
is μf . Since f ≥ fn for each n, we have μf ≥ μfn by the monotonicity
property. It follows that μf ≥ limμfn. The following steps show that the
reverse inequality holds as well.

a) Fix b in R+ and B in E. Suppose that f(x) > b for every x in
the set B. Since the sets {fn > b} are increasing to {f > b}, the sets Bn =
B ∩ {fn > b} are increasing to B, and

limμ(Bn) = μ(B)4.9

by the sequential continuity of μ. On the other hand,

fn1B ≥ fn1Bn ≥ b1Bn ,

which yields via monotonicity that

μ(fn1B) ≥ μ(b1Bn) = bμ(Bn).

Taking note of 4.9 we conclude that

limμ(fn1B) ≥ bμ(B).4.10

This remains true if f(x) ≥ b for all x in B: If b = 0 then this is trivially
true. If b > 0 then choose a sequence (bm) strictly increasing to b; then, 4.10
holds with b replaced by bm; and letting m→ ∞ we obtain 4.10 again.

b) Let g be a positive simple function such that f ≥ g. If g =
∑m

1 bi1Bi

is its canonical representation, then f(x) ≥ bi for every x in Bi, and 4.10
yields

lim
n
μ(fn1Bi) ≥ biμ(Bi), i = 1, . . . ,m.

Hence, by the finite additivity of A → μ(fn1A) shown in Lemma 4.6,

lim
n
μfn = lim

n

m∑

i=1

μ(fn1Bi) =
m∑

i=1

lim
n
μ(fn1Bi) ≥

m∑

i=1

biμ(Bi) = μg.4.11

c) Recall that μf = limμ(dk ◦ f) by Definition 4.3b. For each k, the
function dk ◦ f is simple and f ≥ dk ◦ f . Hence, taking g = dk ◦ f in 4.11, we
have

lim
n
μfn ≥ μ(dk ◦ f)

for all k. Letting k → ∞ we obtain the desired inequality that
limμfn ≥ μf . �
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Linearity of integration

4.12 Proposition. For f and g in E+ and a and b in R+,

μ(af + bg) = a μf + b μg.

The same is true for integrable f and g in E and arbitrary a and b in R.

Proof. Suppose that f, g, a, b are all positive. If f and g are simple, the
linearity can be checked directly as remarked in 4.4b. If not, choose (fn)
and (gn) to be sequences of simple positive functions increasing to f and g
respectively. Then,

μ(afn + bgn) = a μfn + b μgn,

and the monotone convergence theorem applied to both sides completes the
proof. The remaining statements follow from Definition 4.3c and the linearity
for positive functions after putting f = f+ − f− and g = g+ − g−. �

Insensitivity of the integral

We show next that the integral of a function remains unchanged if the
values of the function are changed over a negligible set.

4.13 Proposition. If A in E is negligible, then μ(f1A) = 0 for every f
in E. If f and g are in E+ and f = g almost everywhere, then μf = μg. If
f ∈ E+ and μf = 0, then f = 0 almost everywhere.

Proof. a) Let A be measurable and negligible. If f ∈ E+ and simple,
then μ(f1A) = 0 by Definition 4.3a. This extends to the non-simple case by
the monotone convergence theorem using a sequence of simple fn increasing
to f : then μ(fn1A) = 0 for all n and μ(f1A) is the limit of the left side. For f
in E arbitrary, we have μ(f+1A) = 0 and μ(f−1A) = 0 and hence μ(f1A) = 0
since (f1A)+ = f+1A and (f1A)− = f−1A.

b) If f and g are in E+ and f = g almost everywhere, then A = {f �= g}
is measurable and negligible, and the integrals of f and g on A both vanish.
Thus, with B = Ac, we have μf = μ(f1B) and μg = μ(g1B), which imply
μf = μg since f(x) = g(x) for all x in B.

c) Let f ∈ E+ and μf = 0. We need to show that the set N = {f > 0}
has measure 0. Take a sequence of numbers εk > 0 decreasing to 0, let
Nk = {f > εk}, and observe thatNk ↗ N , which implies that μ(Nk) ↗ μ(N)
by the sequential continuity of μ. Thus, it is enough to show that μ(Nk) = 0
for every k. This is easy to show: f ≥ εk1Nk

implies that μf ≥ εkμ(Nk), and
since μf = 0 and εk > 0, we must have μ(Nk) = 0. �
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Fatou’s lemma

We return to the properties of the integral under limits. Next is a useful
consequence of the monotone convergence theorem.

4.14 Lemma. Let (fn) ⊂ E+. Then μ(lim inf fn) ≤ lim inf μfn.

Proof. Define gm = infn≥m fn and recall that lim inf fn is the limit of
the increasing sequence (gm) in E+. Hence, by the monotone convergence
theorem,

μ(lim inf fn) = limμgm.

On the other hand, gm ≤ fn for all n ≥ m, which implies that μgm ≤ μfn

for all n ≥ m by the monotonicity of integration, which in turn means that
μgm ≤ infn≥m μfn. Hence, as desired,

limμgm ≤ lim inf μfn. �

4.15 Corollary. Let (fn) ⊂ E. If there is an integrable function g such
that fn ≥ g for every n, then

μ(lim inf fn) ≤ lim inf μfn.

If there is an integrable function g such that fn ≤ g for every n, then

μ(lim sup fn) ≥ lim supμfn.

Proof. Let g be integrable. Then, the complement of the measurable set
A = {g ∈ R} is negligible (see Exercise 4.24 for this). Hence, fn1A = fn

almost everywhere, g1A = g almost everywhere, and g1A is real-valued. The
first statement follows from Fatou’s Lemma applied to the well-defined se-
quence (fn1A − g1A) in E+ together with the linearity and insensitivity of
integration. The second statement follows again from Fatou’s lemma, now
applied to the well-defined sequence (g1A−fn1A) in E+ together with the lin-
earity and insensitivity, and the observation that lim sup rn = − lim inf(−rn)
for every sequence (rn) in R̄. �

Dominated convergence theorem

This is the second important tool for interchanging the order of taking
limits and integrals. A function f is said to be dominated by the function g if
|f | ≤ g; note that g ≥ 0 necessarily. A sequence (fn) is said to be dominated
by g if |fn| ≤ g for every n. If so, and if g can be taken to be a finite constant,
then (fn) is said to be bounded.

4.16 Theorem. Let (fn) ⊂ E. Suppose that (fn) is dominated by some
integrable function g. If lim fn exists, then it is integrable and

μ(lim fn) = limμfn.
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Proof. By assumption, −g ≤ fn ≤ g for every n, and both g and −g are
integrable. Thus, both statements of the last corollary apply:

μ(lim inf fn) ≤ lim inf μfn ≤ lim supμfn ≤ μ(lim sup fn).4.17

If lim fn exists, then lim inf fn = lim sup fn = lim fn, and lim fn is integrable
since it is dominated by g. Hence, the extreme members of 4.17 are finite and
equal, and all inequality signs are in fact equalities. �

If (fn) is bounded, say by the constant b, and if the measure μ is finite,
then we can take g = b in the preceding theorem. The resulting corollary is
called the bounded convergence theorem:

4.18 Theorem. Let (fn) ⊂ E. Suppose that (fn) is bounded and μ is
finite. If lim fn exists, then it is a bounded integrable function and

μ(lim fn) = limμfn.

Almost everywhere versions

The insensitivity of integration to changes over negligible sets enables
us to re-state all the results above by allowing the conditions to fail over
negligible sets. We start by extending the definition of integration somewhat.

4.19 Convention. Let f be a numerical function on E. Suppose that
there exists an E-measurable function g such that f(x) = g(x) for almost ev-
ery x in E. Then, we define the integral μf of f to be the number μg provided
that μg is defined. Otherwise, if μg does not exist, μf does not exist either.

The definition here is without ambiguities: if h is another measurable
function such that f = h almost everywhere, then g = h almost everywhere;
if μg exists, then so does μh and μg = μh by the insensitivity property; if μg
does not exist, then neither does μh.

In fact, the convention here is one of notation making, almost. Let g ∈ E

and f = g almost everywhere. Let (E, Ē, μ̄) be the completion of (E,E, μ).
Then, f ∈ Ē (see Exercise 3.17 for this), and the integral μ̄f makes sense by
Definition 4.3 applied on the measurable space (E, Ē, μ̄). Since E ⊂ Ē, the
function g is Ē-measurable as well, and μ̄g makes sense and it is clear that
μ̄g = μg. Since f and g are Ē-measurable and f = g μ̄-almost everywhere,
μ̄f = μ̄g by insensitivity. So, the convention above amounts to writing μf
instead of μ̄f .

With this convention in place, we now re-state the monotone convergence
theorem in full generality.

4.20 Theorem. Let (fn) be a sequence of numerical functions on E. Sup-
pose that, for each n, there is gn in E such that fn = gn almost everywhere.
Further, suppose for each n that fn ≥ 0 almost everywhere and fn ≤ fn+1

almost everywhere. Then, lim fn exists almost everywhere, is positive almost
everywhere, and μ(lim fn) = limμfn.
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We discuss this fully to indicate its meaning and the issues involved. Let
N denote the collection of all measurable negligible sets, that is, every N
in N belongs to E and μ(N) = 0. Now fix n. To say that fn = gn almost
everywhere is to say that there is Nn in N such that fn = gn outside Nn (that
is, fn(x) = gn(x) whenever x /∈ Nn). Similarly, fn ≥ 0 almost everywhere
means that there is Mn in N such that fn ≥ 0 outside Mn. And, since
fn ≤ fn+1 almost everywhere, there is Ln in N such that fn ≤ fn+1 outside
Ln. These are the conditions. The claim of the theorem is as follows. First,
there is an E-measurable function f , and a set N in N such that lim fn(x)
exists and is equal to f(x) for every x outside N . Also, there is M in N such
that f ≥ 0 outside M . Finally, μf = limμfn, where the μfn are defined by
convention 4.19 to be the numbers μgn.

Proof. Let

N =
∞⋃

n=1

(Ln ∪Mn ∪Nn).

Then, N ∈ E and μ(N) = 0 by Boole’s inequality, that is, N ∈ N.
For x outside N , we have

0 ≤ f1(x) = g1(x) ≤ f2(x) = g2(x) ≤ . . . ,

and hence lim fn(x) exists and is equal to lim gn(x). Define

f(x) =
{

lim fn(x) if x /∈ N
0 if x ∈ N

Clearly, f is the limit of the increasing sequence (gn1E\N ) in E+. So, f is in
E+ and we may take M = ∅. There remains to show that μf = limμgn. Now
in fact

μf = μ(lim gn1E\N ) = limμ(gn1E\N ) = limμgn,

where we used the monotone convergence theorem to justify the second equal-
ity, and the insensitivity to justify the third. �

The reader is invited to formulate the “almost everywhere version” of the
dominated convergence theorem and to prove it carefully once. We shall use
such versions without further ado whenever the need drives us.

Characterization of the integral

Definition 4.3 defines the integral μf for every f in E+. Thus, in effect,
integration extends the domain of μ from the measurable sets (identified with
their indicator functions) to the space E+ of all positive measurable functions
(and beyond), and hence we may regard μ as the mapping f → μf from E+

into R̄+. The mapping μ : E+ → R̄+ is necessarily positive, linear, and
continuous under increasing limits; these were promised in 4.2 and proved as
Proposition 4.7, Proposition 4.12, and Theorem 4.8. We end this section with
the following very useful converse.



28 Measure and Integration Chap. 1

4.21 Theorem. Let (E,E) be a measurable space. Let L be a mapping
from E+ into R̄+. Then there exists a unique measure μ on (E,E) such that
L(f) = μf for every f in E+ if and only if

4.22 a) f = 0 ⇒ L(f) = 0.
b) f, g ∈ E+ and a, b ∈ R+ ⇒ L(af + bg) = aL(f) + bL(g).
c) (fn) ⊂ E+ and fn ↗ f ⇒ L(fn) ↗ L(f).

Proof. Necessity of the conditions is immediate from the properties of the
integral: (a) follows from the definition of μf , (b) from linearity, and (c) from
the monotone convergence theorem.

To show the sufficiency, suppose that L has the properties (a)-(c). Define

μ(A) = L(1A), A ∈ E.4.23

We show that μ is a measure. First, μ(∅) = L(1∅) = L(0) = 0. Second, if
A1, A2, . . . are disjoint sets in E with union A, then the indicator of

⋃n
1 Ai is∑n

1 1Ai, the latter is increasing to 1A, and hence,

μ(A)=L(1A)= lim
n
L(

n∑

1

1Ai)= lim
n

n∑

1

L(1Ai)= lim
n

n∑

1

μ(Ai)=
∞∑

1

μ(Ai),

where we used the conditions (c) and (b) to justify the second and third
equality signs.

So, μ is a measure on (E,E). It is unique by the necessity of 4.23. Now,
L(f) = μf for simple f in E+ by the linearity property (b) of L and the
linearity of integration. This in turn implies that, for every f in E+, choosing
simple fn ↗ f ,

L(f) = limL(fn) = limμfn = μf

by condition (c) and the monotone convergence theorem. �

Exercises and complements

4.24 Integrability. If f ∈ E+ and μf < ∞, then f is real-valued almost
everywhere. Show this. More generally, if f is integrable then it is real-valued
almost everywhere.

4.25 Test for vanishing. Let f ∈ E+. Then μf = 0 if and only if f = 0 almost
everywhere. Prove.

4.26 Alternative form of the monotone convergence theorem. If f1, f2, . . . are
in E+ then

μ

∞∑

1

fn =
∞∑

1

μfn.
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4.27 Sums of measures. Recall that if μ1, μ2, . . . are measures on (E,E), so
is μ =

∑
μn. Show that, for every f in E+,

μf =
∑

n

μnf.

4.28 Absolute values. Assuming that μf exists, show that |μf | ≤ μ|f |.
4.29 Mean value theorem. If μ(A) > 0 and a ≤ f(x) ≤ b for every x in A,
then show that

a ≤ 1
μ(A)

ˆ
A

fdμ ≤ b.

4.30 Generalization of the monotone convergence theorem. If fn ≥ g for all
n for some integrable function g, and if (fn) increases to f , then μf exists
and is equal to limμfn. If fn ≤ g for all n for some integrable function g and
if (fn) decreases to f , then μf exists and is equal to limμfn.

4.31 On dominated convergence. In the dominated convergence theorem, the
condition that (fn) be dominated by an integrable g is necessary. Suppose
that E = (0, 1), E = BE , μ = Leb. Take, for n = 1, 2, . . .,

fn(x) =
{
n if 0 < x < 1

n
0 otherwise.

Then, fn(x) → 0 for every x in E, the integral μfn = 1 for every n, but
0 = μ(lim fn) �= limμfn = 1.

4.32 Test for σ-finiteness. A measure μ on (E,E) is σ-finite if and only if
there exists a strictly positive function f in E such that μf <∞. Prove this.
Hint for the sufficiency part: Let En = {f > 1

n} and note that En ↗ E
whereas 1

nμ(En) ≤ μ(f1En) ≤ μf <∞.

5 Transforms and Indefinite Integrals

This section is about measures defined from other measures via various
means and the relationships among integrals with respect to them.

Image measures

Let (F,F) and (E,E) be measurable spaces. Let ν be a measure on (F,F)
and let h : F → E be measurable relative to F and E. We define a mapping
ν ◦ h−1 from the σ-algebra E into R̄+ by

ν ◦ h−1(B) = ν(h−1B), B ∈ E,5.1

which is well-defined since h−1B ∈ F by the measurability of h. It is easy to
check that ν ◦ h−1 is a measure on (E,E); it is called the image of ν under
h. Other notations current are h ◦ ν, h(ν), ν ◦ h, νh.
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If ν is finite, then so is its image. If ν is Σ-finite, again, so is its image. But,
the image of a σ-finite measure generally fails to be σ-finite (but is Σ-finite).

The following relates integrals with respect to ν ◦ h−1 to integrals with
respect to ν.

5.2 Theorem. For every f in E+ we have (ν ◦ h−1)f = ν(f ◦ h).

Proof. Define L : E+ → R̄+ by setting L(f) = ν(f ◦ h). It can be checked
that L satisfies the conditions of the integral characterization theorem 4.21.
Thus, L(f) = μf for some unique measure μ on (E,E). That μ is precisely
the measure ν ◦ h−1, because

μ(B) = L(1B) = ν(1B ◦ h) = ν(h−1B), B ∈ E. �

The limitation to positive E-measurable functions can be removed: for
arbitrary f in E the same formula holds provided that the integral on one
side be well-defined (and then both sides are well-defined).

The preceding theorem is a generalization of the change of variable for-
mula from calculus. In more explicit notation, with μ = ν ◦h−1, the theorem
is that ˆ

F

ν(dx)f(h(x)) =
ˆ

E

μ(dy)f(y),5.3

that is, if h(x) is replaced with y then ν(dx) must be replaced with μ(dy).
In calculus, it is often the case that E = F = R

d for some fixed dimension d,
and μ and ν are expressed in terms of the Lebesgue measure on R

d and the
Jacobian of the transformation h. In probability theory, often, the measure ν
is defined implicitly through the formula 5.3 by stating the transformation h
and the corresponding image measure μ. We take up still another use next.

Images of the Lebesgue measure

Forming image measures is a convenient method of creating new measures
from the old, and if the old measure ν is convenient enough as an integrator,
then 5.3 provides a useful formula for the integrals with respect to the new
measure μ. In fact, the class of measures that can be represented as images
of the Lebesgue measure on R+ is very large. The following is the precise
statement; combined with the preceding theorem it reduces integrals over
abstract spaces to integrals on R+ with respect to the Lebesgue measure.

5.4 Theorem. Let (E,E) be a standard measurable space. Let μ be a
Σ-finite measure on (E,E) and put b = μ(E), possibly +∞. Then, there
exists a mapping h from [0, b) into E, measurable relative to B[0,b) and E,
such that

μ = λ ◦ h−1,

where λ is the Lebesgue measure on [0, b).

Proof will be sketched in Exercises 5.15 and 5.16 in a constructive fashion.



Sec. 5 Transforms and Indefinite Integrals 31

Indefinite integrals

Let (E,E, μ) be a measure space. Let p be a positive E-measurable
function. Define

ν(A) = μ(p1A) =
ˆ

A

μ(dx)p(x), A ∈ E.5.5

It follows from the monotone convergence theorem (alternative form) that
ν is a measure on (E,E). It is called the indefinite integral of p with respect
to μ.

5.6 Proposition. For every f in E+, we have νf = μ(pf).

Proof. Let L(f) = μ(pf) and check that L satisfies the conditions of
Theorem 4.21. Thus, there exists a unique measure μ̂ on (E,E) such that
L(f) = μ̂f for every f in E+. We have μ̂ = ν, since

μ̂(A) = L(1A) = μ(p1A) = ν(A), A ∈ E. �

The formula 5.5 is another convenient tool for creating new measures from
the old. Written in more explicit notation, the preceding proposition becomes

ˆ
E

ν(dx) f(x) =
ˆ

E

μ(dx) p(x) f(x) f ∈ E+,5.7

which can be expressed informally by writing

ν(dx) = μ(dx) p(x), x ∈ E,5.8

once it is understood that μ and ν are measures on (E,E) and that p is
positive E-measurable.

Heuristically, we may think of μ(dx) as the amount of mass put by μ on an
“infinitesimal neighborhood” dx of the point x, and similarly of ν(dx). Then,
5.8 takes on the meaning that p(x) is the mass density, at x, of the measure ν
with respect to μ. For this reason, the function p is called the density function
of ν relative to μ, and the following notations are used for it:

p =
dν

dμ
; p(x) =

ν(dx)
μ(dx)

, x ∈ E.5.9

The expressions 5.5-5.9 are equivalent ways of saying the same thing: ν is the
indefinite integral of p with respect to μ, or p is the density of ν relative to μ.

Radon-Nikodym theorem

Let μ and ν be measures on a measurable space (E,E). Then, ν is said to
be absolutely continuous with respect to μ if, for every set A in E,

μ(A) = 0 ⇒ ν(A) = 0.5.10
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If ν is the indefinite integral of some positive E-measurable function with
respect to μ, then it is evident from 5.5 that ν is absolutely continuous with
respect to μ. The following, called the Radon-Nikodym theorem, shows that
the converse is true as well, at least when μ is σ-finite. We list it here without
proof. We shall give two proofs of it later.

5.11 Theorem. Suppose that μ is σ-finite, and ν is absolutely continuous
with respect to μ. Then, there exists a positive E-measurable function p such
that ˆ

E

ν(dx) f(x) =
ˆ

E

μ(dx) p(x) f(x), f ∈ E+.5.12

Moreover, p is unique up to equivalence: if 5.12 holds for another p̂ in E+,
then p̂(x) = p(x) for μ-almost every x in E.

The function p in question can be denoted by dν/dμ in view of the equivalence
of 5.5-5.9 and 5.12; and the function p is also called the Radon-Nikodym
derivative of ν with respect to μ. See Exercises 5.17-5.20 for some remarks.

A matter of style

When an explicit expression is desired for a measure μ, there are several
choices. One can go with the definition and give a formula for μ(A). Equiv-
alently, and usually with greater ease and clarity, one can display a formula
for the integral μf for arbitrary f in E+. In those cases where μ has a density
with respect to some well-known measure like the Lebesgue measure, it is
better to give the formula for μf or, to be more brief, to give a formula like
μ(dx) = λ(dx) p(x) by using the form 5.8, with λ denoting the Lebesgue mea-
sure. All things considered, if a uniform style is desired, it is best to display
an expression for μf . We shall do either that or use the form 5.8 when the
form of p is important.

Exercises and complements

5.13 Time changes. Let c be an increasing right-continuous function from
R+ into R̄+. Define

a(u) = inf{t ∈ R+ : c(t) > u}, u ∈ R+,

with the usual convention that inf ∅ = ∞.

a) Show that the function a : R+ → R̄+ is increasing and right-
continuous, and that

c(t) = inf{u ∈ R+ : a(u) > t}, t ∈ R+.

Thus, a and c are right-continuous “functional inverses” of each other. See
Figure 1 below.
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a(v−) a(v) a(w)

c(s)

c(t)

c(t−)

u

v

w

s t a(u)

Figure 1: Both c and a are increasing right-continuous. They are functional
inverses of each other.

b) Suppose c(t) <∞ . Show that a(c(t)) ≥ t , with equality if and only
if c(t+ ε) > c(t) for every ε > 0.

Imagine a clock whose mechanism is so rigged that it points to the number
c(t) when the actual time is t. Then, when the clock points to the number
u, the actual time is a(u). Hence the term “time change” for the operations
involved.

5.14 Distribution functions and measures on R+. Let μ be a measure on R+

(with its Borel σ-algebra) such that c(t) = μ[0, t] is finite for every t in R+.
The limit b = c(∞) = limt→∞ c(t) is allowed to be +∞.

a) Show that c is increasing and right-continuous. It is called the
cumulative distribution function associated with μ.

b) Define a(u) as in 5.13 for u ∈ [0, b), let λ denote the Lebesgue
measure on [0, b). Show that

μ = λ ◦ a−1 .

This demonstrates Theorem 5.4 in the case of measures like the present μ.
Incidentally, we have also shown that to every increasing right-continuous
function c from R+ into R+ there corresponds a unique measure μ on R+

whose cumulative distribution function is c.

5.15 Representation of measures: Finite case. Let μ be a finite measure on
a standard measurable space (E,E). We aim to prove Theorem 5.4 in this
case assuming that (E,E) is isomorphic to (D,BD) where D = [0, 1]. The
remaining cases where E is finite or countably infinite are nearly trivial.
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The idea is simple: First, use the isomorphism to carry μ from E into a
measure μ̂ on D. Second, follow the steps of 5.14 to write μ̂ = λ ◦ a−1 where
λ is the Lebesgue measure on B = [0, b) with b = μ̂(D) = μ(E). Finally, use
the inverse of the isomorphism to carry μ̂ back onto E. Here are the details.
Let f : E → D be the isomorphism involved. Let g : D → E be the
functional inverse of f , that is, g(t) = x if and only if f(x) = t. Define
μ̂ = μ ◦ f−1; then μ̂ is a measure on D with total mass μ̂(D) = μ(E) = b.
Put B = [0, b), B = BB and λ the Lebesgue measure on B.
Define c(t) = μ̂[0, t] for t in D. Define a(u) by 5.13 for u in B. Note that
a : B → D is measurable and that μ̂ = λ ◦ a−1. Define h(u) = g ◦ a(u) for u
in B. Observe that λ ◦ h−1 = λ ◦ a−1 ◦ g−1 = μ as needed.

5.16 Continuation: Σ-finite case. Let (E,E) be isomorphic to (D,BD) where
D = [0, 1]. Let μ be Σ-finite on (E,E), say μ =

∑
μn with each μn finite.

Since the case of finite μ is already covered, we assume that b = μ(E) = +∞.
Let B = [0, b) = R+, B = B(R+), and λ the Lebesgue measure on R+. Let
f : E → D and g : D → E as before.
Let Dn = 2n + D = [2n, 2n + 1], n = 0, 1, 2, . . .; note that D0, D1, . . . are
disjoint. Define fn : E → Dn by setting fn(x) = 2n + f(x) and let gn :
Dn → E be the functional inverse of fn, that is, gn(t) = g(t − 2n). Now,
μ̂n = μn ◦ f−1

n is a measure on Dn. Define

μ̂(C) =
∞∑

0

μ̂n(C ∩Dn), C ∈ B(R+).

This defines a measure μ̂ on (R+,B(R+)) such that c(t) = μ̂[0, t] < ∞ for
every t in R+, as in Exercise 5.14. Let a be defined as in 5.13, and observe
that μ̂ = λ ◦ a−1. Also observe that, by the way a is defined, a(u) belongs to
the set

⋃
nDn for each u. Finally, put

h(u) = gn ◦ a(u) if a(u) ∈ Dn,

and show that μ = λ ◦ h−1 as claimed.

5.17 Absolute continuity for atomic measures. Let ν be a Σ-finite purely
atomic measure on some measurable space (E,E) such that the singletons
{x} belong to E for each x in E. Let D be the collection of all atoms, and
recall that D is countable. Let μ(A) be the number of points in A∩D. Then,
ν is absolutely continuous with respect to μ. Find the density p = dν/dμ.

5.18 Radon-Nikodym derivatives. Let μ be a measure on (R+,B(R+)) such
that c(t) = μ[0, t] is finite for every t in R+. If μ is absolutely continuous with
respect to the Lebesgue measure λ on R+, then the cumulative distribution
function c is differentiable at λ-almost every t in R+ and

p(t) =
μ(dt)
λ(dt)

=
d

dt
c(t) for λ−almost every t.
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5.19 Radon-Nikodym and σ-finiteness. The condition that μ be σ-finite can-
not be removed in general. Let ν be the Lebesgue measure on E = [0, 1],
E = B(E), and let μ(A) be 0 or +∞ according as ν(A) is 0 or strictly posi-
tive, A ∈ E. Then, μ is Σ-finite, and ν is absolutely continuous with respect
to μ. Show that the conclusion of Theorem 5.11 fails in this case.

5.20 On Σ-finiteness. Let μ be a Σ-finite measure on an arbitrary measurable
space (E,E), say with the decomposition μ =

∑
μn, where μn(E) < ∞ for

each n. Define ν(A) =
∑

n μn(A)/2nμn(E), A ∈ E. Show that ν is a finite
measure, and μ is absolutely continuous with respect to ν. Thus, there exists
p ∈ E+ such that

μ(dx) = ν(dx) p(x) , x ∈ E.

If μ is σ-finite, show that p is real-valued ν-almost everywhere. Show that, in
the converse direction, if μ is absolutely continuous with respect to a finite
measure ν, then μ is Σ-finite.

5.21 Singularity. Let μ and ν be measures on some measurable space (E,E).
Then, ν is said to be singular with respect to μ if there exists a set D in E

such that
μ(D) = 0 and ν(E \D) = 0.

The notion is the opposite of absolute continuity. Show that, if ν is purely
atomic and μ is diffuse then ν is singular with respect to μ. This does not
exhaust the possibilities, however, as the famous example next illustrates.

5.22 Cantor set, Cantor measure. Start with the interval E = [0, 1]. Delete
the set D0,1 = (1

3
, 2

3
) which forms the middle third of E; this leaves two closed

intervals. Delete the middle thirds of those, that is, delete D1,1 = (1
9
, 2

9
) and

D1,2 = (7
9 ,

8
9); there remain four closed intervals. Delete the middle thirds

of those four intervals, and continue in this fashion. At the end, the deleted
intervals form the open set

D =
∞⋃

i=0

2i⋃

j=1

Di,j ,

and the set of points that remain is

C = E \D.

The closed set C is called the Cantor set.
Next we construct a continuous function c : E → [0, 1] that remains

constant over each interval Di,j and increases (only) on C. Define c(t) = 1
2

for t in D0,1; let c(t) = 1
4

for t in D1,1 and c(t) = 3
4

for t in D1,2; let
c(t) = 1

8
, 3

8
, 5

8
, 7

8
according as t is in D2,1, D2,2, D2,3, D2,4; and so on. This

defines a uniformly continuous increasing function from D into [0, 1]. Since D
is dense in E, we may extend c onto E by continuity. The resulting function
c : E → [0, 1] is called the Cantor function.
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a) Show that Leb(D) = 1, Leb(C) = 0.
b) Let ν be the measure on E corresponding to the (cumulative dis-

tribution) function c, that is, ν = λ ◦ a−1 where λ is the Lebesgue measure
on [0, 1) and a : [0, 1) → E is the inverse of c as in 5.13. We call ν the Cantor
measure. Show that ν(C) = 1 and ν(D) = 0. Conclude that ν is a diffuse
measure on E and that ν is singular with respect to the Lebesgue measure
on E.

c) Show that the range of a is C \ C0 where C0 consists of the point
1 and the countable collection of points that are the left-end-points of the
intervals Di,j . Thus, a is a one-to-one mapping from [0, 1) onto C \ C0, and
it follows that C \C0 has the power of the continuum. Thus, the Cantor set
has the power of the continuum, even though its Lebesgue measure is 0.

d) The Cantor set is everywhere dense in itself, that is, for every t in
C there exists (tn) ⊂ C \{t} such that t = lim tn. Incidentally, a closed set
that is everywhere dense in itself is said to be perfect.

5.23 Lebesgue-Stieltjes integrals. Let c be an increasing right-continuous func-
tion from R+ into R+. Let μ be the measure on R+ that has c as its cumulative
distribution function (see Exercise 5.14). For each positive Borel function f
on R+, define ˆ

R+

f(t) dc(t) =
ˆ

R+

μ(dt) f(t).

The left side is called the Lebesgue-Stieltjes integral of f with respect to c.
Note that, with the notation of 5.14,

ˆ
R+

μ(dt)f(t) =
ˆ b

0

duf(a(u)).

Replacing f by f1A one obtains the same integral over the interval A.
Extensions to arbitrary Borel functions f on R+ are as usual for μf , namely,
by using the decomposition f = f+ − f−. Extension from the space R+ onto
R is obvious. Finally, extensions to functions c that can be decomposed as
c = c1 − c2 with both c1 and c2 increasing and right-continuous (see the next
exercise) can be done by setting

ˆ
R

f(t) dc(t) =
ˆ

R

f(t) dc1(t) −
ˆ

R

f(t) dc2(t)

for those f for which the integrals on the right make sense and are not both
+∞ or both −∞.

5.24 Functions of bounded variation. Let f be a function from R+ into R.
Think of f(t) as the position, at time t, of an insect moving on the line R. We
are interested in the total amount of traveling done during a finite interval
(s, t]. Here is the precise version.



Sec. 6 Kernels and Product Spaces 37

A subdivision of [s, t] is a finite collection A of disjoint intervals of the
form (, ] whose union is (s, t]. We define

Vf (s, t) = sup
A

∑

(u,v]∈A

|f(v) − f(u)|

where the supremum is over all subdivisions A of [s, t]. The number Vf (s, t)
is called the total variation of f on (s, t]. The function f is said to be of
bounded variation on [s, t] if Vf (s, t) <∞.

Show the following:

a) If f is increasing on [s, t], then Vf (s, t) = f(t) − f(s).
b) If f is differentiable and its derivative is bounded by b on [s, t], then

Vf (s, t) ≤ (t− s) · b.
c) Vf (s, t) + Vf (t, u) = Vf (s, u) for s < t < u.
d) Vf+g(s, t) ≤ Vf (s, t) + Vg(s, t). Thus, if f and g are of bounded

variation on [s, t], then so are f + g and f − g.
e) The function f is of bounded variation on [s, t] if and only if f =

g − h for some real-valued positive functions g and h that are increasing on
[s, t].

Hint: To show the necessity, define g(r) and h(r) for r in (s, t] by

2g(r) = Vf (s, r) + f(r) + f(s), 2h(r) = Vf (s, r) − f(r) + f(s)

and show that g and h are increasing and f = g − h.
The class of functions f for which Lebesgue-Stieltjes integrals

´
g df are

defined is the class of f that are of bounded variation over bounded intervals.

6 Kernels and Product Spaces

Let (E,E) and (F,F) be measurable spaces. Let K be a mapping from
E×F into R̄+. Then, K is called a transition kernel from (E,E) into (F,F) if

6.1 a) the mapping x → K(x,B) is E-measurable for every set B in
F, and

b) the mapping B → K(x,B) is a measure on (F,F) for every x
in E.

For example, if ν is a finite measure on (F,F), and k is a positive function
on E × F that is measurable with respect to the product σ-algebra E ⊗ F,
then it will be seen shortly that

K(x,B) =
ˆ

B

ν(dy) k(x, y) , x ∈ E, B ∈ F ,6.2
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defines a transition kernel from (E,E) into (F,F). In the further special case
where E = {1, . . . ,m} and F = {1, . . . , n} with their discrete σ-algebras, the
transition kernelK is specified by the numbersK(x, {y}) and can be regarded
as an m by n matrix of positive numbers. This special case will inform the
choice of notations like Kf and μK below (recall that functions are thought
as generalizations of column vectors and measures as generalizations of row
vectors).

Measure-kernel-function

6.3 Theorem. Let K be a transition kernel from (E,E) into (F,F).
Then,

Kf(x) =
ˆ

F

K(x, dy) f(y) , x ∈ E,

defines a function Kf that is in E+ for every function f in F+;

μK(B) =
ˆ

E

μ(dx)K(x,B) , B ∈ F,

defines a measure μK on (F,F) for each measure μ on (E,E); and

(μK)f = μ(Kf) =
ˆ

E

μ(dx)
ˆ

F

K(x, dy) f(y)

for every measure μ on (E,E) and function f in F+.

Proof. a) Let f ∈ F+. Then Kf is a well-defined positive function on
E, since the number Kf(x) is the integral of f with respect to the measure
B → K(x,B). We show that Kf is E-measurable in two steps: First, if f is
simple, say f =

∑n
1 bi1Bi , then Kf(x) =

∑
biK(x,Bi), which shows that Kf

is E-measurable since it is a linear combination of the E-measurable functions
x → K(x,Bi), i = 1, . . . n. Second, if f in F+ is not simple, we choose simple
fn in F+ increasing to f ; then Kf(x) = limnKfn(x) for each x by the
monotone convergence theorem for the measure B → K(x,B); and, hence
Kf is E-measurable since it is the limit of E-measurable functions Kfn.

b) We prove the remaining two claims together. Fix a measure μ on
(E,E). Define L : F+ → R̄+ by setting

L(f) = μ(Kf).

If f = 0 then L(f) = 0. If f and g are in F+, and a and b in R+, then

L(af + bg) = μ(K(af + bg)) = μ(aKf + bKg)
= aμ(Kf) + bμ(Kg) = aL(f) + bL(g),

where the second equality is justified by the linearity of the integration with
respect to the measure B → K(x,B) for each x, and the third equality by
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the linearity of the integration with respect to μ. Finally, if (fn) ⊂ F+ and
fn ↗ f , then Kfn(x) ↗ Kf(x) by the monotone convergence theorem for
B → K(x,B), and

L(fn) = μ(Kfn) ↗ μ(Kf) = L(f)

by the monotone convergence theorem for μ. Hence, by Theorem 4.21, there
exists a measure ν on (F,F) such that L(f) = νf for every f in F+. Taking
f = 1B, we see that ν(B) = μK(B) for every set B in F, that is, ν = μK. So,
μK is a measure on (F,F), and (μK)f = νf = L(f) = μ(Kf) as claimed.

6.4 Remark. To specify a kernel K from (E,E) into (F,F) it is more
than enough to specify Kf for every f in F+. Conversely, as an extension of
Theorem 4.21, it is easy to see that a mapping f → Kf from F+ into E+

specifies a transition kernel K if and only if

a) K0 = 0,
b) K(af + bg) = aKf + bKg for f and g in F+ and a and b in R+,
c) Kfn ↗ Kf for every sequence (fn) in F+ increasing to f .

Obviously, then, K(x,B) = K1B(x).

Products of kernels, Markov kernels

Let K be a transition kernel from (E,E) into (F,F) and let L be a tran-
sition kernel from (F,F) into (G,G). Then, their product is the transition
kernel KL from (E,E) into (G,G) defined by

(KL)f = K(Lf), f ∈ G+.6.5

Remark 6.4 above can be used to show that KL is indeed a kernel. Obviously,

KL(x,B) =
ˆ

F

K(x, dy) L(y,B) , x ∈ E, B ∈ G.

A transition kernel from (E,E) into (E,E) is called simply a transition
kernel on (E,E). Such a kernel K is called a Markov kernel on (E,E) if
K(x,E) = 1 for every x, and a sub-Markov kernel if K(x,E) ≤ 1 for every x.

If K is a transition kernel on (E,E), its powers are the kernels on (E,E)
defined recursively by

K0 = I, K1 = K, K2 = KK, K3 = KK2, . . . ,6.6

where I is the identity kernel on (E,E):

I(x,A) = δx(A) = 1A(x), x ∈ E, A ∈ E.6.7

Note that If = f , μI = μ, μIf = μf , IK = KI = K always. If K is Markov,
so is Kn for every integer n ≥ 0.
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Kernels finite and bounded

Let K be a transition kernel from (E,E) into (F,F). In analogy with
measures, K is said to be finite if K(x, F ) < ∞ for each x, and σ-finite if
B → K(x,B) is σ-finite for each x. It is said to be bounded if x → K(x, F )
is bounded, and σ-bounded if there exists a measurable partition (Fn) of F
such that x → K(x, Fn) is bounded for each n. It is said to be Σ-finite if
K =

∑∞
1 Kn for some sequence of finite kernels Kn, and Σ-bounded if the Kn

can be chosen to be bounded. In the very special case where K(x, F ) = 1 for
all x, the kernel is said to be a transition probability kernel. Markov kernels
are transition probability kernels. Some connections between these notions
are put in exercises.

Functions on product spaces

We start by re-stating the content of Exercise 2.22: sections of a measur-
able function are measurable.

6.8 Proposition. Let f ∈ E ⊗ F. Then, x → f(x, y) is in E for each y
in F , and y → f(x, y) is in F for each x in E.

Unfortunately, the converse is not true: it is possible that the conclusions
hold, and yet f is not E⊗F-measurable. One needs something stronger than
measurability in at least one of the variables to conclude that f is in E ⊗ F.
See Exercise 6.28 for such an example.

The following is a generalization of the operation f → Kf of Theorem
6.3 to functions f defined on the product space.

6.9 Proposition. Let K be a Σ-finite kernel from (E,E) into (F,F).
Then, for every positive function f in E ⊗ F,

Tf(x) =
ˆ

F

K(x, dy) f(x, y), x ∈ E,6.10

defines a function Tf in E+. Moreover, the transformation T : (E ⊗ F)+ →
E+ is linear and continuous under increasing limits, that is,

a) T (af + bg) = aTf + bT g for positive f and g in E ⊗ F, and a and
b in R+,

b) Tfn ↗ Tf for every positive sequence (fn) ⊂ E ⊗ F with fn ↗ f .

Proof. Let f be a positive function in E ⊗ F. Then, for each x in E,
the section fx : y → f(x, y) is a function in F+ by Proposition 6.8, and
Tf(x) is the integral of fx with respect to the measure Kx : B → K(x,B).
Thus, Tf(x) is a well-defined positive number for each x, and the linearity
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property (a) is immediate from the linearity of integration with respect to
Kx for all x, and the continuity property (b) follows from the monotone
convergence theorem for the measures Kx. There remains to show that Tf
is E-measurable.

We show this by a monotone class argument assuming that K is bounded.
Boundedness of K implies that Tf is well-defined by 6.10 and is bounded for
each bounded f in E ⊗ F, and it is checked easily that

M = {f ∈ E ⊗ F : f is positive or bounded, Tf ∈ E}
is a monotone class. Moreover, M includes the indicator of every measurable
rectangle A×B, since

T 1A×B(x) =
ˆ

F

K(x, dy)1A(x)1B(y) = 1A(x)K(x,B)

and the right side defines an E-measurable function. Since the measurable
rectangles generate the σ-algebra E ⊗ F, it follows from the monotone class
theorem 2.19 that M includes all positive (or bounded) f in E ⊗ F as-
suming that K is bounded. See Exercise 6.29 for extending the proof to
Σ-finite K. �

Measures on the product space

The following is the general method for constructing measures on the
product space (E × F,E ⊗ F).

6.11 Theorem. Let μ be a measure on (E,E). Let K be a Σ-finite tran-
sition kernel from (E,E) to (F,F). Then,

πf =
ˆ

E

μ(dx)
ˆ

F

K(x, dy)f(x, y), f ∈ (E ⊗ F)+6.12

defines a measure π on the product space (E × F,E ⊗ F). Moreover, if μ is
σ-finite and K is σ-bounded, then π is σ-finite and is the unique measure on
that product space satisfying

π(A ×B) =
ˆ

A

μ(dx)K(x,B), A ∈ E, B ∈ F.6.13

Proof. In the notation of the last proposition, the right side of 6.12 is
μ(Tf), the integral of Tf with respect to μ. To see that it defines a measure,
we use Theorem 4.21. Define L(f) = μ(Tf) for f in E ⊗ F positive. Then,
L(0) = 0 obviously, L is linear since T is linear and integration is linear, and
L is continuous under increasing limits by the same property for T and the
monotone convergence theorem for μ. Hence, there is a unique measure, call
it π, such that L(f) is the integral of f with respect to π for every positive
f in E ⊗ F. This proves the first claim.
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To prove the second, start by observing that π satisfies 6.13. Supposing
that μ is σ-finite and K is σ-bounded, there remains to show that π is σ-
finite and is the only measure satisfying 6.13. To that end, let π̂ be another
measure satisfying 6.13. Since μ is σ-finite, there is a measurable partition
(Em) of E such that μ(Em) < ∞ for each m. Since K is σ-bounded, there
is a measurable partition (Fn) of F such that x → K(x, Fn) is bounded for
each n. Note that the measurable rectangles Em × Fn form a partition of
E × F and that, by the formula 6.13 for π and π̂,

π(Em × Fn) = π̂(Em × Fn) <∞

for each m and n. Thus, the measures π and π̂ are σ-finite, they agree on
the p-system of measurable rectangles generating E ⊗ F, and that p-system
contains a partition of E × F over which π and π̂ are finite. It follows from
Exercise 3.18 that π = π̂. �

Product measures and Fubini

In the preceding theorem, if the kernel K has the special form K(x,B) =
ν(B) for some Σ-finite measure ν on (F,F), then the measure π is called the
product of μ and ν and is denoted by μ× ν. The following theorem, generally
referred to as Fubini’s, is concerned with integration with respect to π = μ×ν.
Its main point is the formula 6.15: under reasonable conditions, in repeated
integration, one can change the order of integration with impunity.

6.14 Theorem. Let μ and ν be Σ-finite measures on (E,E) and (F,F),
respectively.

a) There exists a unique Σ-finite measure π on (E × F,E ⊗ F) such
that, for every positive f in E ⊗ F,

πf =
ˆ

E

μ(dx)
ˆ

F

ν(dy) f(x, y) =
ˆ

F

ν(dy)
ˆ

E

μ(dx) f(x, y).6.15

b) If f ∈ E ⊗ F and is π-integrable, then y → f(x, y) is ν-integrable
for μ-almost every x, and x → f(x, y) is μ-integrable for ν-almost every y,
and 6.15 holds again.

6.16 Remark. a) Since we have more than one measure, for notions like
integrability and negligibility, one needs to point out the measure associated.
So, π-integrable means “integrable with respect to the measure π”.

b) It is clear from 6.15 that

π(A ×B) = μ(A)ν(B), A ∈ E, B ∈ F,6.17

and for this reason we call π the product of μ and ν and we use the notation
π = μ× ν.
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c) If both μ and ν are σ-finite, then Theorem 6.11 applies with
K(x,B) = ν(B) and implies that π is the only measure satisfying 6.17. Other-
wise, it is possible that there are measures π̂ satisfying π̂(A×B) = μ(A)ν(B)
for all A in E and B in F but with π̂f differing from πf for some positive f
in E ⊗ F.

Proof. a) Let πf be defined by the first integral in 6.15. Taking
K(x,B) = ν(B) in Theorem 6.11 shows that this defines a measure π
on the product space. Since μ =

∑
μi and ν =

∑
νj for some finite measures

μi and νj , we have

πf =
∑

i

∑

j

ˆ
E

μi(dx)
ˆ

F

νj(dy) f(x, y) =
∑

i,j

(μi × νj)f

by Exercise 4.27 and the monotone convergence theorem. Thus, π =
∑

i,j μi×
νj and, arranging the pairs (i, j) into a sequence, we see that π =

∑
πn for

some sequence of finite measures πn.
b) To prove the equality of the integrals in 6.15, we start by observing

that the second integral is in fact an integral over F×E: defining f̂ : F×E →
R̄+ by f̂(y, x) = f(x, y), the second integral is

π̂f̂ =
ˆ

F

ν(dy)
ˆ

E

μ(dx) f̂(y, x) =
∑

j

∑

i

ˆ
F

νj(dy)
ˆ

E

μi(dx) f̂ (y, x)

=
∑

i,j

(νj × μi) f̂ .

Hence, to prove that πf = π̂f̂ , it is sufficient to show that (μi × νj)f =
(νj × μi)f̂ for each pair of i and j. Fixing i and j, this amounts to showing
that

πf = (μ× ν)f = (ν × μ)f̂ = π̂f̂

under the assumption that μ and ν are both finite.
c) Assume μ and ν finite. Let h : E × F → F ×E be the transposition

mapping (x, y) → (y, x). It is obviously measurable relative to E ⊗ F and
F ⊗ E. For sets A in E and B in F,

π ◦ h−1(B ×A) = π(A×B) = μ(A)ν(B) = π̂(B ×A),

which implies via Proposition 3.7 that π̂ = π◦h−1. Hence, π̂f̂ = (π◦h−1)f̂ =
π(f̂ ◦ h) = πf since f̂ ◦ h(x, y) = f̂(y, x) = f(x, y).

d) Let f be π-integrable. Then 6.15 holds for f+ and f− separately,
and πf = πf+ − πf− with both terms finite. Hence, 6.15 holds for f . As
to the integrability of sections, we observe that the integrability of f implies
that x → ´

F
ν(dy) f(x, y) is real-valued for μ-almost every x, which in turn

is equivalent to saying that y → f(x, y) is ν-integrable for μ-almost every x.
By symmetry, the finiteness for the second integral implies that x → f(x, y)
is μ-integrable for ν-almost every y.
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Finite products

The concepts and results above extend easily to products of finitely many
spaces. Let (E1,E1), . . . ,(En,En) be measurable spaces. Their product is de-
noted by any of the following three:

n⊗

i=1

(Ei,Ei) = (
n×

i=1
Ei,

n⊗

i=1

Ei) = (E1 × · · · ×En,E1 ⊗ · · · ⊗ En),6.18

where E1 × · · · × En is the set of all n-tuples (x1, . . . , xn) with xi in Ei for
i = 1, . . . , n, and E1 ⊗ · · · ⊗ En is the σ-algebra generated by the measurable
rectangles A1 × · · · ×An with Ai in Ei, i = 1, . . . n.

Let μ1, . . . , μn be Σ-finite measures on (E1,E1), . . . , (En,En) respectively.
Then, their product π = μ1×· · ·×μn is the measure defined on the measurable
product space by analogy with Theorem 6.14: for positive functions f in

⊗
Ei,

πf =
ˆ

E1

μ1(dx1)
ˆ

E2

μ2(dx2) · · ·
ˆ

En

μn(dxn) f(x1, . . . , xn).6.19

It is usual to denote the resulting measure space
n⊗

i=1

(Ei,Ei, μi).6.20

Fubini’s theorem is generalized to this space and shows that, if f is positive
or π-integrable, the integrals on the right side of 6.19 can be performed in
any order desired.

More general measures can be defined on the product space 6.18 with the
help of kernels. We illustrate the technique for n = 3: Let μ1 be a measure
on (E1,E1), let K2 be a transition kernel from (E1,E1) into (E2,E2), and let
K3 be a transition kernel from (E1 ×E2,E1 ⊗E2) into (E3,E3). Consider the
formula

πf =
ˆ

E1

μ1(dx1)
ˆ

E2

K2(x1, dx2)
ˆ

E3

K3((x1, x2), dx3) f(x1, x2, x3)6.21

for positive f in E1 ⊗ E2 ⊗ E3. Assuming that K2 and K3 are Σ-finite, re-
peated applications of Theorem 6.11 show that this defines a measure π on
(E1 × E2 × E3,E1 ⊗ E2 ⊗ E3).

In situations like this, we shall omit as many parentheses as we can and
use a notation analogous to 5.8. For instance, instead of 6.21, we write

π(dx1, dx2, dx3) = μ1(dx1)K2(x1, dx2)K3(x1, x2, dx3).6.22

The notation

π = μ1 ×K2 ×K36.23

is also used for the same thing and is in accord with the notation for product
measures.
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Infinite products

Let T be an arbitrary set, countable or uncountable. It will play the role
of an index set; we think of it as the time set. For each t in T , let (Et,Et)
be a measurable space. Let xt be a point in Et for each t in T . Then we
write (xt)t∈T for the resulting collection and think of it as a function on T ;
this is especially appropriate when (Et,Et) = (E,E) for all t, because, then,
x = (xt)t∈T can be regarded as the mapping t → xt from T into E. The set
F of all such functions x = (xt)t∈T is called the product space defined by
{Et : t ∈ T }; and the notation ×t∈TEt is used for F .

A rectangle in F is a subset of the form

×
t∈T

At = {x ∈ F : xt ∈ At for each t in T }6.24

where At differs from Et for only a finite number of t. It is said to be measur-
able if At ∈ Et for every t (for which At differs from Et). The σ-algebra on
F generated by the collection of all measurable rectangles is called the prod-
uct σ-algebra and is denoted by

⊗
t∈T Et. The resulting measurable space is

denoted variously by

⊗

t∈T

(Et,Et) = (×
t∈T

Et,
⊗

t∈T

Et).6.25

In the special case where (Et,Et) = (E,E) for all t, the following notations
are also in use for the same:

(E,E)T = (ET ,ET )6.26

Although this is the logical point to describe the construction of mea-
sures on the product space, we shall delay it until the end of Chapter IV, at
which point the steps involved should look intuitive. For the present, we list
the following proposition which allows an arbitrary collection of measurable
functions to be thought as one measurable function. It is a many-dimensional
generalization of the result in Exercise 2.21.

6.27 Proposition. Let (Ω,H) be a measurable space. Let (F,F) =
⊗t∈T (Et,Et). For each t in T , let ft be a mapping from Ω into Et. For each
ω in Ω, define f(ω) to be the point (ft(ω))t∈T in F . Then, the mapping
f : Ω → F is measurable relative to H and F if and only if ft is measurable
relative to H and Et for every t in T .

Proof. Suppose that f is measurable relative to H and F. Then, {f ∈
B} ∈ H for every B in F. In particular, taking B to be the rectangle in
6.24 with At = Et for all t except t = s for some fixed s, we see that
{f ∈ B} = {fs ∈ As} ∈ H for As in Es. Thus, fs is measurable relative to H

and Es for every s fixed.



46 Measure and Integration Chap. 1

Suppose that each ft is measurable relative to H and Et. If B is a
measurable rectangle in F , then {f ∈ B} is the intersection of finitely many
sets of the form {ft ∈ At} with At in Et, and hence, {f ∈ B} ∈ H. Since mea-
surable rectangles generate the product σ-algebra F, this implies via Propo-
sition 2.3 that f is measurable relative to H and F. �

Exercises

6.28 Measurability in the product space. Suppose that E = R and E = B(R),
and let (F,F) be arbitrary. Let f : E × F → R̄ be such that y → f(x, y) is
F-measurable for each x in E and that x → f(x, y) is right-continuous (or
left-continuous) for each y in F . Show that, then, f is in E ⊗ F.

6.29 Image measures and kernels. Let (E,E) and (F,F) be measurable
spaces. Let h : E → F be measurable relative to E and F. Define

K(x,B) = 1B ◦ h(x), x ∈ E,B ∈ F.

Show that K is a transition probability kernel. Show that, in the measure-
kernel-function notation of Theorem 6.3,

Kf = f ◦ h, μK = μ ◦ h−1, μKf = μ(f ◦ h).

6.30 Transition densities. Let ν be a σ-finite measure on (F,F), and let k be
a positive function in E⊗F. Define K by 6.2, that is, in differential notation,

K(x, dy) = ν(dy) k(x, y).

Show that K is a transition kernel. Then, k is called the transition density
function of K with respect to ν.

6.31 Finite spaces. Let E = {1, . . . ,m}, F = {1, . . . , n}, G = {1, . . . , p} with
their discrete σ-algebras. Functions on such spaces can be regarded as column
vectors, measures as row vectors, and kernels as matrices. Show that, with
these interpretations, the notations Kf , μK, μKf , KL used in Theorem
6.3 and Definition 6.5 are in accord with the usual notations used in linear
algebra.

6.32 Finite and bounded kernels. Let K be a finite transition kernel from
(E,E) into (F,F). Define

h(x) =
{
K(x, F ) if K(x, F ) > 0,
1 if K(x, F ) = 0,

and define H by solving

K(x,B) = h(x)H(x,B).

Show that h ∈ E+ and that H is a bounded kernel.
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6.33 Proof of Proposition 6.9. Complete the proof. Hint: Use the preceding
exercise to extend the proof from the bounded kernels to finite ones, and
finally extend it to Σ-finite kernels.

6.34 Fubini and Σ-finiteness. In general, in order for 6.15 to hold, it is nec-
essary that μ and ν be Σ-finite. For instance, let E = F = [0, 1] with their
Borel σ-algebras, and let μ be the Lebesgue measure on E, and ν the count-
ing measure on F (that is, ν(A) is the number of points in A). Then, for
f(x, y) = 1 if x = y and 0 otherwise, the first integral in 6.15 is equal to 1,
but the second is equal to 0.

Complements

6.35 Product and Borel σ-algebras. For each t in some index set T , let Et

be a topological space and let Et = B(Et), the Borel σ-algebra on Et. Let
(F,F) =

⊗
T (Et,Et) be the product measurable space. The product space

F can be given the product topology, and let B(F ) be the Borel σ-algebra
corresponding to that topology on F .

In general, B(F ) ⊃ F. If T is countable and if every Et has a countable
open base, then F = B(F ). In particular, R

n and R
∞ = R

N are topological
spaces and their Borel σ-algebras coincide with the appropriate product σ-
algebras; more precisely

(BR)T = B(RT )

for T = {1, 2, . . . , n} for every integer n ≥ 1 and also for T = N
∗ = {1, 2, . . .}.

This equality fails when T is uncountable, B(RT ) being the larger then.

6.36 Standard measurable spaces. Let (E1,E1), (E2,E2), . . . be standard
measurable spaces, and let (F,F) be their product. Then, (F,F) is also
standard.





Chapter II

Probability Spaces

A probability space is a triplet (Ω,H,P) where Ω is a set, H is a σ-algebra
on Ω, and P is a probability measure on (Ω,H). Thus, mathematically, a
probability space is a special measure space where the measure has total
mass one.

But, our attitude and emotional response toward one is entirely different
from those toward the other. On a measure space everything is deterministic
and certain, on a probability space we face randomness and uncertainty.

A probability space (Ω,H,P) is a mathematical model of a random ex-
periment, an experiment whose exact outcome cannot be told in advance.
The set Ω stands for the collection of all possible outcomes of the experi-
ment. A subset H is said to occur if the outcome of the experiment happens
to belong to H . Given our capabilities to measure, detect, and discern, and
given the nature of answers we seek, only certain subsets H are distinguished
enough to be of concern whether they occur. The σ-algebra H is the collec-
tion of all such subsets whose occurrence are noteworthy and decidable; the
elements of H are called events. From this point of view, the conditions for H

to be a σ-algebra are logical consequences of the interpretation of the term
“event”. Finally, for each event H , the chances that H occurs is modeled to
be the number P(H), called the probability that H occurs.

The actual assignment of probabilities to events is the primary task of
the probabilist. It requires much thought and experience, it is rarely explicit,
and it determines the quality of the probability space as a model of the
experiment involved. Once the probability space is fixed, the main task is to
evaluate various integrals of interest by making adroit use of those implicitly
defined probabilities. Often, the results are compared against experience, and
the probability space is altered for a better fit.

Our aim in this chapter is to introduce the language and notation of prob-
ability theory. Implicit in the language are whole sets of attitudes, prejudices,
and desires with which we hope to infect the reader.

E. Çınlar, Probability and Stochastics, Graduate Texts 49
in Mathematics 261, DOI 10.1007/978-0-387-87859-1 2,
c© Springer Science+Business Media, LLC 2011
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1 Probability Spaces and Random Variables

Let (Ω,H,P) be a probability space. The set Ω is called the sample space;
its elements are called outcomes. The σ-algebra H may be called the grand
history; its elements are called events. We repeat the properties of the prob-
ability measure P; all sets here are events:

1.1 Norming: P(∅) = 0, P(Ω) = 1.

Monotonicity: H ⊂ K ⇒ P(H) ≤ P(K).

Finite additivity: H ∩K = ∅ ⇒ P(H ∪K) = P(H) + P(K).

Countable additivity: (Hn) disjointed ⇒ P(
⋃
nHn) =

∑
n P(Hn).

Sequential continuity: Hn ↗ H ⇒ P(Hn) ↗ P(H),
Hn ↘ H ⇒ P(Hn) ↘ P(H).

Boole’s inequality: P(
⋃
nHn) ≤ ∑

n P(Hn).

All of these are as before for arbitrary measures, except for the sequential
continuity under decreasing limits, which is made possible by the finiteness
of P: If H1 ⊃ H2 ⊃ . . . and limHn =

⋂
Hn =H , then the complements

Hc
n increase to Hc, which implies that P(Hc

n)↗P(Hc) by the sequential
continuity of measures under increasing limits, and we have P(H)= 1−P(Hc),
and similarly for each Hn, by the finite additivity and norming of P.

Negligibility, completeness

The concepts are the same as for arbitrary measures: A subset N of Ω
is said to be negligible if there exists an event H such that N ⊂ H and
P(H) = 0. The probability space is said to be complete if every negligible set
is an event.

Improbable events do not bother the probabilist. Negligible sets should
not either, but if a negligible set does not belong to H then we are not able
to talk of its probability, which thing is bothersome. So, it is generally nicer
to have (Ω,H,P) complete. If it is not, it can be completed using Proposi-
tion I.3.10.

Almost surely, almost everywhere

An event is said to be almost sure if its probability is one. If a proposition
holds for every outcome ω in an almost sure event, then we say that the
proposition holds almost surely or almost everywhere or for almost every ω
or with probability one. Obviously, the concept is equivalent to having the
proposition fail only over a negligible set.
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Random variables

Let (E,E) be a measurable space. A mapping X : Ω �→ E is called
a random variable taking values in (E,E) provided that it be measurable
relative to H and E, that is, if

X−1A = {X ∈ A} = {ω ∈ Ω : X(ω) ∈ A}1.2

is an event for every A in E. Of course, it is sufficient to check the condition
for A in a collection that generates E. It is customary to denote random
variables by capital letters.

If the σ-algebra E is understood from context, then we merely say that X
takes values in E or that X is E-valued. This is especially the case if E is R

or R
d or some Borel subset of some such space and E is the Borel σ-algebra

on E.
The simplest random variables are indicators of events; we use the usual

notation 1H for the indicator of H . A random variable is simple if it takes
only finitely many values, all in R. It is said to be discrete if it is elementary,
that is, if it takes only countably many values.

Distribution of a random variable

Let X be a random variable taking values in some measurable space
(E,E). Let μ be the image of P under X (see section I.5 for image measures),
that is,

μ(A) = P(X−1A) = P{X ∈ A}, A ∈ E,1.3

where the last member is read as “the probability that X is in A”. Then, μ
is a probability measure on (E,E); it is called the distribution of X .

In view of Proposition I.3.7, to specify the distribution μ, it is sufficient to
specify μ(A) for all A belonging to a p-system that generates E. In particular,
if E = R̄ and E = BE , the intervals [−∞, x] with x in R form a convenient
p-system; consequently, in this case, it is enough to specify

c(x) = μ[−∞, x] = P{X ≤ x}, x ∈ R.1.4

The resulting function c : R �→ [0, 1] is called the distribution function of X .
Distribution functions are used extensively in elementary probability theory
in order to avoid measures. We shall have little use for them. A review of
some salient facts are put as exercises for the sake of completeness.

Functions of random variables

Let X be a random variable taking values in (E,E). Let (F,F) be another
measurable space, and let f : E �→ F be measurable relative to E and F.
Then, the composition Y = f ◦X of X and f , namely,

Y (ω) = f ◦X(ω) = f(X(ω)), ω ∈ Ω,1.5
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is a random variable taking values in (F,F); this follows from Proposition
I.2.5 that measurable functions of measurable functions are measurable. If μ
is the distribution of X , then the distribution ν of Y is ν = μ ◦ f−1:

ν(B) = P{Y ∈ B} = P{X ∈ f−1B} = μ(f−1B), B ∈ F.1.6

Joint distributions

Let X and Y be random variables taking values in measurable spaces
(E,E) and (F,F) respectively. Then, the pair Z = (X,Y ) : ω �→ Z(ω) =
(X(ω), Y (ω)) is measurable relative to H and the product σ-algebra
E ⊗ F, that is, Z is a random variable taking values in the product space
(E × F, E ⊗ F).

The distribution of Z is a probability measure π on the product space
and is also called the joint distribution of X and Y . Since E⊗F is generated
by the p-system of measurable rectangles, in order to specify π it is sufficient
to specify

π(A ×B) = P{X ∈ A, Y ∈ B}, A ∈ E, B ∈ F,1.7

the right side being the probability that X is in A and Y is in B, that is, the
probability of {X ∈ A} ∩ {Y ∈ B}. In the opposite direction, given the joint
distribution π, for A in E and B in F, we have

μ(A) = P{X ∈ A} = π(A× F ), ν(B) = P{Y ∈ B} = π(E ×B).1.8

In this context, the probability measures μ and ν are called the marginal
distributions of X and Y respectively. These terms are used, with obvious
generalizations, for any finite number of random variables.

Independence

Let X and Y be random variables taking values in (E,E) and (F,F)
respectively, and let μ and ν be their respective (marginal) distributions.
Then, X and Y are said to be independent if their joint distribution is the
product measure formed by their marginals, that is, if the distribution of the
pair (X,Y ) is the product measure μ× ν, or in still other words,

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B}, A ∈ E, B ∈ F.1.9

In probability theory, independence is used often as a primitive concept
to be decided by considerations based on the underlying experiment and the
way X and Y are defined. And, once it is decided upon, independence of
X and Y becomes a convenient tool for specifying the joint distribution via
its marginals. We shall return to these matters in Chapter IV for a rigorous
treatment. For the present we mention an extension or two.
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A finite collection {X1, . . . , Xn} of random variables is said to be an
independency, or the variables X1, . . . , Xn are said to be independent, if
the distribution of the random vector (X1, . . . , Xn) has the product form
μ1 × · · · × μn where μ1, . . . , μn are probability measures. Then, necessarily,
μi is the distribution of Xi for each i. An arbitrary collection (countable or
uncountable) of random variables is said to be an independency if every finite
sub-collection of it is an independency.

Stochastic processes and probability laws

Let (E,E) be a measurable space. Let T be an arbitrary set, countable or
uncountable. For each t in T , let Xt be a random variable taking values in
(E,E). Then, the collection {Xt : t ∈ T } is called a stochastic process with
state space (E,E) and parameter set T .

For each ω in Ω, let X(ω) denote the function t �→ Xt(ω) from T into
E; then, X(ω) is an element of ET . By Proposition I.6.27, the mapping
X : ω �→ X(ω) from Ω into ET is measurable relative to H and ET . In other
words, we may regard the stochastic process {Xt : t ∈ T } as a random
variable X that takes values in the product space (F,F) = (ET ,ET ).

The distribution of the random variable X , that is, the probability mea-
sure P ◦X−1 on (F,F), is called the probability law of the stochastic process
{Xt : t ∈ T }.

Recall that the product σ-algebra F is generated by the finite-dimensional
rectangles and, therefore, a probability measure on (F,F) is determined by
the values it assigns to those rectangles. It follows that the probability law
of X is determined by the values

P{Xt1 ∈ A1, . . . , Xtn ∈ An}1.10

with n ranging over N
∗, and t1, . . . , tn over T , and A1, . . . , An over E. Much

of the theory of stochastic processes has to do with computing integrals con-
cerning X from the given data regarding 1.10.

Examples of distributions

The aim here is to introduce a few distributions that are encountered often
in probabilistic work. Other examples will appear in the exercises below and
in the section next.

1.11 Poisson distribution. Let X be a random variable taking values in
N = {0, 1, . . .}; it is to be understood that the relevant σ-algebra on N is
the discrete σ-algebra of all subsets. Then, X is said to have the Poisson
distribution with mean c if

P{X = n} =
e−c cn

n!
, n ∈ N.
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Here, c is a strictly positive real number. The corresponding distribution is
the probability measure μ on N defined by

μ(A) =
∑

n∈A

e−ccn

n!
, A ⊂ N.

1.12 Exponential distributions. Let X be a random variable with values
in R+; the relevant σ-algebra on R+ is B(R+). Then, X is said to have
the exponential distribution with scale parameter c if its distribution μ has
the form

μ(dx) = dx ce−cx , x ∈ R+,

where dx is short for Leb(dx). Here, c > 0 is a constant, and we used the form
I.5.8 to display μ. In other words, μ is absolutely continuous with respect to
the Lebesgue measure on R+ and its density function is p(x) = ce−cx, x ∈ R+.
When c = 1, this distribution is called the standard exponential.

1.13 Gamma distributions. Let X be a random variable with values in R+. It
is said to have the gamma distribution with shape index a and scale parameter
c if its distribution μ has the form

μ(dx) = dx
caxa−1e−cx

Γ(a)
, x ∈ R+.

Here, a > 0 and c > 0 are constants and Γ(a) is the so-called gamma function.
The last is defined so that μ is a probability measure, that is,

Γ(a) =
ˆ ∞

0

dx xa−1e−x.

Incidentally, the density function for μ takes the value +∞ at x = 0 if
a < 1, but this is immaterial since Leb{0} = 0; or, in probabilistic terms,
X ∈ R

∗
+ = (0,∞) almost surely, and it is sufficient to define the density on

R
∗
+. In general, Γ(a) = (a − 1)Γ(a − 1) for a > 1. This allows one, together

with Γ(1
2
) =

√
π and Γ(1) = 1, to give an explicit expression for Γ(a) when

a > 0 is an integer or half-integer. In particular, when a = 1, the gamma
distribution becomes the exponential; and when c = 1

2
and a = n

2
for some

integer n ≥ 1, it is also called the Chi-square distribution with n degrees
of freedom. Finally, when c = 1, we call the distribution standard gamma
distribution with shape index a.

1.14 Gaussian distributions. Let X be a real-valued random variable. It is
said to have the Gaussian (or normal) distribution with mean a and variance
b if its distribution μ has the form

μ(dx) = dx
1√
2πb

e−(x−a)2/2b, x ∈ R.

Here, a ∈ R and b > 0, both constant. If a = 0 and b = 1, then μ is called
the standard Gaussian distribution.
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1.15 Independent gamma variables. Let γa denote the standard gamma dis-
tribution with shape index a; this is the probability measure μ of Example
1.13 above but with c = 1. Let X have the distribution γa, and Y the dis-
tribution γb; here a > 0 and b > 0. Suppose that X and Y are independent.
Then, the joint distribution of X and Y is the product measure γa× γb, that
is, the distribution of the pair (X,Y ) is the probability measure π on R+×R+

given by

π(dx, dy) = γa(dx) γb(dy) = dx dy
e−x xa−1

Γ(a)
· e

−y yb−1

Γ(b)
.

1.16 Gaussian with exponential variance. Let X and Y be random variables
taking values in R+ and R respectively. Suppose that their joint distribution
π is given by

π(dx, dy) = dx dy ce−cx
1√
2πx

e−y
2/2x , x ∈ R+, y ∈ R.

Note that π has the form π(dx, dy) = μ(dx) K(x, dy), where μ is the expo-
nential distribution with scale parameter c, and for each x, the distribution
B �→ K(x,B) is Gaussian with mean 0 and variance x. Indeed, K is a tran-
sition kernel from R+ into R, and π is an instance of the measure appearing
in Theorem I.6.11. It is clear that the marginal distribution of X is the expo-
nential distribution μ. The marginal distribution ν of Y has the form ν = μK
introduced in Theorem I.6.3:

ν(B) = π(R+ ×B) =
ˆ

R+

μ(dx) K(x,B) , B ∈ BR.

It is seen easily that ν is absolutely continuous with respect to the Lebesgue
measure on R, that is, ν has the form ν(dy) = dy · n(y), and the density
function is

n(y) =
ˆ ∞

0

dx ce−cx
e−y

2/2x

√
2πx

= 1
2
b e−b|y| , y ∈ R,

with b =
√

2c. Incidentally, this distribution ν is called the two-sided ex-
ponential distribution with parameter b. Finally, we note that π is not the
product μ× ν, that is, X and Y are dependent variables.

Exercises and complements

1.17 Distribution functions. Let X be a random variable taking values in
R̄ = [−∞,+∞]. Let μ be its distribution, and c its distribution function,
defined by 1.4. Then, c is a function from R into [0, 1]. It is increasing and
right-continuous as indicated in Exercise I.5.14.
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a) Since c is increasing, the left-hand limit

c(x−) = lim
y↑x

c(y)

exists for every x in R. Similarly, the limits

c(−∞) = lim
x↓−∞

c(x) c(+∞) = lim
x↑∞

c(x)

exist. Show that

c(x−) = P{X < x}, c(x) − c(x−) = P{X = x}
c(−∞) = P{X = −∞}, c(+∞) = P{X <∞} = 1 − P{X = ∞}.
b) Let D be the set of all atoms of the distribution μ. Then, D consists

of all x in R for which c(x) − c(x−) > 0, plus the point −∞ if c(−∞) > 0,
plus the point +∞ if c(∞) < 1. Of course, D is countable. Define Dx =
D ∩ (−∞, x] and

a(x) = c(−∞) +
∑

y∈Dx

[c(y) − c(y−)] , b(x) = c(x) − a(x)

for x in R. Then, a is an increasing right-continuous function that increases
by jumps only, and b is increasing continuous. Show that a is the distribution
function of the measure

μa(B) = μ(B ∩D) , B ∈ B(R̄),

and b is the distribution function of the measure μb = μ− μa. Note that μa
is purely atomic and μb is diffuse. The random variable X is almost surely
discrete if and only if μ = μa, that is, a = c.

1.18 Quantile functions. Let X be real-valued, let c be its distribution func-
tion. Note that, then, c(−∞) = 0 and c(+∞) = 1. Suppose that c is contin-
uous and strictly increasing, and let q be the functional inverse of c, that is,
q(u) = x if and only if c(x) = u for u in (0, 1). The function q : (0, 1) �→ R

is called the quantile function of X since

P{X ≤ q(u)} = u , u ∈ (0, 1).

Let U be a random variable having the uniform distribution on (0, 1), that
is, the distribution of U is the Lebesgue measure on (0, 1). Show that, then,
the random variable Y = q ◦ U has the same distribution as X . In general,
Y �= X .

1.19 Continuation. This is to re-do the preceding exercise assuming that c :
R �→ [0, 1] is only increasing and right-continuous. Let q : (0, 1) �→ R̄ be the
right-continuous functional inverse of c, that is,

q(u) = inf{x ∈ R : c(x) > u}
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with the usual conventions that inf R = −∞, inf ∅ = +∞. We call q the
quantile function corresponding to c by analogy with the preceding exercise.
Recall from Exercise I.5.13 that q is increasing and right-continuous, and that
c is related to q by the same formula with which q is related to c. Note that
q is real-valued if and only if c(−∞) = 0 and c(+∞) = 1. See also Figure 1.
Show that c(x−) ≤ u if and only if q(u) ≥ x, and, by symmetry, q(u−) ≤ x
if and only if c(x) ≥ u.

1.20 Construction of probability measures on R̄. Let c be a cumulative dis-
tribution function, that is, c : R �→ [0, 1] is increasing and right-continuous.
Let q : (0, 1) �→ R̄ be the corresponding quantile function. Let λ denote the
Lebesgue measure on (0, 1) and put μ = λ ◦ q−1. Show that μ is a proba-
bility measure on R̄. Show that μ is the distribution on R̄ corresponding to
the distribution function c. Thus, to every distribution function c on R there
corresponds a unique probability measure μ on R̄ and vice-versa.

1.21 Construction of random variables. Let μ be a probability measure on R̄.
Then, there exists a probability space (Ω,H,P) and a random variable
X : Ω �→ R̄ such that μ is the distribution of X : Take Ω = (0, 1), H = B(0,1),
P = Leb, and define X(ω) = q(ω) for ω in Ω, where q is the quantile function
corresponding to the measure μ (via the cumulative distribution function).
See Exercise I.5.15 for the extension of this construction to abstract spaces.
This setup is the theoretical basis of Monte-Carlo studies.

1.22 Supplement on quantiles. Literature contains definitions similar to that
in 1.19 for q, but with slight differences, one of the popular ones being

p(u) = inf{x ∈ R : c(x) ≥ u} , u ∈ (0, 1).

Some people prefer supremums, but there is nothing different, since q(u) =
sup{x : c(x) ≤ u} and p(u) = sup{x : c(x) < u}. In fact, there is close
relationship between p and q: we have p(u) = q(u−) = limv↗u q(v). The
function q is right-continuous, whereas p is left-continuous. We prefer q over
p, because q and c are functional inverses of each other. Incidentally, in the
constructions of 1.20 and 1.21 above, the minor difference between p and q
proves unimportant: Since q is increasing and right-continuous, p(u) = q(u−)
differs from q(u) for at most countably many u; therefore, Leb{u : p(u) �=
q(u)} = 0 and, hence, λ◦q−1 = λ◦p−1 with λ =Leb on (0, 1).

2 Expectations

Throughout this section (Ω,H,P) is a probability space and all random
variables are defined on Ω and take values in R̄, unless stated otherwise.

Let X be a random variable. Since it is H-measurable, its integral with
respect to the measure P makes sense to talk about. That integral is called
the expected value of X and is denoted by any of the following
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10

EX

PX

X

Figure 2: The integral PX is the area under X , the expected value EX is the
constant “closest” to X .

EX =
ˆ

Ω

P(dω) X(ω) =
ˆ

Ω

X dP = PX.2.1

The expected value EX exists if and only if the integral does, that is, if and
only if we do not have EX+ = EX− = +∞. Of course, EX exists whenever
X ≥ 0, and EX exists and is finite if X is bounded.

We shall treat E as an operator, the expectation operator corresponding
to P, and call EX the expectation of X from time to time. The change in
notation serves to highlight the important change in our interpretation of
EX : The integral PX is the “area under the function” X in a generalized
sense. The expectation EX is the “weighted average of the values” of X , the
weight distribution being specified by P, the total weight being P(Ω) = 1.
See Figure 2 above for the distinction.

Except for this slight change in notation, all the conventions and notations
of integration are carried over to expectations. In particular, X is said to be
integrable if EX exists and is finite. The integral of X over an event H
is EX1H . As before with integrals, we shall state most results for positive
random variables, because expectations exist always for such, and because
the extensions to arbitrary random variables are generally obvious.

Properties of expectation

The following is a rapid summary of the main results on integrals stated
in probabilistic terms. Here, X,Y , etc. are random variables taking values in
R̄, and a, b, etc. are positive constants.

2.2 Positivity: X ≥ 0 ⇒ EX ≥ 0 .

Monotonicity: X ≥ Y ≥ 0 ⇒ EX ≥ EY .

Linearity: X,Y ≥ 0 ⇒ E(aX + bY ) = aEX + bEY .
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Insensitivity: X,Y ≥ 0, X = Y almost surely ⇒ EX = EY .

Monotone convergence: Xn ≥ 0, Xn ↗ X ⇒ EXn ↗ EX
Xn ≥ 0, ⇒ E

∑
Xn =

∑
EXn .

Fatou’s Lemma: Xn ≥ 0 ⇒ E lim infXn ≤ lim inf EXn .

Dominated convergence: |Xn| ≤ Y, Y integrable, limXn exists
⇒ E limXn = lim EXn .

Bounded convergence: |Xn| ≤ b, b <∞, limXn exists
⇒ E limXn = lim EXn .

2.3 Remarks. a) Positivity can be added to: for X ≥ 0, we have
EX = 0 if and only if X = 0 almost surely.

b) Monotonicity can be extended: if X ≥ Y , then E X ≥ E Y provided
that both E X and E Y exist (infinite values are allowed); if X ≥ Y and either
EX or EY is finite, then both EX and EY exist and EX ≥ EY .

c) Insensitivity can be extended likewise: if X = Y almost surely and
either EX or EY exists, then so is the other and EX = EY .

d) The preceding two remarks have a useful partial converse: If
E X1H ≥ E Y 1H for every event H , then X ≥ Y almost surely. To show
this, we use the remark above on monotonicity and the assumed inequality
with H = {X < q < r < Y }, where q and r are rational numbers with q < r.
This yields

qP(H) = E q1H ≥ E X1H ≥ E Y 1H ≥ E r1H = rP(H),

which is possible with q < r only if P(H) = 0. Hence, the event {Y > X} has
probability zero, via Boole’s inequality, since it is the union of events like H
over all rationals q and r with q < r.

e) Convergence theorems have various generalizations along the lines
indicated for integrals. For example, an easy consequence of the monotone
convergence theorem is that if Xn ≤ Y for all n for some integrable Y , and
if Xn ↘ X , then EXn ↘ EX .

f) Convergence theorems have almost sure versions similar to almost
everywhere versions with integrals.

g) If a mapping X : Ω �→ R̄ is equal to a random variable Y almost
surely, and even if X(ω) is specified only for almost every ω, the expected
value of X is defined to be EY .

Expectations and integrals

The following relates expectations, which are integrals with respect to P,
to integrals with respect to distributions. This is the work horse of computa-
tions. Recall that E+ is the collection of all positive E-measurable functions
(from E into R̄+).
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2.4 Theorem. Let X be a random variable taking values in some mea-
surable space (E,E). If μ is the distribution of X, then

E f ◦X = μf2.5

for every f in E+. Conversely, if 2.5 holds for some measure μ and all f in
E+, then μ is the distribution of X.

Proof. The first statement is a re-phrasing of Theorem I.5.2 on integration
with respect to image measures: if μ = P◦X−1, then μf = P(f◦X) = E f◦X
at least for f in E+. Conversely, if 2.5 holds for all f in E+, taking f = 1A in
particular, we see that

μ(A) = μ 1A = E 1A ◦X = P{X ∈ A},
that is, μ is the distribution of X . �

In the preceding theorem, the restriction to positive f is for reasons of
convenience. For f in E, the formula 2.5 holds for f+ and f− respectively,
and hence for f , provided that either the expectation E f ◦X or the integral
μf exists (then so does the other). The converse statement is useful for figur-
ing out the distribution of X in cases where X is a known function of other
random variables whose joint distribution is known. In such cases, it encom-
passes the formula 1.6 and is more intuitive; we shall see several illustrations
of its use below.

Obviously, for a measure μ to be the distribution of X it is sufficient to
have 2.5 hold for all f having the form f = 1A with A in E, or with A in
some p-system generating E. When E is a metrizable topological space and
E = B(E), it is also sufficient to have 2.5 hold for all f that are bounded,
positive, and continuous; see Exercise 2.36 in this connection.

Means, variances, Laplace and Fourier transforms

Certain expected values have special names. Let X be a random variable
taking values in R̄ and having the distribution μ. The expected value of the
nth power of X , namely EXn, is called the nth moment of X . In particular,
EX is also called the mean of X . Assuming that the mean is finite (that is,
X is integrable), say EX = a, the nth moment of X − a is called the nth

centered moment of X . In particular, E(X − a)2 is called the variance of X ,
and we shall denote it by VarX ; note that

Var X = E (X − a)2 = EX2 − (EX)2,2.6

assuming of course that a = EX is finite.
Assuming that X is positive, for r in R+, the random variable e−rX takes

values in the interval [0, 1], and its expectation

μ̂r = E e−rX =
ˆ

R+

μ(dx) e−rx2.7
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is a number in [0, 1]. The resulting function r �→ μ̂r from R+ into [0, 1] is called
the Laplace transform of the distribution μ, and by an abuse of language, also
the Laplace transform of X .

It can be shown that the Laplace transform determines the distribution:
if μ and ν are distributions on R̄+, and μ̂r = ν̂r for all r in R+, then μ = ν:
see Exercise 2.36 below.

Suppose that X is real-valued, that is, X takes values in R. For r in R,
eirX = cos rX+i sin rX is a complex-valued random variable (here i =

√−1),
and the notion of expected value extends to it naturally:

μ̂r = E eirX =
ˆ

R

μ(dx) eirx =
ˆ

R

μ(dx) cos rx + i

ˆ
R

μ(dx) sin rx.2.8

The resulting complex-valued function r �→ μ̂r from R into the complex plane
is called the Fourier transform of the distribution μ, or the characteristic
function of the random variable X . As with Laplace transforms, the Fourier
transform determines the distribution.

Finally, if X takes values in N̄ = {0, 1, . . . ,+∞}, then

E zX =
∞∑

n=0

zn P{X = n} , z ∈ [0, 1],2.9

defines a function from [0, 1] into [0, 1] which is called the generating function
of X . It determines the distribution of X : in a power series expansion of it,
the coefficient of zn is P{X = n} for each n in N.

Examples

2.10 Gamma distribution. Fix a > 0 and c > 0, and let γa,c be the gamma
distribution with shape index a and scale parameter c; see Example 1.13. Let
X have γa,c as its distribution. Then, X has finite moments of all orders.
Indeed, for every p in R+,

E Xp =
ˆ ∞

0

γa,c(dx) xp =
ˆ ∞

0

dx
ca xa−1 e−cx

Γ(a)
xp

=
Γ(a+ p)
cp Γ(a)

ˆ ∞

0

dx
ca+p xa+p−1 e−cx

Γ(a+ p)
=

Γ(a+ p)
Γ(a)

c−p,

since the last integral is γa+p,c(R+) = 1. Finally, to explain the term “scale
parameter” for c, we show that cX has the standard gamma distribution
with shape index a (to understand the term “shape index” draw the density
function of γa for a < 1, a = 1, a > 1). To this end, we use Theorem 2.4. Let
f be a positive Borel function on R+. Then,

Ef(cX) =
ˆ ∞

0

dx
ca xa−1 e−cx

Γ(a)
f(cx) =

ˆ ∞

0

dy
ya−1 e−y

Γ(a)
f(y),

which means that cX has the distribution γa, the standard gamma with
shape index a.
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2.11 Gamma and gamma and beta. Let X and Y be as in Example 1.15,
that is, X and Y are independent, X has the standard gamma distribution
γa with shape index a, and Y has the standard gamma distribution γb with
shape index b. We now show that

a) X + Y has the standard gamma distribution γa+b,
b) X/(X + Y ) has the distribution

βa,b(du) = du
Γ(a+ b)
Γ(a)Γ(b)

ua−1 (1 − u)b−1 , 0 < u < 1,

which is called the beta distribution with index pair (a, b), and
c) X + Y and X/(X + Y ) are independent, that is, their joint distri-

bution π is the product measure γa+b × βa,b.

We show all this by using the method of Theorem 2.4. Let f be a positive
Borel function on R+ × [0, 1] and consider the integral πf :

πf = E f(X + Y,
X

X + Y
)

=
ˆ ∞

0

dx
xa−1 e−x

Γ(a)

ˆ ∞

0

dy
yb−1 e−y

Γ(b)
f(x+ y,

x

x+ y
)

=
ˆ ∞

0

dz

ˆ 1

0

du
za+b−1 e−z

Γ(a) Γ(b)
ua−1 (1 − u)b−1 f(z, u),

where the last line is obtained by replacing x with uz and y with (1−u)z, and
noting that the Jacobian of the transformation is equal to z. There remains
to note that the last expression is equal to (γa+b × βa,b)f , which proves all
three claims together.

2.12 Laplace transforms and distributions and Pareto. Let X be a random
variable taking values in R+. Then, the Laplace transform r �→ E e−rX is a
decreasing continuous function on R+ with value 1 at r = 0. Hence, there is
a positive random variable R such that

P{R > r} = E e−rX , r ∈ R+.

We now show that, in fact, we may take

R = Y/X,

where Y is independent of X and has the standard exponential distribution:
Letting μ denote the distribution of X , for r in R+,

P{R > r} = P{Y > rX}
=
ˆ

R+

μ(dx)
ˆ

R+

dy e−y 1(rx,∞)(y)

=
ˆ

R+

μ(dx) e−rx = E e−rX
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as was to be shown. In particular, if X has the gamma distribution with
shape index a and scale c, then

P{R > r} = E e−rX =
(

c

c+ r

)a
, r ∈ R+,

according to the Laplace transform computation above in 2.11. Then, R is
said to have the Pareto distribution with shape index a and scale parameter c.
Since R = Y/X and X is “small” in the sense that all its moments are finite,
R should be big in the sense that its distribution should have a heavy tail.

Exercises and complements

Some of these are re-statements of results on integrals served up in proba-
bilistic terms. Some are elementary facts that are worth recalling. And some
are useful complements. Throughout, X , Y , etc. are random variables.

2.13 Finiteness. If X ≥ 0 and EX < ∞, then X < ∞ almost surely. More
generally, if X is integrable then it is real-valued almost surely. Show.

2.14 Moments of positive variables. If X ≥ 0, then for every p in R+,

EXp =
ˆ ∞

0

dx p xp−1
P{X > x}.

Show this, using Fubini’s theorem with the product measure P × Leb, after
noting that

Xp(ω) =
ˆ X(ω)

0

dx pxp−1 =
ˆ ∞

0

dx pxp−1 1{X>x}(ω).

In particular, if X takes values in N̄ = {0, 1, . . . ,+∞}, then

EX =
∞∑

n=0

P{X > n}, EX2 = 2
∞∑

n=0

n P{X > n} + E X.

2.15 Optimality of EX . Define

f(a) =
ˆ

Ω

P(dω) (X(ω) − a)2, a ∈ R,

that is, f(a) is the “weighted sum of errors squared” if X is estimated to be
the constant a. Show that f is minimized by a = EX and that the minimum
value is Var X .

2.16 Variance. Suppose that X is integrable. Show that, for a and b in R,

Var (a+ bX) = b2Var X.
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2.17 Markov’s inequality. For X ≥ 0,

P{X > b} ≤ 1
b

EX

for every b > 0. Show this by noting that X ≥ b 1{X>b}.

2.18 Chebyshev’s inequality. Suppose thatX has finite mean. Apply Markov’s
inequality to (X − EX)2 to show that

P{|X − EX | > ε} ≤ 1
ε2

Var X, ε > 0.

2.19 Markov’s inequality generalized. Let X be real-valued. Let f : R �→ R+

be increasing. Show that, for every b in R,

P{X > b} ≤ 1
f(b)

E f ◦X.

2.20 Jensen’s inequality. Let X have finite mean. Let f be a convex function
on R, that is, f = sup fn for some sequence of functions fn having the form
fn(x) = an + bnx. Show that

E f(X) ≥ f(EX).

2.21 Gamma distribution. This is to generalize Example 2.12 slightly by the
use of the remark on “scale parameter” in Example 2.10. Let X and Y be
independent, let X have distribution γa,c and Y the distribution γb,c. Then,
show that, X + Y has the distribution γa+b,c, and X/(X + Y ) has the same
old distribution βa,b, and the two random variables are independent.

2.22 Gaussian variables. Show that X has the Gaussian distribution with
mean a and variance b if and only if X = a+

√
bZ for some random variable

Z that has the standard Gaussian distribution. Show that

E Z = 0, Var Z = 1, E eirZ = e−r
2/2,

E X = a, Var X = b, E eirX = eira−r
2b/2.

2.23 Gamma-Gaussian connection. a) Let Z have the Gaussian distribution
with mean 0 and variance b. Show that, then, X = Z2 has the gamma
distribution with shape index a = 1/2 and scale parameter c = 1/2b. Hint:
Compute E f◦X = E g◦Z with g(z) = f(z2) and use Theorem 2.4 to identify
the result.

b) Let Z1, . . . , Zn be independent standard Gaussian variables. Show
that the sum of their squares has the gamma distribution with shape index
n/2 and scale 1/2.
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2.24 Uniform distribution. Let a < b be real numbers. Uniform distribution
on (a, b) is the Lebesgue measure on (a, b) normalized to have mass one,
that is, 1

b−aLeb. The standard case is where a = 0 and b = 1. Since the
Lebesgue measure puts no mass at points, the uniform distribution on [a, b]
is practically the same as that on (a, b). Let U have the standard uniform
distribution on (0, 1); let q be a quantile function. Then q◦U is a random
variable having q as its quantile function.

2.25 Uniform and exponential. Let U have the uniform distribution on (0, 1).
Let X = −1

c
logU . Show that X has the exponential distribution with scale

parameter c.

2.26 Exponential-Gaussian-Uniform. Let U and V be independent and uni-
formly distributed on (0, 1). Let R =

√−2 logU , so that R2 has the ex-
ponential distribution with scale parameter 1/2, that is, R2 has the same
distribution as the sum of the squares of two independent standard Gaussian
variables.Define

X = R cos 2πV, Y = R sin 2πV.

Show that X and Y are independent standard Gaussian variables. Show that,
conversely, if X and Y are independent standard Gaussian variables, then the
polar coordinates R and A of the random point (X,Y ) in R

2 are independent,
R2 has the exponential distribution with scale parameter 1/2, and A has the
uniform distribution on [0, 2π].

2.27 Cauchy distribution. Let X and Y be independent standard Gaussian
variables. Show that the distribution μ of Z = X/Y has the form

μ(dz) = dz
1

π(1 + z2)
, z ∈ R.

It is called the Cauchy distribution. Note that, if a random variable Z has the
Cauchy distribution, then so does 1/Z. Also, show that, if A has the uniform
distribution on (0, 2π), then tanA and cotA are both Cauchy distributed.

2.28 Sums and transforms. Let X and Y be independent positive random
variables. Show that the Laplace transform for X + Y is the product of the
Laplace transforms forX and Y . Since the Laplace transform of a distribution
determines the distribution, this specifies the distribution of X + Y , at least
in principle. When X and Y are real-valued (instead of being positive), the
same statements hold for characteristic functions.

2.29 Characteristic functions. Let X and Y be independent gamma dis-
tributed random variables with respective shape indices a and b, and the
same scale parameter c. Compute the characteristic functions of X , Y , X+Y ,
X−Y . Note, in particular, that X+Y has the gamma distribution with shape
index a+ b and scale c.
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2.30 Gaussian with gamma variance. Let X and Y be independent, X having
the gamma distribution γa,c (with shape index a and scale parameter c),
and Y having the standard Gaussian distribution. Recall that

√
bY has the

Gaussian distribution with mean 0 and variance b > 0. We now replace b
with X : let Z =

√
X Y . Show that

E eirZ = E e−r
2X/2 =

(
2c

2c+ r2

)a
, r ∈ R.

Let U and V be independent with the distribution γa,√2c for both. Show that

E eir(U−V ) = E eirZ , r ∈ R.

Conclude that
√
X Y has the same distribution as U−V . (Was the attentive

reader able to compute the density in Example 1.16? Can he do it now?)

2.31 Laplace transforms and finiteness. Recall that 0 · x = 0 for all x ∈ R

and for x = +∞. Thus, if μ̂r = E e−rX for some positive random variable
X , then μ̂0 = 1. Show that r �→ μ̂r is continuous and decreasing on (0,∞).
Its continuity at 0 depends on whether X is almost surely finite: show that

lim
r↓0

μ̂r = P{X < +∞}.

Hint: For r > 0, e−rX = e−rX1{X<∞} ↗ 1{X<∞} as r ↓ 0.

2.32 Laplace transforms and moments. Let r �→ μ̂r be the Laplace trans-
form for a positive and almost surely finite random variable X . Use Fubini’s
theorem for the product measure P×Leb to show that

ˆ ∞

r

dq E Xe−qX = μ̂r, r ∈ R+.

This shows, when EX is finite, that the Laplace transform μ̂ is differentiable
on R

∗
+ = (0,∞), and

d

dr
μ̂r = −E Xe−rX, r ∈ R

∗
+;

in particular, then, the dominated convergence theorem yields

lim
r↓0

d

dr
μ̂r = −EX.

A similar result holds for higher moments: if EXn <∞,

lim
r↓0

dn

drn
μ̂r = (−1)n EXn.
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2.33 Characteristic functions and moments. Let μ̂ be the characteristic
function of a real-valued random variable X . Then, similar to the results of
2.32,

lim
r→0

dn

drn
μ̂r = in EXn, n ∈ N,

provided thatXn be integrable, that is, provided that E |X |n <∞. Generally,
the equality above fails when E |X |n = ∞. However, for n even, if the limit
on the left is finite, then the equality holds.

2.34 Uniqueness of distributions and Laplace transforms. Let X and Y be
positive random variables. Show that the following are equivalent:

a) X and Y have the same distribution.
b) E e−rX = E e−rY for every r in R+.
c) E f ◦X = E f ◦Y for every f bounded continuous.
d) E f ◦X = E f ◦Y for every f bounded Borel.
e) E f ◦X = E f ◦Y for every f positive Borel.

Hint: Show that (a) ⇒ (b) ⇒ (c) ⇒ (a) ⇐⇒ (e) ⇐⇒ (d). The difficult
parts are (b) ⇒ (c) and (c) ⇒ (a). For (c) ⇒ (a), start by showing that the
indicator of an open interval is the limit of an increasing sequence of bounded
continuous functions, and use the fact that open intervals form a p-system
that generates the Borel σ-algebra on R. For showing (b) ⇒ (c), it is useful
to recall the following consequence of the Stone-Weierstrass theorem: Let F
be the collection of all functions f on R̄+ having the form

f(x) =
n∑

i=1

cie
−rix

for some integer n ≥ 1, constants c1, . . . , cn in R, and constants r1, . . . , rn in
R+. For every continuous function f on an interval [a, b] of R+ there exists a
sequence in F that converges to f uniformly on [a, b].

2.35 Uniqueness and characteristic functions. Let X and Y be real-valued
random variables. The statements (a)-(e) in the preceding exercise remain
equivalent, except that (b) should be replaced with

b’) E eirX = E eirY for every r in R.

2.36 Random vectors. Let X = (X1, . . . , Xd) be a random variable taking
values in R

d, here d ≥ 1 is an integer. The expected value of X is defined to
be the vector

EX = (EX1, . . . ,EXd).

The characteristic function of X is defined to be

E eir·X , r ∈ R
d,



68 Probability Spaces Chap. 2

where r · x = r1x1 + · · · + rdxd, the inner product of r and x. When the
components Xi are positive, Laplace transform of the distribution of X is
defined similarly: E e−r·X , r ∈ R

d
+. As in the one-dimensional case, the

characteristic function determines the distribution of X , and similarly for
the Laplace transform. The equivalences in Exercises 2.34 and 2.35 remain
true with the obvious modifications: in 2.34(b) and 2.35(b’), r should be in
R
d
+ and R

d respectively, and the functions alluded to should be defined on
R
d
+ and R

d respectively.

2.37 Covariance. Let X and Y be real-valued random variables with finite
variances. Then, their covariance is defined to be

Cov(X,Y ) = E (X − EX)(Y − EY ) = E XY − EX EY,

which is well-defined, is finite, and is bounded in absolute value by
√

Var X√
Var Y ; see Schwartz inequality in the next section. Show that

Var(X + Y ) = Var X + Var Y + 2Cov(X,Y ). If X and Y are indepen-
dent, then Cov(X,Y ) = 0. The converse is generally false.

2.38 Orthogonality. Let X and Y be as in 2.37 above. They are said to be
orthogonal, or uncorrelated, if E XY = EX EY . So, orthogonality is the
same as having vanishing covariance. Show that, if X1, . . . , Xn are pairwise
orthogonal, that is, Xi and Xj are orthogonal for i �= j, then

Var(X1 + · · · +Xn) = Var X1 + · · · + Var Xn.

2.39 Multi-dimensional Gaussian vectors. Let X be a d-dimensional random
vector; see 2.36 above. It is said to be Gaussian if r ·X = r1X1 + · · ·+ rdXd

has a Gaussian distribution for every vector r in R
d. It follows that the

characteristic function of X has the form

E eir·X = eia(r)−b(r)/2, r ∈ R
d,

where a(r) = E r ·X and b(r) = Var r ·X . Let

a = (a1, . . . , ad) = (E X1, . . . ,E Xd) = E X,

and let v = (vij) be the d× d matrix of covariances vij = Cov(Xi, Xj). Note
that the diagonal entries are variances.

a) Show that a(r) = a · r and b(r) = r · vr where vr is the vector
obtained when v is multiplied by the column vector r. Conclude that the
distribution of a Gaussian vector X is determined by its mean vector a and
covariance matrix v.

b) Show that v is necessarily symmetric and positive definite, that is,
vij = vji for all i and j, and

r · vr =
d∑

i=1

d∑

j=1

rivijrj ≥ 0

for every r in R
d.
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2.40 Independence. Let X be a Gaussian random vector in R
d with mean

vector a and covariance matrix v. Show that Xi and Xj are independent
if and only if vij = 0. More generally, if I and J are disjoint subsets of
{1, . . . , d}, the random vectors (Xi)i∈I and (Xj)j∈J are independent if and
only if vij = 0 for every pair (i, j) in I × J . Show.

2.41 Gaussian distribution. Let X be a Gaussian vector in R
d with mean a

and covariance matrix v. Then, its characteristic function is given by

E eir·X = eia·r−(r·vr)/2, r ∈ R
d.

If v is invertible, that is, if the rank of v is d, the distribution μ of X is
absolutely continuous with respect to the Lebesgue measure on R

d, and the
corresponding density function is

1√
det(2πv)

exp[−1
2
(x− a) · v−1(x− a)], x ∈ R

d,

where v−1 is the inverse of v and detm is the determinant of m; note that
det(2πv) = (2π)d det v.

If v is singular, that is, if the rank d′ of v is less than d, then at least one
entry of the vector X is a linear combination of the other entries. In that
case, the distribution μ is no longer absolutely continuous with respect to
the Lebesgue measure on R

d. Instead, μ puts its mass on some hyperplane
of dimension d′ in R

d.

2.42 Continuation. Let Z1 and Z2 be independent standard Gaussian vari-
ables (with means 0 and variances 1). Define a random vector X in R

3 by
letting X = cZ, where

X =

⎡

⎣
X1

X2

X3

⎤

⎦ , c =

⎡

⎣
1 2
−1 3
4 1

⎤

⎦ , Z =
[
Z1

Z2

]

Each Xi is a linear combination of Z1 and Z2, therefore every linear com-
bination of X1, X2, X3 is also a linear combination of Z1, Z2. So, X is a
3-dimensional Gaussian random vector. Show that its covariance matrix is
v = ccT , where cT is the transpose of c, that is, vij =

∑2
k=1 cikcjk. Show that

X3 is a linear combination of X1 and X2. Show that Z1 and Z2 are linear
combinations of X1 and X2; find the coefficients involved.

2.43 Representation of Gaussian vectors. Every Gaussian random vector X
in R

d has the form
X = a+ cZ,

where a is in R
d, and c is a d × d′ matrix, and Z is a random vector in

R
d′ whose coordinates are independent one-dimensional standard Gaussian

variables. Then, X has mean a and covariance matrix v = ccT .
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3 Lp
-spaces and Uniform Integrability

Let (Ω,H,P) be a probability space. Let X be a real-valued random vari-
able. For p in [1,∞), define

‖X‖p = (E |X |p)1/p,3.1

and for p = ∞ let

‖X‖∞ = inf{b ∈ R+ : |X | ≤ b almost surely}.3.2

It is easy to see that

‖X‖p = 0 ⇒ X = 0 almost surely,3.3

‖cX‖p = c ‖X‖p , c ≥ 0;3.4

and it will follow from Theorem 3.6a below with Y = 1 that

0 ≤ ‖X‖p ≤ ‖X‖q ≤ +∞ if 1 ≤ p ≤ q ≤ +∞.3.5

For each p in [1,∞], let Lp denote the collection of all real-valued random
variables X with ‖X‖p < ∞. For p in [1,∞), X is in Lp if and only if |X |p
is integrable; and X is in L∞ if and only if X is almost surely bounded. For
X in Lp, the number ‖X‖p is called the Lp-norm of X ; in particular, ‖X‖∞
is called the essential supremum of X . Indeed, the properties 3.4 and 3.5
together with Minkowski’s inequality below imply that each Lp is a normed
vector space provided that we identify X and Y in Lp as one random variable
if X = Y almost surely.

Inequalities

The following theorem summarizes the various connections. Its proof will
be put after a lemma of independent interest.

3.6 Theorem. a) Hölder’s inequality: For p, q, r in [1,∞) with
1
p

+ 1
q

= 1
r
,

‖XY ‖r ≤ ‖X‖p ‖Y ‖q.
In particular, Schwartz’s inequality holds: ‖XY ‖1 ≤ ‖X‖2 ‖Y ‖2.

b) Minkowski’s inequality: For p in [1,∞],

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p
3.7 Lemma. Jensen’s inequality. Let D be a convex domain in R

d. Let f :
D �→ R be continuous and concave. Suppose that X1, . . . , Xd are integrable
random variables and that the vector (X1, . . . , Xd) belongs to D almost surely.
Then,

E f(X1, . . . , Xd) ≤ f(EX1, . . .EXd).
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Proof. Since D is convex and X = (X1, . . . , Xd) is in D almost surely, the
vector a = EX = (EX1, . . .EXd) belongs to D. Let c1, . . . , cd be the direction
cosines of a hyperplane in R

d+1 lying above the surface f and passing through
the point (a, f(a)) in R

d × R. Then,

f(x) ≤ f(a) +
d∑

1

(xi − ai) ci x ∈ D.

Replacing x with X and taking expectations yields the desired result. �

In preparation for the proof of Theorem 3.6, we leave it as an exercise to
show that, for b in (0, 1],

f(u, v) = ub v1−b, g(u, v) = (ub + vb)
1
b3.8

define functions that are continuous and concave on R
2
+. Thus, by the pre-

ceding lemma,

EU bV 1−b ≤ (EU)b (EV )1−b, E (U b + V b)
1
b ≤ [(EU)b + (EV )b]

1
b ,3.9

provided that U and V be positive integrable random variables.

Proof of Theorem 3.6

a) Hölder’s inequality. Assume that ‖X‖p and ‖Y ‖q are finite; other-
wise, there is nothing to prove. When p = ∞, we have |XY | ≤ ‖X‖p |Y |
almost surely, and hence the inequality is immediate; similarly for q = ∞.
Assuming that p and q are both finite, the inequality desired follows from
the first inequality in 3.9 with b = r

p
, U = |X |p, V = |Y |q.

b) Minkowski’s inequality. Again, assume that ‖X‖p and ‖Y ‖p are fi-
nite. If p = ∞, the inequality is immediate from the definition 3.2 (and in
fact, becomes an equality). For p in [1,∞), the inequality follows from the
second inequality in 3.9 with b = 1

p
, U = |X |p, V = |Y |p. �

Uniform integrability

This concept plays an important role in martingale theory and in the
convergence of sequences in the space L1. We start by illustrating the issue
involved in the simplest setting.

3.10 Lemma. Let X be a real-valued random variable. Then, X is inte-
grable if and only if

lim
b→∞

E |X | 1{|X|>b} = 0.3.11
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Proof. Let Zb denote the variable inside the expectation in 3.11. Note
that it is dominated by |X | and goes to 0 as b → ∞. Thus, if X is inte-
grable, the dominated convergence yields that limb→∞ E Zb = 0, which
is exactly 3.11. Conversely, if 3.11 holds, then we can choose b large
enough to have E Zb ≤ 1, and the inequality |X | ≤ b + Zb shows that
E |X | ≤ b+ 1 <∞. �

For a collection of random variablesX , the uniform integrability of the col-
lection has to do with the possibility of taking the limit in 3.11 uniformly inX :

3.12 Definition. A collection K of real-valued random variables is said
to be uniformly integrable if

k(b) = sup
X∈K

E |X | 1{|X|>b}

goes to 0 as b→ ∞.

3.13 Remarks. a) If K is finite and each X in it is integrable, then
K is uniformly integrable. For, then, the limit over b, of k(b), can be passed
inside the supremum, and Lemma 3.10 does the rest.

b) If K is dominated by an integrable random variable Z, then it is
uniformly integrable. Because, then, |X | ≤ Z for every X in K, which yields
k(b) ≤ E Z 1{Z>b}, and that last expectation goes to 0 by Lemma 3.10
applied to Z.

c) Uniform integrability implies L1-boundedness, that is, if K is uni-
formly integrable then K ⊂ L1 and

k(0) = sup
K

E |X | <∞.

To see this, note that E |X | ≤ b + k(b) for all X and use the uniform inte-
grability of K to choose a finite number b such that k(b) ≤ 1.

d) But L1-boundedness is insufficient for uniform integrability. Here
is a sequence K = {Xn : n ≥ 1} that is L1-bounded but not uniformly
integrable. Suppose that Ω = (0, 1) with its Borel σ-algebra for events and
the Lebesgue measure as P. Let Xn(ω) be equal to n if ω ≤ 1/n and to 0
otherwise. Then, E Xn = 1 for all n, that is, K is L1-bounded. But k(b) = 1
for all b, since E Xn 1{Xn>b} = E Xn = 1 for n > b.

e) However, if K is Lp-bounded for some p > 1 then it is uniformly
integrable. This will be shown below: see Proposition 3.17 and take f(x) = xp.

The following ε-δ characterization is the main result on uniform integra-
bility: over every small set, the integrals of the X are uniformly small.

3.14 Theorem. The collection K is uniformly integrable if and only if it
is L1-bounded and for every ε > 0 there is δ > 0 such that, for every event H,

P(H) ≤ δ ⇒ sup
X∈K

E |X | 1H ≤ ε.3.15
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Proof. We assume that all X are positive; this amounts to working with
|X | throughout. Since X 1H ≤ b 1H +X 1{X>b} for every event H and every
b in R+,

sup
X∈K

E X 1H ≤ bP(H) + k(b), b ∈ R+.3.16

Suppose that K is uniformly integrable. Then, it is L1-bounded by Remark
3.13c. Also, since k(b) → 0, for every ε > 0 there is b < ∞ such that
k(b) ≤ ε/2, and setting δ = ε/2b we see that 3.15 holds in view of 3.16.

Conversely, suppose that K is L1-bounded and that for every ε > 0 there
is δ > 0 such that 3.15 holds for all events H . Then, Markov’s inequality 2.17
yields

sup
X∈K

P{X > b} ≤ 1
b

sup
X∈K

E X =
1
b
k(0),

which shows the existence of b such that P{X > b} ≤ δ for all X , and, then,
for that b we have k(b) ≤ ε in view of 3.15 used with H = {X > b}. In
other words, for every ε > 0 there is b < ∞ such that k(b) ≤ ε, which is the
definition of uniform integrability. �

The following proposition is very useful for showing uniform integrability.
In particular, as remarked earlier, it shows that Lp-boundedness for some
p > 1 implies uniform integrability.

3.17 Proposition. Suppose that there is a positive Borel function f on
R+ such that limx→∞ f(x)/x = ∞ and

sup
X∈K

E f ◦|X | <∞.3.18

Then, K is uniformly integrable.

Proof. We may and do assume that all X are positive. Also, by replacing
f with f ∨ 1 if necessary, we assume that f ≥ 1 in addition to satisfying the
stated conditions. Let g(x) = x/f(x) and note that

X 1{X>b} = f ◦X g◦X 1{X>b} ≤ f ◦X sup
x>b

g(x).

This shows that, with c denoting the supremum in 3.18,

k(b) ≤ c sup
x>b

g(x),

and the right side goes to 0 as b→ ∞ since g(x) → 0 as x→ +∞. �

We supplement the preceding proposition by a converse and give another
characterization.
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3.19 Theorem. The following are equivalent:

a) K is uniformly integrable.
b) h(b) = supK

´∞
b
dy P{|X | > y} → 0 as b→ ∞.

c) supK E f ◦|X | < ∞ for some increasing convex function f on R+

with limx→∞ f(x)/x = +∞.

Proof. The preceding proposition shows that (c) ⇒ (a). We now show
that (a) ⇒ (b) ⇒ (c), again assuming, as we may, that all the X in K are
positive.

Assume (a). For every X in K,

E X 1{X>b} =
ˆ ∞

0

dy P{X 1{X>b} > y}

=
ˆ ∞

0

dy P{X > b ∨ y} ≥
ˆ ∞

b

dy P{X > y}.

Thus, k(b) ≥ h(b) for every b, and the uniform integrability of K means that
k(b) → 0 as b→ ∞. Hence, (a) ⇒ (b).

Assume (b). Since h(b) → 0 as b→ ∞, we can pick 0 = b0 < b1 < b2 < · · ·
increasing to +∞ such that

h(bn) ≤ h(0)/2n, n ∈ N;

note that h(0) is finite since h(0) ≤ b + h(b) and h(b) can be made as small
as desired. Define

g(x) =
∞∑

n=0

1[bn,∞)(x), f(x) =
ˆ x

0

dy g(y), x ∈ R+.

Note that g ≥ 1 and is increasing toward +∞, which implies that f is in-
creasing and convex and limx→∞ f(x)/x = +∞. Now,

E f ◦X = E

ˆ X

0

dy g(y)

=
∞∑

n=0

E

ˆ ∞

bn

dy 1{X>y} ≤
∞∑

n=0

h(bn) ≤ 2h(0) < ∞.

This being true for all X in K, we see that (b) ⇒ (c). �

Exercises and complements

3.20 Concavity. Show that the functions f and g defined by 3.8 are con-
tinuous and concave. Hint: Note that f(cu, cv) = c f(u, v) for every c > 0;
conclude that it is sufficient to show that x �→ f(x, 1 − x) from [0, 1] into
R+ is continuous and concave; and show the latter by noting that the second
derivative is negative. Similarly for g.



Sec. 4 Information and Determinability 75

3.21 Continuity of the norms. Fix a random variable X . Define f(p) = ‖X‖p
for p in [1,∞]. Show that the function f is continuous except possibly at one
point p0, where p0 is such that

f(p) <∞ for p < p0 , f(p) = +∞ for p > p0 ,

and f is left-continuous at p0.

3.22 Integrals over small sets. Let X be positive and integrable. Let (Hn) be
a sequence of events. If P(Hn) → 0, then EX1Hn → 0. Show.

3.23 Uniform integrability. Let (Xi) and (Yi) be uniformly integrable. Show
that, then,

a) (Xi ∨ Yi) is uniformly integrable,
b) (Xi + Yi) is uniformly integrable.

3.24 Comparisons. If |Xi| ≤ |Yi| for each i, and (Yi) is uniformly integrable,
then so is (Xi). Show.

4 Information and Determinability

This section is on σ-algebras generated by random variables and measura-
bility with respect to them. Also, we shall argue that such a σ-algebra should
be thought as a body of information, and measurability with respect to it
should be equated to being determined by that information. Throughout,
(Ω,H,P) is a probability space.

Sigma-algebras generated by random variables

Let X be a random variable taking values in some measurable space
(E,E). Then,

σX = X−1E = {X−1A : A ∈ E}4.1

is a σ-algebra (and is a subset of H by the definition of random variables).
It is called the σ-algebra generated by X , and the notation σX is preferred
over the others. Clearly, σX is the smallest σ-algebra G on Ω such that X is
measurable with respect to G and E; see Exercise I.2.20.

Let T be an arbitrary index set, countable or uncountable. For each t in T
let Xt be a random variable taking values in some measurable space (Et,Et).
Then,

σ{Xt : t ∈ T } =
∨

t∈T
σXt4.2

denotes the σ-algebra on Ω generated by the union of the σ-algebras σXt,
t ∈ T ; see Exercise I.1.18. It is called the σ-algebra generated by the collection
{Xt : t ∈ T }. It is the smallest σ-algebra G on Ω such that, for every t in
T , the random variable Xt is measurable with respect to G and Et; obviously,
G ⊂ H.
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In view of Proposition I.6.27, we may regard the collection {Xt :
t ∈ T } as one random variable X taking values in the product space
(E,E)= ⊗t∈T (Et,Et) by defining X(ω) to be the point (Xt(ω))t∈T in the
“function” space E for each ω. Conversely, if X is a random variable taking
values in the product space (E,E), we denote by Xt(ω) the value of the
function X(ω) at the point t in T ; the resulting mapping ω �→ Xt(ω) is
a random variable with values in (Et,Et) and is called the t-coordinate of
X . It will be convenient to write X = (Xt)t∈T and consider X both as
the E-valued random variable and as the collection of random variables Xt,
t ∈ T . This causes no ambiguity for σX :

4.3 Proposition. If X = (Xt)t∈T , then σX = σ{Xt : t ∈ T }.

Proof. Proof is immediate from that of Proposition I.6.27. Let H there be
σX to conclude that σX ⊃ σ{Xt : t ∈ T }, and then let H be σ{Xt : t ∈ T }
to conclude that σ{Xt : t ∈ T } ⊃ σX . �

Measurability

The following theorem is to characterize the σ-algebra σX . It shows that a
random variable is σX-measurable if and only if it is a deterministic measur-
able function ofX . In other words, with the usual identification of a σ-algebra
with the collection of all numerical mappings that are measurable relative to
it, the collection σX of random variables is exactly the set of all measurable
functions of X .

4.4 Theorem. Let X be a random variable taking values in some mea-
surable space (E,E). A mapping V : Ω → R̄ belongs to σX if and only if

V = f ◦X

for some deterministic function f in E.

Proof. Sufficiency. Since X is measurable with respect to σX and E, and
since measurable functions of measurable functions are measurable, every V
having the form f ◦X for some f in E is σX-measurable.

Necessity. Let M be the collection of all V having the form V = f ◦ X
for some f in E. We shall use the monotone class theorem I.2.19 to show
that M ⊃ σX , which is the desired result. We start by showing that M is a
monotone class of functions on Ω.

i) 1 ∈ M since 1 = f ◦X with f(x) = 1 for all x in E.

ii) Let U and V be bounded and in M, and let a and b be in R. Then,
U = f ◦X and V = g ◦X for some f and g in E, and thus, aU + bV = h ◦X
with h = af + bg. Since h ∈ E, it follows that aU + bV ∈ M.
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iii) Let (Vn) ⊂ M+ and Vn ↗ V . For each n, there is fn in E such that
Vn = fn ◦X . Then, f = sup fn belongs to E and since Vn ↗ V ,

V (ω) = sup
n
Vn(ω) = sup

n
fn(X(ω)) = f(X(ω)) , ω ∈ Ω,

which shows that V ∈ M.

Furthermore, M includes every indicator variable in σX : if H ⊂ Ω is in
σX , then H = X−1A for some set A in E, and 1H = 1A ◦X ∈ M. Therefore,
by the monotone class theorem, M contains all positive random variables
in σX .

Finally, let V in σX be arbitary. Then, V + ∈ σX and is positive, and
hence, V + = g ◦X for some g in E; similarly, V − = h ◦X for some h in E.
Thus, V = V + − V − = f ◦X , where

f(x) =
{
g(x) − h(x) if g(x) ∧ h(x) = 0,
0 otherwise.

This completes the proof since f ∈ E. �

4.5 Corollary. For each n in N
∗, let Xn be a random variable taking

values in some measurable space (En,En). A mapping V : Ω �→ R̄ belongs to
σ{Xn : n ∈ N

∗} if and only if

V = f(X1, X2, . . .)

for some f in ⊗nEn.

Proof. Proof is immediate from the preceding theorem upon putting X =
(X1, X2, . . .) and using Proposition 4.3. �

The preceding corollary can be generalized to uncountable collections
{Xt : t ∈ T } by using the same device of regarding the collection as one
random variable. In fact, there is a certain amount of simplification, reflect-
ing the fact that uncountable products of σ-algebras Et, t ∈ T , are in fact
generated by the finite-dimensional rectangles.

4.6 Proposition. Let T be arbitrary. For each t in T , let Xt be a random
variable taking values in some measurable space (Et,Et). Then, V : Ω �→ R̄

belongs to σ{Xt : t ∈ T } if and only if there exists a sequence (tn) in T and
a function f in ⊗nEtn such that

V = f(Xt1 , Xt2 , . . .).4.7

Proof. Sufficiency of the condition is trivial: if V has the form 4.7, then
V ∈ σ{Xtn : n ≥ 1} = Ĝ by the corollary above, and Ĝ ⊂ G = σ{Xt : t ∈ T }
obviously.
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To show the necessity, we use the monotone class theorem I.2.19 together
with Proposition 4.3. To that end, let M be the collection of all V having the
form 4.7 for some sequence (tn) in T and some f in ⊗Etn . It is easy to check
that M is a monotone class. We shall show that M includes the indicators
of a p-system G0 that generates G. Then, by the monotone class theorem, M

includes all positive V in G and, therefore, all V in G since V = V + − V − is
obviously in M if V + and V − are in M. Hence, M ⊃ G as desired.

By Proposition 4.3, G = σX where X = (Xt)t∈T takes values in (E,E)=⊗
(Et,Et). Recall that E is generated by the p-system of all finite-dimensional

measurable rectangles. Therefore, the inverse images X−1A of those rectan-
gles A form a p-system G0 that generates G. Thus, to complete the proof, it
is sufficient to show that the indicator of X−1A = {X ∈ A} belongs to M for
every such rectangle A.

Let A be such a rectangle, that is, A = ×tAt with At = Et for all t
outside a finite subset S of T and At ∈ Et for every t in S (and therefore for
all t in T ). Then,

1{X∈A} = 1A ◦X =
∏

t∈S
1At ◦Xt,

which has the form 4.7, that is, belongs to M. �

Heuristics

Our aim is to use the foregoing to argue that a σ-algebra on Ω is the
mathematically precise equivalent of the everyday term “information”. And,
random quantities that are determined by that information are precisely the
random variables that are measurable with respect to that σ-algebra.

To fix the ideas, consider a random experiment that consists of a sequence
of trials, at each of which there are five possible results labeled a, b, c, d, e.
Each possible outcome of this experiment can be represented by a sequence
ω = (ω1, ω2, . . .) where ωn ∈ E = {a, . . . , e} for each n. The sample space
Ω, then, consists of all such sequences ω. We define X1, X2, . . . to be the
coordinate variables, that is Xn(ω) = ωn for every n and outcome ω. We
let H be the σ-algebra generated by {Xn : n ∈ N

∗}. The probability P is
unimportant for our current purposes and we leave it unspecified.

Consider the information we shall have about this experiment at the end
of the third trial. At that time, whatever the possible outcome ω may be,
we shall know X1(ω), X2(ω), X3(ω), and nothing more. In other words, the
information we shall have will specify the results ω1, ω2, ω3 but nothing more.
Thus, the information we shall have will determine the values V (ω), for every
possible ω, provided that the dependence of V (ω) on ω is through ω1, ω2, ω3,
that is, provided that V = f(X1, X2, X3) for some deterministic function f
on E×E×E. Based on these arguments, we equate “the information available
at the end of third trial” to the σ-algebra G consisting of all such numerical
random variables whose values are determined by that body of information.
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In this case, the information G is generated by {X1, X2, X3} in the sense that
knowing X1, X2, X3 is equivalent to knowing the information G.

Going back to an arbitrary probability space (Ω,H,P) and a sub-σ-algebra
G of H, we may heuristically equate G to the information available to someone
who is able to tell the value V (ω) for every possible ω and every random vari-
able V that is G-measurable. Incidentally, this gives a mathematical definition
for the imprecise everyday term “information”.

Often, there are simpler ways of characterizing the information G. If there
is a random variable X such that the knowledge of its value is sufficient
to determine the values of all the V in G, then we say that X generates
the information G and write G = σX . This is the heuristic content of the
definition of σX .

Of course, embedded in the heuristics is the basic theorem of this section,
Theorem 4.4, which now becomes obvious: if the information G consists of the
knowledge of X , then G determines exactly those variables V that are deter-
ministic functions of X . Another result that becomes obvious is Proposition
4.3: in the setting of it, since knowing X is the same as knowing Xt for all t in
T , the information generated by X is the same as the information generated
by Xt, t ∈ T .

Filtrations

Continuing with the heuristics, suppose that we are interested in a random
experiment taking place over an infinite expanse of time. Let T = R+ or
T = N be the time set. For each time t, let Ft be the information gathered
during [0, t] by an observer of the experiment. For s < t, we must have
Fs ⊂ Ft. The family F = {Ft : t ∈ T }, then, depicts the flow of information
as the experiment progresses over time. The following definition formalizes
this concept.

4.8 Definition. Let T be a subset of R. For each t in T , let Ft be a sub-
σ-algebra of H. The family F = {Ft : t ∈ T } is called a filtration provided
that Fs ⊂ Ft for s < t.

In other words, a filtration is an increasing family of sub-σ-algebras of H.
The simplest examples are the filtrations generated by stochastic processes:
If X = {Xt : t ∈ T } is a stochastic process, then putting Ft = σ{Xs : s ≤ t,
s ∈ T } yields a filtration F = {Ft : t ∈ T }. The reader is invited to ponder
the meaning of the next proposition for such a filtration. Of course, the aim
is to approximate eternal variables by random variables that become known
in finite time.

4.9 Proposition. Let F = {Fn : n ∈ N} be a filtration and put F∞ =∨
n∈N

Fn. For each bounded random variable V in F∞ there are bounded
variables Vn in Fn, n ∈ N, such that

lim
n

E |Vn − V | = 0.
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Remark. Note that E|Vn −V | = ‖Vn −V ‖1 in the notation of section 3;
thus, the approximation here is in the sense of L1-space. Also, we may add
to the conclusion that EVn → EV ; this follows from the observation that
|EVn − EV | ≤ E|Vn − V |.

Proof. Let C =
⋃
n Fn. By definition, F∞ = σC. Obviously C is a p-system.

To complete the proof via the monotone class theorem, we start by letting Mb

be the collection of all bounded variables in F∞ having the approximation
property described. It is easy to see that Mb includes constants and is a vector
space over R and includes the indicators of events in C. Thus, Mb will include
all bounded V in F∞ once we check the remaining monotonicity condition.

Let (Uk) ⊂ Mb be positive and increasing to a bounded variable V in F∞.
Then, for each k ≥ 1 there are Uk,n in Fn, n ∈ N, such that E|Uk,n−Uk| → 0
as n → ∞. Put n0 = 0, and for each k ≥ 1 choose nk > nk−1 such that
Ûk = Uk,nk

satisfies

E|Ûk − Uk| < 1
k
.

Moreover, since (Uk) is bounded and converges to V , the bounded conver-
gence implies that E|Uk − V | → 0. Hence,

E |Ûk − V | ≤ E |Ûk − Uk| + E |Uk − V | → 04.10

as k → ∞. With n0 = 0 choose V0 = 0 and put Vn = Ûk for all integers n in
(nk, nk+1]; then, Vn ∈ Fnk

⊂ Fn, and E|Vn − V | → 0 as n → ∞ in view of
4.10. This is what we need to show that V ∈ Mb. �

In the preceding proposition, the Vn are shown to exist but are unspecified.
A very specific version will appear later employing totally new tools; see the
martingale convergence theorems of Chapter V and, in particular, Corollary
V.3.30 there.

Exercises and complements

4.11 p-systems for σX . Let T be an arbitrary index set. Let X = (Xt)t∈T ,
where Xt takes values in (Et,Et) for each t in T . For each t, let Ct be a
p-system that generates Et. Let G0 be the collection of all G ⊂ Ω having the
form

G =
⋂

t∈S
{Xt ∈ At}

for some finite S ⊂ T and At in Ct for every t in S. Show that G0 is a p-system
that generates G = σX .

4.12 Monotone class theorem. This is a generalization of the monotone class
theorem I.2.19. We keep the setting and notations of the preceding exercise.
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Let M be a monotone class of mappings from Ω into R̄. Suppose that M

includes every V : Ω �→ [0, 1] having the form

V =
∏

t∈S
1At◦Xt , S finite, At ∈ Ct for every t in S.

Then, every positive V in σX belongs to M. Prove.

4.13 Special case. In the setting of the exercises above, suppose Et = R and
Et = BR for all t. Let M be a monotone class of mappings from Ω into R̄.
Suppose that M includes every V of the form

V = f1 ◦Xt1 · · · fn ◦Xtn
with n ≥ 1 and t1, . . . , tn in T and f1, . . . , fn bounded continuous functions
from R into R. Then, M contains all positive V in σX . Prove. Hint: Start
by showing that, if A is an open interval of R, then 1A is the limit of an
increasing sequence of bounded continuous functions.

4.14 Determinability. If X and Y are random variables taking values in
(E,E) and (D,D), then we say that X determines Y if Y = f ◦X for some
f : E �→ D measurable with respect to E and D. Then, σX ⊃ σY obviously.
Heuristically,X determines Y if knowingX(ω) is sufficient for knowing Y (ω),
this being true for every possibility ω. To illustrate the notion in a simple
setting, let T be a positive random variable and define a stochastic process
X = (Xt)t∈R+ by setting, for each ω

Xt(ω) =
{

0 if t < T (ω),
1 if t ≥ T (ω).

Show that X and T determine each other. If T represents the time of failure
for a device, then X is the process that indicates whether the device has
failed or not. That X and T determine each other is intuitively obvious, but
the measurability issues cannot be ignored altogether.

4.15 Warning. A slight change in the preceding exercise shows that one
must guard against raw intuition. Let T have a distribution that is absolutely
continuous with respect to the Lebesgue measure on R+; in fact, all we need
is that P{T = t} = 0 for every t in R+. Define

Xt(ω) =
{

1 if t = T (ω)
0 otherwise.

Show that, for each t in R+, the random variable Xt is determined by T .
But, contrary to raw intuition, T is not determined by X = (Xt)t∈R+ . Show
this by following the steps below:

a) For each t, we have Xt = 0 almost surely. Therefore, for every
sequence (tn) in R+, Xt1 = Xt2 = . . . = 0 almost surely.
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b) If V ∈ σX , then V = c almost surely for some constant c. It follows
that T is not in σX .

4.16 Arrival processes. Let T = (T1, T2, . . .) be an increasing sequence of
R+-valued variables. Define a stochastic process X = (Xt)t∈R+ with state
space N by

Xt =
∞∑

n=1

1(0,t]◦Tn , t ∈ R+.

Show that X and T determine each other. If Tn represents the n-th arrival
time at a store, then Xt is the number of customers who arrived during (0, t].
So, X and T are the same phenomena viewed from different angles.

5 Independence

This section is about independence, a truly probabilistic concept. For
random variables, the concept reduces to the earlier definition: they are inde-
pendent if and only if their joint distribution is the product of their marginal
distributions.

Throughout, (Ω,H,P) is a probability space. As usual, if G is a sub-σ-
algebra of H, we regard it both as a collection of events and as the collection
of all numerical random variables that are measurable with respect to it.
Recall that σX is the σ-algebra on Ω generated by X , and X here can be a
random variable or a collection of random variables. Finally, we write FI for∨
i∈I Fi as in I.1.8 and refer to it as the σ-algebra generated by the collection

of σ-algebras Fi, i ∈ I.

Definitions

For a fixed integer n ≥ 2, let F1, . . .Fn be sub-σ-algebras of H. Then,
{F1, . . .Fn} is called an independency if

E V1 · · ·Vn = EV1 · · ·EVn5.1

for all positive random variables V1, . . . , Vn in F1, . . . ,Fn respectively. The
term “independency” is meant to suggest a realm governed by the indepen-
dence of its constituents.

Let T be an arbitrary index set. Let Ft be a sub-σ-algebra of H for each t
in T . The collection {Ft : t ∈ T } is called an independency if its every finite
subset is an independency.

In general, elements of an independency are said to be independent, or
mutually independent if emphasis is needed. In loose language, given some
objects, the objects are said to be independent if the σ-algebras generated by
those objects are independent. The objects themselves can be events, random
variables, collections of random variables, σ-algebras on Ω, or collections of
such, and so on, and they might be mixed. For example, a random variable
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X and a stochastic process {Yt : t ∈ T } and a collection {Fi : i ∈ I} of
σ-algebras on Ω are said to be independent if

G1 = σX , G2 = σ{Yt : t ∈ T } , G3 = FI =
∨

i∈I
Fi

are independent, that is, if {G1,G2,G3} is an independency.

Independence of σ-algebras

Since a collection of sub-σ-algebras of H is an independency if and only
if its every finite subset is an independency, we concentrate on the indepen-
dence of a finite number of sub-σ-algebras of H. We start with a test for
independence.

5.2 Proposition. Let F1, . . . ,Fn be sub-σ-algebras of H, n ≥ 2. For
each i ≤ n, let Ci be a p-system that generates Fi. Then, F1, . . . ,Fn are
independent if and only if

P(H1 ∩ · · · ∩Hn) = P(H1) · · ·P(Hn)5.3

for all Hi in C̄i = Ci ∪ {Ω}, i = 1, . . . , n.

Proof. Necessity is obvious: take the Vi in 5.1 to be the indicators of the
events Hi. To show the sufficiency part, assume 5.3 for Hi in C̄i, i = 1, . . . , n.
Fix H2, . . . , Hn in C̄2, . . . , C̄n respectively, and let D be the set of all events
H1 in F1 for which 5.3 holds. By assumption, D ⊃ C1 and Ω ∈ D, and the
other two conditions for D to be a d-system on Ω are checked easily. It follows
from the monotone class theorem that D ⊃ σC1 = F1. Repeating the proce-
dure successively with H2, . . . , Hn we see that 5.3 holds for all H1, . . . , Hn in
F1, . . . ,Fn respectively. In other words, 5.1 holds when the Vi are indicators.
This is extended to arbitrary positive random variables Vi in Fi by using
the form Vi =

∑∞
j=1 aij1Hij (see Exercise I.2.27) and applying the monotone

convergence theorem repeatedly. �

Independence of collections

The next proposition shows that independence survives groupings.

5.4 Proposition. Every partition of an independency is an independency.

Proof. Let {Ft : t ∈ T } be an independency. Let {T1, T2, . . .} be a par-
tition of T . Then, the subcollections FTi = {Ft : t ∈ Ti}, i ∈ N

∗, form
a partition of the original independency. The claim is that they are inde-
pendent, that is, {FT1 , . . . ,FTn} is an independency for each n. This follows
from the preceding proposition: let Ci be a p-system of all events having the
form of an intersection of finitely many events chosen from

⋃
t∈Ti

Ft. Then,
Ci generates FTi and Ω ∈ Ci, and 5.3 holds for the elements of C1, . . . ,Cn by
the independence of the Ft, t ∈ T . Thus, FT1 , . . . ,FTn are independent, and
this is for arbitrary n. �
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Pairwise independence

A collection of objects (like σ-algebras, random variables) are said to be
pairwise independent if every pair of them is an independency. This is, of
course, much weaker than being mutually independent. But independence
can be checked by repeated checks for pairwise independence. We state this
for a sequence of σ-algebras; it holds for a finite sequence as well, and therefore
can be used to check the independency for arbitrary collections.

5.5 Proposition. The sub-σ-algebras F1,F2, . . . of H are independent if
and only if F{1,...,n} and Fn+1 are independent for all n ≥ 1.

Proof. Necessity is immediate from the last proposition. For sufficiency,
suppose that Gn = F{1,...,n} =

∨n
i=1 Fi and Fn+1 are independent for all n.

Then, for H1, . . . , Hm in F1, . . . ,Fm respectively, we can see that 5.3 holds
by repeated applications of the independence of Gn and Fn+1 for n = m− 1,
m− 2, . . . , 1 in that order. Thus, F1, . . . ,Fm are independent by Proposition
5.2, and this is true for all m ≥ 2. �

Independence of random variables

For each t in some index set T , let Xt be a random variable taking values
in some measurable space (Et,Et). According to the general definitions above,
the variables Xt are said to be independent, and the collection {Xt : t ∈ T }
is called an independency, if {σXt : t ∈ T } is an independency.

Since a collection is an independency if and only if its every finite subset
is an independency, we concentrate on the independence of a finite number
of them, which amounts to taking T = {1, 2, . . . , n} for some integer n ≥ 2.

5.6 Proposition. The random variables X1, . . . , Xn are independent if
and only if

E f1◦X1 · · · fn◦Xn = E f1◦X1 · · ·E fn◦Xn5.7

for all positive functions f1, . . . , fn in E1, . . . ,En respectively.

Proof. We need to show that 5.1 holds for all positive V1, . . . , Vn in
σX1, . . . , σXn respectively if and only if 5.7 holds for all positive f1, . . . , fn
in E1, . . . ,En respectively. But this is immediate from Theorem 4.4: Vi ∈ σXi

if and only if Vi = fi ◦Xi for some fi in Ei. �

Let π be the joint distribution of X1, . . . , Xn, and let μ1, . . . , μn be the
corresponding marginals. Then, the left and the right sides of 5.7 are equal
to, respectively, ˆ

E1×···×En

π(dx1, . . . , dxn) f1(x1) · · · fn(xn)

and ˆ
E1

μ1(dx1) f1(x1)
ˆ
E2

· · ·
ˆ
En

μn(dxn) fn(xn)
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The equality of these two expressions for all positive f1, . . . , fn is equivalent
to saying that π = μ1 × · · · × μn. We state this next.

5.8 Proposition. The random variables X1, . . . , Xn are independent
if and only if their joint distribution is the product of their marginal
distributions.

Finally, a comment on functions of independent variables. In the language
of Exercise 4.14, let Y1, . . . , Yn be determined by X1, . . . , Xn respectively.
Then σYi ⊂ σXi for i = 1, . . . , n, and it follows from the definition of inde-
pendency that Y1, . . . , Yn are independent if X1, . . . , Xn are independent. We
state this observation next.

5.9 Proposition. Measurable functions of independent random vari-
ables are independent.

Sums of independent random variables

Let X and Y be R
d-valued independent random variables with distribu-

tions μ and ν respectively. Then, the distribution of (X,Y ) is the product
measure μ× ν, and the distribution μ ∗ ν of X + Y is given by

(μ ∗ ν)f = Ef(X + Y ) =
ˆ

R

μ(dx)
ˆ

R

ν(dy) f(x + y),5.10

This distribution μ ∗ ν is called the convolution of μ and ν. See exercises
below for more. Of course, since X + Y = Y +X , we have μ ∗ ν = ν ∗ μ. The
convolution operation can be extended to any number of distributions.

Sums of random variables and the limiting behavior of such sums as the
number of summands grows to infinity are of constant interest in probabil-
ity theory. We shall return to such matters repeatedly in the chapters to
follow. For the present, we describe two basic results, zero-one laws due to
Kolmogorov and Hewitt-Savage.

Kolmogorov’s 0-1 law

Let (Gn) be a sequence of sub-σ-fields of H. We think of Gn as the infor-
mation revealed by the nth trial of an experiment. Then, Tn =

∨
m>n Gm is

the information about the future after n, and T =
⋂
n Tn is that about the

remote future. The last is called the tail-σ-algebra; it consists of events whose
occurrences are unaffected by the happenings in finite time.

5.11 Example. Let X1, X2, . . . be real valued random variables, put
Gn = σXn and Sn = X1 + · · · +Xn.

a) The event {ω : limn Sn(ω) exists} belongs to Tn for every n and,
hence, belongs to the tail-σ-algebra T.
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b) Similarly, {lim sup 1
n
Sn > b} is unaffected by the first n variables,

and this is true for all n, and hence this event belongs to T.
c) But, {lim supSn > b} is not in T.
d) Let B be a Borel subset of R. Let {Xn ∈ B i.o.}, read Xn is in B

infinitely often, be the set of ω for which
∑

n 1B ◦Xn(ω) = +∞. This event
belongs to T.

e) The event {Sn ∈ B i.o.} is not in T.

The following theorem, called Kolmogorov’s 0-1 law, implies in particular
that, if the Xn of the preceding example are independent, then each one of
the events in T has probability equal to either 0 or 1.

5.12 Theorem. Let G1,G2, . . . be independent. Then, P(H) is either 0 or
1 for every event H in the tail T.

Proof. By Proposition 5.4 on partitions of independencies, {G1, . . . ,Gn,
Tn} is an independency for every n, which implies that so is {G1, . . . ,Gn,T} for
every n, since T ⊂ Tn. Thus, by definition, {T,G1,G2, . . .} is an independency,
and so is {T,T0} by Proposition 5.4 again. In other words, for H in T and
G ∈ T0, we have P(H ∩G) = P(H) · P(G), and this holds for G = H as well
because T ⊂ T0. Thus, for H in T, we have P(H) = P(H) ·P(H), which means
that P(H) is either 0 or 1. �

As a corollary, assuming that the Gn are independent, for every random
variable V in the tail-σ-algebra there is a constant c in R̄ such that V =
c almost surely. Going back to Example 5.11, for instance, lim supSn/n is
almost surely constant. In the same example, the next theorem will imply that
the events {lim supSn > b} and {Sn ∈ B i.o.} have probability 0 or 1, even
though they are not in the tail T, provided that we add to the independence
of Xn the extra condition that they have the same distribution.

Hewitt-Savage 0-1 law

Let X = (X1, X2, . . .), where the Xn take values in some measurable
space (E,E). Let F = (F1,F2, . . .) be the filtration generated by X , that
is, Fn = σ(X1, . . . , Xn) for each n. Put F∞ = limFn =

∨
n Fn, and recall

from Theorem 4.4 and its sequel that F∞ consists of random variables of the
form V = f ◦X with f in E∞, and Fn consists of the variables of the form
Vn = fn(X1, . . . , Xn) = f̂n◦X with fn in En (and appropriately defined f̂n).

By a finite permutation p is meant a bijection p : N
∗ �→ N

∗ such that
p(n) = n for all but finitely many n. For such a permutation p, we write

X ◦ p = (Xp(1), Xp(2), . . .),5.13

which is a re-arrangement of the entries of X . The notation extends to arbi-
trary random variables V in F∞: if V = f ◦X then V ◦p = f ◦ (X ◦p). It will
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be useful to note that, if the Xn are independent and identically distributed,
the probability laws of X and X ◦p are the same, and hence, the distributions
of V and V ◦ p are the same.

A random variable V in F∞ is said to be permutation invariant if V ◦p = V
for every finite permutation p. An event in F∞ is said to be permutation
invariant if its indicator is such. These are variables like V = lim supSn
or events like {Sn ∈ B i.o.} in Example 5.11; they are unaffected by the
re-arrangements of the entries of X by finite permutations.

The collection of all permutation invariant events is a σ-algebra which
contains the tail-σ-algebra of X . The following, called Hewitt-Savage 0-1
law, shows that it is almost surely trivial (just as the tail) provided that the
Xn are identically distributed in addition to being independent.

5.14 Theorem. Suppose that X1, X2, . . . are independent and identically
distributed. Then, every permutation invariant event has probability 0 or 1.
Also, for every permutation invariant random variable V there is a constant
c in R̄ such that V = c almost surely.

Proof. It is sufficient to show that if V : Ω �→ [0, 1] is a permutation
invariant variable in F∞, then E(V 2) = (EV )2. Let V be such. By Proposition
4.9 there are Vn in Fn, n ≥ 1, such that each Vn takes values in [0, 1] and

lim E|V − Vn| = 0 lim
n

EVn = EV,5.15

the second limit being a consequence of the first.
Fix n. Let p be a finite permutation. The assumption about X implies

that X and X ◦p have the same probability law, which in turn implies that U
and U ◦ p have the same distribution for every U in F∞. Taking U = V −Vn,
noting that U ◦ p = V ◦ p − Vn ◦ p = V − Vn ◦ p by the invariance of V , we
see that

E|V − Vn ◦ p| = E|V − Vn|.5.16

This is true, in particular, for the permutation p̂ that maps 1, . . . , n to
n + 1, . . . , 2n and vice-versa, leaving p̂(m) = m for m > 2n. We de-
fine V̂n = Vn ◦ p̂ and observe that, if Vn = fn(X1, . . . , Xn), then
V̂n = fn(Xn+1, . . . , X2n), which implies that Vn and V̂n are independent
and have the same distribution. Together with 5.16, this yields

EVnV̂n = (EVn)2 , E|V − V̂n| = E|V − Vn|,5.17

which in turn show that

|E(V 2)−(EVn)2| = |E(V 2−VnV̂n)| ≤ E|V 2−VnV̂n| ≤ 2E|V −Vn|,5.18

where the final step used (recalling |V | ≤ 1 and |Vn| ≤ 1)

|V 2 − VnV̂n| = |(V − Vn)V + (V − V̂n)Vn| ≤ |V − Vn| + |V − V̂n|,
and 5.17. Applying 5.15 to 5.18 yields the desired result that
EV 2 = (EV )2. �
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5.19 Example. Random walks. This is to provide a typical application
of the preceding theorem. Returning to Example 5.11, assume further that
X1, X2, . . . have the same distribution. Then, the stochastic process (Sn) is
called a random walk on R. The avoid the trivial case where S1 = S2 = . . . = 0
almost surely, we assume that P{X1 = 0} < 1. Then, concerning the limiting
behavior of the random walk, there are three possibilities, exactly one of
which is almost sure:

i) limSn = +∞,

ii) limSn = −∞,

iii) lim inf Sn = −∞, and lim supSn = +∞.

Here is the argument for this. By the preceding theorem, there is a constant
c in R̄ such that lim supSn = c almost surely. Letting Ŝn = Sn+1 − X1

yields another random walk (Ŝn) which has the same law as (Sn). Thus,
lim sup Ŝn = c almost surely, which means that c = c−X1. Since we excluded
the trivial case when P{X1 = 0} = 1, it follows that c is either +∞ or −∞.
Similarly, lim inf Sn is either almost surely −∞ or almost surely +∞. Of the
four combinations, discarding the impossible case when lim inf Sn = +∞ and
lim supSn = −∞, we arrive at the result.

If the common distribution of the Xn is symmetric, that is, if X1 and
−X1 have the same distribution (like the Gaussian with mean 0), then (Sn)
and (−Sn) have the same law, and it follows that the cases (i) and (ii) are
improbable. So then, case (iii) holds almost surely.

Exercises

5.20 Independence and functional independence. Suppose that (Ω,H,P) =
(B,B, λ) × (B,B, λ), where B = [0, 1], B = B(B) and λ is the Lebesgue
measure on B. For each ω = (ω1, ω2) in Ω, let X(ω) = f(ω1) and Y (ω) =
g(ω2) for some Borel functions f and g on B. Show that X and Y are
independent.

5.21 Independence and transforms. Let X and Y be positive random vari-
ables. Then, X and Y are independent if and only if their joint Laplace
transform is the product of their Laplace transforms, that is, if and only if

Ee−pX−qY = Ee−pX Ee−qY , p, q ∈ R+.

Show this recalling that the joint Laplace transforms determine the joint
distributions. A similar result holds for X and Y real-valued, but with char-
acteristic functions. Obviously, these results can be extended to any finite
number of variables.

5.22 Sums of independent variables. Let X and Y be independent real-valued
random variables. Show that the characteristic function of X + Y is the
product of their characteristic functions. When X and Y are positive, the
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same is true with Laplace transforms. When X and Y are positive integers,
the same holds with generating functions. Use these to show the following.

a) If X has the Poisson distribution with mean a, and Y the Poisson
distribution with mean b, then X+Y has the Poisson distribution with mean
a+ b.

b) If X has the gamma distribution with shape index a and scale
parameter c, and Y has the gamma distribution with shape index b and the
same scale parameter c, then X + Y has the gamma distribution with shape
index a+ b and scale c.

c) If X has the Gaussian distribution with mean a and variance b and
Y has the Gaussian distribution with mean c and variance d, then X+Y has
the Gaussian distribution with mean a+ c and variance b+ d.

5.23 Convolutions

a) Let μ and ν be probability measures on R, and let π = μ ∗ ν be
defined by 5.10. Show that

π(B) =
ˆ

R

μ(dx) ν(B − x) , B ∈ BR,

where B − x = {y − x : y ∈ B}.
b) Let λ be the Lebesgue measure on R. Suppose that μ(dx) =

λ(dx) p(x) and ν(dx) = λ(dx) q(x), x ∈ R, for some positive Borel functions
p and q. Show that, then, π(dx) = λ(dx) r(x), where

r(x) =
ˆ

R

dy p(y) q(x− y) , x ∈ R.

Historically, then, r is said to be the convolution of the functions p and q,
and the notation r = p ∗ q is used to indicate it.

c) Let μ and ν be as in the preceding case, but be carried by R+.
Then, p and q vanish outside R+, and

r(x) =
ˆ x

0

dy p(y) q(x− y) , x ∈ R+,

with r(x) = 0 for x outside R+.

Complements: Bernoulli sequences

5.24 Bernoulli variables. These are random variables that take the values 0
and 1 only. Each such variable is the indicator of an event, the event being
named “success” to add distinction. Thus, if X is a Bernoulli variable, p =
P{X = 1} is called the success probability, and then, q = P{X = 0} = 1 − p
becomes the failure probability. Show that

E X = E X2 = · · · = p, Var X = pq, E zX = q + pz.
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5.25 Bernoulli trials. Let X1, X2, . . . be Bernoulli variables. It is usual to
think of Xn as indicating the result of the nth trial in a sequence of trials:
Xn(ω) = 1 means that a “success” has occurred at the nth trial corresponding
to the sequence described by the outcome ω. Often, it is convenient to assume
that the trials occur at times 1, 2, 3, . . .. Then,

Sn = X1 + · · · +Xn

is the number of successes occuring during the time interval [1, n]. Assuming
that X1, X2, . . . are independent and have the same success probability p
(and the same failure probability q = 1 − p), show that

P{Sn = k} =
n!

k!(n− k)!
pkqn−k, k = 0, 1, . . . , n.

Hint: First compute E zSn using 5.24, and recall the binomial expansion
(a + b)n =

∑n
k=0

n!
k!(n−k)!a

kbn−k. For this reason, the distribution of Sn is
called the binomial distribution.

5.26 Times of successes. Let X1, X2, . . . be independent Bernoulli variables
with the same success probability p. Define, for each k in N

∗, the time of kth

success by
Tk(ω) = inf{n ≥ 1 : Sn(ω) ≥ k}, ω ∈ Ω.

Note that this yields Tk(ω) = +∞ if Sn(ω) < k for all n. Show that Tk is a
random variable for each k in N

∗. Show that, for integers n ≥ k,

P{Tk = n} =
(n− 1)!

(k − 1)!(n− k)!
pkqn−k, P{Tk ≤ n} =

n∑

j=k

n!
j!(n− j)!

pjqn−j .

Show, in particular, that Tk <∞ almost surely and, therefore, that limSn =
+∞ almost surely.

5.27 Waits between successes. Let the Xn be as in 5.26. For k ∈ N
∗, define

the waiting time Wk(ω) between the (k − 1)th and kth successes by letting
T0(ω) = 0 and

Wk(ω) =
{
Tk(ω) − Tk−1(ω) if Tk(ω) <∞,
+∞ otherwise.

For integers i1, . . . , ik in N
∗, express the event {W1 = i1, . . . ,Wk = ik} in

terms of the variables Xk, compute the probability of the event in question,
and conclude that W1,W2, . . . ,Wk are independent random variables with
the same distribution

P{Wk = i} = pqi−1, i ∈ N
∗.

This distribution on N
∗ is called the geometric distribution with success prob-

ability p. Compute

E Wk, Var Wk, E Tk, Var Tk.
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5.28 Multinomial trials. Let X1, X2, . . . be mutually independent random
variables taking values in a finite set D, say D = {a, . . . , d}, with

P{Xn = x} = p(x), x ∈ D.

For each x in D and ω in Ω, let Sn(ω, x) be the number of times that x
appears in (X1(ω), . . . , Xn(ω)). Then, Sn(x) : ω �→ Sn(ω, x) is a random
variable for each n in N

∗ and each point x in D. Show that

P{Sn(a) = k(a), . . . , Sn(d) = k(d)} =
n!

k(a)! · · · k(d)!p(a)
k(a) · · · p(d)k(d)

for all k(a), . . . , k(d) in N with k(a) + · · · + k(d) = n. This defines a
probability measure on the simplex of all vectors (k(a), . . . , k(d)) with
k(a) + · · · + k(d) = n; it is called a multinomial distribution.

5.29 Empirical distributions. Let X1, X2, . . . be mutually independent ran-
dom variables taking values in some measurable space (E,E)and having the
same distribution μ. Define

Sn(ω,A) =
n∑

i=1

1A◦Xi(ω), n ∈ N, ω ∈ Ω, A ∈ E.

Then, A �→ Sn(ω,A) is a counting measure on (E,E)whose atoms are the
locations X1(ω), . . . , Xn(ω), and 1

n
Sn(ω,A) defines a probability measure on

(E,E), called the empirical distribution corresponding to X1(ω), . . . , Xn(ω).
Writing Sn(A) for the random variable ω �→ Sn(ω,A), show that

P{Sn(A1) = k1, . . . , Sn(Am) = km} =
n!

k1! · · ·km!
μ(A1)k1 · · ·μ(Am)km

for every measurable partition (A1, . . . , Am) of E and integers k1, . . . , km ≥ 0
summing to n.

5.30 Inclusion-exclusion principle. Let X1, . . . , Xj be Bernoulli variables.
Show that

P{X1 = · · · = Xj = 0} = E

∑

Y

Y1 · · ·Yj

where the sum is over all j-tuples Y = (Y1, . . . , Yj) with each Yi being either
1 or −Xi. Hint: The left side is the expectation of (1 −X1) · · · (1 −Xj).

5.31 Continuation. For X1, . . . , Xk Bernoulli, show that

P{X1 = · · · = Xj = 0, Xj+1 = · · · = Xk = 1} = E

∑

Y

Y1 · · ·YjXj+1 · · ·Xk

where the sum is over all Y as in 5.30.
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5.32 Probability law of a collection of Bernoullis. Let I be an arbitrary index
set. For each i in I, let Xi be a Bernoulli variable. Show that the probability
law of X = {Xi : i ∈ I} is specified by

E

∏

i∈J
Xi, J ⊂ I, J finite ;

in other words, knowing these expectations is enough to compute

P{Xi = bi, i ∈ K}

for every finite subset K of I and binary numbers bi, i ∈ K.

5.33 Independence of Bernoullis. Show that X in 5.32 is an independency if
and only if, for every finite J ⊂ I,

E

∏

i∈J
Xi =

∏

i∈J
E Xi.



Chapter III

Convergence

This chapter is devoted to various concepts of convergence: almost sure
convergence, convergence in probability, convergence in Lp spaces, and con-
vergence in distribution. In addition, the classical laws of large numbers and
central limit theorems are presented in a streamlined manner.

1 Convergence of Real Sequences

The aim here is to review the concept of convergence in R and to bring
together some useful results from analysis.

Let (xn) be a sequence in R, indexed by N
∗ = {1, 2, . . .} as usual. Then,

lim inf xn = sup
m

inf
n≥m

xn , lim supxn = inf
m

sup
n≥m

xn

are well-defined numbers, possibly infinite. If these two numbers are equal
to the same number x, then (xn) is said to have the limit x, and we write
limxn = x or xn → x to indicate it. The sequence is said to be convergent in
R, or simply convergent, if the limit exists and is a real number.

Characterization

We start by introducing a notation for reasons of typographical conve-
nience: for ε in R+, we let iε be the indicator of the interval (ε,∞), that is,

iε(x) = 1(ε,∞)(x) =
{

1 if x > ε ,
0 if x ≤ ε .

1.1

Let (xn) be a sequence in R. It converges to x if and only if the sequence of
positive numbers |xn − x| converges to 0. When x is known, it is simpler to
work with the latter sequence because of its positivity.

Let (xn) be a positive sequence. The classical statement of convergence
would say that (xn) converges to 0 if and only if for every ε > 0 there exists
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k such that xn ≤ ε for all n ≥ k, in other words, for every ε > 0 the number
of n for which xn > ε is finite. So,

xn → 0 ⇐⇒
∑

n

iε(xn) <∞ for every ε > 0.1.2

Since every term of the series on the right is either 0 or 1,
∑

n

iε(xn) <∞ ⇐⇒ lim sup
n→∞

iε(xn) = 0 ⇐⇒ lim
n
iε(xn) = 0.1.3

Cauchy criterion

This is useful especially when there is no apriori candidate x for the limit.
We omit the proof.

1.4 Proposition. The sequence (xn) converges if and only if

lim
m,n→∞ |xm − xn| = 0 ,

that is, for every ε > 0 there is k such that |xm − xn| ≤ ε for all m ≥ k and
n ≥ k.

The following uses the Cauchy criterion together with some easy obser-
vations:

1.5 Proposition. If there exists a positive sequence (εn) such that
∑

n

εn <∞ ,
∑

n

iεn(|xn+1 − xn|) <∞ ,

then (xn) is convergent.

Proof. Let (εn) be such. Then, there is k such that |xn+1 − xn| ≤ εn for
all n ≥ k. Thus, for n > m > k,

|xn − xm| ≤ |xn − xn−1| + · · · + |xm+1 − xm| ≤ εm + · · · + εn−1 ≤
∞∑

m

εj .

By the assumed summability of (εn), the last member tends to 0 as m→ ∞.
Hence, Cauchy criterion 1.4 applies, and (xn) is convergent. �

Subsequences, selection principle

Let (xn) be a sequence. A sequence (yn) is said to be a subsequence of
(xn) if there exists an increasing sequence (kn) in N with lim n kn = +∞
such that yn = xkn for each n. Regarding N as a sequence, we note that
every such sequence (kn) is a subsequence of N. Denoting (kn) by N , we shall
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write (xn)n∈N for the subsequence (yn), and we shall say that (xn) converges
along N to x if the subsequence (xn)n∈N converges to x.

Obviously, (xn) tends to a limit x (infinite values are allowed for the
limit) if and only if every subsequence of it has the same limit x. If (xn) is
bounded, it is always possible to extract a subsequence that is convergent;
this is a fundamental property of the real number system. The following
proposition, called the selection principle, is immediate from the observation
that for every sequence (xn) there is a subsequence whose limit is lim inf xn
and a subsequence whose limit is lim sup xn.

1.6 Proposition. If every subsequence that has a limit has the same
value x for the limit, then the sequence tends to the same x (infinite values
are allowed for x). If the sequence is bounded, and every convergent subse-
quence of it has the same limit x, then the sequence converges to x.

Finally, we list the following lemma both as an illustration of using sub-
sequences and as a useful little result that will be applicable a number of
times.

1.7 Lemma. Let (xn) be a sequence of positive numbers and put x̄n =
(x1 + · · · + xn)/n, the average of the first n entries. Let N = (nk) be a
subsequence of N with lim nk+1/nk = r > 0. If the sequence (x̄n) converges
along N to x, then

x/r ≤ lim inf x̄n ≤ lim sup x̄n ≤ r · x .
Proof. For nk ≤ n < nk+1, the positivity of the xn yields

nk
nk+1

x̄nk
≤ x̄n ≤ x̄nk+1 ·

nk+1

nk
.

As n → ∞, the integer k for which nk ≤ n < nk+1 tends to +∞, and
our assumptions imply that the left-most member converges to x/r and the
right-most to rx. �

Diagonal method

1.8 Proposition. Let (xm,n)n≥1 be a bounded sequence for each inte-
ger m ≥ 1. Then, there exists a subsequence N of N such that (xm,n)n∈N
converges for every m.

Proof. Since (x1,n) is a bounded sequence, there is a subsequence N1 of
N such that (x1,n) converges along N1. The subsequence (x2,n)n∈N1 being
bounded, N1 has a subsequence N2 such that (x2,n) converges along N2.
Continuing in this manner, we obtain subsequences N1 ⊃ N2 ⊃ · · · such
that, for each m, the sequence (xm,n) converges along Nm.

Let nm be themth entry ofNm and defineN = (n1, n2, . . .). Then, for each
m, the tail (nm, nm+1, . . .) of N is a subsequence of Nm, and the convergence
of (xm,n) along Nm implies that (xm,n) converges along N . �
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If the sequences N1, N2, . . . in the proof were written one under the other,
then N would be the diagonal of the resulting array. For this reason, the
preceding proposition is called the diagonal method. It is useful in construct-
ing limits of sequences of functions. The following is an application of some
importance.

Helly’s Theorem

Recall that a distribution function (in probabilistic terrain) is an increas-
ing right-continuous mapping from R into [0, 1].

1.9 Theorem. For every sequence (cn) of distribution functions there
exists a subsequence (bn) and a distribution function c such that lim bn(t) =
c(t) for every t at which c is continuous.

Proof. We apply the diagonal method of the preceding proposition to
xm,n = cn(rm), where (rm) is an enumeration of the set of all rationals. Thus,
N has a subsequence N such that, writing (b1, b2, . . .) for the subsequence
(cn)n∈N , the limit b(r) = lim bn(r) exists for every rational r. For each t in
R, define

c(t) = inf{b(r) : r rational , r > t}.
It is clear that c is increasing. For each t in R and ε > 0, there is a rational

r > t such that b(r) < c(t) + ε, and we have c(u) ≤ b(r) for all u in [t, r).
It follows that c is right-continuous as well. Thus c is a distribution function.

Let t be a point of continuity for c. Then, for every ε > 0 there is s < t
such that c(s) > c(t)−ε, and there is a rational r > t such that b(r) < c(t)+ε.
Pick a rational q in (s, t). We now have s < q < t < r and c(t) − ε < c(s) ≤
b(q) ≤ b(r) < c(t) + ε. Since bn(q) ≤ bn(t) ≤ bn(r) for every n, and since
bn(q) → b(q) and bn(r) → b(r), it follows that lim inf bn(t) and lim sup bn(t)
are sandwiched between c(t) − ε and c(t) + ε. Since ε > 0 is arbitrary, this
shows that lim bn(t) = c(t) as claimed. �

Kronecker’s Lemma

This is a technical result which will be needed later. It relates convergence
of averages to convergence of series.

1.10 Lemma. Let (xn) be a sequence in R. Let (an) be a strictly positive
sequence increasing to +∞. Put yn =

∑n
1 (xk/ak). If (yn) is convergent, then

lim
n

1
an

n∑

1

xk = 0 .

Proof. Put a0 = y0 = 0. Note that xm = (ym − ym−1)am and that

n∑

1

xm =
n−1∑

m=0

(am+1 − am)(yn − ym) .
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Suppose that yn → y. Fix ε > 0. Cauchy criterion 1.4 implies the existence
of k such that |yn − ym| ≤ ε for all n,m ≥ k, and hence, on the right side,
the partial sum over m = k, . . . , n− 1 becomes bounded in absolute value by
(an − ak)ε ≤ anε. So,

| 1
an

n∑

1

xm| ≤ ε+
1
an

k−1∑

m=0

(am+1 − am)|yn − ym| .

On the right, the second term goes to 0 as n→ ∞, since yn → y and an → ∞;
and ε > 0 can be taken to be arbitrarily small. �

2 Almost Sure Convergence

Throughout, (Ω,H,P) is a probability space, and (Xn) is a sequence of
real-valued random variables.

2.1 Definition. The sequence (Xn) is said to be almost surely conver-
gent if the numerical sequence (Xn(ω)) is convergent for almost every ω; it is
said to converge to X if X is an almost surely real-valued random variable
and limXn(ω) = X(ω) for almost every ω.

2.2 Remark. Since lim inf Xn and lim supXn are random variables,
the set

Ω0 = {ω ∈ Ω : lim inf Xn(ω) = lim supXn(ω) ∈ R}
is an event. The sequence (Xn) is almost surely convergent if and only if Ω0

is almost sure, that is, P(Ω0) = 1. This is the content of the definition above.
Moreover, if Ω0 is almost sure, then letting X(ω) = limXn(ω) for ω in Ω0

and X(ω) = 0 for ω /∈ Ω0, we obtain a real-valued random variable X such
that Xn → X almost surely. Of course, if X ′ is another random variable such
that X = X ′ almost surely, then Xn → X ′ almost surely too.

Characterization theorem

2.3 Theorem. The sequence (Xn) converges to X almost surely if and
only if, for every ε > 0,

∑

n

iε◦|Xn −X | <∞ almost surely.2.4

Proof. Necessity. Suppose Xn → X almost surely. Let Ω0 be the almost
sure set on which convergence holds, and let Yn = |Xn −X |. Then, for each
ω in Ω0, by 1.2,

∑
n iε◦Yn(ω) < ∞ for every ε > 0. Thus, for fixed ε > 0,

2.4 holds (and the almost sure set is Ω0, which is further free of ε).
Sufficiency. Suppose that, for each ε > 0, the condition 2.4 holds. Let

(εk) be a sequence strictly decreasing to 0. Let Nk be the random sum in 2.4
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corresponding to εk. We have P{Nk < ∞} = 1 by assumption for every k.
Now, since εk+1 < εk, we have iεk+1 ≥ iεk

and Nk+1 ≥ Nk. Thus, the events
{Nk <∞} are shrinking to

Ω0 =
⋂

k

{Nk <∞} = {ω ∈ Ω :
∑

n

iε◦Yn(ω) <∞ for all ε > 0}.

By the sequential continuity for P, we have P(Ω0) = lim P{Nk < ∞} = 1,
and for every ω in Ω0 we have Xn(ω) → X(ω) in view of 1.2. �

Borel-Cantelli lemmas

The following three propositions provide sufficient conditions for almost
sure convergence. They are referred to as Borel-Cantelli lemmas, because
their main ingredient is the following classical result called Borel-Cantelli
lemma.

2.5 Lemma. Let (Hn) be a sequence of events. Then,
∑

n

P(Hn) <∞ ⇒
∑

n

1Hn <∞ almost surely.

Proof. Let N be the random variable whose finiteness is in question.
By the monotone convergence theorem, E N =

∑
n P(Hn). So, the claim

is that if E N <∞ then N <∞ almost surely, which is obvious. �

2.6 Proposition. Suppose that
∑

n

P{|Xn −X | > ε} <∞

for every ε > 0. Then, Xn → X almost surely.

Proof. The assumption implies, via the Borel-Cantelli lemma, that the
condition 2.4 holds for every ε > 0. Thus, by Theorem 2.3, Xn → X almost
surely. �

2.7 Proposition. Suppose that there exists a sequence (εn) decreasing
to 0 such that ∑

n

P{|Xn −X | > εn} <∞ .

Then, Xn → X almost surely.

Proof. By the Borel-Cantelli lemma, the assumption here implies that, for
almost every ω, we have |Xn(ω) − X(ω)| ≤ εn for all but finitely many n,
which in turn implies, since εn ↘ 0, that Xn(ω) → X(ω). �
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2.8 Proposition. Suppose that there exists a sequence (εn) of strictly
positive numbers such that

∑

n

εn <∞ ,
∑

n

P{|Xn+1 −Xn| > εn} <∞ .

Then, (Xn) converges almost surely.

Proof. By the Borel-Cantelli lemma, the assumption implies that the con-
dition of Proposition 1.5 holds for the sequence (xn) = (Xn(ω)) for almost
every ω. Thus, (Xn(ω)) is convergent for almost every ω. �

Borel-Cantelli: divergence part

We interrupt the flow of this section to give a partial converse to
Lemma 2.5. Let B1, B2, . . . be Bernoulli variables (that is, indicators of
some events H1, H2, . . .). If they are independent, then Kolmogorov’s 0-1 law
applies: either

∑
Bn <∞ almost surely, or

∑
Bn = ∞; see Theorem II.5.12.

Even without the independence assumption, Lemma 2.5 shows that the
former case holds when

∑
EBn <∞. The following is a partial converse:

2.9 Proposition. Let B1, B2, . . . be Bernoulli variables.

a) If
∑

EBn <∞, then
∑
Bn <∞ almost surely.

b) If
∑

EBn = +∞ and the Bn are pairwise independent, then
∑
Bn =

+∞ almost surely.

Proof. The first claim is simply Lemma 2.5. To show (b), let pn = EBn,
an = p1 + · · · + pn, Sn = B1 + · · · + Bn, S = limSn. Assuming pairwise
independence,

VarSn =
n∑

1

VarBi =
n∑

1

pi(1 − pi) ≤
n∑

1

pi = an .2.10

Fix b in (0,∞). Since (an) increases to +∞ by hypothesis, the numbers
an − √

ban increase to +∞. Thus, the event {S < ∞} is the limit of the
increasing sequence of events {S < an−

√
ban}, and (since Sn ≤ S) the latter

event implies {Sn < an −√
ban}, which in turn implies {|Sn − an| >

√
ban}.

Hence,

P{S <∞} = lim P{S < an −√
ban}

≤ lim sup P{|Sn − an| >
√
ban} ≤ lim sup(VarSn)/ban ,

the last inequality being Chebyshev’s. In view of 2.10, this means that
P{S <∞} ≤ 1/b, and letting b→ ∞ completes the proof. �
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Cauchy criterion

As with its deterministic counterpart, this is useful where there is no
apriori candidate for the limit of (Xn). In fact, the statement below is nothing
but 1.4 stated for each ω in an almost sure event. No proof is needed.

2.11 Theorem. The sequence (Xn) is convergent almost surely if and
only if limm,n→∞ |Xn −Xm| = 0 almost surely.

To make the preceding practical we provide some details. For this pur-
pose, let

Yn = sup i,j≥n|Xi −Xj | , Zn = sup k|Xn+k −Xn| .2.12

The meaning of the Cauchy criterion is that (Xn(ω)) is Cauchy if and only
if Yn(ω) → 0. And Yn(ω) → 0 if and only if Zn(ω) → 0, because Zn ≤ Yn ≤
2Zn. We put this as a lemma.

2.13 Lemma. The following are equivalent: (Xn) is almost surely conver-
gent; (Yn) converges to 0 almost surely; (Zn) converges to 0 almost surely.

2.14 Proposition. Suppose that

lim inf
n→∞ lim

m→∞ P {sup k≤m|Xn+k −Xn| > ε} = 0

for every ε > 0. Then, (Xn) is convergent almost surely.

Proof. Let Zn,m be the random variable that figures inside the event on the
left. Note that Zn,m increases to Zn as m→ ∞. Therefore, iε◦Zn,m → iε◦Zn,
which together with Fatou’s lemma and bounded convergence theorem gives

E lim inf iε◦Zn ≤ lim inf E iε◦Zn ≤ lim inf
n→∞ lim

m
E iε◦Zn,m = 0 ,

the last equality being the hypothesis. Since a positive variable with 0 ex-
pectation is almost surely 0, we have shown that lim inf iε ◦Zn = 0 almost
surely. This is for every ε > 0. Since Yn of 2.12 is bounded by 2Zn, it follows
that, for every ε > 0, lim inf iε◦Yn = 0 almost surely. But (Yn) is a decreasing
sequence and iε(y) is either 0 or 1. So, for every ε > 0,

∑
n iε◦Yn < ∞ al-

most surely, which implies via Theorem 2.4 that Yn → 0 almost surely. This
in turn implies, through the preceding lemma, that (Xn) is almost surely
convergent. �

Convergence in metric spaces

Let (E, d) be a metric space. Let X1, X2, . . . be random variables taking
values in E. Then, (Xn) is said to converge to X almost surely provided that
the real-valued variables d(Xn, X) converge to 0 almost surely.
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Complements

2.15 lim inf and lim sup of events. Let (Hn) be a sequence of events. Define

lim inf Hn =
⋃

m

⋂

n≥m
Hn , lim supHn =

⋂

m

⋃

n≥m
Hn ;

these are again events. We have avoided using them.

a) Fix ω in Ω. Note that ω belongs to lim inf Hn if and only if there
exists m such that ω ∈ Hn for all n ≥ m, and ω belongs to lim supHn if and
only if ω ∈ Hn for infinitely many n. For these reasons, some write {Hn ult.}
for the lim inf and {Hn i.o.} for the lim sup, with “ult.” an abreviation for
“ultimately” and “i.o.” for “infinitely often”. These usages show a bizarre
sense of notation, but the related usages {Sn ∈ B i.o.} for lim sup{Sn ∈ B}
and {Xn ∈ A ult.} for lim inf{Xn ∈ A} are both proper and useful.

b) Show that

1lim inf Hn = lim inf 1Hn , 1lim supHn = lim sup 1Hn .

c) Show that

lim supHn =

{
∑

n

1Hn = +∞
}
, lim inf Hn =

{
∑

n

(1 − 1Hn) <∞
}

.

3 Convergence in Probability

Let (Ω,H,P) be a probability space. Let X1, X2, . . . , X be real-valued
random variables.

3.1 Definition. The sequence (Xn) is said to converge to X in proba-
bility if, for every ε > 0,

lim
n

P{|Xn −X | > ε} = 0 .

This mode of convergence is central to much of modern stochastics.
In particular, stochastic calculus and stochastic differential equations employ
convergence in probability as their basic mode of limit taking. This is so,
because almost sure convergence is not as widely applicable as convergence
in probability. Here is a concrete illustration.

3.2 Example. Let Ω = (0, 1], H the Borel σ-algebra on it, and P

the Lebesgue measure. Let X1, X2, X3, X4, X5, X6, . . . be the indicators of
(0, 1], (0, 1/2], (1/2, 1], (0, 1/3], (1/3,

2/3], (2/3, 1], . . . respectively. Then, for
arbitrary ε in (0, 1), the probabilities P{Xn > ε} form the sequence
(1, 1/2,

1/2,
1/3,

1/3,
1/3, . . .), whose limit is obviously 0. So, Xn → 0 in prob-

ability. But, for every ω in Ω, the sequence (Xn(ω)) consists of zeros and ones
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without end, which means that its limit inferior is 0, and limit superior 1.
Thus, the set of ω for which (Xn(ω)) is convergent is empty, that is, almost
sure convergence fails miserably.

The following basic theorem characterizes convergence in probability in
terms of almost sure convergence, and more.

3.3 Theorem. a) If (Xn) converges to X almost surely, then it con-
verges to X in probability as well.

b) If it converges to X in probability, then it has a subsequence that
converges to X almost surely.

c) If its every subsequence has a further subsequence that converges to
X almost surely, then it converges to X in probability.

Proof. To simplify the notation we assume that the (Xn) are positive and
X = 0; this is nothing more than replacing |Xn−X | with Xn. Recall that iε
is the indicator of the interval (ε,∞) and introduce

pn = pn(ε) = E iε◦Xn = P{Xn > ε} .3.4

a) Suppose that Xn → 0 almost surely. Fix ε > 0. Then, iε◦Xn → 0
almost surely, which implies through the bounded convergence theorem that
pn → 0. Thus, Xn → 0 in probability.

b) Suppose that Xn → 0 in probability. Let εk = 1/k, k ≥ 1. Put
n0 = 0. For each k ≥ 1, since pn(εk) → 0 as n→ ∞ by our assumption, there
exists nk > nk−1 such that pn(εk) ≤ 1/2k for all n ≥ nk. Then,

∑

k

P{Xnk
> εk} ≤

∑
1/2k = 1 .

Thus, Proposition 2.7 applies to the subsequence (Xnk
) to conclude that it

converges to 0 almost surely.
c) Assume that every subsequence of (Xn) has a further subsequence

that converges to 0 almost surely. Fix ε > 0 arbitrary. Consider the bounded
sequence of numbers pn = pn(ε). Let N be a subsequence of N along
which (pn) is convergent, let p be the limit. By assumption, N has a sub-
sequence N ′ such that Xn → 0 almost surely along N ′. Then, by part
(a) above, pn → 0 along N ′, which means that the limit p is 0. It follows
from Proposition 1.6 that the original sequence (pn) converges to 0, that is,
Xn → 0 in probability. �

Convergence and continuous functions

As an immediate application of the preceding theorem we list the
following.

3.5 Proposition. Let f : R → R be continuous. If Xn → X in probabil-
ity, then f ◦Xn → f ◦X in probability.
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Proof. Suppose that Xn → X in probability. Let N be a subsequence
of N. Since Xn → X in probability along N , Theorem 3.3b implies that N
has a subsequence N ′ along which Xn → X almost surely, which in turn
implies that f ◦Xn → f ◦X almost surely along N ′ by the continuity of f .
Thus, Theorem 3.3c applies to the sequence (f ◦Xn), and f ◦Xn → f ◦X in
probability. �

Convergence and arithmetic operations

The method of the preceding proof shows that convergence in probability
is preserved under arithmetical operations:

3.6 Theorem. Suppose that Xn → X and Yn → Y in probability. Then,
Xn+Yn → X+Y , and Xn−Yn → X−Y , and XnYn → XY , all in probability.
Moreover, Xn/Yn → X/Y in probability provided that, almost surely, Y and
the Yn are non-zero.

Proof. We show the statement about the sum. Let N be a subsequence of
N. By Theorem 3.3b, N has a subsequence N ′ along which Xn → X almost
surely. Since Yn → Y in probability along N ′, there is a further subsequence
N ′′ along which Yn → Y almost surely. Of course, along N ′′, Xn → X
almost surely. Hence, every subsequenceN has a subsequenceN ′′ along which
Xn +Yn → X +Y almost surely. Thus, by Theorem 3.3c, Xn +Yn → X +Y
in probability. �

Metric for convergence in probability

For real-valued random variables X and Y define

d(X,Y ) = E (|X − Y | ∧ 1) .3.7

It is easy to check that d(X,Y ) = 0 if and only if X = Y almost surely and
that d(X,Y ) + d(Y, Z) ≥ d(X,Z). In other words, d is a metric on the space
of all real-valued random variables provided that X and Y are identified as
the same whenever X = Y almost surely. The following shows that d is a
metric for convergence in probability.

3.8 Proposition. The sequence (Xn) converges to X in probability if
and only if d(Xn, X) → 0 as n→ ∞.

Proof. A simple drawing will show that, for ε in (0, 1),

ε iε(x) ≤ x ∧ 1 ≤ ε+ iε(x)

for all x in R+. Replacing x with |Xn −X |, taking expectations, and letting
n→ ∞ completes the proof. �
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Cauchy Criterion

3.9 Theorem. The sequence (Xn) converges in probability if and only if,
for every ε > 0,

lim
m,n→∞ P {|Xm −Xn| > ε} = 0 .3.10

Proof. a) Assume that (Xn) converges to some random variable X in
probability. Pick ε > 0, let δ = ε/2. Observe that

iε◦|Xm −Xn| ≤ iδ◦|Xm −X | + iδ◦|Xn −X | ,

take expectations on both sides, and note that the terms on the right tend
to 0 as m,n→ ∞ by our assumption that Xn → X in probability.

b) Assume that 3.10 holds for every ε > 0. Choose εk = 1/2k, put
n0 = 0. For each k ≥ 1, let nk > nk−1 be such that

P {|Xm −Xn| > εk} ≤ 1/2k

for all m,n ≥ nk. Put Yk = Xnk
. Now the condition of Proposition 2.8 holds

for (Yk) and (εk), and, hence, (Yk) converges almost surely; let X be its limit.
Observe that, for ε > 0, with δ = ε/2,

E iε◦|Xn −X | ≤ E iδ◦|Xn −Xnk
| + E iδ◦|Yk −X | .

Now, as n and k tend to +∞, the first term on the right side goes to 0 by
the assumed 3.10, and the second term goes to 0 since Yk → X almost surely
and hence in probability. It follows that Xn → X in probability. �

Exercises

3.11 Uniqueness of limits. If Xn → X and Xn → Y , both in probability,
then X = Y almost surely. Show.

3.12 Effect of continuity. Show that, if Xn → X in probability, then
E f ◦Xn → E f ◦X for every bounded continuous function f on R. Hint:
Use the selection theorem 1.6 together with the proof of 3.5 on the bounded
sequence (E f ◦Xn).

3.13 Another characterization. Show that Xn → X in probability if and only
if, for some bounded continuous strictly increasing function f on R, f◦Xn →
f ◦X in probability. Hint for sufficiency: Every such f is a homeomorphism
of R onto some bounded interval (a, b), that is, f is a bijection from R onto
(a, b), it is continuous, and its functional inverse is continuous.

3.14 Continuation. Show that Xn → X in probability if and only if f◦Xn →
f ◦X in probability for every bounded continuous function f on R.
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3.15 Divergence. The sequence (Xn) is said to diverge to +∞ in probability
if P{Xn > b} → 1 as n → ∞ for every b in R+. If (Xn) diverges to +∞ and
(Yn) converges to Y , both in probability, then (Xn + Yn) diverges to +∞ in
probability. Show.

3.16 Convergence in metric spaces. Let (E, r) be a metric space. Let X1,
X2, . . . , X be E-valued random variables. Then, (Xn) is said to converge to
X in probability if the real-valued sequence of random distances r(Xn, X)
converges to 0 in probability, that is, if

lim
n

P{r(Xn, X) > ε} = 0

for every ε > 0. For E = R, taking r(x, y) = |x− y|, we obtain Definition 3.1.
Note that the metric defined by 3.7 is in fact d(X,Y ) = E(r(X,Y ) ∧ 1).

a) Show that Proposition 3.8 remains true with the present d for
sequences in the metric space (E, r).

b) Show that Theorem 3.3 is true in metric spaces.

3.17 Convergence in R
d. Fix the dimension d ≥ 1. For x, y in R

d, if x =
(x1, . . . , xd) and y = (y1, . . . , yd), put

r(x, y) =
d∑

i=1

|xi − yi| .

Show that r is a metric on R
d. Show that the sequence (Xn) in R

d converges
in probability to X in R

d if and only if X i
n → X i in probability for each

i = 1, 2, . . . , d. Show that the same is true with the Euclidean distance

r(x, y) =
√∑d

i=1(x
i − yi)2 .

4 Convergence in Lp

Let (Ω,H,P) be a probability space. For p in [1,∞), the space Lp was
introduced as the collection of all real-valued random variables X with
E|X |p <∞; see section II.3 for this and related concepts and notation.

4.1 Definition. A sequence (Xn) is said to converge to X in Lp if every
Xn is in Lp and X is in Lp and

lim
n

E |Xn −X |p = 0 .4.2

Recall the definition of Lp norm: ‖X‖p = (E|X |p)1/p. With this norm,
Lp is a normed vector space once we identify as one random variable all
random variables that are almost surely equal to each other (note that being
almost surely equal is an equivalence relation). Convergence in Lp is the
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ordinary concept of convergence in this normed vector space, because 4.2 is
equivalent to

lim
n

‖Xn −X‖p = 0 .4.3

If (Xn) converges in Lp, then the limit X is unique up to equivalence: If Y
is another random variable such that Xn → Y in Lp, then, by Minkowski’s
inequality,

‖X − Y ‖p ≤ ‖X −Xn‖p + ‖Xn − Y ‖p → 0 ,

and hence, X = Y almost surely. Also, if the sequence converges to X in Lp,
then it converges to the same X in probability: By Markov’s inequality, for
every ε > 0,

P {|Xn −X | > ε} ≤ (
1
ε
)p E |Xn −X |p → 0 .4.4

The following example illustrates that there are not many converses to this.
The full relationship between convergence in Lp and convergence in proba-
bility will be given in Theorems 4.6 and 4.9 below.

4.5 Example. Consider the sequence (Xn) of Example 3.2. We had
shown that it converges to 0 in probability. It converges to 0 in L1 as well:
the sequence of numbers E|Xn| is equal to (1, 1/2,

1/2,
1/3,

1/3,
1/3,

1/4, . . .),
which converges to 0. A slight alteration produces a sequence (X̂n) that con-
verges in probability but not in L1: Define (X̂n) = (X1, 2X2, 2X3, 3X4, 3X5,
3X6, 4X7, . . .). Since P{X̂n > ε} = EXn for ε in (0, 1), we see that X̂n → 0
in probability. But, now, E|X̂n| = 1 for all n, and (X̂n) does not converge
to 0 in L1; see 4.4 above that there could be no other limit in L1. Finally,
since X̂n → 0 in probability, it has a subsequence (for instance (X̂nk

) with
nk = 1 + (k2 − 1)k2/2) that converges to 0 almost surely, but not in L1.

Convergence, Cauchy, uniform integrability

The following is the main result of this section. We state it for p = 1 for
reasons of simplicity. See Exercise 4.13 for arbitrary p.

4.6 Theorem. Let (Xn) be a sequence of real-valued random variables.
For it, the following are equivalent:

a) It converges in L1.
b) It converges in probability and is uniformly integrable.
c) It is Cauchy for convergence in L1, that is,

lim
m,n→∞ E |Xm −Xn| = 0 .
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Proof. We shall show that (a)⇒(c)⇒(b)⇒(a). i) Assume (a) and let X
in L1 be the limit. Then,

E |Xm −Xn| ≤ E |Xm −X | + E |X −Xn| → 0

as m,n→ ∞. Thus (c) holds.
ii) Assume (c). For every ε > 0, by Markov’s inequality,

P {|Xm −Xn| > ε} ≤ 1
ε

E |Xm −Xn| → 0

as m,n → ∞. Thus, Theorem 3.9 applies, and the sequence converges in
probability. To show that the sequence is uniformly integrable we use the ε-δ
characterization of Theorem II.3.14: Fix ε > 0. Since the sequence is Cauchy
in L1, there exists an integer k = k(ε) such that E |Xm − Xn| ≤ ε for all
m,n ≥ k. Thus, for every event H ,

E |Xn|1H ≤ E |Xn −Xk|1H + E |Xk|1H ≤ ε+ E |Xk|1H

for all n ≥ k, and consequently,

sup
n

E |Xn|1H ≤ ε+ sup
n≤k

E |Xn|1H .

On the right side, the finite collection {X1, . . . , Xk} is uniformly integrable
since the Xn are integrable; see Remark II.3.13. Hence, by Theorem II.3.14,
there exists δ > 0 such that P(H) ≤ δ implies that the supremum over n ≤ k
is bounded by ε, and therefore supremum on the left side is bounded by 2ε.
Finally, taking H = Ω, we see that sup E |Xn| < ∞. Thus, the sequence is
uniformly integrable and the implication (c)⇒(b) is proved.

iii) Assume (b). Let X be the limit. By Theorem 3.3 then, there is a
subsequence (X ′

n) that converges to X almost surely, and Fatou’s lemma
yields

E |X | = E lim inf |X ′
n| ≤ lim inf E |X ′

n| ≤ sup
n

E |Xn| .

The supremum is finite by the assumed uniform integrability. Hence X is in
L1. To show that Xn → X in L1, fix ε > 0, and let Hn = {|Xn −X | > ε}.
Now, obviously,

E |Xn −X | ≤ ε+ E |Xn −X | 1Hn .

Since X is integrable and (Xn) is uniformly so, (Xn −X) is uniformly inte-
grable. Thus, there is δ > 0 such that P(Hn) ≤ δ implies that the expectation
on the right is at most ε and E |Xn −X | ≤ 2ε. Since P(Hn) → 0 by the as-
sumed convergence in probability, this completes the proof that the sequence
converges in L1. �
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Convergence of expectations, weak convergence in L1

One reason for the popularity of convergence in L1 is that it allows taking
limits inside expectations: if Xn → X in L1 then E Xn → E X . This is a
corollary to the following.

4.7 Proposition. If (Xn) converges to X in L1, then

lim E XnY = E XY4.8

for every bounded random variable Y .

Proof. Supposing that |Y | ≤ b, if Xn → X in L1, then

|E XnY − E XY | ≤ E |XnY −XY | ≤ b E |Xn −X | → 0 . �

A sequence (Xn) in L1 is said to converge weakly in L1 to X if 4.8 holds
for every bounded variable Y . If so, then 4.8 holds for every Y that is al-
most surely bounded, that is, for every Y in L∞. This mode of convergence
introduces a new topology on L1, often denoted by σ(L1, L∞).

A variation on the main results

4.9 Theorem. Suppose that (Xn) converges to X in probability. Then
the following are equivalent for it:

a) It converges to X in L1.
b) It is uniformly integrable.
c) It is a sequence in L1, and X ∈ L1, and E |Xn| → E |X |.

Proof. We have (a) ⇐⇒ (b) by Theorem 4.6, and (a) ⇒ (c) since |E|Xn|−
E|X | | ≤ E|Xn−X | . To complete the proof we show that (c) ⇒ (b). Assume
(c), and note that the convergence of (Xn) to X in probability implies the
convergence |Xn| → |X | in probability. So, there is no loss of generality in
assuming further that the Xn and X are all positive.

Let 0 < a < b < ∞. Define f : R+ → [0, a] by setting f(x) to be
x on [0, a], decrease continuously from a at a to 0 at b, and remain at 0
over (b,∞). This f is bounded and continuous. Thus, by proposition 3.5,
f ◦Xn → f ◦X in probability, and applying the implication (b) ⇒ (c) here
to the sequence (f ◦Xn) we see that E f ◦Xn → E f ◦X , and therefore,
E (Xn − f ◦Xn) → E (X − f ◦X) since E Xn → E X by assumption.
Recall that iε is the indicator of (ε,∞), note that xib(x) ≤ x − f(x) and
y − f(y) ≤ yia(y), replace x with Xn and y with X , and take expectations
to conclude that

lim sup E Xn ib◦Xn ≤ E X ia◦X .
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Fix ε > 0. By the integrability of X , the right side goes to 0 as a → ∞;
choose a so that the right side is less than ε/2. Then, definition of limit
superior shows that there is m such that

sup n>mE Xn ib◦Xn ≤ ε4.10

for all b ≥ a + 1. Since X1, . . . , Xm are in L1 by assumption, by choosing a
still larger if necessary, we ensure that 4.10 holds with the supremum taken
over all n. Thus (Xn) is uniformly integrable. �

Exercises and complements

4.11 Convergence of expectations. Let X1, X2, . . . , X be in L1. Show that
Xn → X in L1 if and only if E Xn1H → E X1H uniformly in H in H, that
is, if and only if

lim
n

sup
H∈H

|E Xn1H − E X1H | = 0.

4.12 Continuation. If Xn → X in L1, and Vn → V in L1, and (Vn) is a
bounded sequence, then E XnVn → E XV . Show.

4.13 Convergence in Lp, p ∈ [1,∞). Show that the following are equivalent
for every sequence (Xn):

a) The sequence converges in Lp.
b) The sequence is Cauchy in Lp, that is, E |Xm − Xn|p → 0 as m,

n→ ∞.
c) The sequence converges in probability and (Xp

n) is uniformly
integrable.

Hint: Follow the proof of the basic theorem and use the generalization
|x+ y|p ≤ 2p−1(|x|p + |y|p) of the triangle inequality.

4.14 Weak convergence in L1. A sequence is uniformly integrable if and only if
its every subsequence has a further subsequence that converges weakly in L1.
This is a deep result.

5 Weak Convergence

This section is about the convergence of sequences of probability measures
on a given topological space. We limit ourselves to the space R and make a
few remarks for the case of general spaces.

Let (Ω,H,P) be a probability space. Let μ1, μ2, . . . , μ be probability mea-
sures on R. Let X1, X2, . . . , X be R-valued random variables whose respective
distributions are μ1, μ2, . . . , μ. Finally, let Cb = Cb(R,R), the collection of all
bounded continuous functions from R into R.
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5.1 Definition. The sequence (μn) is said to converge weakly to μ
if limμnf = μf for every f in Cb. The sequence (Xn) is said to converge in
distribution to X if (μn) converges to μ weakly, that is, if

lim E f ◦Xn = E f ◦X

for every f in Cb.

5.2 Remarks. a) Convergence in probability (or in L1, or almost
surely) implies convergence in distribution. To see this, let Xn → X in
probability; and let f ∈ Cb. Then, by Theorem 3.3, every subsequence
of N has a further subsequence N such that Xn → X along N almost
surely, f ◦Xn → f ◦X along N almost surely by the continuity of f , and
E f ◦Xn → E f ◦X along N by the bounded convergence theorem. By the
selection principle 1.6, then, E f ◦Xn → E f ◦X .

b) There is a partial converse: Suppose that (Xn) converges to X in
distribution and X = x0 for some fixed point x0. Then, in particular, for f
defined by letting f(x) = |x− x0| ∧ 1,

E |Xn −X | ∧ 1 = E f ◦Xn → E f ◦X = f(x0) = 0 .

Thus, Xn → X = x0 in probability by Proposition 3.8.
c) In general, convergence in distribution implies no other kind. For

example, if the Xn are independent and have the same distribution as X ,
then μ1 = μ2 = · · · = μ and (Xn) converges in distribution to X . But it does
not converge in probability except in the trivial case where X1 = X2 = · · · =
X = x0 almost surely for some fixed point x0.

d) As the preceding remark illustrates, convergence of (Xn) in distribu-
tion has little to do with the convergence of (Xn) as a sequence of functions.
Convergence in distribution is merely a convenient turn of phrase for the
weak convergence of the corresponding probability measures.

5.3 Examples. a) Convergence to Lebesgue measure. Let μn be the
probability measure that puts mass 1/n at each of the points 1/n, 2/n, . . . ,
n/n. Then, for f in Cb,

μnf =
n∑

k=1

1
n
f(
k

n
) →
ˆ 1

0

du f(u) = λf ,

where λ denotes the Lebesgue measure on [0, 1]. Thus, (μn) converges weakly
to λ.

b) Quantile functions. Let q : (0, 1) → R be the quantile function cor-
responding to μ and define qn similarly for μn; see Exercise II.1.18 et seq.
Then, μ = λ◦q−1 and μn = λ◦q−1

n , where λ is the Lebesgue measure on (0, 1).
Suppose that qn(u) → q(u) for λ-almost every u in (0, 1). For f in Cb, then,
f ◦qn(u) → f ◦q(u) for λ-almost every u in (0, 1) and therefore
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μnf = λ(f ◦qn) → λ(f ◦q) = μf

by the bounded convergence theorem. Hence, if (qn) converges to q almost
everywhere on (0, 1), then (μn) converges to μ weakly. We shall see later in
Proposition 5.7 that the converse holds as well.

Characterization theorem

The following basic theorem characterizes weak convergence of (μn) to μ
in terms of the convergence of numbers μn(A). Here, ∂A denotes the bound-
ary of A, Ā its closure, Å its interior (so that Ā = A ∪ ∂A, Å = A \ ∂A,
Ā \ Å = ∂A). We also write d(x, y) for the usual distance, |x − y|, between
the points of R.

5.4 Theorem. The following are equivalent:

a) (μn) converges weakly to μ.
b) lim supμn(A) ≤ μ(A) for every closed set A.
c) lim inf μn(A) ≥ μ(A) for every open set A.
d) limμn(A) = μ(A) for every Borel set A with μ(∂A) = 0.

Proof. We shall show that (a) ⇒ (b) ⇐⇒ (c) ⇒ (d) ⇒ (a). i) Assume
(a). Let A be closed. Let d(x,A) = inf{d(x, y) : y ∈ A} and let Aε = {x :
d(x,A) < ε}. Since A is closed, Aε shrinks to A and, hence, μ(Aε) ↘ μ(A)
as ε↘ 0. Thus, to show (b), it is sufficient to show that

lim supμn(A) ≤ μ(Aε)5.5

for every ε > 0. To this end, fix ε > 0 and define f(x) = (1 − d(x,A)/ε) ∨ 0.
Then, f is continuous and bounded, and 1A ≤ f , and f ≤ 1Aε . Hence,
μn(A) ≤ μnf , μf ≤ μ(Aε), and μn(f) → μf , which show that 5.5 holds.

ii) We have (b) ⇐⇒ (c), because the complements of open sets are
closed and vice versa, and lim inf(1− rn) = 1− lim sup rn for every sequence
(rn) in [0, 1].

iii) Suppose that (c) and therefore (b) hold. Let A be a Borel set. Since
Ā ⊃ A ⊃ Å, using (b) and (c), we obtain

μ(Ā)≥ lim supμn(Ā)≥ lim supμn(A)≥ lim inf μn(A)≥ lim inf μn(Å)≥μ(Å).

If μ(∂A) = 0, then μ(Ā) = μ(Å), and all the inequalities here become equal-
ities and show that limμn(A) = μ(A), So, (d) holds.

iv) Suppose that (d) holds. Let f ∈ Cb. Choose a and b in R such that
a < f < b. Fix ε > 0 arbitrary. Considering the probability measure μ◦f−1

on (a, b), pick a = a0 < a1 < · · · < ak = b such that ai − ai−1 ≤ ε for all i
and no ai is an atom for μ◦f−1 (this is possible since a probability measure
has at most countably many atoms). Let Ai = f−1(ai−1, ai], define

g =
k∑

1

ai−11Ai , h =
k∑

1

ai1Ai



112 Convergence Chap. 3

and observe that

f − ε ≤ g ≤ f ≤ h ≤ f + ε.5.6

If x ∈ ∂Ai then f(x) is either ai−1 or ai, neither of which is an atom for
μ◦f−1. Thus, μ(∂Ai) = 0 and it follows from assuming (d) that μn(Ai) →
μ(Ai) as n → ∞ for i = 1, . . . , k. Thus, μng → μg and μnh → μh, and 5.6
yields

μf − ε ≤ μg = limμng ≤ lim inf μnf
≤ lim supμnf ≤ limμnh = μh ≤ μf + ε.

In other words, limit inferior and limit superior of the sequence (μnf) are
sandwiched between the numbers μf − ε and μf + ε for arbitrary ε > 0. So,
μnf → μf as needed to show that (a) holds. �

Uniqueness of weak limits and equality of measures

Let μ and ν be probability measures on R and suppose that μf = νf
for every f in Cb. Then, as was pointed in Exercise II.2.34, μ = ν. Here is
a simple proof: Let μn = ν for all n; then (μn) converges weakly to μ; and
it follows from the preceding theorem that ν(A) ≥ μ(A) for every open set
A. Reversing the roles of μ and ν, we conclude that μ(A) = ν(A) for every
open set A. Since the open sets form a p-system that generates the Borel
σ-algebra, it follows from Proposition I.3.7 that μ = ν.

Consequently, if (μn) converges weakly to μ and also to ν, then μf = νf
for every f in Cb, and hence μ = ν. Therefore, (μn) has at most one weak
limit.

Convergence of quantiles and distribution functions

Let μ1, μ2, . . . , μ be probability measures on R as before. Let c : R → [0, 1]
be the distribution function corresponding to μ, and q : (0, 1) → R the corre-
sponding quantile function, and let cn and qn be associated with μn similarly,
see Exercise II.2.18 et seq. for the definitions and various connections.

5.7 Proposition. The following are equivalent:

a) (μn) converges to μ weakly.
b) cn(x) → c(x) for every continuity point x of c.
c) qn(u) → q(u) for every continuity point u of q.

Proof. Suppose that (a) holds. Let x be a point of continuity for c. Then,
μ{x} = c(x)−c(x−) = 0. Since the boundary of (−∞, x] is {x}, it follows from
the characterization theorem above that cn(x) = μn(−∞, x] → μ(−∞, x] =
c(x). Thus, (a) ⇒ (b).

Suppose that (b) holds. Let u be a point of continuity for q. Set x = q(u),
fix ε > 0, pick y in (x− ε, x) and z in (x, x+ ε) to be continuity points for c.
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Since q is continuous at u, the function c does not remain flat at level u, and
hence c(y) < u < c(z). Since cn(y) → c(y) by assumption, we have cn(y) < u
and thus qn(u) > y > x − ε for all but finitely many n, which means that
lim inf qn(u) > x − ε. Similarly, cn(z) > u and therefore qn(u) ≤ z < x + ε
for all but finitely many n, which means that lim sup qn(u) < x + ε. Thus,
lim qn(u) = x = q(u); and (b) ⇒ (c).

Suppose that (c) holds. Since q is increasing right-continuous, it has at
most countably many discontinuities (all jumps), and thus q is continuous
Lebesgue-almost everywhere on (0, 1). It follows as in Example 5.3b that
(μn) converges weakly to μ, that is, (c) ⇒ (a). �

Almost sure representations of weak convergence

The equivalence of (a) and (c) in the preceding theorem can be exploited
further. The basic point is the relationship between quantiles and distribu-
tions: namely, as shown in II.2.20, μ is the image of the Lebesgue measure
on (0, 1) under the mapping q : (0, 1) → R, and similarly for μn and qn.

5.8 Theorem. The sequence (μn) converges weakly to μ if and only
if there exist random variables Y1, Y2, . . . , Y on some probability space
(Ω′,H′,P′) such that the distribution of Yn is μn for each n, the distri-
bution of Y is μ, and (Yn) converges to Y almost surely on (Ω′,H′,P′).

Proof. Sufficiency. If such random variables exist, then by Remark 5.2a,
(Yn) converges to Y in distribution, which is equivalent to saying that (μn)
converges weakly to μ.

Necessity. Suppose that (μn) converges weakly to μ. Then, the preceding
Proposition 5.7 implies that the corresponding quantile functions qn converge
to q Lebesgue-almost everywhere on (0, 1). Let Ω′ = (0, 1), H′ the Borel
σ-algebra on it, and P

′ the Lebesgue measure. Define Yn = qn and Y = q
on Ω′. Then , the distribution of Yn is P

′◦q−1
n = μn and the distribution of

Y is P
′◦q−1 = μ, and Yn(w) → Y (w) for P

′-almost every w in Ω′, (see also
Example 5.3b). �

The following translates the preceding theorem by using the euphemism
“convergence in distribution” instead of “weak convergence”.

5.9 Corollary. The sequence (Xn) converges in distribution to X if
and only if there exist random variables Y1, Y2, . . . , Y (on some probability
space) such that Yn has the same distribution as Xn for each n, and Y has
the same distribution as X, and (Yn) converges almost surely to Y .

This corollary and the preceding theorem are called Skorokhod represen-
tations especially when the space R here is replaced with some metric space,
in which case the construction of the “quantile functions” is not as easy.
However, the basic idea remains the same as with representation of measures
described in Theorem I.5.4 and Exercise I.5.15; See Exercise 5.29 for more
on this.
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Such representations elevate convergence in distribution to the level of
almost sure convergence in situations where the desired results concern only
the distributions μn and μ. Here is an illustration of the method.

5.10 Proposition. Suppose that (Xn) converges in distribution to X.
Then the following are equivalent:

a) (Xn) is uniformly integrable.
b) The Xn and X are integrable and E |Xn| → E |X |.

Proof. Let (Yn) and Y be as in the last corollary. Since (a) and (b) are in
fact statements about the marginal distributions μn and μ, it is sufficient to
show that (a) and (b) remain equivalent when theXn andX are replaced with
the Yn and Y . But, then, the equivalence is immediate from Theorem 4.9.�

It is worth noting the absence here of the third statement in 4.9, the one
about the convergence of (Xn) to X in L1. This is because convergence in L1

concerns the sequence of joint distributions πn of the pairs (Xn, X), and we
have no guarantee that the joint distribution of Yn and Y is πn for each n.

Convergence of image measures

Let h : R → R be Borel, and suppose that the set Dh of its discontinuity
points is a Borel set.

5.11 Proposition. If (μn) converges weakly to μ and if μ(Dh) = 0, then
(μn◦h−1) converges weakly to μ◦h−1. If (Xn) converges in distribution to X
and P{X ∈ Dh} = 0, then (h◦Xn) converges in distribution to h◦X.

Proof. Let the Yn and Y be as in the representation theorem 5.8. The
assumption that μ(Dh) = 0 implies that, almost surely, Y takes values out-
side Dh. Hence, almost sure convergence of (Yn) to Y implies the almost sure
convergence of (h◦Yn) to h◦Y . By Theorem 5.8, this means that (μn◦h−1)
converges weakly to μ◦h−1. This proves the first statement; the second is a
translation of the first. �

Tightness and Prohorov’s Theorem

For each f in Cb, the sequence (μnf) is bounded. In view of Proposi-
tion 1.6, if every subsequence of it has a further subsequence that converges
to μf , then μnf → μf . It follows that, if every subsequence of (μn) has a
further subsequence that converges weakly to μ, then (μn) converges weakly
to μ. The next theorem, called Prohorov’s, goes a long way toward making
this idea work. But, first, a new concept:

5.12 Definition. The sequence (μn) is said to be tight if for every ε > 0
there is a compact set K such that μn(K) > 1 − ε for all n.
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5.13 Theorem. If (μn) is tight then every subsequence of it has a further
subsequence that is weakly convergent.

Proof. Let (μn) be tight. Let (cn) be the corresponding sequence of dis-
tribution functions. Let N be a subsequence of N. By Helly’s theorem 1.7,
there is a distribution function c and a subsequence N ′ such that (cn) con-
verges along N ′ to c pointwise on the continuity set of c. To the distribution
function c, there corresponds a measure μ, which we shall show presently to
be a probability measure. Then, Proposition 5.7 implies that (μn) converges
weakly to μ, which concludes the proof.

To show that the measure μ is a probability measure on R, we need to
show that c(−∞) = 0 and c(+∞) = 1. To this end, fix ε > 0. Since (μn) is
tight, there is a closed interval [a, b] such that μn[a, b] > 1−ε for all n. Then,
cn(x) ≤ ε for all x < a, and cn(y) > 1 − ε for all y > b, these being true for
all n and therefore for all n in N ′. It follows that c(x) ≤ ε for x < a and
c(y) > 1 − ε for y > b. This implies that c(−∞) ≤ ε and c(+∞) > 1 − ε for
all ε > 0 and hence the desired end. �

Convergence of Fourier transforms

Let (μn) be as before, and let (fn) be the corresponding sequence of
Fourier transforms, that is, for each n,

fn(r) =
ˆ

R

μn(dx)eirx , r ∈ R .5.14

The next theorem connects the convergence of (μn) to that of (fn):

5.15 Theorem. The sequence (μn) is weakly convergent if and only if

lim
n
fn(r) = f(r)5.16

exists for every r in R and the function f is continuous at 0. Moreover, then,
f is the Fourier transform of a probability measure μ on R, and μ is the weak
limit of (μn).

Proof. Necessity. Assume that (μn) converges weakly to a probability mea-
sure μ on R. Then, since g : x → cos(rx) and h : x → sin(rx) are in Cb,
μng → μg and μnh→ μh and hence fn(r) = μng+ iμnh→ μg+ iμh = f(r),
where f is the Fourier transform of μ. Then, f is continuous at 0 since it is
the transform of a probability measure on R.

Sufficiency. Suppose that the limits in 5.16 exist and f is continuous at 0.
By the bounded convergence theorem,

lim
n

1
b

ˆ b

−b
dr|1 − fn(r)| =

1
b

ˆ b

−b
dr|1 − f(r)| ,
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and the right side goes to 0 as b → 0, because f(r) → f(0) = lim fn(0) = 1
as r → 0 by the assumed continuity of f at 0. Hence, for every ε > 0 there is
b > 0 such that the right side is less than ε/2, and thus

1
b

ˆ b

−b
dr|1 − fn(r)| ≤ ε5.17

for all but finitely many n.
On the other hand, using Fubini’s Theorem and 5.14,

1
b

ˆ b

−b
dr(1 − fn(r)) =

ˆ
R

μn(dx)
1
b

ˆ b

−b
dr (1 − eirx)

=
ˆ

R

μn(dx) 2(1 − sin bx
bx

)

≥
ˆ

R

μn(dx) 1(2,∞)(b|x|) = 1 − μn[−2
b
,
2
b
] ,

5.18

where the inequality is justified by noting that 1− (siny)/y is always positive
and exceeds 1/2 when |y| > 2. Putting 5.17 and 5.18 together, we see that
for every ε > 0 there is K = [−2/b, 2/b] such that μn(K) ≥ 1 − ε for all
but finitely many n. By taking b smaller if necessary, we can ensure that
μn(K) ≥ 1 − ε for all n. Hence (μn) is tight.

Consequently, by Theorem 5.13, every subsequence N of N has a further
subsequence N ′ such that (μn) converges weakly, along N ′, to some probabil-
ity measure μ′. By the necessity part, then, (fn) must converge, along N ′, to
the Fourier transform of μ′, and 5.16 implies that the Fourier transform of μ′

is f , no matter what N ′ is. In other words, every subsequence of (μn) has a
further subsequence that converges weakly to the same probability measure
μ (whose Fourier transform is f). Hence (μn) converges weakly to μ. �

Convergence of characteristic functions

The corollary next is a partial translation of the preceding theorem.
No proof is needed.

5.19 Corollary. The sequence (Xn) converges in distribution to X if
and only if

lim
n

E exp irXn = E exp irX , r ∈ R.

Exercises and complements

5.20 Uniqueness of Fourier transforms. This is to provide a proof for Exercise
II.2.35 using the tools from this section. Let μ and ν be probability measures
on R. If they have the same Fourier transform then they are equal. Show.
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5.21 Fatou’s Lemma. If Xn → X in distribution, then E |X | ≤ lim inf E |Xn|.
Show this using the almost sure representation theorem.

5.22 Sums. Suppose that Xn → X and Yn → Y , both in distribution.
Suppose that Xn and Yn are independent for each n, and X and Y are
independent. Show that Xn + Yn → X + Y in distribution.

5.23 Arithmetic of convergence in distribution. If Xn → X in distribution
then a + bXn → a + bX in distribution for every fixed a in R and b in R.
Show.

5.24 Continuation. Let Xn → X and Yn → y0, both in distribution, where
y0 is a fixed point. Then, Xn + Yn → X + y0 and XnYn → Xy0, both in
distribution. Show.

5.25 Insensitivity. If Xn → X in distribution and P{Xn �= Yn} → 0, then
Yn → X in distribution. Show.

5.26 DeMoivre-Laplace Theorem. Let B1, B2, . . . be independent Bernoulli
variables with P{Bn = 1} = p and P{Bn = 0} = 1 − p for all n; here
p ∈ (0, 1). Let Sn = B1 + · · · + Bn, and Zn = (Sn − np)/

√
np(1 − p). Show

that Zn → Z in distribution, where Z has the standard Gaussian distribution.

5.27 Convergence to Poisson distribution. Recall that the Poisson distribu-
tion is a probability measure on N = {0, 1, . . .} and N is a subset of R. Let
μ be the Poisson distribution on R with mean c, where c is a fixed number
in (0,∞).

a) Show that (μn) converges weakly to μ if and only if μn(k−ε, k+ε) →
μ{k} for every k in N and ε in (0, 1).

b) If the μn put all their mass on N, then (μn) converges to μ weakly
if and only if μn{k} → μ{k} for every k in N.

5.28 Convergence of binomial to Poisson. For each integer n ≥ 1, let
Bn,1, . . . , Bn,n be independent Bernoulli variables with “success” probability
pn, that is, pn = P{Bn,i = 1} = 1−P{Bn,i = 0}. Let Sn = Bn,1 + · · ·+Bn,n.
Assuming that E Sn = npn → c, show that the distribution of Sn converges
weakly to the Poisson distribution with mean c.

5.29 Weak convergence on metric spaces. Let (E, d) be a metric space
that is complete and separable. Let Cb = Cb(E,R) be the collection of all
bounded continuous functions from E into R. The σ-algebra on E is the Borel
σ-algebra. Let μ1, μ2, . . . , μ be probability measures on E, and X1, X2, . . . , X
be E-valued random variables with those distributions.

a) Definition 5.1 makes sense within this setup and is the definition of
weak convergence and convergence in distribution on metric spaces.

b) Characterization theorem 5.4 remains the same; even its proof
remains good.

c) Comments on the equality of measures and uniqueness of weak limits
remain in force.
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d) Distribution functions don’t make sense in the present setup.
So, Proposition 5.7 is not meaningful. However, quantile functions are
somewhat meaningful if we think of them in their generalized sense: there
exists a measurable function q : (0, 1) → E such that μ = λ ◦ q−1 where λ is
the Lebesgue measure on (0, 1). Similarly for qn and μn.

e) Theorem 5.8 remains true and is called the Skorokhod representation
theorem. Its proof is, basically, still good but needs a lot more technical
work in the definitions of q1, q2, . . . , q. See the preceding remark. Of course,
Corollary 5.9 remains true.

f) Proposition 5.10 is no longer applicable, since integrability is a con-
cept for R-valued variables (or R

d-valued at most).
g) Proposition 5.11 is still good. So is its proof.
h) Definition 5.12 of tightness remains good, but the compact set K

has to be compact in the metric space E now. Theorem 5.13 remains true,
but its proof is no longer good.

i) Fourier transforms are not applicable to measures on E. But, if E =
R
m with the usual distance, then Fourier transforms of probability measures

are defined by

f(r) = μ̂(r) =
ˆ

Rm

μ(dx)eir·x , r ∈ R
m ,

where r · x =
∑m

1 rixi, the inner product of r and x. With this definition,
Theorem 5.15 remains good on E = R

m, but the proof needs re-working.
Of course, Corollary 5.19 is good.

6 Laws of Large Numbers

Our aim is to give an introduction to an important chapter of classical
probability theory. Throughout, (Ω,H,P) is a probability space, X1, X2, . . .
are real-valued random variables, and for n ≥ 1,

Sn = X1 + · · · +Xn , X̄n =
1
n
Sn .6.1

We start with the following classical result on the long run behavior of the
averages X̄n. The statement about convergence in probability is called the
weak law of large numbers, and the one about almost sure convergence is
called the strong law of large numbers.

6.2 Theorem. Suppose that the Xn are pairwise independent and
identically distributed with finite mean a and finite variance b. Then, (X̄n)
converges to a in L2, in probability , and almost surely.

Proof. i) Note that E Sn = na, and Var Sn = nb by the pairwise inde-
pendence of the Xn. Thus, E X̄n = a and Var X̄n = b/n, and hence

E |X̄n − a|2 = Var X̄n → 0 as n→ ∞.
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In other words, X̄n → a in L2. The convergence is in probability as well since
it is implied by L2-convergence.

ii) To show the almost sure convergence we start with the observa-
tion that it is enough to prove it assuming that the Xn are all positive.
Because, then, the proof will apply to the sequences (X+

n ) and (X−
n ) sepa-

rately. Assume Xn ≥ 0 for all n. Let N = (nk) be defined by nk = k2, k ∈ N
∗.

By Chebyshev’s inequality,

ε2
∑

n∈N
P
{|X̄n − a| > ε

} ≤ b
∞∑

k=1

1/k2 <∞

for every ε > 0. It follows from Proposition 2.6, a Borel-Cantelli lemma, that
X̄n → a along N almost surely. Let Ω0 be the almost sure set over which
convergence holds.

For ω in Ω0, since the numbers Xn(ω) are all positive, Lemma 1.7 is
applicable to the sequence (X̄n(ω)) with r = limnk+1/nk = 1. Thus, for
every ω in Ω0,

a ≤ lim inf X̄n(ω) ≤ lim sup X̄n(ω) ≤ a ,

which completes the proof since Ω0 is almost sure. �

Strong law of large numbers

In the preceding theorem, the assumption that the Xn have finite variance
seems to be for reasons of simplifying the proof. Here, we shall remove that
condition. We start with the extreme case where the expected value is +∞.
We limit this to positive sequences.

6.3 Proposition. Suppose that the Xn are positive, pairwise indepen-
dent, and identically distributed as a generic random variable X with
E X = +∞. Then, X̄n → +∞ almost surely.

Proof. Fix b in R+, let Yn = Xn ∧ b, put Ȳn = (Y1 + · · · + Yn)/n. Then,
Theorem 6.2 applies to (Yn) and shows that Ȳn → E (X ∧ b) almost surely.
Since Xn ≥ Yn for all n, it follows that lim inf X̄n ≥ lim Ȳn = E(X∧b) almost
surely. This is true for arbitrary b, and E(X ∧ b) → EX = +∞ as b→ ∞
by the monotone convergence theorem. Thus, lim inf X̄n = +∞ almost
surely. �

The following theorem seems to be the latest work. The clever proof is
due to Etemadi.

6.4 Theorem. Suppose that the Xn are pairwise independent and have
the same distribution as a generic variable X. If EX exists (infinite values
are allowed), then X̄n → EX almost surely.
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Proof. Both the assumptions and the conclusion apply to positive
sequences (X+

n ) and (X−
n ) separately. Thus, it is sufficient to prove the

claim under the further assumption that the Xn and X are positive. In
fact, by replacing Xn with 3 +Xn, we may assume that Xn ≥ 3. Then, the
preceding proposition gives the proof if EX = ∞. Hence, for the remainder
of the proof, we assume that 3 ≤ X <∞ and EX <∞.

i) We shall mostly work with

Yn = Xn1{Xn<n} , Tn = Y1 + · · · + Yn , Ȳn = Tn/n ,6.5

because each Yn is bounded and, overall, they do not differ much from the
Xn: We have
∑
n P{Xn �= Yn} =

∑
n P{Xn ≥ n}

=
∑
n P{X ≥ n} ≤ ´∞

0
dt P{X ≥ t} = EX <∞ ,

which implies, through Borel-Cantelli lemma 2.5, that for almost every ω we
have Xn(ω) = Yn(ω) for all but finitely many n. Therefore, it is sufficient to
show that

Ȳn → E X almost surely.6.6

ii) Being functions of pairwise independent random variables, the Yn
are pairwise independent, which allows us to write Var Tn as the sum of the
variances of Y1, . . . , Yn. Since the distribution of Yn is the same as that of
X 1{X<n},

E Tn =
n∑

1

E X 1{X<i} = E X
∑

i>X

δi[1, n] ,6.7

Var Tn =
n∑

1

Var Yi ≤
n∑

1

EY 2
i = E X2

∑

i>X

δi[1, n] ,6.8

where δi is Dirac sitting at i as usual.
Let Zn be the sum over i, so that E Tn = E XZn. Note that Zn is the

number of integers in the interval (X,n]. The sequence (XZn/n) is dominated
by X and converges to X . Thus, by 6.7 and the dominated convergence
theorem,

E Ȳn = E XZn/n→ E X .6.9

iii) Next, we show that 6.6 holds as n→ ∞ over the sequence N = (nk)
defined by letting nk be the smallest integer exceeding eak, where a > 0 is
fixed. In view of 6.9, this is equivalent to showing that

Ȳn − EȲn → 0 almost surely along N .6.10

We do this by using a Borel-Cantelli lemma, Proposition 2.6, which requires
that we show, for every ε > 0, that

s =
∑

n∈N
P
{|Ȳn − EȲn| > ε

}
<∞.6.11



Sec. 6 Laws of Large Numbers 121

We estimate the sum s using Chebyshev’s inequality and 6.8:

ε2s ≤
∑

n∈N
Var Ȳn =

∑

n∈N
(Var Tn)/n2 ≤ E X2

∑

i>X

∑

k≥mi

(1/nk)2

where mi is the smallest integer j with nj ≥ i. Recall that nk > eak,
note that expami > i − 1. It follows that the last sum over k is less
than c · exp(−2ami) ≤ c/(i− 1)2, where the constant c is

∑∞
1 e−2aj =

1/(1− e−2a) <∞. Thus, the sum over i > X is less than the integral of c/x2

over the interval (X − 2,∞). So,

ε2s ≤ c E X2 1
X − 2

≤ c E(X + 6) <∞ ,

where we used the assumptions that X ≥ 3 and EX < ∞. This shows 6.11,
proves 6.10, and in view of 6.9, shows that

Ȳn → E X almost surely along N.6.12

iv) Let Ω0 be the almost sure set of 6.12. For ω in Ω0, since the Yn(ω)
are positive and r = limnk+1/nk = ea, the subsequence lemma 1.7 applies
to yield

e−a EX ≤ lim inf Ȳn(ω) ≤ lim sup Ȳn(ω) ≤ ea EX ,

which completes the proof of 6.6, and of the theorem, upon letting a→ 0. �

Weak law of large numbers

Returning to the classical weak law of Theorem 6.2, we observe that the
proof of convergence in L2 rests on two essential points: variance of Sn is
the sum of the variances of X1, . . . , Xn and Var (Sn/n) → 0. The first point
holds if theXn are pairwise uncorrelated, and the second point can be ensured
by much weaker conditions on Var Xn. In fact, what seems needed is some
increasing sequence (bn) with Var (Sn/bn) → 0. Here is an illustration. The
proof is elementary given Kronecker’s lemma 1.10.

6.13 Proposition. Suppose that the Xn are uncorrelated and∑
Var(Xn/bn) < ∞ for some strictly positive sequence (bn) increasing

to +∞. Then, (Sn − E Sn)/bn → 0 in L2 and in probability.

Proof. Uncorrelatedness implies that

E

∣∣∣∣
Sn − E Sn

bn

∣∣∣∣
2

= Var
1
bn
Sn = (

1
bn

)2
n∑

1

Var Xi .

Now, the assumption of summability for
∑

(Var Xn)/b2n implies, through
Kronecker’s lemma 1.10, that the right side converges to 0. This proves the
convergence in L2, and the latter implies convergence in probability. �

In the preceding proposition, if the Xn are independent (instead of being
merely uncorrelated), then the convergence is almost sure as well; see 7.10
below.
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Exercises and complements

6.14 Frequency interpretation of probabilities. Let B1, B2, . . . be independent
Bernoulli variables with success probability p, that is, p = P{Bn = 1} =
1 − P{Bn = 0}. Let Sn = B1 + · · ·+Bn, the number of successes in the first
n trials. Then, B̄n = Sn/n is the success frequency during the first n trials.
Show that B̄n → p almost surely. In the frequentist theory of probabilities,
this is the way p is defined.

6.15 Empirical distributions. Let X1, X2, . . . be independent and identically
distributed random variables taking values in some measurable space (E,E).
Let μ be their common distribution. Define

Fn(A) =
1
n

n∑

k=1

1A◦Xk , A ∈ E .

Then, for each ω in Ω, the mapping A → Fn(ω,A) is a probability mea-
sure on (E,E); thus, Fn is called the empirical distribution corresponding to
X1, . . . , Xn.

a) Show that, for each A in E, Fn(A) → μ(A) almost surely.
b) Show that, for every positive E-measurable f ,

1
n

n∑

k=1

f ◦Xk → μf

almost surely. This result is used to estimate μf by Monte Carlo methods.

6.16 Glivenko-Cantelli. This is a continuation of the preceding, but with
E = R. Let cn(ω, x) = Fn(ω, (−∞, x]) and c(x) = μ(−∞, x]. The preceding
exercise shows that, for each x, cn(ω, x) → c(x) for almost every ω. In fact,
as shown by Glivenko and Cantelli, the convergence is uniform in x, that is,

sup x∈R|cn(ω, x) − c(x)| → 0

for almost every ω.

a) It can be shown that supx |cn(x)− c(x)| → 0 provided that cn(r) →
c(r) for each rational point r and cn(x) − cn(x−) → c(x) − c(x−) at each
point x of discontinuity for c.

b) We apply the preceding to cn(ω, x) and c(x): For each rational r,
there is an almost sure event Ωr such that cn(ω, r) → c(r) for every ω in Ωr;
this is by 6.15 applied with A = (−∞, r]. For each discontinuity point x for c,
there is an almost sure event Ω′

x such that cn(ω, x)−cn(ω, x−) → c(x)−c(x−)
for every ω in Ω′

x; this is by 6.15 applied with A = {x}. Since the rationals are
countable, Ω0 = ∪rΩr is an almost sure event. Since a distribution function
has at most countably many points of discontinuity, the set Ω′

0 = ∪xΩ′
x is

an almost sure event. Thus, if ω belongs to the almost sure event Ω0 ∪ Ω′
0,

then part (a) applies to show that cn(ω, x) → c(x) uniformly in x.
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6.17 Inversion of Laplace transforms of functions. Let f be a bounded con-
tinuous function on R+, and let g be its Laplace transform, that is,

g(r) =
ˆ

R+

dt e−rtf(t) , r ∈ R+ .

Then,

f(t) = lim
n→∞

(−1)n

n!
(
n

t
)n+1g(n)(

n

t
) , t ∈ R+ ,

where g(n) is the nth derivative of g. Show this by using Theorem 6.2, the
classical strong law of large numbers. Hint: Reduce the claim to showing that

f(t) = lim
n→∞ E f(tSn+1/n)

where Sn+1 = X1 + · · · +Xn+1, and the Xi are independent and identically
distributed exponential variables with mean 1.

6.18 Laplace transforms of measures. Let μ be a probability measure on R+

and let
g(r) =

ˆ
R+

μ(dx)e−rx , r ∈ R+ .

Then, for each t for which μ{t} = 0,

lim
n→∞

∑

k≤nt

(−n)k

k!
g(k)(n) = μ[0, t] ;

here, g(k) is the kth derivative of g. Show this by following the steps below.

a) Let X1, X2, . . . be independent Poisson distributed with mean x.
Then, Sn = X1 + · · · + Xn has the Poisson distribution with mean nx.
Put X̄n = Sn/n. Show that

lim
n→∞P{X̄n ≤ t} =

{
1 if x < t ,
0 if x > t .

b) Show that

P{X̄n ≤ t} =
∑

k≤nt

e−nx(nx)k

k!
:= fn(x, t).

c) Show that the claim is the convergence of
ˆ

R+

μ(dx)fn(x, t)

to μ[0, t] for every t that is not an atom for μ. Complete the proof.



124 Convergence Chap. 3

7 Convergence of Series

Let (Ω,H,P) be a probability space. Let (Xn) be a sequence of real-
valued random variables. We are interested in the almost sure convergence of
the series

∑
Xn, in other words, the almost sure convergence of the sequence

(Sn), where Sn = X1 + · · · + Xn. All the results below are for the case
where the Xn are independent, in which case Kolmogorov’s 0-1 law aplies,
and the convergence of the series has probability 0 or 1, the better case being
our aim.

Inequalities for maxima

Suppose that the Xn have mean 0. Then, Chebyshev’s inequality yields

ε2 P{|Sn| > ε} ≤ Var Sn = E S2
n .

The following is a considerable improvement when the Xn are independent;
it is called Kolmogorov’s inequality.

7.1 Lemma. Suppose that the Xn are independent and have mean 0.
Then, for every a in (0,∞),

a2
P{max k≤n|Sk| > a} ≤ Var Sn .

Proof. Fix a > 0 and n ≥ 1. Define N(ω) = inf{k ≥ 1 : |Sk(ω)| > a} for
every ω in Ω. Note that N(ω) = k if and only if |Sk(ω| > a and |Sj(ω)| ≤ a for
all j < k. Thus 1{N=k} is a function of (X1, . . . , Xk), which shows that N is
a random variable. Moreover, by the same reason, for k < n, U = Sk 1{N=k}
and V = Sn − Sk are functions of independent vectors (X1, . . . , Xk) and
(Xk+1, . . . , Xn), and thus E UV = E U E V ; and E V = 0 since E Xi = 0
for all i by assumption. Hence, for k ≤ n,

E Sk(Sn − Sk) 1{N=k} = 0 .7.2

Note that S2
n = [Sk+(Sn−Sk)]2 ≥ S2

k+2Sk(Sn−Sk), and that |Sk|2 > a2

on the event {N = k}. Thus

E S2
n 1{N=k} ≥ a2

E 1{N=k} + 2 E Sk(Sn − Sk)1{N=k} = a2
P{N = k} ,

in view of 7.2. Summing both sides over k ≤ n and reversing the order, we get

a2
P{N ≤ n} ≤ E S2

n1{N≤n} ≤ E S2
n = Var Sn ,

which completes the proof upon noting that the event {N ≤ n} is the same
as the event that {maxk≤n |Sk| > a}. �

The assumption of independence for the Xn will be relaxed later by mar-
tingaling. For the present, the following is an estimate going in the opposite
direction.
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7.3 Lemma. Suppose that the Xn are independent, have mean zero, and
are dominated by some constant b. Then, for every a > 0,

P{max
k≤n

|Sk| > a} ≥ 1 − (a+ b)2/Var Sn .

Proof. Fix n and a. Let N be as in the preceding proof. Now the claim
is that

P{N > n}Var Sn ≤ (a+ b)2 .7.4

Fix k ≤ n. Write S2
n = S2

k + 2Sk(Sn − Sk) + (Sn = Sk)2; and note that
|Sk(ω)| ≤ a+ b if N(ω) = k, because |Sk−1(ω)| ≤ a by the definition of N(ω)
and |Xk(ω)| ≤ b by the assumed boundedness. Thus,

S2
n1{N=k} ≤ (a+ b)21{N=k} + 2Sk(Sn − Sk)1{N=k} + (Sn − Sk)21{N=k} .

On the right side, the expectation of the second term is 0 by 7.2, and the
reasoning leading to 7.2 shows that the expectation of the third term is
E(Sn − Sk)2P{N = k} ≤ P{N = k}VarSn. Hence, taking expectations on
both sides and adding over k ≤ n,

E S2
n1{N≤n} ≤ [(a+ b)2 + VarSn]P{N ≤ n} .

On the other hand, for every ω, if N(ω) > n then |Sn(ω)| ≤ a. So,

E S2
n1{N>n} ≤ E a21{N>n} = a2

P{N > n} .

Adding the last two expressions side by side we get an upper bound for
VarSn = ES2

n; and rearranging the terms somewhat we obtain 7.4. �

Convergence of series and variances

The following shows that the summability of variances implies the
convergence of the associated series:

7.5 Theorem. Suppose that the Xn are independent and have zero mean.
If
∑

Var Xn converges then
∑
Xn converges almost surely.

Proof. By Kolmogorov’s inequality applied to the sequence (Xn+m)m≥1,
for every ε > 0,

ε2P{max k≤m|Sn+k − Sn| > ε} ≤
n+m∑

n+1

Var Xi .

Assume that
∑

Var Xn <∞. Then, the right side goes to 0 as we let m→ ∞
first and n → ∞ next. Hence, the condition of Proposition 2.14 is satisfied,
and (Sn) converges almost surely. �
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The following is nearly a converse to the preceding theorem; within the
proof, the interesting trick in the second step is called symmetrization.

7.6 Proposition. Suppose that (Xn) is a bounded sequence of indepen-
dent variables. If

∑
(Xn − an) is almost surely convergent for some sequence

(an) in R, then
∑

VarXn <∞.

Proof. i) First, we prove the assertion under the extra conditions that
an = 0 and E Xn = 0 for all n. Let b be a bound for (Xm). Note that

Zm = sup k|Sm+k − Sm| = lim
n

max
k≤n

|Sm+k − Sm|,

and the limit is of an increasing sequence. Thus, for every ε > 0,

P{Zm > ε} = lim
n

P{max k≤n|Sm+k − Sm| > ε} ≥ 1 − (ε+ b)2∑∞
m+1 Var Xi

,7.7

where we used Lemma 7.3 applied to the sequence (Xm+n)n≥1. If (Sn)
converges almost surely, then Zm → 0 almost surely by Lemma 2.13,
and thus the left side of 7.7 tends to 0 as m → ∞. This is impossible if∑

Var Xi = +∞.
ii) Next we remove the extra conditions. Let (Yn) be independent of (Xn)

and have the same law. Suppose that
∑

(Xn−an) is almost surely convergent.
Then, so is

∑
(Yn − an) since the sequences (Xn) and (Yn) have the same

law. Thus,
∑

(Xn−Yn) =
∑

(Xn−an)−
∑

(Yn−an) converges almost surely
and the sequence (Xn − Yn)n≥1 is bounded and E(Xn − Yn) = 0 for all n.
Hence, part (i) of the proof applies, and we must have

∑
Var(Xn−Yn) <∞.

This completes the proof since Var(Xn − Yn) = 2Var(Xn). �

Kolmogorov’s three series theorem

This theorem gives necessary and sufficient conditions for the almost
sure convergence of the series

∑
Xn. Essentially, it amounts to combining

Theorem 7.5 and Proposition 7.6. Since (Xn) is generally not bounded, the
conditions are expressed in terms of the truncated variables

Yn = Xn1{|Xn|≤b} ,7.8

where b is a fixed constant in (0,∞).

7.9 Theorem. Suppose that the Xn are independent. Then,
∑
Xn

is almost surely convergent if and only if the following three series are
convergent:

∑
P{Xn �= Yn} ,

∑
E Yn ,

∑
Var Yn .7.10
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Proof. Sufficiency. Suppose that all three series in 7.10 are convergent.
The independence of the Xn imply the independence of the Yn. The con-
vergence of the third series implies, via Theorem 7.5, that

∑
(Yn − EYn)

converges almost surely. This and the convergence of the second series to-
gether imply that

∑
Yn converges almost surely. The last implies that

∑
Xn

converges almost surely, because the convergence of the first series shows, via
Borel-Cantelli 2.5, that for almost every ω the numbers Xn(ω) and Yn(ω)
differ for at most finitely many n.

Necessity. Suppose that
∑
Xn is convergent almost surely. Then, for

almost every ω, there are at most finitely many n with |Xn(ω)| > b, which
means that Xn(ω) �= Yn(ω) for only finitely many n. Thus,

∑
1{Xn 	=Yn} <∞

almost surely, and the independence of the Xn implies that the events
{Xn �= Yn} are independent. It follows from Borel-Cantelli lemma’s diver-
gence part, Proposition 2.9b, that the first series in 7.10 must converge.

Consequently,
∑
Yn is almost surely convergent (since

∑
Xn is so). Now,

Proposition 7.6 implies that the third series in 7.10 converges. This in turn
implies via Theorem 7.5 that

∑
(Yn−EYn) is almost surely convergent, which

together with the convergence of
∑
Yn imply that the second series in 7.10

is convergent. �

Application to strong laws

This is to show that Proposition 6.14 regarding the weak law can be
altered to a strong law. In fact, the method here is the classical way of
proving the strong law of large numbers.

7.11 Proposition. Suppose that the Xn are independent and∑
Var(Xn/bn) <∞ for some strictly positive sequence (bn) increasing to

+∞. Then, (Sn − ESn)/bn → 0 almost surely (as well as in L2).

Proof. The condition implies, through Theorem 7.5, that
∑

(Xn −
EXn)/bn converges almost surely. In turn, this implies, through Kronecker’s
lemma 1.7, the desired conclusion. �

8 Central Limits

This section is a short introduction to a topic of central importance to
classical probability theory: convergence of the distributions of sums of inde-
pendent random variables to Gaussian, Poisson, and other infinitely divisible
distributions. Throughout, (Ω,H,P) is a probability space in the background.
Also, we let Z denote a generic random variable with the standard Gaussian
distribution (with mean 0 and variance 1), and Pc a generic variable with
Poisson distribution with mean c.

We start with the following generalization of DeMoivre-Laplace theorem;
see Exercise 5.26.
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8.1 Theorem. Let X1, X2, . . . be independent and identically distributed
random variables with mean a and variance b, both finite. Let Sn = X1 +
· · · + Xn and Zn = (Sn − na)/

√
nb, n ≥ 1. Then, (Zn) converges to Z in

distribution.

Remark. The claim is that (see Proposition 5.7)

lim
n→∞ P

{
Sn − na√

nb
≤ x

}
=
ˆ x

−∞
dy

1√
2π
e−y

2/2 , x ∈ R ,

which is the usual way of presenting results like this.

Proof. Let f denote the characteristic function of (Xn − a)/
√
b, which

variable has mean 0 and variance 1. Thus, a convenient version of Taylor’s
theorem yields

f(r) = f(0) + f ′(0)r +
1
2
f ′′(0)r2(1 + h(r)) = 1 − 1

2
r2(1 + h(r))

for some function h with |h(r)| → 0 as r → 0. Since the Xn are independent,

E exp irZn =
[
f(

r√
n

)
]n

=
[
1 − r2/2

n
(1 + h(

r√
n

))
]n

→ e−r
2/2

as n → ∞, since (1 + cn/n)n → ec if c is the limit of the complex numbers
cn. Noting that exp(−r2/2) is the characteristic function of Z completes the
proof via Corollary 5.19. �

The preceding is the most famous of the central limit theorems. Assuming
a = 0 and b = 1, which is without loss of generality, the essential idea is
the following: For large n, the variable Zn = Sn/

√
n is the sum of “small”

independent random quantities

Xn,1 =
1√
n
X1, . . . , Xn,n =

1√
n
Xn .

As n → ∞, these summands approach 0 but their sum Zn has mean 0 and
variance 1 for all n. Unfortunately, such ideas got hidden under the analytic
machinery of the preceding proof. The re-formulation below and the proofs
to follow are more illuminating.

Triangular arrays

For the remainder of this section, we shall deal with an infinite
double-array

[Xnj] =

⎡

⎢⎢⎢⎣

X11 X12 X13 · · ·
X21 X22 X23 · · ·
X31 X32 X33 · · ·

...
...

...
. . .

⎤

⎥⎥⎥⎦8.2
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of real-valued random variables. For each n, there is an integer kn such that
Xnj = 0 for all j > kn. The sequence (kn) is increasing with limit +∞, and
therefore the array above is basically triangular. We let Zn denote the nth

row sum:

Zn =
∑

j

Xnj ;8.3

here (and below in similar sums) the sum is over all j; the effective range is
{1, 2, . . . , kn}, but kn will not appear explicitly.

Throughout, for each n, it is assumed that the variables on the nth row
are independent. But those on different rows may depend on each other; in
fact, in the classical case, the (n+ 1)th row determines the nth.

Liapunov’s Theorem

This is formulated with a condition on the third moments of the Xnj .

8.4 Theorem. Suppose that E Xnj = 0 for all n and j, and Var Zn = 1
for all n, and limn

∑
j E|Xnj |3 = 0. Then, Zn → Z in distribution.

Proof. We put the essential part as a lemma below. Applying the lemma
to cos rx and sin rx separately, we get

|E exp irZn − E exp irZ| ≤ 2|r|3∑jE|Xnj |3 .
The conclusion is immediate from Corollary 5.19. �

The lemma needed, due to Lindeberg, considers a sum of k independent
variables and approximates the distribution of the sum by the Gaussian dis-
tribution with the same mean and variance as the sum.

8.5 Lemma. Let Y1, . . . , Yk be independent and have mean 0. Let S be
their sum and assume that Var S = 1. Let f : R → R be differentiable thrice
and assume that the derivatives f ′, f ′′, f ′′′ are bounded and continuous, with
c a bound for |f ′′′|. Then,

|E f ◦S − E f ◦Z| ≤ c

k∑

1

E |Yj |3 .

Proof. Let Z1, . . . , Zk be independent Gaussian variables with means
E Zj = E Yj = 0 and variances Var Zj = Var Yj . Then T = Z1 + · · · + Zk
has the same distribution as Z and the claim is that

|E f ◦S − E f ◦T | ≤ c

k∑

1

E |Yj |3 .8.6

The idea is to replace, one at a time, each Yj with Zj . So, we define V1, . . . , Vk
recursively by

S = V1 + Y1 ; Vj + Zj = Vj+1 + Yj+1 , 1 ≤ j < k ,
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and note that Vk + Zk = T . Then,

f ◦S − f ◦T =
k∑

1

[f(Vj + Yj) − f(Vj + Zj)] ,

and to prove 8.6, it is enought to show that, for each j,

|E f(Vj + Yj) − E f(Vj + Zj)| ≤ cE|Yj |3 .8.7

To this end, fix j and drop it from notation. Start from Taylor’s expansion
for f :

f(v + x) = f(v) + f ′(v)x +
1
2
f ′′(v)x2 +

1
6
R(v)x38.8

where |R(v)| ≤ c, the bound for |f ′′′|. Note that V, Y, Z are independent,
and f, f ′, f ′′ are bounded, and E Y = E Z = 0, and E Y 2 = E Z2 = b2,
say (b does depend on j). Now, replace v with V and x with Y and take
expectations on both sides of 8.8; then, replace v with V and x with Z and
take expectations on both sides of 8.8; taking differences we get

|E f(V + Y ) − E f(V + Z)| ≤ c

6
(E |Y |3 + E |Z|3) .8.9

Since Z has the Gaussian distribution with mean 0 and variance E Z2 =
E Y 2 = b2, a direct computation shows that E |Z|3 = b3

√
8/π ≤ 2b3. Since

L2-norm is at most equal to L3-norm, b = (E Y 2)1/2 ≤ (E|Y |3)1/3. Hence,

E |Y |3 + E |Z|3 ≤ E |Y |3 + 2E |Y |3 = 3E |Y |3 .
Putting this into 8.9 shows 8.7 and completes the proof. �
8.10 Remark. Going back to Liapunov’s theorem, we note that the
norming hypotheses on the means and variances are harmless. Suppose
that Zn has mean an and variance b2n. Then, the theorem applies to the
triangular array [Ynj ] with Ynj = (Xnj − E Xnj)/bn to show that, if
lim b−3

n

∑
j E |Xnj − E Xnj |3 = 0, then (Zn − an)/bn → Z in distribution.

8.11 Corollary. Let an = E Zn and b2n = Var Zn. Suppose that an → a
and bn → b, where b �= 0. Assume that for each n and j there is a constant
cnj such that |Xnj | ≤ cnj and that limn supj cnj = 0. Then, (Zn − a)/b → Z
in distribution.

Proof. Put Ynj = (Xnj − E Xnj)/bn. Note that |Ynj ≤ 2cnj/bn ≤ εn,
where εn = 2(maxj cnj)/bn, and therefore |Ynj |3 ≤ εn|Ynj |2. Thus,

∑

j

E |Ynj |3 ≤ εn
∑

j

(Var Xnj)/bn = εn ,

and εn → 0 in view of the assumptions on bn and cnj. Hence, Theorem 8.4
applies to the array [Ynj ] to show that (Zn − an)/bn =

∑
j Ynj → Z in

distribution. Since an → a and bn → b, this implies (via Exercise 5.24) that
(Zn − a)/b→ Z in distribution. �
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Lindeberg’s Theorem

The idea here is to replace the condition on third moments by something
weaker, called Lindeberg’s condition: For every ε > 0,

Ln(ε) =
∑

j

E X2
nj iε◦|Xnj| → 0, n→ ∞ ,8.12

this being after the reduction assumptions that E Xnj = 0 and Var Zn = 1,
and with the notation iε = 1(ε,∞) as before and īε = 1 − iε = 1[0,ε] to come.

8.13 Theorem. Suppose that E Xnj = 0 and Var Zn = 1 for all n and j.
If 8.12 holds then Zn → Z in distribution.

Proof. Assume 8.12. Then, for every ε > 0 there is an integer m(ε) such
that Ln(ε) ≤ ε3 for all n ≥ m(ε), and we may choose m(ε) to be increasing
to +∞ as ε decreases to 0. Choose εn for each n so that m(εn) ≤ n for all
n large enough (essentially, n → εn is the functional inverse of ε → m(ε)).
Then

lim
n

(
1
εn

)2

Ln(εn) = 0 .8.14

Let Ynj = Xnj īεn ◦|Xnj| and put Sn =
∑

j Ynj . Then,

P{Zn �= Sn} ≤
∑

j

P{Xnj �= Ynj} =
∑

j

P{|Xnj| > εn} ≤
(

1
εn

)2

Ln(εn)

where the last inequality follows from the observation that ε2iε◦|X | ≤ X2iε◦
|X | for arbitrary ε and X . As n → ∞, the right-most member goes to 0;
thus, Exercise 5.25 applies, and to complete the proof, it is enough to show
that Sn → Z in distribution. But, since |Ynj | ≤ εn and εn → 0, Corollary
8.11 above implies that Sn → Z in distribution once we show that

E Sn → 0 , Var Sn → 1 .8.15

To show 8.15, we estimate the mean and variance of Ynj with all subscripts
dropped. Since E X = 0, we have E Y = E Y − E X = −E Xiε◦|X |, which
yields

|E Y | ≤ E |X |iε◦|X | ≤ 1
ε

E X2iε◦|X | .8.16

Second, using the first inequality of 8.16

Var Y ≥ E X2īε◦|X | − (E |X |iε◦|X |)2
≥ E X2īε◦|X | − E X2iε◦|X | = E X2 − 2E X2iε◦|X | ,8.17

where we used Jensen’s inequality to justify the second inequality. Third, in
the other direction,

Var X = E X2 ≥ E Y 2 ≥ Var Y .8.18



132 Convergence Chap. 3

Finally, we put back the subscripts n and j in 8.16, 8.17, 8.18, and sum them
over j to get (recall that V ar Zn = 1)

|E Sn| ≤ 1
εn
Ln(εn) , 1 − 2Ln(εn) ≤ Var Sn ≤ 1 .8.19

Now 8.14 and 8.19 together imply 8.15, and the proof is complete. �

8.20 Remarks. a) In addition to ensuring that Zn → Z in distribution,
Lindeberg’s condition implies that the Xnj are uniformly small compared
with Zn for large n, that is,

lim
n

P{max j |Xnj | > ε} = 0 for every ε > 0 .8.21

To see this, let Hn be the event here, note that Hn = ∪j{|Xnj| > ε}, and use
Boole’s inequality and a Chebyshev type argument to get P(Hn) ≤ Ln(ε)/ε2.

b) It follows that Lindeberg’s condition is not necessary for Zn → Z
in distribution. For example, assuming E Zn = 0 and Var Zn = 1 as be-
fore, suppose that all the Xnj have Gaussian distributions and, in particular,
Var Xn,1 = 1/2 for all n. In this case, Zn has the same standard Gaussian
distribution as Z, and Zn → Z trivially, but 8.21 fails because of the chunk
Xn,1 that does not get small with n.

c) However, assuming E Xnj = 0 and Var Zn = 1 as before, Lindeberg’s
condition is necessary and sufficient in order that Zn → Z in distribution and
that

lim
n

max
j

P{|Xnj| > ε} = 0 for every ε > 0 .8.22

Its sufficiency is immediate from the preceding theorem and the Remark (a)
above, since 8.21 implies 8.22. The proof of its necessity requires hard work.

Feller-Lévy theorem

The essential assumptions in Lindeberg’s theorem concern the finiteness
of second moments. In the most general case, where “nothing is assumed,”
we have the following theorem. We omit the proof.

8.23 Theorem. In order that 8.22 hold and (Zn − an) converges in dis-
tribution to Z for some sequence (an) in R, it is necessary and sufficient that,
for every ε > 0

lim
n

∑

j

E |Xnj |iε◦|Xnj| = 0 , lim
n

∑

j

Var Xnj īε◦|Xnj| = 1 .

Convergence to Poisson distribution

Consider the array 8.2 with the assumptions stated there. Suppose that
the Xnj take values in N = {0, 1, . . .}. Then, row sums Zn take values in N
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and, without further norming, if (Zn) converges in distribution, the limit must
take values in N. The following is about convergence to Poisson variables.
We let Pc denote the generic random variable having the Poisson distribution
with mean c, where c is a constant in (0,∞).

8.24 Theorem. Let the Xnj take values in N. Suppose that

lim
n

max
j

P{Xnj ≥ 1} = 0 , lim
n

∑

j

P{Xnj ≥ 1} = c , lim
n

∑

j

P{Xnj ≥ 2} = 0 .

Then, Zn → Pc in distribution.

Proof. Put Bnj = Xnj ∧ 1 and Sn =
∑

j Bnj . Then,

P{Zn �= Sn} ≤
∑

j

P{Xnj �= Bnj} =
∑

j

P{Xnj ≥ 2} → 0

as n → ∞. Thus, by Exercise 5.25, it is enough to show that Sn → Pc.
In turn, the latter is equivalent to showing that the Laplace transforms con-
verge correctly; that is, we need to show that

E exp(−rSn) =
∏

j

[
P{Bnj = 0} + e−rP{Bnj = 1}]→ exp

[−c(1 − e−r)
]

for every r in R+. To this purpose, fix r, let xnj = (1 − e−r)P{Ynj = 1},
and put b = (1− e−r)c. With these notation, what we need is translated into
proving the next lemma. �

8.25 Lemma. Let xnj form a triangular (that is, for each n there is kn
such that xnj = 0 for all j > kn) array of positive numbers. Suppose that

lim
n

max
j
xnj = 0 , lim

n

∑

j

xnj = b .

Then, limn

∏
j(1 − xnj) = e−b.

Proof. Since lim maxxnj = 0, we have xnj ≤ 1/2 for all j when n is large
enough. By working with such n exclusively, we may and do assume that
xnj ≤ 1/2 for all n and j. For x in [0, 1/2], Taylor’s theorem shows that

|x+ log(1 − x)| =
∞∑

2

xm

m
≤ 1

2
x2 1

1 − x
≤ x2 .

Thus,

|
∑

j

xnj +
∑

j

log(1 − xnj)| ≤
∑

j

x2
nj ≤ (max

j
xnj)

∑

i

xni → 0 .
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Since lim
∑
j xnj = b = − log e−b, this shows that

lim
n

| log
∏

i

(1 − xnj) − log e−b| = 0 ,

which is equivalent to the desired conclusion. �

The preceding is very close to Lindeberg’s theorem, at least in spirit.
Take n very large. The probability that Xnj ≥ 2 for some j is basically
zero by the assumption that

∑
j P{Xnj ≥ 2} → 0. Thus, the contribution

of Xnj to the sum Zn is either 0 or 1, that is, the Xnj are nearly Bernoulli
variables. Moreover, the probability that the contribution is 1 is very small
since P{Xnj ≥ 1} → 0. Thus, the sum Zn consists of a large number of nearly
Bernoulli variables whose success probabilities are uniformly small, but the
sum of those probabilities is E Zn, which is roughly c. So, the situation
resembles that for the convergence of the binomial distribution to the Poisson
distribution; see Exercise 5.28.

Convergence to infinitely divisible variables

A random variable Z is said to be infinitely divisible provided that, for
each integer n ≥ 1, there are independent and identically distributed random
variables Zn,1, . . . , Zn,n whose sum has the same distribution as Z. A prob-
ability measure is said to be infinitely divisible if it is the distribution of an
infinitely divisible variable. It follows that the Fourier transform f of such a
measure is characterized by the property that f 1/n is the Fourier transform
of a probability measure for each n.

Poisson distributions, Gaussian distributions, and gamma distributions
are all infinitely divisible; see Exercise II.5.22 for a proof. It is obvious that
the sums of infinitely divisible random variables are infinitely divisible. We
shall show later that, in fact, every infinitely divisible random variable is the
sum of a Gaussian variable and a limit of linear combinations of independent
Poisson variables.

The theorems above have shown that the row sums of the array 8.2 con-
verge in distribution to Gaussian or Poisson variables under certain condi-
tions. The following shows that, in general, the limits are infinitely divisible.

8.26 Theorem. Suppose that the array 8.2 is strictly triangular (that is,
kn = n) and that Xn1, . . . , Xnn are independent and identically distributed.
If (Zn) converges in distribution to some variable Z, then Z is infinitely
divisible. Conversely, if Z is an infinitely divisible random variable, then there
is an array [Xni] whose row sums Zn converge in distribution to Z.

Proof. The converse statement is trivial: if Z is infinitely divisible, there
are independent and identically distributed variablesXnj , j = 1, . . . , n, whose
sum has the same distribution as Z; then, we define the array by these Xnj

and the row sums Zn have the same distribution as Z for all n.
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Assume that the array is as described and that Zn → Z in distribution;
we need to show that Z is infinitely divisible. Fix m; we need to show that
there are independent and identically distributed variables Y1, . . . , Ym whose
sum has the same distribution as Z.

Let nk = mk, k ≥ 1. Consider the nth
k row of the array and let S1,k be

the sum of the first k variables there, S2,k the sum of the next k variables,
and so on, ending with Sm,k, the sum of the last k variables at or before the
diagonal. Then, these m sums are independent and identically distributed
and their sum is Znk

= Zmk.
In Lemma 8.27 below we shall show that there is a subsequence K such

that (S1,k) converges in distribution along K to some random variable Y1.
Then, since Sjk has the same distribution as S1,k, the sequence (Sjk) con-
verges in distribution along the same K to some variable Yj for j = 1, . . . ,m,
and moreover the variables Y1, . . . , Ym are identically distributed and can
be made to be independent. The independence of the Sj,k for j = 1, . . . ,m
implies (see Exercise 5.22) that

Zmk = S1,k + · · · + Sm,k → Y1 + · · · + Ym

in distribution as k → ∞ along K. In other words, (Zn) has a subsequence
that converges to Y1 + · · ·+Ym in distribution. Since Zn → Z in distribution
by assumption, this implies that Z has the same distribution as Y1+ · · ·+Ym,
and the proof is complete. �

The Lemma needed in the proof is next, with the same assumptions and
notations.

8.27 Lemma. The sequence (S1,k) has a subsequence that is convergent
in distribution.

Proof. In view of Theorem 5.13 on tightness and existence of subsequences
that converge, it is enough to show that the distributions of S1,k, k ≥ 1, form
a tight family.

Suppose, to the contrary, that the family is not tight. Then, there exists
ε > 0 such that for every b in R+ there is a subsequence J such that P{S1,k ∈
[−b, b]} ≤ 1 − 2ε for every k in J , which implies that either P{S1,k > b} or
P{S1,k < −b} exceeds ε. Since S1,k, . . . , Sm,k are independent and identically
distributed and sum to Zmk, it follows that either P{Zmk > mb} or P{Zmk <
−mb} exceeds εm. Thus,

P{|Zmk| > mb} ≥ εm

for every k in J . Since (Zn) converges in distribution to Z, this implies
that P{|Z| > mb} ≥ εm for every b such that mb and −mb are points of
continuity for the distribution function of Z. Letting b → ∞ we see that
P{S ∈ R} ≤ 1 − εm < 1, which contradicts the definition of convergence in
distribution. �
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Finally, returning to the array 8.2 with the assumptions stated there, we
state the following general theorem which also identifies the limiting distri-
bution. We do not assume identical distribution for the elements of a row.
Recall that ∂A denotes the boundary of A. We omit the proof.

8.28 Theorem. Suppose that the array [Xnj ] satisfies the “infinitesimal-
ity” condition 8.22. In order that (Zn−an) converge in distribution for some
(an) in R, it is necessary and sufficient that there exist a constant b ≥ 0 and
a measure λ on the Borel σ-algebra of R satisfyingˆ

R

λ(dx)(x2 ∧ 1) <∞8.29

such that
lim
n

∑

j

P{Xnj ∈ A} = λ(A)

for every Borel set A with λ(∂A) = 0, and

lim
ε→0

lim inf
n→∞

∑

j

Var Xnj īε◦|Xnj| = lim
ε→0

lim sup
n→∞

∑

j

Var Xnj īε◦|Xnj| = b .

In the case of convergence, the constants an can be chosen as

an =
∑

j

E Xnj1[−c,c]◦Xnj

where c > 0 is an arbitrary constant such that neither c nor −c is an atom
of λ. With this choice of (an) and assuming convergence, the limit variable
Z is infinitely divisible and its characteristic function is

exp
{
−1

2
r2b+

ˆ
R

λ(dx)
[
eirx − 1 − irx1[−c,c](x)

]}
, r ∈ R .

In Chapter VII we shall construct infinitely divisible variables. The mea-
sure λ appearing in the theorem is called the Lévy measure; it is defined to
satisfy 8.29, which is used to show that certain series converge.

Exercises

8.30 Lyapunov’s condition. Suppose that

lim
n

∑

j

E|Xnj |2+δ = 0

for some δ > 0. Show that this implies Lindeberg’s condition.

8.31 Lindeberg’s theorem. The classical case of Theorem 8.1 can be put in
the form of an array 8.2 by defining Xnj = Xj/

√
n, j = 1, . . . , n, for some

sequence (Xn) of independent and identically distributed variables. Show
that, assuming Var Xn = b < ∞, then, Lindeberg’s condition holds. So,
Lindeberg’s theorem subsumes the classical case.
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8.32 Convergence to Poisson. Suppose that the nth row of the array 8.2 is
(Xn,1, . . . , Xn,n, 0, 0, . . .) where the Xnj are independent and identically
distributed N-valued variables with

pn = P{Xnj ≥ 1} , qn = P{Xnj ≥ 2} .

If nqn → 0 and npn → c for some constant c > 0, then Zn → Pc in distribu-
tion. Show this directly.





Chapter IV

Conditioning

This chapter is a continuation of Chapter II. We start with conditional
expectations, namely, estimation of a random variable in the presence of
partial information. Then, the notion of conditional independence follows
as a natural generalization of independence, where the role played by the
expectation operator is now played by the conditional expectation opera-
tor. Finally, we discuss various ways of constructing random variables and
stochastic processes.

1 Conditional Expectations

Let (Ω,H,P) be a probability space. Let F be a sub-σ-algebra of H, and
X an R̄-valued random variable. As usual, we regard F both as a collection of
events and as the collection of all F-measurable random variables. Moreover,
we think heuristically and regard F as a body of information, namely, the
information that determines the values V (ω) for all V in F and all ω in Ω.
Recall from Chapter II, Section 4, that knowing the value V (ω) is much less
than knowing ω but, rather, it affords us to infer various properties of ω.

Heuristically, the conditional expectation of X given F is a random vari-
able X̄ such that, for every possibility ω, X̄(ω) is the “best” estimate of X(ω)
based on the information F. So, X̄ must be determined by F, and among all
random variables determined by F it must be the “closest” to X , the terms
“best” and “closest” having a definite meaning at least when X is square
integrable, that is, when EX2 < ∞. Then, E(X − Y )2 can be regarded as
a measure of the error committed by using Y as an estimate of X , and we
want E(X − X̄)2 ≤ E(X − Y )2 for all Y in F.

Preparatory steps

These are to illustrate the thought processes involved and to motivate
the formal definitions to come. Recall that H is the collection of all events
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and is also the collection of all R̄-valued random variables, H+ being the
subcollection consisting of the positive (R̄+-valued) variables. Similarly, for
the sub-σ-algebra F, we regard F as the collection of all F-measurable ran-
dom variables and F+ as the sub-collection of positive ones. To simplify the
discussion here, we assume X ∈ H+.

Let H be an event. Fix ω in Ω. Suppose that all that is known about ω is
that it is in H . Based on this information, our best estimate of X(ω) should
be the “average” of X over H , namely, the number

EHX =
1

P(H)

ˆ
H

XdP =
1

P(H)
EX1H1.1

assuming that P(H) > 0. If P(H) = 0 then so is the integral over H and
we allow EHX to be any positive number desired. This estimate is best in
the same sense that EX is the best number estimating X(ω) when nothing
whatsoever is known about ω, which corresponds to the case H = Ω (see
Exercise II.2.15). The number EHX is called the conditional expectation of
X given the event H .

Suppose, next, that F is generated by a measurable partition (Hn) of Ω.
For fixed ω again, consider what our estimate of X(ω) should be if we were
given the information F. Given F, we shall be able to tell which one of the
events H1, H2, . . . includes ω, and if it were Hn that included ω then our
estimate X̄(ω) would be EHnX . In other words,

X̄(ω) =
∑

n

(EHnX)1Hn(ω).1.2

Doing this thinking for each possibility ω, we arrive at a random variable X̄ ,
which we denote by EFX and call the conditional expectation of X given F.
Figure 3 is for the case where Ω = (0, 1), H is the Borel σ-algebra, and P is
the Lebesgue measure on Ω, and F = σ{H1, H2, H3}.

To see the proper generalization for arbitrary F we mark two properties
of X̄ = EFX for the special F above. First, X̄ belongs to F, that is, X̄ is
determined by the information F. Second, E V X = E V X̄ for every V in
F+; this is obvious from 1.1 and 1.2 when V = 1Hn for some fixed n, and
it extends to arbitrary V in F+ through the monotone convergence theorem,
because every such V has the form V =

∑
an1Hn for this F. We use these

two properties to define conditional expectations and proceed to show their
existence, uniqueness, and various properties.

Definition of conditional expectations

1.3 Definition. Let F be a sub-σ-algebra of H. The conditional expec-
tation of X given F, denoted by EFX, is defined in two steps: For X in H+,
it is defined to be any random variable X̄ that satisfies
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0 1H1

X

EFX

H2 H3

ω

Figure 3: The conditional expectation EFX is that F-measurable random
variable that is closest to X .

1.4 a) measurability: X̄ belongs to F+, and
b) projection property: E V X = E V X̄ for every V in F+,

and then we write EFX = X̄ and call X̄ a version of EFX. For arbitrary X
in H, if EX exists, then we define

EFX = EFX
+ − EFX

−;1.5

otherwise, if EX+ = EX− = +∞, then EFX is left undefined.

1.6 Remarks. a) Projection property. For X in H+, the projection
property 1.4b for X̄ = EFX is equivalent to the condition that

E 1HX = E 1HX̄, H ∈ F.

This is immediate from the monotone convergence theorem used on both
sides of the equality to extend it from indicators to simple variables and from
simple to arbitrary positive V in F.

b) Tests for equality. This is to recall an elementary point made in
Remark II.2.3d. If Y and Z are in F+ and if

E V Y ≤ E V Z for every V in F+

or for every indicator 1H in F+, then Y ≤ Z almost surely (and the almost
sure set {Y ≤ Z} is in F). If the inequality is in fact an equality for all V in
F+, then Y = Z almost surely.
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c) Uniqueness of conditional expectations. Let X̄ and ¯̄X be versions of
EFX for X ≥ 0. Then they are both in F+ and E V X̄ = E V X = E V ¯̄X
for every V in F+. It follows from the preceding remark that X̄ = ¯̄X almost
surely. Conversely, if EFX = X̄, and if ¯̄X ∈ F+ and ¯̄X = X̄ almost surely,
then ¯̄X satisfies 1.4 and hence is another version of EFX . This uniqueness
up to equivalence extends to EFX for arbitrary X for which EX exists; see
also (f) below.

d) Language. In view of the uniqueness up to equivalence, the definite
article in “the conditional expectation . . . ” is only a slight abuse of language.
For the same reason, EFX should be regarded as an all-purpose notation for
each and every version X̄ . Some authors take the extra logical step and define
“the conditional expectation . . . ” to be the equivalence class of all versions,
and then use EFX as a representative of that class, and write “EFX = X̄
almost surely” to mean that X̄ is a version.

e) Integrability. If X ∈ H+ then E X = E EFX in view of the pro-
jection property with V = 1; thus, if X is integrable then so is EFX . This
remark applies to X+ and X− separately for arbitrary X and, thus, if X
is integrable then so is EFX . Hence, if X is integrable and EFX = X̄, the
projection property can be expressed as

E V (X − X̄) = 0 for every bounded V in F.

In general, ifX is not integrable, this expression fails to have meaning because
the expectation involved might fail to exist.

f) Definition for arbitrary X . If X+ is integrable, then so is EFX
+

which implies that EFX
+ is real-valued almost surely, and a similar statement

holds for X−. Thus, if EX exists, there is an almost sure event Ω0 in F such
that, on Ω0, at least one of the random variables EFX

+ and EFX
− is real-

valued, and therefore, X̄ = EFX
+−EFX

− is well-defined on Ω0. By putting
X̄ equal to 0 outside Ω0 for definiteness, we obtain a well-defined version X̄
of EFX .

g) Heuristics. Suppose that X is integrable; then, so is X̄ = EFX and
so is X̃ = X − X̄. We thus have a decomposition

X = X̄ + X̃

where X̄ is determined by the information F, and X̃ is orthogonal to F

(that is, E 1HX̃ = 0 for all events H in F; see the remark (e) above). For
this reason, we may call X̄ the orthogonal projection of X onto F, and the
defining property 1.4b is named “projection property” to suggest this picture.
We shall return to this theme and make it rigorous in Theorem 1.11.

Existence of conditional expectations

The following proposition uses the Radon-Nikodym theorem to show the
existence of conditional expectations. We limit the proposition to positive
X , since the extension to arbitrary X is covered by Remark 1.6f above. See
1.15 below for another proof which is independent of the Radon-Nikodym
theorem.
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1.7 Theorem. Let X ∈ H+. Let F be a sub-σ-algebra of H. Then EFX
exists and is unique up to equivalence.

Proof. For each event H in F, define

P (H) = P(H), Q(H) =
ˆ
H

P(dω)X(ω).

On the measurable space (Ω,F), then, P is a probability measure, and Q is
a measure that is absolutely continuous with respect to P . Hence, by I.5.11,
the Radon-Nikodym theorem, there exists X̄ in F+ such that

ˆ
Ω

Q(dω)V (ω) =
ˆ

Ω

P(dω)X̄(ω)V (ω)

for every V in F+. This shows that X̄ is a version of EFX . For its uniqueness
up to almost sure equality, see Remark 1.6c. �

Properties similar to expectations

The following properties are the same as those for expectations. They are
easy to show and will not be proved. Throughout, F is a sub-σ-algebra of
H, all the random variables are in H (that is, they are arbitrary R̄-valued
variables), the constants a, b, c are real numbers, and it is assumed that
all conditional expectations involved exist. Of course, all these conditional
expectations exist if all the random variables are positive or integrable.

1.8 Monotonicity: X ≤ Y ⇒ EFX ≤ EFY .

Linearity: EF(aX + bY + c) = a EFX + b EFY + c.

Monotone convergence theorem: Xn≥ 0, Xn↗X ⇒ EFXn↗EFX .

Fatou’s lemma: Xn ≥ 0 ⇒ EF lim inf Xn ≤ lim inf EFXn.

Dominated convergence theorem: Xn → X , |Xn| ≤ Y, Y integrable
⇒ EFXn → EFX .

Jensen’s inequality: f convex ⇒ EFf(X) ≥ f(EFX).

1.9 Remark. There are occasions when the properties above require
careful interpretation, because conditional expectations are unique only up to
equivalence. To illustrate, we now re-state the monotone convergence theorem
for them in precise terms and prove it:

Suppose that (Xn) ⊂ H+ and Xn ↗ X . Then there are versions
X̄n of EFXn and X̄ of EFX such that X̄n ↗ X̄ .

To show this, let X ′
n be a version of EFXn for each n. By monotonicity,

for each n, X ′
n ≤ X ′

n+1 almost surely. Thus, there is an almost sure event
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Ω0 in F such that, for every ω in Ω0, we have X ′
1(ω) ≤ X ′

2(ω) ≤ · · ·. Define
X̄n(ω) = X ′

n(ω) for ω in Ω0 and put X̄n(ω) = 0 for ω outside Ω0. Then, each
X̄n is a version of EFXn, and (X̄n) is an increasing sequence in F+; let X̄ be
the limit. Then, X̄ ∈ F+ and, for V ∈ F+,

E V X̄ = lim E V X̄n = lim E V Xn = E V X

where the projection property 1.4b justifies the middle equality sign, and the
ordinary monotone convergence theorem the other two. Thus, X̄ is a version
of EFX .

Special properties

The following theorem summarizes the properties special to conditional
expectations. Heuristically, conditional determinism is that, if W is deter-
mined by F then it should be treated as if it is a deterministic number.
For the repeated conditioning, think of F as the information a fool has, and
G as that a genius has: the genius cannot improve on the fool’s estimate, but
the fool has no difficulty worsening the genius’s. In repeated conditioning,
fools win all the time.

1.10 Theorem. Let F and G be sub-σ-algebras of H. Let W and X be
random variables (in H) such that EX and EWX exist. Then, the following
hold:

a) Conditional determinism: W ∈ F ⇒ EFWX = WEFX.
b) Repeated conditioning: F ⊂ G ⇒ EFEGX = EGEFX = EFX.

Proof. We give the proofs for W and X positive; the general cases follow
by easy considerations.

a) Suppose X ∈ H+ and W ∈ F+. Then X̄ = EFX is in F+ and

E V · (WX) = E (V ·W )X = E (V ·W )X̄ = E V · (WX̄)

for every V in F+, where the crucial middle equality sign is justified by the
projection property for X̄ and the fact that VW ∈ F+. Hence,WX̄ = WEFX
is a version of EF(WX).

b) Let F ⊂ G and X ∈ H+. Since W = EFX is in F+ by definition,
we have that W ∈ G+ and hence EGW = W by the conditional determinism
property proved above. This proves the second equality in the statement
of repeated conditioning. There remains to show that, with Y = EGX and
X̄ = EFX ,

EFY = X̄.

Obviously, X̄ ∈ F+. To check the projection property, let V ∈ F+. By the
definition of X̄, we have E V X̄ = E V X . By the definition of Y , we have
E V Y = E V X , since V ∈ G+, which is in turn because V ∈ F+ and F ⊂ G.
Hence, E V X̄ = E V Y as needed. �
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Conditioning as projection

We return to the beginnings. Recall the heuristic remarks about EFX ,
its geometric interpretation as a projection, and its interpretation as an
F-determined estimate that minimizes the expected value of the squared er-
ror caused by such estimates of X . The following theorem is the rigorous
statement justifying such remarks. As a corollary, we obtain a second proof
of the existence and uniqueness Theorem 1.7, this time without recourse to
the unproved Radon-Nikodym theorem.

Since we shall be dealing with “expected value of squared error,” we are
necessarily limited to square-integrable random variables in the next theorem.
Accordingly, if F is a sub-σ-algebra of H, we write L2(F) for the collection
of all square-integrable random variables in F; then, L2(H) is the L2-space
introduced in Chapter II.

1.11 Theorem. For every X in L2(H) there exists a unique (up to equiv-
alence) X̄ in L2(F) such that

E |X − X̄|2 = infY ∈L2(F)E |X − Y |21.12

Moreover, X − X̄ is orthogonal to L2(F), that is, for every V in L2(F),

E V · (X − X̄) = 01.13

1.14 Remarks. Obviously, X̄ = EFX . With EXY as the inner product
of X and Y , the space L2(H) is a complete Hilbert space, and L2(F) is
a subspace of it. In the terminology of such spaces, X̄ is the orthogonal
projection of the vector X onto L2(F), and we have the decomposition X =
X̄ + X̃ where X̄ is in L2(F) and X̃ is orthogonal to L2(F).

Proof. It is convenient to use the L2-norm introduced in Chapter II,
section 3, but omitting the subscripts: Thus, ‖X‖ = ‖X‖2 =

√
EX2. Fix

X in L2(H). Define
δ = inf Y ∈L2(F)‖X − Y ‖

and let (Yn) ⊂ L2(F) such that δn = ‖X − Yn‖ → δ as n→ ∞.
We show now that (Yn) is Cauchy for convergence in L2(F). Note that

|Yn − Ym|2 = 2 |X − Ym|2 + 2 |X − Yn|2 − 4 |X − 1
2 (Ym + Yn)|2

and take expectations to get

E|Yn − Ym|2 ≤ 2δ2m + 2δ2n − 4δ2,

since ‖X−Y ‖ ≥ δ for every Y in L2(F) and in particular for Y = 1
2 (Ym+Yn).

Hence, (Yn) is Cauchy, and by Theorem III.4.6 and III.4.13, there exists
X̄ in L2(F) such that ‖Yn − X̄‖ → 0 as n → ∞. Of course, X̄ is unique up
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to almost sure equality. Since X̄ ∈ L2(F), we have ‖X − X̄‖ ≥ δ; and by
Minkowski’s inequality (see Theorem II.3.6),

‖X − X̄‖ ≤ ‖X − Yn‖ + ‖Yn − X̄‖ −→ δ + 0 = δ.

It follows that ‖X − X̄‖ = δ as needed to complete the proof of the first
statement.

Moreover, for V in L2(F) and a real, since E(X − X̄)2 = δ2,

a2
E V 2−2a E V · (X− X̄)+δ2 = ‖aV − (X− X̄)‖2 = ‖X− (aV + X̄)‖2 ≥ δ2

because aV + X̄ ∈ L2(F). Thus, a2
E V 2 − 2a E V · (X − X̄) ≥ 0 for every

real number a, which is impossible unless 1.13 holds. �

1.15 Second Proof For 1.7. Let X ∈ H+. Define Xn = X ∧n, which
is in L2(H). Thus, by the preceding theorem, there is X̄n in L2(F) such that,
for every V in L2(F),

E VXn = E V X̄n1.16

Now fix V = 1H for some event H in H. Then, since Xn ↗ X , 1.16 implies
that (X̄n) increases almost surely to some X̄ in F+, and the monotone con-
vergence theorem shows that EV X = EV X̄. �

Conditional expectations given random variables

Let Y be a random variable taking values in some measurable space.
Recall that σY denotes the σ-algebra generated by Y , which consists of nu-
merical random variables of the form f ◦Y for some measurable function f ;
see II.4.1 et seq. For X in H, the conditional expectation of X given Y is
defined to be EσYX . Similarly, if {Yt : t ∈ T } is a collection of random vari-
ables taking values in some measurable spaces, the conditional expectation
of X given {Yt : t ∈ T } is EFX with F = σ{Yt : t ∈ T }. Of course, these
two definitions coincide when the collection {Yt : t ∈ T } is identified with
Y = (Yt)t∈T . The following is an immediate consequence of the definitions
here and Theorem II.4.4.

1.17 Theorem. Let X ∈ H+. Let Y be a random variable taking values
in some measurable space (E,E). Then, every version of EσYX has the form
f◦Y for some f in E+. Conversely, f◦Y is a version of EσYX if and only if

E f ◦Y h◦Y = E X · h◦Y for every h in E+.1.18

In the preceding theorem, the hypothesis that X be positive is inessential,
except for ensuring that the conditional expectation exists. If X is integrable,
the claim remains the same for f in E and bounded h in E+. Also, when X
is integrable, 1.18 can be replaced, via a monotone class – monotone conver-
gence argument, with the requirement that it hold for h = 1E and h = 1A
for every A in some p-system E0 that generates E.
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Notation

The traditional notation for EFX is E(X |F). The notation EFX is
sharper, conveys better its meaning as a projection, is clearer in expressions
like EFEG, and conforms to ordinary practices in notations for operators.
The other, E(X |F) is no better than a shorthand, but has the advantage
of being more linear and more convenient when F has to be replaced by a
cumbersome expression. For instance, it is usual to write E(X |Yt : t ∈ T ) for
EFX when F = σ{Yt : t ∈ T }.

The notations E(X |Y ) and EσYX are used often to denote EFX with F =
σY . Similarly, E(X |H) is the traditional notation for EHX and works better
when H is expressed in terms of other things, for example, if H = {Y = y}.

Finally, the notation E(X |Y = y) is used and read “the conditional expec-
tation ofX given that Y = y” despite its annoying ambiguity. It is reasonable,
when P{Y = y} > 0, as a notation for EHX = E(X |H) with H = {Y = y}.
It is also used when P{Y = y} = 0 for all y, and the proper interpretation
then is that it is a notation for f(y) when f ◦Y = EσYX .

Examples

1.19 Remaining lifetime. A device is installed at time 0. It is known that the
device has not failed during [ 0 , t ]. We would like to estimate its remaining
lifetime. Let X represent the length of its life. What we know is that the
event H = {X > t} has occurred (that is, outcome is a point in H). We want
to compute EH(X − t) = EHX − t:

Let μ be the distribution of X . Then, with H = {X > t},

EHX=
1

P(H)
E X1H =

1
μ(t,∞)

ˆ
R+

μ(ds) s 1(t,∞)(s)=
1

μ(t,∞)

ˆ
(t,∞)

μ(ds)s.

1.20 Effect of independence. Suppose that X and Y are independent and
take values in (E,E) and (D,D) respectively. If f ∈ E+ and g ∈ D+, then

EσY f ◦X g◦Y = g◦Y E f ◦X1.21

This adds meaning to independence: information obtained by observing Y
determines g ◦Y , but is worthless for estimating f ◦X . To see 1.21, first
observe that the right side is a constant multiple of g◦Y and hence satisfies
the measurability condition that it be in σY . To check for the projection
property, let V be positive and in σY ; then V = h◦Y for some h in D+, and
the required equality, namely,

E f ◦X g◦Y h◦Y = E h◦Y g◦Y E f ◦X

follows from the definition of independence (see Proposition II.5.6).
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1.22 Continuation. Let X and Y be as in 1.20 above. Then, for every positive
h in E ⊗ D,

EσY h(X,Y ) = h̄◦Y,1.23

where h̄(y) = E h(X, y) for each y in D. First, we note that h̄ ∈ D+ by
Fubini’s theorem, and thus h̄◦Y has the measurability required for it to be
a conditional expectation given Y . As to the projection property, we observe
that the collection of h in E ⊗ D for which

E V · h(X,Y ) = E V · h̄◦Y1.24

for some fixed V in (σY )+ is a monotone class, and it includes all such h of the
form h(x, y) = f(x)g(y) by the preceding example. Thus, by the monotone
class theorem, 1.24 holds for all positive h in E⊗D for which the conditional
expectation is defined (that is, if E h(X,Y ) exists).

1.25 Conditional expectation of a part given the whole. Let X and Y be
independent and gamma distributed with the respective shape indices a and
b, and the same scale parameter c. Then we have seen in Example II.2.11
that Z = X + Y and U = X/(X + Y ) are independent, and some easy
computations give EX = a/c and EZ = (a + b)/c. Now, E UZ = EU · EZ
by independence, from which we solve for EU to get E U = a/(a + b) since
UZ = X . By the same token, using 1.21, we have

EσZX = EσZUZ = Z EU =
a

a+ b
Z.

Exercises

1.26 Relationship between EFX and EHX. Let H be an event and let F =
σH = {∅, H,Hc,Ω}. Show that EFX(ω) = EHX for all ω in H .

1.27 Remaining lifetime. In Example 1.19, suppose that μ is the exponential
distribution with parameter c. Show that, for H = {X > t},

EHX = t+ EX.

Heuristically, then, if we know that X(ω) > t but nothing further about ω,
our estimate of the lifetime X(ω) is t + 1/c. That is, the remaining lifetime
at time t is as if the device is new at time t. This property characterizes the
exponential distribution: if μ is absolutely continuous and E(X |X > t) = t+a
for some constant a and all t ≥ 0, then μ is the exponential distribution with
parameter c = 1/a. Prove this.

1.28 Conditional probabilities–elementary setup. Let H and G be events. The
conditional probability of G given H , denoted by PH(G) or by P(G|H), is
defined to be EH1G. Show that it satisfies

P(H ∩G) = P(H)PH(G).
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If P(H) > 0, this defines PH(G) uniquely. If P(H) = 0, then so is P(H ∩G),
and PH(G) can be taken to be any convenient number in [0, 1].

1.29 Expectations given an event. Let X ∈ H+ and let H be an event with
P(H) > 0. Show that, similar to the result of Exercise II.2.14,

EHX =
ˆ

R+

dt PH{X > t}.

1.30 Expectations given discrete variables. Let X ∈ H+. Let Y be a random
variable taking values in some countable set D. Show that, then, EσYX =
f ◦Y , where f is defined by

f(a) = E(X |Y = a) =
ˆ

R+

dt P{X > t|Y = a}, a ∈ D.

1.31 Bounds. If X ≤ b for some constant b then EFX ≤ b. If X takes values
in [a, b], then so does EFX .

1.32 Conditional expectation operator. The mapping EF : X �→ EFX maps
Lp(H) into Lp(F) for every p in [1,∞]. For p = 1 see Remark 1.6e, for p = 2
see Theorem 1.11, and for p = +∞ see 1.31 above.

1.33 Continuation. IfXn → X in Lp for some p in [1,∞], then EFXn → EFX
in Lp with the same p. Show.

1.34 Continuation. If (Xn) is uniformly integrable and converges to X in
probability, then EFXn → EFX in L1. Hint: see Theorem III.4.6 and the
preceding exercise.

2 Conditional Probabilities

and Distributions

Let (Ω,H,P) be a probability space. Let F be a sub-σ-algebra of H.
For each event H in H,

PFH = EF1H2.1

is called the conditional probability of H given F. In more elementary settings,
for events G and H , the conditional probability of H given G is defined to be
any number PG(H) in [0, 1] satisfying

P(G ∩H) = P(G)PG(H);2.2

of course, it is unique when P(G) > 0.
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Regular versions

Let Q(H) be a version of PFH for each H in H. We may, and do, assume
that Q(∅) = 0 and Q(Ω) = 1. Of course, Q(H) is a random variable in the
σ-algebra F; let Qω(H) denote its value at the point ω of Ω.

At first, the mapping Q : (ω,H) �→ Qω(H) looks like a transition
probability kernel from (Ω,F) into (Ω,H): By the definition of conditional
expectations, the mapping ω �→ Qω(H) is F-measurable for each H in H; and
by the monotone convergence property of 1.8, for every disjointed sequence
(Hn) in H,

Qω(∪nHn) =
∑

n

Qω(Hn)2.3

for almost every ω in Ω. It is this “almost” that keeps Q from being a tran-
sition kernel, and it is a serious limitation in this case.

Generally, the almost sure event Ωh of all ω for which 2.3 holds depends
on the sequence h = (Hn). The set Ω0 of all ω for which H �→ Qω(H)
is a probability measure is equal to ∩Ωh, where the intersection is over all
disjointed sequences h. We need Ω0 to be almost sure before we can fix
Q to become a kernel. But, usually, there are uncountably many disjointed
sequences h and, hence, the intersection Ω0 is generally a miserable object:
Ω0 might fail to belong to F or even to H, and even if Ω0 is in F, we might
have P(Ω0) < 1 or even P(Ω0) = 0.

Nevertheless, it is often possible to pick versions of Q(H) such that
Ω0 = Ω. Such versions are highly prized.

2.4 Definition. Let Q(H) be a version of PFH for every H in H. Then
Q : (ω,H) �→ Qω(H) is said to be a regular version of the conditional prob-
ability PF provided that Q be a transition probability kernel from (Ω,F) into
(Ω,H).

The reason for the popularity of regular versions is the following:

2.5 Proposition. Suppose that PF has a regular version Q. Then,

QX : ω �→ QωX =
ˆ

Ω

Qω(dω′)X(ω′)

is a version of EFX for every random variable X whose expectation exists.

Proof. It is sufficient to prove this for X in H+. For such X , by (Fubini’s)
Theorem I.6.3 applied to the transition kernel Q and function X , we see that
QX ∈ F+. It is thus enough to check the projection property, namely that,
for V in F+,

E V X = E V QX.

Fix V . For X = 1H , this is immediate from the definition of Q(H) = Q1H
as a version of PFH = EF1H . This extends first to simple random variables
X and then to arbitrary positive X by the linearity of, and the monotone
convergence theorem for, the operators X �→ QX and Z �→ EZ. �
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Existence of a regular version for PF requires conditions either on F or on
H. For instance, if F is generated by a partition (Gn) of Ω, which is the case
if F is generated by a random variable taking values in a countable space,
then

Qω(H) =
∑

n

(PGnH)1Gn(ω) , ω ∈ Ω, H ∈ H,2.6

defines a regular version, since 2.2 yields a probability measureH �→ PGH for
each G. When F is arbitrary, the approach is to define Q(H) for all H from a
judiciously chosen collection of versions Q(Hn) for some sequence (Hn) in H,
and this requires conditions or limitations on H. The following is the general
result on existence. We shall give the proof afterward in Remark 2.11; see
Chapter I, Section 2 for standard spaces.

2.7 Theorem. If (Ω,H) is a standard measurable space, then PF has a
regular version.

Conditional distributions

Let Y be a random variable taking values in some measurable space (E,E).
Let F be a sub-σ-algebra of H. Then, the conditional distribution of Y given
F is any transition probability kernel L : (ω,B) �→ Lω(B) from (Ω,F) into
(E,E) such that

PF{Y ∈ B} = L(B), B ∈ E.2.8

If PF has a regular version Q, then

Lω(B) = Qω{Y ∈ B}, ω ∈ Ω, B ∈ E,2.9

defines a version L of the conditional distribution of Y given F. In general,
the problem is equivalent to finding a regular version of PF restricted to the
σ-algebra generated by Y . The following is the standard result.

2.10 Theorem. If (E,E) is a standard measurable space, then there ex-
ists a version of the conditional distribution of Y given F.

2.11 Remark. Theorem 2.7 is a straightforward corollary of the preced-
ing theorem: Suppose that (Ω,H) is standard. Define Y (ω) = ω for all ω
in Ω. Then, Theorem 2.10 applies with (E,E)= (Ω,H), and the conditional
distribution of Y given F is precisely the regular version of PF in view of 2.8
and the fact that H = {Y ∈ H} for every H in H = E.

Proof of 2.10. First, we give the proof for E = R̄ and E = B(R̄). For each
rational number q, let

Cq = PF{Y ≤ q}.
We shall construct the conditional distribution L of Y given F from these
countably many random variables Cq .
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Since {Y ≤ q} ⊂ {Y ≤ r} for q < r, the monotonicity of conditional
expectations implies that the event Ωqr = {Cq ≤ Cr} in F is almost sure
for every pair of rationals q and r with q < r. Let Ω0 be the intersection of
all those Ωqr; it belongs to F and is almost sure. Fix ω in Ω0. The mapping
q �→ Cq(ω) from the rationals into [0, 1] is increasing, and thus, for each t
in R, the limit C̄t(ω) of Cq(ω) over all rationals q > t exists. The resulting
function t �→ C̄t(ω) is a cumulative distribution function on R, and there
is a unique probability measure L̄ω on (E,E) that admits t �→ C̄t(ω) as its
distribution function. We define

Lω(B) = 1Ω0(ω)L̄ω(B) + 1Ω\Ω0(ω)δ0(B), ω ∈ Ω, B ∈ E,

where δ0 is Dirac at 0. We proceed to show that L is as desired.

a) For each ω in Ω, Lω is a probability measure on (E,E).
b) Let D be the collection of all B in E for which L(B) : ω �→ Lω(B) is

in F+. It is checked easily that D is a d-system. Thus, in order to show that
D = E via the monotone class theorem, it is enough to show that [−∞, t] ∈ D

for every t in R. Fix t such, let B = [−∞, t], and note that

L(B) = 1Ω0 · C̄t + 1Ω\Ω0δ0(B) = lim
n

1Ω0 · Crn + 1Ω\Ω0δ0(B),

where (rn) is a sequence of rationals strictly decreasing to t. On the right
side, Ω0 ∈ F and Ω \ Ω0 ∈ F and δ0(B) is a constant and every Crn is in
F+ by choice. Hence, L(B) ∈ F+ and, therefore, B ∈ D. In other words,
ω �→ Lω(B) is in F+ for every B in E.

c) We have shown that L is a transition probability kernel from (Ω,F)
into (E,E). To show that it is the conditional distribution of Y given F, there
remains to show the projection property for 2.8, that is, we need to show that

P(H ∩ {Y ∈ B}) = E 1HL(B)2.12

for H in F and B in E. By the same monotone class argument as in part (b)
above, it is enough to check this for B = [−∞, t] with t in R. Fix t and let
(rn) be a sequence of rationals strictly decreasing to t. Then, by the way Cq
are chosen,

P(H ∩ {Y ∈ B}) = lim
n

P(H ∩ {Y ≤ rn}) = lim
n

E 1HCrn .2.13

On the other hand, 1H = 1H∩Ω0 almost surely, and Crn(ω) → C̄t(ω) = Lω(B)
for ω in Ω0. Thus,

lim E 1HCrn = E 1H∩Ω0L(B) = E 1HL(B).2.14

Now, putting 2.13 and 2.14 together yields 2.12 and completes the proof for
the case E = R̄.
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Finally, we extend the proof to the general case where (E,E) is a standard
measurable space. Then, there is an isomorphism g from E onto some Borel
subset Ê of [0, 1]; let h : Ê �→ E be the functional inverse of g. The preceding
part applies to the real-valued random variable g◦Y and shows the existence
of the conditional distribution L̂ : (ω,B) �→ L̂ω(B) from (Ω,F) into (Ê, Ê)
for g◦Y given F. We now put

Lω(A) = L̂ω(h−1A), ω ∈ Ω, A ∈ E.

It is obvious that L is a transition probability kernel from (Ω,F) into (E,E),
and observing that, for H in F and A in E,

P(H ∩ {Y ∈ A}) = P(H ∩ {g◦Y ∈ h−1A}) = E 1H · L̂(h−1A) = E 1HL(A)

completes the proof that L is the conditional distribution of Y given F. �

Disintegrations

The usual method of constructing measures over a product space was
discussed in Chapter I, Section 6. Here, we treat the converse problem of
disintegrating a given measure to its components. In the next subsection,
we shall provide probabilistic meanings to such constructions and disintegra-
tions. We start with a brief recall.

Let (D,D) and (E,E) be measurable spaces. Let μ be a probability
measure on (D,D) and let K be a transition probability kernel from (D,D)
into (E,E). Then, according to Theorem I.6.11, the following formula for
positive f in D ⊗ E defines a probability measure π on the product space
(D × E,D ⊗ E):

πf =
ˆ
D×E

π(dx, dy)f(x, y) =
ˆ
D

μ(dx)
ˆ
E

K(x, dy)f(x, y).2.15

Indeed, π is the unique measure (on the product space) that satisfies

π(A×B) =
ˆ
A

μ(dx)K(x,B), A ∈ D, B ∈ E2.16

In keeping with the short notation system mentioned in I.6.22, we write

π(dx, dy) = μ(dx)K(x, dy), x ∈ D, y ∈ E,2.17

to represent π defined by 2.15 and/or 2.16. This is the usual method of
constructing a measure π on the product space from the measure μ and
kernel K. In the next subsection, we shall give a probabilistic meaning to
2.17: if π is the joint distribution of X and Y , then μ(dx) is “the probability
that X is in the small set dx” and K(x, dy) is “the conditional probability
that Y is in the small set dy given that X is equal to x.”
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The problem of disintegration is the converse to the construction
described: given a probability measure π on the product space, find μ
and K such that 2.17 holds (or, equivalently, 2.15 or 2.16 holds). The fol-
lowing is the general result; note that this is an exact converse to Theorem
I.6.11 but for the condition that (E,E) be a standard measurable space.

2.18 Theorem. Let π be a probability measure on the product space
(D × E,D ⊗ E). Suppose that (E,E) is standard. Then, there exist a proba-
bility measure μ on (D,D) and a transition probability kernel K from (D,D)
into (E,E) such that 2.17 holds.

Proof. We cast the problem into a special case of Theorem 2.10. Let W =
D×E, W = D⊗E, P = π. On the probability space (W,W, P ), define random
variables X and Y by putting X(w) = x and Y (w) = y for w = (x, y) in W .
Let μ be the distribution of X , that is, μ(A) = π(A × E), A ∈ D. Since Y
takes values in the standard measurable space (E,E), by Theorem 2.10, there
is a regular version L of the conditional distribution of Y given F = σX . Note
that F consists of measurable rectangles of the form A× E; thus, a random
variable V is in F+ if and only if V (x, y) = v(x), free of y, for some function
v in D+. It follows that Lw(B) = K(X(w), B), where K is a transition
probability kernel from (D,D) into (E,E). Now, the projection property for
L(B) yields, if A ∈ D and B ∈ E, writing E for the integration under P = π,

π(A×B) = E 1A◦X 1B◦Y = E 1A◦X K(X,B) =
ˆ
D

μ(dx)1A(x)K(x,B).

This shows 2.15 for f = 1A×B , and the general case follows from a monotone
class argument. �

Conditional distribution of Y given X

We return to the general setup of an arbitrary probability space (Ω,H,P).
Let X and Y be random variables taking values in the measurable spaces
(D,D) and (E,E) respectively. By the conditional distribution of Y given
X is meant the conditional distribution of Y given F, where F = σX , the
σ-algebra generated by X . The following is the description of such. Note that
its condition is fulfilled at least when (E,E) is standard; see the preceding
theorem.

2.19 Theorem. Suppose that the joint distribution π of X and Y has the
representation 2.17. Then, the kernel L defined by

Lω(B) = K(X(ω), B), ω ∈ Ω, B ∈ E,

is a version of the conditional distribution of Y given F = σX, and for every
positive f in D ⊗ E,

EFf(X,Y ) =
ˆ
E

K(X, dy)f(X, y).
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Proof. The statement about L is immediate from Theorem 2.10 and the
observation that F = σX consists of D-measurable functions of X . Then, by
the meaning of L, if h ∈ E+,

EFh(Y ) =
ˆ
E

K(X, dy)h(y).

Thus, if f = g×h for some g in D+ and h in E+, the conditional determinism
property allows g(X) to come out of EF, and we have

EFf(X,Y ) = g(X)EFh(Y ) =
ˆ
E

K(X, dy)f(X, y)

as claimed. Since measurable rectangles generate D ⊗ E, the monotone class
theorem completes the proof. �

The claims of the preceding theorem form the exact meaning of the phrase
“given that X = x, the conditional probability that Y ∈ B is equal to
K(x,B).” The intuitive meaning, of course, is that transition probability
kernels represent conditional probabilities, and that conditional probabilities
are often the primary data in the construction of probability measures on
product spaces.

Returning to the representation 2.17, which holds usually by construction
or by a result like Theorem 2.18, we add that it holds trivially if X and Y are
independent, and then K(x,B) = ν(B) is free of x. The following provides
another construction leading to it.

Conditional densities

This is to mention a situation that is encountered often, especially in
elementary probability. In the setup of the preceding subsection, suppose
that the joint distribution π of X and Y has the form

π(dx, dy) = μ0(dx)ν0(dy)p(x, y), x ∈ D, y ∈ E,2.20

where μ0 and ν0 are σ-finite measures on (D,D) and (E,E) respectively, and
p is a positive function in D⊗E; often, D = E = R

d and μ0 = ν0 = Lebesgue.
This π can be put in the form 2.17:

π(dx, dy) = [μ0(dx)m(x)][ν0(dy)k(x, y)],

where

m(x) =
ˆ
E

ν0(dy)p(x, y), k(x, y) =
{
p(x, y)/m(x) if m(x) > 0,´
D
μ0(dx′)p(x′, y) if m(x) = 0.

Then the function y �→ k(x, y) is called the conditional density (with respect
to ν0) of Y given that X = x.
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2.21 Example. Let Y and Z be independent and have the standard
Gaussian distribution on R. As an illustration of the computations discussed
above, we now derive the conditional distribution of Y given X = Y + Z.

First, we find the joint distribution π of X and Y . To that end, we repeat
that Y is standard Gaussian, whereas the conditional distribution of X given
Y is Gaussian with mean Y and variance 1, because Z is independent of Y
and X is the sum of Z and the “known” quantity Y given. Thus,

π(dx, dy) = dy
1√
2π
e−y

2/2 dx
1√
2π
e−(x−y)2/2.

We also know that the distribution μ of X = Y + Z is Gaussian with mean
0 and variance 2, that is,

μ(dx) = dx
1√
4π
e−x

2/4.

It follows that the conditional distribution K(x, ·) of Y given X = x is

K(x, dy) =
π(dx, dy)
μ(dx)

= dy ·
√

4π√
2π

√
2π

exp
[
−y

2

2
− (x− y)2

2
+
x2

4

]

= dy
1√
π

exp
[
−(y − 1

2
x)2

]
,

which we recognize as the Gaussian distribution with mean x/2 and variance
1/2. To re-iterate, given the sum X = Y +Z, the conditional distribution of Y
is B �→ K(X,B), the Gaussian distribution with mean 1

2
X and variance 1/2.

Exercises

2.22 Conditional distributions. Let Y take values is (E,E). Let F be a sub-σ-
algebra of H, let L be a transition probability kernel from (Ω,F) into (E,E).
As usual, for g in E+,

Lg(ω) =
ˆ
E

Lω(dy)g(y), ω ∈ Ω.

Show that, if L is the conditional distribution of Y given F, then, for every
g in E+,

EF g◦Y = Lg.

2.23 Continuation. Let F = σX for some random variable X with values
in (D,D). Suppose that Lω(B) = K(X(ω), B) for some transition probabil-
ity kernel K from (D,D) into (E,E). Then, in the measure-kernel-function
notation, show that

E f ◦X g◦Y = E f ◦X Kg(X) =
ˆ
D

μ(dx)f(x)
ˆ
E

K(x, dy)g(y).

for every f in D+ and g in E+. In particular, then,

EF g◦Y = Kg(X).
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2.24 Gamma variables. Let Y and Z be independent gamma distributed vari-
ables with shape indices a and b respectively, and the same scale parameter
c. Let X = Y +Z. Find the kernel K such that the conditional distribution of
Y given X is K(X, ·). In particular, for a = b = 1, show that K(x, dy) = 1

x
dy

for y in (0, x).

2.25 Gaussian with gamma variance. Let X,Y, Z be as in Exercise II.2.30.
Show that the conditional distribution of Z given X is K(X, ·) where

K(x, dz) = dz
1√
2πx

e−z
2/2x, x > 0, z ∈ R.

Show that

EX eirZ = e−r
2X/2,

and that

E eirZ = E EX eirZ = E e−r
2X/2 =

(
2c

2c+ r2

)a
.

This should explain the workings of II.2.30.

2.26 Independence. Let X and Y be independent and taking values in (D,D)
and (E,E) respectively. Let Z = h(X,Y ) for some h in D ⊗ E. Then, show
that, the conditional distribution of Z given X is given as K(X, ·) where

K(x,B) = P{Z ∈ B | X = x} = P{h(x, Y ) ∈ B}.
Moral: Given that X = x, in most situations, we are allowed to replace X
with x in our computations. Of course, to repeat the point of Example 1.22,
then, EσXZ = h̄◦X where

h̄(x) = E[Z | X = x] = E h(x, Y ), x ∈ D.

2.27 Stochastic process at a random time. This is a far-fetched corollary of the
preceding. Let Y = (Yt)t∈R+ be a stochastic process with state space (E,E).
Suppose that the mapping (t, ω) �→ Yt(ω) from R+ ×Ω into E is measurable
relative to BR+⊗H and E; this condition is fulfilled automatically if t �→ Yt(ω)
is right continuous for every ω, assuming that E is topological. We think of
R+ as the time-set and of Yt as the state of some system at the fixed time t.
Now, let T be a random time, that is, a random variable taking values in R+.
We are interested in the state of the system at that random time, namely, YT .

a) Show that YT : ω �→ YT (ω)(ω) is a random variable taking values
in (E,E).

b) Assume that T and Y are independent. Show that, for f in E+,

EσT f ◦YT = g◦T, E f ◦YT = E g◦T,
where

g(t) = E f ◦Yt.
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3 Conditional Independence

This is an important generalization of the concept of independence, and
it is reduced to independence when the conditioning σ-algebra is trivial.

Let F,F1, . . . ,Fn be sub-σ-algebras of H. Then F1, . . . ,Fn are said to be
conditionally independent given F if

EF V1 · · ·Vn = EF V1 · · ·EF Vn3.1

for all positive random variables V1, . . . , Vn in F1, . . . ,Fn respectively.
This definition compares to the definition II.5.1 of independence except for

the substitution of EF for E. Hence, all the results for independence have their
counterparts for conditional independence given F, and these counterparts are
obtained by replacing E with EF throughout. Of course, if F is trivial, that
is, if F = {∅,Ω}, then EF = E and conditional independence given F is the
same as independence.

Heuristically, independence of F1 and F2 meant that information F1 is
useless as far as estimating the quantities determined by F2. Similarly for
conditional independence given F: given the information F, the further infor-
mation provided by F1 is useless in estimating quantities determined by F2.
Here is the precise version of this remark.

3.2 Proposition. The following are equivalent:

a) F1 and F2 are conditionally independent given F.
b) EF∨F1V2 = EFV2 for every positive V2 in F2.
c) EF∨F1V2 ∈ F for every positive V2 in F2.

Proof. Throughout V, V1, V2 are positive and in F,F1,F2 respectively.
Consider (a). It is equivalent to having

EF V1V2 = (EF V1)(EF V2) = EF (V1 EF V2),

where the last equality is justified by the conditional determinism property.
This is in turn equivalent to having, by definition,

E V V1V2 = E V V1 EF V2,

which is equivalent to (b), since random variables of the form V V1 generate
the σ-algebra F ∨ F1. Thus, (a) ⇐⇒ (b). It is obvious that (b) =⇒ (c).
Conversely, if (c) holds, then

EF∨F1V2 = EF EF∨F1V2 = EF V2

by the conditional determinism property followed by repeated conditioning.
Hence, (c) =⇒ (b). �
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3.3 Remark. The definition of conditional independence and the preced-
ing theorem are stated in terms of positive random variables. As usual, this
is because we want to avoid the trite but annoying considerations involved
with arbitrary variables.

3.4 Warning. It is possible that F1 and F2 are independent, but fail to
be conditionally independent given F. Here is an extreme example of this
state of affairs: Let X and Y be independent and identically distributed
positive random variables and let Z = X + Y . Then, F1 = σX and F2 = σY
are independent, but they are not independent given F = σZ. In fact, in this
case, EF∨F1Y = Y whereas EFY = 1

2Z.

Conditional independence of random variables etc.

The definition of conditional independence is extended to various settings
by following the conventions for independence. For example, for an arbitrary
index set T , the sub-σ-algebras Ft, t ∈ T , are said to be conditionally in-
dependent given F if Ft1 , . . . ,Ftn are so given F for all integers n ≥ 2 and
choices t1, . . . , tn in T . Random variables Xt, t ∈ T , are said to be condi-
tionally independent given F if the σ-algebras they generate are so given F.
If F = σX , then “given F”is replaced by “given X”. And so on.

Exercises

It will be convenient to introduce a shorthand system for conditional
independence. We propose the notation a]c[b for “a and b are conditionally
independent given c”. The notation conveys our mental image that a and b
are kept apart (to act independent of each other) by the force of c between
them. The arguments a, b, c are σ-algebras ordinarily, but some or all could
be random variables, events, collections, etc. If c is the trivial σ-algebra,
then we omit it from notation and write a][b, which means that a and b are
independent.

Throughout the following, letters like F and G and so on are sub-σ-
algebras of H, and X and Y and so on are random variables.

3.5 Arithmetic of conditional independence. Show the following:

F1]F[F2 ⇐⇒ F2]F[F1

⇐⇒ F1 ∨ F]F[F2 ⇐⇒ F1]F[F ∨ F2

⇐⇒ G1]F[G2 for all G1 ⊂F1 and G2 ⊂ F2.

3.6 Proposition 3.2. Checks for conditional independence can always be
reduced to the pairwise case of Proposition 3.2: Show that F1, . . . ,Fn are
conditionally independent given F if and only if F1 ∨ · · · ∨ Fk]F[Fk+1 for
k = 1, 2, . . . , n− 1.
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3.7 Continuation. As a corollary to Proposition 3.2, show the following.
Supposing that F ⊂ F1, we have F1]F[F2 if and only if EF1V2 ∈ F for all
positive V2 in F2.
3.8 Uses of the monotone class theorems. Show that the following are
equivalent,

a) F1]F[F2.
b) PF∨F1H ∈ F+ for every eventH in some p-system that generates F2.
c) PF(H1 ∩ H2) = (PFH1)(PFH2) for every H1 in some p-system

generating F1 and every H2 in some p-system generating F2.
3.9 Continuation. Show that F1]F[{Xt : t ∈ T } if and only if F1]F[{Xt : t ∈
T ′} for every finite T ′ ⊂ T . Here, each Xt is a random variable taking values
in some measurable space (Et,Et).
3.10 Continuation. Let X1, . . . , Xn be random variables taking values in
(E1,E1), . . . , (En,En). In view of Proposition 3.2, F1]F[(X1, . . . , Xn) if and
only if EF1∨FV is in F for every positive V in σ(X1, . . . , Xn), that is, for every
V having the form V = f(X1, . . . , Xn) for some positive f in E1 ⊗ · · · ⊗ En.
Show that, in fact, it is sufficient to check the condition for f having the form

f(x1, . . . , xn) = f1(x1) · · · fn(xn), x1 ∈ E1, . . . , xn ∈ En,

where each fk is in Ek and positive. Furthermore, each fk can be taken to
be bounded, or the indicator of an arbitrary set in Ek, or the indicator of
a set belonging to some p-system that generates Ek , or, assuming that Ek
is topological and Ek = B(Ek), a bounded continuous function. Finally, if
Ek = R

d with Ek = B(Rd), one can take fk(x) = exp(irk · x) with rk in R
d

and r · x denoting the inner product of r and x.
3.11 Conditional independence as independence. Suppose that there is a reg-
ular version Q of the conditional probability PF. Suppose that F1 and F2 are
independent under the probability measure Qω, this being true for P-almost
every ω, that is, there exists an almost sure event Ω0 such that

QωV1V2 = (QωV1)(QωV2)

for every ω in Ω0 and positive V1 in F1 and positive V2 in F2. Then, F1]F[F2.
The converse holds as well if, further, F1 and F2 are separable.

4 Construction of Probability Spaces

Our object is the construction of probability spaces and random vari-
ables corresponding to certain random experiments. We describe two basic
constructions: Ionescu-Tulcea’s and Kolmogorov’s. Together, they show the
existence of all the probability spaces that were ever needed. In particular,
they yield the existence and construction of the Lebesgue measure on (0, 1),
and therefore the existence of all measures that were ever discussed.
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To highlight the issue involved, recall from Chapter III our oft-repeated
refrain, “let (Ω,H,P) be a probability space and let X1, X2, . . . be indepen-
dent random variables with distributions μ1, μ2, . . .”. Do such things exist?
After all, related to each random variable there are at least as many events as
there are points in R, and there are infinitely many random variables, and H

must include all those events and their complements and all countable unions
and intersections of them. Now think of the conditions on P: it must assign
a probability to each event, and do it so that countable additivity condition
is fulfilled for every disjointed sequence of events. Moreover, independence
of the random variables requires that certain multiplicative rules be obeyed.
What if the conditions are too onerous for P to bear, that is, what if there
can be no such P?

The first theorem below shows, as a special case, that such things do
indeed exist. Proofs are not enlightening, but the constructions leading to
the theorem clarifies many of the concepts discussed earlier. In particular,
note the natural appearance of conditional probabilities as primary data, as
things from which P is constructed rather than as things derived from P.

Construction of chains: description of data and goal

The data for the problem consist of some measurable spaces (E0,E0),
(E1,E1), . . ., some probability measure μ on (E0,E0), and some transition
probability kernels K1,K2, . . . where, for each n in N, the kernel Kn+1 is
from

(F on ,F
o
n) = (E0 × · · · ×En,E0 ⊗ · · · ⊗ En)4.1

into (En+1,En+1).
We regard the data as follows. A random experiment is being conducted.

It consists of an infinite chain of trials. The set En is the space of all possible
outcomes of the nth trial. Our abilities to detect and discern are such that we
can tell, for each A in En, whether the nth trial’s outcome is in A. The law
governing the initial trial is described by μ; for each A in E0, the probability
is μ(A) that the outcome of the initial trial belongs to A. Having performed
the trials up to and including the nth, if the outcomes were x0, . . . , xn in
E0, . . . , En respectively, then the law governing the next trial is such that
Kn+1(x0, . . . , xn;A) is the probability that the outcome belongs to the set A
in En+1.

The goal is to construct a probability space (Ω,H,P) that models the
experiment described.

Construction and analysis

Each possible outcome of the experiment is a sequence ω = (x0, x1, . . .)
with xn in En for each n in N. Accordingly, we define the sample space Ω
and the collection H of all events by

(Ω,H) = ⊗n∈N(En,En).4.2
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We let X0, X1, . . . be the coordinate variables: for each n,

Xn(ω) = xn if ω = (x0, x1, . . .).4.3

Obviously,Xn takes values in (En,En); for each outcome ω of the experiment,
Xn(ω) is the result of the nth trial. Similarly, Yn = (X0, . . . , Xn) denotes the
result of the trials up to and including the nth; it is a random variable taking
values in (F on ,Fon) defined by 4.1.

There remains to “construct” the probability measure P consistent with
the data. We start with the properties it should have. The interpretation we
gave to μ,K1,K2, . . . suggests that the distribution of Yn be the probability
measure πn on (F on ,F

o
n) given by (see I.6.21 et seq.)

πn(dx0, . . . , dxn)4.4
= μ(dx0)K1(x0, dx1)K2(x0, x1; dx2) · · ·Kn(x0, . . . , xn−1; dxn).

Let Fn = σYn. Every H in Fn has the form

H = {Yn ∈ B} = B × En+1 × · · · , B ∈ Fon,4.5

and then H is said to be a cylinder with base B in Fon. Since the measure P

being sought must yield πn as the distribution of Yn, we must have

P(H) = πn(B) if H ∈ Fn, H has base B ∈ Fon.4.6

This specifies P(H) for every H in Ho = ∪nFn in a consistent manner: if
H is a cylinder with base B in Fon and, at the same time, with base A in
Fom for some m < n, then B = A × Em+1 × · · · × En and 4.4 implies that
πn(B) = πm(A) = P(H) unambiguously. There remains to show that there
is P satisfying 4.6.

Ionescu-Tulcea’s theorem

4.7 Theorem. There exists a unique probability measure P on (Ω,H)
such that 4.6 holds.

4.8 Remarks. a) Let P be as promised by the theorem. Then, 4.4 and
4.6 imply that

PFm{Xm+1 ∈ A} = Km+1(X0, . . . , Xm;A), A ∈ Em+1.

Thus the essential data K1,K2, . . . provide the conditional distributions of
the next variable Xm+1 given the past history Fm for each m in N.

b) Fix n in N. Fix H in Fn. Let B be its base in Fon. It follows from
4.4 and 4.6 that

PFm(H) = Qm(X0, . . . , Xm;H)
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where the kernels Qm from (F om,F
o
m) into (Ω,H) satisfy

Qm(x0, . . . , xm;H) = 1B(x0, . . . , xn) = 1H(x0, x1, . . .) if m ≥ n,4.9

Qm(x0, . . . , xm;H)=
ˆ
Em+1

K(x0, . . . , xm; dxm+1)Qm+1(x0, . . . , xm+1;H),

4.10

if 0 ≤ m < n. Moreover,

P(H) =
ˆ
E0

μ(dx0)Q0(x0;H).4.11

Of these, 4.9 and 4.11 are obvious. To see 4.10, we use repeated conditioning
EFm = EFmEFm+1 to get

Qm(X0, . . . , Xm;H) = EFmQm+1(X0, . . . , Xm+1;H)

and evaluate the right side using part (a) above with Theorem 2.19.

Proof. a) We start by noting that Ho = ∪Fn is an algebra and that it
generates H. In view of 4.6, the mapping H �→ P(H) from Fn into [0, 1] is a
probability measure on (Ω,Fn), and this is true for every n in N. It follows
that the mapping P from Ho into [0, 1] is finitely additive: if G and H are in
Ho and disjoint, then there is n such that both of them belong to Fn, and
therefore, P(G ∪H) = P(G) + P(H). We shall show below that

(Hk) ⊂ Ho and Hk ↘ ∅ =⇒ P(Hk) ↘ 0.4.12

Once this is shown, the existence of P on (Ω,H) satisfying 4.6 for all n will
follow from the standard theorems on extensions of measures from algebras
to σ-algebras (see Caratheodory’s theorem, I.3.19). Uniqueness of P is imme-
diate from Proposition I.3.7 since Ho is a p-system generating H.

b) Each H in Ho is a cylinder with some base B in Fon for some n in N;
and, if so, we define Qm(x0, . . . , xm;H) for m in N and (x0, . . . , xm) in F om
starting with 4.9 and continuing with 4.10 iteratively downward, and observe
that 4.11 holds and that 4.10 holds for all m < n and m ≥ n.

To show 4.12, pick (Hk) as described. Then P(Hk) is well-defined for each
k and decreases with k, since P is finitely additive on Ho. Suppose for the
moment that limk P(Hk) > 0; we shall show that this leads to a contradiction.

Replace H in 4.11 by Hk, take limits as k −→ ∞ on both sides, and
pass the limit on the right side inside the integral with an appeal to the
bounded convergence theorem. The limit on the left side is strictly positive
by assumption; so there must exist x∗0 in E0 such that a0 = limk Q0(x∗0, Hk)
is strictly positive. We now make the induction hypothesis that there exists
(x∗0, . . . , x

∗
m) in F om such that

am = lim
k
Qm(x∗0, . . . , x

∗
m;Hk) > 0.4.13
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Recall that 4.10 holds for all m, and by the bounded convergence theorem,

am =
ˆ
Em+1

Km+1(x∗0, . . . , x
∗
m; dxm+1) lim

k
Qm+1(x∗0, . . . , x

∗
m, xm+1;Hk).

Since am > 0, there must exist x∗m+1 in Em+1 such that 4.13 holds for m+ 1
as well. Thus, in view of 4.9, we have shown the existence of a sequence ω∗ =
(x∗0, x∗1, . . .) in Ω such that limk 1Hk

(ω∗) is strictly positive and, therefore, is
equal to 1. This means that ω∗ ∈ Hk for all k large enough and, thus, for all
k since (Hk) is decreasing. In other words, w∗ ∈ ∩Hk , which contradicts the
hypothesis that Hk ↘ ∅. Hence, we must have limk P(Hk) = 0 as needed to
complete the proof of 4.7. �

Initial distribution

It is often desirable to treat the initial distribution μ as a variable rather
than as a part of the given data. To that end, it is customary to write P

μ for
the probability measure P of the preceding theorem. Of course, to each prob-
ability measure μ on (E0,E0) there corresponds a unique probability measure
P
μ on (Ω,H). In particular, let P

x denote P
μ when μ = δx, Dirac measure

sitting at the point x in E0. It is clear from 4.4 and 4.6 that x �→ P
x(H)

is E0-measurable for each H in H. Thus, (x,H) �→ P
x(H) is a transition

probability kernel from (E0,E0) into (Ω,H) and

P
μ(H) =

ˆ
E0

μ(dx)Px(H), H ∈ H,4.14

for every measure μ on (E0,E0). For fixed x in E0, the measure P
x is called

the probability law of the chain X = (Xn) started at x, since

P
x{X0 = x} = 14.15

provided that the singleton {x} belong to E0 to ensure that {X0 = x} is an
event. It can be also regarded as the conditional law of X given that X0 = x.

Kolmogorov extension theorem

As opposed to a chain, we now consider the question of existence for
a probability space (Ω,H,P) that can carry a process {Xt : t ∈ I} where
the index set I is arbitrary. In this case, Kolmogorov’s theorem is the most
general known, but requires that all the Xt take values in the same space
(E,E) and that (E,E) be a standard measurable space.

Let I be an arbitrary index set. Let (E,E) be a measurable space. The
data are the probability measures πJ , one for each finite subset J of I, on the
product space (EJ ,EJ ). The goal is to construct a probability space (Ω,H,P)
and a stochastic process X = (Xt)t∈I over it such that πJ is the distribution
of the random variable XJ = (Xt)t∈J for each finite J ⊂ I.
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We start by letting (Ω,H) = (E,E)I , that is, Ω is the collection of all
functions t �→ ω(t) from I into E, and H is the σ-algebra generated by
the finite-dimensional measurable rectangles. We define the Xt to be the
coordinate variables; that is, Xt(ω) = ω(t) for all t and ω. Obviously, each
Xt is measurable with respect to H and E, and in fact H = σ{Xt : t ∈ I}.

For I ⊃ J ⊃ K, we let pJK denote the natural projection from EJ

onto EK . For instance, if J = (s, t, u) and K = (u, t), then pIJ(ω) =
(ω(s), ω(t), ω(u)) and pJK(x, y, z) = (z, y) and pIK(ω) = (ω(u), ω(t)). We
let If denote the collection of all finite sequences of elements of I, and Ic the
collection of all infinite (countable) sequences.

The probability measure P we are seeking will be the probability law of
X ; accordingly, we want

P{XJ ∈ A} = πJ (A), A ∈ EJ , J ∈ If .4.16

This requires that the finite-dimensional distributions be consistent:

πK = πJ ◦p−1
JK , K ⊂ J ∈ If ,4.17

since XK = pJK◦XJ for K ⊂ J . The following is the Kolmogorov extension
theorem.

4.18 Theorem. Suppose that (E,E) is a standard measurable space and
that {πJ : J ∈ If} satisfies the consistency condition 4.17. Then, there exists
a unique probability measure P on (Ω,H) such that 4.16 holds.

Proof. We start by constructing a probability measure PJ on (E,E)J for
every J in Ic. Fix J so, say, J = (t0, t1, . . .), and let Jn = (t0, . . . , tn) and
π̂n = πJn . Observe that the π̂n have the representation 4.4: this is trivial
for n = 0, and assuming it is true for n, it follows from the disintegration
theorem 2.18 with (D,D) = (E,E)Jn that it is true for n+ 1 as well (this is
where the standardness of (E,E) gets used). Thus, Ionescu-Tulcea’s theorem
applies to show that there exists a probability measure PJ on (E,E)J such
that the image of PJ under pJJn is π̂n for each n.

In fact, for K ⊂ J ∈ Ic, the probability measures PK and PJ◦p−1
JK coincide

over the finite-dimensional cylinders in EK with bases in EL for finite subsets
L of K, and hence, since such cylinders generate EK , we have PK = PJ◦p−1

JK .
By Proposition II.4.6, for every H in H there is J in Ic such that H =

{XJ ∈ A} for some A in EJ ; then we put P(H) = PJ (A). This assignment is
without ambiguities: if H = {XJ ∈ A} = {XK ∈ B} for A in EJ and B in
EK for some J and K in Ic, then L = J ∪K is in Ic, and

PJ(A) = PL(p−1
LJA) = PL(p−1

LKB) = PK(B).

We now show that P is a probability measure on (Ω,H). Let (Hn) ⊂ H

be disjointed and have union H . For each n, there is Jn in Ic such that
Hn = {XJn ∈ An} for some An belonging to EJn . We may assume that the
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Jn are all the same by replacing Jn with J = ∪Jn; and, then, H = {XJ ∈ A}
with A = ∪An, the An being disjoint. Hence, by the countable additivity
of PJ ,

P(H) = PJ (A) =
∑

n

PJ(An) =
∑

n

P(Hn).

So, P is countably additive and P(Ω) = 1 obviously. Finally, P is the unique
probability measure satisfying 4.16 since the cylinders {XJ ∈ A} form a
p-system that generates H. �

5 Special Constructions

This section is devoted to special cases of the probability spaces con-
structed in the preceding section, as well as certain alternatives to such
constructions. The setup and notations are carried over from the preceding
section.

Independent sequences

In the setup for chains, suppose that the transition kernels Kn have the
following form: for each n in N there is a probability measure μn on (En,En)
such that μ = μ0 and

Kn+1(x0, . . . , xn;A) = μn+1(A), A ∈ En+1.5.1

Heuristically, this corresponds to the situation where the law governing the
(n+ 1)th trial is independent of the results x0, . . . , xn of the previous trials.
Then, 4.4 becomes

πn(dx0, . . . , dxn) = μ0(dx0)μ1(dx1) · · ·μn(dxn),5.2

that is, πn is the product of μ0, . . . , μn. Equivalently, then, the random vari-
ables X0, . . . , Xn are independent for each n, and hence, (Xn)n∈N is an inde-
pendency. In this case, the probability space (Ω,H,P) is said to be the product
of the probability spaces (En,En, μn), n ∈ N, and the following notation is
used to express it:

(Ω,H,P) = ⊗n∈N(En,En, μn).5.3

Variations where N is replaced by N
∗ = {1, 2, . . .} or by Z = {. . . ,−1, 0, 1,

2, . . .} or by some other countable set are self-explanatory.
A further special case is where the spaces (En,En, μn) are the same for

all n, that is, say

(En,En, μn) = (E,E, μ), n ∈ N.5.4

Then, instead of 5.3, it is usual to write

(Ω,H,P) = (E,E, μ)N.5.5
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In this case, the coordinate variables X0, X1, . . . take values in the same
measurable space, and, in addition to being independent, they are identically
distributed.

Markov chains

We start with the most useful and the most common case: This is where
all the trials are on the same space, that is,

(En,En) = (E,E), n ∈ N,5.6

and there is a Markov kernel P on (E,E), that is, a transition probability
kernel P from (E,E)into (E,E), such that

Kn+1(x0, . . . , xn;A) = P (xn, A)5.7

for all n in N and x0, . . . , xn in E and A in E. In other words, the probability
law governing the (n + 1)th trial is independent of n and of all the previous
results x0, . . . , xn−1 except the result xn of the nth trial. Then, X = (Xn)n∈N

is said to be a Markov chain over (Ω,H,P) with state space (E,E) and initial
distribution μ and transition kernel P .

Moreover, the kernel P is considered to be the only ingredient defining
the law of X , and μ is treated as a variable by utilizing the notation P

μ and
P
x mentioned around 4.14.

The term “Markov chain” refers to the property, obvious from 5.7, that

P{Xn+1 ∈ A | Fn} = P (Xn, A), A ∈ E,5.8

which displays P (x,A) as the conditional probability that Xn+1 ∈ A given
that Xn = x. Note the independence of this probability from n; if this last
point needs to be emphasized, then X is said to be a time-homogeneous
Markov chain.

5.9 Non-canonical Markov chains. Assuming 5.6 and 5.7, the construc-
tion given in the preceding section for Ω,H, (Fn), (Xn),P is called the canoni-
cal setting of a Markov chain X with state space (E,E), initial distribution μ,
and transition kernel P . More generally, given a chain X = (Xn)n∈N defined
over some probability space (Ω,H,P) and having some state space (E,E),
and given some filtration (Fn) on (Ω,H) such that Xn is measurable with
respect to Fn and E for each n, the chain X is said to be a time-homogeneous
Markov chain with transition kernel P provided that 5.8 hold for each n in
N. We shall see several such non-canonical examples below.

5.10 Time-inhomogeneous Markov chains. Returning to the construc-
tions of the previous section, assume 5.6 and replace 5.7 with

Kn+1(x0, . . . , xn;A) = Pn+1(xn, A),5.11
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where P1, P2, . . . are Markov kernels on (E,E). Then, we obtain the canonical
construction for a time-inhomogeneous Markov chain X . Such chains can
be made time-homogeneous by incorporating time into the state space: Let
Ê = N ×E, Ê = 2N ⊗ E, and define the Markov kernel P̂ on (Ê, Ê) such that

P̂ (y,B) = Pn+1(x,A) if y = (n, x), B = {n+ 1} ×A.5.12

Then, putting X̂n = (n,Xn), we note that X̂n is measurable with respect to
Fn and Ê, and the Markov property holds just as in 5.8:

P{X̂n+1 ∈ B | Fn} = P̂ (X̂n, B).

Thus, X̂ = (X̂n) is a time-homogeneous Markov chain over (Ω,H,P) with
state space (Ê, Ê) and transition kernel P̂ in the sense of 5.9 above. Note
that this is not the canonical construction for X̂.

5.13 Periodicity in time. This is a special case of time-inhomogeneity
which is encountered often in applied work where seasonal effects or the
day-of-the-week effects and the like affect the transition probabilities. For
instance, if Xn is to denote the inventory level for some item at the end of
day n, then we would expect Pn(x,A) to depend on n only through whether
n is a Monday or Tuesday and so on. In such cases, there is an integer d ≥ 2
such that the sequence of transition kernels Pn in 5.11 has the form

(P1, P2, . . .) = (P1, P2, . . . , Pd, P1, P2, . . . , Pd, . . .).5.14

The corresponding time-inhomogeneous chain X can be rendered time-
homogeneous by incorporating periodicity into the state space: Let D =
{1, 2, . . . , d},D = 2D, Ê = D × E, Ê = D ⊗ E, and define P̂ as a Markov
kernel on (Ê, Ê) that satisfies

P̂ (y,B) = Pj(x,A) if y = (i, x), B = {j} ×A, j = (1 + i) modulo d.

Then, X̂n = (n modulo d,Xn), n ∈ N, form a time-homogeneous Markov
chain with state space (Ê, Ê) and transition kernel P̂ . Again, this is not
canonical.

5.15 Cyclic Markov chains. The concept is similar to periodicity but
with the added twist that the space changes with time. Suppose X is a chain
constructed as in the preceding section, but with

(E0, E1, . . .) = (Ed, E1, E2, . . . , Ed, E1, E2, . . . , Ed, . . .),

and similarly for the En, and the conditions 5.11 and 5.14– note that Pj is a
kernel from (Ej−1,Ej−1) into (Ej ,Ej), j = 1, . . . , d. Then, X is called a cyclic
Markov chain in canonical form: if we think ofXn as the position of a particle
after its nth step, the particle moves from a point in space Ed into a random
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point in E1, and then to a random point in E2, . . . , and so on cyclically, with
transition probabilities depending only on the space to be visited next. The
chain X can be made time-homogeneous by the technique used on periodic
chains but with a more careful construction for (Ê, Ê).

5.16 k-dependent Markov chains. For the Markov chains introduced so
far, the conditional distribution of Xn+1 given all the past Fn depended only
on the last state Xn. In some applications, for instance if Xn is to denote the
weather on day n, it is desired to make the dependence on the past a little
deeper: For fixed integer k ≥ 2, suppose that

Kn+1(x0, . . . , xn;A) = P (xn−k+1, . . . , xn;A)5.17

for each n ≥ k for all x0, . . . , xn in E and A in E, where P is a transition
probability kernel from (E,E)k to (E,E). Then, X = (Xn) is said to be a
k-dependent time-homogeneous Markov chain with state space (E,E).

Theoretically, such chains are no different from ordinary Markov chains.
To convert such a chain to an ordinary one-dependent chain, one needs to
re-define the term “state”: Put (Ê, Ê) = (E,E)k, let X̂n = (Xn, Xn+1, . . . ,

Xn+k−1), and define the Markov kernel P̂ on (Ê, Ê) such that

P̂ (y,B) = P (y1, . . . , yk;A) if B = {y2} × · · · × {yk} ×A.5.18

Then, (X̂n) is an ordinary Markov chain with state space (Ê, Ê) and transition
kernel P̂ .

Markov processes, continuous time

These are the continuous time versions of Markov chains, that is, the pa-
rameter set is R+. We discuss only the most fundamental cases. In the set-
ting of Kolmogorov extension theorem of the preceding section, let the in-
dex set be I = R+, let μ be a probability measure on (E,E), and, for ev-
ery pair (s, t) of times in R+ with s < t, let Ps,t be a Markov kernel on
(E,E). We are to interpret μ as the distribution of X0, and Ps,t(x,A) as
the conditional probability that Xt ∈ A given that Xs = x. Accordingly,
if J = (t0, t1, . . . , tn) with 0 = t0 < t1 < · · · < tn, then we specify the
distribution πJ of XJ = (Xt0 , Xt1 , . . . , Xtn) by

πJ (dx0, dx1, dx2, . . . , dxn−1, dxn)5.19
= μ(dx0)Pt0,t1(x0, dx1)Pt1,t2(x1, dx2) · · ·Ptn−1,tn(xn−1, dxn).

Assuming that

Ps,tPt,u = Ps,u, 0 ≤ s < t < u <∞,5.20

that is, in more explicit notation,ˆ
E

Ps,t(x, dy)Pt,u(y,B) = Ps,u(x,B), x ∈ E,B ∈ E,5.21
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the consistency requirement 4.17 is satisfied. Then, according to Theorem
4.18, there exists a unique probability measure P

μ on (Ω,H) = (E,E)R+

such that 5.19 is the distribution of (Xt0 , Xt1 , . . . , Xtn), where 0 = t0 < t1 <
· · · < tn.

Let Ft be the σ-algebra generated by {Xs : 0 ≤ s ≤ t}, that is, the
σ-algebra generated by the finite-dimensional cylinders of the form {Xs1 ∈
A1, . . . , Xsn ∈ An} with 0 ≤ s1 < · · · < sn ≤ t and A1, . . . , An in E. Then, it
follows from 5.19 and theorems on conditional expectations that

P
μ{Xt ∈ A | Fs} = Ps,t(Xs, A), A ∈ E,5.22

for all 0 ≤ s < t; and, of course,

P
μ{X0 ∈ A} = μ(A), A ∈ E.5.23

For these reasons, X = (Xt)t∈R+ is called a Markov process with state space
(E,E) and transition kernels (Ps,t)0≤s<t<∞. This is the time-inhomogeneous
case.

Mathematically more interesting is the time-homogeneous case where Ps,t
depends on s and t only through t− s. Thus, replacing Ps,t with Pt−s, we see
that 5.20 becomes

PsPt = Ps+t, s, t ∈ R+,5.24

and the collection (Pt)t∈R+ is called the transition semigroup of the (time-
homogeneous) Markov process X = (Xt)t∈R+ with state space (E,E). Inci-
dentally, the semigroup property 5.24 as well as the parental 5.20 are called
Chapman-Kolmogorov equations.

Random fields

Returning to Kolmogorov extension theorem 4.18, suppose that the index
set I is R

d for some fixed dimension d ≥ 1, and suppose that the state space
(E,E) is replaced with (R,BR). The index set can no longer be thought
as time, and we now write x for the generic element of I = R

d. Assum-
ing that Kolmogorov’s theorem applies, we obtain a stochastic process X =
{X(x) : x ∈ R

d}, and we may view it as a random field on R
d, that is, to

each x in R
d we associate a real-valued random variable X(x).

In the further case where the state space (E,E) is taken to be (Rd,B(Rd)),
the random variable X(x) can be thought as the Eulerian velocity vector at
x and the process X becomes a random velocity field. In such applications,
one generally requires some smoothness (like continuity or differentiability)
from the mapping x �→ X(x, ω) for each ω. Theorem 4.18 guarantees no such
smoothness.



Chapter V

Martingales and

Stochastics

This chapter is to introduce the vocabulary for describing the evolution
of random systems over time. It will also cover the basic results of classical
martingale theory and mention some basic processes such as Markov chains,
Poisson processes, and Brownian motion. This chapter should be treated as
a reference source for chapters to come.

We start with generalities on filtrations and stopping times, go on to
martingales in discrete time, and then to finer results on martingales and
filtrations in continuous time. Throughout, (Ω,H,P) is a fixed probability
space in the background, and all stochastic processes are indexed by some
set T, which is either N = {0, 1, . . .} or R+ = [0,∞) or some other subset of
R̄ = [−∞,+∞]. We think of T as the time-set; its elements are called times.
On a first reading, the reader should take T = N.

1 Filtrations and Stopping Times

Let T be a subset of R̄. A filtration on T is an increasing family of sub-σ-
algebras of H indexed by T; that is, F = (Ft)t∈T is a filtration if each Ft is a
σ-algebra on Ω, each Ft is a subset of H, and Fs ⊂ Ft whenever s < t. Given
a stochastic process X = (Xt)t∈T, letting Ft = σ{Xs : s ≤ t} for each time t,
we obtain a filtration F = (Ft)t∈T; it is called the filtration generated by X .

Heuristically, we think of a filtration F as a flow of information, with Ft
representing the body of information accumulated by time t by some observer
of the ongoing experiment modeled by (Ω,H,P). Or, we may think of Ft as
the collection of R̄-valued random variables V such that the observer can
tell the value V (ω) at the latest by time t, whatever the outcome ω turns
out to be. Of course, it is possible to have different observers with different
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information flows. Given two filtrations F and G, we say that F is finer than
G, or that G is coarser than F, if Ft ⊃ Gt for every time t.

Adaptedness

Let F = (Ft)t∈T be a filtration. Let X = (Xt)t∈T be a stochastic process
with some state space (E,E). Then X is said to be adapted to F if, for every
time t, the variable Xt is measurable with respect to Ft and E. Since F is
increasing, this is equivalent to saying that, for each t, the numerical random
variables f ◦Xs belong to Ft for all f in E and all times s ≤ t.

Every stochastic process is automatically adapted to the filtration it gen-
erates. Thus, if G is the filtration generated by X , saying that X is adapted
to F is the same as saying that F is finer than G.

Stopping times

1.1 Definition. Let F be a filtration on T. A random time T : Ω �→ T̄ =
T ∪ {+∞} is called a stopping time of F if

{T ≤ t} ∈ Ft for each t ∈ T.1.2

1.3 Remarks. The condition 1.2 is equivalent to requiring that the
process

Zt = 1{T≤t}, t ∈ T,1.4

be adapted to F. When T is N or N̄, this is equivalent to requiring that

Ẑn = 1{T=n}, n ∈ N,1.5

be adapted to (Fn); this follows from the preceding remark by noting that
Ẑn = Zn − Zn−1.

Heuristically, a random time signals the occurrence of some physical
event. The process Z defined by 1.4 is indeed the indicator of whether that
event has or has not occurred: Zt(ω) = 0 if t < T (ω) and Zt(ω) = 1 if
t ≥ T (ω). Recalling the heuristic meaning of adaptedness, we conclude that
T is a stopping time of F if the information flow F enables us to detect the
occurrence of that physical event as soon as it occurs, as opposed to inferring
its occurrence sometime later. In still other words, T is a stopping time of
F if the information flow F is such that we can tell what T (ω) is at the
time T (ω), rather than by inference at some time after T (ω). These heuristic
remarks are more transparent when the time set is N.

The following mental test incorporates all these remarks into a virtual
alarm system. Imagine a computer that is being fed the flow F of information
and that is capable of checking, at each time t, whether ω ∈ H for every
possible ω in Ω and every event H in Ft. If it is possible to attach to it an
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alarm system that sounds exactly at time T , and only at time T , then T is
a stopping time of F. This alarm test will be heard on and off below.

1.6 Example. Let T = N, let F be a filtration on N, and let X be a
process with index set N and some state space (E,E). Suppose that X is
adapted to F. For fixed A in E, let

T (ω) = inf{ n ∈ N : Xn(ω) ∈ A }, ω ∈ Ω.

Then T is called the time of first entrance to A. (Note that T (ω) = +∞
if Xn(ω) is never in A, which is the reason for allowing +∞ as a value for
random times in general.) This T is a stopping time of F: Heuristically, X
is adapted to F means that the computer is able to check, at each time n,
whether Xn(ω) ∈ A; and it seems trivial to design an alarm system that
sounds exactly at the first n such that Xn(ω) ∈ A. More precisely, T is a
stopping time because, for each n in N,

{ T ≤ n } =
n⋃

k=0

{ Xk ∈ A }

belongs to Fn, since the events {Xk ∈ A}, 0 ≤ k ≤ n, are all in Fn. In con-
trast,

L(ω) = 0 ∨ sup{ n ≤ 5 : Xn(ω) ∈ A }
is not a stopping time (except in some special cases depending on A, for in-
stance, if entering A means never coming back to A). Because, if the outcome
ω is such that X4(ω) ∈ A and X5(ω) /∈ A, then L(ω) = 4, but the information
we had at time 4 is not sufficient to conclude that L(ω) = 4. So, there can
be no alarm system that will sound at exactly L(ω).

1.7 Example. Counting Processes. Let 0 < T1 < T2 < · · · be some
random times taking values in R+ and assume that lim Tn = +∞. Define

Nt =
∞∑

1

1[0,t]◦Tn, t ∈ R+,

and note that t �→ Nt is increasing and right-continuous and increases only
by jumps of size one, and N0 = 0 and Nt < ∞ for every t in R+, with
limt→∞Nt = +∞. We may regard T1, T2, . . . as the times of successive ar-
rivals at a store; then Nt is the number of arrivals during [0, t]. Let F =
(Ft)t∈R+ be the filtration generated by N = (Nt). Then, for each integer
k ≥ 1, the time Tk is a stopping time of F: for every t in R+

{Tk ≤ t} = {Nt ≥ k} ∈ Ft

since Nt is in Ft. Heuristically, Tk is a stopping time because it is possible
to construct an alarm system that sounds exactly at the time of kth arrival.
Another stopping time is

T = inf{ t ≥ a : Nt = Nt−a },
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where a > 0 is fixed, that is, the first time that an interval of length a passes
without an arrival. We leave the proof to Exercise 1.35, because it needs tools
to be developed below. Finally, here is a random time that is not a stopping
time: fix b > 0, and let

L = inf{ t ∈ R+ : Nt = Nb },

that is, L is the time of last arrival before the time b if there is one, and it is
0 if there is none.

Conventions for the end of time

Soon we shall introduce the concept of information accumulated by the
time T , when the alarm sounds. Since stopping times can take +∞ as a value,
in case +∞ is not in T, we need to extend the definition of the filtration F

on T onto T̄ = T ∪ {+∞}. We do so by letting F∞, which we also denote by
limFt, be defined as

F∞ = limFt =
∨

t∈T

Ft,1.8

the σ-algebra generated by the union of all the Ft. Then, (Ft)t∈T̄
is a filtration

on T̄, and T is a stopping time of it if and only if T is a stopping time of
(Ft)t∈T. Also, every adapted process X indexed by T can be extended onto T̄

by appending to X an arbitrary variable X∞ picked from F∞. We shall still
write F for the extended filtration, especially since F∞ has no information in
it that was not in (Ft)t∈T.

Past until T

Let F be a filtration on T, extended to T̄ as above. Let T be a stopping
time of it. Corresponding to the notion of the body of information accumu-
lated by the time T , we define

FT = { H ∈ H : H ∩ {T ≤ t} ∈ Ft for each t in T̄ }.1.9

It is easy to check that FT is a σ-algebra and that FT ⊂ F∞ ⊂ H; it is called
the past until T .

If T is a fixed time, say T (ω) = t for all ω for some constant t in T̄, then
FT = Ft; hence, there is no ambiguity in the notation FT .

For an arbitrary stopping time T , note that the event {T ≤ r} belongs to
FT for every r ≥ 0, because

{T ≤ r} ∩ {T ≤ t} = {T ≤ r ∧ t} ∈ Ft

for each t. Thus, T is FT -measurable.
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As usual with σ-algebras, FT will also denote the collection of all FT -
measurable random variables. Heuristically, then, 1.9 is equivalent to saying
that FT consists of those R̄-valued variables V such that, for every possibility
ω, the value V (ω) can be told by the time T (ω), the time of the alarm sound.
The following is the precise version.

1.10 Theorem. A random variable V belongs to FT if and only if

V 1{T≤t} ∈ Ft1.11

for every t in T̄. In particular, if T̄ = N̄, the condition is equivalent to re-
quiring that, for every n in N̄,

V · 1{T=n} ∈ Fn.1.12

Proof. We may and do assume that V is positive and let Xt be the random
variable appearing in 1.11. Then, for all r in R+ and t in T,

{V > r} ∩ {T ≤ t} = {Xt > r}.
Thus, by the definition 1.9, the event {V > r} is in FT for all r if and only
if the event {Xt > r} is in Ft for all r for every t in T̄. That is, V ∈ FT if
and only if Xt ∈ Ft for every t in T̄, which is the claim of the first statement.
The particular statement for the case T̄ = N̄ is immediate upon noting that

V · 1{T=n} =

{
Xn −Xn−1 if n ∈ N

X∞ − ∑
n∈N

(Xn −Xn−1) if n = +∞. �

Representation of F and FT

Let T ⊂ R̄. Let F be a filtration on it, extended onto T̄ = T ∪ {+∞} if
T does not include the point +∞. We identify F with the collection of all
right-continuous processes on T̄ that are adapted to F. More precisely, we
say that X ∈ F if

1.13 a) X = (Xt)t∈T̄
is adapted to F = (Ft)t∈T̄

, and
b) the path t �→ Xt(ω) from T̄ into R̄ is right-continuous for

each ω in Ω.

Remark. If T is N or N̄, then the condition (b) above holds automatically,
because every path n �→ Xn(ω) is continuous in the discrete topology on
N, which is the topology induced on N by the ordinary topology of R+.
Consequently, in these cases,

X ∈ F ⇐⇒ Xn ∈ Fn for each n in N̄,

and the notation X ∈ F is amply justified.
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The following characterization theorem shows the economy of thought
achieved by this device: FT consists of the values XT of processes X in F at
the time T . For a much simpler proof in the case of discrete time, see Exercise
1.32.

1.14 Theorem. Let T be a stopping time of F, Then,

FT = { XT : X ∈ F }.
Proof. a) Let V ∈ FT . Define Xt = V 1{T≤t}, t ∈ T̄. Then, X is

adapted to F by Theorem 1.10 and is obviously right-continuous, that is,
X ∈ F. Clearly XT = V . So, FT ⊂ { XT : X ∈ F }.

b) To show the converse that FT ⊃ { XT : X ∈ F }, we let X ∈ F,
put V = XT , and proceed to show that V ∈ FT . To that end, in view of
Theorem 1.10, it is enough to show that V 1{T≤t} ∈ Ft for every t in T̄. Fix
t, and note that this is equivalent to showing that the mapping

h : ω �→ V (ω) from Ωt = {T ≤ t} into R̄

is F̂t-measurable, where F̂t is the trace of Ft on Ωt.
Let Bs = T̄ ∩ [0, s] for s ≤ t and let Bt = B(Bt). Let f be the mapping

ω �→ (T (ω), ω) from Ωt into Bt × Ω. If s ∈ Bt and H ∈ Ft, then the inverse
image of the rectangle Bs×H under f is the event {T ≤ s}∩H , which event
is in Ft. Thus f is measurable with respect to F̂t and Bt ⊗ Ft.

Let g be the mapping (s, w) �→ Xs(ω) from Bt × Ω into R̄. For each s,
since X is adapted to F, the mapping ω �→ Xs(ω) is in Fs and, therefore,
is in Ft; and for each ω, by the way X is chosen, the mapping s �→ Xs(ω)
is right-continuous on Bt. Thus, g is Bt ⊗ Ft-measurable (see Exercise I.6.31
for this). It follows that the mapping g◦f from Ωt into R̄ is F̂t-measurable.
But, g◦f(ω) = g(T (ω), ω) = XT (ω)(ω) = V (ω) = h(ω) for ω in Ωt. Thus h is
F̂t-measurable as needed to complete the proof. �

1.15 Remark. Progressiveness. The preceding theorem can be re-
phrased: V ∈ FT if and only if V = XT for some right-continuous process X
adapted to F. This does not exclude the possibility that there is some other
process Y , not right-continuous, such that V = YT as well. Indeed, the last
paragraph of the preceding proof shows what is required of Y : For each t, the
mapping (s, ω) �→ Ys(ω) from Bt × Ω into R̄ should be Bt ⊗ Ft-measurable.
Such processes Y are said to be F-progressive. So, in fact, V ∈ FT if and only
if V = YT for some F-progressive process Y . Of course, every right-continuous
adapted process is progressive. In discrete time, if T is discrete, every process
is in fact continuous and, hence, every adapted process is progressive.

Comparing different pasts

If S and T are stopping times of F, and if S is dominated by T (that
is, S(ω) ≤ T (ω) for all ω), then the information accumulated by the time
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S should be less than that accumulated by T . The following shows this and
gives further comparisons for general S and T .

1.16 Theorem. Let S and T be stopping times of F. Then,

a) S ∧ T and S ∨ T are stopping times of F;
b) if S ≤ T then FS ⊂ FT ;
c) in general, FS∧T = FS ∩ FT ; and
d) if V ∈ FS then the following are in FS∧T :

V 1{S≤T}, V 1{S=T}, V 1{S<T}.

Proof. i) Since S and T are stopping times, the events {S ≤ t} and
{T ≤ t} are in Ft for every time t. Therefore, so are the events {S∧T ≤ t} =
{S ≤ t} ∪ {T ≤ t} and {S ∨ T ≤ t} = {S ≤ t} ∩ {T ≤ t}. Hence, S ∧ T and
S ∨ T are stopping times. This proves (a).

ii) Let V ∈ FS . By Theorem 1.10,

Xt = V 1{S≤t}, t ∈ T̄,1.17

defines a process X adapted to F. Clearly, X is right-continuous. Hence,
X ∈ F in the sense of 1.13.

iii) If S ≤ T , then XT = V by 1.17, and XT ∈ FT by Theorem 1.14
since X ∈ F. So, if S ≤ T then FS ⊂ FT . This proves (b).

iv) We prove (d) next. Let the stopping times S and T be arbitrary.
Then S∧T is a stopping time by part (a), andXS∧T ∈ FS∧T by Theorem 1.14.
Hence, replacing t in 1.17 with S ∧ T we see that

V 1{S≤T} ∈ FS∧T .1.18

In particular, taking V = 1 in 1.18 shows that the event {S ≤ T } belongs
to FS∧T . By symmetry, then, so does the event {T ≤ S}. Hence, so do the
events {S = T } = {S ≤ T } ∩ {T ≤ S} and {S < T } = {S ≤ T } \ {S = T }.
It follows that multiplying the left side of 1.18 with the indicator of {S = T }
or with the indicator of {S < T } will not alter the membership in FS∧T . This
proves (d).

v) There remains to prove (c) with S and T arbitrary. Since the stop-
ping time S ∧ T is dominated by both S and T , we have FS∧T ⊂ FS and
FS∧T ⊂ FT by part (b) proved above. Hence FS∧T ⊂ FS ∩ FT . To prove the
converse containment, let H be an event in FS∩FT . Then, by part (d) proved
above, H ∩ {S ≤ T } ∈ FS∧T since H is in FS , and H ∩ {T ≤ S} ∈ FS∧T
since H is in FT , hence, their union, which is H , belongs to FS∧T . So,
FS ∩ FT ⊂ FS∧T . �
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Times foretold

Let S be a stopping time of F. Let T be a random time such that T ≥ S
but whose value can be told by the time S, that is, T ∈ FS. Then, T is said
to be foretold by S. Obviously, T is again a stopping time of F. For example,
if t is deterministic, then S + t ∈ FS and S + t ≥ S, so S + t is foretold by S
and is a stopping time.

Approximation by discrete stopping times

Discrete stopping times, that is, stopping times that take values in a
countable subset of R̄, are generally easier to work with. The following con-
structs a sequence of such times that approximates a given stopping time
with values in R̄+.

We start by defining, for each integer n in N,

dn(t) =
{

k+1
2n if k

2n ≤ t < k+1
2n for some k in N,

+∞ if t = +∞.
1.19

Then, dn : R̄+ → R̄+ is a step function, it is increasing and right-continuous,
and dn(t) > t for every t <∞. Further, d0 ≥ d1 ≥ d2 ≥ · · · with lim dn(t) = t
for each t in R̄+.

1.20 Proposition. Let F be a filtration on R̄+ and let T be a stopping
time of it. Define

Tn = dn◦T, n ∈ N.

Then (Tn) is a sequence of discrete stopping times of F which decreases to T .

Proof. Fix n. Being a measurable function of T , the random time Tn
belongs to FT . Since dn(t) > t for all t < ∞ and dn(∞) = ∞, we have
Tn ≥ T . Thus, Tn is foretold by T and is a stopping time of F. Obviously, it
is discrete. Since dn(t) decreases to t as n→ ∞, the sequence (Tn) decreases
to T . �

Conditioning at stopping times

This refers to conditional expectations given FT , where T is a stopping
time of the filtration F. Since FT represents the total information by the time
T , we think of EFT X = E(X |FT ) as our estimate of X at time T , based
on the information available then. To indicate this point of view, and also to
lighten the notation somewhat, we adopt the following notational device:

1.21 Convention. We write ET for EFT = E(·|FT ).

In particular, every deterministic time t is a stopping time, and the nota-
tion makes sense for such t as well: Et is the short notation for EFt = E(·|Ft).
The following is a summary, in this context and notation, of the definition
and various properties of the conditional expectations given FT .
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1.22 Theorem. The following hold for all positive random variables X,
Y , Z and all stopping times S and T of F:

a) Defining property: ETX = Y if and only if Y ∈ FT and E V X =
E V Y for every positive V in FT .

b) Unconditioning: E ETX = E X.
c) Repeated conditioning: ESETX = ES∧TX.
d) Conditional determinism: ET (X+Y Z) = X+Y ETZ if X,Y ∈ FT .

Remark. The positivity condition on X,Y, Z ensures that the condi-
tional expectations are well-defined. The properties above can be extended
to integrable X,Y, Z and further, once one makes sure that the conditional
expectations involved do exist. Of course, in the defining property, V can be
limited to indicators in FT .

Proof. Except for the claim on repeated conditioning, all these are no more
than re-wordings of the definition of conditional expectations and Theorem
IV.1.10.

To show the claim regarding repeated conditioning, we start with the
following observation: If S ≤ T then FS ⊂ FT by Theorem 1.16 above, and
Theorem IV.1.10 applies to show that ESET = ES . For arbitrary stopping
times S and T , the preceding observation applies with the stopping times
S ∧ T ≤ T to yield ES∧TET = ES∧T . Thus, putting

Y = ETX,1.23

we see that the claim to be proved reduces to showing that

ESY = ES∧TY.1.24

The right side of 1.24 is a random variable in FS∧T , and FS∧T ⊂ FS
since S ∧ T ≤ S; thus, the right side is in FS and, hence, has the required
measurability to be a candidate for ESY . To complete the proof of 1.24, there
remains to show that

E V Y = E V ES∧TY1.25

for every positive V in FS (see the defining property for ES).
Fix V such. Then, V 1{S≤T} ∈ FS∧T by Theorem 1.16d, and the defining

property for ES∧T yields

E V 1{S≤T}Y = E V 1{S≤T} ES∧TY.1.26

On the other hand, since Y ∈ FT by its definition 1.23, Theorem 1.16d shows
that Y 1{T<S} ∈ FS∧T , and the conditional determinism yields

E V Y 1{T<S} = E V ES∧TY 1{T<S} = E V 1{T<S}ES∧TY.1.27

Adding 1.26 and 1.27 side by side yields the desired equality 1.25. �



180 Martingales and Stochastics Chap. 5

Exercises

1.28 Galmarino’s test. Let X be a continuous stochastic process with index
set R+ and state space R. Let F be the filtration generated by X . Show that
a random time T is a stopping time of F if and only if, for every pair of
outcomes ω and ω′,

T (ω) = t, Xs(ω) = Xs(ω′) for all s ≤ t⇒ T (ω′) = t.

1.29 Entrance times. Let X and F be as in 1.28. For fixed b ≥ 0, let T be the
time of first entrance to [b,∞], that is,

T = inf{t ∈ R+ : Xt ≥ b}.
Show that T is a stopping time of F. Show that, in general,

T = inf{t ∈ R+ : Xt > b}
is not a stopping time of F.

1.30 Past until T . Show that FT defined by 1.9 is indeed a σ-algebra on Ω.

1.31 Strict past at T. Let T be a stopping time of F = (Ft)t∈R+ . Let F̂t be the
trace of Ft on {t < T }, that is, F̂t consists of events of the form H ∩ {t < T }
with H in Ft. Let FT− be the σ-algebra generated by ∪tF̂t. Unlike FT , events
in FT− do not have explicit representations. Show that FT− ⊂ FT .

1.32 Characterization of FT in discrete time. Prove Theorem 1.14 directly
when T = N. Hints: V ∈ FT ⇐⇒ V 1{T=n} ∈ Fn for every n in N; and if
X ∈ F then XT1{T=n} = Xn1{T=n}.

1.33 Stopping times foretold. Let S and T be stopping times. Show that S+T
is foretold by S ∨ T and thus is a stopping time.

1.34 Supremums. Let Tn be a stopping time for each n in N
∗. Show that, then,

supTn is again a stopping time of F. A similar claim for inf Tn is generally
false; see, however, Proposition 7.9.

1.35 Arrival processes. In Example 1.7, observe that, for every t < ∞, we
have Tk(ω) ≤ t < Tk+1(ω) for some integer k depending on t and ω. Recall
that every Tk is a stopping time of F, the filtration generated by N . Put
T0 = 0 for convenience. Let T be as defined in 1.7. Note that, for every ω,
T (ω) = Tk(ω) + a for some k.

a) Show that, for each k in N,

{T = Tk + a} = {T1 − T0 ≤ a, . . . , Tk − Tk−1 ≤ a} ∩ {Tk+1 > Tk + a}.
Show that this event is in FTk+a. Conclude that, for every t in R+,

{T = Tk + a} ∩ {T ≤ t} ∈ Ft.

b) Show that T is a stopping time of F.
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1.36 Continuation. Now we regard 0 = T0 < T1 < T2 < · · · as the times
of successive replacements for some device. Then Nt becomes the number of
replacements during (0, t], and we define At to be the age of the unit in use
at time t:

At(ω) = t− Tk(ω) if Tk(ω) ≤ t < Tk+1(ω).

a) Show that t �→ At(ω) is strictly increasing and continuous every-
where on R+ except for downward jumps to 0 at times T1(ω), T2(ω), . . . . At
these times, it is right-continuous.

b) Show that the process A = (At)t∈R+ is adapted to F.
c) Show that T = inf{t ∈ R+ : At ≥ a}, and show that T is a stopping

time of F by a direct reasoning using this relationship to A.

2 Martingales

Martingales are the mainstay and unifying force underlying much of the
theory of stochastic processes. This section is to introduce them and give some
examples from Markov chains, Brownian motion, and Poisson processes.

Let T be a subset of R̄, let F = (Ft)t∈T be a filtration over T extended
onto T̄ = T ∪ {+∞} by 1.8 if +∞ is not in T, and recall the notational
convention 1.21 regarding conditional expectations given FT .

2.1 Definition. A real-valued stochastic process X = (Xt)t∈T is called
an F-submartingale if X is adapted to F, each Xt is integrable, and

Es(Xt −Xs) ≥ 02.2

whenever s < t. It is called an F-supermartingale if −X is an F-submartingale,
and an F-martingale if it is both an F-submartingale and an F-supermartingale.

Adaptedness and integrability are regularity conditions; they remain the
same for submartingales, supermartingales, and martingales. The essential
condition is 2.2: Given the information Fs, the conditional expectation of
the future increment Xt − Xs is positive for submartingales, negative for
supermartingales, and zero for martingales.

Indeed, since Xs ∈ Fs, the conditional determinism property yields
EsXs = Xs, which shows that the parentheses around Xt −Xs are superflu-
ous; they are put there to make us think in terms of the increments. So, 2.2
can be re-written as

EsXt ≥ Xs, s < t ;2.3

this is for submartingales. The inequality is reversed for supermartingales and
becomes an equality for martingales. Thus, roughly speaking, submartingales
have a systematic tendency to be increasing, supermartingales to be decreas-
ing, and martingales to be neither increasing nor decreasing. See Theorem
3.2 below for a sharper version of this remark.
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2.4 Remarks. a) Let X be an F-submartingale. For s < t < u in T,

Es(Xu −Xt) = EsEt(Xu −Xt) ≥ Es0 = 0

by 1.22c on repeated conditioning and the submartingale inequality Et(Xu−
Xt) ≥ 0. That is, given the cumulative information Fs available at the present
time s, the estimate of any remote future increment is positive. Obviously, if
X is a martingale, the inequality becomes an equality.

b) When the index set T is discrete, the reasoning of the preceding
remark shows that it is sufficient to check the inequality 2.2 for times s and
t that are next to each other, and then 2.2 holds for arbitrary t > s. For
instance, when T = N, the martingale equality Es(Xt −Xs) = 0 holds if and
only if

En(Xn+1 −Xn) = 0, n ∈ N.

c) Let X be an F-submartingale. For s < t, the random variable
Es(Xt − Xs) is positive and, therefore, is almost surely zero if and only if
its expectation E Es(Xt − Xs) is zero. Since E Es = E, it follows that the
submartingale X is in fact a martingale if EXt = EX0 for all times t.

d) If X and Y are F-submartingales, then so is aX+ bY for a and b in
R+. If X and Y are martingales, then so is aX + bY for a and b in R.

e) If X and Y are F-submartingales, then so is X ∨Y , where X ∨Y =
(Xt ∨ Yt)t∈T. If X and Y are F-supermartingales, then so is X ∧ Y .

f) Let f be a convex function on R. If X is an F-martingale and if f◦Xt

is integrable for every time t, then f ◦X is an F-submartingale. This follows
from Jensen’s inequality for conditional expectations (see IV.1.8): for s < t,

Es f ◦Xt ≥ f ◦(EsXt) = f ◦Xs

since EsXt = Xs for martingales. In particular, if X is a martingale, then
X+ = (X+

t ) and X− = (X−
t ) and |X | = (|Xt|) are submartingales, and so is

|X |p = (|Xt|p) provided that E|Xt|p <∞ for every time t.
g) Similarly, if f is convex and increasing, and if X is an

F-submartingale with f ◦Xt integrable for all t, then f ◦X is again an
F-submartingale. In particular, if X is a submartingale, so is X+.

h) Since Es(Xt−Xs) belongs to Fs, it is positive if and only if its inte-
gral over every event H in Fs is positive. Thus, the submartingale inequality
2.2 is equivalent to the following:

E(Xt −Xs) 1H ≥ 0, H ∈ Fs, s < t.

i) Let X be an F-submartingale. Let G be the filtration generated by
X . Then, X is automatically adapted to G and is integrable, and

EGs(Xt −Xs) = EGs EFs(Xt −Xs) = EGsEs(Xt −Xs) ≥ 0

by the repeated conditioning property since Gs ⊂ Fs. Thus, X is a G-
submartingale.
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Examples of martingales

2.5 Sums of independent variables. Let X1, X2, . . . be independent random
variables with mean 0. Let S0 = 0 and put Sn = S0 + X1 + · · · + Xn for
n ≥ 1. Let F = (Fn)n∈N be the filtration generated by S = (Sn)n∈N. Then S
is adapted to F trivially, and each Sn is integrable (with mean 0), and

En(Sn+1 − Sn) = EnXn+1 = E Xn+1 = 0,

since Xn+1 is independent of Fn and has mean 0. Thus, S is a martingale;
see Remark 2.4b. Much of classical martingale theory is an extension of this
case.

2.6 Products of independent variables. Let R1, R2, . . . be independent random
variables with mean 1 and some finite variance. Let M0 = 1 and

Mn = M0R1R2 · · ·Rn, n ∈ N.

Let F be the filtration generated by M = (Mn)n∈N. Then, M is adapted to
F trivially, and each Mn is integrable in view of Schwartz’s inequality (see
Theorem II.3.6a) and the assumption that the Rn have finite variances. Also,

EnMn+1 = EnMnRn+1 = MnEnRn+1 = Mn

by the independence of Rn+1 from Fn and the hypothesis that E Rn+1 = 1.
Hence, M is an F-martingale via Remarks 2.3 and 2.4b.

In the further case where the Rn are positive, the martingale M is consid-
ered to be a reasonable model for the evolution of the price of a share of stock.
Then, Mn stands for the price of a share at time n, and Rn+1 is interpreted
as the return at time n + 1 per dollar invested at time n in that stock. The
economists’ argument for the martingale equality is as follows (very roughly):
The information Fn is available to the whole market. If the conditional expec-
tation En(Mn+1 −Mn) were strictly positive over some event H , then there
would have been a rush to buy which would have forced Mn to go higher;
if the expectation were strictly negative over some event, then there would
have been a rush to sell and Mn would go lower; the equilibrium attains only
if the conditional expectation is zero over an almost sure set.

Uniformly integrable martingales

These are martingales that are also uniformly integrable. They play the
central role in martingale theory. The next proposition shows how to obtain
such a martingale: take an integrable random variable and let Xt be our
estimate of it at time t, given the information Ft accumulated until then.
Conversely, it will be shown in Theorems 4.7 and 5.13 that every uniformly
integrable martingale is obtained in this manner. Here, T ⊂ R̄ is arbitrary
and F = (Ft)t∈T is a filtration on T; see Definition II.3.12 et seq. for uniform
integrability.
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2.7 Proposition. Let Z be an integrable random variable. Define

Xt = EtZ, t ∈ T.

Then X = (Xt)t∈T is an F-martingale and is uniformly integrable.

Proof. Adaptedness is immediate, since EtZ is in Ft by the definition
of conditional expectations. Each Xt is integrable, because Z is so and the
conditional expectation of an integrable variable is integrable. The martingale
equality follows from the properties of repeated conditioning: for times s < t,

EsXt = EsEtZ = EsZ = Xs.

Finally, the uniform integrability of the collection (Xt) follows from the
following more general result of independent interest. �

2.8 Lemma. Let Z be an integrable random variable. Then,

K = {X : X = EGZ for some sub-σ-algebra G of H}
is uniformly integrable.

Proof. Since Z is integrable, the singleton {Z} is uniformly integrable.
Thus, by Theorem II.3.19, there is an increasing convex function f with
limx→∞ f(x)/x = +∞ such that E f◦|Z| <∞. We show next that, with the
same f ,

E f ◦|X | ≤ E f ◦|Z|2.9

for every X in K, which implies, via Theorem II.3.19 again, that K is uni-
formly integrable.

Let X = EGZ for some sub-σ-algebra G of H. Then, by Jensen’s inequality
IV.1.8,

|X | = |EGZ| ≤ EG|Z|.
Thus, since f is increasing and convex,

f ◦|X | ≤ f ◦(EG|Z|) ≤ EGf ◦|Z|,
where the last inequality is Jensen’s again. Now, taking expectations on both
sides and recalling that E EG = E, we obtain the desired end 2.9. �

Markov chains

Here, the index set is N, and F is a filtration over N. Let X = (Xn)n∈N

be a stochastic process with state space (E,E), and let P be a Markov kernel
on (E,E); see section I.6 for the latter and recall the notation

Pf(x) =
ˆ
E

P (x, dy) f(y), x ∈ E, f ∈ E+.2.10
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2.11 Definition. The process X is called a Markov chain with transition
kernel P , with respect to F, if X is adapted to F and

En f ◦Xn+1 = (Pf)◦Xn2.12

for every function f in E+ and time n in N.

Markov chains have an extensive theory; see also Chapter IV, Section 5,
for many variations. Much of their theory (and the theory of their continuous-
time counterparts) has been influenced strongly by its connections to classical
potential theory. As a result, harmonic and subharmonic and superharmonic
functions of the classical theory have found their counterparts for Markov pro-
cesses and, through Markov processes, have influenced the definitions of mar-
tingales and submartingales and supermartingales. Here is the connection.

Let X be a Markov chain, with respect to some filtration F, with state
space (E,E) and transition kernel P . A bounded function f in E is said to
be harmonic, subharmonic, and superharmonic if, respectively,

f = Pf, f ≤ Pf, f ≥ Pf.2.13

Put Mn = f ◦Xn; it is integrable since f is bounded, and it is obviously in
Fn. Indeed, M = (Mn)n∈N is a martingale if f is harmonic, a submartingale
if f is subharmonic, and a supermartingale if f is superharmonic. Here is the
proof of the supermartingale inequality assuming that f is superharmonic;
the other two cases can be shown similarly.

EnMn+1 = Enf ◦Xn+1 = (Pf)◦Xn ≤ f ◦Xn = Mn,

where we used the Markov property 2.12 to justify the second equality and
the superharmonicity (Pf ≤ f) to justify the inequality.

A more recent connection is the following characterization of Markov
chains in terms of martingales; this becomes a deep result in continuous-
time.

2.14 Theorem. Let X be adapted to F. Then X is a Markov chain with
transition kernel P with respect to F if and only if

Mn = f ◦Xn −
n−1∑

m=0

(Pf − f)◦Xm, n ∈ N,

is a martingale with respect to F for every bounded f in E+.

Proof. Note that

Mn+1 −Mn = f ◦Xn+1 − (Pf)◦Xn;

thus, EnMn+1 −Mn = 0 if and only if X has the Markov property 2.12. �
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Wiener Processes

Let F be a filtration over R+. Let W = (Wt)t∈R+ be a continuous process
with state space (R,BR) and starting point W0 = 0.

2.15 Definition. The continuous process W is called a Wiener process
with respect to F if it is adapted to F and

Es f(Ws+t −Ws) =
ˆ

R

dx
1√
2πt

e−x
2/2tf(x)2.16

for all s and t in R+ and all positive Borel functions f on R.

The defining relation 2.16 has three statements in it: the incrementWs+t−
Ws over the interval (s, s+ t] is independent of the past Fs, the distribution
of that increment is free of s, and the distribution is Gaussian with mean 0
and variance t. Indeed, 2.16 defines the probability law of W uniquely: for
0 = t0 < t1 < · · · < tn, the probability law of (Wt1 , . . . ,Wtn ) is determined
uniquely by the probability law of (Wt1 −Wt0 , . . . ,Wtn −Wtn−1), and the
latter is the product of the distributions of Wt1 − Wt0 , . . . ,Wtn − Wtn−1

by the independence of the increments, and the distributions are further
specified by 2.16 as Gaussian with mean 0 and respective variances t1 −
t0, . . . , tn− tn−1. Incidentally, we see that W has stationary and independent
increments (stationarity refers to the invariance of the distribution of Ws+t−
Ws as s varies). We shall study Wiener processes in Chapter VIII. Our aim
at present is to introduce three martingales related to W . First is a useful
characterization.

2.17 Proposition. The process W is a Wiener process with respect to
F if and only if, for each r in R,

Mt = exp(rWt − 1
2r

2t), t ∈ R+,

is an F-martingale.

Proof. Necessity. Suppose that W is Wiener. Then, a direct computation
using 2.16 shows that, for s < t,

Es(Mt/Ms) = Es exp[r(Wt −Ws) − 1
2r

2(t− s)] = 1.2.18

Thus, EsMt = MsEs(Mt/Ms) = Ms, which shows that M is a martingale
(adaptedness and integrability being obvious).

Sufficiency. If M is a martingale, then Es(Mt/Ms) = 1, which means that
2.18 holds, or equivalently,

Es exp r(Ws+t −Ws) = exp 1
2r

2t.

This, being true for all r in R, is equivalent to 2.16. �
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It is worth noting that, for fixed r in R, the processM of the preceding the-
orem is a continuous-time version of Example 2.6. Indeed, Mn+1 = MnRn+1

where the random variable Rn+1 now has a very specific distribution, namely,
the distribution of exp[r(Wn+1−Wn− 1

2
r2]. Thus, the exponential martingale

M is much used as a model for the evolution of stock prices. It is also the
primary tool for studying Brownian motions by using results from martingale
theory; see 5.20 et seq.

The next theorem gives the martingale characterization of Wiener process.
We are able to prove here only the easy part, the necessity. For a proof of
the sufficiency, see 6.21 to come.

2.19 Theorem. The continuous process W is Wiener with respect to F

if and only if

a) W is an F-martingale, and
b) Y = (W 2

t − t)t∈R+ is an F-martingale.

Proof of necessity. Let W be Wiener. Then, adaptedness and integrability
conditions are obvious for W and Y . Now, the martingale equality for W is
straightforward: for s < t, the increment Wt −Ws is independent of Fs and
has mean 0; thus,

Es (Wt −Ws) = E (Wt −Ws) = 0.

To show the martingale equality for Y , we first note that

Yt − Ys = (Wt −Ws)2 + 2Ws(Wt −Ws) − (t− s)

and then use the facts that Ws ∈ Fs and that Wt −Ws is independent of Fs
and has mean 0 and variance t− s. Thus, as needed,

Es (Yt − Ys) = E (Wt −Ws)2 + 2Ws E(Wt −Ws) − (t− s) = 0. �

The Wiener process is the continuous martingale par excellence. It plays
the same role in stochastic analysis as the Lebesgue measure does in ordinary
analysis. In particular, every continuous martingale (in continuous-time) is
obtained from a Wiener process by a random time change, just as most
measures on R are obtained from the Lebesgue measure by a time change
(see Theorem I.5.4).

Poisson martingales

Saying that a process is a martingale amounts to stating a property of it
without specifying its probability law. However, on rare occasions, martingale
property specifies the probability law. We stated, without proof, one such
case: if W is a continuous martingale and if W 2 − t is a martingale, then W
is a Wiener process. Here, we provide another such case, even sharper, this
time a pure-jump process.
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Here, the index set is R+, and F is a filtration over it. Let N = (Nt)t∈R+

be a counting process: this is a process with state space (N, 2N) whose every
path t �→ Nt(ω) starts from N0(ω) = 0, is increasing and right-continuous,
and increases by jumps of size one only. Therefore, Nt(ω) is equal to the
number of jumps of s �→ Ns(ω) in the interval (0, t]; Example 1.7 provides
the complete picture. The following definition parallels that of the Wiener
processes, Definition 2.15.

2.20 Definition. The counting process N is said to be a Poisson process
with rate c with respect to F if it is adapted to F and

Es f(Ns+t −Ns) =
∞∑

k=0

e−ct(ct)k

k!
f(k)2.21

for all s and t in R+ and all positive functions f on N.

The defining equation 2.21 is equivalent to saying that the increment
Ns+t −Ns is independent of Fs and has the Poisson distribution with mean
ct. As with Wiener processes, then, N has stationary and independent
increments, and its probability law is completely determined by the positive
constant c. Just as W is a martingale, for the Poisson process N , we have
that M = (Nt − ct)t∈R+ is an F-martingale; this is immediate from 2.21:

Es(Ns+t −Ns) = ct, s, t ∈ R+.2.22

It is surprising that, as the next theorem states, the simple property 2.22
is equivalent to 2.21. This is the martingale characterization theorem for
Poisson processes; it parallels Theorem 2.19 and is even sharper.

2.23 Theorem. Let N be a counting process. It is a Poisson process with
rate c, with respect to F, if and only if

Mt = Nt − ct, t ∈ R+,

is an F-martingale.

The proof will be given in Section 6; see Proposition 6.13 and its proof.

Exercises and complements

2.24 Restrictions. Let T0 ⊂ R̄, and let (Xt)t∈T0 be a martingale with respect
to a filtration (Ft)t∈T0 . Then, for every T1 ⊂ T0, the process (Xt)t∈T1 is a
martingale with respect to the filtration (Ft)t∈T1 . The word “martingale” can
be replaced with “submartingale” or with “supermartingale”.

2.25 Markov chains. Let X = (Xn) be a Markov chain with state space (E,E)
and transition kernel P . With P n denoting the nth power of P–see I.6.6 for
the definition–show that

Em f ◦Xm+n = (Pnf)◦Xm, m, n ∈ N,
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for every f in E+. Show that, for each fixed integer k ≥ 1, Mn = (P k−nf)◦Xn

defines a martingale on T = {0, 1, . . . , k}.
2.26 Poisson processes. Let N = (Nt)t∈R+ be a counting process adapted to
some filtration F = (Ft)t∈R+ . Prove the following characterization theorem
(see Proposition 2.17 for the parallel fo Wiener processes): N is a Poisson
process with rate c with respect to F if and only if

Mt = exp (−rNt + ct− cte−r), t ∈ R+,

is an F-martingale for every r in R+.

2.27 Averages. Let (Xn) be adapted to some filtration (Fn) and suppose that
each Xn is integrable. Define

X̄n =
1

n+ 1
(X0 + · · · +Xn), n ∈ N,

and assume that EnXn+1 = X̄n for all n. Show that (X̄n) is an F-martingale.

2.28 Positive supermartingales. Let (Xn) be a positive supermartingale with
respect to some filtration (Fn). Then, the following holds for almost every ω:
if Xm(ω) = 0 for some m, then Xn(ω) = 0 for all n ≥ m. Show this. Hint:
Let H = {Xm = 0} and show that Em 1HXn = 0 for n ≥ m.

2.29 Uniform integrability. Let Z be an integrable random variable. Let F =
(Ft)t∈R̄+

be a filtration on R̄+. For each stopping time T of F, let

XT = ET Z,

Show that the collection {XT : T is a stopping time of F} is uniformly
integrable.

2.30 Martingales in Lp. For p in [1,∞], a process X is said to be a martingale
in Lp if, in addition to adaptedness and the martingale equality, the integra-
bility condition for Xt is strengthened to requiring that Xt ∈ Lp for every
time t. Note that martingales in L1 are simply martingales. Submartingales
and supermartingales in Lp are defined similarly by replacing the condition
Xt ∈ L1 with the stronger condition that Xt ∈ Lp.

2.31 Lp-boundedness. A process (Xt) is said to be Lp-bounded if

sup
t

E |Xt|p <∞.

With the notation ‖ · ‖p for the Lp-norm, the condition means that
‖Xt‖p ≤ c for some constant c < ∞. Recall: uniform integrability im-
plies L1-boundedness; the converse is generally false; but Lp-boundedness
for some p > 1 implies uniform integrability.

2.32 Square integrable martingales. These are martingales that are L2-
bounded. This somewhat misleading usage seems well established.
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2.33 Quadratic variation. Let (Mn) be a martingale in L2 adapted to some
filtration (Fn). Define an increasing process by setting Q0 = 0 and

Qn+1 −Qn = (Mn+1 −Mn)2, n ≥ 0.

Show that the process X defined by

M2
n = M 2

0 +Xn +Qn, n ≥ 0,

is a martingale with X0 = 0. Show that

VarMn = VarM0 + EQn = VarM0 +Var(M1 −M0)+ · · ·+Var(Mn−Mn−1).

The process Q is called the quadratic variation process for M .

3 Martingale Transformations and Maxima

This section contains the basic results for martingales in discrete time:
integration in discrete time, Doob’s stopping theorem, and inequalities for
upcrossings and maxima. The index set is N unless stated otherwise; F is
a filtration which we keep in the background; Convention 1.21 regarding
conditional expectations is in force throughout; and all martingales, stopping
times, and so on are with respect to the filtration F.

Doob’s decomposition

The object is to write a given process as the sum of a martingale and
a predictable process, the latter to be defined presently. In the case of a
submartingale, its predictable part turns out to be increasing, which clarifies
our earlier statement that submartingales have a systematic tendency to be
increasing.

3.1 Definition. A process F = (Fn)n∈N is said to be F-predictable
if F0 ∈ F0 and Fn+1 ∈ Fn for every n in N.

Heuristically, then, the cumulative information Fn available at time n
determines the next value Fn+1, and thus, F is predictable in this dynamic
sense. Note that every predictable process is adapted and more. The following
is Doob’s decomposition.

3.2 Theorem. Let X be adapted and integrable. Then, it can be decom-
posed as

Xn = X0 +Mn +An, n ∈ N,3.3

where M is a martingale with M0 = 0, and A is predictable with A0 = 0.
This decomposition is unique up to equivalence. In particular, A is increasing
if X is a submartingale, and decreasing if X is a supermartingale.
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Proof. a) PutM0 = A0 = 0 and defineM and A through their increments:

An+1−An = En (Xn+1−Xn), Mn+1−Mn = (Xn+1−Xn)−(An+1−An)
for each n ∈ N. Then, 3.3 holds, M is obviously a martingale, and A is pre-
dictable by the Fn-measurability of the conditional expectation En (Xn+1 −
Xn). This proves the first statement.

b) If X is a submartingale, then 2.2 shows that An+1 − An ≥ 0, that
is, A is increasing. If X is a supermartingale, then the inequality is reversed,
and A is decreasing.

c) There remains to show the statement on uniqueness. To that end, let
X = X0+M ′+A′ be another such decomposition. Then B = A−A′ = M ′−M
is both predictable and a martingale. Thus,

Bn+1 −Bn = En (Bn+1 −Bn) = 0, n ∈ N ;

in other words, almost surely, Bn = B0 = 0. Hence, almost surely, A = A′

and M = M ′, as claimed. �
In Doob’s decomposition, we have Xn+1−Xn = An+1−An+Mn+1−Mn;

of these, An+1−An is known by the time n; thus, the extra information gained
by observing Xn+1 −Xn consists of the martingale increment Mn+1 −Mn.
For this reason, in engineering literature, A is called the prediction process,
and M the innovation process.

Integration in discrete time

This is a resume of stochastic integration in discrete time. Let M = (Mn)
and F = (Fn) be real-valued stochastic processes and define

Xn = M0F0 + (M1 −M0)F1 + · · · + (Mn −Mn−1)Fn, n ∈ N.3.4

Then, X = (Xn) is called the integral of F with respect to M , or the trans-
form of M by F , and we shall write

X =
ˆ
F dM3.5

to indicate it. Indeed, F is a random function on N, and M defines a random
signed-measure on N which puts the mass Mn −Mn−1 at n except that the
mass is M0 at n = 0; then 3.4 is equivalent to writing

Xn =
ˆ

[0,n]

F dM,

the Lebesgue-Stieltjes integral of F over [0, n] with respect to M . Such in-
tegrals are harder to define in continuous time, because Lebesgue-Stieltjes
integrals make sense for M that are of bounded variation over bounded in-
tervals, whereas most continuous martingales (including Wiener processes)
have infinite variation over every open interval. Here we are working with the
straightforward case of discrete time.
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3.6 Theorem. Let F be a bounded predictable process and let X =´
F dM . If M is a martingale, then so is X. If M is a submartingale and F

is positive, then X is a submartingale.

Proof. Suppose that M is a martingale. Since F0, . . . , Fn and M0, . . . ,Mn

are in Fn, so is Xn; that is, X is adapted to F. Since F is bounded, say by
some constant b > 0, we see that |Xn| is bounded by b times |M0| + |M1 −
M0| + · · · + |Mn −Mn−1|, which is integrable. So X is integrable. Finally,

En (Xn+1 −Xn) = En (Mn+1 −Mn)Fn+1

= Fn+1 En (Mn+1 −Mn) = Fn+1 · 0 = 0,

where the second equality uses the predictability of F to move Fn+1 outside
the conditional expectation En, and the third equality is merely the mar-
tingale equality for M . Hence, X is a martingale. If M is a submartingale
and F is positive, the third and fourth equalities become ≥, and X is a
submartingale. �

3.7 Heuristics. Here is an interpretation of the preceding theorem.
A person buys and sells shares of a certain stock, presumably to make a
profit. Let Mn be the price of a share at time n, and let Fn denote the
number of shares owned during the time interval (n− 1, n]. Then, the profit
made during (n− 1, n] is (Mn −Mn−1) · Fn. Hence, in 3.4, Xn is the sum of
the initial value X0 = M0F0 and the total profit made during (0, n]. Since
the decision on how many shares to own during (n, n+ 1] must be made at
time n based on the information Fn available at that time, it follows that
Fn+1 be Fn-measurable, that is, F be predictable. For reasons mentioned
in Example 2.6, the price process M should be a martingale. Then, the
preceding theorem shows that it is impossible to make a profit systematically
(or to lose systematically); no matter what “strategy” F one uses, X has no
systematic tendency to move up or down.

Predictability

To enhance the value of the preceding theorem, the following provides
some examples of predictable processes. Other examples may be constructed
by noting that the class of predictable processes form a linear space that is
closed under all limits.

3.8 Example. Let S and T be stopping times of F with S ≤ T . Let V
be a random variable in FS. Then,

V 1(S,T ], V 1(S,∞], 1(S,T ], 1[0,T ]

are all predictable processes. To see these, we start with the second, with
F = V 1(S,∞], that is, Fn = V · 1(S,∞](n). Note that,

Fn+1 = V 1{S<n+1} = V · 1{S≤n} ∈ Fn
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by Theorem 1.10 (or Theorem 1.16d with T = n). Thus, V 1(S,∞] is pre-
dictable. Since V ∈ FS, and FS ⊂ FT by the hypothesis that S ≤ T , we have
V ∈ FT , and the preceding sentence implies that V 1(T,∞] is predictable.
Hence, the difference of the two, V 1(S,T ], is predictable. Taking V = 1 shows
that 1(S,T ] is predictable. Taking T = ∞, we see that 1(S,∞] is predictable,
and finally, 1[0,S] = 1 − 1(S,∞] is predictable.

Martingales stopped

Let M = (Mn) be a process. Let T be a random time with values in N̄.
Then, the process X defined by

Xn(ω) = Mn∧T (ω)(ω) =
{
Mn(ω) if n ≤ T (ω)
MT (ω)(ω) if n > T (ω)3.9

is called the process M stopped at T . We observe that X is the integral 3.5
with F = 1[0,T ]. This F is bounded and positive, and further, it is predictable
when T is a stopping time (see the preceding example). Hence, the following
is immediate from Theorem 3.6.

3.10 Theorem. Let T be a stopping time. Let X be the process M stopped
at T . If M is a martingale, then so is X. If M is a submartingale, then so
is X.

Doob’s stopping theorem

This theorem captures the essence of the martingale property. For a mar-
tingale, given the cumulative information available at present, our estimate of
any future increment is zero. Doob’s theorem enables us to take the present
and future times to be stopping times with some restriction (see 4.12, 4.13,
and 5.8 as well), and further, it adds a simpler, more intuitive, characteriza-
tion of the martingale property. The time set is still N.

3.11 Theorem. Let M be adapted to F. Then, the following are equiva-
lent:

a) M is a submartingale.
b) For every pair of bounded stopping times S and T with S ≤ T , the

random variables MS and MT are integrable and

ES(MT −MS) ≥ 0.3.12

c) For every pair of bounded stopping times S and T with S ≤ T , the
random variables MS and MT are integrable and

E (MT −MS) ≥ 0.3.13

These statements remain equivalent when (a) is changed to read “M is a
martingale” provided that the inequalities in 3.12 and 3.13 are changed to
equalities.
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3.14 Remark. In fact, when (a) is changed to read “M is a martingale”,
then the inequality 3.12 needs to be replaced by equality, and (c) can be
replaced with the following:

c) For every bounded stopping time T , the random variable MT is in-
tegrable and E MT = E M0.

Proof. The martingale case is immediate from the submartingale case,
since M is a martingale if and only if both M and −M are submartingales.
We shall, therefore, show that (a)⇒(b)⇒(c)⇒(a).

i) Let M be a submartingale. Let S and T be stopping times with
S(ω) ≤ T (ω) ≤ n for all ω, where n is some fixed integer. Let V be a
bounded positive variable in FS. Putting F = V 1(S,T ] in 3.4 yields a process
X such that

Xn −X0 = V · (MT −MS).

The process F is predictable as noted in Example 3.8, and it is bounded and
positive since V is so. Thus, by Theorem 3.6, the process X is a submartin-
gale. The particular case with V = 1 and S = 0 shows that MT is integrable
(since Xn and X0 are so), and the case with V = 1 and T = n shows that MS

is integrable. Finally, recalling that V ∈ FS and using the defining property
for ES , we get

E V ES(MT −MS) = E V · (MT −MS) = E(Xn −X0) ≥ 0,

where the last inequality follows from the submartingale inequality for X .
Since this holds for arbitrary V positive and bounded in FS , the random
variable ES(MT−MS) must be positive. This proves the implication (a)⇒(b).

ii) Suppose that (b) holds. Taking expectations on both sides of 3.12
yields 3.13, since E ES = E. So, (b)⇒(c).

iii) Suppose that (c) holds. Then, the integrability of Mn follows from
that of MT for the particular choice of T = n; and adaptedness of M is
by hypothesis. Thus, to show (a), there remains to check the submartingale
inequality Em(Mn −Mm) ≥ 0, which is equivalent to showing that

E 1H Em(Mn −Mm) ≥ 0, 0 ≤ m < n,H ∈ Fm.3.15

Fix m,n,H such. Define, for ω in Ω,

S(ω) = m, T (ω) = n1H(ω) +m1Ω\H(ω).

Now, S is a fixed time and is a stopping time trivially. Since T ≥ S and
H ∈ FS , the time T is foretold at the time S = m; hence, T is a stopping
time. Obviously, S ≤ T ≤ n. Finally, MT −MS = 1H · (Mn −Mm) by the
way T and S are defined. Now 3.13 shows that 3.15 holds as needed. �
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Upcrossings

Let M be an adapted process. Fix a and b in R with a < b. Put T0 = −1
for convenience and for each integer k ≥ 1 define

Sk = inf { n > Tk−1 : Mn ≤ a }, Tk = inf { n > Sk : Mn ≥ b }.3.16

Since M is adapted, (S1, T1, S2, T2, . . .) is an increasing sequence of stopping
times; S1, S2, . . . are called the downcrossing times of the interval (a, b), and
T1, T2, . . . are called the upcrossing times; See Figure 4 for an illustration.
Then,

Un(a, b) =
∞∑

k=1

1(0,n]◦Tk3.17

is the number of upcrossings of (a, b) completed by M during [0, n].
As in Heuristics 3.8, think of Mn as the price at time n of a share of some

stock. Imagine someone who buys a share when the price hits a or below and
sells it later when the price becomes b or above, repeating the scheme forever.
Then, he buys a share at time S1 and sells it at T1, buys a share at time S2

and sells it at T2, and so on. The number of buy-sell cycles completed during
[0, n] is Un(a, b). The strategy employed is that of holding Fn shares during
(n− 1, n], where

Fn =
∞∑

k=1

1(Sk,Tk](n), n ≥ 1,3.18

and we put F0 = 0 for definiteness. Now X =
´
FdM describes the

evolution of his capital, and Xn − X0 is the profit during (0, n], which
profit is at least (b− a)Un(a, b) assuming that the share being held at time n
(if any) is worth more than what it was bought for. This heuristic observation
will be of use in the proof next.

S1 S2 S3T1 T2

n

a

b

Mn

Figure 4: Upcrossing times of (a, b) are T1, T2, . . ..
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3.19 Proposition. Suppose that M is a submartingale. Then,

(b− a)E Un(a, b) ≤ E
[
(Mn − a)+ − (M0 − a)+

]
.

Proof. An upcrossing of (a, b) by M is the same as an upcrossing of
(0, b− a) by the process (M − a)+, and the latter is again a submartingale
by Remark 2.4g. Thus, we may and do assume that a = 0 and M ≥ 0.

Let X =
´
FdM , defined by 3.4, with F given by 3.18. Note that F is

predictable. Thus, Fk+1 ∈ Fk, and we have

Ek(Xk+1 −Xk) = Ek(Mk+1 −Mk)Fk+1

= Fk+1Ek(Mk+1 −Mk) ≤ Ek(Mk+1 −Mk),

where the inequality follows from the positivity of Ek(Mk+1 −Mk) and the
observation that Fk+1 ≤ 1. Taking expectations on both sides and summing
over k we get

E(Xn −X0) ≤ E(Mn −M0).

On the other hand, as mentioned as a heuristic remark, Xn−X0 ≥ bUn(0, b)
since Mn ≥ 0 and a = 0. Hence,

b E Un(0, b) ≤ E(Xn −X0) ≤ E(Mn −M0),

which is the claim when a = 0 and M ≥ 0. �

Maxima and minima

Let M = (Mn) be a process adapted to F. For n in N, define

M∗
n = max

k≤n
Mk, m∗

n = min
k≤n

Mk,3.20

the maxima and minima.

3.21 Theorem. Suppose that M is a submartingale. Then, for b > 0,

b P{M ∗
n ≥ b} ≤ E Mn1{M∗

n≥b} ≤ E M+
n ,

b P{m∗
n ≤ −b} ≤ −E M0 + E Mn1{m∗

n>−b} ≤ E M+
n − E M0.

3.22 Remark. It is convenient to think of these inequalities in terms of
the stopping times (we suppress their dependence on b)

T = inf{n ≥ 0 : Mn ≥ b}, S = inf{n ≥ 0 : Mn ≤ −b},
that is, the time of first entrance to [b,∞) by M and the time of first entrance
to (−∞,−b]. Note that

{M∗
n ≥ b} = {T ≤ n}, {m∗

n ≤ −b} = {S ≤ n}.3.23

We shall give the proof below in terms of T and S.
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Proof. Fix b, fix n. Note that, on the set {T ≤ n}, we have MT∧n = MT ≥
b. Thus,

b 1{T≤n} ≤MT∧n1{T≤n} ≤ (ET∧nMn)1{T≤n} = ET∧nMn1{T≤n},

where the second inequality is Doob’s submartingale inequality 3.12 applied
with the bounded stopping times T ∧ n and n, and the last equality uses
Theorem 1.16d to the effect that {T ≤ n} ∈ FT∧n. Taking expectations on
both sides yields the first inequality concerning M∗

n in view of Remark 3.22;
the second inequality is obvious.

Similarly, on the set {S ≤ n}, we have MS ≤ −b and, hence,

MS∧n = MS 1{S≤n} +Mn 1{S>n} ≤ −b 1{S≤n} +Mn 1{S>n}.

Taking expectations, and noting that E M0 ≤ E MS∧n by the submartingale
inequality 3.13 applied with the bounded stopping times 0 and S ∧ n, we
obtain the first inequality claimed for m∗

n. The second is obvious. �

When M is a martingale, |M |p is a submartingale for p ≥ 1 provided
that Mn be in Lp for every n. Then, applying the preceding theorem to
the submartingale |M |p yields the following corollary. This is called Doob-
Kolmogorov inequality; it is a generalization of Kolmogorov’s inequality
(Lemma III.7.1) for sums of independent variables.

3.24 Corollary. Let M be a martingale in Lp for some p in [1,∞).
Then, for b > 0 ,

bp P{ max
k≤n

|Mk| > b } ≤ E |Mn|p.

Another corollary, this time about the submartingale M directly, can be
obtained by combining the two statements of Theorem 3.21:

b P{ max
k≤n

|Mk| > b } ≤ 2 EM+
n − EM0 ≤ 3 max

k≤n
E |Mk| .3.25

The following gives a bound on the expected value of the maxima of |M |
when M is a martingale. It is called Doob’s norm inequality.

3.26 Theorem. Let M be a martingale in Lp for some p > 1. Let q be
the exponent conjugate to p, that is, 1/p+ 1/q = 1. Then,

E max
k≤n

|Mk|p ≤ qp E |Mn|p.

Proof. Fix n, and introduce Z = maxk≤n |Mk| for typographical ease. We
are to show that

E Zp ≤ qp E |Mn|p.3.27
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We start by noting that

Zp =
ˆ Z

0

dx pxp−1 =
ˆ ∞

0

dx pxp−2x 1{Z≥x},

and
E x 1{Z≥x} = x P{max

k≤n
|Mk| ≥ x} ≤ E |Mn| · 1{Z≥x}

by Theorem 3.21 applied to the submartingale |M | . Thus,

Ebb Zp ≤ E |Mn|
ˆ ∞

0

dx pxp−2 1{Z≥x} = E |Mn| q Zp−1

≤ q (E |Mn|p)1/p (E Zp)1/q,

where the last inequality follows from Hölder’s, II.3.6a. Solving this for E Zp

yields the desired bound 3.27. �

Exercises

3.28 Doob’s Decomposition. Let X = (Xn) be a submartingale and let

X = X0 +M +A

be its Doob decomposition as in Theorem 3.2. Show that X is L1-bounded
if and only if both M and A are L1-bounded.

3.29 Martingales in L2. Let M be a martingale in L2 and let Q by its
quadratic variation process; see 2.30 and 2.33. Show that the martingale
X = M2 −M2

0 −Q has the form (see 3.5)

X =
ˆ
F dM

with F0 = 0 and Fn = 2Mn−1, n ≥ 1.

3.30 Continuation. Note that Q is a submartingale with Q0 = 0. Let Q =
Y +A be its Doob decomposition with Y a martingale and A an increasing
predictable process. Describe Y and A. Show that, with N = X + Y ,

M 2 = M2
0 +N +A

is Doob’s decomposition for the submartingale M2.

3.31 Upcrossings. Recall the definitions 3.16-3.18. Show that F can be ob-
tained recursively by, starting with F0 = 0,

Fn+1 = Fn 1{Mn<b} + (1 − Fn) 1{Mn≤a}, n ≥ 0.

Define the stopping times S1, T1, S2, T2, . . . in terms of the Fn. Show that

Un(a, b) =
n∑

k=1

Fk · (1 − Fk+1) =
n∑

k=1

Fk 1{Mk≥b}.
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4 Martingale Convergence

This section is on the fundamental results of the classical theory of
martingales. We give the basic convergence theorems, characterization of
uniformly integrable martingales, and a sample of applications: Hunt’s
extension of the dominated convergence theorem, Lévy’s extension of the
Borel-Cantelli lemma, new proofs of Kolmogorov’s 0-1 law and the strong law
of large numbers, and a constructive proof of the Radon-Nikodym theorem.

As usual, (Ω,H,P) is the probability space in the background. The index
set is N unless stated otherwise. The filtration F is kept in the background as
well, and Convention 1.21 on conditional expectations is in force throughout.
All martingales, stopping times, and so on are relative to the filtration F.

Martingale convergence theorem

The next theorem is basic. Let X be a submartingale. Doob’s decompo-
sition of it shows that it has a tendency to increase. If that tendency can be
curbed, then it should be convergent.

4.1 Theorem. Let X be a submartingale. Suppose that

sup
n

E X+
n <∞.4.2

Then, the sequence (Xn) converges almost surely to an integrable random
variable.

4.3 Remarks. a) The condition 4.2 is that the process X+ be L1-
bounded. Since X is a submartingale, so is X+ by Remark 2.4g, and E X+

n is
increasing in n as a result. The condition 4.2 delimits the upward tendency
of X , and the convergence of X becomes intuitive.

b) If X is a negative submartingale, then 4.2 is automatic and X con-
verges.

c) IfX is a positive supermartingale, then the preceding remark applies
to −X and, hence, X converges.

d) Since every martingale is a submartingale and a supermartingale,
the preceding theorem and remarks apply: If X is a martingale, and if X is
positive or negative or bounded from below by an integrable random vari-
able or bounded from above similarly, then X converges almost surely to an
integrable random variable X∞.

e) When X is a submartingale, E Xn ≥ E X0 for every n, and

E X+
n ≤ E |Xn| = 2 E X+

n − E Xn ≤ 2 E X+
n − E X0.

Hence, the condition that X+ be L1-bounded is equivalent to requiring that
X be L1-bounded, that is, 4.2 holds if and only if

sup
n

E |Xn| <∞.4.4
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Proof. Pick an outcome ω, suppose that the sequence of numbers Xn(ω)
does not have a limit; then its limit inferior is strictly less than its limit
superior, in which case there are at least two rationals a and b with a < b
that can be inserted between the two limits, and which in turn implies that
the sequence upcrosses the interval (a, b) infinitely often. The set of all such ω
is the union, over all rationals a and b with a < b, of the sets {U(a, b) = +∞},
where U(a, b) = limn Un(a, b), the total number of upcrossings of (a, b). Thus,
to show that limXn exists almost surely, it is enough to show that for every
pair of rationals a and b with a < b we have U(a, b) <∞ almost surely.

Fix a < b such. Since Un(a, b) is increasing in n,

(b−a)E U(a, b) = (b−a) lim E Un(a, b) ≤ sup E(Xn−a)+ ≤ sup EX+
n +|a|<∞,

where we used, in succession, the monotone convergence theorem, Proposi-
tion 3.19 on upcrossings, the observation that (x − a)+ ≤ x+ + |a|, and the
condition 4.2. Thus, U(a, b) <∞ almost surely.

It follows that X∞ = limXn exists almost surely. By Fatou’s lemma and
Remark 4.3e,

E |X∞| = E lim inf |Xn| ≤ lim inf E|Xn| ≤ 2 sup
n

E X+
n − E X0 <∞,

which shows that the limit is integrable (and thus real-valued), and hence,
X is convergent. �

Convergence and uniform integrability

The following improves upon the preceding theorem in the presence of
uniform integrability. Recall 1.8 et seq. on extending the filtration F onto N̄

by setting F∞ = limFn = ∨nFn.
4.5 Theorem. Let X be a submartingale. Then, X converges almost su-
rely and in L1 if and only if it is uniformly integrable. Moreover, if it is so,
setting X∞ = limXn extends X to a submartingale X̄ = (Xn)n∈N̄

.

Proof. If X converges almost surely and in L1, then it must be uniformly
integrable; see Theorem III.4.6.

If the submartingale X is uniformly integrable, then it is L1-bounded by
Remark II.3.13c and the condition 4.2 follows from Remark 4.3e. Thus, X
converges almost surely by Theorem 4.1, and also in L1 by Theorem III.4.6.
Moreover, then, the limit X∞ is integrable by 4.1 and belongs to F∞ since
all the Xn belong to F∞. To show that X̄ is a submartingale over N̄, there
remains to show that, for every m in N,

Em(X∞ −Xm) ≥ 0.4.6

Fix m. Fix H in Fm. The submartingale inequality for X implies that

E 1H · (Xn −Xm) = E 1H Em(Xn −Xm) ≥ 0
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for every n ≥ m. Thus, since Xn −Xm goes to X∞ −Xm in L1 as n→ ∞,

E 1H(X∞ −Xm) = lim
n

E 1H(Xn −Xm) ≥ 0

by Proposition III.4.7. Since H in Fm is arbitrary, this implies 4.6. �

Uniformly integrable martingales

The following theorem characterizes uniformly integrable martingales and
identifies their limits. Its proof is nearly immediate from Proposition 2.7 and
the preceding theorem.

4.7 Theorem. A process M = (Mn)n∈N is a uniformly integrable mar-
tingale if and only if

Mn = En Z, n ∈ N,4.8

for some integrable random variable Z. If so, it converges almost surely and
in L1 to the integrable random variable

M∞ = E∞ Z,4.9

and, moreover, M̄ = (Mn)n∈N̄
is again a uniformly integrable martingale.

Proof. If M has the form 4.8, then it is a uniformly integrable martingale
as was shown in Proposition 2.7. If M is a uniformly integrable martingale,
then the preceding theorem shows that it converges almost surely and in L1

to some integrable random variable M∞ and that M̄ = (Mn)n∈N̄
is again a

martingale; it follows from the martingale property for M̄ that M has the
form 4.8 with Z = M∞. This completes the proof of the first statement and
much of the second.

To complete the proof, there remains to show that if 4.8 holds then 4.9
holds as well, which amounts to showing that

E M∞ 1H = E Z 1H4.10

for everyH in F∞. Let D be the collection of allH in F∞ for which 4.10 holds.
Then D ⊃ Fn for each n since En M∞ = Mn = En Z; thus, D ⊃ ∪nFn. Since
D is clearly a d-system, and since it contains the p-system ∪nFn, it follows
that D ⊃ F∞ = σ(∪nFn); this is by the monotone class theorem. So, 4.10
holds for every H in F∞. �

4.11 Corollary. For every integrable variable Z,

En Z −→ E∞ Z

almost surely and in L1.
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Proof is not needed; this is a partial re-statement of the preceding
theorem. Note that, in particular, if Z ∈ F∞ then En Z → Z; that is, if Z is
revealed by the end of time, then our estimate of it at time n converges to it
as n→ ∞.

The following supplements the preceding results and removes the bound-
edness condition in Doob’s stopping theorem 3.11. In view of Theorem 4.7
above, the condition of the next theorem is equivalent to saying that (Mn)n∈N

is a uniformly integrable martingale and M∞ = limMn.

4.12 Theorem. Suppose that, for some integrable random variable Z,

Mn = En Z, n ∈ N̄.

Then, for every stopping time T ,

MT = ET Z.

Moreover, for arbitrary stopping times S and T ,

ES MT = MS∧T .

4.13 Remarks. a) On the meaning of MT : Since Mn(ω) is well-defined
for every integer n and n = +∞, the random variable MT is well-defined
even for ω with T (ω) = +∞.

b) Doob’s stopping theorem. According to the first claim, MT is the
conditional expectation of Z given FT . Since Z is integrable, this implies
that MT is integrable. So, if S and T are arbitrary stopping times (taking
values in N̄) with S ≤ T , the random variablesMS andMT are integrable and

ES MT = MS

by the second claim. Thus, for uniformly integrable martingales, Doob’s stop-
ping theorem 3.11 remains true without the condition of boundedness on the
stopping times.

Proof. We shall be using the repeated conditioning property, ESET =
ES∧T , a number of times without further comment. To prove the first claim,
we start by noting that, for each n in N,

MT∧n = ET∧n Mn;

this follows from Doob’s stopping theorem 3.11 for the martingale M used
with the bounded stopping times T ∧n and n. Replacing Mn by EnZ, noting
that ET∧nEn = ET∧n = EnET , we get

MT∧n = EnETZ, n ∈ N.

As n→ ∞, the left side converges toMT almost surely, whereas the right side
converges to E∞ETZ = ETZ by Corollary 4.11 applied to the integrable
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random variable ETZ. Thus, MT = ETZ as claimed. The second claim is
immediate:

ESMT = ESETZ = ES∧TZ = MS∧T . �

The following corollary is immediate from the preceding theorem and
Lemma 2.8.

4.14 Corollary. If (Mn)n∈N̄
is a uniformly integrable martingale, then

the collection
{MT : T is a stopping time}

is uniformly integrable. �

Within the proof of the last theorem, we have shown that

ET∧n Z −→ ET Z4.15

almost surely and in L1; this follows from applying Corollary 4.11 to
EnETZ = ET∧nZ. Here is a consequence of this useful fact.

4.16 Proposition. Suppose that (Ω,H,P) is complete, and all negligible
events belong to F0 (and therefore to all the Fn). Then, for every stopping
time T of the filtration (Fn),

FT = lim
n

FT∧n = ∨nFT∧n.

Proof. Let F̂n = FT∧n; we are to show that F̂∞ = FT . Since F̂n ⊂ FT
for every n, we have F̂∞ ⊂ FT . To show the converse containment, let Z be
a bounded variable in FT . Then, Z = ETZ by definition and, thus, is the
almost sure limit of ET∧nZ ∈ F̂n ⊂ F̂∞. Since F̂∞ ⊃ F0 and F0 includes
every negligible event, it follows that Z ∈ F̂∞. So, FT ⊂ F̂∞ as well. �

Convergence in reversed time

In this subsection, the index set is T = {. . . ,−2,−1, 0}, and F is a filtra-
tion on T, that is, Fm ⊂ Fn for m < n as before but for m and n in T.

4.17 Theorem. Let X = (Xn)n∈T be a martingale relative to F. Then,
X is uniformly integrable and, as n→ −∞, it converges almost surely and in
L1 to the integrable random variable X−∞ = E−∞X0, where F−∞ = ∩n∈TFn.

Proof. i) The martingale property for X implies that

Xn = En X0, n ∈ T.

Thus, X has the same form as in Proposition 2.7 and is uniformly integrable
as shown there.
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ii) Let a and b be real numbers with a < b. By Proposition 3.19 on
upcrossings applied to the martingale (Xn, Xn+1, . . . , X0, X0, X0, . . .), the
expected number of upcrossings of (a, b) by X during [n, 0] is bounded by

1
b− a

E [(X0 − a)+ − (Xn − a)+] ≤ 1
b− a

E (X0 − a)+ <∞.

Thus, the number of upcrossings of (a, b) by X over (−∞, 0] is almost surely
finite, just as in the proof of the martingale convergence theorem 4.1. Hence,
as in 4.1 again,X converges almost surely to some integrable random variable
X−∞ as n → −∞. By the uniform integrability of X , the convergence is in
L1 as well. Clearly, the limit belongs to Fn for every n in T, and hence, is
in F−∞. �

The next corollary mirrors Corollary 4.11. No proof is needed.

4.18 Corollary. For every integrable random variable Z,

En Z −→ E−∞ Z

almost surely and in L1 as n→ −∞.

The preceding proof extends to submartingales on T, but requires a
condition to check the downward tendency of the submartingale as n goes
toward −∞.

4.19 Theorem. Let X = (Xn)n∈T be a submartingale relative to F. Sup-
pose that

inf
n

E Xn > −∞.4.20

Then, X is uniformly integrable and, as n → −∞, converges almost surely
and in L1 to an integrable random variable X−∞.

Proof. i) Since X is a submartingale, E Xn decreases as n decreases, and
4.20 implies that a = lim E Xn is finite. Fix ε > 0, take the negative integer
m such that E Xn ≤ a + ε for all n ≤ m, and recall that X+ is again a
submartingale. Thus, for n ≤ m and H ∈ Fn,

−E Xn ≤ −E Xm+ε, E X+
n 1H ≤ E X+

m 1H , E Xn 1Ω\H ≤ E Xm 1Ω\H .

These inequalities imply, since |Z| 1H = −Z + 2Z+1H + Z 1Ω\H for all
variables Z, that

E |Xn| 1H ≤ E |Xm| 1H + ε4.21

for all n ≤ m and H in Fn.
Next, fix b > 0, take H = { |Xn| > b}, and use Markov’s inequality and

the submartingale property for X+ and the fact that E Xn ≥ a for all n.
We get

b P(H) ≤ E |Xn| ≤ 2E X+
n − E Xn ≤ 2E X+

0 − a,
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which shows that the probability here can be made as small as desired by
taking b large enough. Using this in 4.21 and recalling the integrability of
Xm, we deduce that (Xn)n≤m is uniformly integrable. Since adding the in-
tegrable random variables Xm+1, Xm+2, . . . , X0 does not affect the uniform
integrability, we conclude that X is uniformly integrable.

ii) The remainder of the proof follows the part (ii) of the proof of 4.17
word for word. �

In the remainder of this section we give a sample of applications and
extensions of the convergence theorems above.

Hunt’s dominated convergence theorem

This is a useful extension of the dominated convergence theorem. Note
that there is no assumption of adaptedness for the sequence.

4.22 Theorem. Let (Xn) be dominated by an integrable random vari-
able and suppose that X∞ = limXn exists almost surely. Then, the sequence
(En Xn) converges to E∞ X∞ almost surely and in L1.

Proof. Suppose that |Xn| ≤ Z for every n, where Z is integrable. Then,
(Xn) is uniformly integrable, its limit X∞ is integrable, and Corollary 4.11
implies that EnX∞ → E∞X∞ almost surely and in L1. Thus, the proof is
reduced to showing that, as n→ ∞,

|EnXn − EnX∞| → 0

almost surely and in L1. Convergence in L1 is easy:

E |EnXn − EnX∞| ≤ E En |Xn −X∞| = E |Xn −X∞| → 0

since Xn → X∞ in L1 as well. To show the almost sure convergence, let
Zm = supn≥m |Xn −X∞|. Observe that, almost surely,

lim sup
n→∞

|EnXn − EnX∞| ≤ lim sup
n→∞

EnZm = E∞Zm,

where the last equality follows from Corollary 4.11 after noting that Zm is
integrable, in fact, |Zm| ≤ 2Z. This completes the proof since E∞Zm →
E∞ limZm = 0 as m→ ∞ by the dominated convergence property IV.1.8 for
conditional expectations. �

An extension of the Borel-Cantelli lemma

Let X = (Xn) be a sequence, adapted to (Fn), of positive integrable
random variables. Put S0 = 0 and

Sn = S0 +X1 + · · · +Xn, n ∈ N.
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Then, S = (Sn)n∈N is an increasing integrable process adapted to F, that is,
an increasing submartingale. Let

S = M +A4.23

be its Doob decomposition: M is a martingale and A is an increasing pre-
dictable process. Since both S and A are increasing, the limits S∞ = limSn
and A∞ = limAn are well-defined.

4.24 Proposition. For almost every ω,

A∞(ω) <∞ ⇒ S∞(ω) <∞.

If X is bounded by some constant, then the reverse implication holds as well.

4.25 Remark. Recall that, in Doob’s decomposition 4.23, we have

An = E0X1 + E1X2 + · · · + En−1Xn.

If the Xn are independent, then An = ESn, and the preceding proposition
relates the convergence of Sn to the convergence of its mean, which relation
is what the Borel-Cantelli lemma is about.

Proof. i) For b in (0,∞) let

T = inf{n : An+1 > b},
and let N be the martingale M stopped at T (see 3.9). Predictability of
A implies that T is a stopping time, and Theorem 3.10 shows that N is a
martingale. Since M = S − A ≥ −A and since An ≤ b on {n ≤ T }, the
martingale N + b is positive, and, hence, it is almost surely convergent by
Remark 4.3d. Hence, N is convergent almost surely.

ii) Let Ωb be the almost sure event on which the limit N∞ exists and
is finite, and let Hb = Ωb∩{A∞ ≤ b}. For every ω in Hb, we have T (ω) = ∞,
which means that Mn(ω) = Nn(ω) for every integer n, which implies that the
limit M∞(ω) of Mn(ω) exists and is finite, which in turn allows us to conclude
that S∞(ω) = M∞(ω)+A∞(ω) <∞. Hence, on the event H = H1∪H2∪· · ·,
we have A∞ <∞ and S∞ <∞, and noting that {A∞ <∞}\H is negligible
completes the proof of the first statement.

iii) Next, suppose that the sequence X is bounded by some constant c.
For b in (0,∞) define

T = inf{n : Sn > b},
and let N be the martingale M stopped at T . Since Xn ≤ c for every n, the
process N+ is bounded by b+ c. So, N converges almost surely to some finite
random variable N∞; this is by the martingale convergence theorem 4.1. The
remainder of the proof of the second statement follows the part (ii) above
with the letter A replaced by S, and S by A. �
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Kolmogorov’s 0-1 law

This is to illustrate the power of the martingale machinery by giving a
short proof of Kolmogorov’s 0-1 law. Let X1, X2, . . . be independent random
variables. Suppose that Fn = σ(X1, . . . , Xn). Put Tn = σ(Xn+1, Xn+2, . . .),
and let T = ∩nTn, the tail σ-algebra.

4.26 Proposition. If H ∈ T then P(H) is either 0 or 1.

Proof. By Corollary 4.11, for every event H ,

En 1H → E∞ 1H

almost surely. When H ∈ T, since T is independent of Fn, we have En 1H =
E 1H = P(H). On the other hand, since Tn ⊂ F∞ for every n, we have
T ⊂ F∞, which implies that E∞ 1H = 1H . Thus, 1H(ω) is equal to the
number P(H) for almost every ω, which makes the latter either 0 or 1. �

Of course, consequently, for every random variable X in T, there is con-
stant c in [−∞,+∞] such that X(ω) = c for almost every ω.

Strong law of large numbers

Let X1, X2, . . . be independent and identically distributed real-valued ran-
dom variables with finite mean a. Then, by the strong law of large numbers,

X̄n =
1
n

(X1 + · · · +Xn)4.27

converges almost surely to the constant a. Here is a martingale proof of this,
which shows that the convergence is in L1 as well.

Let F−n = σ(X̄n, X̄n+1, . . .), which is the same as the σ-algebra generated
by X̄n and the tail Tn = σ(Xn+1, Xn+2, . . .). Since the vector (X1, . . . , Xn)
is independent of Tn, the conditional expectation E−nXk of Xk given F−n
depends only on X̄n. Since the distribution of that vector remains invariant
under permutations of its entries, E−nX1 = · · · = E−nXn. But the sum of
these n things is equal to E−n(X1 + · · · +Xn) = nX̄n. Hence,

X̄n = E−nX1, n = 1, 2, . . . .4.28

Corollary 4.18 on reversed martingales applies to the right side:

X̄∞ = lim X̄n4.29

exists almost surely and in L1. Convergence in L1 helps to see that

E X̄∞ = lim E X̄n = a.

On the other hand, 4.27 shows that

X̄∞ = lim
n

1
n

(Xk+1 + · · · +Xk+n),
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which shows that X̄∞ belongs to Tk for every k and, hence, to the tail
σ-algebra ∩kTk. By Kolmogorov’s 0-1 law, X̄∞ is a constant over an almost
sure event, and obviously that constant is its mean a.

Radon-Nikodym theorem

Our aim here is to give a constructive, and intuitive, proof of the Radon-
Nikodym theorem and a very useful extension of it due to Doob.

First, a definition: A σ-algebra G on Ω is said to be separable if
it is generated by some sequence (Hn) of subsets of Ω. Then, letting
Fn = σ(H1, . . . , Hn), we obtain a filtration (Fn) such that

F∞ = limFn = ∨nFn = G.4.30

Indeed, each Fn has only a finite number of elements, and we can easily find
a finite partition Dn of Ω such that Fn = σ(Dn), that is, each set H in Fn is
the union of some finite number of elements of Dn. Obviously, Dn gets more
and more refined as n increases. So, G is a separable σ-algebra if and only if
it is generated by a sequence (Dn) of finite partitions of Ω.

For example, if Ω = [0, 1], its Borel σ-algebra G is separable: for Dn take
the partition whose elements are [0, a], (a, 2a], (2a, 3a], . . . , (1 − a, 1] with
a = 1/2n. This example is worth keeping in mind.

4.31 Theorem. Let G be a separable sub-σ-algebra of H. Let Q be a finite
measure on (Ω,G). Suppose that Q is absolutely continuous with respect to P ,
the latter being the restriction of P to G. Then, there exists a positive random
variable Z in G such that

Q(H) =
ˆ
H

P(dω)Z(ω), H ∈ G.4.32

4.33 Remarks. a) Of course, the conclusion is that

Z =
dQ

dP
,

that is, Z is a version of the Radon-Nikodym derivative of Q with respect
to P .

b) If H is separable, or if H differs from a separable σ-algebra by a
collection of negligible events, then the theorem remains true with G = H. In
fact, in most situations in probability theory, this remark is applicable to H.

c) In fact, the separability condition can be dropped: The claim of
the theorem is true for arbitrary sub-σ-algebra G of H (See the notes for
references).

Proof. We start by constructing a sequence of random variables (this is
the intuitive part) and give the proof through a series of lemmas.
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4.34 Construction. For each n, let Fn be the σ-algebra generated by
a finite partition Dn of Ω such that the sequence (Fn) is a filtration and 4.30
holds.

For each ω in Ω, there is a unique element H of Dn such that ω ∈ H , and
then we define Xn(ω) to be the ratio Q(H)/P (H); in other words,

Xn(ω) =
∑

H∈Dn

Q(H)
P (H)

1H(ω), n ∈ N, ω ∈ Ω,4.35

with the convention that 0/0 = 0. Obviously, each Xn is positive and is in
Fn and takes finitely many values, and

Q(H) = E 1HXn, H ∈ Fn.4.36

4.37 Lemma. The process (Xn) is a positive martingale with respect to
the filtration (Fn); it converges almost surely to an integrable positive random
variable Z in G.

Proof. The positivity and adaptedness are obvious. Taking H = Ω in 4.36
shows that E Xn = Q(Ω) <∞. To see the martingale property, let H ∈ Fn.
Then, H ∈ Fn+1 as well, and 4.36 shows that

E 1HXn = Q(H) = E 1HXn+1.4.38

This is another way of saying that En Xn+1 = Xn. Thus, X is a positive
martingale. The remaining claim is immediate from the convergence theorem
4.1 and Remark 4.3d. �

4.39 Lemma. For every ε > 0 there is δ > 0 such that, for every event
H in G,

P (H) ≤ δ ⇒ Q(H) ≤ ε.

Proof. This is by the assumed absolute continuity of Q with respect to P .
We show it by contradiction. Suppose that for some ε > 0 there is no such δ.
Then, there must exist Hn in G such that

P (Hn) ≤ 1/2n, Q(Hn) > ε.

Define H = lim supHn, that is, 1H is the limit superior of the indicators of
the Hn. By Borel-Cantelli for the probability measure P we have P (H) = 0,
whereas

Q(H) ≥ lim supQ(Hn) ≥ ε

by Fatou’s lemma applied with the finite measure Q. This contradicts the
absolute continuity (P (H) = 0 ⇒ Q(H) = 0). �
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The following lemma completes the proof of Theorem 4.31.

4.40 Lemma. The martingale (Xn) is uniformly integrable, and its limit
Z is in G and satisfies 4.32.

Proof. Pick ε > 0 and choose δ > 0 as in the preceding lemma. Let
b = Q(Ω)/δ and H = {Xn > b}. Since

P (H) ≤ 1
b

E Xn =
1
b
Q(Ω) = δ,

we have (recall 4.36)

E Xn 1{Xn>b} = E 1H Xn = Q(H) ≤ ε.

Thus, (Xn) is uniformly integrable. By Lemma 4.37 it is a positive martingale
and converges to Z in G almost surely. Hence, it converges to Z in L1 as well.

Define Q̂(H) to be the integral on the right side of 4.32. Convergence in
L1 allows us to write

Q̂(H) = E 1H Z = lim
n

E 1H Xn

for every event H . But in view of 4.36, Q̂(H) = Q(H) for every H in Fn;
that is, Q = Q̂ on Fn for each n. Hence, Q and Q̂ coincide on the p-system
∪nFn and, therefore, on the σ-algebra G generated by that p-system; see
Proposition 3.8 of Chapter I. �
4.41 Remark. Singularity. Suppose that Q on (Ω,G) is singular with
respect to P . Lemma 4.37 still holds, the almost sure limit Z is positive and
integrable, and the right side of 4.32 defines a finite measure Q̂. Using Fatou’s
lemma with 4.36 shows that Q̂(H) ≤ Q(H), which means that Q̂ puts all its
mass on a set of zero P -measure. But, obviously, Q̂ is absolutely continuous
with respect to P . It follows that Q̂ = 0, which means that Z = 0 almost
surely.

4.42 Remark. Lebesgue’s decomposition. Let the measure Q be an
arbitrary finite measure on (Ω,G). We may normalize it to make it a prob-
ability measure, and we assume so. Then, P̂ = 1/2(P + Q) is a probability
measure, and both P and Q are absolutely continuous with respect to P̂ .
Thus, by the preceding theorem, there exists a positive X in G such that

P (H) =
ˆ
H

P̂ (dω)X(ω), Q(H) =
ˆ
H

P̂ (dω) (2 −X(ω))

and we may assume that 0 ≤ X ≤ 2. Thus, with Z = 2
X−1 and Ω0 = {X = 0},

Q(H) =
ˆ
H

P (dω)Z(ω) +Q(H ∩ Ω0), H ∈ G.4.43

On the right side, the integral defines a measure Qc which is absolutely
continuous with respect to P , and the second term defines a measure Qs
which is singular with respect to P . This decomposition Q = Qc + Qs is
called the Lebesgue decomposition of Q.
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Doob’s theorem for families of measures

This is immensely useful in the theory of Markov processes. The separabil-
ity condition cannot be removed. In applications, E is sometimes a “space”,
sometimes the time set, and sometimes is the space-time product. The point
of the theorem is the joint measurability of Z.

4.44 Theorem. Let Ω be a set and G a separable σ-algebra on it. Let
(E,E) be an arbitrary measurable space. Let Q be a bounded transition kernel,
and P a probability kernel, both from (E,E) into (Ω,G). Suppose that, for each
x in E, the measure H �→ Q(x,H) is absolutely continuous with respect to
the measure H �→ P (x,H). Then, there exists a positive Z in E⊗G such that

Q(x,H) =
ˆ
H

P (x, dω)Z(x, ω), x ∈ E,H ∈ G.4.45

Proof. For each x, define Xn(x, ω) by 4.35 from the measures Q(x, ·) and
P (x, ·). Measurability of Q(x,H) and P (x,H) in x shows that, for each r
in R+,

{(x, ω) ∈ E × Ω : Xn(x, ω) ≤ r}

is a finite union of rectangles A×H in E⊗Fn. Thus, all the Xn are in E⊗ G

(this is joint measurability), which implies that Z defined next is in E ⊗ G:
For x in E and ω in Ω, let

Z(x, ω) = lim
n
Xn(x, ω)

if the limit exists and is finite, and otherwise, put Z(x, ω) = 0. Now, for each
x, Theorem 4.31 shows that 4.45 holds. �

Exercises and complements

4.46 Doob’s decomposition. Let X be an L1-bounded submartingale, and let
X = X0 +M + A be its Doob decomposition. Show that the martingale M
and the increasing process A are both convergent and their limits M∞ and
A∞ are integrable.

4.47 Convergence in Lp. If Z ∈ Lp for some p in [1,∞], then the martingale
(EnZ) is Lp-bounded and converges to E∞Z almost surely and in Lp.

4.48 Dominated convergence in Lp. LetX be a martingale that is Lp-bounded
for some p > 1. Define

X∗ = sup
n

|Xn|.

a) Show that X∗ ∈ Lp and that (Xn) is dominated by X∗.
b) Show that X converges almost surely and in Lpto a random variable

X∞, and |X∞| ≤ X∗.
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4.49 Convergence in reversed time. In Theorem 4.17, suppose further that
X0 ∈ Lp for some p in [1,∞]. Show that, then, X converges to X−∞ in Lpas
well. In particular, show that X∗ = supn |Xn| is in Lp.

4.50 Markov chains started at −∞. Let X = (Xn)n∈T be a Markov chain
with state space (E,E) and transition kernel P over the time-set T =
{. . . ,−2,−1, 0}; see Definition 2.11 and take F = (Fn)n∈T and require 2.12
for n in T. Let f be a bounded function in E+, and set

Mnf = (P−nf)◦Xn, n ∈ T.

a) Show that Mnf = En f ◦X0 for n ∈ T. Show that it converges, as
n→ −∞, to a bounded random variable mf almost surely and in L1.

b) Suppose that there is a probability measure μ on (E,E) such that
Pnf → μf as n → +∞ for every bounded f in E+. Show that, then, the
random variablemf is equal to the constant μf , the integral of f with respect
to the measure μ. Thus, we have shown that

lim
n→−∞ En f ◦X0 = μf

for every bounded f in E+, which enables us to interpret μ as “the distribution
of X0 assuming that the chain is started at −∞”.

4.51 Submartingales majorized by martingales. Let X = (Xn)n∈N be a uni-
formly integrable submartingale and let X∞ = limXn. Define

Mn = En X∞, n ∈ N,

Then, M is a uniformly integrable martingale. Show that Xn ≤ Mn almost
surely for all n.

4.52 Decomposition of submartingales. Let X be an L1-bounded submartin-
gale and let X∞ = limXn. Define

Mn = EnX∞, Vn = Xn −Mn, n ∈ N.

This yields a decomposition X = M + V , where M is a uniformly integrable
martingale and V is a submartingale with limVn = 0 almost surely. Show
these, and show that this decomposition is unique.

4.53 Potentials. Let X be a positive supermartingale. (Then, it is convergent
almost surely.) If limXn = 0 almost surely, then X is called a potential. Show
that a positive supermartingale X is a potential if lim E Xn = 0.

4.54 Decomposition of supermartingales. Let X be a supermartingale with
sup E X−

n <∞. Show that, then, X converges almost surely to an integrable
random variable X∞. Show that there is a unique decomposition

X = M + V

where M is a uniformly integrable martingale and V is a potential.
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4.55 Riesz decomposition. Every positive supermartingale X has a decompo-
sition

X = Y + Z

where Y is a positive martingale and Z is a potential. This is called the Riesz
decomposition of X . Show this by following the steps below:

a) Show that the limit Ym = limn→∞ EmXm+n exists almost surely.
b) Show that Y = (Ym) is a positive martingale.
c) Show that Z = X −Y is a positive supermartingale and use 4.53 to

conclude that Z is a potential.

4.56 Continuation. The martingale Y in the preceding decomposition is the
maximal submartingale majorized by X , that is, if W is a submartingale and
Wn ≤ Xn for every n then Wn ≤ Yn for every n.

4.57 Another decomposition for supermartingales. Let X be a supermartin-
gale with sup EX−

n <∞. WriteX = M+V as in Exercise 4.54. Let V = N+Z
be the Riesz decomposition of V . Then,

X = M +N + Z,

where M is a uniformly integrable martingale, N is a martingale potential,
and Z is a potential.

4.58 Krickeberg decomposition. Let X be an L1-bounded martingale. Then
X+ = (X+

n ) and X− = (X−
n ) are positive submartingales. Show that

Yn = lim
m

En X
+
n+m, Zn = lim

m
En X

−
n+m

exist. Show that Y and Z are positive and L1-bounded martingales. Show
that

X = Y − Z.

This is called the Krickeberg decomposition.

4.59 Continuation. A martingale is L1-bounded if and only if it is the differ-
ence of two positive L1-bounded martingales. Show.

4.60 Continuation. In the Krickeberg decomposition of an L1-bounded mar-
tingale X , the process Y is the minimal positive martingale majorizing X ,
and the process Z is the minimal positive martingale majorizing −X (see 4.56
for the meaning). Show this.

5 Martingales in Continuous Time

Throughout this section, (Ω,H,P) is a complete probability space in the
background, and F is a filtration over R+ which is extended onto R̄+ as usual
by setting F∞ = lim Ft = ∨tFt. We shall assume that F satisfies two technical
conditions. First, we assume that F is right-continuous, that is,

Ft = ∩ε>0Ft+ε, t ∈ R+.
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Heuristically, this means that Ft includes all events that can be told by an
“infinitesimal peek” into the future. Second, we assume that F is augmented,
which means that (Ω,H,P) is complete and that F0 (and therefore every Ft)
contains the collection of all negligible events in H. These two conditions are
considered harmless and are generally easy to fulfill; we shall clarify these
concepts in Section 7 along with their ramifications.

Throughout, X is a real-valued stochastic process indexed by R+ or R̄+

and adapted to F. We shall assume that it is right-continuous and has left-
limits on R+. We shall show in Section 7 that all martingales can be modified
to have such regularity properties; thus, these assumptions onX are harmless.

All martingales, stopping times, etc. will be relative to the filtration F

unless stated otherwise. As always, Convention 1.21 is in force: ET denotes
the conditional expectation operator given FT . Since X is adapted and right-
continuous, Theorem 1.14 characterizing FT shows that XT belongs to FT ,
but one should take care that XT be well-defined (for ω with T (ω) = +∞).

Doob martingales

For martingales in discrete time, Doob’s stopping theorem 3.11 extends
the martingale property at fixed times to random times that are bounded
stopping times; see also Theorem 4.12 and Remark 4.13b. The resulting
“strong” martingale equality (3.12 with the equality sign) captures the
essence of martingales. We isolate this and incorporate it into the following
definitions.

5.1 Definition. The process X is said to have the Doob property for
(S, T ) provided that S and T be stopping times with S ≤ T , and XS and XT

be well-defined and integrable, and

XS = ES XT .

5.2 Definition. The process X is said to be a Doob martingale on [0, ζ]
if ζ is a stopping time and X has the Doob property for (S, T ) for all stopping
times S and T with 0 ≤ S ≤ T ≤ ζ.

5.3 Remarks. a) For the Doob property, the condition that XS and XT

be well-defined is needed only when X is indexed by R+ and S or T is allowed
to take +∞ as a value. IfX is a Doob martingale on [0, ζ], there is the implicit
assumption that Xζ is well-defined and integrable and has expectation equal
to E X0; these follow from the assumed Doob property for (S, T ) with S = 0
and T = ζ.

b) Note that Doob martingales are defined for closed intervals [0, ζ].
Being closed on the right plays a significant role in the treatment below.

c) Suppose that X is a Doob martingale on [0, ζ]. Then, the Doob
property for (t ∧ ζ, ζ) implies that

X̂t = Xζ∧t = Eζ∧tXζ = EtEζXζ = EtXζ
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for every t in R+. Thus, (X̂t)t∈R+ is a uniformly integrable martingale; see
Proposition 2.7. In other words, if X is a Doob martingale on [0, ζ] then the
process X̂ obtained by stopping X at ζ is a uniformly integrable martingale.
We shall show below, in Theorem 5.14, that the converse is true as well.

In the following, we characterize Doob martingales in terms of simpler
looking conditions, show their intimate connections to uniform integrability,
and discuss some of their uses on Brownian motions. We start with the fol-
lowing characterization; see Remark 3.15 for the discrete-time source of the
ideas.

5.4 Theorem. Let ζ be a stopping time. Then, the following are equiva-
lent:

a) The process X is a Doob martingale on [0, ζ].
b) For every stopping time T majorized by ζ,

XT = ETXζ.

c) For every stopping time T majorized by ζ,

E XT = E X0.

Proof. Clearly (a)⇒(b): the latter is the Doob property for (T, ζ). If (b)
holds, then E XT = E Xζ and taking T = 0 we get E Xζ = E X0; so, (b)⇒(c).

To show that (c)⇒(b), assume (c). Let T be a stopping time majorized
by ζ, that is, T ≤ ζ. Take an event H in FT and define

S = T 1H + ζ(1 − 1H).

Then, S is a stopping time majorized by ζ, and

Xζ −XS = (Xζ −XT ) 1H .

The expectation of the left side is 0 since E Xζ = E X0 = E XS by the
assumed property (c). Thus, the expectation of the right side is 0, and this
is for arbitrary H in FT ; hence, (b) holds.

Finally, (b)⇒(a): If S and T are stopping times with S ≤ T ≤ ζ, then

ESXT = ESETXζ = ESXζ = XS ,

where we used (b) to justify the first and the last equalities; this shows that
Doob property holds for (S, T ). �

5.5 Corollary. If X is a Doob martingale on [0, ζ], then

{XT : T is a stopping time, T ≤ ζ} = {XT∧ζ : T is a stopping time}
is uniformly integrable.

Proof. The proof is immediate from the statement (b) of the preceding
theorem and Lemma 2.8. �
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Doob’s stopping theorem

The statement (c) of the next theorem is the classical version of Doob’s
stopping theorem for martingales served up in the language of Definition 5.1.

5.6 Theorem. The following are equivalent for X:

a) It is a martingale on R+.
b) It is a Doob martingale on [0, b] for every b in R+.
c) It has the Doob property for (S, T ) whenever S and T are bounded

stopping times with S ≤ T .

Proof. All the implications are immediate from the definitions except for
the implication (a)⇒(b). To show it, we use the preceding characterization
theorem. Accordingly, assume (a), fix b in R+, and let T be a stopping time
bounded by b. Then, b is a fixed stopping time, XT is well-defined, and we
are to show that E XT = E X0.

Let (Tn) be as in Proposition 1.20. For fixed n, the stopping time Tn
is bounded by b + 1 and takes values in the discrete set T consisting of the
numbers b+1 and k/2n with k in N. By Doob’s stopping theorem 3.11 for the
discrete-time martingale (Xt)t∈T applied at the bounded times Tn and b+ 1,

XTn = ETnXb+1.5.7

Recalling that · · · ≤ T2 ≤ T1 ≤ T0, this means that (XTn)n∈N is a reversed-
time martingale relative to the filtration (FTn). Thus, by Theorem 4.17, it
converges almost surely and in L1 to an integrable random variable. But,
since (Tn) decreases to T and X is right-continuous, that limit is XT . Since
convergence in L1 implies the convergence of expectations, and in view of 5.7,

E XT = lim E XTn = E Xb+1 = E X0. �

The preceding theorem shows, in particular, that X is a Doob martingale
on [0, b] if and only if it is a martingale on [0, b]: in the proof, replace Tn by
Tn ∧ b and replace T with T∧ b = {t∧ b : t ∈ T}. This remains true when b is
replaced by +∞, as the next theorem shows. Note that the second assertion is
Doob’s stopping theorem, for this case, extended to arbitrary stopping times.
See 4.12 for the discrete-time version.

5.8 Theorem. The process X is a Doob martingale on R̄+ if and only if
it is a martingale on R̄+. If so, then

ESXT = XS∧T

for arbitrary stopping times S and T .

Proof. Assuming that X is a martingale on R̄+, we shall show that

XT = ETX∞5.9
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for every stopping time T . This will prove the first claim via Theorem 5.4
with ζ = +∞. The second claim follows from 5.9 since ESET = ES∧T . So,
assume X is a martingale on R̄+ and let T be a stopping time.

For each n in N, Theorem 5.4 implies that X has the Doob property for
the bounded stopping times T ∧ n and n:

XT∧n = ET∧nXn.

Since X is a martingale on R̄+, the process (Xn)n∈N̄
is a martingale relative

to (Fn)n∈N̄
; thus, Xn = EnX∞ for each n. This implies, together with the

observations ET∧nEn = ET∧n = EnET , that

XT∧n = EnETX∞, n ∈ N.5.10

At this point, we remark that

F̂∞ = ∨n∈NFn = ∨t∈R+Ft = F∞.5.11

This is because every Fn is contained in some Ft and vice versa.
The right side of 5.10 converges almost surely, by Corollary 4.11, to

the conditional expectation of ETX∞ given F̂∞, which is the same as
E∞ETX∞ = ETX∞ in view of 5.11. Whereas, the left side of 5.10 converges
almost surely to XT : if T (ω) < ∞ then XT∧n(ω) = XT (ω) for all n large
enough, and if T (ω) = ∞ then XT∧n(ω) = Xn(ω) for every n, which con-
verges to X∞(ω) for almost every ω by the fact that (Xn)n∈N̄

is a martingale
(see Theorem 4.7). Hence, 5.9 holds. �

Uniform integrability

The best one can ask of a martingale is that it be a Doob martingale on
R̄+. Often, however, one starts with a martingale on R+.

5.12 Theorem. Suppose that X is a martingale on R+. Then, it can be
extended to a Doob martingale on R̄+ if and only if it is uniformly integrable.

Proof. Suppose that the martingale can be extended to a Doob martingale
X̄ on R̄+, that is, there exists a random variable X∞ in F∞ such that X̄ =
(Xt)t∈R̄+

is a Doob martingale on [0,+∞]. Then, Corollary 5.5 implies that
X is uniformly integrable.

Conversely, suppose that X is a uniformly integrable martingale on
R+. Then, in particular, (Xn)n∈N is a uniformly integrable martingale. By
Theorem 4.7, it converges almost surely and in L1 to an integrable random
variable X∞ in F∞ (see 5.11 to the effect that F∞ is the limit of (Fn)n∈N as
well as of (Ft)t∈R+), and Xn = EnX∞ for every n. For t in R+, choose n in
N so that t < n; then, since X is a martingale on R+,

Xt = EtXn = EtEnX∞ = EtX∞.

This shows that X̄ = (Xt)t∈R̄+
is a martingale and, therefore, is a Doob

Martingale on R̄+ in view of Theorem 5.8 above. �
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Together with Proposition 2.7, the preceding proof shows the following
as well.

5.13 Theorem. The process X is a uniformly integrable martingale on
R+ if and only if

Xt = EtZ, t ∈ R+,

for some integrable random variable Z. Moreover, then, X∞ = limXt exists
almost surely and in L1 and satisfies X∞ = E∞Z, and X̄ = (Xt)t∈R̄+

is a
Doob martingale on R̄+.

Stopped martingales

5.14 Theorem. Let ζ be a stopping time. Let X̂ be the process X stopped
at ζ, that is, X̂t = Xt∧ζ for t in R+.

a) If X is a martingale, X̂ is a martingale.
b) The process X is a Doob martingale on [0, ζ] if and only if X̂ is a

uniformly integrable martingale.

Proof. a) Suppose that X is a martingale on R+. Let T be a stopping
time bounded by some b in R+. Then, T ∧ ζ is a stopping time bounded by
b, and X is a Doob martingale on [0, b] by Theorem 5.6, which together yield
E XT∧ζ = E X0 via Theorem 5.4. But, XT∧ζ = X̂T and X0 = X̂0. So,

E X̂T = E X̂0

for every stopping time bounded by some b <∞, which implies via Theorem
5.4 that X̂ is a Doob martingale on [0, b] for every b in R+, which in turn
implies via Theorem 5.6 that X̂ is a martingale.

b) Necessity part of the statement (b) was shown in Remark 5.3c. To show
the sufficiency part, suppose that X̂ is a uniformly integrable martingale on
R+. By Theorem 5.13, we can extend it to a Doob martingale on R̄+ by
defining X̂∞ = lim X̂t. Then, for every stopping time T majorized by ζ, we
have XT = X̂T and

E XT = E X̂T = E X̂0 = E X0

by Theorem 5.4 for X̂ . Thus, by 5.4 again,X is a Doob martingale on [0, ζ]. �

Criteria for being Doob

The following criterion is easy to fulfill in many applications.

5.15 Proposition. Suppose that X is a martingale on R+. Let ζ be a
stopping time. Suppose that X is dominated on [0, ζ] ∩ R+ by an integrable
random variable. Then, the almost sure limit Xζ = limt→∞Xζ∧t exists and
is integrable, and X is a Doob martingale on [0, ζ].
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Proof. Let X and ζ be such. Let Z be an integrable random variable such
that, for almost every ω, |Xt(ω)| ≤ Z(ω) for every t in R+ with t ≤ ζ(ω).
Define X̂ to be X stopped at ζ.

By Theorem 5.14a, then, X̂ is a martingale on R+. By assumption, X̂ is
dominated by the integrable random variable Z almost surely, which implies
that X̂ is uniformly integrable. Thus, the almost sure (and in L1) limit

lim
t→∞ X̂t = lim

t→∞Xζ∧t = Xζ

exists and is integrable. It follows from Theorem 5.14b that X is a Doob
martingale on [0, ζ]. �

5.16 Example. Let X be a continuous martingale. For fixed integer
n ≥ 1, let

ζn = inf{t ≥ 0 : |Xt| ≥ n}.
Then, ζn is a stopping time, and X is dominated by the constant n on [0, ζn]∩
R+. The preceding theorem implies that X is a Doob martingale on [0, ζn].

Local martingales and semimartingales

The modern theory of stochastic analysis is built around these objects.
Our aim is to provide a bridge to it by introducing the terms.

5.17 Definition. Let ζ be a stopping time. The process X is called a
local martingale on [0, ζ) if there exists an increasing sequence of stopping
times ζn with limit ζ such that (Xt−X0)t∈R+ is a Doob martingale on [0, ζn]
for every n. If it is a local martingale on R+ = [0,∞), then it is simply called
a local martingale.

Every martingale is a local martingale, because, if X is a martingale, then
it is a Doob martingale on [0, n] and the definition is satisfied with ζn = n
and ζ = +∞. Of course, if X is a Doob martingale on [0, ζ], then it is a local
martingale on [0, ζ) trivially (take ζn = ζ for all n).

In the definition above, the sequence (ζn) is called a localizing sequence.
In general, there are many localizing sequences for the same local martingale.
Choosing the correct one is an art and depends on the application at hand. For
example, if X is a continuous martingale as in Example 5.16, one localizing
sequence is given by ζn = n, another by the ζn defined there; the latter has
the advantage of making X a bounded (Doob) martingale on [0, ζn] for each
n. In general, it is worth noting that, if (ζ ′n) and (ζ ′′n) are localizing sequences,
then so is (ζ′n ∧ ζ′′n).

Localization is used in other contexts as well. For instance, a process
(Vt) is said to be locally of finite variation if there exists a sequence (ζn) of
stopping times increasing to +∞ almost surely such that, for every ω, the
path t �→ Vt(ω) has finite variation over the interval [0, ζn(ω)] for every n.
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5.18 Definition. The process X is called a semimartingale if it can be
decomposed as

X = L+ V

where L is a local martingale and V is locally of finite variation.

In the definition, it is understood that both L and V are to be adapted
to the same filtration F to which X is adapted. The localizing sequences
for L and V can differ, but it is always possible to find a sequence that
localizes both.

Applications to Brownian motion

Our aim is to illustrate some uses of the foregoing with a sustained
example or two. Many other problems can be solved by similar techniques.
We start with the more delicate problem of showing that most hitting times
of Brownian motion are almost surely finite.

Let W = (Wt)t∈R+ be a Wiener process with respect to the filtration F

on R+; see Definition 2.15. Define

Ta = inf{t > 0 : Wt ≥ a}, a > 0,5.19

the time W enters [a,∞) for the first time. It is a stopping time for each a.

5.20 Proposition. For each a in (0,∞) the stopping time Ta is almost
surely finite, its expected value is +∞, and its distribution and the corre-
sponding Laplace transform are as follows:

P{Ta ∈ B} =
ˆ
B

dt
ae−a

2/2t

√
2πt3

, B ∈ BR+ ; E e−pTa = e−a
√

2p, p ∈ R+.

Proof. Fix a, write T for Ta. Fix p > 0, put r =
√

2p, and note that
p = r2/2. It was shown in Proposition 2.17 that

Xt = exp(rWt − pt), t ∈ R+,5.21

defines a martingale. For arbitrary ω, if T (ω) < ∞ and t ≤ T (ω), then
Wt(ω) ≤ a by 5.19 and the continuity of W , which implies that Xt(ω) ≤ era,
and the same holds for t < ∞ when T (ω) = +∞. In other words, X is
bounded by the constant era on [0, T ] ∩ R+. Thus, by Proposition 5.15, XT

is well-defined and integrable, and X is a Doob martingale on [0, T ]. By
Theorem 5.4, then,

E XT = E X0 = 1.5.22

On the event {T = +∞}, we have Wt ≤ a for all t, which implies that
XT = limXt = 0. Whereas, on the event {T < ∞}, we have WT = a and
XT = exp(ra− pT ). Hence,

era−pT = era−pT 1{T<∞} = XT1{T<∞} = XT ,
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which yields, by 5.22,

E e−pT = e−ra = e−a
√

2p

(recall that r =
√

2p). Since p > 0 was arbitrary, this shows that the Laplace
transform for T is as claimed. Letting p→ 0, we see that

P{T <∞} = lim
p→0

E e−pT = 1.

Inverting the Laplace transform yields the claimed distribution for T . Using
the distribution to compute the expectation we get E T = +∞. �

5.23 Corollary. Almost surely,

T0 = inf{t > 0 : Wt > 0} = 0.

Proof. Clearly, 0 ≤ T0 ≤ Ta for every a > 0. Thus, for p > 0,

E e−pT0 ≥ E e−pTa = e−a
√

2p

for every a > 0. This shows that the left side is equal to 1, which implies in
turn that T0 = 0 almost surely. �

Similarly to 5.19, we define the entrance times

Ta = inf{t > 0 : Wt ≤ a}, a < 0.5.24

Since (−Wt) is again a Wiener process, Ta and T−a have the same distribution
for every a, and the distribution is given by 5.20 for a > 0. We state this next
and add a remark or two whose proofs are left as exercises.

5.25 Corollary. For every non-zero a in R, the stopping time Ta is
almost surely finite, has expected value +∞, and has the same distribution
as a2/Z2 where Z is a standard Gaussian variable.

For a > 0 for instance, Ta is the amount of time W spends in the inter-
val (−∞, a) before exiting it. The interval being unbounded, E Ta = +∞.
Otherwise, W exits every bounded interval in finite time with finite expected
value. We show this next along with related results. Define

T = inf{t : Wt /∈ (a, b)}, a < 0 < b,5.26

that is, T is the time of exit from (a, b); recall that W0 = 0. Obviously,

T = Ta ∧ Tb,5.27

and we have shown above that the entrance times Ta and Tb are almost
surely finite. Thus, T <∞ almost surely, and WT is either a or b, with some
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probabilities pa and pb respectively, pa + pb = 1. Since the martingale W
is bounded on the time interval [0, T ], it is a Doob martingale on [0, T ]. It
follows that E WT = E W0 = 0; in other words, apa + bpb = 0. So,

pa = P{WT = a} =
b

b− a
, pb = P{WT = b} =

−a
b− a

.5.28

In order to compute the expected value of the exit time T , we consider
the martingale Y defined in 2.19, that is, Yt = W 2

t − t, t ∈ R+. By Theorem
5.6, it has the Doob property for the bounded stopping times 0 and T ∧ t,
that is, E0YT∧t = Y0 = 0. Hence,

E (T ∧ t) = E (WT∧t)2, t ∈ R+.

Since T ∧ t increases to T as t → ∞, the left side increases to E T by the
monotone convergence theorem. Since (WT∧t)2 is bounded by a2 ∨ b2, and
converges to W 2

T , the right side goes to E W 2
T by the bounded convergence

theorem. Hence,

E T = E W 2
T = (−a) · b, a < 0 < b,5.29

in view of 5.28. Incidentally, we have also shown that Y is a Doob martingale
on [0, T ].

Finally, we specify the distribution of the time of exit from a symmetric
interval by means of Laplace transforms.

5.30 Proposition. Let T be the first time that W exits the interval
(−a, a), where a > 0 is a fixed constant. Then, E T = a2 and

E e−pT = 2/
(
ea

√
2p + e−a

√
2p

)
, p ∈ R+.

Proof. Fix p > 0, put r =
√

2p, and let X be as in 5.21. Then, X is a
positive martingale bounded by era in [0, T ], and T < ∞ almost surely, and
WT is well-defined and bounded. So, X is a Doob martingale on [0, T ], and
E XT = E X0 = 1 by 5.4, that is,

E exp(rWT − pT ) = 1.

Note that T is also the exit time from (−a, a) by the process (−WT ); this is
because the interval is symmetric. Hence,

E exp(−rWT − pT ) = 1.

Adding the last two equations side by side, we get

E [exp(rWT ) + exp(−rWT )] [exp(−pT )] = 2.

Whether WT is equal to a or −a, the first factor inside the expectation is
equal to era + e−ra, which constant can come out of the expectation. So,

(era + e−ra)E e−pT = 2,

which yields the claimed Laplace transform once we put r =
√

2p. �
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Exercises and Complements

5.31 Stopped martingales. Let S be a stopping time and let Y be the process
X stopped at S.

a) If X is a Doob martingale on [0, ζ], then Y is a Doob martingale on
[0, ζ]. Show.

b) Use (a) to prove that if X is a martingale then Y is a martingale.

5.32 Continuation. If X is a local martingale on [0, ζ), then Y is a local
martingale on [0, ζ). Show.

5.33 Doob’s maximal inequalities. Let X = (Xt) be a submartingale that is
positive and continuous. Let

Mt = max
0≤r≤t

Xs.

Show that, for p ≥ 1 and b ≥ 0,

bp P{Mt > b} ≤ E Xp
t .

Show that, if Xt ∈ Lp for some p > 1, then, with 1
p

+ 1
q

= 1,

E Mp
t ≤ qp E Xp

t .

Hint: Let Dn = {tk/2n : k = 0, 1, . . . , 2n}; note that Mt is the limit, as
n→ ∞, of maxs∈Dn Xs; Use the discrete time results for the latter maxima.

5.34 Convergence theorem in continuous-time. Let X be a right-continuous
submartingale. Suppose that it is L1-bounded, that is, supt∈R+

E |Xt| <
∞, which condition is equivalent to having limt→∞ E X+

t < ∞. Then, the
almost sure limit X∞ = limt→∞Xt exists and is integrable. If X is uniformly
integrable, then the convergence is in L1 as well and X̄ = (Xt)t∈R̄+

is a
submartingale.

5.35 Reverse-time convergence. Let X = (Xt)t>0 be a right-continuous sub-
martingale. Suppose that supt≤1 E|Xt| <∞.

a) Show that the condition is equivalent to limt→0 E Xt <∞.
b) Show that limt→0 Xt exists almost surely and in L1.

Supplements for Brownian motion

Throughout the following exercises, W is a Wiener process with respect
to the filtration F.

5.36 Distribution of Ta. Let Ta be as defined by 5.19. Show that Ta has the
same distribution as a2/Z2, where Z is a standard Gaussian variable. Note
that the same is true of Ta with a < 0 as well.

5.37 Continuation. Show that P{Ta ≤ t} = P{|Wt| > a}.
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5.38 Maxima and minima. Define

Mt = max
s≤t

Ws, mt = min
s≤t

Ws.

a) Show that Mt(ω) ≥ a if and only if Ta(ω) ≤ t, this being true for
all a > 0, t > 0, and ω in Ω.

b) Show that Mt has the same distribution as |Wt|, and mt the same
distribution as −|Wt|.
5.39 Continuation. Show that the following are true for almost every ω:

a) Ta(ω) <∞ for every a in R,
b) t �→Mt(ω) is continuous, real-valued, and increasing with limit +∞,
c) t �→ mt(ω) is continuous, real-valued, and decreasing with limit −∞.
d) lim inf Wt(ω) = −∞, lim supWt(ω) = +∞.
e) The set {t ∈ R+ : Wt(ω) = 0} is unbounded, that is, for every b <∞

there is t > b such that Wt(ω) = 0. Consequently, there is a sequence (tn),
depending on ω, such that tn ↗ +∞ and Wtn(ω) = 0 for every n.

5.40 Exponential martingale. Let Xt = exp(rWt − 1
2r

2t) where r is a fixed
real number. Since X is a positive martingale, X∞ = limXt exists almost
surely. Identify the limit. Is X uniformly integrable?

5.41 Brownian motion. Let Bt = at + bWt, t ≥ 0, where a and b are fixed
numbers. Then, B is called a Brownian motion with drift rate a and volatility
b and with B0 = 0. Suppose that a > 0, b > 0, and fix x > 0. Show that

T = inf{t : Bt ≥ x}
is finite almost surely. Use the exponential martingale with p > 0 and r =

−a
b +

√
a2

b2 + 2p to get

E e−pT = e−xr/b, E T = x/a, Var Tx = xb2/a3.

5.42 Brownian motion with negative drift. Let a > 0 and put Bt = Wt − at,
t ∈ R+. For x > 0, let T = inf{t : Bt ≥ x}.

a) Show that

E e−pT = exp(−xa− x
√
a2 + 2p), p > 0.

Conclude, in particular, that P{T <∞} = e−2ax.
b) Let M = supt∈R+

Bt. Show that M has the exponential distribution
with parameter 2a.

5.43 Exit from an interval. With a > 0 and b > 0, put Bt = at+bWt, t ∈ R+.
For x < 0 < y, let

T = inf{t > 0 : Bt /∈ (x, y)}.
Show that T is almost surely finite. Compute the distribution of BT .
Compute the mean and variance of T .
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5.44 Multi-dimensional Wiener. Let W be an n-dimensional Wiener process,
that is, W = (W (1), . . . ,W (n)) where the components are independent
Wiener processes. Then, R = |W | is called the radial Brownian motion, or
Bessel process of index n; for v in R

n we write |v| for the length of v. For
fixed r > 0, let

T = inf{t : |Wt| ≥ r},
the time of exit from the open ball of radius r centered at the origin. Show
that T <∞ almost surely. Show that E T = r2/n.

5.45 Behavior near zero. Returning back to one-dimension, show that

T0 = inf{t > 0 : Wt > 0} = inf{t > 0 : Wt < 0} = 0

almost surely. Show that the following are true for almost every ω:

a) For every ε > 0 there is u in (0, ε) such that Wu(ω) > 0 and there
is s in (0, ε) such that Ws(ω) < 0.

b) There exist strictly positive sequences (sn), (tn), (un) depending on
ω such that

u1 > t1 > s1 > u2 > t2 > s2 > . . . , limun = lim tn = lim sn = 0

and
Wun(ω) > 0, Wtn(ω) = 0, Wsn(ω) < 0, n ≥ 1.

6 Martingale Characterizations

for Wiener and Poisson

Our primary aim is to complete the proofs of Theorems 2.19 and 2.23,
the characterizations of Wiener and Poisson processes in terms of martin-
gales. We start with the Poisson case, because the needed preliminaries are
of independent interest.

In this section, F = (Ft) is a filtration on R+, not necessarily augmented
or right-continuous. All processes are indexed by R+ and adapted to F, all
with state space R. Considering a process F = (Ft), we shall generally think
of it as the mapping (ω, t) �→ Ft(ω) from Ω×R+ into R, and we may use the
phrase “the process F on Ω × R+” to indicate that thought.

Predictability

This is the continuous-time analog of the concept introduced by Definition
3.1. We shall develop it briefly, just enough to serve our present needs.

6.1 Definition. The σ-algebra on Ω × R+ generated by the collection

Fpp = {H × (s, t] : 0 ≤ s < t <∞, H ∈ Fs} ∪ {H × {0} : H ∈ F0}
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is called the F-predictable σ-algebra and is denoted by Fp. A stochastic pro-
cess F = (Ft) is said to be F-predictable if the mapping (ω, t) �→ Ft(ω) is
Fp-measurable.

It is usual to simply say predictable instead of F-predictable when there
can be no confusion over the filtration involved, which is our present situation.
The elements of Fpp are called the primitive sets, and their indicators are
called primitives. The following proposition implies, in particular, that every
adapted left-continuous process is predictable. In the converse direction, every
predictable process is adapted, but might fail to be left-continuous.

6.2 Proposition. The predictable σ-algebra Fp is also generated by the
collection G of all adapted left-continuous processes on Ω × R+.

Proof. Every primitive process is adapted and left-continuous; thus, Fp ⊂
σG. To show the converse, that σG ⊂ Fp, we need to show that every G in
G is predictable. Let G be in G. Then, for every time t and outcome ω, the
value Gt(ω) is the limit, as n→ ∞, of

G
(n)
t (ω) = G0(ω)1{0}(t) +

∑
Ga(ω)1(a,b](t),

where the sum is over all intervals (a, b] with a = k/2n and b = (k + 1)/2n,
k ∈ N; this is by the left-continuity of t �→ Gt(ω). Thus, to show that G
is predictable, it is enough to show that each G(n) is predictable, which in
turn reduces to showing that every term of G(n) is predictable. But, for fixed
(a, b], the process (ω, t) �→ Ga(ω)1(a,b](t) is clearly predictable, since Ga ∈ Fa
by the adaptedness of G, and Fp is generated by the primitive processes;
similarly, the process (ω, t) �→ G0(ω)1{0}(t) is predictable. �

Martingales associated with some increasing processes

Let N = (Nt) be an increasing right-continuous process adapted to the
filtration F. Let νt = E Nt be finite for every t, and suppose that

Es(Nt −Ns) = νt − νs, 0 ≤ s < t <∞,6.3

where Es denotes the conditional expectation given Fs as usual. This is equi-
valent to assuming that

Ñt = Nt − νt, t ∈ R+,6.4

is an F-martingale. In particular, these conditions are fulfilled when N has
independent increments and E Nt <∞.

6.5 Theorem. For every positive predictable process F ,

E

ˆ
R+

Ft dNt = E

ˆ
R+

Ft dνt.6.6
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Remark. The integrals above are Stieltjes integrals; for instance, the
one on the left defines a random variable V where V (ω) is the integral of
t �→ Ft(ω) with respect to the measure on R+ defined by the increasing
right-continuous function t �→ Nt(ω).

Proof. Consider the collection of all positive predictable processes F for
which 6.6 holds. That collection is a monotone class: it includes the constants,
it is a linear space, and it is closed under increasing limits, the last being the
result of the monotone convergence theorem applied twice on the left side of
6.6 and twice on the right. Thus, the monotone class theorem will conclude
the proof once we show that 6.6 is true for primitive processes, that is, the
indicators of the sets in Fpp.

Let F be the indicator of H × (a, b] with H in Fa. Then, the left side of
6.6 is equal to

E 1H · (Nb −Na) = E 1H Ea(Nb −Na) = E 1H(νb − νa),

where the first equality uses the assumption that H ∈ Fa and the second
equality uses 6.3. The last member is equal to the right side of 6.6 for
the present F . Similarly, 6.6 holds when F is the indicator of H × {0} with
H in F0. �

The following corollary enhances the preceding theorem and provides an
example with further uses.

6.7 Corollary. Let F be a positive predictable process. Let S and T be
stopping times with S ≤ T . Then,

ES

ˆ
(S,T ]

Ft dNt = ES

ˆ
(S,T ]

Ft dνt.6.8

Proof. It is enough to show that, for V in FS and positive,

E V

ˆ
(S,T ]

Ft dNt = E V

ˆ
(S,T ]

Ft dνt,

which is in turn equivalent to showing that

E

ˆ
R+

GtFt dNt = E

ˆ
R+

GtFt dνt,6.9

where
Gt = V 1(S,T ](t), t ∈ R+.

The process G is obviously left-continuous, and each Gt is in Ft by Theorem
1.16d applied to the variables V 1{S<t} and 1{t≤T} separately. It follows from
Proposition 6.2 that G is predictable, and thus, so is the product GF . Hence,
6.9 follows from the preceding theorem applied with the positive predictable
process GF . �
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The preceding theorem and corollary are in fact equivalent to the following
theorem about the martingale Ñ defined by 6.4.

6.10 Theorem. Let F be a bounded predictable process. Then,

Mt =
ˆ

[0,t]

Fs dÑs, t ∈ R+,

is a martingale.

Proof. It is obvious that M is adapted. Each Mt is integrable since |Mt| ≤
(Nt + νt)b if b is a bound for |F |. To show the martingale property that
Es(Mt −Ms) = 0 for s < t, it is sufficient to show that

Es

ˆ
(s,t]

Fu dNu = Es

ˆ
(s,t]

Fu dνu ;6.11

this is because Ñ =N −ν and both sides of 6.11 are real-valued. Now, 6.11 is
immediate from Corollary 6.7 applied first with F+ and then with F−. �

Remark. Stochastic integrals. The preceding theorem remains true for
arbitrary martingales Ñ , except that the proof above is no longer valid and,
worse, the integral defining M has to be given a new meaning. Above, since
Ñ has paths of finite variation over bounded intervals, the integral defining
M makes sense ω by ω, that is,

Mt(ω) =
ˆ

[0,t]

Fs(ω) dÑs(ω).6.12

But, if Ñ were an arbitrary martingale or, more specifically, if Ñ were a
Wiener process, then the paths s �→ Ñs(ω) would necessarily have infinite
variation over most intervals and, hence, the integral 6.12 has no meaning as
a Stieltjes integral for general F . Stochastic calculus goes around the problem
by defining M as the limit in probability of a sum of primitive integrals. With
this new meaning for the integral M , the conclusion of the last theorem
remains true. The interested reader should see a book on stochastic calculus.

Martingale characterization of Poisson processes

Here, we prove Theorem 2.23. The necessity part was already done pre-
ceding 2.23. For easy reference, we list next what is to be proved.

6.13 Proposition. Let N be a counting process adapted to F. Suppose
that, for some constant c in (0,∞),

Ñt = Nt − ct, t ∈ R+,

is a martingale. Then, N is a Poisson process with rate c.
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We start with a lemma of independent interest; it exploits the counting
nature of N . Here, Ns− = limr↑sNr as usual.

6.14 Lemma. Let f be a bounded function on N. Then,

f(Nt) = f(0) +
ˆ

(0,t]

[f(Ns− + 1) − f(Ns−)] dNs.

Proof. Fix an ω. If Nt(ω) = 0 then the claim is obvious. If Nt(ω) = n ≥
1, let t1, . . . , tn be the successive jump times of s �→ Ns(ω) during (0, t],
suppressing their dependence on ω. At ti, the counting function s �→ Ns(ω)
jumps from the left-hand limit i−1 to the right-hand value i. Thus, the right
side of the claimed equation is equal to, for this ω,

f(0) +
n∑

i=1

[f(i− 1 + 1) − f(i− 1)] = f(n) = f(Nt(ω)).
�

Proof of Proposition 6.13. This is an application of Corollary 6.7 with a
carefully chosen F . Fix times s < t, fix r in R+, and let

f(n) = 1 − e−rn, n ∈ N; Fu = f(Nu− + 1) − f(Nu−), u ∈ R+.

Since u �→ Nu− is adapted and left-continuous, so is F . Thus, F is bounded,
positive, and predictable, the last following from Proposition 6.2. Hence, by
Corollary 6.7 applied with the current N and νt = ct,

Es

ˆ
(s,t]

Fu dNu = c Es

ˆ
(s,t]

Fu du.

The integral on the left is equal to f(Nt)− f(Ns) by Lemma 6.14. As to the
Lebesgue integral on the right side, replacing Fu with Fu+ = f(Nu + 1) −
f(Nu) will not change the integral since Fu = Fu+ for all u in (s, t] except
for finitely many u. Hence,

Es[f(Nt) − f(Ns)] = c Es

ˆ
(s,t]

[f(Nu + 1) − f(Nu)] du.

Now we replace t with s+ t, recall that f(n) = 1 − e−rn, and multiply both
sides by exp rNs. The result is (writing exp− x for e−x)

Es exp− r(Ns+t−Ns) = 1− c(1− e−r)Es
ˆ t

0

du exp− r(Ns+u−Ns).6.15

Let the left side be denoted by g(t), suppressing its dependence on r, s, ω. We
have

g(t) = 1 − c(1 − e−r)
ˆ t

0

g(u) du,
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whose only solution is

g(t) = exp− ct(1 − e−r) =
∞∑

k=0

e−ct(ct)k

k!
e−rk

totally free of s and ω. We have shown that

Es exp− r(Ns+t −Ns) =
∞∑

k=0

e−ct(ct)k

k!
e−rk.

Since this is true for arbitrary r in R+, we conclude that Ns+t −Ns is inde-
pendent of Fs and has the Poisson distribution with mean ct. This concludes
the proof hat N is a Poisson process with rate c. �

6.16 Remark. Strong Markov property. The preceding proof can be mod-
ified to show that, for the process N ,

ES exp− r · (NS+t −NS) =
∞∑

k=0

e−ct(ct)k

k!
e−rk,

that is, for every finite stopping time S, the future increment NS+t −NS is
independent of FS and has the same Poisson distribution as Nt has. This is
called the strong Markov property for N . To show it, replace s by S and t
by S + t from the beginning of the proof of 6.13, and note that Corollary 6.7
applies full force. This brings us to 6.15 with s replaced by S; and the rest is
exactly the same but with s replaced by S.

Non-stationary Poisson processes

These are defined just as Poisson processes except that the distribution
of Ns+t − Ns has the Poisson distribution with mean νs+t − νs, where ν
is an arbitrary continuous increasing function (the stationary case is where
νt = ct). In other words, a counting process N adapted to F is said to be a
(non-stationary) Poisson process with mean ν if ν is continuous increasing
real-valued, and, for every positive function f on N,

Esf(Nt −Ns) =
∞∑

k=0

e−aak

k!
f(k)6.17

with a = νt − νs; compare this with 6.16 and 2.20. Of course, then, N − ν is
a martingale. The following states this and adds a converse.

6.18 Theorem. Let N be a counting process adapted to F, and let ν be a
(deterministic) increasing continuous real-valued function on R+ with ν0 = 0.
Then, N is a Poisson process with mean function ν if and only if N − ν is a
martingale.
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Proof. Necessity is trivial. We prove the sufficiency. Given ν, let ν∞ =
limt→∞ νt and let τ be the functional inverse of ν, that is,

τu = inf{t > 0 : νt > u}, u < ν∞;6.19

see Exercise 5.13 of Chapter I. Then, τ is right-continuous and strictly in-
creasing on [0, ν∞), and ντu = u by the continuity of ν. Clearly, (Nτu) is
adapted to the filtration (Fτu) and is again a counting process. Since N−ν is
assumed to be an F-martingale, the process (Nτu −u) is an (Fτu)-martingale
on [0, ν∞). By Proposition 6.13, then, the process Nτ is a Poisson process
with rate 1 on the interval [0, ν∞), that is, for every positive function f on N,

Eτuf(Nτv −Nτu) =
∞∑

k=0

e−(v−u)(v − u)k

k!
f(k)6.20

for 0 ≤ u < v < ν∞. There remains to undo the time change 6.19.
We start by observing that, if νs = νt for some s < t, then E (Nt−Ns) =

νt− νs = 0 and thus Nt−Ns = 0 almost surely. It follows that, for 0 ≤ s < t,

Ns = N(τ(νs)), Nt = N(τ(νt))

almost surely. Hence, taking u = νs and v = νt in 6.20, and putting a =
v − u = νt − νs, we get

Eτ(νs)f(Nt −Ns) =
∞∑

k=0

e−aak

k!
f(k).

Finally, apply the conditional expectation operator Es on both sides; ob-
serving that τ(νs) ≥ s necessarily by the definition 6.19, we get 6.17 with
a = νt − νs, which completes the proof that N is Poisson with mean ν. �

Martingale characterization of Wiener processes

This is to give the sufficiency part of the proof of Theorem 2.19; recall
that the proof of necessity was already given. We list what is to be proved
for convenience.

6.21 Proposition. Let X be a continuous F-martingale with X0 = 0.
Suppose that Y = (X2

t −t)t∈R+ is again an F-martingale. Then, X is a Wiener
process with respect to F.

We start by listing a lemma, whose highly technical proof will be given
below, after the proof of 6.21.

6.22 Lemma. Let X be as in 6.21. Let f be a twice differentiable function
on R and suppose that f is bounded along with its derivative f ′ and its second
derivative f ′′. Then,

Mt = f ◦Xt − 1
2

ˆ t

0

ds f ′′◦Xs, t ∈ R+,6.23
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defines a martingale M .

Proof of Proposition 6.21. We use the preceding lemma first with f(x) =
cos rx and then with f(x) = sin rx to conclude that M defined by 6.23 with
f(x) = eirx = cos rx+i sin rx is a complex-valued martingale. In other words,
since f ′′(x) = −r2f(x) when f(x) = eirx,

Es

[
f ◦Xs+t − f ◦Xs + 1

2
r2
ˆ s+t

s

f ◦Xu du

]
= 0.

Replacing f(x) with eirx, multiplying both sides by exp(−irXs), and rear-
ranging the result, we obtain

Es exp ir(Xs+t −Xs) = 1 − 1
2r

2

ˆ t

0

du Es exp ir(Xs+u −Xs).

Let g(t) be defined to be the left side, ignoring its dependence on s and r
and ω. We get

g(t) = 1 − 1
2r

2

ˆ t

0

du g(u),

whose only solution is g(t) = exp(−r2t/2) independent of s and ω. So, for
every r in R,

Es exp ir(Xs+t −Xs) = exp(−r2t/2),

which shows that the increment Xs+t −Xs is independent of Fs and has the
Gaussian distribution with mean 0 and variance t; in short, X is Wiener. �

We turn to proving Lemma 6.22. The sophisticated reader will have not-
iced that it is a simple consequence of Itô’s lemma, but we do not have access
to such advanced machinery at this point. Instead, the proof is by necessity
of the bare-hands type. It is well-worth ignoring it, except for purposes of
admiring Lévy and Doob for their power and ingenuity.

Proof of Lemma 6.22. a) We shall eventually show that Ea(Mb−Ma) = 0
for 0 ≤ a < b < ∞. Fix a and b such, fix ε > 0, take an integer n ≥ 1, and
let δ = (b− a)/n. Define

T = b ∧ inf{t ≥ a : max
a≤p,q≤t, |q−p|≤δ

|Xq −Xp| = ε}.

Since t �→ Xt(ω) is continuous, it is uniformly continuous on [a, b], and hence,
T (ω) is equal to b for all n large enough, depending on ε and the outcome ω.
By the continuity of X ,

{T > t} =
⋃

m

⋂

p,q

{
|Xq −Xp| < ε− 1

m

}
,

where the union is over all the integers m ≥ 1 and the intersection is over
all rationals p and q in [a, t] with |q − p| ≤ δ. Since X is adapted, this shows
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that T is a stopping time. Consequently, since X and Y are martingales
by hypothesis, so are the processes obtained from them by stopping at T ,
denoted by

Z = (Zt) = (Xt∧T ), Z̄ = (Z̄t) = (Z2
t − t ∧ T ).6.24

It follows that, for s and t in [a, b] with 0 < t− s ≤ δ,

Es(Zt − Zs) = 0, |Zt − Zs| ≤ ε,6.25

Es(Zt − Zs)2 = Es[Z2
t − 2Zs(Zt − Zs) − Z2

s ]6.26

= Es(Z2
t − 0 − Z2

s ) = Es(t ∧ T − s ∧ T ).

b) Lef f be as described. We shall use Taylor’s theorem in the following
form

f(y) − f(x) = f ′(x)(y − x) +
1
2
f ′′(x)(y − x)2 + r(x, y),6.27

where the remainder term is such that, for some continuous increasing func-
tion h on R+ with h(0) = 0,

|r(x, y)| ≤ (y − x)2h(|y − x|).6.28

c) Keeping a, b, ε, n, δ as before, let D be the subdivision of the interval
(a, b] into n disjoint intervals of equal length and of form (s, t], that is,

D = {(s, t] : s = a+ kδ, t = s+ δ, k = 0, 1, . . . , n− 1}.
Using 6.27, with

∑
D indicating summation over all (s, t] in D,

f ◦Zb − f ◦Za =
∑

D

[f ◦Zt − f ◦Zs]6.29

=
∑

D

[(f ′◦Zs)(Zt − Zs) +
1
2
(f ′′◦Zs)(Zt − Zs)2] +R,

where the remainder term R satisfies, in view of 6.25 and 6.28,

|R| ≤
∑

D

(Zt − Zs)2 h◦|Zt − Zs| ≤ h(ε)
∑

D

(Zt − Zs)2.6.30

We now apply Ea to both sides of 6.29 and 6.30, using EaEs = Ea repeatedly
for a ≤ s and using the equalities in 6.25 and 6.26. We get

Eaf ◦Zb − f ◦Za = 1
2Ea

∑
D(f ′′◦Zs)(t ∧ T − s ∧ T ) + EaR,6.31

|EaR| ≤ h(ε)Ea
∑

D(t ∧ T − s ∧ T ) ≤ h(ε)Ea(b − a) ≤ h(ε)(b− a).6.32

Consider the sum over (s, t] in D on the right side of 6.31. For (q, r] in D, on
the event {q < T ≤ r}, we have Zs = Xs for s ≤ q and the sum is equal to

δ
∑

D

f ′′◦Xs −Q
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where

|Q| = |(f ′′◦Xq)(r − T ) + δ
∑

s>q,D

f ′′◦Xs| ≤ ‖f ′′‖ · (b − T )

with ‖f ′′‖ = supx |f ′′(x)| <∞ by assumption. Hence, recalling that a ≤ T ≤
b we can re-write 6.31 and 6.32 as follows:

Eaf ◦XT∧b − f ◦Xa = 1
2
Ea

∑
D δf ′′◦Xs − 1

2
EaQ+ EaR,6.33

|EaQ| ≤ ‖f ′′‖Ea(b − T ), |EaR| ≤ (b− a)h(ε).6.34

d) Keeping a, b, ε as before, we now let n→ ∞. Then, T increases to b
as mentioned earlier. So, T ∧ b→ b, and XT∧b → Xb by the continuity of X ,
which implies that f ◦XT∧b → f ◦Xb by the continuity of f , and hence,

Eaf ◦XT∧b → Eaf ◦Xb6.35

by the bounded convergence theorem (recall that f is bounded). Again as
n→ ∞, on the right side of 6.33, the sum over D converges to the Riemann
integral of f ′′◦Xs over [a, b], and

Ea

∑

D

δf ′′◦Xs → Ea

ˆ b

a

f ′′◦Xu du6.36

by the bounded convergence theorem, since the sum remains dominated by
‖f ′′‖ · (b− a) for all n. Finally, since T increases to b, Ea(b − T ) → 0 by the
bounded convergence theorem, which yields

|EaQ| → 06.37

in view of 6.34. Putting 6.35, 6.36, 6.37 into 6.33 and noting the bound for
EaR in 6.34, we obtain

|Ea(Mb −Ma)| =

∣∣∣∣∣Eaf ◦Xb − f ◦Xa − 1
2

Ea

ˆ b

a

du f ′′◦Xu

∣∣∣∣∣ ≤ (b− a)h(ε).

This shows that M is a martingale, since a, b, ε are arbitrary and h(ε) de-
creases to 0 as ε→ 0. �

7 Standard Filtrations and Modifications

of Martingales

This section is to supplement the chapter by discussing the right-
continuity and augmentation of filtrations, and the beneficial consequences
of such properties on stopping times and martingales. Throughout, (Ω,H,P)
is the probability space in the background, the time-set is R+ unless specified
otherwise, and all filtrations and processes are indexed by R+.
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Augmentation

Let F = (Ft) be a filtration. It is said to be augmented if (Ω,H,P) is
complete and all the negligible events in H are also in F0 (and, therefore, in
every Ft).

Suppose that (Ω,H,P) is complete. Let F be an arbitrary filtration. Let
N be the collection of all negligible events in H and let F̄t be the σ-algebra
generated by Ft ∪N. Then, F̄ = (F̄t) is an augmented filtration and is called
the augmentation of F. Obviously, F is augmented if and only if F = F̄.

Right-continuity

Let F be a filtration. We define

Ft+ = ∩ε>0Ft+ε, t ∈ R+.7.1

Then, (Ft+) is again a filtration and is finer than (Ft). The filtration F is
said to be right-continuous if

Ft = Ft+7.2

for every t in R+. Note that (Ft+) is itself a right-continuous filtration; it is
the coarsest right-continuous filtration that is finer than F.

Heuristically, Ft+ has the same information as Ft plus the information
gained by an “infinitesimal peek” into the future. For instance if t �→ Xt

depicts a smooth motion and F is the filtration generated by X = (Xt),
then Ft has all the information regarding the past of X and the present
position Xt, whereas Ft+ has all that information plus the velocity Vt =
limε→0(Xt+ε −Xt)/ε and acceleration at t and so on.

Sometimes, the difference between (Ft+) and (Ft) is so slight that the
augmentation of (Ft) is right-continuous and therefore finer than (Ft+). We
shall see several instances of it, especially with Lévy processes and Brownian
motion. The following illustrates this in a simple case.

7.3 Example. Let T and V be positive random variables with diffuse
distributions on R+. Define

Xt(ω) =
{
V (ω)t if t < T (ω),
V (ω)T (ω) if t ≥ T (ω).

The process X = (Xt) describes the motion of a particle that starts at the
origin at time 0, moves with speed V until the time T , and stops at time T .
Let F be the filtration generated by X . Note that T is not a stopping time of
F, the reason being that knowing Xs(ω) = V (ω)s for all s ≤ t is insufficient
to tell whether T (ω) = t or T (ω) > t. But, the event {T ≤ t} is definitely in
Ft+ε for every ε > 0, and thus, is in Ft+; in other words, T is a stopping time
of (Ft+). The failure of T to be a stopping time of (Ft) is due to a negligible
cause: the event {T = t} is negligible by our assumption that the distribution
of T is diffuse. Hence, letting (F̄t) be the augmentation of (Ft), we conclude
that T is a stopping time of (F̄t) and that F̄t ⊃ Ft+ for all t except t = 0.
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Stopping times and augmentation

Let (Ft) be a filtration and let T be a random time, a mapping from
Ω into R̄+. Suppose that F is augmented and S is a stopping time of it. If
T = S almost surely, then T is a stopping time of F: For each time t, the
event {S ≤ t} belongs to Ft, and {T ≤ t} and {S ≤ t} differ from each other
by negligible events, and those negligible events are in Ft by our assumption
that F is augmented.

Stopping times and right-continuity

Right-continuity of a filtration simplifies the tests for its stopping times.
This is a corollary of the following.

7.4 Theorem. Let F be a filtration, and T a random time. Then, T is a
stopping time of (Ft+) if and only if

{T < t} ∈ Ft for every t in R+.7.5

Proof. Let εn = 1/n, n ≥ 1. If 7.5 holds, then

{T ≤ t} = ∩n{T < t+ εn} ∈ ∩nFt+εn = Ft+

for every t, which means that T is a stopping time of (Ft+). Conversely, if
T is a stopping times of (Ft+), then {T ≤ s} ∈ Fs+ ⊂ Ft for all s < t, and
hence,

{T < t} = ∪n{T ≤ t− εn} ∈ Ft. �

If F is right-continuous, then Ft = Ft+ for all t, and the preceding theorem
shows that T is a stopping time of F if and only if 7.5 holds.

7.6 Example. Let W be a Wiener process and let F be the filtration
generated by it. For fixed a > 0, let

T = inf{t > 0 : Wt > a}.

Then, T is not a stopping time of (Ft), but it is a stopping time of (Ft+).
The latter assertion follows from the preceding theorem, because T (ω) < t if
and only if Wr(ω) > a for some positive rational number r < t. The former
assertion follows from observing that T (ω) = t if and only if Wr(ω) ≤ a for
all rationals r < t and r = t and Wr(ω) > a for some rational r > t, and the
last part with r > t cannot be told at the time t.

Past until T

Let F be a filtration. Let T be a stopping time of the filtration (Ft+),
and let FT+ denote the corresponding past until T , that is, FT+ = GT where
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(Gt) = (Ft+). More explicitly , recalling the definition 1.9 with the filtra-
tion (Gt),

FT+ = {H ∈ H : H ∩ {T ≤ t} ∈ Ft+ for every t in R+}.7.7

In fact, the arguments of the proof of 7.4 shows that

FT+ = {H ∈ H : H ∩ {T < t} ∈ Ft for every t in R+}.7.8

Of course, if F is right-continuous, 7.7 shows that FT+ = FT , and 7.8 becomes
another characterization for FT .

Sequences of stopping times

Let (Tn) be a sequence of stopping times of a filtration F. If the sequence
is increasing, its limit is a stopping time of F; see Exercise 1.34. The following
contains the best that can be said about decreasing sequences.

7.9 Proposition. Let (Tn) be a sequence of stopping times of (Ft) or
of (Ft+). Then, T = inf Tn is a stopping time of (Ft+), and

FT+ = ∩nFTn+.

Proof. Since (Ft) is coarser than (Ft+), every stopping time of the former
is a stopping time of the latter. So, the Tn are stopping times of (Ft+) in
either case. By Theorem 7.4, the event {Tn < t} is in Ft for every n and
every t. It follows that

{T < t} = ∪n{Tn < t} ∈ Ft

for every t, that is, T is a stopping time of (Ft+) in view of 7.4.
Since T ≤ Tn for every n, Theorem 1.16b applied with the filtration (Ft+)

shows that FT+ ⊂ FTn+ for every n. Hence, FT+ ⊂ ∩nFTn+. To show the
converse, let H be an event that belongs to FTn+ for every n. Then,

H ∩ {T < t} = ∪n(H ∩ {Tn < t}) ∈ Ft

in view of 7.8 applied with Tn. Thus, by 7.8 again, H ∈ FT+. �

If F is right-continuous, and (Tn) is a sequence of stopping times of it,
then the infimum and supremum and limit inferior and limit superior of the
sequence are all stopping times.

Times foretold

Let F be a filtration. Recall that a random time T is said to be foretold
by a stopping time S of F if T ≥ S and T ∈ FS . Obviously, if S is a stopping
time of (Ft+) and T ≥ S and T ∈ FS+, then T is a stopping time of (Ft+).
The following is a refinement.
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7.10 Proposition. Let S be a stopping time of (Ft+). Let T be a random
time such that T ∈ FS+ and T ≥ S, with strict inequality T > S on the event
{S <∞}. Then, T is a stopping time of (Ft) and FS+ ⊂ FT .

Proof. Let S and T be as described. For every outcome ω and time t, if
T (ω) ≤ t then S(ω) < T (ω) and S(ω) < t. Thus, for H in H,

H ∩ {T ≤ t} = H ∩ {T ≤ t} ∩ {S < t}.7.11

Suppose that H ∈ FS+. Since T ∈ FS+ by assumption, then, the left side
is in FS+, which implies that the right side is in Ft in view of 7.8 for FS+.
Thus, the left side of 7.11 is in Ft whenever H ∈ FS+. Taking H = Ω shows
that T is a stopping time of (Ft), and we conclude that every H in FS+ is
in FT . �

Approximation of stopping times

The following shows that Proposition 1.20 remains true for stopping times
T of (Ft+). Here, the dn are as defined by 1.19.

7.12 Proposition. Let T be a stopping time of (Ft+). Let Tn = dn◦T for
each n in N. Then, each Tn is a stopping time of (Ft), each Tn is discrete, and
the sequence (Tn) decreases to T and decreases strictly on the set {T < ∞}.
Moreover, FT+ = ∩nFTn .

Proof. The proof is immediate from Propositions 7.9 and 7.10 once we
note that each Tn is foretold by T . �

Hitting times

Augmented right-continuous filtrations are desirable for the simplifica-
tions noted above and for the following important result, which we list here
without proof.

Let X = (Xt) be a stochastic process with state space (E,E), where E is
topological and E is the Borel σ-algebra on E. Let F be a filtration.

7.13 Theorem. Suppose that F is right-continuous and augmented.
Suppose that X is right-continuous and is adapted to F. Then, for every
Borel subset B of E, the hitting time

TB = inf{t ∈ R+ : Xt ∈ B}
is a stopping time of F.

Regularity of martingales

We start with a filtration F on R+. In the following, D is an arbitrary
countable subset of R+ which is dense in R+, for example, one can take D
to be the set of all rationals in R+.
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7.14 Proposition. Let X be an F-submartingale on R+. For almost ev-
ery ω, the following limits exist and are in R:

Xt+(ω) = limr∈D, r↓tXr(ω), t ≥ 0,7.15

Xt−(ω) = limr∈D, r↑tXr(ω), t > 0.7.16

Proof. Fix s in D. Let a and b be rational numbers with a < b. Let B
be a finite subset of D ∩ [0, s] that includes the end point s. Then, (Xr)r∈B
is a submartingale with respect to (Fr)r∈B with a discrete-time set B. By
Theorem 3.21 applied to the submartingale X on B,

c P{max
r∈B

Xr ≥ c} ≤ E |Xs|.7.17

Next, let UB(a, b) be the number of upcrossings of the interval (a, b) by the
process (Xr)r∈B. By Proposition 3.19,

(b − a)E UB(a, b) ≤ E (Xs − a)+ <∞.7.18

Note that the right sides of 7.17 and 7.18 are free of B. Thus, by taking
supremums over all finite sets B that include s and are contained in D∩ [0, s],
we see that the same inequalities hold for

Ms = sup
r∈D∩[0,s]

|Xr|, Us(a, b) = sup
B
UB(a, b)

respectively. It follows that Ms <∞ and Us(a, b) <∞ almost surely.
For s in D, let Ωs be the collection of all ω for which the limits Xt−(ω)

exist and are finite for all t in (0, s] and the limits Xt+(ω) exist and are finite
for all t in [0, s). Observe that

Ωs ⊃ ∩a,b{Ms <∞, Us(a, b) <∞},
where the intersection is over all pairs (a, b) of rationals with a < b. For each s
in D, this shows that Ωs contains an almost sure event. Hence, Ω0 = ∩s∈DΩs
contains an almost sure event, and for every ω in Ω0 the limits indicated exist
and are in R. �

7.19 Proposition. Suppose that F is right-continuous and augmented,
and let X be a F-submartingale. Let Ω0 be the almost sure set of all ω for
which the limits 7.15 and 7.16 exist in R, and set Xt−(ω) = Xt+(ω) = 0 for
every ω outside Ω0.

a) For each t in R+, the random variable Xt+ is integrable and

Xt ≤ Xt+

almost surely. Here, the equality holds almost surely if and only if s �→ E Xs

is right-continuous at t (in particular, if X is a martingale).
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b) The process (Xt+)r∈R+ is a submartingale with respect to F, and
it is a martingale if X is so. Moreover, for every outcome ω, the trajectory
t �→ Xt+(ω) is right-continuous and left-limited.

Proof. Since F is augmented, the set Ω0 belongs to F0 and to Ft for all t;
thus the alteration outside Ω0 does not change the adaptedness of X to F,
and the altered X is still an F-submartingale.

a) Fix t in R+. Let (rn) be a sequence in D decreasing strictly to t.
Then, (Xrn) is a reversed time submartingale, and E Xt ≤ E Xrn for every n.
By Theorem 4.19, the sequence (Xrn) is uniformly integrable and converges
to Xt+ almost surely and in L1. It follows that Xt+ is integrable and, for
every event H in Ft,

E Xt+1H = lim E Xrn1H ≥ E Xt1H ,7.20

the inequality being through the submartingale inequality for t < rn. Thus,

Et(Xt+ −Xt) ≥ 0.7.21

Since Xrn belongs to Ft+ε for every ε > 0 and all n large enough, the limit
Xt+ belongs to Ft+, and Ft+ = Ft by the assumed right-continuity for F.
Thus, the left side of 7.21 is equal to Xt+ −Xt, which proves the claim that
Xt+ ≥ Xt almost surely. The equality would hold almost surely if and only if
E Xt+ = E Xt, which in turn holds if and only if s �→ E Xs is right-continuous
at t (in which case E Xt = lim E Xrn = E Xt+).

b) The paths t �→ Xt+(ω) are right-continuous and left-limited by the
way they are defined. To see that (Xt+) is an F-submartingale, take s < t,
choose (rn) inD strictly decreasing to t, and (qn) inD strictly decreasing to s,
ensuring that s < qn < t < rn for every n. Then, for H in Fs, using 7.20
twice, we get

E Xs+1H = lim E Xqn1H ≤ lim E Xrn1H = E Xt+1H ,

where the inequality is through the submartingale property of X . This com-
pletes the proof. �

Modifications of martingales

The following is an immediate corollary of the last theorem: put Yt(ω) =
Xt+(ω) for every t and every ω.

7.22 Theorem. Suppose that F is right-continuous and augmented. Sup-
pose that X is an F-submartingale and t �→ E Xt is right-continuous. Then,
there exists a process Y such that

a) for every ω, the path t �→ Yt(ω) is right-continuous and left-limited,
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b) Y is an F-submartingale,
c) for every t in R+, we have P{Xt = Yt} = 1.

The preceding theorem is the justification for limiting our treatment in
Section 5 to right-continuous processes. Note that, if X is a martingale, the
right-continuity of E Xt in t is immediate, since E Xt = E X0 for all t. The
process Y is said to be a modification of X because of the statement (c),
which matter we clarify next.

Modifications and indistinguishability

Let T be some index set. Let X = (Xt)t∈T and Y = (Yt)t∈T be stochastic
processes with the same state space. Then, one is said to be a modification
of the other if, for each t in T,

P{Xt = Yt} = 1.

They are said to be indistinguishable if

P{Xt = Yt for all t in T} = 1.

For example, in Theorem 7.22, the last assertion is that Y is a modification
of X ; it does not mean that they are indistinguishable.

Suppose that X is a modification of Y . Then, for every integer n <∞ and
indices t1, . . . , tn in T, the vectors (Xt1 , . . . , Xtn) and (Yt1 , . . . , Ytn) are almost
surely equal. It follows that the two vectors have the same distribution. In
other words, X and Y have the same finite-dimensional distributions, and
therefore, they have the same probability law.

If X and Y are indistinguishable, then they are modifications of each
other. If they are modifications of each other, and if the index set T is count-
able, then they are indistinguishable. Otherwise, in general, indistinguisha-
bility requires more than being modifications of each other.

For instance, suppose T = R+ and the state space is R
d. Suppose that X

and Y are modifications of each other and are both right-continuous. Then
they are indistinguishable.

Exercises

7.23 Right-continuity. In Example 7.3, describe F0 and F0+. Let F̄ be the
augmentation of F. Show that F̄t+ = F̄t for t > 0.

7.24 Stopping times. Show that a random time T is a stopping time of (Ft+)
if and only if the process (T ∧ t)t∈R+ is adapted to (Ft).

7.25 Strict past at T . Recall from Exercise 1.31 that, for a random time T ,
the strict past at T is defined to be the σ-algebra generated by events of the
form H ∩ {t < T } with H in Ft and t ∈ R+. Then, T belongs to FT− and
FT− ⊂ FT .
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7.26 Continuation. Suppose that F is right-continuous and augmented. Let
S and T be stopping times of it. Show that, for every H in FS , the event
H ∩ {S < T } belongs to FT−. In particular, {S < T } ∈ FT−. Show that
{S < T } belongs to FS ∩ FT−.

7.27 Debuts and stopping times. Let F be right-continuous and augmented as
in Theorem 7.13. For A ⊂ R+ × Ω, let

DA(ω) = inf{t ∈ R+ : (t, ω) ∈ A}, ω ∈ Ω.

If the process (Xt) defined by Xt(ω) = 1A(t, ω) is progressive in the sense of
1.15, then DA is a stopping time of F. Theorem 7.13 is a special case of this
remark.

7.28 Hitting times. For fixed a > 0, let T be defined as in Example 7.6. Show
that T = Ta almost surely, where Ta is as defined by 5.19.

7.29 Continuation. Let Ta be defined by 5.19 and let Sa be the T defined
in 7.6. Show that a �→ Ta is left-continuous and a �→ Sa is right-continuous.
In fact, Ta = Sa−, the left-limit at a of S; Show this. The process (Sa) is a
right-continuous modification of (Ta). They are eminently distinguishable.

7.30 Predictable stopping times. Let F be right-continuous and augmented.
Let T be a stopping time of it. Then, T is said to be predictable if the set
{(ω, t) : t ≥ T (ω)} belongs to the predictable σ-algebra; see 6.1 for the
latter. Equivalently, T is said to be predictable if there exists a sequence (Tn)
of stopping times such that, for every ω for which T (ω) > 0, the sequence of
numbers Tn(ω) increases strictly to T (ω). If W is a Wiener process and F is
generated by it, then every stopping time of F is predictable.

7.31 Classification of stopping times. In addition, a stopping time T is said
to be σ-predictable if there exists a sequence of predictable stopping times Tn
such that, for every ω, we have T (ω) = Tn(ω) for some n. Finally, T is said to
be totally unpredictable if P{T = S} = 0 for every predictable stopping time
S. In Example 1.7, suppose that N is a Poisson process. Then, T1, T2, . . . are
all totally unpredictable, the time T is predictable. The stopping time T ∧T1

is neither predictable nor totally unpredictable; it is equal to the predictable
time T on the event {T < T1} and to the totally unpredictable time T1

on the event {T > T1}. This example is instructive. In general, for every
stopping time T there exist a σ-predictable stopping time R and a totally
unpredictable stopping time S such that T = R ∧ S. In the case of standard
Markov processes, S is a jump time and R is a time of continuity for the
process.



Chapter VI

Poisson Random

Measures

The aim is to give a reasonably detailed account of Poisson random
measures and their uses. Such random measures are often the primitive ele-
ments from which more evolved processes are constructed. We shall illustrate
several such constructions which yield Lévy processes and pure-jump Markov
processes.

Throughout, (Ω,H,P) is the probability space in the background. We
shall have many occasions to use the notation exp− x for e−x.

1 Random Measures

Let (E,E) be a measurable space. A random measure on (E,E) is a tran-
sition kernel from (Ω,H) into (E,E).

More explicitly, a mapping M : Ω × E �→ R̄+ is called a random measure
if ω �→M(ω,A) is a random variable for each A in E and if A �→M(ω,A) is
a measure on (E,E) for each ω in Ω. We shall denote by M(A) the former
random variable; then, we may regardM as the collection of random variables
M(A), A ∈ E. We shall denote by Mω the latter measure A �→M(ω,A); the
term “random measure” signifies that M is a random variable that assigns a
measure Mω to every outcome ω in Ω.

The terms such as finite, σ-finite, diffuse, etc. are used for a random
measure M if the measure Mω has the corresponding properties for almost
every ω in Ω. In particular, it is said to be integer-valued if it takes values in
N̄ = {0, 1, . . . ,+∞}. It is said to be a random counting measure if, for almost
every ω, the measure Mω is purely atomic and its every atom has weight one.
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Mean measures and integrals

Let M be a random measure on (E,E). Recall that E+ denotes the set of
all positive E-measurable functions. We recall also the results and notations
of the measure-kernel-function setup: According to Fubini’s theorem, I.6.3,

Mf(ω) =
ˆ
E

M(ω, dx) f(x), ω ∈ Ω,1.1

defines a positive random variable Mf for each f in E+, and

μ(A) = E M(A) =
ˆ

Ω

P(dω) M(ω,A), A ∈ E,1.2

defines a measure μ on (E,E), called the mean of M , and

E Mf = μf, f ∈ E+.1.3

Laplace functionals

Let M be a random measure on (E,E). It may be regarded as a collection
{M(A) : A ∈ E} indexed by E or as a collection {Mf : f ∈ E+} indexed
by E+. Thus, to specify the probability law of M , it is sufficient to specify
the joint distribution of Mf1, . . . ,Mfn for every choice of integer n ≥ 1 and
functions f1, . . . , fn in E+. Such a joint distribution can be specified implicitly
via the joint Laplace transform (recall the notation exp− x = e−x)

E exp−(r1Mf1 + · · · + rnMfn), r1, . . . , rn ∈ R+.

Noting that this is the same as E exp−Mf with f = r1f1 + · · · + rnfn, we
obtain the proof of the following.

1.4 Proposition. The probability law of a random measure M on (E,E)
is determined uniquely by

E e−Mf , f ∈ E+. �

The mapping f �→ E e−Mf from E+ into [0, 1] is called the Laplace func-
tional of M . It is continuous under increasing limits:

1.5 Proposition. If (fn) ⊂ E+ is increasing to f , then

lim
n

E exp−Mfn = E exp−Mf.

Proof. If (fn) is increasing to f , then (Mfn) is increasing to Mf by
the monotone convergence theorem for the measure Mω applied for each
outcome ω, and thus, (exp−Mfn) is decreasing to exp−Mf . The desired
conclusion is now immediate from the bounded convergence theorem for
expectations. �
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Laplace functionals have uses similar to those of Laplace transforms:

1.6 Proposition. Let M and N be random measures on (E,E). They
are independent if and only if

E e−(Mf+Ng) = E e−Mf
E e−Ng, f, g ∈ E+.

Proof. To show that M and N are independent, it is sufficient to show
that the vectors (Mf1, . . . ,Mfm) and (Ng1, . . . , Ngn) are independent for
all choices of m ≥ 1 and n ≥ 1 and f1, . . . , fm, g1, . . . , gn in E+. For this, it
is enough to show the following equality of joint Laplace transforms:

E exp−

(
m∑

1

piMfi +

n∑

1

qjNgj

)
=

(
E exp−

m∑

1

piMfi

) (
E exp−

n∑

1

qjMgj

)
.

But this is immediate from the condition of the proposition upon taking
f =

∑
pifi and g =

∑
qjgj. This proves the sufficiency of the condition. The

necessity is obvious. �
The preceding has a useful corollary concerning the Laplace functional of

the sum M +N ; we leave it to Exercise 1.15.

1.7 Example. Let λ be a probability measure on (E,E). Let X = {Xi :
i ∈ N

∗} be an independency of random variables taking values in (E,E)
according to the common distribution λ. Let K be independent of X and
have the Poisson distribution with mean c, the last being a constant in (0,∞).
We define M by (recall that I(x,A) = δx(A) = 1A(x) defines the identity
kernel I)

M(ω,A) =
K(ω)∑

i=1

I(Xi(ω), A), ω ∈ Ω, A ∈ E,1.8

where, by the usual conventions, the sum is zero if K(ω) = 0. This defines a
measure Mω for each ω, and re-writing 1.8 as

Mf =
K∑

i=1

f ◦Xi =
∞∑

i=1

f ◦Xi 1{K≥i}, f ∈ E+,1.9

we see that Mf is a random variable for each f in E+. Hence M is a random
measure. It is integer-valued. Its mean measure is equal to cλ:

μf = E Mf =
∞∑

1

E f ◦Xi E 1{K≥i} = (λf) E K = cλf.

To compute its Laplace functional, we use 1.9 and the assumptions on inde-
pendence and the distributions of K and the Xi. With the notation e−f for
the function x �→ e−f(x), we have

E e−Mf = E

K∏

i=1

e−f ◦Xi =
∞∑

k=0

e−cck

k!
(λe−f )k = exp− cλ(1 − e−f).
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Atoms, point processes

The preceding example is the prototype of the random measures of pri-
mary interest, namely, purely atomic random measures.

Let (Ē, Ē) be a measurable space containing (E,E), that is, Ē ⊃ E and
Ē ⊃ E. Let X = (Xi) be a countable collection of random variables taking
values in (Ē, Ē). Define

Mf(ω) =
∑

i

f ◦Xi(ω), ω ∈ Ω, f ∈ E+,1.10

with f extended automatically onto Ē by putting f(x) = 0 for all x in Ē \E.
This defines a random measure M on (E,E). To indicate it, we say that X
forms M on (E,E) and, conversely, call the Xi atoms of M . See Remarks
1.14a and 1.14b below for the need to define X on a larger space (Ē, Ē) in
general; often, it is possible to take E = Ē.

Assuming that the singleton {x} belongs to E for every x in E, the pre-
ceding use of the term “atom” is well-justified: for every ω, the measure Mω

defined by 1.10 is purely atomic, and each Xi(ω) in E is an atom of Mω. In
particular, if all the Xi(ω) in E are distinct then Mω is a counting measure.
And if Mω is such, the simplest way to visualize it is by marking its atoms
in E; this yields a set Sω = {x ∈ E : x = Xi(ω) for some i}. The resulting
random set S is called the point process associated with M .

In practice, often, the random variables Xi are defined first and M is
introduced by 1.10. We now treat the converse situation where M is already
defined and we need to specify the Xi. The following does this for the case
E = R+ and E = B(R+); we think of R+ as time and of atoms as times of
occurrence of some physical event. See Exercise 1.19 for the general case.

1.11 Proposition. Let M be an integer-valued random measure on R+.
Suppose that it is finite over bounded intervals. Then, there exists an increas-
ing sequence (Tn) of random variables taking values in R̄+ = [0,∞] such that,
for almost every ω,

M(ω,A) =
∞∑

n=1

I(Tn(ω), A), A ∈ B(R+).1.12

Proof. Define Lt(ω) = M(ω, [0, t]) for t in R+ and ω in Ω. Since M is
a random measure, Lt is a random variable for each t, and by assumption,
Lt <∞ almost surely. For each integer n ≥ 1, let

Tn(ω) = inf{t ∈ R+ : Lt(ω) ≥ n}, ω ∈ Ω,1.13

with the usual convention that inf ∅ = +∞. Since {Tn ≤ t} = {Lt ≥ n}
and the latter is an event, Tn is a random variable for each n. Note that
Tn takes values in R̄+ and the sequence (Tn) is increasing. Let Ω0 be the
intersection of {Ln < ∞} over all finite integers n; then, Ω0 is almost sure
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since Lt <∞ almost surely for every t <∞. For every ω in Ω0, the definition
1.13 implies 1.12 for A = [0, t] for every t and, therefore, through a monotone
class argument, for every Borel subset A of R+. �

1.14 Remarks. a) In the preceding proposition, if one assumes in ad-
dition that M(R+) = +∞ almost surely, then Tn < ∞ almost surely for
every n and can be defined to take values in R+. Otherwise, in general, it
is impossible to avoid +∞ as a value for the Tn. For instance, in Example
1.7 with E = R+, the event {K = 3} has a strictly positive probability, and
for every ω with K(ω) = 3 we have 0 ≤ T1(ω) ≤ T2(ω) ≤ T3(ω) < +∞
and T4(ω) = T5(ω) = · · · = +∞. Incidentally, if K(ω) = 3 then T1(ω) is the
smallest number in {X1(ω), X2(ω), X3(ω)}, and T2(ω) is the second smallest,
and T3(ω) is the largest.

b) Going back to Example 1.7 on an arbitrary space E, we now re-define
the Xn in order that the re-defined sequence X̄ form the random measure in
the sense of 1.10. Take a point ∂ that is not in E, let Ē = E ∪ {∂}, and let
Ē be the σ-algebra on Ē generated by E. For each n ≥ 1, let

X̄n(ω) =
{
Xn(ω) if n ≤ K(ω),
∂ otherwise.

Then, X̄ = {X̄n : n ≥ 1} is a sequence of random variables taking values in
(Ē, Ē), and X̄ forms M by 1.10.

Exercises and complements

1.15 Sums of independent measures. Let M and N be independent random
measures on (E,E). Show that, then,

E e−(M+N)f = E e−Mf
E e−Nf , f ∈ E+.

In words, the Laplace functional of the sum is the product of the Laplace
functionals.

1.16 Mean measure. Let M be a random measure on (E,E) with mean μ.
Suppose that the singleton {x} is in E for every x in E.

a) For f in E+, if μf <∞ then Mf <∞ almost surely.
b) If μ is σ-finite, then M is σ-finite.
c) If x is an atom of μ, then it is an atom of M with a strictly positive

probability. If μ is purely atomic, then M is purely atomic.

Show these. The converses of these statements are generally false.

1.17 Uniform points on E = [0, 1]. Fix an integer n ≥ 1. Let X1, . . . , Xn be
independent and uniformly distributed over E = [0, 1]. Define M by 1.10 but
for Borel functions f on E. Compute the Laplace functional of M .
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1.18 Increasing processes. Let L = (Lt)t∈R+ be an increasing right-continuous
process with state space (R+,BR+). Show that there is a random measure M
on (R+,BR+) such that M(A) = Lt for A = [0, t]. Hint: Define Mω to be the
measure corresponding to the “distribution function” t �→ Lt(ω).

1.19 Atoms. Let (E,E) be a standard measurable space. Let M be a random
counting measure with a σ-finite mean measure μ. Let ∂ be a point outside
E; put Ē = E ∪ {∂} and let Ē be the σ-algebra on Ē generated by E. Show
that there exists a sequence (Xi) of random variables taking values in (Ē, Ē)
such that 1.10 holds for M . Hint: Follow the steps of Exercises I.5.15 and
I.5.16 to carry M from E to a random measure M̂ on R+, use 1.11 above to
pick the atoms T̂i for M̂ , and transport the T̂i back into Ē as the Xi.

1.20 Lexicographic ordering of atoms. Let M be a random counting measure
on R+×F , where F is a Borel subset of R (can be replaced with R

d). Suppose
that, for almost every ω, the set Dω of atoms ofMω has the following pleasant
properties:

i) if (s, y) and (t, z) are atoms then s = t,
ii) the number of atoms in [0, t] × F is finite for every t < ∞, but the

total number of atoms in R+ × F is infinite.

For such a good ω, label the atoms (T1(ω), Z1(ω)), (T2(ω), Z2(ω)), . . . going
from left to right, so that 0 ≤ T1(ω) < T2(ω) < · · ·. For the remaining
negligible event of bad ω, put Tk(ω) = 0 for all k ≥ 1 and do something similar
for the Zk(ω). Show that T1, T2, . . . and Z1, Z2, . . . are random variables and
that the pairs (Ti, Zi) form M .

1.21 Continuation. Let M be a random counting measure on R+ × R with
mean measure μ = Leb × λ, where λ is a σ-finite measure on R. Choose
a partition (Fn) of R such that λ(Fn) < ∞ for every n. Assume that the
condition (i) of 1.20 holds, and note that the condition (ii) follows for the
restriction of M to R+ × Fn for each n. For n in N

∗, let (Tn,i, Zn,i) with
i = 1, 2, . . . be the lexicographic ordering of the atoms in R+ ×Fn. Then, the
collection (T, Z) = {(Tn,i, Zn,i) : n ∈ N

∗, i ∈ N
∗} forms M .

2 Poisson Random Measures

In this section we introduce Poisson random measures, give some exam-
ples, and illustrate their elementary uses.

Recall that a random variable X taking values in N̄ = {0, 1, . . . ,∞} is
said to have the Poisson distribution with mean c in (0,∞) if

P{X = k} =
e−cck

k!
, k ∈ N,2.1

and then X < ∞ almost surely and E X = VarX = c. We extend this
definition to allow 0 and +∞ as values for c:

c = 0 ⇐⇒ X = 0 almost surely, c = +∞ ⇐⇒ X = +∞ almost surely.2.2
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Indeed, the case where c = 0 is covered by 2.1, and the case where c = +∞
is consistent with 2.1 in a limiting sense.

Recall, also, that if X and Y are independent and have the Poisson dis-
tributions with means a and b, then X+Y has the Poisson distribution with
mean c = a + b. This property extends to countable sums even when the
means sum to c = +∞; see Exercise 2.18. These remarks should make it
clear that the following definition is without internal contradictions.

2.3 Definition. Let (E,E) be a measurable space and let ν be a measure
on it. A random measure N on (E,E) is said to be Poisson with mean ν if

a) for every A in E, the random variable N(A) has the Poisson distri-
bution with mean ν(A), and

b) whenever A1, . . . , An are in E and disjoint, the random variables
N(A1), . . . , N(An) are independent, this being true for every n ≥ 2.

2.4 Remarks. a) In some cases, the condition (a) in the definition implies
the condition (b). In fact, the necessary condition that

P{N(A) = 0} = e−ν(A), A ∈ E,

is also sufficient for N to be Poisson with mean ν at least in the case E = R
d

and E = B(Rd) and ν is diffuse, and then it is known that N is also a random
counting measure. See Theorem 5.12 for this deep result.

b) Deterministic transformations. Let N be a Poisson random measure
on (E,E) with mean ν. Let h be a measurable transformation from (E,E)
into another measurable space (F,F). Let M be the image of N under h,
that is,

M(ω,B) = N(ω, h−1B), ω ∈ Ω, B ∈ F;

notation: M = N ◦h−1. Then, M is a Poisson random measure on (F,F)
with mean μ = ν◦h−1. This can be shown by checking the conditions in the
definition above. In Section 3, this result will be generalized by replacing h
with a random transformation.

Examples

2.5 Particles in boxes. Let E be countable and E = 2E , and let ν be a measure
on it. For each x in E, let Wx be a Poisson distributed random variable with
mean ν({x}). Assume that the countable collection {Wx : x ∈ E} is an
independency. Then,

N(ω,A) =
∑

x∈E
Wx(ω)I(x,A) ω ∈ Ω, A ∈ E,

defines a Poisson random measure N on (E,E) with mean ν. This is the form
of the most general Poisson random measure on a space like this. We may
think of E as a countable collection of boxes and of Wx as the number of
particles in the box x.
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2.6 Stones in a field. Take a Poisson distributed number of stones. Throw
each into a space E, using the same mechanism every time, without regard
to the total number of stones or where the previous ones have landed. The
final configuration of stones in E describe a Poisson random measure.

The precise version is the construction of Example 1.7. To re-capitulate:
let X = (X1, X2, . . .) be an independency of random variables taking values
in the measurable space (E,E) and having some probability measure λ as
their common distribution. Let K be independent of X and have the Poisson
distribution with some number c in (0,∞) as its mean. For each outcome ω,
we think of K(ω) as the total number of stones and X1(ω), . . . , XK(ω)(ω) as
the landing points of those stones. The configuration formed by the stones
(without regard to their identities) can be described by the measureNω where

Nω(A) = N(ω,A) =
K(ω)∑

n=1

I(Xn(ω), A), A ∈ E,

that is, the number of stones in the set A. The claim is that the random
measure N is Poisson with mean ν = cλ. Every Poisson random measure
with a finite mean measure can be assumed to have this construction.

To prove the claim, we check the conditions of Definition 2.3. To that
end, letting {A, . . . , B} be a finite measurable partition of E, it is enough
to show that N(A), . . . , N(B) are independent and Poisson distributed with
respective means ν(A), . . . , ν(B). In view of the assumptions on K and the
Xn, we have, for i, . . . , j in N with i+ · · · + j = k,

P{N(A) = i, . . . , N(B) = j}
= P{K = k} P{N(A) = i, . . . , N(B) = j|K = k}
= e−cck

k! · k!
i! · · · j! λ(A)i · · ·λ(B)j = e−ν(A)ν(A)i

i! · · · e
−ν(B)ν(B)j

j! ,

which is as needed to be shown.

2.7 Homogeneous counting measures on the plane. LetN be a Poisson random
measure on (R2,B(R2)) with mean ν = c Leb, where c is a constant in (0,∞)
and Leb stands for the Lebesgue measure on R

2. If h is a rigid transformation
of the plane, since Lebesgue measure is invariant under such transformations,
we have ν◦h−1 = ν. Thus, in the notation of Remark 2.4b, the image N◦h−1 is
again a Poisson random measure with mean ν. In other words, the probability
law of N is invariant under rigid transformations; this is the meaning of
homogeneity for N . Moreover, as will be shown in Theorem 2.17 below, N is
a random counting measure, that is, for almost every outcome ω, the measure
Nω is purely atomic with weight one on each atom. In Figure 5 below, the
atoms are shown for a typical ω. Poisson random measures are best visualized
by means of such pictures. We now give two computations occasioned by such
thoughts.

Consider the distance R from the origin to the nearest atom. A glance
at the figure shows that R(ω) > r if and only if N(ω,Br) = 0, where Br is
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y

x

R(ω)
V(ω)

Figure 5: The dots mark the atoms of N(ω, ·), the distance from the origin
to the nearest atom is R(ω), the visibility in the positive x-direction is V (ω)
(the shaded area is D = [0,∞) × [−a, a] where a is the “size” of the discs).

the closed disk of radius r centered at the origin. Since N(Br) is a random
variable, {R > r} = {N(Br) = 0} is an event; this is true for every r in R+

and, hence, R is a random variable. Since the area of Br is πr2,

P{R > r} = P{N(Br) = 0} = e−ν(Br) = e−πcr
2
, r ∈ R+.

For another small computation, we now think of the atoms as centers of small
disks of radius a. The disks represent trees in a thin forest with intensity c of
trees; assuming that a and c are small, the difficulty of explaining overlapping
trees can be ignored. Since N is homogeneous, we may take the positive x-
axis as an arbitrary direction. We are interested in the distance V from the
origin to the nearest tree intersecting the positive x-axis; this is the visibility
in the forest in that direction. Note that a disk intersects the x-axis if and
only if its center is at a distance at most a from the x-axis. Thus V (ω) > x
if and only if N(ω,Dx) = 0 where Dx = [0, x] × [−a, a]. It follows that V is
a random variable and

P{V > x} = P{N(Dx) = 0} = exp− ν(Dx) = e−2acx, x ∈ R+.

Mean, variance, Laplace functional

Let N be a Poisson random measure on (E,E) with mean ν. For A in
E, if ν(A) < ∞ then N(A) has a proper Poisson distribution with mean
ν(A) and variance ν(A). If ν(A) = +∞ then N(A) = +∞ almost surely, the
mean of N(A) is still ν(A), but the variance is undefined. These carry over
to functions as follows: for f in E+,

E Nf = νf, VarNf = ν(f2) if νf <∞.2.8

The claim for the mean is immediate from 1.3. The one for the variance can
be shown by computing E (Nf)2 first for simple f and then for arbitrary f
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by approximating f via simple functions. The same steps are used to prove
the following important characterization via Laplace functionals.

2.9 Theorem. Let N be a random measure on a measurable space (E,E).
It is Poisson with mean ν if and only if

E e−Nf = e−ν(1−e
−f ), f ∈ E+.2.10

2.11 Remarks. a) The compact notation on the right side stands for
e−νg where νg is the integral of the function g = 1− e−f with respect to the
measure ν. In other words, 2.10 can be re-written as

E exp−

ˆ
E

N(dx)f(x) = exp−

ˆ
E

ν(dx)(1 − e−f(x)), f ∈ E+.

b) Since the Laplace functional of N determines its probability law,
we conclude from the theorem above that the probability law of a Poisson
random measure is determined by its mean measure.

c) The proof below will show that N is Poisson with mean ν if and
only if 2.10 holds for every simple f in E+.

Proof of Theorem 2.9
Necessity. Suppose that N is Poisson with mean ν. For a in R+ and A in

E with ν(A) <∞, since N(A) has the Poisson distribution with mean ν(A),

E exp− aN(A) =
∞∑

0

e−ν(A)ν(A)k

k!
e−ak = exp− ν(A)(1 − e−a);

the result remains true even when ν(A) = +∞. Next, let f in E+ be simple,
say f =

∑n
1 ai 1Ai with the Ai disjoint. Then, Nf =

∑
aiN(Ai) and the vari-

ables N(Ai) are independent by the definition of Poisson random measures.
So,

E e−Nf =
∏

i

E exp− aiN(Ai) = exp−
∑

i

ν(Ai)(1 − e−ai),

which shows that 2.10 holds when f is simple. Finally, let f in E+ be arbi-
trary. Choose (fn) ⊂ E+ increasing to f such that each fn is simple. By the
continuity (Proposition 1.5) of Laplace functionals, using 2.10 for each fn,
we get

E e−Nf = lim
n

E exp−Nfn = lim
n

exp− ν(1 − e−fn).

The last limit is equal to the right side of 2.10: as n → ∞, the functions
gn = 1 − e−fn increase to g = 1 − e−f , and the integrals νgn increase to νg
by the monotone convergence theorem.

Sufficiency. This is immediate from the necessity part coupled with the
one-to-one relationship between Laplace functionals and probability laws of
random measures (Proposition 1.4). �
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2.12 Example. Shot noise. Arrivals of electrons at an anode form a
Poisson random measure N on R with mean ν = c Leb, where c is a constant
in (0,∞). We view R as the time axis. Since the Lebesgue measure is diffuse, it
follows from Theorem 2.17 below that N is a random counting measure, that
is, for almost every ω, no two electrons arrive at the same time. Since the
number of electrons arriving during a bounded interval is finite (because the
mean is finite), we may assume that the arrival times Tn are ordered so that
· · · < T−1 < T0 < 0 ≤ T1 < T2 < · · · almost surely.

Each arriving electron produces a current whose intensity is g(u) after a
lapse of u time units, and the currents produced by the different electrons
are additive. Thus, the resulting current’s intensity at time t is

Xt =
∞∑

n=−∞
g(t− Tn)1(−∞,t]◦Tn =

ˆ
(−∞,t]

N(ds)g(t− s).

The function g : R+ �→ R+ is generally continuous and decreases rapidly to 0;
all we need here is that g be Borel and integrable (over R+ with respect to
the Lebesgue measure). Note that Xt = Nf , where for t in R fixed,

f(s) = g(t− s)1(−∞,t](s), s ∈ R.

Thus, according to 2.8,

E Xt = νf = c
´
(−∞,t]

ds g(t− s) = c
´∞
0
du g(u),

VarXt = ν(f2) = c
´
(−∞,t] ds g(t− s)2 = c

´∞
0 du g(u)2,

since the mean is finite by the assumed integrability of g. Finally, we obtain
the Laplace transform of Xt by using the preceding theorem on the Laplace
functional of N :

E e−rXt = E e−N(rf)

= exp− c
ˆ

(−∞,t]

ds(1 − e−rg(t−s)) = exp− c
ˆ

R+

du(1 − e−rg(u)).

The formulas for the expected value and variance are well-known as
Campbell’s theorem. Variants and generalizations occur frequently. See
Exercise 2.25 also.

Finiteness of Nf

The following provides a criterion for the almost sure finiteness of the
random variable Nf . Recall that f ∧g is the function whose value at x is the
minimum of f(x) and g(x).

2.13 Proposition. Let N be a Poisson random measure on (E,E) with
mean ν. Let f in E+ be real-valued.



254 Poisson Random Measures Chap. 6

a) If ν(f ∧ 1) <∞ then Nf <∞ almost surely.
b) If ν(f ∧ 1) = +∞ then Nf = +∞ almost surely.

Proof. We start by recalling that, in view of 2.10 and II.2.31,

P{Nf <∞} = lim
r→0

E e−rNf = lim
r→0

e−ν(1−e
−rf ).2.14

Moreover, for every t = f(x), the mapping r �→ 1 − e−rt is bounded by t ∧ 1
on (0, 1) and has the limit 0 at r = 0 since t < ∞ by the hypothesis that f
is real-valued. Thus, as r → 0, the function 1 − e−rf is dominated by f ∧ 1
and goes to 0. Hence, by the dominated convergence theorem,

ν(f ∧ 1) <∞ =⇒ lim
r→0

ν(1 − e−rf ) = 0,

and this proves the claim (a) via 2.14.

Note that 1 − e−t ≥ (1 − e−1)(t ∧ 1) for t ≥ 0. This shows, together with
the form 2.10 of the Laplace functional, that

ν(f ∧ 1) = +∞ =⇒ ν(1 − e−f ) = +∞ =⇒ E e−Nf = 0,

which means that Nf = ∞ almost surely, proving the claim (b). �

Existence of Poisson random measures

This is to show that, given a Σ-finite measure ν on a measurable space
(E,E), there exists a probability space and a random measure defined over
it such that the latter is Poisson with mean ν. The proof is constructive; it
is the formal version of the stone throwing we did earlier, repeated a few
times.

2.15 Theorem. Let ν be a Σ-finite measure on (E,E). Then, there exists
a probability space (W,G, P ) and a measure N(w, ·) on (E,E) for each w in
W such that N is Poisson with mean ν.

Proof. a) First, suppose that ν is finite. Let c = ν(E) < ∞ and define
the probability measure μ on (E,E) so that ν = cμ. Let π be the Poisson
distribution on (N, 2N) with mean c. Define,

(W,G, P ) = (N, 2N, π) × (E,E, μ)N
∗
;

the existence and construction of this follows from the theorem of Ionescu-
Tulcea; see Sections 4 and 5 of Chapter IV. Each point w in W is a sequence
w = (x0, x1, x2, . . .); for it, define

K(w) = x0; Xi(w) = xi, i ∈ N
∗.

Then, K,X1, X2, . . . are totally independent, K has the Poisson distribution
π with mean c, and the Xi take values in (E,E) with the distribution μ.
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Define N as in Example 2.6 from these variables. As was shown there, then,
N is a Poisson random measure on (E,E) with mean ν = cμ. This completes
the proof if ν is finite.

b) Suppose that ν is Σ-finite but not finite. Then, there are finite measures
ν1, ν2, . . . such that ν =

∑
νn. For each n, construct (Wn,Gn, Pn) and Nn as

in the part (a) above, but for the measure νn. Now, put

(W,G, P ) = ⊗∞
n=1(Wn,Gn, Pn);

see Section 5 of Chapter IV again. For w = (w1, w2, . . .) in W , each wn is in
Wn and we put N̂n(w,A) = Nn(wn, A), and finally, define

N(w,A) =
∞∑

n=1

N̂n(w,A).

Then, N̂1, N̂2, . . . are independent Poisson random measures on (E,E) with
mean measures ν1, ν2, . . ., all defined over the probability space (W,G, P ).
Thus, for f in E+, writing E for the expectation operator corresponding
to P ,

E exp−
n∑

1

N̂if =
n∏

1

exp− νi(1 − e−f ) = exp−
n∑

1

νi(1 − e−f )

according to Proposition 1.6 and Theorem 2.9. Letting n→ ∞ on both sides
we obtain, since N = N̂1 + N̂2 + · · · and ν = ν1 + ν2 + · · ·,

E e−Nf = e−ν(1−e
−f ), f ∈ E+,

which means by Theorem 2.9 that N is Poisson with mean ν as claimed. �

2.16 Remark. Monte-Carlo. In Monte-Carlo studies using random
measures, the starting point is often the construction of the realization
Nω, for a typical outcome ω, of a Poisson random measure N on a standard
measure space. We illustrate the technique for N on E = R+ × R+ with
mean measure ν = Leb; it is easy to extend the technique to E = R

d. The
problem is to get a typical realization of N from a sequence of “random
numbers,” the latter being the realizations of independent uniform vari-
ables over (0, 1). This is a description of the preceding construction in the
simulation language, utilizing the σ-finiteness of ν: Pick an appropriately
large number a, consider the square E0 = (0, a] × (0, a]. Generate a Poisson
distributed random variable with mean a2 using the initial random number
u0; if it turns up to be k, use the random numbers u1, . . . , u2k to form pairs
(au1, au2), (au3, au4), . . . , (au2k−1, au2k); these k pairs are the atoms, each
with unit weight, of a realization of Poisson N0 on E0 with ν0 = Leb. Repeat
this procedure, using fresh random numbers, with the obviously required
shifts, to obtain realizations on the squares Eij = (ia, ja) + E0 with i and
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j in N; of course, E0,0 = E0 and Eij is the translation of E0 by putting its
lower left corner at the point (ia, ja). The resulting collection of atoms in E
are the atoms of a typical realization of the Poisson random measure N on
E = R+ × R+ with mean ν equal to the Lebesgue measure.

Poisson counting measures

Let (E,E) be a measurable space and assume that the singleton {x}
belongs to E for every x in E. This is the case if (E,E) is a standard measur-
able space, and, in particular, if E is a Borel subset of some Euclidean space
R
d and E is the σ-algebra of the Borel subsets of E. The following exploits

the preceding construction.

2.17 Theorem. Let N be a Poisson random measure on (E,E). Suppose
that its mean ν is Σ-finite. Then, N is a random counting measure if and
only if ν is diffuse.

Proof. Necessity. Fix an arbitrary point x in E and let c = ν({x}). As-
suming that N is a random counting measure, we need to show that c = 0.
Indeed, the assumption implies that the event {N({x}) ≥ 2} is negligible.
Whereas, the hypothesis that N is Poisson implies that the same event has
probability 1 − e−c − ce−c. Hence the last probability must vanish, which
means that c = 0 as needed.

Sufficiency. Assume that ν is diffuse and Σ-finite. Since the probability
law of a Poisson random measure is determined by its mean measure, we
may assume that N is constructed as in Theorem 2.15; the construction is
applicable since ν is Σ-finite. Thus, N has the form

N =
∞∑

1

Nn, Nn =
∑

i≤Kn

I(Xn,i, ·),

where the collection X = {Xn,i : n ≥ 1, i ≥ 1} is an independency whose
every member has a diffuse distribution (since ν is diffuse).

For a pair of distinct indices (n, i) and (m, j), the event {Xn,i = Xm,j} is
negligible in view of what was said about X . Thus, the countable union Ω0

of all such events is negligible. This shows that N is a counting mea-
sure, since the form of Nω is that of a counting measure for every ω
outside Ω0. �

Atomic structure

This is to extend the preceding theorem in a special case of some
importance. Consider the case where E = R+ × R+ and E = B(E). For
each possible outcome ω, we visualize the atoms of the counting measure Nω
as solid objects, and, if (t, z) in R+ × R+ is an atom, we create a sense of
dynamics by calling t the arrival time of that atom and z its size.
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2.18 Proposition. Let N be a Poisson random measure on R+ × R+

with mean ν = Leb × λ, where λ{0} = 0 and λ(ε,∞) < ∞ for every ε > 0.
Then, for almost every ω, the measure Nω is a counting measure whose atoms
are such that

a) no atom arrives at time 0, no atom has size 0, no two atoms arrive
simultaneously;

b) for every t <∞ and ε > 0, only finitely many atoms arrive before t
that have sizes exceeding ε;

c) the preceding statement is true for ε = 0 as well provided that the
measure λ be finite; otherwise, during every interval of non-zero length there
are infinitely many arrivals of atoms of size at most ε, however small ε > 0
may be.

Proof. a) Almost surely, N puts no mass on {0}×R+ because Leb{0} =
0, and no mass on R+ × {0} because λ{0} = 0; let Ω0 be the almost sure
set involved. Fix ε > 0 and consider the random measure M on R+ defined
by M(A) = N(A × (ε,∞)), A ∈ B(R+). Then, M is Poisson with mean
μ = λ(ε,∞)Leb, and it is a counting random measure by the last theorem.
Hence, there is an almost sure set Ωε such that, for every ω in it, if (t, z) and
(t′, z′) are atoms of Nω with z > ε and z′ > ε, then t = t′. Let Ωa be the
intersection of Ω0 and all the Ωε with ε = 1

2 ,
1
3 , . . .; it is almost sure and the

statement (a) is true for every ω in it.

b) Since ν puts the mass t · λ(ε,∞) < ∞ on the set [0, t] × (ε,∞),
there is an almost sure event Ωt,ε on which N has only finitely many atoms
in [0, t] × (ε,∞). Let Ωb be the intersection of Ωt,ε over t = 1, 2, . . . and
ε = 1

2
, 1

3
, . . .; it is almost sure, and the statement (b) is true for every ω in it.

c) If λ is finite, let Ωc be the intersection of Ωt,0 over t = 1, 2, . . . .
Otherwise, if λ is an infinite measure, then

ν((t, t+ δ) × (0, ε]) = δ λ(0, ε] = +∞
since λ(ε,∞) < ∞ by assumption; this means that there is an almost sure
event Ωt,δ,ε on which N has infinitely many atoms in (t, t + δ) × (0, ε]; let
Ωc be the intersection of all those almost sure events over t = 1, 2, . . . and
ε, δ = 1

2
, 1

3
, . . .. The statement (c) is true for every ω in Ωc.

It is now obvious that the statements (a), (b), (c) hold simultaneously for
every ω in the almost sure event Ωa ∩ Ωb ∩ Ωc. �

The preceding proposition will be used in clarifying the jump structure of
certain processes constructed from Poisson random measures; see Proposition
4.6 for instance.

Exercises and complements

2.19 Sums of Poisson variables. Let X1, X2, . . . be independent random vari-
ables having the Poisson distributions with respective means c1, c2, . . .. Show
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that, then, X =
∑∞

1 Xn has the Poisson distribution with mean c =
∑∞

1 cn.
Discuss the particular case where all the cn are finite and c = +∞.

2.20 Covariances. Let N be a Poisson random measure with mean ν on some
measurable space (E,E). Show that E N(A)N(B) = ν(A∩B)+ν(A)ν(B) for
arbitrary A and B in E; thus, when it exists, covariance of N(A) and N(B)
is ν(A ∩B). Extend these to functions f and g in E+:

E Nf Ng = ν(fg) + νf νg.

2.21 Higher moments. These can be obtained either directly or via Laplace
functionals. For instance, formally, show that

E (Nf ·Ng)2 = lim
q,r→0

∂2

∂q2
∂2

∂r2
E e−N(qf+rg).

2.22 Product random measure. Let N be Poisson on (E,E) with mean ν.
For each ω, let M(ω, ·) be the product measure N(ω, ·) × N(ω, ·) on the
product space (E × E,E ⊗ E). Show that M is a random measure whose
mean is ν × I + ν × ν, that is, for every positive h in E ⊗ E,

E Mh = E

ˆ
E×E

N(dx)N(dy)h(x, y) =

ˆ
E

ν(dx)h(x, x) +

ˆ
E×E

ν(dx)ν(dy)h(x, y)

Hint: Use 2.20 with h = 1A×B and a monotone class argument.

2.23 Arrival processes. Let N be Poisson on (R,BR) with mean ν = c Leb.
Think of N as an arrival process (see Example 2.12) with R as the time axis,
that is, the atoms of N represent the times of arrivals into a store. Let Vt
be the length of the interval from t to the first arrival time after t, and let
Ut be the amount of time passed since the last arrival before t. Define these
carefully. Show that they are random variables; compute

P{Ut > x, Vt > y}, x, y ∈ R+,

to conclude that Ut and Vt are independent exponential variables.

2.24 Continuation. Let N be as in the preceding exercise except that the
space now is R+ instead of R. Define Vt as before, but the definition of Ut
needs modification: if N(ω, [0, t]) = 0 let Ut(ω) = t. Re-do the computations
of 2.23 for this case. Show that distribution of Ut converges weakly to the
exponential distribution as t→ ∞.

2.25 Shot noise. Let N be as in Example 2.12 but on the space R+. Let
T1, T2, . . . be the successive arrival times after time 0, as before. With b > 0
fixed, redefine Xt by

Xt = X0e
−bt +

∞∑

n=1

ae−b(t−Tn)1[0,t]◦Tn.
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a) Assuming that X0 is independent of (Tn), compute the mean, vari-
ance, and Laplace transform of Xt.

b) Show that the distribution of Xt converges weakly, as t → ∞, to
the distribution of X0 in Example 2.12 with g(t) = a e−bt .

c) Suppose that X0 here has the limiting distribution found in the
preceding part. Show that, then, Xt has the same distribution as X0 for
every t in R+.

d) Show that (Xt) satisfies the differential equation

dXt = −b Xt dt+ a N(dt), t > 0,

in other words, for almost every ω,

Xt(ω) = X0(ω) − b

ˆ t

0

Xs(ω) ds+ aN(ω, [0, t]).

The differential equation shows that this process (Xt) is an Ornstein-
Uhlenbeck process driven by a Poisson process.

2.26 Configurations on R
3. This is similar to Example 2.7. Let N be Poisson

on R
3 with mean ν = c Leb. Again, N is homogeneous and is a random

counting measure. Think of its atoms as stars in R
3.

a) Let R be the distance from the origin to the nearest star. Show that
it is a random variable. Find its distribution.

b) Let X be the location of the nearest star expressed in spherical
coordinates. Find its distribution.

c) Suppose now that each star is a ball of radius a. Let V be the
visibility in the x-direction. Find its distribution.

d) Suppose that a camera located at the origin has an angle of vision
of 2α radians and is directed in the x-direction (so that the x-axis is the axis
of revolution that defines the cone of vision). Let Rα be the distance from
the origin to the nearest star within the cone of vision. Find its distribution;
note that Rπ = R in part (a).

2.27 Conditional structure. Let N be a Poisson random measure on (E,E)
with mean ν. Let D in E have ν(D) <∞. Let A, . . . , B form a finite measur-
able partition of D.

a) Show that, for integers i, . . . , j in N with i+ · · · + j = k,

P{N(A) = i, . . . , N(B) = j|N(D) = k} =
k!

i! · · · j!p
i · · · qj ,

(multinomial distribution) where p = ν(A)/ν(D), . . . , q = ν(B)/ν(D). This
is another way of saying that, as in Example 2.6, given that N(D) = k, the
locations of those k stones in D are as if the stones have been thrown into
D independently and according to the distribution μ(C) = ν(C)/ν(D), C ∈
E ∩D.
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b) For f in E+ that vanishes outside D, show that

E(e−Nf |N(D) = k) = [
ˆ
D

μ(dx)e−f(x)]k, k ∈ N.

Compute the same conditional expectation for arbitrary f in E+.

2.28 Sums. Let L and M be independent Poisson random measures on (E,E)
with means λ and μ. Then, show that L + M is a Poisson random measure
with mean λ+ μ.

2.29 Continuation. Let N1, N2, . . . be independent Poisson random measures
on (E,E) with means ν1, ν2, . . . Show that, then, N = N1+N2+ · · · is Poisson
with mean ν = ν1 + ν2 + · · ·.
2.30 Superpositions. Let F be a countable set and put F = 2F . Suppose that
{Nm : m ∈ F} is an independency of Poisson random measures on (E,E)
with mean νm for Nm. Define a random measure M on (E × F,E ⊗ F) by
letting

M(ω,A× {m}) = Nm(ω,A), A ∈ E, m ∈ F.

Show that M is a Poisson random measure and compute its mean μ. We call
M the superposition of the Nm, m ∈ F , because the atoms of M are pictured
by superposing the atoms of the Nm. Make a picture for the case E = R+,
F = {1, 2, 3}, ν1 = ν2 = ν3 = Leb.

2.31 Traces. Let N be a Poisson random measure on (E,E) with mean ν. Let
D ∈ E. Define

νD(B) = ν(B ∩D), ND(ω,B) = N(ω,B ∩D), B ∈ E, ω ∈ Ω.

Then, ND is called the trace of N on D, and νD the trace of ν on D. Show
that ND is Poisson on (E,E) with mean νD. Show that, if C and D are
disjoint sets in E, then NC and ND are independent.

2.32 Singular mean measures. Let M and N be Poisson random measures on
(E,E) with means μ and ν. Suppose that μ and ν are singular with respect to
each other (see 5.21 in Chapter I). Show that, then,M andN are independent
if M +N is a Poisson random measure.

2.33 Decomposition into fixed and moving atoms. Let (E,E) be a standard
measurable space; all we need is that {x} ∈ E for every x in E. Let N be a
Poisson random measure on (E,E) with a Σ-finite mean ν. Recall that such
ν have at most countably many atoms. Let A be the set of all those atoms
and let D = E \A. Define νA, νD, NA, ND as the traces as in 2.31. Then,

N = NA +ND

where NA and ND are independent Poisson random measures with respective
means νA and νD. Note that ND is a random counting measure; explain the
structure of NA. Each x in A is an atom of N(ω, ·) for a set of ω with strictly
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u

c(t)

h(u)t

Figure 6: Dots mark the atoms of N , circles mark the atoms of L.

positive probability; such x are called the fixed atoms of N . By contrast,
the atoms of the counting measure ND(ω, ·) vary with ω and are called the
moving atoms of N .

2.34 Arrival processes. Let N be a Poisson random measure on R+ (with its
Borel σ-algebra) with mean ν such that c(t) = ν(0, t] < ∞ for every t in
R+. It is called an arrival process if, in addition, ν is diffuse. Here is a way
of constructing such N by means of time changes. Let h : R+ �→ R+ be the
functional inverse of the increasing continuous function t �→ c(t). Recall that,
then, ν = λ◦h−1 where λ is the Lebesgue measure on R+. Now, let L be a
Poisson random measure on R+ with mean λ, and define N = L◦h−1 in the
notation of Remark 2.4b. See Figure 6 above.

2.35 Intensities. In the setup of the preceding exercise, suppose that ν is
absolutely continuous with respect to the Lebesgue measure on R+, say,

ν(B) =
ˆ
B

dt r(t), B Borel,

for some positive Borel function r(t) , t ∈ R+ . Then, N is said to have the
intensity function r, or r(t) is called the expected arrival rate at time t. Espe-
cially when r is bounded, the following technique is effective for constructing
N in Monte-Carlo studies.

Let M be a Poisson random measure on E = R+ × R+ with mean
μ = Leb. Then, for almost every ω, the measure Mω is a counting measure;
let Nω be the counting measure on R+ whose atoms are those points t such
that (t, z) is an atom of Mω and z ≤ r(t). See Figure 7 below.

a) Let MD be the trace of M on D = {(t, z) ∈ E : z ≤ r(t)}, the last
being the region under r. Note that N = MD ◦h−1 where h : E �→ R+ is
defined as the projection mapping (t, z) �→ t. Show that N is Poisson with
intensity function r.
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R+

R+

R+

r

Figure 7: Dots mark the atoms of M on the positive plane. Crosses mark the
atoms of N .

b) Show that, for Borel subsets B of R+, and outcomes ω,

N(ω,B) =
ˆ

R+×R+

M(ω; dt, dz) 1B(t) 1[0,r(t)](z).

Use this to obtain the Laplace functional of N .

2.36 Random intensities. Let R = (Rt)t∈R+ be a bounded positive left-
continuous stochastic process. Let M be as in the preceding exercise, a Pois-
son random measure on R+ × R+ with unit intensity. Define N from M as
before, but with Rt(ω) replacing r(t) in 2.35b.
Then, N is called an arrival process with the random intensity process R.
Generally, N is not Poisson. If R is independent of M , show that

E e−Nf = E exp−

ˆ
R+

dt Rt (1 − e−f(t)), f ≥ 0 Borel.

If M and R are independent, then the conditional law of N given R is that of
a Poisson random measure on R+ with intensity function R; such N are said
to be conditionally Poisson, or doubly stochastic Poisson, or Cox processes.

2.37 Conditionally Poisson random measures. Let L and N be random
measures on (E,E). Suppose that the conditional expectation of e−Nf given
the σ-algebra G generated by L has the form

EGe
−Nf = exp−

ˆ
E

L(dx)(1 − e−f(x)), f ∈ E+.

Then, N is said to be conditionally Poisson given L. Preceding exercise is a
special case where E = R+ and L(dx) = Rx dx.
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2.38 Weak convergence to Poisson laws. Take n stones. Throw each into the
interval [0, n] uniformly at random. For large n, the configuration formed on
R+ is approximately Poisson with unit intensity. Here is the precise version.

Let U1, U2, . . . be independent uniformly distributed random variables
on (0, 1). For each integer n ≥ 1, let Mn be the random measure on R+ whose
atoms are nU1, nU2, . . . , nUn.

a) Show that, for positive Borel f on R+,

E e−Mnf =
[

1
n

ˆ n

0

du e−f(u)

]n
=

[
1 − 1

n

ˆ n

0

du (1 − e−f(u))
]n
.

b) Assuming that f is continuous, positive, with compact support, note
that

lim
n→∞ E e−Mnf = E e−Mf ,

where M is some Poisson random measure on R+ with unit intensity.

2.39 Continuation. In the preceding exercise, the result is that (Mn) “con-
verges in distribution” to a Poisson random measure M with unit intensity.
We now explain the meaning of “convergence in distribution” in this context.

Let M be the collection of all measures on R. Let CK = CK(R �→ R+)
be the collection of all positive continuous functions on R with compact
support. A sequence (μn) in M is said to converge vaguely to the measure μ
if μnf → μf for every f in CK . With the topology induced by this mode of
convergence, M becomes a topological space, in fact, a Polish space.

The Borel σ-algebra B(M) is also the σ-algebra generated by the coor-
dinate functions μ �→ μ(A) from M into R̄+. Thus, we may regard a random
measure M as the random variable ω �→Mω taking values in (M,B(M)).

Given a sequence (Mn) of random measures on (R,BR), we say that
(Mn) converges in distribution to the random measure M if

E ϕ◦Mn → E ϕ◦M2.40

for every bounded continuous function ϕ from M into R. This is the natural
generalization of the concept discussed in Chapter III to the space M. In
fact, it is sufficient to check 2.40 for functions ϕ of the form ϕ(μ) = e−μf

with f in CK . We state this here without proof. The following statements
are equivalent:

a) (Mn) converges in distribution to M .
b) (Mnf) converges in distribution to Mf for every f in CK .
c) (E exp−Mnf) converges to E exp−Mf for every f in CK .

3 Transformations

Let (E,E) and (F,F) be measurable spaces. Let X = {Xi : i ∈ I} and
Y = {Yi : i ∈ I} be collections, indexed by the same countable set I, of
random variables taking values in (E,E) and (F,F) respectively.
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Suppose that X forms a Poisson random measure on (E,E), that is, the
random measure N on (E,E) defined by

Nf =
∑

i∈I
f ◦Xi, f ∈ E+,3.1

is Poisson with some mean measure ν. Suppose also that, for some measurable
transformation h : E �→ F , we have Yi = h◦Xi for each i. Then, the random
measure formed by Y on (F,F) is the image N◦h−1 of N under h and is again
Poisson; see Remark 2.4b. In this section we consider two generalizations
of this: first, we let each Yi be a random transform of the corresponding
Xi according to the heuristic that Yi falls in B with probability Q(x,B) if
Xi = x. Second, we regard each Yi as an indicator of some property associated
with the atom Xi, which leads us to the random measure M formed by
(X,Y ) = {(Xi, Yi) : i ∈ I} as a marked version of N .

We present the main ideas in terms of the setup above, which is convenient
in most applications. Afterward, in Theorem 3.19, we handle the more general
case where the atoms Xi and Yi take values in spaces larger than E and F .
Finally, in Theorem 3.26, we give a modern re-formulation of the main results
directly in terms of counting measures.

Main theorem

This is important; used with some art, it simplifies many a complex prob-
lem to mere computations.

3.2 Theorem. Let ν be a measure on (E,E), and Q a transition proba-
bility kernel from (E,E) into (F,F). Assume that (i) the collection X forms
a Poisson random measure with mean ν, and (ii), given X, the variables Yi
are conditionally independent and have the respective distributions Q(Xi, ·).
Then,

a) Y forms a Poisson random measure on (F,F) with mean νQ, and
b) (X,Y ) forms a Poisson random measure on (E × F,E ⊗ F) with

mean ν ×Q.

3.3 Remark. Recall from I.6.23 that μ = ν ×Q means that

μ(dx, dy) = ν(dx)Q(x, dy),

and νQ is the marginal of μ on F .

Proof. Let N be the random measure formed by X on (E,E), and M the
one formed by (X,Y ) on (E × F,E ⊗ F). Note that the random measure
formed by Y is the image of M under the projection mapping h(x, y) = y.
Thus, (a) is immediate from (b), and we shall prove (b) by showing that the
Laplace functional of M has the form required by Theorem 2.9. Note that,
for positive real-valued f in E ⊗ F,

e−Mf =
∏

i∈I
e−f ◦(Xi, Yi).
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In view of the assumption (ii), the conditional expectation of e−Mf given X
is equal to

∏

i

ˆ
F

Q(Xi, dy)e−f ◦(Xi, y) =
∏

i

e−g◦Xi = e−Ng,

where g is defined by

e−g(x) =
ˆ
F

Q(x, dy)e−f(x,y).

It follows that

E e−Mf = E e−Ng = exp− ν(1 − e−g)3.4

where we used Theorem 2.9 on the Laplace functional of N after noting that,
by the assumption (i), N is Poisson with mean ν. Since Q(x, F ) = 1,

ν(1 − e−g) =
ˆ
E

ν(dx)
ˆ
F

Q(x, dy)(1 − e−f(x,y)) = (ν ×Q)(1 − e−f ),

and, putting this into 3.4, we conclude from Theorem 2.9 that M is Poisson
with mean ν ×Q as claimed. �

The following is an immediate corollary where Q(x,B) is specialized to
become π(B) for some probability measure π. No proof is needed.

3.5 Corollary. Suppose that X forms a Poisson random measure on
(E,E) with mean ν, and that Y is independent of X and is an independency
of variables with distribution π on (F,F). Then, (X,Y ) forms a Poisson
random measure on (E × F,E ⊗ F) with mean ν × π.

In certain applications, it is convenient to think of Yi as some mark
(weight, velocity, etc.) associated with the atom Xi. Then, (X,Y ) is some-
times called a marked point process on E with mark space F , and we may
think of the Poisson random measure onE×F as a magnification of that onE.
The next four sub-sections provide examples on the uses of the theorem and
corollary above.

Compound Poisson processes

The arrival times Ti of customers at a store form a Poisson random
measureN on R+ with intensity c, that is, the mean measure is ν = cLeb. The
customers spend, independently of each other, random amounts of money at
the store, the mean being a, variance b2, and distribution π. We are interested
in Zt, the cumulative amount spent by all who arrived at or before t.

More precisely, we are assuming that the customer who arrives at Ti
spends an amount Yi, where Y = (Yi) is independent of T = (Ti) and the
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variables Yi are independent and have the distribution π on R+ in common
(with mean a and variance b2). It follows from the preceding corollary that
(T, Y ) forms a Poisson random measure M on R+×R+ with mean μ = ν×π.
For fixed t, the variable Zt is defined by M through

Zt =
∞∑

i=1

Yi 1(0,t]◦Ti =
ˆ

[0,t]×R+

M(ds, dy)y = Mf,3.6

where f(s, y) = y 1[0,t](s). It follows from 2.8 and Theorem 2.9 applied to M
with this f that

E Zt = μf = act, Var Zt = μ(f2) = (a2 + b2)ct3.7

E exp− rZt = E e−M(rf) = exp− ct
ˆ

R+

π(dy)(1 − e−ry).

The process Z = (Zt)t∈R+ is an example of compound Poisson processes.
The most general cases are obtained by allowing the Yi to be R

d-valued,
without restrictions on the distribution π on R

d, with the same assumptions
of independence.

Money in the bank

This is the same as the shot noise process of Example 2.12, but the
deterministic function g is replaced by a randomized one. Let T1, T2, . . . form
a Poisson random measure N on R+ with mean ν = a Leb. We think of Ti
as the arrival time of the ith person to a bank in order to open an account;
let Yi(u) be the balance at time Ti+u for that account. Then, the sum of all
balances at time t is (assuming X0 = 0)

Xt =
∞∑

i=1

Yi(t− Ti) 1[0,t]◦Ti.3.8

We suppose that the processes Y1, Y2, . . . are independent of each other and
of the collection (Ti), and let

Pu(B) = P{Yi(u) ∈ B}, u ∈ R+, B ∈ B(R+).

We are interested in the mean, variance, and Laplace transform of Xt for
fixed t. Exercise 2.25 is the special case where Yi(u) = g(u) for all i and u.

We assume that the Yi are right-continuous and bounded. Thus, each
Yi takes values in the space F of all bounded right-continuous functions
y : R+ �→ R+ with F the Borel σ-algebra corresponding to the supremum
norm. Since (Ti) forms the Poisson random measure N on R+, it follows from
Corollary 3.5 that the pairs (Ti, Yi) form a Poisson random measure M on
(R+ × F,BR+ ⊗ F) with mean μ = ν × π, where ν = a Leb and π is the
probability law of Yi. The law π is not specified, but we are given

π{y ∈ F : y(u) ∈ B} = Pu(B).
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Finally, we note that 3.8 is the same as

Xt = Mf, where f(s, y) = y(t− s) 1[0,t](s), s ∈ R+, y ∈ F.3.9

We leave the mean and variance as an exercise to compute and do the Laplace
transform ofXt for fixed t by using Theorem 2.9 onM and f here: for r in R+,

E e−rXt = E e−M(rf) = e−μ(1−e−rf )3.10

= exp− a
ˆ

[0,t]

ds

ˆ
F

π(dy) (1 − e−ry(t−s))

= exp− a
ˆ

[0,t]

ds E(1 − e−rYi(t−s))

= exp− a
ˆ

[0,t]

du

ˆ
R+

Pu(dx)(1 − e−rx).

Closed particle systems

Imagine some particles moving about in space E. At time 0, the configu-
ration of particles form a Poisson random measure N0 on (E,E) with some
mean ν0. Each particle moves in E according to a probability law Px if its
initial position is x. Other than this dependence on the initial positions, the
particle motions are independent. We are interested, for fixed time t, in the
random measure Nt formed by the positions of the particles at time t.

To make the picture more precise, we label the particles with the integers
i ≥ 1, let Xi be the initial position of the particle i, and let Yi = (Yi(t))t∈R+

be the corresponding motion with Yi(0) = Xi. Each Yi is a stochastic process
with state space (E,E); we view it as a random variable taking values in
the function space (F,F) = (E,E)R+ . We are given P x as the conditional
distribution of Yi given that Xi = x, and the Xi form a Poisson random
measure N0 on (E,E) with mean ν0, and we may assume that Q(x,B) =
P x(B) defines a transition kernel. Then, Theorem 3.2 applies, and the Yi
form a Poisson random measure M on (F,F) with mean μ = ν0Q, that is,
with

μ(B) =
ˆ
E

ν0(dx)P x(B), B ∈ F.

Most everything about this particle system can be posed in terms of M . In
particular, Nt = M◦h−1 where h(w) = w(t) for w in F and t fixed. Thus, Nt
is a Poisson random measure on (E,E) with mean νt = μ◦h−1, that is,

νt(A) =
ˆ
E

ν0(dx)
ˆ
F

P x(dw)1A(w(t)) =
ˆ
E

ν0(dx)Pt(x,A), A ∈ E,3.11

where

Pt(x,A) = P x{w ∈ F : w(t) ∈ A}3.12
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is the probability that a particle started at x is in A at time t. Indeed, this
could have been obtained more directly by noting that Nt is formed by the
atoms Yi(t), each of which has the conditional distribution Pt(x, ·) given that
Yi(0) = Xi = x.

Here is a particular case of interest. Take E = R, E = BR, ν0 = Leb, and
assume that every particle motion is Brownian (independent of all others).
Then,

Pt(x,A) =
ˆ
A

dz
1√
2πt

e−(z−x)2/2t, A ∈ E,3.13

and we observe that νt = ν0Pt = ν0 = Leb. Thus, in this case, the particle
configuration at time t is Poisson with mean νt = Leb for all times t. In this
sense, the particle system is in equilibrium, even though individual particles
never experience equilibrium.

In the theory of Markov processes on general state spaces (E,E), the
family (Pt)t∈R+ of transition kernels is called the transition semigroup, and
measures ν satisfying ν = νPt are said to be invariant. When ν is an infinite
invariant measure, the particle system above with ν0 = ν provides a dynamic
meaning for ν.

Particle systems with birth and death

Particles arrive over time according to a Poisson process on R with in-
tensity a. Each arriving particle lands somewhere in E and starts moving in
E in some random fashion until it dies. Thus, at each time, a snapshot of E
will show the locations of the particles that are alive (born but not dead) at
that time. We are interested in the evolution of this picture over time.

We label the particles with integers i in Z, let Ti be the arrival time for
i, and Yi its “motion”. Each Yi is a stochastic process (Yi(t))t∈R+ with state
space (Ē, Ē), where Ē = E ∪ {∂} and Ē is the σ-algebra on Ē generated
by E. We regard ∂ as the cemetery attached to E; it is a trap; once a particle
enters ∂ it must stay there forever. We interpret Yi(t) as the location of i
at time Ti + t, being in state ∂ means being dead. We regard Yi, i ∈ Z, as
random variables taking values in the function space (F,F) = (Ē, Ē)R+ ; they
are assumed to be independent of each other and of the Ti, and we let P their
common probability law. It follows from Corollary 3.5 that the pairs (Ti, Yi)
form a Poisson random measure M on (R × F,BR ⊗ F) with mean μ = a
Leb×P .

Consider the snapshot at time t; it shows the locations Yi(t−Ti) of those
particles i that are born but not dead, that is, Ti ≤ t and the location
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not ∂. The snapshot can be represented by the random measure Mt on (E,E)
defined by

Mt(A) =
∞∑

i=−∞
1A◦Yi(t− Ti) 1(−∞,t]◦Ti, A ∈ E.3.14

Essentially, Mt is the trace on E of M̄t = M ◦h−1, where h : R × F �→ E is
given by

h(s, w) =
{
w(t− s) if s ≤ t,
∂ if s > t.

Since M is Poisson, M̄t is Poisson on Ē by Remark 2.4b, andMt is Poisson
on E by Exercise 2.31 on traces. As to the mean measure μt of Mt, we have,
for A ∈ E,

μt(A) = a

ˆ
(−∞,t]

ds

ˆ
F

P (dw) 1A◦w(t− s)3.15

= a

ˆ
R+

du E 1A◦Y0(u) = a E

ˆ
R+

du 1A◦Y0(u)

In summary, Mt is a Poisson random measure on (E,E), and the mean num-
ber of particles in A at anytime t is equal to the arrival rate a times the
expected amount of time spent in A by one particle during its lifetime.

The computations can be made more specific by making the law P of the
Yi more precise. We illustrate this by assuming that the Yi are independent
replicas of the process X = (Xt)t∈R+ with state space E = R, E = BR,
defined by

Xt(ω) =
{
X0(ω) +Wt(ω) if t < ζ(ω),
+∞ if t ≥ ζ(ω),3.16

where X0,W, ζ are independent, X0 has the Gaussian distribution with mean
0 and variance b, and W is a Wiener process, and ζ has the exponential
distribution with parameter c. Note that X describes the motion of a particle
that starts at X0, moves as a standard Brownian motion, and dies at age ζ
and is carried to the point ∂ = +∞. In this case, 3.15 becomes, for A ∈ BR,

μt(A) = a

ˆ
R+

du P{Xu ∈ A}3.17

=
a

c

ˆ
R+

du ce−cu
ˆ

R

π(dx)Pu(x,A)

where π is the distribution of X0, and Pu(x,A) is as in 3.13. The integral over
R is the probability that X0 + Wu belongs to A. Thus, the double integral
yields the probability that X0 + Wζ is in A. And, we know by calculating
the characteristic function of Wζ that Wζ has the same distribution as Z1 −
Z2, where Z1 and Z2 are independent and exponentially distributed random
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variables with parameter
√

2c. Letting ν be the distribution of X0 +Z1 −Z2,
we see that 3.17 is the same as

μt(A) =
a

c
ν(A).3.18

In particular, we note that the total number of particles in E has the Poisson
distribution with mean μt(E) = a

c , the expected number of new arrivals
during one lifetime.

Generalization of the main theorem

The setup and assumptions of the main theorem, 3.2, include two points:
the index set I is countable, and X forms a Poisson random measure with
mean ν. Note that, being deterministic, I has to be infinite, and thus, ν must
be an infinite measure. These conditions are caused by letting the Xi take
values in E. To remedy the situation, we let them take values in a larger
space Ē as in the discussion on atoms; see 1.10 et seq. and Remark 1.14b.

Let (Ē, Ē) be a measurable space that contains (E,E), let (F̄ , F̄) similarly
contain (F,F) by setting F̄ = F ∪ {Δ} with an extra point Δ outside F . Let
I be a countably infinite index set as before, X = {Xi : i ∈ I} a collection
of random variables taking values in (Ē, Ē), and Y = {Yi : i ∈ I} in (F̄ , F̄).
Every function on E is extended onto Ē by letting it vanish on Ē \ E, and
similarly for extension from F onto F̄ and from E × F onto Ē × F̄ . Given
a transition probability kernel Q from (E,E) into (F,F), we extend it to a
kernel Q̄ from (Ē, Ē) into (F̄ , F̄) by the requirement that Q̄(x, F ) = 0 and
Q̄(x, F̄ ) = 1 for x in Ē \E. Finally, recall the meaning of “X forms a random
measure N on (E,E)”, namely, that Nf =

∑
i f ◦Xi for f in E+ extended

onto a function on Ē+ as prescribed. With this setup, the following is the
generalization of Theorem 3.2.

3.19 Theorem. Suppose that X forms a Poisson random measure on
(E,E) with mean ν. Assume that, given X, the Yi are conditionally inde-
pendent with corresponding distributions Q̄(Xi, ·). Then, Y forms a Poisson
random measure on (F,F) with mean νQ, and (X,Y ) forms a Poisson ran-
dom measure on (E × F,E ⊗ F) with mean ν ×Q.

Proof. This follows the proof of 3.2 word for word except for the substi-
tution of Q̄ for Q in some places. �

The preceding is the most general result on transformations of Poisson
random measures. Unfortunately, its formulation is in terms of the atoms
rather than being directly in terms of the random measures. The following is
aimed at this direct formulation.
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Random transformations of Poisson

Let (E,E) and (F,F) be measurable spaces. By a random transformation
from E into F we mean a mapping

ϕ : (ω, x) �→ ϕ(ω, x)3.20

that is measurable relative to H ⊗ E and F. We write ϕx for the random
variable ω �→ ϕ(ω, x) and ϕω for the transformation x �→ ϕωx = ϕ(ω, x). Of
course, ϕ can be regarded as a collection ϕ = {ϕx : x ∈ E}, and it is said to
be an independency if the collection is such in the usual sense. In that case,
the probability law of ϕ is specified by the marginal distributions

Q(x,B) = P{ϕx ∈ B}, x ∈ E, B ∈ F.3.21

The joint measurability assumed for the mapping 3.20 assures that the pre-
ceding defines a transition probability kernel Q from (E,E) into (F,F).

Given a random measure N on (E,E) and a random transformation ϕ
from (E,E) into (F,F), we define the image of N under ϕ as the random
measure N̂ on (F,F), and write N ◦ϕ−1 for N̂ , defined by

N̂ωf = (Nω◦ϕ−1
ω )f =

ˆ
E

N(ω, dx) f(ϕωx), ω ∈ Ω, f ∈ F+.3.22

Magnification M of N is defined similarly

Mωf =
ˆ
E

N(ω, dx) f(x, ϕωx), ω ∈ Ω, f ∈ (E ⊗ F)+.3.23

Assuming that N and ϕ are independent, with ν as the mean of N and Q
as in 3.21, we observe, by conditioning on ϕ first and using Fubini’s theorem
repeatedly, that

E N̂f = E

ˆ
E

ν(dx)f(ϕx) =
ˆ
E

ν(dx)
ˆ
F

Q(x, dy)f(y) = νQf, f ∈ F̂,3.24

E Mf = E

ˆ
E

ν(dx)f(x, ϕx)3.25

=
ˆ
E

ν(dx)
ˆ
F

Q(x, dy)f(x, y) = (ν ×Q)f, f ∈ E ⊗ F, f ≥ 0.

The following is the promised direct formulation.

3.26 Theorem. Let (E,E) and (F,F) be standard measurable spaces. Let
ν be a σ-finite diffuse measure on (E,E), and Q a transition probability kernel
from (E,E) into (F,F). Suppose that N is Poisson on (E,E) with mean ν,
and that ϕ is independent of N and is an independency of variables ϕx with
distributions 3.21. Then, N̂ is Poisson on (F,F) with mean νQ, and M is
Poisson on (E × F,E ⊗ F) with mean ν ×Q.
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3.27 Remarks. a) The conditions of the theorem imply some side
conclusions: N exists and is a random counting measure by Theorems 2.15
and 2.16; and there exist random variables X1, X2, . . . taking values in (Ē, Ē)
with Ē = E ∪ {∂} such that N is formed by them, this is by Exercise 1.18.
Moreover, since (F,F) is standard, Kolmogorov’s extension theorem IV.4.18
applies to show that ϕ exists as an independency indexed by E.

b) The condition that ν be diffuse is to ensure that N be a random
counting measure. Otherwise, the claims of the theorem are false. The reason
is that, if ν has an atom x, then N will have a (Poisson distributed) number
of stones at x and all those stones will be transferred to the same random
point ϕx in F . This makes N̂ not Poisson.

Proof. Let Ē = E ∪ {∂} and F̄ = F ∪ {Δ}, and let Ē and F̄ be the
σ-algebras on Ē and F̄ respectively, generated by E and F respectively. As
remarked in 3.27a, there exist random variables X1, X2, . . . taking values in
(Ē, Ē) that formN on (E,E). Define Yn by setting Yn(ω) = ϕ(ω,Xn(ω)) after
extending ϕ onto Ē by letting ϕ(ω, ∂) = Δ for all ω. The joint measurability
of (ω, x) �→ ϕ(ω, x) ensures that Y1, Y2, . . . are random variables taking values
in (F̄ , F̄). Now, (X,Y ) satisfy all the conditions of Theorem 3.19, and the
proof is immediate. �

Exercises and complements

3.28 Heuristics. This is to give an informal “proof” of Theorem 3.19 at least
for the case where ν is finite. Take a Poisson distributed number of stones
with mean c. Throw each into E as in Example 2.6; the resulting configuration
is Poisson with mean measure ν = cλ. Next, take each stone in E and throw
into F , independently of all others, so that the stone at the point x of E lands
in the subset B of F with probability Q(x,B). The resulting configuration
of stones in F must form a Poisson random measure with mean νQ, because
the net effect of all the stone throwing is that a Poisson distributed number
of stones with mean c got thrown into F according to the distribution λQ.
Replacing F by E × F we also get the marking result.
3.29 Marked point processes. Let X and Y be as in the setup leading to
Theorem 3.2. Consider the atoms Xi as the points of a point process on E,
and regard each Yi as a mark associated with the corresponding atom Xi.
Then, some authors refer to (X,Y ) as a marked point process on E with
mark space F .
3.30 Random decompositions. This is the converse to the superposition de-
scribed in Exercise 2.29. Let X = {Xi : i ∈ I} form a Poisson random
measure N on (E,E) with mean ν. Suppose that each atom Xi has a mark
Yi, the latter being m with probability pm(x) if the atom is at x, where
x ∈ E and m ∈ F = {1, 2, . . .}. Let Nm be the random measure on (E,E)
formed by the atoms of N marked m. Formulate this story in precise terms
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and supply the missing assumptions. Show that N1, N2, . . . are independent
Poisson random measures with means ν1, ν2, . . . respectively, where

νm(dx) = ν(dx)pm(x), x ∈ E, m ∈ F.

3.31 Continuation. Arrivals of male and female customers at a store form
independent Poisson random measures N1 and N2 on R+ with intensities
a and b respectively, that is, the mean of N1 is ν1 = a Leb, and of N2 is
ν2 = b Leb. What is the probability that exactly 5 males arrive during the
interval from 0 to the time of first female arrival. Answer: p5(1 − p), where
p = a/(a+ b), obviously!

3.32 Translations. Let X and Y be as in the setup preceding 3.2, but with
E = F = R

d. Suppose that the conditions of Corollary 3.5 are satisfied. Show
that, then, {Xi + Yi : i ∈ I} forms a Poisson random measure N̂ on R

d with
mean ν̂ = ν ∗ π, the last being the convolution of ν and π, that is,

ν̂f =
ˆ
E

ν(dx)
ˆ
F

π(dy)f(x+ y).

Show that, if ν = c Leb for some constant c, then ν̂ = ν. Much of the
sub-section on closed particle systems can be reduced to this case.

3.33 Particle systems with birth and death. In the setup of the corresponding
subsection, suppose that the law P of the Yi gives

πt(A) = P{w : w(t) ∈ A} = P{Y0(t) ∈ A}, A ∈ E,

for t ∈ R+. Here πt is a defective probability measure, the defect 1 − πt(E)
being the probability that the particle died before t. Let f ∈ E+, and interpret
f(x) as the rate, per unit time, at which a particle pays “rent” when its
position is x; of course, f(∂) = 0 extends f onto Ē. Then,

Wt =
∑

i

ˆ t

0

ds e−rs f(Yi(s− Ti)) 1(−∞,s]◦Ti

is the total rent paid by all the particles during [0, t], discounted at rate r.
Compute the expected value and variance of Wt and of W∞.

3.34 Compound Poisson random measures. LetX and Y satisfy the setup and
conditions of Corollary 3.5. Then, (X,Y ) forms a Poisson random measure
M on (E × F,E ⊗ F) with mean μ = ν × π. Now, take F = R+ and define

L(A) =
ˆ
A×F

M(dx, dy) y, A ∈ E.
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Xi + Yi t time

(Xi, Yi)

At

service
duration

Figure 8: The pairs (Xi, Yi) form a Poisson random measure,Qt is the number
of them in the wedge At.

This defines a random measure L on (E,E); it is said to be a compound
Poisson random measure. This is a slight generalization of the processes with
the similar name.

a) Show that L(A1), . . . , L(An) are independent whenever A1, . . . , An
are disjoint sets in E.

b) Compute the mean and the Laplace functional of L.
3.35 Infinite server queues. Consider a service facility with an infinite number
of servers, a Poisson process of customer arrivals with intensity a, and inde-
pendent service times with a common distribution π. Let Xi be the arrival
time of the customer labeled i, let Yi be the corresponding service time. It is
assumed that X and Y satisfy the conditions of Corollary 3.5 with E = R,
F = R+, ν = a Leb, and π as the service distribution here.

a) Show that the departure times Xi+Yi form a Poisson random mea-
sure on R with mean ν = a Leb.

b) LetQt be the number of customers in the system at time t; this is the
number of pairs (Xi, Yi) in the wedge At = {(x, y) ∈ R×R+ : x ≤ t < x+y}.
What is the distribution of Qt? Describe the joint distribution of Qs and Qt
for times s < t; what is the covariance. See Figure 8 above.

c) Suppose that the customer i pays an amount f(Yi) at his departure
time Xi + Yi. Consider the present worth W of all payments after time 0 if
the discount rate is r, that is,

W =
∑

i

f(Yi) e−r(Xi+Yi) 1R+(Xi + Yi).

Compute the mean, variance, and Laplace transform of W .
d) Re-do the answers assuming that the arrival process has intensity

a(x) at time x and the service distribution is π(x, ·) depending on the arrival
time x.
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3.36 Continuation. Think of the service facility as a large national park. Cus-
tomer i arrives at time Xi and stays in the park for Yi units of time and,
during the interval [Xi, Xi + Yi) the customer moves in the forest F accord-
ing to some process Zi = {Zi(u) : 0 ≤ u ≤ Yi}. Let Qt(B) be the number of
customers in the subset B of F at time t. Characterize Qt under reasonable
assumptions regarding the motions Zi.

3.37 Traffic flow. This is a reasonable account of low density traffic flows. It
applies well in situations where vehicles can pass each other freely, and, there-
fore, the speed of a vehicle remains nearly constant over time and does not
depend on the speeds or positions of other vehicles. Under these conditions,
it can be shown that the configuration of vehicles on the road approximates
a Poisson configuration.

We take the road to be R. Vehicles are labeled with the integers, Xi is
the position at time 0 of the vehicle i, and Vi is its velocity (random, but
constant over time). We suppose that X = {Xi : i ∈ Z} forms a Poisson
random measure on R with mean ν = c Leb, and that V = {Vi : i ∈ Z}
is independent of X and is an independency of variables with the same dis-
tribution π on R.

a) Describe the random measure Nt representing the configuration of
vehicles at time t, that is, Nt is formed by Xi + tVi, i ∈ Z.

b) Fix a point x on the highway. Let Mx be formed by the times Ti
at which vehicles pass by the point x. Show that it is Poisson on R with
intensity a = cb where b = E |Vi|.

c) Consider the relative motions of the vehicles with respect to a
marked (observer’s) vehicle. Suppose that the marked vehicle is at x0 at time
0 and travels with the constant deterministic velocity v0 in (0,∞). Assume
that all the Vi are positive (that is, we are considering the traffic moving
in the positive direction). Let Ma be formed by the times at which vehicles
with speeds above v0 pass the marked one, and Mb by the times at which
the marked vehicle passes the vehicles with speeds below v0. Show that Ma

and Mb are independent Poisson random measures on R+. Find their mean
measures. Safety hint: What should v0 be in order to minimize the expected
rate of passings of both kinds?

3.38 Continuation. We now put in entrances and exits on the highway. The
vehicle i enters the highway at time Ti at the point Xi, moves with speed Vi,
and exits at point Yi. It is reasonable to assume that the Ti form a Poisson
random measure with mean μ(dt), the pairs (Xi, Yi) have a joint distribution
Q(t, dx, dy) depending on time t = Ti, and that the Vi has the distribution
R(t, x, y, dv) depending on Ti = t, Xi = x, Yi = y. Make these precise. Do
the same problems as in 3.37.

3.39 Stereology. A piece of metal contains chunks of some foreign substance
distributed in it at random. A plane section of the metal is inspected and
the disks of foreign substance seen are counted and their radii are noted.
The problem is to infer, from such data, the volume occupied by the foreign



276 Poisson Random Measures Chap. 6

substance. A similar problem arises in studies of growth of cancerous tissue.
Mice are injected with carcinogens when they are a few days old, and their
livers are taken out for inspection a few weeks after. Each liver is sliced, and
sizes and locations of cancerous parts (seen on that plane) are measured. The
problem is to infer the volume of liver occupied by the cancerous tissue. This
exercise is about the essential issues.

Let X and Y be as in Corollary 3.5, but with E = R
3, F = R+,

ν = c Leb, and π a distribution on R+. We replace Y with R for our present
purposes. According to the corollary, then, (X,R) forms a Poisson random
measure M on R

3 × R+ with mean μ = c Leb×π. We think of an atom
(Xi, Ri) as a ball of radius Ri centered at Xi.

Consider the intersections of these balls with the plane {(x, y, z) ∈ R
3 :

z = 0}. A ball with center (x, y, z) and radius r intersects this plane if and
only if r > |z|, and if it does, then the intersection is a disc of center (x, y)
and radius q =

√
r2 − z2. Let L be the random measure on R

2 × R+ formed
by such “disks”. Show that L is Poisson with mean measure bc Leb×λ, where
b is the mean radius of a ball and λ is the probability measure (for the disk
radius)

λ(dq) =
1
b
Leb(dq)

ˆ ∞

q

π(dr)
q√

r2 − q2
.

Let Vt be the total volume of all the balls whose centers are within a distance
t from the origin, and let At be the total area of all the disks on the plane
z = 0 whose centers are within a distance t from the origin. Compute the
ratio (E Vt)/(E At).

3.40 Poisson fields of lines. Consider a system of random lines in R
2. We

are interested in the sizes and shapes of polygons formed by those lines. In
Exercise 3.37 on traffic flow, if we draw the paths of all the vehicles on a
time × space coordinate system, the resulting collection of lines would be an
example. Since each line corresponds to an atom (Xi, Vi) of a Poisson random
measure, it is appropriate to call the system a Poisson field of lines. In metal-
lurgy, in discussions of sizes and shapes of grains that make up the granular
structure of the metal, the grains are approximated by polygons formed by
such lines (the model is poor, but it seems to be the only tractable one).

Let g be an (infinite straight) line in R
2. By its distance from the

origin we mean the length of the perpendicular drawn from the origin to
the line. By its orientation is meant the angle that the perpendicular makes
with the x-axis. Orientation is an angle between 0 and π, distance is positive
or negative depending on whether the perpendicular is above or below the
x-axis. Note that, if g has distance d and orientation α then

(x, y) ∈ g ⇐⇒ d = x cosα+ y sinα.

Let (Di) form a Poisson random measure N on R with mean measure
ν = πc Leb where c > 0 is fixed; let (Ai) be independent of (Di), and the Ai
be independent of each other with uniform distribution on [0, π].
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a) Describe the random measure M formed by the pairs (Di, Ai) on
R × [0, π]. The lines Gi corresponding to the pairs (Di, Ai) are said to form
a Poisson field of lines with intensity c.

b) Let Xi be the intersection of the line Gi with the x-axis and Bi the
angle (between 0 and π) between Gi and the x-axis. Show that (Xi, Bi) form
a Poisson random measure on R × [0, π] with mean measure 2c dx β(db),
where β is the distribution β(db) = 1

2
(1 − cos b), 0 ≤ b ≤ π.

c) The Poisson field of lines Gi is invariant in law under translations
and rotations of the plane. Show this by considering the translation (x, y) →
(x0 + x, y0 + y) for some fixed (x0, y0) ∈ R

2, and then by considering the
rotation of the plane by an angle α0.

d) The number K of random lines intersecting a fixed convex region
C ⊂ R

2 with perimeter p has the Poisson distribution with mean cp. Show
this. Hints: Whether a line Gi intersects C is merely a function of (Di, Ai).
If Gi intersects C, it intersects C twice. So 2K is the total number of in-
tersections. Suppose C is a polygon with n sides of lengths p1, . . . , pn (then
the perimeter is p = p1 + · · · + pn). Use the results of (b) and (c) above to
compute the expected numbers of intersections with each side. The sum of
these numbers is 2E K. Finally, approximate C by polygons.

e) This requires much knowledge of geometry. The lines Gi partition
the plane into random polygons (some of these are triangles, some have four
sides, some 17, etc.). Take an arbitrary one of these (can you make this precise
so that the following are random variables?). Let S be the number of sides,
P the perimeter, A the area, D the diameter of the in-circle. Then, D has
the exponential distribution with parameter πc, and E S = 4, E P = 2/c,
E A = 1/πc2.

4 Additive Random Measures and Lévy

Processes

Our aim is to illustrate the uses of Poisson random measures to con-
struct more evolved random measures. These are related intimately to Lévy
processes to be studied in the next chapter; we give a few examples here.

Throughout, (E,E) will be a fixed measurable space. If μ is a measure on a
measurable space (F,F), we shall omit mentioning the σ-algebra and merely
say that μ is a measure on F . This convention extends to random measures
naturally. Indeed, on spaces such as R+ or R

d, we shall omit specifying the
σ-algebra; they will always be the Borel σ-algebras.

4.1 Definition. Let M be a random measure on E. It is said to be
additive if M(A), . . . ,M(B) are independent for all choices of the finitely
many disjoint sets A, . . . , B in E.

Every deterministic measure is additive. Every Poisson random measure
is additive. We shall see shortly that archetypical additive random measures
on E are constructed from Poisson random measures on E × R+.
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The probability law of an additive random measure M is specified once
the distribution of M(A) is specified for each A in E. To see this, note that
the joint distribution ofM(B) and M(C) can be computed from the marginal
distributions of M(B \ C), M(B ∩ C), M(C \B) using the independence of
the last three variables, and that this argument extends to finite-dimensional
distributions of M .

Construction of additive measures

The following seems to require no proof. It shows the construction of
a purely atomic additive random measure whose atoms are fixed; only the
weights on the atoms are random.

4.2 Lemma. Let D be a countable subset of E, and let {Wx : x ∈ D} be
an independency of positive random variables. Define

K(ω,A) =
∑

x∈D
Wx(ω) I(x,A), ω ∈ Ω, A ∈ E.

Then, K is an additive random measure.

At the other extreme, a Poisson counting measure has weight one on each
of its atoms, but the atoms themselves are generally random. The following
is the construction of additive measures of general interest.

4.3 Lemma. Let N be a Poisson random measure on E ×R+ with mean
measure ν. Define

L(ω,A) =
ˆ
A×R+

N(ω; dx, dz) z, ω ∈ Ω, A ∈ E.

Then, L is an additive random measure on E. The Laplace transform for
L(A) is, for A in E,

E e−rL(A) = exp−

ˆ
A×R+

ν(dx, dz) (1 − e−rz), r ∈ R+.

Proof. By Fubini’s theorem, L is a random measure. Note that L(A) is
determined by the trace of N on A × R+. If A, . . . , B are finitely many dis-
joint sets in E, then the traces of N over A×R+, . . . , B×R+ are independent
by Exercise 2.31, and, hence, L(A), . . . , L(B) are independent. So, L is ad-
ditive. The formula for the Laplace transform follows from Theorem 2.9 on
the Laplace functional of N after noting that rL(A) = Nf with f(x, z) =
rz1A(x). �

4.4 Theorem. Let α be a deterministic measure on E. Let K be as in
Lemma 4.2 and L as in Lemma 4.3, and suppose that K and L are indepen-
dent. Then,

M = α+K + L

is an additive random measure on E.
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Proof. It is immediate from the lemmas above and the observation that
the sum of independent additive random measures is again additive. �

Conversely, it can be shown that the preceding is, basically, the general
form of an additive random measure. More precisely, if M is an additive
random measure on a standard measurable space (E,E) and it is Σ-bounded
as a kernel, then it has the decompositionM = α+K+L with the components
as described in the preceding theorem; moreover, this decomposition is unique
provided that both α and ν(·×R+) be diffuse measures on E, that is, all the
fixed atoms (if any) belong to K.

Increasing Lévy processes

This is to establish a connection between additive random measures and
the processes to be studied in the next chapter in greater generality. We start
by introducing an important class of such processes.

4.5 Definition. Let S = (St)t∈R+ be an increasing right-continuous
stochastic process with state space R+ and S0 = 0. It is said to be an
increasing Lévy process (or subordinator) if

a) the increments St1 −St0 , St2 −St1, . . . , Stn −Stn−1 are independent
for n ≥ 2 and 0 ≤ t0 < t1 < · · · < tn, and

b) the distribution of the increment St+u − St is the same as that of
Su for every t and u in R+.

The property (a) is called the independence of increments, and (b) the
stationarity of the increments. More general Lévy processes are defined by
the properties (a) and (b), but for right-continuous left-limited processes with
state spaces R

d; see Chapter VII.
Given an additive random measureM on R+, putting St(ω) = M(ω, [0, t])

yields an increasing right-continuous process. Once we assure that St < ∞
almost surely for all t, independence of increments follows from the addi-
tivity of M . Stationarity of increments is achieved by making sure that the
mean measure is chosen appropriately and there be no fixed atoms and the
deterministic measure α be a constant multiple of the Lebesgue measure. In
other words, the following proposition is in fact a complete characterization
of increasing Lévy processes; here we state and prove the sufficiency part, the
necessity will be shown in the next chapter; see also 4.13 below.

4.6 Proposition. Let b be a constant in R+. Let N be a Poisson random
measure on R+×R+ whose mean has the form ν = Leb×λ, where the measure
λ satisfies ˆ

R+

λ(dz) (z ∧ 1) <∞.4.7
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Define

St(ω) = bt+
ˆ

[0,t]×R+

N(ω; dx, dz) z, t ∈ R+, ω ∈ Ω.

Then, S = (St)t∈R+ is an increasing Lévy process, and

E e−rSt = exp− t

[
br +

ˆ
R+

λ(dz)(1 − e−rz)

]
, r ∈ R+.4.8

Remark. Let L be defined on E = R+ as in Lemma 4.3 from the Poisson
random measure N here. Let α = b Leb on E = R+. Then, M = α+L is an
additive random measure on R+, and we have St(ω) = M(ω, [0, t]) for all t
and ω.

Proof. It is obvious that S is increasing, right-continuous, and S0 = 0.
Note that St = bt+Nf , where f(x, z) = z1[0,t](x). In view of 4.7,

ν(f ∧ 1) =
ˆ

R+×R+

ν(dx, dz)(f(x, z) ∧ 1) = t

ˆ
R+

λ(dz)(z ∧ 1)

is finite, which shows that Nf and, thus, St are almost surely finite. Now, the
increments are well-defined, and their independence follows from the Poisson
nature of N . The formula for the Laplace transform is immediate from The-
orem 2.9 with the present ν and f . Finally, a similar computation shows that
the Laplace transforms of St+u − St and Su are the same, and hence the
stationarity of increments. �

The constant b is called the drift coefficient, and the measure λ the Lévy
measure, of the process S. Obviously, together, they determine the probability
law of S. We shall give two particular examples of such λ below. For the
present, we add that every finite measure λ on R+ satisfies the condition 4.7
for the Lévy measure.

Examples

4.9 Gamma processes. Let S be as in the last proposition with b = 0 and

λ(dz) = dz · ae
−cz

z
, z > 0

for some constants a and c in (0,∞); note that 4.7 is satisfied. Thus, S is an
increasing Lévy process. Now, 4.8 becomes

E e−rSt = exp− t

ˆ ∞

0

dz a
e−cz

z
(1 − e−rz)

= exp− t a log
c+ r

c
=

(
c

c+ r

)at
;
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thus, St has the gamma distribution with shape index at and scale parameter
c. For this reason, S is said to be a gamma process with shape rate a and scale
parameter c.

4.10 Increasing stable processes. Let S be as in Proposition 4.6 again, but
with b = 0 and

λ(dz) = dz
ac

Γ(1 − a)
z−1−a, z > 0,

where a is a constant in (0, 1), and c is a constant in (0,∞), and Γ denotes the
gamma function. Again, λ satisfies the condition 4.7, and S is an increasing
Lévy process. Even though St <∞ almost surely for every t in R+,

E St = t

ˆ
R+

λ(dz)z = t · (+∞) = +∞

for every t > 0, however small t may be. This process S is said to be stable
with index a in (0, 1). Stability refers to the fact that (Sut)t∈R+ has the
same probability law as (u1/aSt)t∈R+ for every u > 0; this can be seen by
recalling that the probability law of an additive measure is specified by its
one-dimensional distributions and that

E e−rSt = e−tcr
a

, t ∈ R+, r ∈ R+,

in view of the formula 4.8 and the form of λ here.
The distribution of St does not have an explicit form in general. How-

ever, for a = 1/2, we have

P{St ∈ dz} = dz · ct√
4πz3

e−c
2t2/4z, z > 0.

The further special case where a = 1/2 and c =
√

2 plays an important role in
the theory of Brownian motion: as can be seen in Proposition V.5.20, there,
Sx becomes the time it takes for the Wiener process to go from 0 to x.

4.11 Stable random measures. These are generalizations of the preceding
example. Let L be as in Lemma 4.3, but with E = R

d for some dimension
d ≥ 1. Assume that the mean of the Poisson random measure there has the
form ν = Leb × λ, where the measure λ on R+ is as in Example 4.10 above.
The formula for the Laplace transform in 4.3 becomes

E e−rL(A) = exp−(Leb A)cra, r ∈ R+.

If Leb A = ∞, then L(A) = +∞ almost surely. If Leb A <∞, then L(A) <
∞ almost surely. But E L(A) = +∞ for every A with Leb A > 0, however
small its measure may be. This additive random measure on R

d is stable in
the following sense: Let u be a constant in (0,∞) and note that the Lebesgue
measure of uA = {ux : x ∈ A} is equal to udLeb A. Thus, the Laplace
transform of L̂(A) = u−d/aL(uA) is the same as that of L(A). This means



282 Poisson Random Measures Chap. 6

that the probability laws of the additive random measures L and L̂ are the
same. In other words, the probability law of L remains stable under the
transformation (x, z) �→ (ux, u−d/az) of R

d × R+ into itself, this being true
for every scalar u > 0.
4.12 Gamma random measures. These are counterparts, on arbitrary spaces,
of the processes of Example 4.9. Let L and N be as in Lemma 4.3 with (E,E)
arbitrary, but the mean ν of N having the form ν = μ×λ, with μ an arbitrary
measure on E, and λ the measure on R+ given in Example 4.9. Then, L is
an additive random measure on E, and

E e−rL(A) = exp− μ(A)
ˆ

R+

λ(dz)(1 − e−rz) =
(

c

c+ r

)aμ(A)

.

If μ(A) = +∞ then L(A) = ∞ almost surely. If μ(A) < ∞, then L(A) is
almost surely finite and has the gamma distribution with shape index aμ(A)
and scale c. Example 4.9 is, basically, the special case where E = R+ and
μ = Leb.

Homogeneity and stationarity

Suppose that E is R+ or R
d, and E is the corresponding Borel σ-algebra.

An additive random measure on E is said to be homogeneous if its probability
law remains invariant under shifts of the origin in E. If E is R+ or R and is
regarded as time, the term stationary is preferred instead.

Let M be an additive random measure on E. Then, its probability law
is determined by specifying the distribution of M(A) for each A is E. Thus,
homogeneity of M is equivalent to requiring that, for every A in E, the distri-
bution of M(x+A) remains the same while x ranges over E; here and below,
x + A = {x + y : y ∈ A}. This observation is the primary ingredient in the
proof of the following proposition, which is a slightly more general version of
random measures associated with increasing Lévy processes of Proposition 4.6
above. Recall that the kernel M is σ-bounded if there is a countable partition
(An) of E such that M(An) <∞ almost surely for each n.

4.13 Proposition. Suppose that E is R+ or R
d. Let M be a σ-bounded

additive random measure on E as in Theorem 4.4. Then, M is homogeneous
if and only if it has the form

M(ω,A) = b Leb A+
ˆ
A×R+

N(ω; dx, dz)z, ω ∈ Ω, A ∈ E,

for some constant b in R+ and some Poisson random measure N on E×R+

with mean ν = Leb × λ, where λ satisfies 4.7.

Proof. Sufficiency. Let M be as described. It is obviously additive. To
show that M is σ-bounded, it is enough to show that M(A) < ∞ almost
surely for everyA in E with Leb A <∞; then, the σ-finiteness of the Lebesgue
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measure does the rest. So, let A be such that c = Leb A is finite. Note that
M(A) = bc+Nf where f(x, z) = z1A(x), and that

ν(f ∧ 1) = c

ˆ
R+

λ(dz)(z ∧ 1) <∞

by condition 4.7 on λ. Thus, Nf <∞ almost surely by Proposition 2.13, and
thus M(A) < ∞ almost surely. Finally, M is homogeneous since M(A) and
M(x+A) have the same distribution: we have

E e−rM(A) = exp− (Leb A)

(
br +

ˆ
R+

λ(dz)(1 − e−rz)

)
,

and Leb (x+A) = Leb A.
Necessity. Suppose thatM = α+K+L as in Theorem 4.4 and, in addition,

is homogeneous and σ-bounded. The homogeneity has two consequences:
First,M cannot have fixed atoms. If there were a fixed atom x0 then x+x0

would be a fixed atom for every x in E, which contradicts the σ-boundedness
ofM (recall that a σ-finite measure can have at most countably many atoms).
Thus, K = 0, and α is diffuse, and the Poisson random measure N defining
L has no fixed atoms.

Second, homogeneity implies that M(A) and M(x + A) have the same
distribution for all x and A. Thus, α(A) = α(x+A) and ν(A×B) = ν((x+
A) × B) for all x,A,B appropriate. These imply that α = b Leb for some
constant b in R+ and that ν = Leb × λ for some measure λ on R+.

Finally, σ-boundedness of M implies that there is A in E with c = Leb A
belonging to (0,∞) such that M(A) < ∞ almost surely. Since M(A) =
bc+Nf with f(x, z) = z1A(x), we must have Nf <∞ almost surely, which
in turn implies via Proposition 2.13 that

ν(f ∧ 1) = c

ˆ
R+

λ(dz)(z ∧ 1)

must be finite. Hence, the condition 4.7 holds on λ. �

Alternative constructions

Consider an increasing Lévy process S constructed as in Proposition 4.6.
The condition 4.7 on λ implies that λ(ε,∞) < ∞ for every ε > 0, and it
follows from Proposition 2.18 that no two atoms of N arrive at the same
time, that is, for almost every ω, if (t, z) and (t′, z′) are distinct atoms of the
counting measure N(ω, ·), then t and t′ are distinct as well. If follows that,
for almost every ω, the path t �→ St(ω) has a jump of size z at time t if and
only if (t, z) is an atom of N(ω, ·).

Fix z > 0 and consider the times at which S has a jump of size exceeding z.
Those times form a Poisson random measure on R+ whose mean measure
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is λ(z,∞) · Leb; in other words, λ(z,∞) is the time rate of jumps of size
exceeding z. More generally, λ(B) is the rate of jumps of size belonging to B.

In the construction of Proposition 4.6, then, the burden of describing the
probabilistic jump structure is on the measure λ, which in turn specifies the
probability law of N . Next, we describe a construction where the law of N
is parameter free and the jump mechanism is more explicit: to every atom
(t, u) of N(ω, ·) there corresponds a jump of size j(u) at time t. We ignore
the drift term.

4.14 Proposition. Let N be a standard Poisson random measure on
R+ × R+ (with mean Leb × Leb). Let j : R+ �→ R+ be a Borel function
satisfying ˆ

R+

du (j(u) ∧ 1) <∞.4.15

Define

St(ω) =
ˆ

[0,t]×R+

N(ω; dx, du) j(u), ω ∈ Ω, t ∈ R+.

Then, S = (St) is an increasing Lévy process with

E e−rSt = exp− t

ˆ ∞

0

du (1 − e−rj(u)), r ∈ R+.4.16

Proof. Observe that St = Nf where f(x, u) = j(u) 1[0,t](x). The condition
4.15 ensures thatNf <∞ almost surely. That S is an increasing Lévy process
follows from the Poisson character of N and the particular mean measure.
Finally, the formula 4.16 is immediate from Theorem 2.9 on the Laplace
functionals. �

Let j be as in the preceding proposition and define

λ = Leb ◦j−1.4.17

Then, the condition 4.15 on the jump function j is equivalent to the condition
4.7 on λ, the Laplace transforms 4.16 and 4.8 are the same, and, hence, the
processes S of Propositions 4.14 and 4.6 have the same probability law. These
conclusions remain true when, in the converse direction, we start with the
measure λ and define j so that 4.17 holds. This is easy to do at least in
principle: since λ satisfies 4.7, the function z �→ λ(z,∞) is real-valued and
decreasing over (0,∞), and defining

j(u) = inf{z > 0 : λ(z,∞) ≤ u}, u ∈ R+,4.18

we see that 4.17 holds.
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4.19 Example. Stable processes. Let λ be as in Example 4.10 and recall
that a ∈ (0, 1). Then, λ(z,∞) = c/zaΓ(1− a), and 4.18 yields j(u) = ĉu−1/a

for all u > 0 with ĉ = (c/Γ(1 − a))1/a. With this j, the process S of the last
proposition has the same probability law as that of Example 4.10. Inciden-
tally, in the particular case where a = 1/2 and c =

√
2, we have

λ(dz) = dz
1√

2πz3
, j(u) =

2
πu2

. �

In Monte Carlo studies, the construction of Proposition 4.14 is preferred
over that of Proposition 4.6, because constructing a standard Poisson random
measure is easier; see Remark 2.16. More importantly, 4.14 enables us to
construct two (or any number of) processes using the same standard Poisson
random measure, but with different jump functions for different processes;
this is advantageous in making stochastic comparisons.

The practical limitations to the method of the last proposition come from
the difficulties in implementing 4.18. For instance, this is the case for the
gamma process of Example 4.9 because the tail λ(z,∞) does not have an
explicit expression in that case. Every such instance requires special numer-
ical methods. The following is an analytical solution in the case of gamma
processes.

4.20 Example. Gamma processes. Let λ(dz) = dz ae−cz/z, z > 0, the
same as in Example 4.9. The formula 4.18 for j is difficult to use because
λ(z,∞) does not have an explicit expression. However, it is possible to write

λ = μ◦j−14.21

for a pleasant measure μ and explicit j, but μ and j must be defined on
R+ × R+: for (u, v) in R+ × R+, let

μ(du, dv) = du dv ace−cv, j(u, v) = e−uv.4.22

It is easy to check that 4.21 holds. The measure μ can be thought as μ =
(a Leb)× η where η is the exponential distribution on R+ with parameter c.
Thus, constructing a Poisson random measure N on R+ × R+ × R+ with
mean Leb×μ is easy, and the following construction should be preferred over
that in Example 4.9. For motivation and comments on this construction we
refer to Exercises 4.29 and 4.30 below.

Let N be a Poisson random measure on R+ × (R+ × R+) with mean
ν = Leb × μ. Recalling j(u, v) = e−uv, define

St(ω) =
ˆ

[0,t]×R+×R+

N(ω; dx, du, dv) j(u, v), t ∈ R+, ω ∈ Ω.

Then, S = (St) is a gamma process with shape rate a and scale parameter c,
just as the process S in Example 4.9.
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To see the truth of the last assertion, it is enough to note that S is an
increasing Lévy process obviously, and then note that the Laplace transform
of St is

E e−rSt = exp−

ˆ
[0,t]

dx

ˆ
R+

du

ˆ
R+

dv ace−cv (1 − e−re
−uv) =

(
c

c+ r

)at

as needed. Another, simpler, way of seeing the result is by noting that

St =
ˆ

[0,t]×R+

N̂(dx, dz) z,

where N̂ = N ◦h−1 with h(x, u, v) = (x, e−uv) = (x, j(u, v)). Then, N̂ is
Poisson with mean ν ◦h−1 = (Leb × μ)◦h−1 = Leb × λ since μ◦j−1 = λ,
which shows that N̂ has the same law as the Poisson random measure in
Example 4.9. �

Exercises

4.23 Additive measures with fixed atoms. Let K be as in Lemma 4.2, but with
E = [0, 1] andD the set of all strictly positive rational numbers in E. Suppose
that the independent variablesWx, x ∈ D, are exponentially distributed with
means mx, x ∈ D, chosen such that

∑
x∈Dmx = 1. Then K is an additive

random measure whose atoms are fixed. Show that K is almost surely finite.
Compute the Laplace functional E e−Kf for positive Borel functions f on E.

4.24 Continuation. Choose the numbers mx for rational numbers x in (0, 1]
such that their sum is equal to 1. For rational x in (n, n + 1], define mx =
mx−n. Let Wx have the exponential distribution with mean mx for every x
in the set D of all strictly positive rationals, and assume that the Wx are
independent. Let K be defined as in Lemma 4.2 with E = R+ and this D.
Then, K is an additive random measure on R+. Show that it is σ-bounded.
Define St(ω) = K(ω, [0, t]) for ω in Ω and t in R+. Show that S = (St) is a
strictly increasing right-continuous process with state space R+. Show that
it has independent increments, that is, the condition (a) of Definition 4.5
holds, but the increments are not stationary, that is, the condition (b) does
not hold.

4.25 Continuation. Let S be as in the preceding exercise. Let f be an arbi-
trary Borel function on R+. Define Ŝt(ω) = f(t) + St(ω). Show that Ŝ has
independent increments. If f fails to be right-continuous, Ŝ will fail to be
right-continuous.

4.26 Laplace functionals. Let L be as in Lemma 4.3. Show that, for every f
in E+,

E e−Lf = exp−

ˆ
E×R+

ν(dx, dz) (1 − e−zf(x)).
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4.27 Compound Poisson processes. Show that the condition 4.7 is satisfied
by every finite measure λ on R+. Let S be defined as in Proposition 4.6 but
with b = 0 and λ finite with λ{0} = 0.

a) Show that the atoms of N can be labeled as (T1, Z1), (T2, Z2), . . .
so that 0 < T1 < T2 < · · · almost surely. Show that the Ti form a Poisson
random measure on R+ with mean equal to c Leb, where c = λ(0,∞); see
1.10 et seq.

b) Show that the paths t �→ St(ω) are increasing step functions; the
jumps occur at T1(ω), T2(ω), . . .; the size of the jump at Ti(ω) is equal to
Zi(ω); between the jumps the paths remain constant.

4.28 Compound Poisson continued. Let N be a standard Poisson random
measure on R+ × R+ (with mean Leb×Leb). Let j : R+ �→ R+ be a Borel
function with a compact support, that is, there is b in (0,∞) such that j
vanishes outside [0, b]. Define

St =
ˆ

[0,t]×R+

N(dx, du) j(u), t ∈ R+.

Show that S is a compound Poisson process.

4.29 Gamma distribution. Let (Ui) form a Poisson random measure on R+

with mean a Leb; see 1.10 et seq. for the terms. Let (Vi) be independent of
(Ui) and be an independency of exponential variables with parameter c. Show
that

X =
∑

i

e−UiVi

has the gamma distribution with shape index a and scale parameter c. Hint:
Let N be the Poisson random measure formed by the pairs (Ui, Vi), and note
that X = Nf with f(u, v) = e−uv to compute the Laplace transform of X .

4.30 Gamma processes. Let the pairs (Ti, Ui) form a Poisson random measure
on R+ × R+ with mean equal to a Leb × Leb. Let the family (Vi) be an
independency of exponential variables with parameter c. Assume that the
collections (Vi) and (Ti, Ui) are independent. Define

St =
∑

i

e−UiVi 1[0,t]◦Ti, t ∈ R+.

Show that (St) is a gamma process with shape rate a and scale parameter c.
This representation is equivalent to that of Example 4.20.

4.31 Lévy measure as an image. Let λ, μ, and j be as in Example 4.20. Show
the claim that λ = μ◦j−1. It is possible to change μ and j while keeping
intact the relationship λ = μ◦j−1. Show this for

a) μ(du, dv) = du dv e−v and j(u, v) = e−u/av/c, (u, v) ∈ R+ × R+,
b) μ(du, dv) = du dv and j(u, v) = e−u/a(− log v)/c, (u, v) ∈ R+ ×

(0, 1).
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4.32 Another construction. This is the generalization of the foregoing ideas
to arbitrary additive random measures. Let N be a Poisson random measure
on some measurable space (D,D). Let j : D �→ R+ be D-measurable, and let
h : D �→ E be measurable with respect to D and E. Define

L(ω,A) =
ˆ
D

N(ω, dx) j(x) 1A◦h(x), ω ∈ Ω, A ∈ E.

Show that L is an additive random measure on (E,E).

4.33 Dirichlet random measures. In Lemma 4.3, suppose that μ is a finite
measure on E and λ is the measure on R+ given by λ(dz) = dz(e−z/z).
Then, L is a gamma random measure on E with L(E) < ∞ almost surely;
see Example 4.12. Define

P (ω,A) =
L(ω,A)
L(ω,E)

, ω ∈ Ω, A ∈ E.

Then, P is a random probability measure on (E,E). We call it a Dirichlet
random measure with shape measure μ.

The name comes from the Dirichlet distribution, which is a generalization
of the beta distribution. For every finite measurable partition {A, . . . , B} of
E, the vector (P (A), . . . , P (B)) has the Dirichlet distribution with shape
vector (a, . . . , b) where a = μ(A), . . . , b = μ(B). This distribution has the
density function

Γ(a+ · · · + b)
Γ(a) · · ·Γ(b)

xa−1 · · · yb−1, (x, . . . , y) ∈ Δ,

where Δ is the simplex (of appropriate dimension) of positive vectors
(x, . . . , y) with x+ · · · + y = 1.

In the particular case a = · · · = b = 1, the distribution becomes the
uniform distribution on Δ.

4.34 Poisson-Dirichlet process. Let L and P be as in the preceding exercise.
Note that c = μ(E) < ∞ and that λ(z,∞) < ∞ for every z > 0. Thus the
atoms of L can be labeled as (Yn, Zn), n = 1, 2, . . . , so that Z1 > Z2 > . . . .
The sequence (Zn) is called the Poisson-Dirichlet process in the statistical
literature.

a) Show that (Zn) forms a Poisson random measure on R+ with mean
measure cλ.

b) Show that (Yn) is independent of (Zn) and is an independency of
E-valued random variables with distribution 1

cμ.
c) Show that the Dirichlet random measure P has the form, with S =∑∞

1 Zn,

P (A) =
1
S

∞∑

n=1

Zn I(Yn, A), A ∈ E.

4.35 Sampling from Dirichlet. Let P be a Dirichlet random measure on
(E,E) with shape measure μ. A collection {X1, . . . , Xn} of E-valued random
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variables is called a sample from P if, given P , the conditional law of
{X1, . . . , Xn} is that of an independency with the common distribution P ,
that is,

P {X1 ∈ A1, . . . , Xn ∈ An|P} = P (A1) . . . P (An), A1, . . . , An ∈ E.

Let {X1, . . . , Xn} be such a sample. Show that, given {X1, . . . , Xn}, the
conditional law of P is that of a Dirichlet random measure with shape measure

μn(A) = μ(A) +
n∑

i=1

I(Xi, A), A ∈ E.

Show that, assuming {X1, . . . , Xn, Xn+1} is also a sample from P ,

P{Xn+1 ∈ A|X1, . . . , Xn} =
μn(A)
μn(E)

, A ∈ E.

4.36 Random fields. By a positive random field on (E,E) we mean a collec-
tion F = {F (x) : x ∈ E} of positive random variables F (x) such that the
mapping (ω, x) �→ F (ω, x) is measurable relative to H ⊗ E and B(R+). The
probability law of F is specified by giving the finite-dimensional distributions,
that is, the distribution of (F (x1), . . . , F (xn)) with n ≥ 1 and x1, . . . , xn in E.
Equivalently, the probability law is specified by the Laplace transforms

E e−αF = E exp−

ˆ
E

α(dx)F (x)

as α varies over all finite measures on (E,E).
An expedient method of defining a positive random field is as follows:

Let N be a Poisson random measure on some measurable space (D,D), and
let k : D × E �→ R+ be D ⊗ E-measurable. Define

F (ω, y) =
ˆ
D

N(ω, dx) k(x, y), ω ∈ Ω, y ∈ E.

Show that F is a positive random field on (E,E). Show that, for every finite
measure α on E, with ν the mean of N ,

E e−αF = exp−

ˆ
D

ν(dx)
[
1 − exp−

ˆ
E

α(dy) k(x, y)
]
.

4.37 Continuation. Suppose that E = R
d, D = R

d × R+, ν = Leb × λ for
some measure λ on R+, and take

k(x, r, y) = r 1B(y − x), (x, r) ∈ D, y ∈ E,

where B is the unit ball in R
d centered at the origin. Give a condition on λ to

make F real-valued. For d = 1 and λ(dz) = dz e−z/z, compute the marginal
distribution of F (y).
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4.38 Random vector fields. By a velocity field on R
d is meant a mapping

u : R
d �→ R

d, where one interprets u(x) as the velocity of the particle at
x. We now describe a random version, which is useful modeling the medium
scale eddy motions in R

2.
Let v be a smooth velocity field on the unit disk D = {x ∈ R

2 : |x|
≤ 1}. Let N be a Poisson random measure on E = R

2 × R × R+ with mean
ν = Leb×α×β where α is a probability measure on R, and β on R+. Define

u(ω, x) =
ˆ
E

N(ω; dz, da, db) a v(
x− z

b
), ω ∈ Ω, x ∈ R

2.

This defines a two-dimensional random velocity field u on R
2.

Think of v as the velocity field corresponding to an eddy motion over
the unit disk D. Then, x �→ v(x−zb ) corresponds to a similar eddy motion
over a disk of radius b centered at z. Thus, u(ω, ·) is the superposition of
velocity fields x �→ av(x−z

b
), each one corresponding to an atom (z, a, b) of

the counting measure N(ω, ·).
Show that μ is homogeneous, that is, its probability law is invariant

under shifts of the origin. If v is isotropic, show that the probability law of u
is invariant under rotations as well.

5 Poisson Processes

This section is devoted to a closer examination of simple Poisson processes
and, by extension, of Poisson random measures on R+. The presence of time
and the order properties of the real-line allow for a deeper understanding
of such processes. This, in turn, illustrates the unique position occupied by
things Poisson in the theories of martingales, point processes, and Markov
processes.

Counting processes

We introduce the setup to be kept throughout this section. In keeping
with traditional notation, we let N = (Nt)t∈R+ be a counting process: for
almost every ω, the path t �→ Nt(ω) is an increasing right-continuous step
function withN0(ω) = 0 and whose every jump is of size one. Such a process is
defined by its jump times: there is an increasing sequence of random variables
Tk taking values in R̄+ such that

Nt(ω) =
∞∑

k=1

1[0,t]◦Tk(ω), t ∈ R+, ω ∈ Ω.5.1

It is usual to call (Tk) the point process associated with N . Since N0 = 0 and
each jump of N is of size one,

0 < T1(ω) < T2(ω) < · · · < Tk(ω) if Tk(ω) <∞,5.2
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this being true for almost every ω. Of course, if Tk(ω) = ∞ then Tn(ω) = ∞
for all n > k. The sequence (Tk) forms a random counting measure M on
R+; for positive Borel functions f on R+, extending f onto R̄+ by setting
f(∞) = 0,

Mf =
∞∑

k=1

f ◦Tk.5.3

Obviously, Nt(ω) = M(ω, [0, t]). Finally, we let F be the filtration generated
by N , that is,

Ft = σ{Ns : s ≤ t} = σ{M(A) : A ∈ B[0,t]}.5.4

Poisson processes

We recall Definition V.2.20 in the present context: The counting process
N is called a Poisson process with rate c if, for every s and t in R+, the
increment Ns+t −Ns is independent of Fs and has the Poisson distribution
with mean ct. Equivalently, N is Poisson with rate c if and only if it has
stationary and independent increments (see Definition 4.5a,b) and each Nt
has the Poisson distribution with mean ct.

The following theorem characterizes Poisson processes in terms of random
measures, Markov processes, martingales, and point processes. Much of the
proof is easy and is of a review nature. The exceptions are the proofs that
(c)⇒(d)⇒(a).

5.5 Theorem. For fixed c in (0,∞), the following are equivalent:

a) M is a Poisson random measure with mean μ = c Leb.
b) N is a Poisson counting process with rate c.
c) N is a counting process and Ñ = (Nt− ct)t∈R+ is an F-martingale.
d) (Tk) is an increasing sequence of F-stopping times, and the differ-

ences T1, T2 − T1, T3 − T2, . . . are independent and exponentially distributed
with parameter c.

Remark. The limitation on c is natural: Since N is a counting process,
Nt is finite almost surely and can have the Poisson distribution with mean
ct only if c is finite. The other possibility, c = 0, is without interest, because
it implies that N = 0 almost surely.

Proof. We shall show that (a)⇒(b) ⇐⇒ (c)⇒(d)⇒(a).

i) Assume (a). Since the Lebesgue measure is diffuse, M is a random
counting measure by Theorem 2.14, and μ[0, t] = ct < ∞. Thus, N is a
counting process. The independence of Ns+t−Ns from Fs and the associated
distribution being Poisson with mean ct follow from the definition of Poisson
random measures. So, (a)⇒(b).

ii) The equivalence (b) ⇐⇒ (c) was shown in Chapter V on martin-
gales; see Theorem V.2.23 and Proposition V.6.13.



292 Poisson Random Measures Chap. 6

iii) Assume (c) and, therefore, (b). It follows from 5.1 that, for each
integer k ≥ 1, we have {Tk ≤ t} = {Nt ≥ k} ∈ Ft for every t. Thus, each
Tk is a stopping time of F. Moreover, since N is a counting process and
limt→∞Nt = M(R+) = +∞ almost surely, for almost every ω, we have 5.2,
and Tk(ω) <∞ for all k, and limk Tk(ω) = ∞.

On the other hand, Corollary V.6.7 applies to the martingale Ñ : we
have, with ES = E(·|FS) as usual,

ES

ˆ
(S,T ]

Ft dNt = ES

ˆ
(S,T ]

Ft c dt5.6

for bounded predictable processes F and stopping times S and T with S ≤ T .
Put T0 = 0 for convenience, take S = Tk and T = Tk+1 for fixed k in N, and
let Ft = re−rt with r > 0 fixed. On the left side of 5.6, the integral becomes
equal to re−rT since N remains constant over the interval (S, T ) and jumps
by the amount one at T . So, 5.6 becomes

r ESe
−rT = c ES(e−rS − e−rT ).

Multiplying both sides by erS , which can be passed inside the conditional
expectations since S is in FS , and re-arranging, we obtain

ESe
−r(T−S) =

c

c+ r
, r > 0.

This means that T − S = Tk+1 − Tk is independent of FS = FTk
and has the

exponential distribution with parameter c. Thus (c)⇒(d).

iv) Assume (d). Let M̂ be a Poisson random measure on R+ with mean
μ̂ = μ = c Leb, constructed over some auxiliary probability space (Ω̂, Ĥ, P̂);
see Theorem 2.13 for its existence. Using the already proved implications
(a)⇒(b)⇒(c)⇒(d) on the Poisson random measure M̂ , we conclude that, for
positive Borel f ,

M̂f =
∞∑

1

f ◦T̂k,5.7

where T̂1, T̂2 − T̂1, T̂3 − T̂2, . . . are independent and have the exponential dis-
tribution with parameter c. Observe: 5.3 and 5.7 hold, and (Tk) and (T̂k) have
the same probability law. It follows that the random variables Mf and M̂f
have the same distribution. Hence, writing Ê for expectation on (Ω̂, Ĥ, P̂),

E e−Mf = Ê e−M̂f = e−μ(1−e−f ),

where the last equality follows from Theorem 2.9 on Laplace functionals
applied to the Poisson random measure M̂ with mean μ̂ = μ. This shows, via
Theorem 2.9, that M is Poisson with mean μ. Thus, (d)⇒(a). �
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5.8 Remark. The unorthodox proof that (d)⇒(a) is an application of
the following principle. Let X and Y be random variables taking values on
some spaces, and suppose that they define each other, that is, Y = h◦X
for some isomorphism h and X = g◦Y with g being the functional inverse
of h. Let λ be the distribution of X and let μ = λ◦h−1. The principle,
rather trivial, is that Y has the distribution μ if and only if X has the
distribution λ. The proof of (d)⇒(a) uses this principle with X = M , Y =
(Tk), and λ the probability law of M . Unfortunately, a direct application
of the principle requires showing that h is a bimeasurable bijection, which
is technically difficult: in this application, h is a mapping from the space
of all counting measures on R+ onto the space of all increasing sequences
on R+. The auxiliary process M̂ was introduced to circumvent the technical
difficulties.

Characterization as a Lévy process

The next theorem’s characterization is often used as a definition: A
Poisson process is a counting process with stationary and independent incre-
ments. We refer to Definition 4.5 for increasing Lévy processes and the allied
terminology.

5.9 Theorem. The counting process N is a Lévy process if and only if
it is a Poisson process.

Proof. Sufficiency part is trivial. As to the necessity part, assuming thatN
is a counting Lévy process, the only thing to show is that Nt has the Poisson
distribution with mean ct for some constant c in R+ and for all times t.

a) We start by showing that, for some fixed c in R+,

q(t) = P{Nt = 0} = e−ct, t ∈ R+.5.10

For s and t in R+, because N is Lévy, the increments Ns and Ns+t −Ns are
independent and the latter has the same distribution as Nt. Thus,

P{Ns+t = 0} = P{Ns = 0, Ns+t −Ns = 0} = P{Ns = 0}P{Nt = 0},

that is,

q(s+ t) = q(s)q(t), s, t ∈ R+.5.11

Moreover, q(0) = 1, and q(t) = E 1{0}◦Nt is right-continuous by the almost
sure right-continuity of t �→ 1{0}◦Nt and the bounded convergence theorem
for expectations. The only solution of 5.11 with these properties is as claimed
in 5.10 with c in R+. If c = 0, then Nt = 0 almost surely for all t, which makes
N a trivial Poisson process, and the proof is complete. For the remainder of
the proof we assume that 0 < c <∞.
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b) It is convenient to recall M , the random counting measure associ-
ated with N = (Nt). Fix t > 0. Let A1, . . . , An be equi-length intervals of the
form (·, ·] that constitute a partition of A = (0, t]. Let Xi be the indicator of
the event {M(Ai) ≥ 1} and put Sn = X1 + · · · + Xn. Since N is Lévy, the
increments M(A1), . . . ,M(An) are independent and have the same distribu-
tion as M(A1) = Nt/n. Thus, X1, . . . , Xn are independent Bernoulli variables
with the same success probability p = 1 − q(t/n) = 1 − e−ct/n. Hence, for
each k in N,

P{Sn = k} =
n!

k!(n− k)!
(1 − e−ct/n)k(e−ct/n)n−k

=
e−ct

k!
n(n− 1) · · · (n− k + 1)(ect/n − 1)k.

c) For almost every ω, the counting measure Mω has only finitely
many atoms in A; let δ(ω) be the minimum distance between the atoms;
if n > t/δ(ω) then we have Sn(ω) = M(ω,A) = Nt(ω). In other words,
Sn → Nt almost surely as n→ ∞. Hence,

P{Nt = k} = lim
n→∞ P{Sn = k} =

e−ct(ct)k

k!
, k ∈ N.

This completes the proof that N is a Poisson process. �

The preceding proof is the most elementary of all possible ones. In the
next chapter we shall give another proof. Assuming thatN is a counting Lévy,
we shall show that E Nt = ct necessarily for some finite constant c; this uses
the strong Markov property (to be shown). Then, (Nt − ct) is a martingale,
and N is Poisson by Theorem 5.5 or, more correctly, by Proposition V.6.13.

A minimalist characterization

A careful examination of the preceding proof would show that the Lévy
property of N is used only to conclude that the Bernoulli variables Xi are
independent and have the same success probability. This observation leads to
the following characterization theorem; compare the minimal nature of the
condition here with the extensive conditions of Definition 2.3. See 5.16 below
for a generalization.

5.12 Theorem. Let M be a random counting measure on R+. Let μ =
c Leb on R+ for some constant c in R+. Then M is Poisson with mean μ if
and only if

P{M(A) = 0} = e−μ(A)5.13

for every bounded set A that is a finite union of disjoint intervals.
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Proof. The necessity of the condition follows trivially from Definition 2.3.
To prove the sufficiency, assume that 5.13 holds for every A as described, and
let A be the collection of all such A.

Fix a finite number of disjoint intervals A, . . . , B; let a, . . . , b be the cor-
responding lengths; and let i, . . . , j be positive integers. We shall show that

P{M(A) = i, . . . ,M(B) = j} =
e−ca(ca)i

i!
· · · e

−cb(cb)j

j!
.5.14

This will prove that N is a Poisson process with rate c and, hence, that M
is Poisson with mean μ as claimed.

a) Let A1, . . . , An form a partition ofA into n equi-length sub-intervals,
. . . , and B1, . . . , Bn form a partition of B similarly. Let

D = {A1, . . . , An; . . . ;B1, . . . , Bn}.

For each D in D, let XD be the indicator of {N(D) ≥ 1}, and define

Sn(A) =
n∑

1

XAm , . . . , Sn(B) =
n∑

1

XBm .5.15

Arguments of the proof of Theorem 5.9, part (c), show that

M(A) = lim
n
Sn(A), . . . ,M(B) = lim

n
Sn(B)

almost surely. Thus, to prove 5.14, it is enough to show that Sn(A), . . . , Sn(B)
are independent and have the binomial distributions for n trials with respec-
tive success probabilities 1 − e−ca/n, . . . , 1 − e−cb/n.

b) Consider the collection {XD : D ∈ D} of Bernoulli variables. Let C

be a subset of D, and let C be the union of the elements of C. Observe that
1−XD is the indicator of {M(D) = 0}, and the product

∏
(1−XD) over D

in C is the indicator of {M(C) = 0}. Since C ∈ A and D ⊂ A, the condition
5.13 holds for the sets D and C; thus,

E

∏

D∈C

(1 −XD) = e−μ(C) =
∏

D∈C

e−μ(D) =
∏

D∈C

E (1 −XD).

This implies, via II.5.33, that the collection {1 − XD : D ∈ D} is an
independency. Hence, {XD : D ∈ D} is an independency, and the success
probabilities are

P{XD = 1} = 1 − e−μ(D),

where μ(D) is equal to ca/n for the first n elements of D, and . . . , and to cb/n
for the last n elements. Thus, Sn(A), . . . , Sn(B) are independent and have
the binomial distribution claimed in part (a). This completes the proof. �
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The preceding can be generalized to abstract spaces. The basic idea is
the following: Let (E,E) be a standard measurable space and let μ be a
diffuse Σ-finite measure on it. Put b = μ(E) ≤ +∞. As was explained in
Exercise I.5.16, it is possible to find measurable bijections g : E �→ [0, b) and
h : [0, b) �→ E such that μ̂ = μ◦g−1 is the Lebesgue measure on [0, b), and
μ = μ̂◦h−1 in return.

5.16 Theorem. Let μ be a diffuse Σ-finite measure on a standard mea-
surable space (E,E). Let M be a random counting measure on E. Suppose
that

P{M(A) = 0} = e−μ(A), A ∈ E.5.17

Then, M is a Poisson random measure with mean μ.

Proof. Let g and h be as described preceding the theorem. Since g is
a bijection, M̂ = M ◦ g−1 is still a random counting measure, and, with
μ̂ = μ◦g−1 = Lebesgue on [0, b), we have

P{M̂(B) = 0} = P{M(g−1B) = 0} = e−μ(g−1B) = e−μ̂(B)

for every Borel subset of [0, b). Since μ̂ is the Lebesgue measure on [0, b),
Theorem 5.12 applies to conclude that M̂ is Poisson on [0, b) with mean μ̂.
It follows that M = M̂ ◦h−1 is Poisson on E with mean μ̂◦h−1 = μ. �

Strong Markov property

As was remarked in V.6.16, if N is a Poisson process with rate c, then
the independence of increments can be extended to increments over random
intervals (S, S + t]: For every finite stopping time S of the filtration F, the
increment NS+t −NS is independent of FS and has the Poisson distribution
with mean ct. We may remove the finiteness condition on S and express the
same statement as

ESf(NS+t −NS) 1{S<∞} =
∞∑

k=0

e−ct(ct)k

k!
f(k)1{S<∞}.5.18

In fact, we could have used this result to shorten the proof of (c)⇒(d) in
Theorem 5.5: take f = 1{0} and S = Tk to conclude that the event {NTk+t−
NTk

= 0} = {Tk+1 − Tk > t} is independent of FTk
and has probability e−ct.

The property 5.18 is called the strong Markov property for the Poisson
process N . It expresses the independence of future from the past when the
present is a stopping time.

5.19 Example. Let S be the first time an interval of length a passes
without a jump, that is,

S = inf{t ≥ a : Nt = Nt−a}.



Sec. 5 Poisson Processes 297

Clearly, S = Tk+a if and only if the first k interjump intervals are at most a
in length and the (k+ 1)th interval is greater than a in length. Thus, S <∞
almost surely. Let T be the time of first jump after S. Note that the interval
that includes S has length a+(T−S), and for a large, the raw intuition expects
T −S to be small. Instead, noting that {T − S > t} = {NS+t −NS = 0}, we
see that T−S is independent of FS and has the same exponential distribution
as if S is a jump time.

Total unpredictability of jumps

Let T = T1 be the time of first jump for the Poisson process N with
rate c. Is it possible to predict T ? Is there a sequence of stopping times Sn
increasing to T and having Sn < T almost surely? The following shows that
the answer is no.

5.20 Proposition. Let S be a stopping time of F. Suppose that 0 ≤ S <
T almost surely. Then, S = 0 almost surely.

Proof. Since S < T , the event {T − S > t} is the same as the event
{NS+t − NS = 0}, and the latter is independent of FS and has probability
e−ct by the strong Markov property 5.18. Thus, in particular,

ES(T − S) = 1/c.

Taking expectations, and recalling that E T = 1/c, we conclude that E S = 0.
Thus, S = 0 almost surely. �

A similar proof will show that if Tk ≤ S < Tk+1 almost surely then S = Tk
almost surely, this is for each k. Thus, it seems impossible to predict the jump
time Tk for fixed k. We list the following stronger result without proof. See
V.7.30 and V.7.31 for the terms. Recall the definition 5.4 of F.

5.21 Theorem. Let S be a stopping time of F. Then, S is predictable if
and only if NS− = NS almost surely on {S > 0}; and S is totally unpre-
dictable if and only if NS− = NS almost surely.

Exercises

5.22 Crossing times. Let S be as in Example 5.19. Find its expected value.

5.23 Logarithmic Poisson random measures. Let U1, U2, . . . be independent
and uniformly distributed over E = (0, 1). Let Xn = U1U2 · · ·Un, n ≥ 1, and
define M to be the random counting measure on E whose atoms are those
Xn. Show that M is a Poisson random measure on E.

5.24 Continuation. Let M be a Poisson random measure on E = (0,∞) with
mean μ given by

μ(dx) = dx
1
x
, x ∈ E.
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Note that M(A) <∞ almost surely for every closed interval A = [a, b] in E,
but that M(A) = +∞ almost surely for A = (0, a) and for A = (b,∞). Label
the atoms Xi such that · · · < X−1 < X0 < 1 ≤ X1 < X2 < · · ·. Describe the
probability law of (Xi).

5.25 Atom counts. Let L be a purely atomic additive random measure on R+.
Suppose that

P{L(A) = 0} = e−Leb A, A ∈ BR+ .

Describe the atomic structure of L.

5.26 Importance of additivity. Let (Tk) be the increasing sequence of jump
times for a Poisson process (Nt) with unit rate. Let w1, w2, . . . be arbitrarily
chosen from (0,∞). Define

L(A) =
∞∑

i=1

wi I(Ti, A), A ∈ BR+ .

Show that P{L(A) = 0} = e−Leb A. Is the random measure L additive?

5.27 Another warning. Let (Nt)t∈R+ be a counting process. Suppose that Nt
has the Poisson distribution with mean t for every t in R+. Give an example
where N is not a Poisson process.

5.28 Importance of diffusivity. In Theorem 5.16, the diffusivity of μ is essen-
tial. On R, define μ = cδ0 and M = Kδ0, where c > 0 is a constant, and K
is equal to 0 or 2 with respective probabilities e−c and 1− e−c. Show that M
is not Poisson.

6 Poisson Integrals and Self-exciting

Processes

Our aim is the to introduce some martingale-theoretic tools in dealing
with random measures. Some such tools were introduced in Chapter V on
martingales and were used in the martingale characterization for Poisson
processes. Here, we introduce similar ideas for applications to stochastic
processes with jumps, because the jumps are often regulated by Poisson ran-
dom measures. As an example, we introduce counting processes with random
intensities and a particular self-exciting two point process. Further applica-
tions will appear in the chapters on Lévy and Markov processes.

Throughout, (E,E) will be a measurable space, and F = (Ft)t∈R+ an
augmented filtration on the probability space (Ω,H,P).

Poisson on time and space

This is about Poisson random measures on spaces of the form R+ × E,
where R+ is interpreted as time and E as some physical space, and the
filtration F represents the flow of information over time. As usual R+ ×E is
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furnished with the product σ-algebra BR+ ⊗E, and we shall omit the mention
of the σ-algebra in phrases like “random measure on R+ × E.”

6.1 Definition. Let M be a Poisson random measure on R+ × E. It is
said to be so relative to the filtration F if, for every t in R+,

a) M(A) is in Ft for every A in B[0,t] ⊗ E, and
b) the trace of M over (t,∞) × E is independent of Ft.

The condition (a) is called adaptedness, and (b) the independence of the
future of M from the past. It is obvious that, if M is Poisson relative to F,
then it is Poisson relative to the filtration G generated by itself (that is, Gt is
the σ-algebra generated by M(A), A ∈ B[0,t] ⊗ E).

Given a Poisson random measure M on R+ ×E, it is convenient to think
of its atoms as solid objects. For a fixed outcome ω, if (t, z) is an atom of the
measure Mω, then we think of t as the arrival time of that atom and of z as
the landing point in space; see also Proposition 2.18 where E = R+ and is
interpreted as “size” space.

Poisson integrals of predictable processes

This is to extend Theorem V.6.5 to the current case of processes on
R+ × E. Recall Definition 6.1 and Proposition 6.2 from Chapter V: The
F-predictable σ-algebra is the σ-algebra Fp on Ω × R+ generated by the
collection of sets having the form H × A, where A is an interval (a, b] and
H is an event in Fa, or A is the singleton {0} and H is in F0. A process
F = (Ft)t∈R+ is said to be F-predictable, or is said to be in Fp, if the map-
ping (ω, t) �→ Ft(ω) from Ω × R+ into R is Fp-measurable. In particular, if
F is adapted to F and is left-continuous, then it is F-predictable. The next
theorem is important.

6.2 Theorem. Let M be a Poisson random measure on R+ × E with
mean measure μ satisfying μ({0}×E) = 0. Let G = {G(t, z) : t ∈ R+, z ∈ E}
be a positive process in Fp ⊗ E. Suppose that M is Poisson relative to F.
Then,

E

ˆ
R+×E

M(dt, dz) G(t, z) = E

ˆ
R+×E

μ(dt, dz) G(t, z).6.3

Proof. The hypothesis on G is that the mapping (ω, t, z) �→ G(ω, t, z)
from Ω×R+ ×E into R̄+ is (Fp ⊗ E)-measurable. Consider the collection of
all such G for which 6.3 holds. That collection includes constants, is a linear
space, and is closed under increasing limits, the last being by the monotone
convergence theorem applied to 6.3 with Gn ↗ G on both sides. Thus, by
the monotone class theorem, the proof is reduced to showing 6.3 for G that
are indicators of sets H × A × B, where B ∈ E and A = (a, b] and H ∈ Fa,
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and also when B ∈ E and A = {0} and H ∈ F0. In the former case, the left
side of 6.3 is equal to

E 1H M(A×B) = E Ea 1H M(A×B)
= E 1H Ea M(A×B)
= E 1H E M(A×B) = E 1H μ(A×B),

and the last member is exactly the right side of 6.3; here we used the notation
Ea for E(·|Fa) as in earlier chapters and noted that E = E Ea, and H ∈ Fa,
and A×B ⊂ (a,∞]×E, and the trace of M over (a,∞)×E is independent
of Fa. The case where A = {0} is trivial: then, μ(A× E) = 0 by hypothesis,
which implies that M(A × E) = 0 almost surely, which together imply that
the integrals vanish on both sides of 6.3. �

6.4 Remarks. a) In most applications the mean μ will have the form
μ = Leb× λ for some measure λ on E. Then, μ({0} ×E) = 0 automatically.

b) Let S and T be stopping times of F with S ≤ T , and let V be a
positive random variable in FS . Then, putting Ft = V 1(S,T ](t) for t in R+,
we obtain a positive predictable (in fact, left-continuous) process F . Letting
M and G be as in the preceding theorem, we note that G̃(t, z) = FtG(t, z)
defines a process G̃ that is again positive and in Fp ⊗ E. Thus, replacing G
by G̃ in 6.3, we see that

ES

ˆ
((S,T ]]×E

M(dt, dz) G(t, z) = ES

ˆ
((S,T ]]×E

μ(dt, dz) G(t, z),

where ((S, T ]] should be interpreted as (S, T ] ∩ R+ in order to accommodate
possibly infinite values for S and T .

c) Let M and G be as in the theorem. Suppose that

E

ˆ
[0,t]×E

μ(ds, dz) G(s, z) <∞, t ∈ R+.

Then,

Xt =
ˆ

[0,t]×E
M(ds, dz) G(s, z) −

ˆ
[0,t]×E

μ(ds, dz) G(s, z)

is integrable for each t, and is in Ft for each t. The preceding remark applied
with deterministic s and t show that X = (Xt)t∈R+ is a martingale with
X0 = 0.

6.5 Remark. In fact, Theorem 6.2 has a partial converse that can be
used to characterize Poisson random measures: Let M be a random counting
measure on R+ × E whose mean μ is equal to Leb × λ, where λ is a σ-finite
measure on E. Suppose that M is adapted to F, that is, 6.1a holds, and that
6.3 holds for every positive G in Fp ⊗ E. Finally, suppose that no two atoms
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arrive simultaneously, that is, for almost every ω, we have M(ω, {t}×E) ≤ 1
for all t. Then, it can be shown that M is a Poisson random measure relative
to F. Here is an outline of the proof.

For B in E, put Nt = M([0, t] × B), and assume that λ(B) < ∞. Then,
E Nt = λ(B)t, and by the assumption that no two atoms ofM arrive simulta-
neously, (Nt) is a counting process. In the formula 6.3 being assumed, taking
G(t, z) = Ft 1B(z) for some positive predictable process F , we see that

E

ˆ
R+

Ft dNt = λ(B) E

ˆ
R+

Ft dt.

Now, it follows from Proposition V.6.13 (see also V.6.3 - V.6.12) that (Nt) is
a Poisson process with rate λ(B). Further, it can be shown that the Poisson
processes corresponding to disjoint sets B1, . . . , Bn are independent, because
no two such processes can jump at the same time; this will be proved in the
next chapter. It follows that M is a Poisson random measure on R+ × E.

Self-exciting processes

For a Poisson arrival process with constant rate c, the expected number of
arrivals during an interval of length t is equal to ct, and, hence, c is the arrival
intensity in this sense. In Exercise 2.36, the rate c was replaced by a random
rate Rt varying with time, but the randomness of R stemmed from a source
exogeneous to the arrival process N . Here, we extend the concept to cases
where the rate Rt at time t is allowed to depend on the history of arrivals
during (0, t). Recall that F = (Ft) is an arbitrary filtration over time. We use
the shorthand notation Et for the conditional expectation EFt = E(·|Ft).
6.6 Definition. Let N = (Nt)t∈R+ be a counting process adapted to F =
(Ft)t∈R+ . Let R = (Rt)t∈R+ be a positive F-predictable process. Then, R is
called the intensity process for N relative to F if

E

ˆ
R+

Ft dNt = E

ˆ
R+

Ft Rt dt6.7

for every positive F-predictable process F .

The processes F satisfying 6.7 form a positive monotone class. Noting
that N0 = 0 almost surely, we conclude that 6.7 holds for every positive
predictable F if and only if it holds for those F that are the indicators of sets
of the form H × (t, u] with 0 ≤ t < u and H in Ft. Hence, the condition 6.7
is equivalent to the following:

Et (Nu −Nt) = Et

ˆ
(t,u]

ds Rs, 0 ≤ t < u.6.8

Heuristically, putting u = t + �t for small �t, we may say that Rt�t is
the conditional expectation of Nt+	t − Nt given Ft; and, hence, the term
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intensity at t for the random variable Rt. Also, especially when Rt depends
on the past {Ns : s < t}, the process N is said to be self-exciting.

Another interpretation for 6.7 is to re-read 6.8 when E Nt <∞ for every t:
Then,

Ñt = Nt −
ˆ

(0,t]

ds Rs, t ∈ R+,6.9

is a martingale, and for every bounded predictable process F ,

Lt =
ˆ

(0,t]

Fs dÑs, t ∈ R+,6.10

is again a martingale, both with respect to F obviously.
Given that the counting process N admits R as its intensity process, the

condition 6.8 and Theorem V.6.18 show that N is a Poisson process relative
to F if and only if R is deterministic, that is, Rt = r(t) for some positive
Borel function r on R+ with finite integral over bounded intervals. For the
process N constructed in Exercise 2.36, where N is conditionally Poisson, Rt
is random but is not affected by N , that is, R is exogeneous to N (of course,
N depends on R). The following suggests a construction for N in all cases.
Recall that I(z,B) is one if z ∈ B and is zero otherwise.

6.11 Theorem. Let M be a Poisson random measure on R+ × R+ with
mean μ = Leb×Leb, and suppose that it is Poisson relative to F in the sense
of 6.1. Suppose that N is a counting process that satisfies

Nt(ω) =
ˆ

[0,t]×R+

M(ω; ds, dz) I(z, (0, Rs(ω)]), ω ∈ Ω, t ∈ R+,6.12

for some positive F-predictable process R. Then, N is adapted to F and has
R as its intensity relative to F. Moreover, for every increasing function f on
N = {0, 1, . . .},

E f ◦Nt = f(0) + E

ˆ
[0,t]

ds [f ◦(Ns + 1) − f ◦Ns] Rs, t ∈ R+.6.13

6.14 Remark. In practice, 6.13 is more useful as a differential equation:

d

dt
E f ◦Nt = E Rt [f ◦(Nt + 1) − f ◦Nt] , t > 0.6.15

In particular, taking f(n) = 1−xn for fixed x in [0, 1], we obtain a differential
equation for the generating function of Nt:

d

dt
E xNt = −(1 − x) E xNt Rt, x ∈ [0, 1], t ∈ R+.

Also, taking f(n) = n and f(n) = n2 yield

d

dt
E Nt = E Rt,

d

dt
E N2

t = E Rt + 2 E RtNt.
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Proof of Theorem 6.11
Let g(ω, s, z) be the integrand appearing on the right side of 6.12. The

function g is the composition of the mappings (ω, s, z) �→ Rs(ω, z) and
(r, z) �→ I(z, (0, r]); the first mapping is measurable with respect to Fp⊗BR+

and BR+×R+ by the assumed F-predictability of R; the second is obviously
measurable with respect to BR+×R+ and BR+ . Thus, g is in Fp ⊗ BR+ .

Let F be a positive process in Fp. Then,G(ω, t, z) = Ft(ω)g(ω, t, z) defines
a positive process G in Fp ⊗ BR+ . It follows from 6.12 and the definitions of
g and G that

ˆ
R+

Ft dNt =
ˆ

R+×R+

M(dt, dz) G(t, z)
ˆ

R+×R+

dt dz G(t, z) =
ˆ

R+

dt Ft

ˆ
R+

dz I(z, (0, Rt)) =
ˆ

R+

dt FtRt.

Taking expectations and using Theorem 6.2, we see that

E

ˆ
R+

Ft dNt = E

ˆ
R+

dt Ft Rt,6.16

which proves the claim that R is the F-intensity of N .
There remains to prove 6.13 for f positive increasing on the integers. We

start by observing that, since N is a counting process,

f(Nt) = f(0) +
∑

s≤t
[f(Ns) − f(Ns−)]

= f(0) +
ˆ

[0,t]

[f(Ns− + 1) − f(Ns−)]dNs.

On the right side, the integrand is left-continuous in s and adapted and
thus predictable, and it is positive since f is increasing. Thus, we may take
the integrand to be Fs 1[0,t](s) in 6.16, which yields

E f(Nt) = f(0) + E

ˆ
[0,t]

ds [f(Ns− + 1) − f(Ns−)] Rs

= f(0) + E

ˆ
[0,t]

ds [f(Ns + 1) − f(Ns)] Rs,

where the last equality is justified by noting that the value of a Lebesgue
integral does not change when the integrand is altered at countably many
points (by replacing Ns− by Ns). �

In the setting of the preceding theorem, it follows from 6.12 that N
depends on R and, hence, R depends on N . However, in non-mathematical
terms, it is possible that “N depends on R but R is independent of N ,” as
in the phrase “economy depends on the weather but the weather is indepen-
dent of the economy.” That is the situation if R is independent of M , as in
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Exercise 2.36 for instance, and thenN is conditionally Poisson given R. In the
more interesting case where R depends on M and N , the process N appears
implicitly on the right side of 6.12; hence, then, 6.12 is an integral equation
to be solved for N . The term self-exciting is used in such cases where the
past of N over (0, t) defines, or affects, the value Rt.

Example: Branching with immigration

This is about the evolution of a system as follows. Primary particles arrive
into the system according to a Poisson process with rate a; they form the
original, k = 0, generation. The particles of the kth generation give births to
the particles of the (k+1)th generation. Each particle, of whatever generation,
gives births according to a Poisson process with rate b independent of the
doings of all other particles. We are interested in the size Nt of the total
population at time t. The following is the mathematical model for this story.

6.17 Model. Let M be a standard Poisson random measure on R+×R+

(with mean Leb × Leb). Let F be the augmented filtration generated by M .
Define N and R by setting R0 = N0 = 0 and

Rt = a+ bNt−, Nt =
ˆ

(0,t]×R+

M(ds, dz) I(z, (0, Rs]), t > 0,6.18

where a and b are constants in (0,∞). Note that N is right-continuous and
adapted to F, and R is left-continuous and predictable. �

We describe the solution N(ω) : t �→ Nt(ω) for a typical ω belonging to
the almost sure event described in Theorem 2.18: the set Dω of atoms of the
measure Mω is such that no two atoms arrive at the same time and there are
only finitely many atoms in any bounded rectangle. We start with N0(ω) = 0;
we look for the first t such that (t, z) is an atom in Dω with size z under a;
that t is the time T1(ω) of the first jump for N(ω). We continue recursively:
having picked Tk(ω), the time of the kth jump, we look for the first t after
Tk(ω) such that (t, z) is in Dω and z is under a + kb; that t is Tk+1(ω). In
short, putting T0(ω) = 0 for convenience, we define

Tk+1(ω) = inf{t > Tk(ω) : (t, z) ∈ Dω, z ≤ a+ kb}, k ∈ N.6.19

Then, T1(ω) < T2(ω) < · · · are the successive jump times of N(ω), and

Nt(ω) = k ⇐⇒ Tk(ω) ≤ t < Tk+1(ω).6.20

It follows from 6.19 and the Poisson nature of M that T1, T2 − T1, T3 −
T2, . . . are independent and exponentially distributed with respective param-
eters a, a+ b, a+ 2b, . . ..

To show that N is a counting process, there remains to show that it does
not explode in finite time, that is, Nt < ∞ almost surely for each t (which
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implies that, for almost every ω, we have Nt(ω) <∞ for all t <∞). This can
be shown by showing that limTk = +∞ almost surely. It is easier and has
more value to take a direct approach and show that Nt has finite expectation.
We use 6.14 to this end:

d

dt
E Nt = E Rt = E (a+ bNt−) = a+ b E Nt

sinceNt = Nt− almost surely. Solving the differential equation with the initial
condition EN0 = 0, we get

E Nt =
a

b
(ebt − 1), t ∈ R+.6.21

Finally, we consider the distribution of Nt for fixed t. To this end, we use
6.15 of Remark 6.14 with a well-chosen f to get a recursive formula for

pk(t) = P{Nt = k}, k ∈ N, t ∈ R+.6.22

Fix k. Let f be the indicator of the set {k+1, k+2, . . .}. Then, f(Nt) becomes
the indicator of the event {Nt > k}, and f(Nt + 1) − f(Nt) the indicator of
{Nt = k}. And, on the event {Nt = k}, we have Rt = a + bk almost surely
since Nt = Nt− almost surely. Thus 6.15 becomes

d

dt
P{Nt > k} = (a+ bk)P{Nt = k}, k ∈ N.

Equivalently,

d

dt
p0(t) = −ap0(t),

d

dt
pk(t) = −(a+ bk)pk(t) + (a+ bk − b)pk−1(t), k ≥ 1,

with the obvious initial conditions stemming from p0(0) = 1. This system
can be solved recursively:

p0(t)=e−at, pk(t)=(a+ kb− b)
ˆ t

0

e−(a+bk)(t−s)pk−1(s) ds, k ≥ 1.6.23

Example: Self-exciting shot processes

These are similar to processes described in the preceding example, except
that the immigration rate is ae−ct at time t and that each particle in the
system gives births at rate be−cu when the particle’s age is u. The preceding
example is the particular case where c = 0. We are interested in the number
Nt of particles in the system at time t.
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6.24 Model. Let M be a standard Poisson random measure on R+×R+.
Let F be the augmented filtration generated by it. Define N and R by setting
N0 = 0 and R0 = a and

Rt = ae−ct +
ˆ

(0,t)

be−c(t−s) dNs, t > 0,6.25

Nt =
ˆ

[0,t]×R+

M(ds, dz) I(z, (0, Rs]), t > 0,6.26

where a, b, c are constants in (0,∞). Note that N is right-continuous, R is
left-continuous, and both are adapted to F. �

The process R of 6.25 is a shot-noise process driven by N ; it resembles
that in Example 2.12, but now N is driven by R in turn. It is clear from 6.26
that N increases by jumps of size one. To show that it is a counting process,
there remains to show that Nt < ∞ almost surely. This last point is easy:
note that R and N of Model 6.24 are dominated by the respective ones of the
Model 6.17; hence, E Nt ≤ a

b
ebt by 6.21; in view of Remark 6.14, the exact

value can be obtained by integrating 6.35 below.
The solution to the coupled system 6.25–6.26 is as follows for the typical

“good” ω of Theorem 2.18: The first jump of N(ω) occurs at the first time
t where (t, z) is an atom of Mω with z ≤ ae−bt; for u in (0, t] we have
Ru(ω) = ae−cu, and Nt(ω) = 1 obviously. Assuming that s is the kth jump
time and Rs(ω) = r and Ns(ω) = k, the time of next jump is the smallest t
in (s,∞) where (t, z) is an atom of Mω having z ≤ (r+ b)e−c(t−s) and, then,
Ru(ω) = (r + b)e−c(u−s) for all u in (s, t], and Nu(ω) = k for u in [s, t), and
Nt(ω) = k + 1.

6.27 Markov property. The process R is a Markov process, that is, for
every time t, the future process R̂ = {Rt+u;u ∈ R+} is conditionally in-
dependent of the past Ft given the present state Rt. Moreover, given that
Rt = x, the conditional law of R̂ is the same as the law of R starting from
a = x.

To see this we re-write 6.25 and 6.26 for the time t + u. Define M̂(A) =
M(Â) with Â = {(t+ u, z) : (u, z) ∈ A}, and observe that M̂ is independent
of Ft and has the same law as M , that is, Poisson on R+ × R+ with mean
Leb × Leb. Define

R̂u = Rt+u, N̂u = Nt+u −Nt, u ∈ R+.6.28

It follows from 6.25 and 6.26 after some re-arrangement that

R̂u = R̂0e
−cu +

ˆ
(0,u)

be−c(u−s)dN̂s6.29

N̂u =
ˆ

[0,u]×R+

M̂(ds, dz) I(z, (0, R̂s]).6.30
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These show that the pair (N̂ , R̂) satisfies the equations 6.25 and 6.26 with
a = R̂0 and M replaced with M̂ . Since the solution to 6.25–6.26 is unique,
and since M̂ is standard Poisson independent of Ft, we conclude that (N̂ , R̂)
is conditionally independent of Ft given R̂0 = Rt and N̂0 = 0.

Indeed we have shown more than what was listed in 6.27: The pair (N,R)
is a Markov process as well as the process R. �

6.31 Distribution of Rt. Let f be a bounded function that is differen-
tiable and assume that its derivative f ′ is also bounded. Define

Gf(x) = −cxf ′(x) + x[f(x+ b) − f(x)].6.32

Then,

E f(Rt) = f(a) +
ˆ

(0,t)

ds E Gf(Rs).6.33

To prove this, we start by noting that each jump of R is of size b and
that, between the jumps, R decays exponentially at rate c. It follows that

f(Rt) = f(R0) −
ˆ

(0,t)

cRsf
′(Rs)ds+

ˆ
(0,t)

[f(Rs + b) − f(Rs)]dNs.

Within the last integral, the integrand is predictable, because it is a contin-
uous function of a left-continuous adapted process. Thus, by the meaning of
intensity (see 6.6)

E f(Rt) = f(a) − E

ˆ
(0,t)

cRsf
′(Rs)ds+ E

ˆ
(0,t)

Rs[f(Rs + b) − f(Rs)]ds;

here, the boundedness of f and f ′ is used to ensure that the expectations
are well-defined. This last formula is exactly the result that was to be
shown. �

In practice, it is generally easier to use 6.33 in its differential form:

d

dt
E f(Rt) = E Gf(Rt), E f(R0) = f(a).6.34

Here are several quick uses: Taking f(x) = x and solving 6.34,

E Rt = ae−(c−b)t, t ∈ R+.6.35

Taking f(x) = e−px and noting that

Gf(x) = (1 − e−pb + cp)
∂

∂p
e−px,

we see that

u(t, p) = E e−pRt , t, p ∈ R+,6.36
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is the solution to

∂

∂t
u(t, p) = (1 − e−pb + cp)

∂

∂p
u(t, p)6.37

with boundary conditions u(t, 0) = 1 and u(0, p) = e−ap. �
Going back to 6.35, we observe that E Rt = a for all t if c = b. Otherwise,

if c > b, the expectation goes to 0 as t → ∞, and, if c < b, it goes to +∞.
Indeed, these observations can be sharpened:

6.38 Martingales. The processR is a martingale if c = b, supermartingale
if c > b, and submartingale if c < b. If c ≥ b,

R∞ = lim
t→∞Rt

exists and is an integrable random variable with 0 ≤ E R∞ ≤ a. In particular,
when c > b, we have R∞ = 0 almost surely.

To show these claims, we go back to the Markov property 6.27 for R to
conclude that the conditional expectation of Rt+u given Ft is equal to ERu
with a replaced by Rt, that is, in view of 6.35,

Et Rt+u = Rt e
−(c−b)u, t, u ∈ R+.6.39

This shows that R is a martingale if c = b, supermartingale if c > b, and
submartingale if c < b. In the first two cases, that is, if c ≥ b, we have a
positive supermartingale, which necessarily converges almost surely to some
integrable random variable R∞ ≥ 0; that is by the convergence theorems for
such. Moreover, by Fatou’s lemma,

E R∞ = E lim inf Rt ≤ lim inf E Rt,

which shows that 0 ≤ ER∞ ≤ a via 6.35. In particular, this becomes ER∞ =
0 when c > b, which implies that R∞ = 0.

Compensators

Not every counting process has an intensity process. This is to compensate
for this lack and introduce the general ideas involved.

Let N be a counting process adapted to some filtration F and suppose
that ENt < ∞ for every t in R+. Then, it is known that there exists an
increasing F-predictable process C = (Ct) such that

Ñt = Nt − Ct, t ∈ R+,6.40

is an F-martingale; this follows from the continuous time version of Doob’s
decomposition applied to the submartingale N . The process C is called the
compensator for N relative to F, or dual-predictable projection of N . The
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term compensator may be justified by noting that Ñ is a martingale if and
only if

E

ˆ
R+

Ft dNt = E

ˆ
R+

F dCt6.41

for every positive (or bounded) F-predictable process F .
Comparing 6.41 with Definition 6.6 of intensities, we conclude the follow-

ing: An F-predictable process R is the intensity of N relative to F if and
only if

Ct =
ˆ t

0

ds Rs, t ∈ R+.6.42

is the compensator of N relative to F. Thus, existence of an intensity has to
do with the absolute continuity of C.

The following is the counterpart to the construction of Theorem 6.11.
It is analogous to Theorem 6.18 of Chapter V on non-stationary Poisson
processes. When time is reckoned with the clock C, the process N appears
to be Poisson with unit rate.

6.43 Theorem. Let N be a counting process adapted to F and with
E Nt < ∞ for all t. Let C be its compensator relative to F. Suppose that C
is continuous and limt→∞Ct = +∞. Define, for u in R+,

Su = inf{t : Ct > u}, N̂u = NSu , F̂u = FSu .6.44

Then, N̂ is a Poisson process with unit rate with respect to F̂, and for each t,
almost surely,

Nt = N̂Ct .6.45

Remark. We regard Ct as time shown on a rigged clock when the stan-
dard time is t. Then, Su becomes the standard time when the clock shows u.
If N is an arrival process with standard time parameter, then N̂ is the same
arrival process in clock time. In general C and N̂ are dependent. In the spe-
cial case that C and N̂ are independent, the formula 6.45 is very convenient:
for instance, then, the conditional probability that Nt −Ns = k given Fs is
equal to, for 0 ≤ s < t arbitrary,

Ese
−(Ct−Cs)(Ct − Cs)k/k!, k ∈ N.

In other words, if N̂ and C are independent, then the conditional law of
N given C is that of a non-stationary Poisson process with mean function
C. The further special case where C is deterministic yields a non-stationary
Poisson process N .

Proof. Let S and T be stopping times with S ≤ T <∞. Let H ∈ FS and
define Ft = 1H 1(S,T ](t). Then, F is predictable, and using 6.41 with this F
shows that

ES(NT −NS) = ES(CT − CS) .6.46
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Fix 0 ≤ u < v and let S = Su and T = Sv; these are finite stopping times
in view of 6.44 and the assumption that limCt = ∞ while Ct < ∞ almost
surely for every t in R+ (since ECt = ENt <∞). Now, NT −NS = N̂v − N̂u
by the definition of N̂ , and CT − CS = v − u by 6.44 and the continuity
of C. It now follows from 6.46 that N̂v − N̂u is independent of F̂u and has
mean equal to v−u. It now follows from the characterization theorem 5.5 (or
Theorem 6.18 of Chapter V) that N̂ is Poisson with respect of F̂ with unit
rate.

There remains to show that, for each t, 6.45 holds almost surely. If C is
strictly increasing, then SCt = t and the equality 6.45 is without question.
If C is not such, then SCt ≥ t and the strict inequality may hold for some
outcomes ω. For such ω, however, C(ω) remains flat and equal to Ct(ω) over
the interval (t, SCt(ω)(ω)]. In view of 6.46, almost surely on the set of all such
ω, the process N can have no jumps over the interval [t, SCt ]. Thus, Nt = N̂Ct

almost surely. �

Exercises

6.47 Shot process. For the process R of model 6.24, show that

Var Rt = ab2
ˆ 2t

t

e−(c−b)sds.

6.48 Continuation. Show that, for f as in 6.31 and g : N �→ R arbitrary
bounded,

d

dt
E f(Rt)g(Nt) = E h(Rt, Nt)

where

h(x, n) = −cxf ′(x)g(n) + x[f(x + a)g(n+ 1) − f(x)g(n)].

Use this to derive a partial differential equation for

u(t, p, q) = E exp− (pRt + qNt).

6.49 Covariance density for N of 6.24. We switch to regardingN as a random
measure on R+. Notationally, dNt becomes N(dt), and dN̂u becomes N(t+
du) when N̂u = Nt+u −Nt. Notice that 6.8 and 6.39 may be presented as

EtN(t+ du) = du EtRt+u = du Rt e
−(c−b)u.

Show that, for t, u > 0,

1
dt du

[E N(dt)N(t+ du) − E N(dt) E N(t+ du)] = e−(c−b)u Var Rt.

The left side is called the covariance density at (t, t+ u).
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6.50 Branching formulation. This is another formulation of the model 6.24.
We view the population as the sum of generations 0, 1, . . .; The original gener-
ation consists of particles that arrived into the system according to a Poisson
process N0 with deterministic intensity process R0(t) = ae−ct, t ∈ R+. Hav-
ing described the generation k, we recall that each particle of generation k,
if it starts life at time s, gives births to generation k+ 1 particles at the rate
be−cu at the time s + u. Thus, the births of (k + 1)th generation particles
form a conditionally Poisson process Nk+1 given the intensity process

Rk+1(t) =
ˆ

(0,t)

Nk(ds) be−c(t−s).

The process N is the sum of all generations,

N(A) =
∞∑

k=0

Nk(A), Borel A ⊂ R+.

The advantage of this formulation is that we have a chain N0, N1, N2, . . . of
random counting measures on R+, each one determines the intensity process
for the next, each one being conditionally Poisson given its own intensity.

6.51 Hawkes processes. These are processes much like N of the model 6.24,
but with some slight generality: N is still defined by 6.26, but 6.25 is re-
placed with

Rt = a+
ˆ

(0,t)

g(t− s) dNs, t > 0,

where g is some deterministic positive Borel function.

a) Suppose that g is bounded. Show that, then, E Nt < ∞ for all t
and there is a unique counting process N with this intensity process. Hint:
Compare this with the model 6.17.

b) Compute E Rt and E Nt exactly.
c) Discuss the limiting behavior of Rt as t → ∞ in the case when g is

Lebesgue-integrable.

6.52 Continuation. Consider the processes R and N of the preceding exercise
for the special case

g(u) = 1[b,c)(u), u ∈ R+,

where 0 < b < c are constants. This corresponds to the case each particle
gives births to new ones at unit rate starting when it is at age b and ending
when it dies at age c. Describe the solution N . Compute E Nt explicitly.

6.53 Departures from an M/M/∞ queue. Let L be a Poisson process with
rate a. Let M be as in Theorem 6.11. Suppose that L and M are indepen-
dent and let F be the augmented filtration generated by them. Define N by
6.12 with

Rt = b · (Lt− −Nt−)+, t > 0,
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with R0 = N0 = 0. Note that Rt = 0 when Lt− ≤ Nt−, which implies that
Lt ≥ Nt for all t.

a) Show that

P{Lt+u − Lt = Nt+u −Nt = 0|Lt −Nt = k} = e−(a+bk)u.

b) Show that Q = L − N can be regarded as the queue size process
in Exercise 3.35 with the further assumption that each service lasts an expo-
nentially distributed time with parameter b.



Chapter VII

Lévy Processes

This chapter is on Lévy processes with state space R
d, their structure and

general properties. Section 1 introduces them and gives a constructive survey
of the range of behaviors. Section 2 illustrates those constructions in the case
of stable processes, a special class.

Section 3 re-introduces Lévy processes in a modern setting, discusses the
Markov and strong Markov properties for them, and shows the special nature
of the filtrations they generate. Section 4 characterizes the three basic pro-
cesses, Poisson, compound Poisson, and Wiener, in terms of the qualitative
properties of the sample paths. Section 5 is on the famous characterization
theorem of Itô and Lévy, showing that every Lévy process has the form con-
structed in Section 1; we follow Itô’s purely stochastic treatment.

Section 6 is on the use of increasing Lévy processes in random time
changes, an operation called subordination with many applications. Finally,
in Section 7, we describe some basic results on increasing Lévy processes;
these are aimed at applications to theories of regeneration and Markov
processes.

The special case of Wiener processes is left to the next chapter for a
deeper treatment.

1 Introduction

Let (Ω,H,P)be a probability space. Let F = (Ft)t∈R+ be a filtration on
it. Let X = (Xt)t∈R+ be a stochastic process with state space R

d; here, d ≥ 1
is the dimension, and the relevant σ-algebra on R

d is the Borel one.

1.1 Definition. The process X is called a Lévy process in R
d with re-

spect to F if it is adapted to F and

a) for almost every ω, the path t �→ Xt(ω) is right-continuous and
left-limited starting from X0(ω) = 0, and
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b) for every t and u in R+, the increment Xt+u − Xt is independent
of Ft and has the same distribution as Xu.

Let G = (Gt)t∈R+ be the filtration generated by X . If X is a Lévy process
with respect to F, then it is such with respect to G automatically. It is called
a Lévy process, without mentioning a filtration, if it is such with respect to G.

In the preceding definition, the first condition is on the regularity of paths.
The second condition implies that X has stationary and independent incre-
ments : Xt+u − Xt has the same distribution for all t, and the increments
Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 are independent for all choices of
n ≥ 2 and times 0 ≤ t0 < t1 < · · · < tn. Conversely, if X has stationary and
independent increments, then it fulfills the condition 1.1b with F = G.

Every constant multiple of a Lévy process in R
d is again Lévy. The sum

of a finite number of independent Lévy processes in R
d is again Lévy. Given

a Lévy process X in R
d and a d′ × d matrix c, the process cX is a Lévy

process in R
d′ ; in particular, every linear combination of the components of

X is a Lévy process in R; every component of X is a Lévy process in R - the
components generally depend on each other.

1.2 Example. The simplest (and trivial) Lévy process in R
d is the pure-

drift: it has the form Xt = bt where b is a fixed vector in R
d. Next, we recall

the definitions of some Lévy processes introduced in earlier chapters.

a) According to Definition V.2.15, a Wiener process W is a Lévy
process in R that has continuous paths and has the Gaussian distribution
with mean 0 and variance u for its increments Wt+u −Wt. It is the basic
continuous Lévy process: The most general continuous Lévy process in R has
the form

Xt = bt+ cWt, t ∈ R+,

where b and c are constants in R. A similar result holds for processes in
R
d, in which case b is a vector in R

d, and c is a d × d′ matrix, and W is a
d′-dimensional Wiener process (whose components are independent Wiener
processes). See Theorem 4.3.

b) Poisson processes. The initial definition was given in Definition
V.2.20: a Poisson process N with rate c is a Lévy process that is a count-
ing process having the Poisson distribution with mean cu for its increments
Nt+u − Nt. A list of characterizations were given in Section 5 of the pre-
ceding chapter, and also a martingale characterization in Theorem V.6.13.
We shall add one more in Section 4: a Lévy process whose increments are
Poisson distributed is necessarily a counting process (and, hence, is a Poisson
process).

c) Compound Poisson process. These were introduced in Section 3 of
the preceding chapter as follows. Let N be a Poisson process. Independent of
it, let (Yn) be an independency of identically distributed R

d-valued random
variables. Define

Xt =
∞∑

n=1

Yn1{n≤Nt}, t ∈ R+.
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Then, X is a Lévy process in R
d. Its every path is a step function; its jumps

occur at the jump times ofN , and the sizes of successive jumps are Y1, Y2, . . . .
We shall show in Theorem 4.6 that, conversely, every Lévy process whose
paths are step functions is a compound Poisson process.

d) Increasing Lévy processes. According to Definition VI.4.5, these are
Lévy processes in R whose paths are increasing. Equivalently, they are Lévy
processes with state space R+, because the positivity of Xu and the station-
arity of Xt+u − Xt imply that every increment is positive. Every Poisson
process is an increasing Lévy process. So is every compound Poisson process
with positive jumps (with R+-valued Yn in the preceding remark). So are
gamma processes, so are stable processes with indices in (0, 1); see 4.9, 4.10,
4.19, 4.20 of Chapter VI for these, and also Propositions 4.6 and 4.14 there for
general constructions. It will become clear that every increasing Lévy process
has the form given in Proposition VI.4.6; see Remark 5.4b to come.

Infinite divisibility, characteristic exponent

Recall that a random variable is said to be infinitely divisible if, for every
integer n, it can be written as the sum of n independent and identically dis-
tributed random variables. LetX be a Lévy process in R

d. For t > 0 fixed and
n ≥ 1, lettting δ = t/n, we can write Xt as the sum of the increments over the
intervals (0, δ], (δ, 2δ], · · · , (nδ− δ, nδ], and those increments are independent
and identically distributed. Thus, Xt is infinitely divisible for every t, and so
is every increment Xt+u − Xt. It follows that the characteristic function of
X has the form

E eir·Xt = etψ(r), t ∈ R+, r ∈ R
d ;1.3

here, on the left, r · x = r1x1 + · · · + rdxd, the inner product of r and x in
R
d. On the right side, ψ is some complex-valued function having a specific

form; it is called the characteristic exponent of X. Its form is given by the
Lévy-Khinchine formula; see 1.31 and 1.33 below. Its derivation is basically
a corollary to Itô-Lévy decomposition of Theorem 5.2 to come.

Means and variances

Let X be a Lévy process in R
d. It is possible that EXt does not exist; this

is the case, for instance, if X is a compound Poisson process as in Example
1.2c and the Yn do not have expected values. Or, it is possible that EXt is well-
defined but is equal to infinity in some components. However, if the means
and variances of the components of the random vector Xt are well-defined,
then they must be linear in t, that is,

E Xt = at, VarXt = vt, t ∈ R+.1.4

This is a consequence of the stationarity and independence of the increments;
a is a fixed vector in R

d, and VarXt is notation for the covariance matrix of



316 Lévy Processes Chap. 7

Xt, and v is a fixed symmetric d× d matrix that is positive definite, that is,
vij = vji for all i and j, and r · vr ≥ 0 for every r in R

d.

Continuity in distribution

Consider 1.3 and note its continuity in t. Recall that the convergence in
distribution is equivalent to the convergence of the corresponding characteris-
tic functions; see Corollary III.5.19. Thus, (Xtn) converges in distribution to
Xt for every sequence (tn) with limit t. The following is the same statement
using the definition of convergence in distribution.

1.5 Proposition. Suppose that X is a Lévy process in R
d. Then, t �→

E f ◦Xt is continuous for every bounded continuous function f : R
d �→ R.

Probability law of X

Suppose that X is Lévy. Then, its probability law is determined by the
distribution πt of Xt for any one t > 0, or equivalently, by the characteristic
exponent ψ appearing in 1.3. To see this, first note that the Fourier transform
of πt is etψ; if it is known for one t, then it is known for all t.

Next, consider the finite-dimensional distributions of X : consider the dis-
tribution of (Xs, Xt, . . . , Xu, Xv) for finitely many times, 0 < s < t < · · · <
u < v. That distribution is determined by the distribution of (Xs, Xt −
Xs, . . . , Xv−Xu), and the latter is the product measure πs×πt−s×· · ·×πv−u
in view of the independence and stationarity of the increments.

Regularity of the paths and jumps

Suppose that X is a Lévy process in R
d. Fix an outcome ω for which the

regularity properties 1.1a hold. This means that the limits

Xt−(ω) = lim
s↑t

Xs(ω), Xt+(ω) = lim
u↓t

Xu(ω)1.6

exist for every t in R+ (with the convention that Xt−(ω) = 0 for t = 0),
the limits belong to R

d, and Xt+(ω) = Xt(ω) by right-continuity. If the two
limits differ, then we say that the path X(ω) jumps from its left-limit Xt−(ω)
to its right-hand value Xt(ω) = Xt+(ω). The difference

ΔXt(ω) = Xt(ω) −Xt−(ω),1.7

if non-zero, is called the size of the jump at time t and its length |ΔXt(ω)|
is called the jump magnitude. The path X(ω) can have no discontinuities
other than the jump-type described.

Let Dω be the discontinuity set for the path X(ω), that is,

Dω = {t > 0 : ΔXt(ω) �= 0}.1.8
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If X is continuous, then Dω is empty for almost every ω. If X is Poisson
or compound Poisson plus some continuous process, then, for almost every
ω, the set Dω is an infinite countable set, but Dω ∩ (s, u) is finite for all
0 ≤ s < u < ∞. For all other processes X , for almost every ω, the set
Dω is still infinite but with the further property that Dω ∩ (s, u) is infinite
for all 0 ≤ s < u < ∞. This last property is apparent for gamma and
stable processes of Example VI.4.9 and VI.4.10, and will follow from Itô-Lévy
decomposition in general; see Theorem 5.2.

1.9 Remark. However, for every ε > 0, there can be at most finitely
many t in Dω ∩ (s, u) for which the magnitude |ΔXt(ω)| exceeds ε. For,
otherwise, if there were infinitely many such jump times for some ε > 0, then
Bolzano-Weierstrass theorem would imply that there must exist a sequence
(tn) of such times that converges to some point t in [s, u], and then at least
one of the limits 1.6 must fail to exist.

Pure-jump processes

These are processes in R
d where Xt is equal to the sum of the sizes of its

jumps during [0, t]; more precisely, for almost every ω,

Xt(ω) =
∑

s∈Dω∩[0,t]

ΔXs(ω), t ∈ R+,1.10

where the sum on the right side converges absolutely, that is, where

Vt(ω) =
∑

s∈Dω∩[0,t]

|ΔXs(ω)| <∞.1.11

Indeed, every such process has bounded variation over bounded intervals,
and Vt(ω) is the total variation of the path X(ω) over [0, t].

Every increasing Lévy process without drift is a pure-jump Lévy process,
so is the difference of two such independent processes. The following con-
structs such processes in general. We shall see later that every pure-jump
Lévy process in R

d has the form given in this theorem.

1.12 Theorem. Let M be a Poisson random measure on R+ × R
d with

mean measure Leb× λ, where the measure λ on R
d has λ{0} = 0 and

ˆ
Rd

λ(dx)(|x| ∧ 1) <∞.1.13

Then, for almost every ω, the integral

Xt(ω) =
ˆ

[0,t]×Rd

Mω(ds, dx)x1.14
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converges absolutely for every t, and the path X(ω) has bounded variation
over [0, t] for every t in R+. The process X is a pure-jump Lévy process in
R
d, and its characteristic exponent is

ψ(r) =
ˆ

Rd

λ(dx)(eir·x − 1), r ∈ R
d.1.15

1.16 Remark. Lévy measure. The measure λ determines the probability
laws of M and X . It is called the Lévy measure of X . It regulates the
jumps: for every Borel subset A of R

d with λ(A) < ∞, the jump times
of X with corresponding sizes belonging to A form the counting process
t �→ M((0, t] × A), and the latter is a Poisson process with rate λ(A). The
condition that λ{0} = 0 is for reasons of convenience: to prevent linguistic
faults like “jumps of size 0,” and also to ensure that X(ω) and Mω determine
each other uniquely for almost every ω. The condition 1.13 is essential. It is
satisfied by every finite measure. More interesting are infinite measures that
satisfy it; to such measures there correspond pure-jump processes that have
infinitely many jumps during every interval (s, t) with s < t; but, of those
jumps, only finitely many may exceed ε in magnitude however small ε > 0
may be; see Remark 1.9.

Proof. Let M̂ be the image of M under the mapping (s, x) �→ (s, |x|) from
R+ × R

d into R+ × R+, and λ̂ the image of λ under the mapping x �→ |x|.
Then, M̂ is Poisson random measure on R+ × R+ with mean Leb× λ̂. Note
that λ̂{0} = 0 and 1.13 is equivalent to

ˆ
R+

λ̂(dv)(v ∧ 1) <∞,1.17

which, in particular, implies that λ̂(ε,∞) <∞ for every ε > 0.
Thus, by Proposition VI.2.18, we can select an almost sure event Ω′ such

that, for every ω in it, the measure M̂ω is a counting measure, has no atoms
in {0}×R+ and no atoms in R+×{0}, and has at most one atom in {t}×R+

no matter what t is.
On the other hand, for each time t,

Vt =
ˆ

[0,t]×R+

M̂(ds, dv)v =
ˆ

[0,t]×Rd

M(ds, dx)|x|1.18

is positive and real-valued almost surely in view of 1.17 and Proposition
VI.2.13. Let Ωt be the almost sure event involved, and define Ω′′ to be the
intersection of Ωt over t in N.

Fix an outcome ω in the almost sure event Ω′ ∩Ω′′. The mapping t �→
Vt(ω) from R+ into R+ is right-continuous and increasing starting from the
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origin; and it has a jump of size v at time s if and only if Mω has an atom
(s, x) with |x| = v. It follows that the integral in 1.14 converges absolutely
for all times t, and we have

∑

s≤t
|ΔXs(ω)| = Vt(ω),

∑

s≤t
ΔXs(ω) = Xt(ω).

Hence, X is of the pure-jump type and is right-continuous and left-limited
starting from the origin, and its total variation over [0, t] is equal to Vt.

It is immediate from 1.14 and the Poisson character of M that X has
stationary and independent increments. The form 1.15 for the characteristic
exponent follows from 1.3, 1.14, and Theorem VI.2.9. �

1.19 Remark. Total variation. The preceding proof has shown, in addi-
tion, that the total variation process V is defined by 1.18 as well, and that
it is a pure-jump increasing Lévy process. Its Lévy measure is the image of
λ under the mapping x �→ |x|. The path X(ω) has a jump of some size x at
time t if and only if V (ω) has a jump of size |x| at the same time t.

1.20 Remark. Poisson and compound Poisson. If the dimension d = 1,
and λ = cδ1 (recall that δx is Dirac at x), then X of the last theorem becomes
a Poisson process with rate c. For arbitrary d, if λ is a finite measure on R

d,
then 1.13 holds automatically and X is a compound Poisson process as in
Example 1.2c: its jump times form a Poisson process N with rate c = λ(Rd),
and the sizes Yn of its jumps are independent of N and of each other and have
the distribution μ = 1

cλ on R
d. Its total variation process V is an increasing

compound Poisson process in R+; the jump times of V form the same Poisson
process N , but the jump sizes are the |Yn|.

1.21 Example. Gamma, two-sided and symmetric. Recall Example
VI.4.6, the gamma process with shape rate a and scale parameter c. It is an
increasing pure-jump Lévy process in R+. Its Lévy measure has the density
ae−cx/x for x in (0,∞) and puts no mass elsewhere. Its value at t has the
gamma distribution with shape index at and scale c.

Let X+ and X− be independent gamma processes. Then,

X = X+ −X−

is a pure-jump Lévy process in R; the distribution of Xt is not gamma;
nevertheless, X may be called a two-sided gamma process; see Exercises 1.47
and 1.48 for some observations. In the special case where X+ and X− have
the same law, that is, if they have the same shape rate a and the same scale
parameter c, then the Lévy measure of X is given by

λ(dx) = dx a
e−c|x|

|x| , x ∈ R\{0},
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with λ{0} = 0; in this case, we call X a symmetric gamma process with
shape rate a and scale parameter c. The distribution of Xt is not gamma and
cannot be expressed explicitly; however, the characteristic function is

E eirXt =
(

c

c− ir

)at(
c

c+ ir

)at
=

(
c2

c2 + r2

)at
, r ∈ R.

The total variation process V = X++X− is a gamma process with shape rate
2a and scale parameter c. See Exercise 1.48 and also 6.26 for d-dimensional
analogs of X .

Compensated sums of jumps

This is to introduce Lévy processes driven by Poisson random measures
as above, but whose paths may have infinite total variation over every time
interval of strictly positive length. As remarked in 1.9, there can be at most
finitely many jumps of magnitude exceeding ε > 0 during a bounded time
interval. Thus, intricacies of paths are due to the intensity of jumps of small
magnitude. To concentrate on those essential issues, the next construction is
for processes whose jumps are all small in magnitude, say, all less than unity.
We write B for the unit ball in R

d and Bε for the complement in B of the
ball of radius ε, that is,

B = { x ∈ R
d : |x| ≤ 1 }, Bε = { x ∈ R

d : ε < |x| ≤ 1 }.1.22

1.23 Theorem. Let M be a Poisson random measure on R+ × B with
mean Leb× λ, where the measure λ on B satisfies λ{0} = 0 and

ˆ
B

λ(dx)|x|2 <∞.1.24

For ε in (0, 1), define

Xε
t (ω) =

ˆ
[0,t]×Bε

Mω(ds, dx)x − t

ˆ
Bε

λ(dx)x, ω ∈ Ω, t ∈ R+.1.25

Then, there exists a Lévy process X such that, for almost every ω,

lim
ε↓0

Xε
t (ω) = Xt(ω),

the convergence being uniform in t over bounded intervals. The characteristic
exponent for X is

ψ(r) =
ˆ

B

λ(dx)(eir·x − 1 − ir · x), r ∈ R
d.1.26
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1.27 Notation. For future purposes, it is convenient to write

Xt =
ˆ

[0,t]×B

[M(ds, dx) − dsλ(dx)] x,

the exact meaning of the right side being the almost sure limit described in
the preceding theorem.

1.28 Remarks. The proof of the preceding theorem is left to the end of
this section because of its length and technical nature. For the present, here
are some comments on its meaning.

a) The process Xε has the form

Xε
t = Y εt − aεt

where Y ε is a compound Poisson process in R
d and the drift rate aε is a fixed

vector in R
d. To see this, we start by defining

bε =
ˆ

Bε

λ(dx)|x|, cε =
ˆ

Bε

λ(dx)|x|2, 0 ≤ ε < 1,

and note that ε2λ(Bε) ≤ εbε ≤ cε ≤ c0 since ε2 ≤ ε|x| ≤ |x|2 for x in Bε.
The condition 1.24 means that c0 < ∞, which implies that λ(Bε) < ∞ and
bε <∞ for every ε > 0. Since λ(Bε) <∞, the first integral on the right side
of 1.25 converges absolutely, and the second defines a vector aε in R

d. Hence,
the claimed form for Xε.

b) The claim of the theorem is the existence of a Lévy process X such
that, for almost every ω,

lim
ε↓0

sup
0≤t≤u

|Xε
t (ω) −Xt(ω)| = 0

for every u in R+.
c) Recall the notation introduced in Remark (a) above. If b0 <∞, then

λ satisfies 1.13, and Theorem 1.12 shows that

Yt = lim
ε↓0

Y εt =
ˆ

[0,t]×B

M(ds, dx)x, t ∈ R+,

is a pure-jump Lévy process with Lévy measure λ. In this case,

a = lim
ε↓0

ˆ
Bε

λ(dx)x =
ˆ

B

λ(dx)x

is also well-defined, and we have

Xt = Yt − at, t ∈ R+.
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d) The novelty of the theorem, therefore, occurs when b0 = +∞ and
c0 < ∞, that is, 1.13 fails but 1.24 holds. Then, aε fails to converge as
ε → 0, and Y εt fails to converge as ε → 0, but the difference Xε

t = Y εt − aεt
converges. The limit process X has infinite variation over every time interval
(s, t), however small t− s > 0 may be.

e) Every Xε
t is a compensated sum of jumps: the sum of the sizes of

jumps during (0, t] is equal to Y εt , the corresponding compensator term is
equal to aεt, and the resulting process Xε is a d-dimensional martingale. For
this reason, the limit X is said to be a compensated sum of jumps.

Construction of general Lévy processes

The next theorem introduces Lévy processes of a general nature. In
Section 5, Itô-Lévy decomposition theorem will show that, conversely, every
Lévy process in R

d has this form. In the next section, there are several
concrete examples.

Recall the notation B for the closed unit ball in R
d, and write B

c for its
complement, R

d\B. We shall use notation 1.27 again.

1.29 Theorem. Let b be a vector in R
d, and c a d× d′ matrix, and λ a

measure on R
d satisfying λ{0} = 0 and

ˆ
Rd

λ(dx) (|x|2 ∧ 1) <∞.1.30

Let W be a d′-dimensional Wiener process and, independent of it, let M be
a Poisson random measure on R+ × R

d with mean Leb× λ. Then,

Xt = bt+cWt+
ˆ

[0,t]×B

[M(ds, dx)−dsλ(dx)]x+
ˆ

[0,t]×Bc

M(ds, dx)x,1.31

defines a Lévy process in R
d, and the characteristic exponent of X is, with

v = ccT ,

ψ(r) = ir·b− 1
2r·vr +

ˆ
B

λ(dx)(eir·x − 1 − ir·x)1.32

+
ˆ

Bc

λ(dx)(eir·x − 1), r ∈ R
d.

Proof. Let Xb, Xc, Xd, Xe denote the processes defined by the four terms
on the right side of 1.31 in the order they appear; then,

X = Xb +Xc +Xd +Xe.1.33

The first term is trivially Lévy. The second, Xc, is a continuous Lévy process,
since it is the product of the matrix c with the continuous Lévy process W .
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The condition 1.30 is equivalent to requiring the condition 1.24 together with
λ(Bc) < ∞. Thus, Theorem 1.23 shows that Xd is a Lévy process. And, as
remarked in 1.20, Xe is a compound Poisson process. So, all four are Lévy.

The processes Xd and Xe are independent because the traces of the
Poisson random measure M on R+ × B and on R+ × B

c are independent.
And Xc is independent of Xd and Xe by the assumed independence of W
and M . Since sums of independent Lévy processes is Lévy, X is Lévy. The
formula for the characteristic exponent follows from the independence of the
four terms, results in Theorem 1.12 and 1.23, and the well-known formula for
E eiZ , where Z = r · cWt =

∑
i

∑
j ricijW

(j)
t is Gaussian with mean 0 and

variance (r · vr)t. �

1.34 Remarks. a) Lévy-Khinchine formula. This refers to the formula
1.32. If Z is an R

d-valued infinitely divisible variable, then E eir·Z = eψ(r)

for some b in R
d, some d× d symmetric positive definite matrix v, and some

measure λ on R
d satisfying 1.30.

b) Characteristics for X . This refers to the triplet (b, v, λ) which deter-
mines the probability law of X .

c) Semimartingale connection. The decomposition 1.31–1.33 shows that
X is a semimartingale (see Definition V.5.18): The drift termXb is continuous
and has locally bounded variation, the Gaussian term Xc is a continuous
martingale, Xd is a discontinuous martingale, and Xe is a step process whose
every jump exceeds unity in magnitude. Thus, Xc+Xd is the martingale part
of X , and Xb +Xe the part with locally bounded variation.

The following is immediate from Theorem 1.12 for pure-jump Lévy
processes, but we state it here as a special case of the last theorem.

1.35 Corollary. In the last theorem, suppose that λ satisfies the con-
dition 1.13. Then, the integral

a =
ˆ

B

λ(dx)x

converges absolutely, and the process X takes the form

Xt = (b− a)t+ cWt +
ˆ

[0,t]×Rd

M(ds, dx)x, t ∈ R+,1.36

with the last term defining a pure-jump Lévy process. Accordingly, the char-
acteristic exponent becomes

ψ(r) = ir · (b− a) − 1
2
r · vr +

ˆ
Rd

λ(eir·x − 1), r ∈ R
d.

Proof. When λ satisfies 1.13, the integral defining a converges absolutely,
and λ satisfies 1.30 since |x|2 ≤ |x| for x ∈ B. So, the conclusions of the
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last theorem hold. In addition, Remark 1.28c applies and Xd
t = Yt − at in

the notation there. Now, writing Yt + Xe
t as one integral, we obtain 1.36

from 1.31. �

Proof of Theorem 1.23
This will be through a series of lemmas. We start with an easy extension

of Kolmogorov’s inequality, Lemma III.7.1, to R
d-valued variables. This is a

discrete-time result, but we state it in continuous-time format.

1.37 Lemma. Let {Z(t) : t ∈ R+ } be a process with state space R
d and

E Z(t) = 0 for all t. Suppose that it has independent increments. Then, for
every finite set D ⊂ [0, 1] and every ε > 0,

P{ sup
t∈D

|Z(t)| > ε } ≤ d

ε2
E |Z(1)|2.

Proof. Let Zi(t) denote the i-coordinate of Z(t). Obviously,

sup
D

|Z(t)|2 = sup
D

d∑

i=1

|Zi(t)|2 ≤
d∑

i=1

sup
D

|Zi(t)|2,

and the left side exceeds ε2 only if at least one term on the right exceeds
ε2/d. Thus,

P{ sup
D

|Z(t)| > ε } ≤
d∑

i=1

P{ sup
D

|Zi(t)| > ε√
d
}

≤
d∑

i=1

d

ε2
E |Zi(1)|2 =

d

ε2
E |Z(1)|2,

where Kolmogorov’s inequality justifies the second inequality. �

For processes Z with right-continuous and left-limited paths, we introduce
the norm

‖Z‖ = sup
0≤t≤1

|Z(t)|.1.38

The following extends Kolmogorov’s inequality to continuous-time processes;
we state it for Lévy processes even though the stationarity of increments is
not needed.

1.39 Lemma. Let Z be a Lévy process in R
d with mean 0. For every

ε > 0,

P{ ‖Z‖ > ε } ≤ d

ε2
E |Z(1)|2.

Proof. Let q0, q1, . . . be an enumeration of the rational numbers in [0, 1].
Let Dn = { q0, . . . , qn }. By the right-continuity of Z, the supremum of |Z(t)|
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over t in Dn increases to ‖Z‖ as n→ ∞. Thus, by the monotone convergence
theorem,

P{ ‖Z‖ > ε } = lim
n

P{ sup
t∈Dn

|Z(t)| > ε };

and the proof is completed via Lemma 1.37 above. �

1.40 Lemma. Let Z1, . . . , Zm be processes with state space R
d and paths

that are right-continuous and left-limited. Suppose that Z1, Z2−Z1, . . . , Zm−
Zm−1 are independent. Then, for every ε > 0,

P{ max
k≤m

‖Zk‖ > 3ε } ≤ 3 max
k≤m

P{ ‖Zk‖ > ε }.1.41

Proof. Let H be the event on the left side, and let 3δ denote the right
side; we need to show that

P(H) ≤ 3δ.1.42

Put Z0 = 0 and let Hk = {maxj≤k−1 ‖Zj‖ ≤ 3ε < ‖Zk‖ } for k = 1, . . . ,m;
these events form a partition of H . Since ‖Zm−Zk‖+‖Zm‖ ≥ ‖Zk‖, we have

Hk ∩ { ‖Zm − Zk‖ ≤ 2ε } ⊂ Hk ∩ { ‖Zm‖ > ε }.

The two events on the left side are independent for each k by the assumed
independence of the increments of k �→ Zk . The union over k of the right
side yields a subset of { ‖Zm‖ > ε }, and the latter’s probability is at most δ.
Thus,

m∑

k=1

P(Hk) P{ ‖Zm − Zk‖ ≤ 2ε } ≤ δ.1.43

Since ‖Zm − Zk‖ ≤ ‖Zm‖ + ‖Zk‖, on the set { ‖Zm − Zk‖ > 2ε } we have
either ‖Zm‖ > ε or ‖Zk‖ > ε. Hence,

1 − P{ ‖Zm − Zk‖ ≤ 2ε } ≤ P{‖Zm‖ > ε} + P{‖Zk‖ > ε} ≤ 2δ.

Putting this into 1.43 and recalling that (Hk) is a partition of H , we get

(1 − 2δ)P(H) ≤ δ.

If δ < 1/3, then 1−2δ ≥ 1/3 and we get P(H)/3 ≤ δ as needed to show 1.42.
If δ ≥ 1/3, then 1.42 is true trivially. �

Proof of Theorem 1.23
Recall the setup and assumptions of the theorem. Recall the norm 1.38.

Let (εn) be a sequence in (0, 1) strictly decreasing to 0. For notational sim-
plicity, we define

Bn = Bεn , Zn(t) = Xεn
t =

ˆ
[0,t]×Bn

M(ds, dx)x − t

ˆ
Bn

λ(dx)x.1.44
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We shall show that, almost surely,

lim
n→∞ sup

i,j≥n
‖Zi − Zj‖ = 0.1.45

Assuming this, the rest of the proof is as follows: 1.45 means that (Zn) is
Cauchy for almost sure convergence in the norm ‖·‖. Hence, there is a process
X such that ‖Zn −X‖ → 0 almost surely, and it is obvious that the limit X
does not depend on the sequence (εn) chosen. So, in the notation of Theorem
1.23, we see that, for almost every ω, Xε

t (ω) �→ Xt(ω) uniformly in t ≤ 1 as
ε → 0. The uniformity of convergence implies that X(ω) is right-continuous
and left limited on the interval [0, 1], since each Xε is such. Since almost sure
convergence implies convergence in distribution for (Xε

t1
, . . . , Xε

tk
), and since

Xε has stationary and independent increments, the process X has stationary
and independent increments, over [0, 1]. Repeating the whole procedure for
the processes { Xε

k+t − Xε
k : 0 ≤ t ≤ 1 } with k = 1, 2, . . . completes the

proof of the theorem, except for showing 1.45.
Each Zn defined in 1.44 is a Lévy process with E Zn(t) = 0. Moreover,

the processes Z1, Z2 − Z1, . . . are independent (and Lévy), because they are
defined by the traces of M over the disjoint sets R+ ×B1,R+ × (B2\B1), · · ·
respectively, and M is Poisson.

Fix ε > 0. Applying Lemma 1.40 with processes Zn+1−Zn, . . . , Zn+m−Zn
and then using Lemma 1.39 with well-known formulas for the moments of
Poisson integrals, we obtain

P{ max
k≤m

‖Zn+k − Zn‖ > 3ε } ≤ 3 max
k≤m

P{ ‖Zn+k − Zn‖ > ε }

≤ 3 max
k≤m

d

ε2
E |Zn+k(1) − Zn(1)|2

≤ 3d
ε2

max
k≤m

ˆ
Bn+k\Bn

λ(dx)|x|2

≤ 3d
ε2

ˆ
B0\Bn

λ(dx)|x|2

On the left, the random variable involved increases as m does, and the limit
dominates 1

2‖Zi − Zj‖ for all i, j ≥ n. Thus,

P{ sup
i,j≥n

‖Zi − Zj‖ > 6ε } ≤ 3d
ε2

ˆ
B0\Bn

λ(dx)|x|2.

On the right side, the integrability condition 1.24 allows the use of the domi-
nated convergence theorem as n→ ∞, and the limit is 0 since B0\Bn shrinks
to the empty set. Hence, since the supremum over i, j ≥ n decreases as n in-
creases,

P{ lim
n

sup
i,j≥n

‖Zi − Zj‖ > 6ε } = lim
n

P{ sup
i,j≥n

‖Zi − Zj‖ > 6ε } = 0.

Since ε > 0 is arbitrary, this proves that 1.45 holds almost surely.
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Exercises and complements

1.46 Simple random walk in continuous time. Let X be a pure-jump Lévy
process in R with Lévy measure

λ = aδ1 + bδ−1,

where δx is Dirac at x, and a and b are positive numbers. Show thatX = X+−
X− where X+ and X− are independent Poisson processes with respective
rates a and b. Describe the total variation process V . Show that at every
time of jump for V , the process X jumps either upward or downward with
respective probabilities a/(a+ b) and b/(a+ b).

1.47 Processes with discrete jump size. Let λ be a purely atomic finite measure
in R

d. Let X be a compound Poisson process with λ as its Lévy measure.
Show that X can be decomposed as

X =
∞∑

1

akN
(k)

where (ak) is a sequence in R
d, and the N (k) are independent Poisson pro-

cesses. Identify the ak and the rates of the N (k).

1.48 Two-sided gamma processes. As in Example 1.21, let X+ and X− be
independent gamma processes and define X = X+ −X−. Suppose that X+

and X− have the same scale parameter c, and respective shape rates a and b.
Let V = X+ +X−.

a) Compute the Lévy measures of X and V .
b) Show that the distribution πt of Xt is given by

πtf=
ˆ

R+

dx
e−cxcatxat−1

Γ(at)

ˆ
R+

dx
e−cxcbtxbt−1

Γ(bt)
f(x− y), f ∈ B(R).

c) For fixed t, show that X+
t /Vt and Vt are independent. What are

their distributions?

1.49 Symmetric gamma distribution. Let ka denote the density function of
the symmetric gamma distribution with shape index a and scale parameter
1, that is, ˆ

R

dx ka(x) eirx =
(

1
1 + r2

)a
, r ∈ R.

a) The density for the same distribution with scale parameter c is the
function x �→ cka(cx). Show.

b) For a = b in 1.48, show that πt(dx) = ckat(cx) dx.
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1.50 Alternative constructions. Let N be a standard Poisson random measure
on R+ × R+ (with mean Leb× Leb). Let j : R+ �→ R

d be a Borel function
satisfying ˆ

R+

dx (|j(x)| ∧ 1) <∞.

a) Show that

Xt =
ˆ

[0,t]×R+

N(ds, dx)j(x), t ∈ R+,

defines a pure-jump Lévy process.
b) Compute the Lévy measure corresponding to j(x) = e−cx, x ∈ R+.

1.51 Continuation. Let N be as in the preceding exercise. Let j : R+ �→ R
d

be such that ˆ
R+

dx (|j(x)|2 ∧ 1) <∞,

and put D = { x ∈ R+ : |j(x)| ≤ 1 } and Dc = R+\D. Let

Xd
t =
ˆ

[0,t]×D
[N(ds, dx) − ds dx ] j(x),

with the exact meaning to be in accord with Notation 1.27. Then, Xd is a
Lévy process. So is

Xe
t =
ˆ

[0,t]×Dc

N(ds, dx) j(x).

1.52 Continuation. Let j1 and j2 be Borel functions from R+ into R, and
suppose that they both satisfy the condition on j of 1.50. Define

X
(1)
t =

ˆ
[0,t]×R+

N(ds, dx) j1(x), X
(2)
t =

ˆ
[0,t]×R+

N(ds, dx) j2(x).

Show that X(1) and X(2) are Lévy processes in R, and X = (X(1), X(2)) is
a Lévy process in R

2; all three are of the pure-jump type; X(1) and X(2) are
dependent.

1.53 Spherical coordinates. Each point x in R
d can be represented as x = vu

by letting v = |x| and u = x/|x|; obviously, v is the length of x, and u is its
direction represented as a point on the unit sphere

S = { x ∈ R
d : |x| = 1 }.

Let ρ be a σ-finite measure on R+ and let σ be a transition probability kernel
from R+ into S. Define the measure λ on R

d by the integral formula

λf =
ˆ

Rd

λ(dx) f(x) =
ˆ

R+

ρ(dv)
ˆ
S

σ(v, du)f(vu)



Sec. 2 Stable Processes 329

for f : R
d �→ R+ Borel. Then, ρ is called the radial part of λ, and σ the

spherical part.

a) Show that
´

Rd λ(dx) (|x|2 ∧ 1) <∞ ⇔ ´
R+
ρ(dv)(v2 ∧ 1) <∞.

b) Show that
´

Rd λ(dx) (|x| ∧ 1) <∞ ⇔ ´
R+
ρ(dv)(v ∧ 1) <∞.

c) Let h : R
d �→ R+ be the mapping x �→ |x|. Show that ρ = λ◦h−1. If

λ is given somehow, one can find ρ and σ such that ρ is the radial part and
σ the spherical part.

1.54 Continuation. Let λ, ρ, σ be as in the preceding exercise 1.53, and sup-
pose that ρ-integral of (v ∧ 1) is finite as in part (b) of 1.53. Let M be a
Poisson random measure on R+ ×R+ with mean Leb× ρ. Let (Ti, Vi), i ∈ N,
be a labeling of its atoms. For each i, let Ui be a random point on the sphere
S such that

P{ Ui ∈ B | Ti = t, Vi = v } = σ(v,B)

free of t, and assume that Ui is conditionally independent of
{ (Tj , Vj , Uj) : j �= i } given Vi. Show that

Xt =
∑

i∈N

Vi Ui 1{Ti≤1}, t ∈ R+,

defines a pure-jump Lévy process X in R
d whose Lévy measure is λ.

2 Stable Processes

Stable processes form an important subclass of Lévy processes. This sec-
tion is to introduce them and point out the explicit forms of their charac-
teristic exponents and Lévy measures. Section 6 on subordination will have
further results clarifying the relationships among them.

Let a be a number in R+. Let X = (Xt)t∈R+ be a Lévy process in R
d.

Then X is said to be a-stable, or stable with index a, or self-similar with
index a if the process X̂ = (s−1/aXst)t∈R+ has the same probability law as
X for every s in (0,∞). Since the law of a Lévy process X is determined by
the distribution of X1, and since X̂ is also Lévy, the condition of a-stability
is equivalent to the condition that s−1/aXs have the same distribution as X1

for every s in (0,∞), or that Xt and t1/aX1 have the same distribution.
If X = 0 almost surely, then it is a-stable for every a in R+; we exclude

this degenerate case from now on; then a > 0 necessarily. Exercises 2.34 and
2.35 show that the index a cannot exceed 2. If X = W or X = cW with W
Wiener and c a constant, then X is stable with index 2; see Exercise 2.36.
All other stable processes have indices in the interval (0, 2).

For stable processes in R, we shall see the following. If the index a is
in (0, 1), then the process is necessarily a pure-jump Lévy process whose
Lévy measure is infinite and has a specific form. If a is in (1, 2), then the
Lévy measure is again infinite and has a specific form, and the paths have
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infinite variation over every time interval and cannot be pure-jump type. If
a = 1, there are three possibilities: the process can be pure drift and thus
deterministic; or it can be a Cauchy process, the paths having the same
qualitative features as in the case of indices in (1, 2), but each increment
having a Cauchy distribution; or it can be a Cauchy process plus some drift.

Stable processes with index in (0, 1)

The process introduced in Example VI.4.10 is an increasing pure-jump
Lévy process which is stable with index a in (0, 1). It will serve as the total
variation process (see 1.12 et seq.) for a-stable processes in R

d. We review
the example in a form suited to our current agenda.

2.1 Example. Increasing stable processes. Fix a in (0, 1) and c in (0,∞).
Let

λ(dv) = dv
c

va+1
1(0,∞)(v), v ∈ R.

This λ satisfies the condition 1.13 of Theorem 1.12. Let V be the pure-jump
Lévy process associated. Then V is strictly increasing, all its jumps are up-
ward, and it has infinitely many jumps in every time interval of some length;
the last is because λ(0,∞) = +∞. The process V is a-stable; conversely,
every increasing stable process has this form. Recall from VI.4.10 that, for
p ≥ 0,

E e −pVt = exp− t

ˆ
R+

dv
c

va+1
(1 − e−pv) = exp− tc

Γ(1 − a)
a

pa.2.2

We show next that the corresponding characteristic function is

E eirVt = exp t
ˆ

R+

dv
c

va+1
(eirv − 1)

= exp− tca|r|a [1 − i(tan 1
2
πa) sgn r],2.3

r ∈ R, where

ca = c
Γ(1 − a)

a
cos 1

2
πa, sgn r = 1R+(r) − 1R+(−r).2.4

We start by claiming that, for every complex number z whose real part is
zero or less,ˆ

R+

dv
c

va+1
(ezv − 1) = −cΓ(1 − a)

a
(−z)a = −cΓ(1 − a)

a
|z|a eia Arg(−z),

2.5

where Arg z is the principal value (in the interval (−π, π]) of the argument of
z. This claim follows from noting that 2.5 holds for all negative real z in view
of 2.2, and that both sides of 2.5 are regular in the interior of the left-hand
plane and are continuous on the boundary. Taking z = ir in 2.5 we obtain
2.3, since Arg (−ir) = −1

2π sgn r.
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2.6 Example. Stable processes in R
d with index in (0, 1). Fix a in (0, 1)

and c in (0,∞). Let S = { x ∈ R
d : |x| = 1 }, the unit sphere in R

d, and let
σ be a probability measure on it. Define a measure λ on R

d by the integral
formula

λf =
ˆ

Rd

λ(dx) f(x) =
ˆ

R+

dv
c

va+1

ˆ
S

σ(du) f(vu), f ≥ 0 Borel;2.7

see Exercise 1.53; note that the radial part of λ is the Lévy measure of the
preceding example. When f(x) = |x| ∧ 1, we have f(vu) = |vu| ∧ 1 = v ∧ 1
for u in S, and it follows that λf < ∞ since a ∈ (0, 1). Thus λ satisfies the
condition 1.13.

LetX be the process constructed in Theorem 1.12 for this Lévy measure λ.
Then,X is a pure-jump Lévy process in R

d. Its total variation process V is the
increasing pure-jump Lévy process of the preceding example. The processes
X and V have the same jump times, infinitely many in every open interval.
Moreover, 2.7 implies the following conditional structure for X given V : given
that V has a jump of size v at time t, the process X has a jump of size vU
at the same time t, where U is a random variable with distribution σ on the
sphere S ; see Exercise 1.54 for the same description in more detail.

Consequently, the a-stability of V implies the a-stability of X : for fixed
s in (0,∞), the transformation that takes the sample path t �→ Xt(ω) to
the sample path t �→ X̂t(ω) = s−1/aXst(ω) merely alters the times and
magnitudes of the jumps, which are totally determined by t �→ Vt(ω). The
a-stability of X can also be deduced by noting that t1/aX1 and Xt have the
same characteristic function; for, with the notations 2.4, it follows from 2.3
and 2.7 that, with ca as in 2.4,

E eir·Xt = exp t
ˆ
S

σ(du)
ˆ

R+

dv
c

va+1
(eivr·u − 1)2.8

= exp− tca

ˆ
S

σ(du)|r·u|a[1 − i(tan 1
2πa) sgn r·u], r ∈ R

d.

2.9 Example. Symmetric stable processes with index in (0, 1). A Lévy
process X is said to be symmetric if −X has the same law as X . This is
equivalent to having the characteristic exponent ψ symmetric, that is, to
having ψ(r) = ψ(−r) for every r in R

d. In the case of a pure-jump Lévy
process, in view of 1.14 defining X , symmetry is equivalent to having the
law of M invariant under the transformation (t, x) �→ (t,−x) of R+ × R

d

onto itself. These imply, together with 2.7 and 2.8, that the following four
statements are equivalent for the process X of Example 2.6:

a) The process X is symmetric.
b) The Lévy measure λ is symmetric, that is, λ(B) = λ(−B) for Borel

B ⊂ R
d.

c) The distribution σ is symmetric, that is, σ(B) = σ(−B) for Borel
B ⊂ S.
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d) The exponent of X is real-valued, that is, 2.8 reduces to

E e ir·Xt = exp− tca

ˆ
S

σ(du) |r·u|a, r ∈ R
d.2.10

2.11 Example. Isotropic stable processes with index in (0, 1). A Lévy
process X in R

d is said to be isotropic, or rotationally invariant, if its law
is invariant under all orthogonal transformations of R

d. This is equivalent to
saying that X and gX have the same law for every orthogonal matrix g of
dimension d. If d = 1, isotropy is the same as symmetry; in higher dimensions,
isotropy implies symmetry and more.

Let X be as in Example 2.6. Thinking of the jumps, it is clear that X
is isotropic if and only if the law governing the jump directions is isotropic,
that is, the measure σ on S is the uniform distribution on S. And then, the
characteristic function 2.8 becomes even more specific than 2.10 (see Exercises
2.40 and 2.41 for the computations):

E e ir·Xt = exp− tcad |r|a, r ∈ R
d,2.12

where the constant cad depends on a, c, and d; with ca as in 2.4,

cad =
Γ(a+1

2
)Γ(d

2
)

Γ(a+d
2

)Γ(1
2
)
ca.2.13

Stable processes with index 1

If a Lévy process X is 1-stable, then Xt and tX1 have the same dis-
tribution. The meaning of stability is striking: X5, for instance, which is
the sum of 5 independent copies of X1, has the same distribution as 5X1.
The simplest example is the pure-drift process Xt = bt, t ∈ R+. If X is
1-stable, then so is X̂ = (Xt + bt) ; but, if X̂ is to be symmetric, X has to
be symmetric and b = 0. From now on we concentrate on processes without
drift.

2.14 Example. Standard Cauchy process in R. This is a symmetric sta-
ble process with index 1. Its canonical decomposition 1.33 is X = Xd + Xe

and the Lévy measure defining its law is

λ(dx) = dx
1
πx2

, x ∈ R.2.15

This Lévy measure satisfies 1.30 but not 1.13. We shall show that

E e irXt = e−t |r|, r ∈ R,2.16

which makes it apparent that X is 1-stable. The corresponding distribution is

P{ Xt ∈ dx } = dx
t

π(t2 + x2)
, x ∈ R,2.17
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which is called the Cauchy distribution with scale parameter t, because it is
the distribution of tX1 and the distribution of X1 is the standard Cauchy
distribution; see II.2.27. For this reason, X is said to be a standard Cauchy
process.

The symmetry of λ simplifies the construction of X . Going over Theorems
1.23 and 1.29, we observe that the λ-integral in 1.25 vanishes and thus
the term Xd is a limit of pure-jump (compound Poisson) processes. Thus,
X = Xd +Xe can be written as

Xt =
ˆ

[0,t]×R

M(ds, dx) x,2.18

the precise meaning of which is as follows: with Rε = R \ (−ε, ε), for almost
every ω,

Xt(ω) = lim
ε↓0

ˆ
[0,t]×Rε

Mω(ds, dx)x,2.19

the convergence being uniform in t over bounded intervals. It follows from
this, or from 1.32 and the mentioned vanishing of the λ-integral on the right
side of 1.25, that

E e irXt = exp t lim
ε↓0

ˆ
Rε

λ(dx) (eirx − 1)

= exp− 2t
ˆ

R+

dx
1
πx2

(1 − cos rx) = e−t|r|, r ∈ R,

as claimed in 2.16.
The Cauchy process X is not a pure-jump process despite the looks of

2.18. Indeed, sinceˆ
(0,1)

λ(dx) x =
ˆ

(−1,0)

λ(dx) (−x) = + ∞,

it follows from Proposition VI.2.13 on the finiteness of Poisson integrals thatˆ
(s,t)×(0,1)

Mω(du, dx) x =
ˆ

(s,t)×(−1,0)

Mω(du, dx) (−x) = + ∞

for almost every ω for s < t. In other words, over every interval (s, t), the
path X(ω) has infinitely many upward jumps whose sizes sum to +∞, and
infinitely many downward jumps whose sizes sum to −∞. In particular, the
total variation over (s, t) is equal to +∞ always.

Nevertheless, the small jumps are small enough, and the positive and
negative jumps balance each other well, that removing the big jumps yields
a martingale. Employing a notation similar to 2.18 with precise meaning
analogous to 2.19,

Zt =
ˆ

[0,t]×[−b,b]
M(ds, dx) x, t ∈ R+,
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defines a martingale Z for each b in (0,∞). Indeed, Z is a Lévy process with
EZt = 0 and VarZt = 2bt/π ; it is not a stable process.

The process X is not a martingale for the simple reason that EXt does
not exist, which is because the jumps exceeding b in magnitude are very big
in expectation:

E

ˆ
[0,t]×(b,∞)

M(ds, dx)x = t

ˆ
(b,∞)

λ(dx)x = ∞ ,

and similarly for the integral over [0, t] × (−∞,−b) . This fact about EXt

is often expressed by saying that the Cauchy distribution has fat tails; the
account above is more revealing.

2.20 Example. Half-Cauchy. This is a Lévy processX that is not stable,
and the distribution of Xt is not Cauchy. We give it here to clarify the role
of symmetry in the 1-stability of Cauchy processes. Let X be a Lévy process
in R whose canonical decomposition is X = Xd + Xe and whose Lévy
measure is

λ(dx) = dx
1
x2

1(0,∞)(x), x ∈ R.

This λ is, up to a constant multiple, the one-sided version of the Lévy measure
in the preceding example.

All jumps of X are upward, but X is not constrained to R+ ; for t > 0,
the distribution of Xt puts strictly positive mass on every interval (x, y) with
−∞ < x < y <∞. In particular, all the jumps of Xd are upward, the jumps
over (s, t) are infinitely many and their sizes sum to +∞. Thus, Xd is truly
a compensated sum of jumps; it is the limit of the processes Xε with upward
jumps and downward drift.

The characteristic function for Xt is, in view of 1.32, and the form of λ
here,

E eirXt = exp t
[ˆ 1

0

dx
1
x2

(eirx − 1 − irx) +
ˆ ∞

1

dx
1
x2

(eirx − 1)
]

2.21

= exp− t
[

1
2π|r| − ic0r + ir log |r| ] ,

where

c0 =
ˆ 1

0

dx
1
x2

(sinx− x) +
ˆ ∞

1

dx
1
x2

sinx.

It is checked easily that it is impossible for Xt and t1/aX1 to have the same
characteristic function for some a > 0. So, X is not stable at all.

2.22 Example. Cauchy and other 1-stable processes in R
d. Let S be the

unit sphere in R
d, and let σ be a probability measure on S satisfying

ˆ
S

σ(du) u = 0.2.23
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For example, if d = 2, we obtain such a measure by putting equal weights at
the vertices of a regular pentagon circumscribed by the unit circle S.

Let c be a constant in (0,∞), and let λ be the measure on R
d given by

λf =
ˆ

Rd

λ(dx) f(x) =
ˆ

R+

dv
c

v2

ˆ
S

σ(du) f(vu), f ≥ 0 Borel.2.24

This λ satisfies 1.30; for f(x) = |x|2 ∧ 1, we get λf = 2c <∞. But λ fails to
satisfy 1.13.

Let X be the Lévy process whose canonical decomposition is X = Xd+
Xe in the notations of 1.31 and 1.33 and whose Lévy measure is the current
λ. Its sample path behavior is similar to that of Example 2.6, except that it
is not a pure-jump process and has infinite variation over every interval. The
magnitudes of its jumps are regulated by the radial part of λ, and the latter
is a constant multiple of the Lévy measure in Example 2.20, the half-Cauchy
process. The characteristic function of Xt can be obtained using 2.21:

E e ir·Xt = exp t

ˆ
S

σ(du)
ˆ

R+

dv
c

v2
[ eivr·u − 1 − ivr·u 1B(vu) ]2.25

= exp− tc

ˆ
S

σ(du) [ 1
2
π |r·u| − ic0r·u+ ir·u log |r·u| ]

= exp− tc

ˆ
S

σ(du) [ 1
2π|r·u| + ir·u log |r·u| ] ;

here, we noted that 1B(vu) = 1[0,1](v) for the unit ball B and the unit
vector u, and then used 2.21 with r there replaced by r · u and finally the
assumption 2.23. Replacing r by tr and using 2.23 once more, we see that the
characteristic functions of Xt and tX1 are the same. Hence, X is 1-stable.

When d = 1, the unit “sphere” consists of the two points +1 and −1,
and the condition 2.23 makes σ symmetric. Thus, when d = 1, the process is
symmetric necessarily and is a Cauchy process (equal to (1/2)πcZ where Z
is standard Cauchy). In higher dimensions, symmetry and isotropy require
further conditions on σ. For example, the pentagonal σ mentioned above
yields a 1-stable process X in R

2 that is not symmetric.
When d ≥ 2, the process X is symmetric if and only if σ is symmetric,

and then 2.23 holds automatically and 2.25 becomes

E eir·Xt = exp−
1
2πct

´
S σ(du) |r·u|, r ∈ R

d.2.26

Moreover, X is isotropic if and only if σ is the uniform distribution on S, in
which case the integral over the sphere can be computed as in Exercise 2.41,
and we get

E eir·Xt = exp− ĉt|r|, r ∈ R
d,2.27

where ĉ = 1
2c
√
πΓ(d2 )/Γ(d+1

2 ). This Fourier transform is invertible (see
Example 6.8 for a direct computation)

P{Xt ∈ dx } = dx ĉtΓ
(
d+1
2

)
/[πĉ2t2 + π|x|2 ](d+1)/2, x ∈ R

d.
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This is called the d-dimensional Cauchy distribution with scale factor ĉt ; thus,
Xt has the same distribution as ĉtZ, where Z has the standard d-dimensional
Cauchy distribution; see Exercise 2.42 for the definition.

Stable processes with index in (1, 2)

These processes are similar to the stable ones with index in (0, 1), except
that they cannot have bounded variation over intervals.

Fix a in (1, 2) and c in (0,∞). Let S be the unit sphere in R
d, and let σ

be a probability measure on it. Define a measure λ on R
d by

λf =
ˆ

R+

dv
c

va+1

ˆ
S

σ(du) f(vu), f ≥ 0 Borel.

This λ is the same as that in 2.7 but the shape index a is now in the interval
(1, 2) ; this λ satisfies 1.30 but not 1.13. Thus, the process we are about to
introduce will have infinitely many jumps over every interval and, further, it
will have infinite variation over every interval.

Theorem 1.29 shows the existence of a Lévy process Xd+Xe whose Lévy
measure is λ. Consider the compound Poisson process Xe whose every jump
exceeds unity in magnitude; it has a well-defined mean: since a > 1,

E Xe
t = t

ˆ ∞

1

dv
c

va+1
v

ˆ
S

σ(du) u = t
c

a− 1

ˆ
S

σ(du) u = bt

with an apparent definition for the vector b in R
d. We define the process X

to have the canonical decomposition X = Xb+Xd+Xe with Xb
t = −bt. In

other words, in the spirit of Notation 1.27, and with M Poisson with mean
Leb × λ,

Xt =
ˆ

[0,t]×Rd

[M(ds, dx) − ds λ(dx) ] x.2.28

It is clear that X is a Lévy process in R
d, and its every component is a

martingale. It follows from 2.28 that

E e ir·Xt = exp t

ˆ
Rd

λ(dx) (eir·x − 1 − ir·x)2.29

= exp t

ˆ
S

σ(du)
ˆ

R+

dv
c

va+1
(eivr·u − 1 − ivr·u).

It is now easy to check that Xt and t1/aX1 have the same characteristic
function; thus, X is a-stable.

On the right side of 2.29, the integral over R+ can be evaluated through
integration by parts using 2.3. The result is similar to 2.8: for r in R

d,

E e ir·Xt = exp− tca

ˆ
S

σ(du) |r · u|a [1 − i (tan 1
2πa) sgn r · u],2.30
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where

ca = − c
Γ(2 − a)
a (a− 1)

cos 1
2
πa ;

note that ca > 0. The formula 2.30 shows that X is symmetric if and only if
σ is symmetric, in which case

E e ir·Xt = exp− tca

ˆ
S

σ(du) |r · u|a, r ∈ R
d.2.31

Further, X is isotropic if and only if σ is the uniform distribution on S, in
which case the result of Exercise 2.41 yields

E e ir·Xt = exp− tcad |r|a, r ∈ R
d,2.32

with cad = ca Γ(a+1
2 )Γ(d2 ) / Γ(a+d2 )Γ( 1

2) with ca as in 2.30. Note that 2.32
has the same form as in 2.12 and 2.26.

Exercises

2.33 Arithmetics . Fix a > 0. Show the following for Lévy processes X and Y
in R

d.

a) If X is a-stable, then so is cX for every constant c in R.
b) If X and Y are a-stable and independent, then X + Y and X − Y

are a-stable.
c) If X is a-stable, and Y is independent of X and is b-stable for some

b > 0 distinct from a, then X + Y is not stable.

2.34 Stability index . Fix a > 0. Suppose that X is an a-stable non-degenerate
Lévy process in R with characteristic exponent ψ. This is to show that, then,
a ∈ (0, 2] necessarily.

a) Show that tψ(r) = ψ(t1/a r) for t > 0 and r in R. Show that
ψ(r) = c ra for some complex constant c for r in R+.

b) Suppose that X is symmetric, that is, X and −X have the same
law. Then, ψ(r) = ψ(−r) for all r. Show that ψ(r) = c |r|a for all r in R.

c) Show that ec|r|
a

cannot be a characteristic function when a > 2.
Hint: See Exercise II.2.33 about the second moment of X1. Conclude that, if
X is symmetric, then a ∈ (0, 2].

d) If X is not symmetric, let Y be an independent copy of it. Then,
X − Y is symmetric and a-stable. So, a ∈ (0, 2] again.

2.35 Continuation. Let X be a Lévy process in R
d. Suppose that it is not

degenerate. If it is a-stable, then a ∈ (0, 2]. Show.

2.36 Stability with index 2. Let X be a Lévy process in R. Suppose that it is
2-stable. Then Xt has the Gaussian distribution with mean 0 and variance
vt for some constant v. Show.
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2.37 Stable Poissons. Let M be a Poisson random measure on R+ × R with
mean μ = Leb × λ. Let a > 0 be fixed. Suppose that M and M ◦h−1 have
the same law (which means that μ = μ◦h−1) for h : R+ × R → R+ × R

defined by

h(t, x) = (
t

s
, s1/ax),

and that this is true for every s > 0. Show that, then,

λ(dx) = dx |x|−a−1 [ b 1(0,∞)(x) + c 1(−∞,0)(x) ], x �= 0,

for some constants b and c in R+. If λ satisfies 1.13 then a ∈ (0, 1) ; show. If
λ satisfies 1.30, then a ∈ (0, 2); show.

2.38 Stable processes with index in (0, 1) . Let X be as in Example 2.6, but
the dimension is d = 1. Then, the “sphere” S consists of the two points +1
and −1 .

a) Show that λ of 2.7 takes the form

λ(dx) = dx
c

|x|a+1
( p 1(0,∞)(x) + q 1(−∞,0)(x) ),

where p and q are positive numbers with p+ q = 1.
b) Conclude that X = X+ −X−, where X+ and X− are independent

a-stable increasing Lévy processes.
c) Show that the characteristic exponent of X is (see 2.8)

ψ(r)= − ca |r|a [ 1 − i (p− q)(tan 1
2πa) sgn r ], r ∈ R.

2.39 Continuation: symmetric case. When d = 1, symmetry and isotropy are
the same concept. Show that X of the preceding exercise is symmetric if and
only if p = q. Then, the characteristic exponent becomes ψ(r) = −ca |r|a.
Check that 2.10 and 2.12 coincide when d = 1.

2.40 Uniform distribution on S. Let σ be the uniform distribution on the unit
sphere S in R

d. This is to show that, for every s in S and a in R+,
ˆ
S

σ(du) |s · u|a =
Γ(a+1

2
)Γ(d

2
)

Γ(a+d
2

)Γ(1
2
)
.

The left side is E |s · U |a where U has the uniform distribution on S. The
trick is to recall that, if the random vector Z = (Z1, . . . , Zd) has independent
components each of which has the standard Gaussian distribution, then

Z = RU,

where R = |Z|, and U is independent of R and has the uniform distribution
on S. It follows that, for every s in S,

E |s · Z|a = (E Ra)(E |s · U |a),
and the problem reduces to evaluating the expectations concerning R and
s · Z.
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a) Recall that R2 has the gamma distribution with shape index d/2
and scale index 1/2. Use this to show that

E Ra =
ˆ ∞

0

dx
e−x xd/2−1

Γ(d/2)
(2x)a/2 = 2a/2 Γ(

d+ a

2
)/Γ(d/2).

b) Show that |s · Z| has the same distribution as R but with d put
equal to 1. Thus, E |s · Z|a = 2a/2 Γ(a+1

2 )/Γ(1/2).
c) Show that E |s · U |a is as claimed.

2.41 Continuation. For r in R
d and u in S, we have |r · u| = |r| |s · u| with

s = r/|r| in S. Use this observation to show that:

ˆ
S

σ(du) |r · u|a = |r|a Γ(a+1
2

)Γ(d
2
)

Γ(a+d
2

)Γ( 1
2
)
.

2.42 Cauchy distribution on R
d. Let Z take values in R

d. It is said to have
the standard Cauchy distribution if

P{Z ∈ dx} = dx
d+ 1

2
(

1
π(1 + |x|2) )(d+1)/2, x ∈ R

d.

Then, E eir·Z = e−|r|, r ∈ R
d. Show that Z has the same distribution asX/Y ,

where X = (X1, . . . , Xd) is a d-dimensional standard Gaussian, and Y is a
one-dimensional Gaussian independent of X . Note that each component Zi
has the standard one-dimensional Cauchy distribution, but the components
are dependent. Show that, for every vector v in R

d, the inner product v · Z
has the one-dimensional Cauchy distribution with scale factor |v|, that is,

P{ v · Z ∈ dx } = dx
|v|

π(|v|2 + |x|2) , x ∈ R.

2.43 Stable processes in R with index in (1, 2). Let X be defined by 2.28, but
with d = 1. Show that the Lévy measure λ defining its law has the form

λ(dx) = dx
c

|x|a+1
[ p 1(0,∞)(x) + q 1(−∞,0)(x) ], x ∈ R,

where a ∈ (1, 2) and c ∈ (0,∞) as before, and p and q are positive numbers
with p+ q = 1. All the jumps are upward if p = 1, and all downward if q = 1.
The process is symmetric if and only if p = q = 1/2. In all cases, X is a
martingale. In particular, E Xt = 0. Compute Var Xt. Show that

E
e irXt = exp− tca [ |r|a − i (p− q)(tan

1
2
πa)sgn r ], r ∈ R.

2.44 Continuation. Recall from 2.28 that X has the form X = Xb + Xd +
Xe, where Xb

t = −EXe
t = −(p − q) c

a−1 t. Note that none of the processes
Xb, Xd, Xe, Xd +Xe, Xe +Xb, Xb +Xd is a-stable.
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2.45 Continuation. Show that it is possible to decompose X as

X = Y − Z,

where Y and Z are independent a-stable processes, with Y having only up-
ward jumps, and Z only downward jumps. Define Y and Z carefully from
the same M that defines X .

3 Lévy Processes on Standard Settings

This section is to re-introduce Lévy processes in a modern setting, show
the Markov and strong Markov properties for them, and reconcile the differ-
ences from the earlier definition. The motivation for modernity is two-fold:
First, we prefer filtrations that are augmented and right-continuous, because
of the advantages mentioned in the last section of Chapter V. Second, it
is desirable to have a moving coordinate system for time and space, which
would indicate what time is meant by “present” in a given argument.

Lévy processes over a stochastic base

3.1 Definition. A stochastic base is a collection

B = (Ω,H,F, θ,P)

where (Ω,H,P) is a complete probability space, F = (Ft)t∈R+ is an augmented
right-continuous filtration on it, and θ = (θt)t∈R+ is a semigroup of operators
θt : ω �→ θtω from Ω into Ω with

θ0ω = ω, θu(θtω) = θt+uω, t, u ∈ R+.3.2

Operators θt are called time-shifts.

3.3 Definition. Let X = (Xt)t∈R+ be a stochastic process with state
space R

d. It is called a Lévy process over the stochastic base B if X is adapted
to F and the following hold:

a) Regularity. X is right-continuous and left-limited, and X0 = 0.
b) Additivity. Xt+u = Xt +Xu◦θt for every t and u in R+.
c) Lévy property. For every t and u in R+, the increment Xu◦θt is

independent of Ft and has the same distribution as Xu.

Remark. IfX is a Lévy process over the base B, then it is a Lévy process
in the sense of Definition 1.1 with respect to the filtration F. The difference
between Definitions 1.1 and 3.3 is slight: we shall show in Theorem 3.20 below
(see also Remark 3.21) that starting from a raw Lévy process (in the sense of
Definition 1.1 and with respect to its own filtration G), we can modify H,G,P
to make them fit a stochastic base. The existence of shift operators is easy
to add as well; see Exercise 3.24.
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Shifts

Existence of shift operators is a condition of richness on Ω. In canonical
constructions, it is usual to take Ω to be the collection of all right-continuous
left-limited functions ω : R+ → R

d with ω(0) = 0. Then, we may define θtω
to be the function u �→ ω(t+ u) − ω(t), and setting Xt(ω) = ω(t) we obtain
both the semigroup property 3.2 and the additivity 3.3b.

In general, θt derives its meaning from what it does, which is described
by the additivity condition 3.3b. We interpret it as follows: Xu ◦θt is the
increment over the next period of length u if the present time is t. Thus, θt
shifts the time-space origin to the point (t,Xt) of the standard coordinate
system; see Figure 9 below.

In other words, θ is a moving reference frame pinned on the path X . It is
an egocentric coordinate system: the present is the origin of time, the present
position is the origin of space.

Our usage of shifts is in accord with the established usage in the theory
of Markov processes. We illustrate this with an example and draw attention
to a minor distinction in terms. Let X be a Wiener process, and put

Zt = Z0 +Xt, t ∈ R+.

Then, Z is called a standard Brownian motion with initial position Z0. The
established usage would require that the Markov process Z satisfy

Zu◦θt = Zt+u, t, u ∈ R+ ;

This is called time-homogeneity for Z. It implies that X is additive:

Xu◦θt = Zu◦θt − Z0◦θt = Zt+u − Zt = Xt+u −Xt.

Xs

Xt

Xu°θt

u

st

Figure 9: When the present time is t, the new coordinate system has its origin
at (t,Xt) of the standard coordinate system.
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Indeed, in the terminology of Markov processes, X is an additive functional
of the Markov process Z.

The additivity for X implies certain measurability properties for the
shifts:

3.4 Lemma. Let X be a Lévy process over the base B. Let G be the filtra-
tion generated by it. For each t in R+, the mapping θt : Ω → Ω is measurable
with respect to Gt+u and Gu for every u in R+ ; in particular, θt is measurable
with respect to G∞ and G∞.

Proof. Fix t and u. For every s in [0, u], we have Xs◦θt = Xt+s−Xt by
additivity, and Xt+s −Xt is in Gt+u. Since Gu is generated by Xs, with such
s, this proves the first claim. The “particular” claim is obvious. �

Markov property

For a Lévy process, Markov property is the independence of future
increments from the past at all times. The next theorem is the precise state-
ment. Here, B is the stochastic base in 3.1, and G is the filtration generated
by X . With the filtration F fixed, we write Et for E(·|Ft), the conditional
expectation operator given Ft.

3.5 Theorem. Suppose that X is a Lévy process in R
d over the stochastic

base B. Then, for every time t, the process X ◦θt is independent of Ft and
has the same law as X. Equivalently, for every bounded random variable V
in G∞,

Et V ◦θt = E V, t ∈ R+.3.6

Remark. The restriction to bounded V is for avoiding questions of exis-
tence for expectations. Of course, 3.6 extends to all positive V in G∞ and to
all integrable V in G∞, and further.

Proof. a) We start by observing that the Lévy property 3.3c is equivalent
to saying that, for every bounded Borel function f on R

d,

Et f ◦Xu◦θt = E f ◦Xu, t, u ∈ R+.3.7

b) We show next that 3.6 holds for V having the form V = Vn, where

Vn = f1(Xu1) f2(Xu2 −Xu1) · · · fn(Xun −Xun−1)3.8

for some bounded Borel functions f1, · · · , fn on R
d and some times 0 < u1 <

u2 < · · · < un.
The claim is true for n = 1 in view of 3.7. We make the induction hypothesis
that the claim is true for n and consider it for n + 1. Observe that, with
u = un and v = un+1 − un for simplicity of notation, we have

Vn+1 = Vn ·W ◦θu, where W = fn+1◦Xv.
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Thus, writing Et = Et Et+u and recalling that θu◦θt = θt+u, we get

Et Vn+1◦θt = Et Et+u(Vn◦θt)(W ◦θt+u)
= Et Vn◦θt Et+u W ◦θt+u
= Et Vn◦θt E W = E Vn E W = E Vn+1

where we used 3.7 to justify the third equality sign, induction hypothesis to
justify the fourth, and 3.7 again for the fifth. So 3.6 holds for every V of the
form 3.8.

c) Borel functions f having the form f(x1, · · · , xn) = f1(x1) · · · fn(xn)
generate the Borel σ-algebra on (Rd)n . Thus, by the monotone class theorem,
part (b) of the proof implies that 3.6 holds for every bounded V having the
form

V = f(Xu1 , Xu2 −Xu1 , · · · , Xun −Xun−1) �
for some bounded Borel f and some times 0 < u1 < · · · < un. Since the
increments of X generate the σ-algebra G∞, the proof is completed through
another application of the monotone class theorem.

Strong Markov property

This is the analog of the Markov property where the deterministic time t
is replaced by a stopping time T . The setup is the same, and we write ET for
the conditional expectation E(·|FT ) . However, in formulating 3.6 with T , we
face a problem: if T (ω) = ∞, then θTω = θT (ω)ω makes no sense and X∞(ω)
is not defined. The following is to handle the problem.

3.9 Convention. Suppose that Z(ω) is well-defined for every ω for
which T (ω) < ∞. Then, the notation Z 1{T<∞} stands for the random
variable that is equal to Z on {T <∞} and to 0 on {T = ∞}.

The convention is without ambiguity. If Z is already defined for all ω, then
Z 1{T<∞} is equal to 0 on {T = ∞} since x·0 = 0 for all x in R̄ = [−∞,+∞].
With this convention, the following is the strong Markov property. Here Ḡ∞
is the completion of G∞ in H, that is Ḡ∞ = G∞∨N where N is the σ-algebra
generated by the collection of negligible events in H.

3.10 Theorem. Suppose that X is a Lévy process over the base B. Let T
be a stopping time of F. Then, for every bounded random variable V in Ḡ∞,

ET V ◦θT 1{T<∞} = (E V ) 1{T<∞}.3.11

Remark. If T < ∞ almost surely, then 1{T<∞} can be deleted on both
sides. In words, the preceding theorem states the following: on the event
{T < ∞}, the future process X ◦θT is independent of the past FT and has
the same law as X . On the event {T = ∞}, there is no future and nothing
to be said.
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Proof. Let X and T be as hypothesized. In view of the defining property
for ET , it is sufficient to show that

E 1H V ◦θT 1{T<∞} = E 1H∩{T<∞} E V3.12

for every H in FT and bounded positive V in Ḡ∞. Moreover, for every V in
Ḡ∞ there is V0 in G∞ such that V = V0 almost surely, and it is enough to
show 3.12 for V0. Hence, it is enough to prove 3.12 for H in FT and bounded
positive V in G∞. We do this in a series of steps.

a) Assume, further, that T is countably-valued. Let D be its range
intersected with R+. Then, {T <∞} is equal to the union of {T = t} over t
in D, and H ∩ {T = t} ∈ Ft for every t. Thus, starting with the monotone
convergence theorem, the left side of 3.12 becomes

∑

t∈D
E 1H∩{T=t}V ◦θt =

∑

t∈D
E 1H∩{T=t} Et V ◦θt = E 1H∩{T<∞} E V,

where the last equality sign is justified by the Markov property that EtV◦θt =
E V . This proves 3.12 for T countably-valued.

b) Now we remove the restriction on T but assume that

V = f ◦Xu3.13

for some u > 0 and some bounded positive continuous function f on R
d.

Let (Tn) be the approximating sequence of stopping times discussed in
Propositions V.1.20 and V.7.12: each Tn is countably-valued, Tn < ∞ on
{T <∞}, and the sequence decreases to T . Since H ∩{T <∞} ∈ FT ⊂ FTn ,
we get from 3.12 with Tn that

E 1H∩{T<∞} V ◦θTn = E 1H∩{T<∞} E V.3.14

On the event {T <∞}, we have Tn <∞ for every n, and

Xu◦θTn = XTn+u −XTn → XT+u −XT = Xu◦θT
almost surely, since (Tn) is decreasing to T and X is right-continuous. Since
V has the form 3.13 with f continuous and bounded, it follows that V ◦θTn →
V ◦θT almost surely and, thus, the left side of 3.14 converges to the left side
of 3.12 by the bounded convergence theorem. This proves 3.12 for V having
the form 3.13 with f bounded, positive, and continuous.

c) Since continuous f : R
d �→ R generate the Borel σ-algebra on R

d,
and since V satisfying 3.13 is a vector space and a monotone class, it follows
that 3.12 and therefore 3.11 holds for V having the form 3.13 with f bounded,
positive, Borel.

d) There remains to extend 3.11 to arbitrary bounded positive V in
G∞. This is done exactly as in the parts (b) and (c) of the proof of the
Markov property, Theorem 3.5: put T wherever t appears and append the
factor 1{T<∞} on each side of every equation having t in it.
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Processes with bounded jumps

We have seen examples of Lévy processes X with EXt equal to +∞
(increasing stable processes) and also examples where EXt does not exist
(Cauchy processes). As an application of the strong Markov property, we now
show that such anomalies are possible only if X has jumps of unbounded size.
The converse is false: as gamma processes exemplify, X may have jumps of
arbitrarily large size and still have finite moments of all orders.

3.15 Proposition. Let X be a Lévy process in R
d over the base B.

Suppose that all its jumps are bounded in magnitude by some fixed constant.
Then, for every t, the variable |Xt| has finite moments of all orders.

Proof. a) Fix a constant b in (0,∞). Suppose that all the jumps (if any)
have magnitudes bounded by b. The claim is that, then, E |Xt|k < ∞ for
every integer k ≥ 1. To prove this, it is enough to show that the distribution
of |Xt| has an exponential tail; indeed, we shall show that there exists a
constant c in (0, 1) such that

P{ |Xt| > (1 + b)n } ≤ et cn, n ∈ N.3.16

b) Let R be the time of exit from the unit ball, that is,

R = inf{ t > 0 : |Xt| > 1 }.

Note that |XR| ≤ 1 + b since the worst that can happen is that X exits
the unit ball by a jump of magnitude b. Moreover, since X0 = 0 and X is
right-continuous, R > 0 almost surely; hence,

c = E e−R < 1.3.17

Finally, note that R < ∞ almost surely. This follows from the impossibility
of containing the sequence (Xm) within the unit ball, since Xm is the sum of
m independent and identically distributed variables.

c) Let T be a finite stopping time of F and consider

T +R◦θT = inf{t > T : |Xt −XT | > 1}.

By the strong Markov property at T , by Theorem 3.10 with V = e−R,

E e−(T+R◦θT ) = E e−T ET e−R◦θT = E e−T E e−R = c E e−T .3.18

d) Put T0 = 0 and define Tn, n ≥ 1, recursively by setting Tn+1 = Tn+
R◦θTn . Since R <∞ almost surely, so is T1 = R and so is T2 = T1 +R◦θT1 ,
and so on. Thus, Tn is an almost surely finite stopping time for each n, and
using 3.18 repeatedly we get

E e−Tn = cn, n ∈ N.3.19
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e) Finally, consider the bound 3.16. Note that Tn+1 is the first time t
after Tn such that |Xt −XTn | > 1. Thus, for fixed t and ω,

|Xt(ω)| > (1 + b)n ⇒ Tn(ω) < t ⇒ e−Tn(ω) > e−t.

Hence, the left side of 3.16 is less than or equal to

P{ e−Tn > e−t } ≤ et E e−Tn = et cn .

by Markov’s inequality and 3.19. This completes the proof. �

On the definitions

Consider Definitions 1.1 and 3.3. They differ at two points: the existence
of shift operators and the conditions of right-continuity and augmentedness
for the filtration F. The shifts are for reasons of convenience and clarity.
For instance, replacing Xu ◦θt with Xt+u − Xt would eliminate the shifts
in Definition 3.3 and in Theorem 3.5 on the Markov property. The same is
true more generally; we can eliminate the shifts entirely, without loss of real
content, but with some loss in brevity; for example, in Theorem 3.10 on the
strong Markov property, we need to replace Xu◦θT = XT+u −XT with X̂u

and, instead of R◦θT , we need to introduce R̂, which is obtained from X̂ by
the same formula that obtains R from X . We use the shifts for the clarity
and economy achieved through their use; see Exercise 3.24 to see that they
can always be introduced without loss of generality.

The conditions on the filtration F are more serious. We illustrate the issue
with an example. Suppose that X is a Wiener process and T is the time of
hitting some fixed level b > 0, that is, T = inf{t > 0 : Xt > b}. Since X is
adapted to F, and F is right-continuous, T is a stopping time of F. If F were
not right-continuous, T might fail to be a stopping time of it. For instance,
T is not a stopping time of G, the filtration generated by X ; this can be
inferred from the failure of Galmarino’s test, Exercise V.1.28.

Nevertheless, the conditions on F of Definition 3.3 are natural in addition
to being advantageous. We show next that, starting with the filtration G

generated by X , we can always use the augmentation Ḡ as the filtration F.

Augmenting the raw process

Let (Ω,H,P) be a probability space, X a stochastic process with state
space R

d, and G the filtration generated by X . Let (Ω, H̄, P̄) be the comple-
tion of (Ω,H,P), and let N be the σ-algebra generated by the collection of
negligible sets in H̄. We denote by Ḡ the augmentation of G in (Ω, H̄, P̄), that
is, Ḡt = Gt ∨ N, the σ-algebra generated by the union of Gt and N. See
Section 7 of Chapter V for these and for the notation Gt+ = ∩ε>0 Gt+ε, and
recall that the right-continuity for Ḡ means that ∩ε>0 Ḡt+ε= Ḡt for every t.
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3.20 Theorem. Suppose that, over (Ω,H,P), the process X is Lévy with
respect to G in the sense of Definition 1.1. Then,

a) over (Ω, H̄, P̄) , the process X is Lévy with respect to Ḡ in the sense
of Definition 1.1, and

b) the filtration Ḡ is augmented and right-continuous.

Before proving this, we note two interesting corollaries; one concerning
Gt+ and the other the special case Ḡ0. Since Gt+ε ⊂ Ḡt+ε, we have
Gt+ ⊂ ∩ε>0 Ḡt+ε, and the last σ-algebra is equal to Ḡt by the preceding
theorem. Since Ḡt = Gt ∨N, we see that Gt+ ⊂ Gt ∨N ; in words, the extra
wisdom gained by an infinitesimal peek into the future consists of events
that are either negligible or almost sure. In particular, since X0 = 0 almost
surely, G0 ⊂ N and we obtain the following corollary, called Blumenthal’s
zero-one law.

3.21 Corollary. Every event in Ḡ0 has probability 0 or 1.

Going back to arbitrary t, we express the finding Gt+ ⊂ Ḡt in terms of
random variables; recall that Ḡt = Gt ∨N, which means that every random
variable in Ḡt differs from one in Gt over a negligible set.

3.22 Corollary. Fix t in R+. For every random variable V in Gt+ there
is a random variable V0 in Gt such that V = V0 almost surely.

Proof of Theorem 3.20

a) We prove the first claim first. Suppose X is as hypothesized. Since
the restriction of P̄ to H is equal to P, the events in H that are P-almost sure
are also events in H̄ that are P̄-almost sure. Thus, the regularity 1.1a of X
over (Ω,H,P) remains as regularity over (Ω, H̄, P̄).

For the Lévy property 1.1b, we first observe that X is such over (Ω,H,P)
with respect to G if and only if

E V f ◦(Xt+u −Xt) = E V E f ◦Xu, t, u ∈ R+,3.23

for every bounded Borel f on R
d and bounded variable V in Gt. Since P̄

coincides with P on H, we may replace E with the expectation operator Ē

with respect to P̄. Finally, if V̄ is a bounded variable in Ḡt = Gt ∨ N, and
f as above, there is V in Gt such that V̄ = V almost surely (under P̄).
Thus, in 3.23, we may replace E with Ē and V with V̄ ; the result is the Lévy
property 1.1b over (Ω, H̄, P̄) with respect to Ḡ.

b) We are working on the complete probability space (Ω, H̄, P̄) to show
that the augmentation Ḡ is also right-continuous. We start at t = 0. Let (εn)
be a sequence decreasing strictly to 0. For n ≥ 1, let

Hn = σ{Xt −Xs : εn ≤ s < t ≤ εn−1}.
Since X is a Lévy process (shown in part (a)), the σ-algebras H1,H2, · · ·
are independent. By Theorem II.5.12, Kolmogorov’s zero-one law, the tail
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σ-algebra defined by (Hn) is trivial, that is, the tail σ-algebra is contained
in N. But, since Hn+1 ∨ Hn+2 ∨ · · · = Gεn , the tail σ-algebra is equal to

∩n Gεn = ∩ε>0 Gε = G0+.

We have shown that G0+ ⊂ N. We use this to show that Ḡ is right-continuous.
Fix t ; let Ĝ be the filtration generated by the process X̂, where X̂u = Xt+u−
Xt for every time u. Since X̂ is a Lévy process, what we have just shown
applies to Ĝ and we have Ĝ0+ ⊂ N. It follows that

∩
ε>0

Ḡt+ε = ∩
ε

(Gt ∨ Ĝε ∨ N) = Gt ∨ N ∨ Ĝ0+ = Gt ∨ N = Ḡt

because Ḡt+ε = Gt+ε∨N and Gt+ε = Gt∨Ĝε. In words, Ḡ is right-continuous
as claimed.

Exercises

3.24 Processes of canonical type. The aim is to introduce the probability law
of a Lévy process in a concrete fashion. As a byproduct, this will show that
every Lévy process is equivalent to a Lévy process of the type in Definition 3.3.
Setup.

i) Let (Ω,H,P) be a probability space, X a Lévy process with state
space R

d in the sense of Definition 1.1, and G the filtration generated by X .
ii) Let W be the collection of all mappings w : R+ �→ R

d with
w(0) = 0. Let Yt be the coordinate mapping with Yt(w) = w(t), and let
θt : W �→ W be defined by θtw(u) = w(t + u) − w(t). Define Kt to be the
σ-algebra on W generated by Ys, s ≤ t, and let K = (Kt).

iii) Define the transformation ϕ : Ω �→ W by letting ϕω to be the
path X(ω) : t �→ Xt(ω).

a) Note that Yt ◦ϕ = Xt for every t. Use this to show that ϕ is
measurable with respect to Gt and Kt for every t, and with respect to G∞
and K∞, and therefore with respect to H and K∞.

b) It follows that Q = P◦ϕ−1 is a probability measure on (W,K∞).
This Q is the distribution of X .

c) Show that, over the probability space (W,K∞,Q), the process Y =
(Yt) is a Lévy process, in the sense of Definition 1.1, with respect to its own
filtration K.

d) Let K̄ be the augmentation of K in the completion (W, K̄∞, Q̄) of
(W,K∞,Q). Show that

B = (W, K̄∞, K̄, θ, Q̄)

is a stochastic base in the sense of Definition 3.1. Show that Y = (Yt) is a
Lévy process over B in the sense of Definition 3.3.
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4 Characterizations for Wiener

and Poisson

Throughout this section B is the stochastic base introduced in Definition 3.1,
andX is a Lévy process over B as in Definition 3.3. The aim is to characterize
the three basic processes in qualitative terms: Poisson, the archetypical pure-
jump process; Wiener, the continuous process par excellence; and compound
Poisson process, whose paths are step functions.

Poisson processes

Recall that a Poisson process is a Lévy process whose increments are
Poisson distributed. A number of characterizations were listed in Theorems
VI.5.5 and VI.5.9. The following is a small addition.

4.1 Theorem. The Lévy process X is Poisson if and only if it is a count-
ing process.

Proof. Sufficiency was shown in Theorem VI.5.9. To show the necessity,
suppose that every increment of the Lévy process X has a Poisson distri-
bution, Xt+u −Xt with mean cu, where c is a constant in R+. Then, every
increment takes values in N almost surely, which implies that almost every
path is an increasing step function taking values in N . To show that X is a
counting process, there remains to show that every jump is of size 1 almost
surely.

Fix t. Let Ht be the event that there is a jump of size 2 or more during
[0, t]. Subdivide the interval [0, t] into n intervals of equal length. The event
Ht implies that, of the increments over those n subintervals, at least one
increment is equal to 2 or more. Thus, by Boole’s inequality,

P (Ht ) ≤ n (1 − e−ct/n − (ct/n) e−ct/n)

since each increment has the Poisson distribution with mean ct/n . Letting
n → ∞ we see that P (Ht ) = 0 . Taking the union of Ht over t = t1, t2, · · ·
for some sequence (tn) increasing to infinity, we see that, almost surely, no
jump exceeds 1 in size. �

In the preceding proof, the sufficiency was by appealing to Theorem
VI.5.9. The bare-hands proof of the latter theorem can be replaced with the
following: Suppose that the Lévy process X is a counting process. Then, all
jumps are bounded in size by 1, and Proposition 3.15 shows that EXt < ∞.
Thus, the stationarity of the increments implies that EXt = ct for some fi-
nite constant c, and the Lévy property implies that Mt = Xt − ct defines a
martingale M . Thus, by Theorem V.6.13, the process X is Poisson.
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Wiener and continuous Lévy processes

According to the earlier definition, the Lévy processX is a Wiener process
if it is continuous and Xt has the Gaussian distribution with mean 0 and
variance t. The following shows that continuity is enough.

4.2 Theorem. Suppose that the Lévy process X is continuous and has
state space R. Then, it has the form

Xt = bt+ cWt, t ∈ R+,

where b and c are constants in R, and W is a Wiener process over the base B.

Proof. Assume X is such. Proposition 3.15 shows that Xt has finite mean
and variance; there exist constants b and c such that EXt = bt and VarXt =
c2t. If c = 0, then there is nothing left to prove. Assuming that c �= 0, define

Wt = (Xt − bt)/c, t ∈ R+.

Then W is a continuous Lévy process over the base B, and the Lévy property
can be used to show thatW is a continuous martingale, and so is (W 2

t −t)t∈R+ ,
both with respect to the filtration F. It follows from Proposition V.6.21 that
W is Wiener. �

The preceding proof is via Proposition V.6.21, and the latter’s proof is
long and difficult. It is possible to give a direct proof using the Lévy property
more fully: Start with W being a Lévy process with EWt = 0 and VarWt = t.
For each integer n ≥ 1,

W1 = Yn,1 + · · · + Yn,n

where Yn,j is the increment of W over the interval from (j − 1)/n to j/n.
SinceW is Lévy, those increments are independent and identically distributed
with mean 0 and variance 1/n. Now the proof of the classical central limit
theorem (III.8.1) can be adapted to show that W1 has the standard Gaussian
distribution. Thus, W is a Wiener process.

Continuous Lévy processes in R
d

IfW 1, . . . ,W d are independent Wiener processes, thenW = (W 1, . . . ,W d)
is a d-dimensional Wiener process. Obviously, it is a continuous Lévy process
in R

d. We now show that, conversely, every continuous Lévy process in R
d is

obtained from such a Wiener process by a linear transformation plus some
drift.

4.3 Theorem. Suppose that the Lévy process X in R
d is continuous.

Then,
Xt = bt+ c Wt, t ∈ R+,

for some vector b in R
d, some d× d′ matrix c, and a d′-dimensional Wiener

process W over the base B.
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Remark. Let v be the covariance matrix for X1. Then, d′ is the rank of
v (of course d′ ≤ d), and v = ccT with cT denoting the transpose of c.

Proof. SupposeX continuous. For r in R
d, consider the linear combination

r ·Xt of the coordinates of Xt. The process r ·X is a continuous Lévy process
in R. It follows from Theorem 4.2 that r ·X1 has a one-dimensional Gaussian
distribution, and this is true for every r in R

d. Thus, X1 has a d-dimensional
Gaussian distribution with some mean vector b in R

d and some d× d matrix
v of covariances.

The matrix v is symmetric and positive definite (that is, v = vT and
r · vr ≥ 0 for every r in R

d). Let d′ be its rank. There exists some d × d′

matrix c of rank d′ such that v = ccT , that is,

vij =
d′∑

k=1

cikcjk, i, j = 1, 2, · · · , d.4.4

We define a matrix a as follows. If d′ = d, put a = c. If d′ < d, the matrix
c has exactly d′ linearly independent rows, which we may assume are the
rows 1, 2, . . . , d′ by re-labeling the coordinates of X ; we let a be the d′ × d′

matrix formed by those first d′ rows of c. Obviously a is invertible; let â be
its inverse. Define, for i = 1, . . . , d′,

W i
t =

d′∑

k=1

âik (Xk
t − bkt), t ∈ R+.4.5

It is clear that W = (W 1, . . . ,W d′) is a continuous Lévy process in R
d′ ,

and Wt has the d′-dimensional Gaussian distribution with mean vector 0 and
covariances

E W i
t W

j
t =

d′∑

m=1

âim

d′∑

n=1

âjn E (Xm
t − bmt)(Xn

t − bnt)

=
d′∑

m=1

d′∑

n=1

âimâjnvmnt

=
d′∑

m=1

d′∑

n=1

âimâjn

d′∑

k=1

amkankt = δijt,

where the third equality follows from 4.4 since cmk = amk and cnk = ank for
m,n ≤ d′. This shows that W is d′-dimensional Wiener. Reversing 4.4 and
4.5 shows that X is as claimed. �

Compound Poisson processes

We adopt the construction in Example 1.2c as the definition for compound
Poisson processes. Several other constructions were mentioned previously in
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this chapter and the last. The following characterization theorem summarizes
the previous results and extends them onto the modern setting. This is basic.

4.6 Theorem. The Lévy process X over the base B is a compound Pois-
son process if and only if one (and therefore all) of the following statements
holds.

a) Almost every path of X is a step function.
b) There is a Poisson process (Nt) over B and, independent of it, an

independency (Yn) of identically distributed R
d-valued variables such that

Xt =
∞∑

n=1

Yn 1{n≤Nt}, t ∈ R+.4.7

c) There is a Poisson random measure M on R+×R
d whose mean has

the form Leb × λ with some finite measure λ on R
d such that

Xt =
ˆ

[0,t]×Rd

M(ds, dx) x, t ∈ R+.4.8

4.9 Remarks. a) The proof will show that the Poisson random measure
M is adapted to the filtration F and is homogeneous relative to the shifts θt,
that is, ω �→M(ω,A) is in Ft for every Borel subset A of [0, t] × R

d, and

M(θtω,B) = M(ω,Bt)

for every Borel subset B of R+×R
d, where Bt consists of the points (t+u, x)

with (u, x) in B.
b) The connection between 4.7 and 4.8 is as follows. Let c = λ(Rd) <∞

and put μ for the distribution (1/c)λ. Finiteness of c implies that the atoms of
M can be labeled as points (Tn, Yn) so that 0 < T1 < T2 < · · · almost surely.
The Tn are the successive jump times of X and form the Poisson process N ,
and the Yn are the variables appearing in 4.7. The jump rate for N is c, and
the distribution common to Yn is μ.

Proof. (a) ⇒ (b). Assume (a). Let Nt be the number of jumps of X over
(0, t]. Since X is adapted to F, so is N ; since X is a step process, N is a
counting process; and since Nu◦θt is the number of jumps of X◦θt over (0, u],
we have the additivity of N with respect to the shifts. Moreover, X ◦θt is
independent of Ft and has the same law as X (this is the Markov property,
Theorem 3.5); thus, Nu◦θt is independent of Ft and has the same distribution
as Nu. In summary, N is a Lévy process over the base B and is a counting
process. By Theorem 4.1, it must be a Poisson process with some rate c.

Let Yn be the size of the jump by X at Tn. Then, 4.7 is obvious, and there
remains to show that (Yn) is independent of (Tn) and is an independency of
variables having the same distribution, say, μ on R

d. We start by showing
that R = T1 and Z = Y1 are independent and a bit more. The distribution of
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Z is μ, and the distribution of R is exponential with parameter c ; the latter
is because N is Poisson with rate c. For t in R+ and Borel subset B of R

d,
we now show that

P{ R > t, Z ∈ B } = e−ct μ(B).4.10

Note that, if R(ω) > t, then Z(ω) = Z(θtω). So, by the Markov property
for X , Theorem 3.5, the left side of 4.10 is equal to

P{ R > t, Z◦θt ∈ B } = E 1{R>t} Et 1B◦Z◦θt
= E 1{R>t} E 1B◦Z = e−ct μ(B)

as claimed in 4.10. Next, for n ≥ 1, we note that

Tn+1 − Tn = R◦θTn , Yn+1 = Z◦θTn,

and use the strong Markov property proved in Theorem 3.10 at the almost
surely finite stopping times Tn . We get that

P{ Tn+1 − Tn > t , Yn+1 ∈ B | FTn }4.11

= P{ R◦θTn > t , Z◦θTn ∈ B | FTn } = P{ R > t , Z ∈ B }.

Putting 4.10 and 4.11 together shows that the sequences (Tn) and (Yn) are
independent, and the Yn are independent and have the distribution μ. This
completes the proof that (a) ⇒ (b).

(b) ⇒ (c). Assume (b) and let (Tn) be the sequence of successive jump
times of N . It follows from Corollary VI.3.5 that the pairs (Tn, Yn) form a
Poisson random measure M on R+ × R

d with mean cLeb × μ = Leb × λ,
where λ = cμ is a finite measure on R

d. It is obvious that, then, 4.7 and 4.8
are the same equation served up in differing notations.

(c) ⇒ (a). Assume (c) ; then 4.8 shows that X is a Lévy process; and the
paths are almost surely step functions, because the measure λ is finite. �

The best qualitative definition for compound Poisson processes is that
they are Lévy processes whose paths are step functions. The following pro-
vides another equivalent condition for it. As before, X is a Lévy process in
R
d over the base B. We leave its proof to Exercise 4.14.

4.12 Proposition. Almost every path of X is a step function if and only
if the probability is strictly positive that

R = inf{ t > 0 : Xt �= 0 }
is strictly positive. Moreover, then 0 < R < ∞ almost surely and has the
exponential distribution with some parameter c in (0,∞).
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4.13 Remark. Obviously, R is a stopping time of (Gt+). Thus, the event
{R > 0} belongs to G0+ and, by Blumenthal’s zero-one law (Corollary 3.21),
its probability is either 0 or 1. In other words, either R = 0 almost surely
or R > 0 almost surely; in the former case the point 0 of R

d is said to be
instantaneous, and in the latter case, holding. The preceding can now be re-
stated: X is a compound Poisson process if and only if the point 0 is a holding
point, in which case the holding time has an exponential distribution.

Exercise

4.14 Proof of Proposition 4.12. If the paths are step functions, then R is the
time of first jump and is necessarily strictly positive. The following are steps
leading to the sufficiency part, assuming that R > 0 almost surely in view of
Remark 4.13.

a) Show that, if R(ω) > t, then R(ω) = t+R(θtω). Use the Markov
property to show that the function f(t) = P{R > t}, t ∈ R+, satisfies
f(t+ u) = f(t)f(u).

b) Note that f is right-continuous and bounded; the case f = 1 is
excluded by the standing assumption that X is not degenerate; show that
the case f = 0 is also excluded. Thus, f(t) = e−ct for some constant c in
(0,∞) ; in other words, 0 < R <∞ almost surely and R is exponential.

c) Show that, on the event H = {XR− = XR }, we have XR− =
XR = 0 and R◦θR = 0. Use the strong Markov property to show that

P(H) = P( H ∩ {R◦θR = 0} ) = P(H)P{R = 0} = 0.

Hence, R is a jump time almost surely, obviously the first.
d) Define T1 = R, and recursively put Tn+1 = Tn +R◦θTn . Show that

the Tn form a Poisson process. Conclude that X is a step process.

5 Itô-Lévy Decomposition

This is to show the exact converse to Theorem 1.29: every Lévy process
has the form given there. Throughout, B = (Ω,H,F, θ,P) is a stochastic
base, and X is a stochastic process over it with state space R

d. A random
measure M on R+ ×R

d is said to be Poisson over B with Lévy measure λ if

5.1 a) M(A) is in Ft for every Borel subset A of [0, t] × R
d,

b) M(θtω,B) = M(ω,Bt) for every ω and t and Borel subset B of
R+ × R

d, where Bt = {(t+ u, x) : (u, x) ∈ B}, and
c) M is Poisson with mean Leb × λ, and λ is a Lévy measure, that is,

λ{0} = 0 and ˆ
Rd

λ(dx) (|x|2 ∧ 1) < ∞.
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With this preparation, we list the main theorem of this section next. It is
called the Itô-Lévy decomposition theorem. Its sufficiency part is Theorem
1.29. The necessity part will be proved in a series of propositions of interesting
technical merit. Recall Notation 1.27 and its meaning.

5.2 Theorem. The process X is a Lévy process over B if and only if,
for every t in R+,

Xt = bt+ cWt +
ˆ

[0,t]×B

[M(ds, dx) − dsλ(dx)]x +
ˆ

[0,t]×Bc

M(ds, dx)x

for some vector b in R
d, some d× d′ matrix c, some d′-dimensional Wiener

process W over B, and, independent of W , a random measure M on R+×R
d

that is Poisson over B with some Lévy measure λ.

5.3 Corollary. If X is a Lévy process, then its characteristic expo-
nent is

ψ(r) = ib · r − 1
2
r · vr +

ˆ
Rd

λ(dx) (eir·x − 1 − ir · x 1B(x)), r ∈ R
d

for some b in R
d, some d×d matrix v that is symmetric and positive definite,

and some measure λ on R
d that is a Lévy measure. Conversely, if (b, v, λ)

is such a triplet, there is a Lévy process whose characteristic exponent is ψ
above.

The preceding corollary is immediate from Theorems 5.2 and 1.29. This is
basically the Lévy-Khinchine formula stated in stochastic terms. Obviously,
b and λ are as in Theorem 5.2, and v = ccT .

5.4 Remarks. a) Characteristic triplet. This refers to (b, v, λ) ; it de-
fines the law of X by defining the characteristic exponent in the canonical
form given in the preceding corollary.

b) Semimartingaleness. It follows from the theorem above that every
Lévy process is a semimartingale; see Remark 1.34c also.

c) Special cases. Characterizations for Lévy processes with special prop-
erties can be deduced from the theorem above and discussion in Section 1.
See Theorems 4.2 and 4.3 for X continuous, Theorem 4.6 for X step process,
Theorem 1.12 for X pure-jump.

d) Increasing processes. Suppose that the state space is R and X is
increasing. Then, in the theorem above and its corollary, we must have v =
0, λ(−∞, 0] = 0, and, further, λ must satisfy 1.13. It is usual to represent
such X in the form

Xt = at+
ˆ

[0,t]×(0,∞)

M(ds, dx) x, t ∈ R+.

The corresponding characteristic triplet is (b, 0, λ) with λ as noted and

b = a+
ˆ

(0,1]

λ(dx)x.
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Jumps exceeding ε in magnitude

Recall the notation ΔXt = Xt − Xt− and also Remark 1.9 on the
sparseness of jumps exceeding ε > 0 in magnitude.

5.5 Proposition. Suppose that X is a Lévy process over B. For ε > 0,
let

Xε
t =

∑

s≤t
ΔXs 1{|ΔXs|>ε}, t ∈ R+.

Then, Xε is a compound Poisson process over B.

Proof. a) It is clear that Xε is adapted to F and is additive with respect
to shifts. Since Xε

u is G∞-measurable, it follows from the Markov property
(Theorem 3.5) that Xε

u◦θt is independent of Ft and has the same distribution
as Xε

u. Thus, Xε is a Lévy process over the base B.
b) Since the paths of X are right-continuous and left-limited with

X0 = 0, the paths of Xε are step functions; see Remark 1.9. It follows from
the characterization theorem 4.6 that Xε is a compound Poisson process. �

Some independence

This is to show that Xε above is independent of X−Xε. Generally, proofs
of independence are easy consequences of assumptions made beforehand. This
is a rare case where the proof requires serious work.

5.6 Proposition. Suppose that X is a Lévy process over B. For fixed
ε > 0, let Xε be as defined in the preceding proposition. Then, Xε and X−Xε

are independent Lévy processes over B.

Proof. a) The preceding proposition has shown thatXε is a Lévy process
over B and more; part (a) of its proof is easily adapted to show that X−Xε is
a Lévy process over B, and that the pair (Xε, X−Xε) is a Lévy process over
B with state space R

d×R
d. To show that Xε and X −Xε are independent,

then, is reduced to showing that Xε
t and Xt −Xε

t are independent for every
t. To show the latter, it is enough to show that, for every q and r in R

d,

E exp [ iq ·Xε
t + ir·(Xt−Xε

t ) ] = ( E exp iq ·Xε
t ) ( E exp ir·(Xt−Xε

t ) ) .5.7

b) Fix q and r in R
d . Recall (see 1.3) that the characteristic functions

on the right side of 5.7 have the form etϕ and etψ for some complex numbers
ϕ and ψ depending on q and r respectively. With these notations, the Lévy
property for Xε and, separately, for X −Xε shows that

Lt = 1 − exp (iq ·Xε
t − tϕ), Mt = 1 − exp (ir · (Xt −Xε

t ) − tψ)

define complex-valued F-martingales. We shall show that

E LtMt = 0, t ∈ R+,5.8

thus showing 5.7 and completing the proof.
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c) Fix t > 0. Fix n ≥ 1. Let D be the subdivision of (0, t] into n equi-
length intervals of the type (, ]. For each interval A in D, if A = (u, v], we put
LA = Lv −Lu and MA = Mv −Mu. With this notation, since L0 = M0 = 0,

LtMt =
∑

A∈D

LA
∑

B∈D

MB.

Take expectations on both sides. Note that E LAMB = 0 if A and B are
disjoint; this is by the martingale property for L and M . It follows that

E LtMt = E Rn, where Rn =
∑

A∈D

LAMA.5.9

d) We show now that |Rn| ≤ R where R is an integrable random variable
free of n. First, observe that

|MA| ≤ 2 sup
s≤t

|Ms|, A ∈ D,5.10

and that, by Doob’s norm inequality (V.3.26),

E sup
s≤t

|Ms|2 ≤ 4 E |Mt|2 <∞.5.11

Next, by the definition of L, with Xε
A = Xε

v −Xε
u for A = (u, v],

|LA| = |e iq·Xε
u e −uϕ − e iq·X

ε
v e −vϕ|

= |e −uϕ − e −vϕ + e −vϕ (1 − e iq·X
ε
A)|

≤ |e −uϕ − e −vϕ| + |e −vϕ| · |1 − e iq·X
ε
A |

≤
ˆ
A

aeas ds + 2 eat 1{Xε
A �=0}

where we put a = |ϕ| and observed that |1− e iq·x| is equal to 0 if x = 0 and
is bounded by 2 if x �= 0. Thus,

∑

A∈D

|LA| ≤ eat + 2 eat
∑

A∈D

1{Xε
A �=0} ≤ eat (1 + 2 Kt)5.12

where Kt is the number of jumps Xε has during (0, t]. Since Kt has the
Poisson distribution with some mean ct, and therefore variance ct,

E (1 + 2Kt)2 < ∞.5.13

It follows from 5.10 and 5.12 that

|Rn| ≤ 2 sup
s≤t

|Ms|
∑

A∈D

|LA| ≤ 2 eat (sup
s≤t

|Ms|)(1 + 2Kt) = R

where R is integrable in view of 5.11 and 5.13.
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e) Finally, we let n → ∞ in 5.9. Since Xε is a step process, the mar-
tingale L has finitely many jumps during [0, t] and is smooth between the
jumps. Thus,

lim Rn =
∑

s≤t
(Ls − Ls−)(Ms −Ms−) = 0,

where the sum is over the finitely many jump times s of Xε and the last
equality is because Ms−Ms− = 0 at those times s since X−Xε has no jumps
in common with Xε. In view of part (d) above, the dominated convergence
theorem applies, and we have

lim E Rn = 0.

This proves 5.8 via 5.9 and completes the proof. �

Jump measure

This is to show that jumps of X are governed by a Poisson random mea-
sure. We start by defining the random measure, to be called the jump measure
of X . Recall the notation ΔXt and also the set Dω of discontinuities of the
path X(ω). Let ω ∈ Ω, and A Borel subset of R+ × R

d ; if the path X(ω) is
right-continuous, left-limited, and X0(ω) = 0, we put

M(ω,A) =
∑

t∈Dω

1A(t,ΔXt(ω));5.14

for all other ω, put M(ω,A) = 0. For each ω, this defines a counting measure
on R+ × R

d.

5.15 Proposition. Suppose that X is a Lévy process over B. Then, M
is a Poisson random measure on R+ × R

d with mean Leb × λ, where λ is a
Lévy measure on R

d; that is, 5.1 holds.

Proof. It follows from the definition of M and augmentedness of F that
the condition 5.1a holds. Similarly, 5.1b is satisfied by the additivity of X .
There remains to show 5.1c.

For ε > 0, let Mε be the trace of M on R+ × εBc, where εBc is the set of
all εx with x outside the unit ball B. Comparing 5.14 with the definition of
Xε in Proposition 5.5, we see that Mε is the jump measure of Xε. Since Xε is
compound Poisson, it follows from Theorem 4.6 that Mε is a Poisson random
measure with mean με= Leb × λε, where λε is a finite measure on R

d.
It is obvious that λε puts all its mass outside εB. Define the measure λ on

R
d by letting, for g positive Borel, λg be the increasing limit of λεg as ε > 0

decreases to 0. Put μ = Leb × λ. It is obvious that λ{0} = 0, and that με
is the trace of μ on R+ × εBc.
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Let f be a positive Borel function on R+ × R
d. Then, ω �→ Mεf(ω) is a

random variable for each ε, and Mεf(ω) increases to Mf(ω) as ε→ 0. Thus,
Mf is a random variable, and

E e−Mf = lim
ε↓0

E e−Mεf = lim
ε↓0

exp− με(1 − e−f ) = exp− μ(1 − e−f ).

Thus, M is a Poisson random measure on R+ × R
d with mean μ = Leb × λ.

The proof is complete via the next lemma. �

5.16 Lemma. The measure λ is a Lévy measure.

Proof. We have noted that λ{0} = 0 by definition. Recall that λε is the
Lévy measure for the compound Poisson process Xε. In particular, then, λε
is finite for ε = 1. Thus, to show that the λ-integral of x �→ |x|2 ∧ 1 is finite,
it is sufficient to show that ˆ

B

λ(dx) |x|2 < ∞.5.17

By Proposition 5.6 above, Xε and X −Xε are independent. Thus,

|E eir·Xt | = |E eir·(Xt−Xε
t )

E eir·X
ε
t | ≤ |E eir·X

ε
t |

≤ | exp t

ˆ
εBc

λ(dx) (eir·x − 1)|

≤ exp− t

ˆ
εBc

λ(dx) (1 − cos r·x) ≤ exp−
t

4

ˆ
B\εB

λ(dx) |r·x|25.18

for r in B, where the last step used the observation that εB
c = R

d\εB ⊃ B\εB
and 1 − cos u ≥ u2/4 for |u| ≤ 1. Since the left-most member is free of ε,
we let ε→ 0 in the right-most member to conclude that

ˆ
B

λ(dx) |r·x|2 < ∞

for every r in B; this implies 5.17 as needed. �

Proof of the decomposition theorem 5.2

Suppose that X is a Lévy process. Recall Proposition 5.15 about the jump
measure M . In terms of it, Xe = Xε with ε = 1 is given by

Xe
t =

ˆ
[0,t]×Bc

M(ds, dx) x, t ∈ R+.5.19

Since λ is a Lévy measure, Theorem 1.23 (and using Notation 1.27) yields a
Lévy process Xd over B through

Xd
t =

ˆ
[0,t]×B

[M(ds, dx) − ds λ(dx) ]x, t ∈ R+.5.20
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Poisson nature of M implies that Xd and Xe are independent. The definition
of M shows that X −Xd −Xe has almost surely continuous paths, and the
Markov property for X shows that the latter is a Lévy process over B. Thus,
by Theorem 4.2,

Xt −Xd
t −Xe

t = bt + cWt, t ∈ R,5.21

where b, c,W are as claimed in Theorem 5.2. Putting 5.19, 5.20, and 5.21
together yields the decomposition wanted, and the main claim of the theorem
is proved, except for the independence of W and M .

For ε > 0, the process Xε of 5.5 is determined by Mε, the trace of M on
R+ × εBc, whereas W is determined by X − Xε. Independence of Xε and
X −Xε proved in Proposition 5.6 implies that W and Mε are independent.
This is true for every ε > 0, and Mεf increases to Mf for every positive
Borel f on R+ × R

d. It follows that W and M are independent.

6 Subordination

This is about time changes using increasing Lévy processes as clocks.
In deterministic terms, the operation is as follows. Imagine a clock, something
like the odometer of a car; suppose that, when the clock points to the number
t, the standard time is st. Imagine, also, a particle whose position in R

d is
zs when the standard time is s. Then, when the clock shows t, the particle’s
position is zst .

Let (Ω,H,P) be a probability space. Let S = (St) be an increasing process.
Let Z = (Zs) be a process with state space R

d. Define

Xt(ω) = ZSt(ω)(ω), ω ∈ Ω, t ∈ R+.6.1

Then, X = (Xt) is said to be obtained by subordinating Z to S, and S is
called the subordinator. We write X = ZS to express 6.1.

The concept of subordination can be extended: all that is needed is that
the subordinator’s state space be contained in the parameter set of Z. For
instance, the compound Poisson process X of Example 1.2c is obtained by
subordinating

Zn = Z0 + Y1 + · · · + Yn, n ∈ N, Z0 = 0,

to the Poisson process N = (Nt); this is immediate upon noting Xt = ZNt is
another way of expressing the sum defining Xt in 1.2c. Another such example
is where Z = (Zn)n∈N is a Markov chain with some state space (E,E), and
N = (Nt) is a Poisson process independent of Z; then, X = ZN is a Markov
process (in continuous time) with state space (E,E).

For the remainder of this section, Z and S will be independent Lévy pro-
cesses. To keep the setting simple, and also because there are three processes
and two time scales, we use Definition 1.1 for Lévy processes (with respect
to their own filtrations).
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Main results

6.2 Theorem. Let S be an increasing Lévy process. Let Z be a Lévy
process in R

d. Suppose that the two are independent. Then, X = ZS is a
Lévy process in R

d.

Proof. Since S is increasing and the regularity condition 1.1a holds for S
and for Z, the same condition holds for X . We now show that 1.1b holds for
X with F as the filtration generated by X .

Fix times 0 ≤ t0 < t1 < · · · < tn <∞ and let f1, · · · , fn be positive Borel
functions on R

d . Conditioning on the σ-algebra G∞ generated by S, using
the independence of Z and S, and also the Lévy property for Z, we obtain

E

n∏

i=1

fi(Xti −Xti−1 ) = E

n∏

i=1

gi(Sti − Sti−1 ),

where gi(s) = E fi◦Zs. Since S is a Lévy process, the right side is equal to

n∏

i=1

E gi(Sti − Sti−1 ) =
n∏

i=1

E gi(Sti−ti−1).

But, by the definition of gi and the independence of S and Z,

E gi(St) = E fi(ZSt) = E fi(Xt).

We have shown that the increments of X over the intervals (ti−1, ti], 1 ≤ i ≤
n, are independent and stationary. �

In the remainder of this section, we present a number of examples of
subordination and give a characterization of the law of X in terms of the
laws of S and Z . For the present, we list the following useful result without
proof; it is a corollary to Theorem 6.18 to be proved at the end of the section.

6.3 Proposition. Let Z, S, X be as in Theorem 6.2. Suppose that S is
pure-jump with Lévy measure ν . Then, the Lévy measure of X is,

λ(B) =
ˆ

(0,∞)

ν(ds) P{ Zs ∈ B\{0} }, Borel B ⊂ R
d.6.4

The heuristic reasoning behind this is as follows. Since S is an increasing
pure-jump process, St is equal to the sum of the lengths of the intervals
(Su−, Su], u ≤ t . This implies that Xt is equal to the sum of the increments
of Z over those intervals. Now, ν(ds) is the rate (per unit of clock time) of
S-jumps of size belonging to the small interval ds around the value s ; and,
given that an interval (Su−, Su] has length s, the corresponding increment of
Z has the same distribution as Zs . See Theorem 6.18 for more.



362 Lévy Processes Chap. 7

Gamma subordinators

6.5 Example. Wiener subordinated to gamma. In Theorem 6.2, take Z
to be a Wiener process, and let S be a gamma process with shape rate a
and scale parameter c ; see Example 1.21. Then, given St, the conditional
distribution of Xt is Gaussian with mean 0 and variance St ; thus,

E exp irXt = E exp−
1
2
r2St =

(
c

c+ r2/2

)at
=

(
2c

2c+ r2

)at
.

Hence, in the terminology of Example 1.21, X is a symmetric gamma process
with shape rate a and scale parameter

√
2c. As described there, X is the

difference of two independent gamma processes, each with rate a and scale√
2c, say X = X+−X−. Indeed, by the reasoning following Proposition 6.3,

X+
t =

∑

u≤t
(ZSu − ZSu−)+, X−

t =
∑

u≤t
(ZSu − ZSu−)−,

each sum being over the countable set of jump times u of S.
The Lévy measure of X is as given in 1.21 with c there replaced by

√
2c

here. We re-derive it to illustrate 6.4 : for x in R,

λ(dx) = dx

ˆ ∞

0

ds a
e−cs

s
· e

−x2/2s

√
2πs

= dx a
1
|x|
ˆ ∞

0

ds e−cs
|x| e−x2/2s

√
2πs3

= dx a
e−|x|√2c

|x| ,

where we evaluated the last integral by recognizing it as the Laplace transform
of a stable distribution with index 1

2 ; see VI.4.10. See also Exercise 6.26 for
the d-dimensional version of this example.

Stable subordinators

Subordination operation is especially interesting when the subordinator S
is an increasing stable process with index a ; the index must be in (0, 1) since
S is increasing. Exercise 6.29 is an example where Z is a gamma process. The
following is about the case when Z is stable; it shows that the stability of Z
is inherited by X .

6.6 Proposition. Let S, Z, X be as in Theorem 6.2 . Suppose that S is
an increasing a-stable process, a ∈ (0, 1), and that Z is a b-stable process in
R
d, b ∈ (0, 2]. Then, X is a stable process in R

d with index ab.

6.7 Remark. In particular, taking Z to be a Wiener process in R
d, the

subordination yields an isotropic stable process in R
d with index ab = 2a . Ev-

ery isotropic stable process X with index in (0, 2) is obtained in this manner
by taking a such that 2a is equal to the index of X .
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Proof. Let S, Z, X be as assumed. Since X is Lévy by Theorem 6.2 ,
we need to check only its stability; we need to show that Xt has the same
distribution as t1/abX1 . Fix t. Since S is a-stable, St has the same distribution
as t1/aS1, which implies that Xt has the same distribution as ZuS1 with u =
t1/a . On the other hand, since Z is b-stable, Zus has the same distribution as
u1/bZs . Thus, since S and Z are independent, ZuS1 has the same distribution
as u1/bZS1 = t1/abX1 . �

6.8 Example. Cauchy in R
d. This is to illustrate the uses of the pre-

ceding theorem; we shall re-establish the results on Cauchy processes in R
d .

Let Z be a Wiener process in R
d . Independent of it, let S be the increasing

stable process of Example 2.1 with a = 1/2 and c = 1/
√

2π ; then, the Lévy
measure is ν(ds) = ds 1/

√
2πs3, and (see 2.1 and VI.4.10)

E e−pSt = e−t
√

2p , P{ St ∈ ds } = ds
te−t

2/2s

√
2πs3

,6.9

for p and s positive. According to the preceding proposition, X is an isotropic
stable process with index ab = 1

2 · 2 = 1, a Cauchy process.
It follows from the well-remembered formula E exp ir ·Zt = exp− t|r|2/2

and the independence of S and Z that

E eir·Xt = E exp−
1
2
St |r|2 = e−t|r|, r ∈ R

d,6.10

in view of the Laplace transform in 6.9 . So, X is the standard Cauchy process
in R

d . The distribution of Xt can be obtained by inverting the Fourier trans-
form in 6.10 ; we do it directly from the known distributions of St and Zs :

P{ Xt ∈ dx } = dx

ˆ ∞

0

P{St ∈ ds}e
−|x|2/2s

(2πs)d/2

= dx
tΓ

(
d+1
2

)

[πt2 + π|x|2 ](d+1)/2
6.11

here we used 6.9 , replaced 2s with 1/u, and noted that the integral is a
constant times a gamma density.

Comparing 6.10 with 2.27 , we see that the Lévy measure of X is the

measure λ given by 2.24 with c = 2Γ
(
d+1
2

)/
Γ
(
d
2

)
Γ
(

1
2

)
, and σ the uni-

form distribution on the unit sphere. Here is a confirmation of it in Cartesian
coordinates: using Proposition 6.3 ,

λ(dx) = dx

ˆ ∞

0

ds
1√

2πs3
· e

−|x|2/2s

(2πs)d/2
= dx

ĉ

|x|d+1
, x ∈ R

d,6.12

where ĉ = Γ
(
d+1
2

)/
π(d+1)/2 . For d = 1, this reduces to 2.15 as it should.
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6.13 Remark. The preceding exercise contains the distributions of St,
Xt, and Zt, namely, the strictly stable distributions with indices 1/2, 1, and
2. These three seem to be the only stable distributions that can be displayed
explicitly in terms of common functions.

Transformation of laws under subordination

This is to characterize the probability law of X in terms of the laws of
Z and S . To specify the laws of Z and X , we employ characteristic triplets.
In general, for an arbitrary Lévy process X , we shall use the shorthand X ∼
(b, v, λ) to mean that X has (b, v, λ) as its characteristic triplet. We recall
Corollary 5.3 and Remark 5.4a:

X ∼ (b, v, λ) ⇔ E eir·Xt = exp t [ ib · r − 1
2
r · vr + λfr ]6.14

where fr (x) = eir·x − 1 − ir · x1B(x). The following lemma is obvious and
needs no proof.

6.15 Lemma. a) If X is a compound Poisson process with Lévy measure
λ, then X ∼ (λh, 0, λ), where h(x) = x1B(x) for x in R

d.
b) If X ∼ (b, v, λ) and X ′

t = Xat for some fixed a in R+, then X ′ ∼
(ab, av, aλ) .

c) If X ′ ∼ (b′, v′, λ′) and X ′′ ∼ (b′′, v′′, λ′′), and if X ′ and X ′′ are
independent, then X ′ +X ′′ ∼ (b′ + b′′, v′ + v′′, λ′ + λ′′).

The next theorem gives a complete characterization of the law ofX = ZS .
In preparation, we introduce

K(s,B) = P{ Zs ∈ B , Zs �= 0 } , s ∈ R+ , Borel B ⊂ R
d6.16

and note that K is a sub-probability transition kernel. For S we use the
representation

St = at+ Sot , t ∈ R+,6.17

with a in R+ and So pure-jump with Lévy measure ν . This is the general
form of an increasing Lévy process (see Remark 5.4d).

6.18 Theorem. Let Z, S, X be as in Theorem 6.2 . Suppose that Z ∼
(b, v, λ) . Then, with h(x)= x1B(x) for x in Rd,

X ∼ ( ab+ νKh, av, aλ+ νK ).

Proof. a) We write Xt = Z(St) for ease of notation. The process X is
Lévy by Theorem 6.2 ; thus, the claim here is about the characteristic function
of Xt . It follows from 6.17 that, for fixed t,

Xt = Z(at) + [Z(at+ Sot ) − Z(at) ] = X ′
t +X ′′

t ,
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say, where X ′
t and X ′′

t are independent, the former has the same distribution
as Z(at), and the latter as Z(Sot ). By part (b) of the last lemma, X ′ ∼
(ab, av, aλ); and by part (c), the triplet for Xt = X ′

t +X ′′
t is the sum of the

triplets for X ′
t and X ′′

t . Hence, the proof is reduced to showing that

Xo = Z(So) ∼ ( νKh, 0, νK ).6.19

b) Let Sε be the pure-jump process where jumps are those of S with
sizes exceeding ε > 0. Then, Sε is a compound Poisson process, and its
Lévy measure νε is the trace of ν on (ε,∞) . Its successive jump times Tn
form a Poisson process with rate ν (ε,∞), and the corresponding sequence
(Un) of jump sizes is independent of (Tn) and is an independency with the
distribution μ = νε / ν(ε,∞) for each Un . It follows from this picture that

Xε
t = Z(Sεt ) =

∑

n

Yn 1{Tn≤t},

where, with U0 = 0,

Yn = Z(U0 + · · · + Un) − Z(U0 + · · · + Un−1), n ≥ 1.

Note that (Yn) is independent of (Tn) and is an independency with the com-
mon distribution

P{ Y1 ∈ B } =
ˆ

R+

μ(ds) P{ Zs ∈ B }, Borel B ⊂ R
d.

Hence, Xε is a compound Poisson process with Lévy measure νεK ; and we
were careful to exclude the mass at the origin which the distribution of Zs
might have. So, the characteristic exponent of Xε is

ψε(r) =
ˆ

(ε,∞)

ν(ds)
ˆ

Rd

K(s, dx) (eir·x − 1), r ∈ R
d.6.20

c) Let ε → 0. Since So is pure-jump, Sεt increases to Sot , which implies
that Z(Sεt ) → Z(Sot−) by the left-limitedness of Z . But, for fixed s, we have
Zs = Zs− almost surely, and this remains true for s = Sot by the independence
of Z from S. Hence, Xε

t → Xo
t almost surely, and the characteristic exponent

of Xo is

ψo(r) = lim
ε↓0

ψε(r).6.21

d) Let ϕ be the characteristic exponent of Z. For s ≤ 1,
∣∣∣∣
ˆ

Rd

K(s, dx) (eir·x − 1)
∣∣∣∣ =

∣∣∣∣ e
sϕ(r) − 1

∣∣∣∣ ≤ s |ϕ(r)| ;

and ˆ
(0,1]

ν(ds) s <∞
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since ν is the Lévy measure of an increasing process. Thus, the dominated
convergence theorem applies, and

lim
ε↓0

ˆ
(ε,1]

ν(ds)
ˆ

Rd

K(s, dx) (eir·x−1) =
ˆ

(0,1]

ν(ds)
ˆ

Rd

K(s, dx) (eir·x−1).

Putting this together with 6.20 and 6.21 , we get

ψo(r) =
ˆ

(0,∞)

ν(ds)
ˆ

Rd

K(s, dx) (eir·x − 1).6.22

e) We now show that, as 6.22 suggests, the Lévy measure of Xo is νK.
Let M ε be the jump measure of the process Xε . We have shown in part (b)
that it is Poisson with mean Leb × νεK . For positive Borel functions f on
R+ × R

d, it is clear that M εf increases to some limit Mof as ε → 0, and
since

Ee−M
εf = exp−

ˆ
R+

dt

ˆ
(ε,∞)

ν(ds)
ˆ

Rd

K(s, dx) [ 1 − e−f(t,x) ],

we have

Ee−Mf = exp−

ˆ
R+

dt

ˆ
(0,∞)

ν(ds)
ˆ

Rd

K(s, dx) [ 1 − e−f(t,x) ]

by the monotone convergence theorem. Thus Mo is Poisson with mean Leb×
νK . It now follows from part (c) of the proof that Mo is the jump measure
of Xo. Hence, in particular, the Lévy measure of Xo is νK.

f) Since νK is a Lévy measure on R
d,

ψ1(r) =
ˆ

B

νK(dx) (eir·x − 1 − ir·x),

ψ2(r) =
ˆ

Bc

νK(dx) (eir·x − 1)6.23

are well-defined complex numbers for each r in R
d . Writing

ir · x = (eir·x − 1) − (eir·x − 1 − ir·x)

and recalling that h(x) = x1B(x), we see from 6.22 and 6.23 that
∣∣∣∣
ˆ

Rd

νK(dx) r · h(x)
∣∣∣∣ =

∣∣∣∣ ψo(r) − ψ2(r) − ψ1(r)
∣∣∣∣ <∞.

Taking r = ej , the jth unit vector, for j = 1, · · · , d, we see that νKh is a
well-defined vector in R

d, and that

ψo(r) = i (νKh) · r + ψ1(r) + ψ2(r).6.24

In view of 6.23 , this implies through 6.14 that Xo ∼ (νKh, 0, νK) ; hence,
6.19 is true, and the proof is complete. �
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Exercises

6.25 Symmetric gamma. Let ka be as defined in Exercise 1.49 , that is, ka is
the density function for the difference of two independent gamma variables
with the same shape index a and the same scale parameter 1. Let X be as in
Example 6.5.

a) Show that the density function for Xt is
√

2c kat(
√

2c x).
b) Show that

ka(x) =
ˆ ∞

0

du
e−u ua−1

Γ(a)
· e

−x2/4u

√
4πu

, x ∈ R.

This is more appealing than its close relative, the modified Bessel function
Kν . The latter is given by

Kν(x) =
1
2

(x
2

)−ν ˆ ∞

0

du e−u uν−1e−x
2/4u, ν ∈ R , x ∈ R+.

Thus, for a > 0 and x in R,

ka(x) =
|x/2|a−1/2

√
π Γ(a)

Ka−1/2( |x| ).

6.26 Wiener subordinated to gamma. In Theorem 6.2, let Z be a Wiener pro-
cess in R

d, and S a gamma process with shape rate a and scale parameter c . In
view of Example 6.5 , every component ofX = ZS is a symmetric gamma pro-
cess with shape rate a and scale parameter

√
2c . The process X is isotropic.

a) Show that

E eir·Xt =
(

2c
2c+ |r|2

)at
, r ∈ R

d.

b) Let λ be the Lévy measure of X . In spherical coordinates (see 1.52) ,
its spherical part σ is the uniform distribution on the unit sphere in R

d, and
its radial part ρ is given by

ρ(dv) = dv

ˆ ∞

0

ds
ae−cs

s
· 2vd−1 e−v

2/2s

(2s)d/2 Γ(d/2)
, v > 0.

Show this. Show that

ρ(dv) = dv · Γ(d+1
2 ) Γ(1

2 )
Γ(d2 )

· 4a
v
kb(

√
2c v)

with b = d+1
2 ; see the preceding exercise for kb .
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6.27 Stable subordinated to gamma. Let Z be an isotropic a-stable process
in R

d having the characteristic exponent ψ(r) = −|r|a . Let S be a gamma
process with shape rate b and scale parameter c . As usual, we assume that
Z and S are independent. For X = ZS, show that

E eir·Xt =
(

c

c+ |r|a
)bt

, r ∈ R
d.

The distribution of Xt is called Linnik distribution.

6.28 Continuation. Suppose, now, that Z is an increasing stable process with
index a, necessarily, a ∈ (0, 1) . Then, X = ZS is an increasing pure-jump
process. Suppose that the scale parameter is chosen to make Zt have the
Laplace transform e−tp

a

, p ∈ R+.

a) Show that

E e−pXt =
(

c

c+ pa

)bt
, p ∈ R+.

b) Show that, when a = 1/2, the Lévy measure for X is

λ(dx) = dx b
ec

2x

x

ˆ ∞

c
√

2x

du
e−u

2/2

√
2π

, x > 0.

6.29 Gamma subordinated to stable. Let Z be a gamma process with shape
rate b and scale parameter 1. Let S be an increasing stable process with shape
index a and scale c, that is, E exp− pSt = exp− tcp

a for p in R+ ; here c > 0
and a ∈ (0, 1) . Show that, then,

E e−pXt = exp− tc [ b log(1 + p) ]a, p ∈ R+.

7 Increasing Lévy Processes

These processes play an important role in the theories of regeneration and
Markov processes in continuous time. Moreover, they are useful as subordina-
tors and interesting in themselves. In this section, we give a highly selective
survey concentrating on potentials and hitting times.

Throughout, (Ω,H,P) is a complete probability space, F = (Ft) is an
augmented right-continuous filtration, and S = (St) is an increasing Lévy
process relative to F . The assumptions on F are without loss of generality in
view of Theorem 3.20.

We let b denote the drift rate and λ the Lévy measure for S. Thus, b is a
constant in R+, and the measure λ on R+ satisfies 1.13 and λ{0} = 0 . More
explicitly,

St = bt+
ˆ

(0,t]×R+

M(ds, dx) x, t ∈ R+,7.1
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where M is Poisson on R+ × R+ with mean Leb × λ . We let πt be the
distribution of St and recall that, for p in R+,

Ee−p St =
ˆ

R+

πt(dx) e−px = exp− t [ bp+
ˆ

R+

λ(dx) (1 − e−px) ].7.2

We exclude from further consideration the trivial case where λ = 0. When
b = 0 and λ finite, S is a compound Poisson process, and its paths are step
functions. Otherwise, S is strictly increasing.

Potential measure

For Borel subsets B of R+, we define

U(B) = E

ˆ
R+

dt 1B◦St =
ˆ

R+

dt πt(B),7.3

the expected amount of time spent in B by S . Then, U is called the potential
measure of S. Explicit computations are rare, but the Laplace transform

ûp =
ˆ

R+

U(dx) e−px =
ˆ

R+

dt E e−pSt7.4

is readily available: in view of 7.2,

[ bp+
ˆ

R+

λ(dx) (1 − e−px) ] ûp = 1, p ∈ (0,∞).7.5

7.6 Example. a) Poisson process. Suppose that S is a Poisson process
with rate c. Then, it spends an exponential amount with mean 1/c at each
positive integer n . So, U = (1/c) (δ0 + δ1 + · · ·), where δx is Dirac at x as
usual.

b) Stable process. Suppose that S is increasing stable with index a ; the
index is necessarily in (0, 1) . Then, the Lévy measure has the density c/xa+1

with respect to Lebesgue on (0,∞) ; see 2.1 . Choosing c = a/Γ(1 − a), the
Laplace transform for St becomes exp− tp

a, and hence

ˆ
R+

U(dx) e−px =
1
pa

=
ˆ

R+

dx
e−px xa−1

Γ(a)
.

It follows that the potential measure is absolutely continuous, and

U(dx) = dx
xa−1

Γ(a)
, x ∈ R+.

7.7 Remark. a) The measure U is diffuse, except when S is compound
Poisson: if S is not compound Poisson, then it is strictly increasing, which
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implies that the amount of time spent in the singleton {x} is equal to zero.
When S is compound Poisson, the point 0 is an atom for U , because S spends
an exponential amount of time at 0 with parameter c = λ(R+) < ∞ ; there
are atoms beyond 0 only if λ has atoms.

b) The potential measure is finite on compacts: For B ⊂ [0, x],

U(B) ≤
ˆ

R+

dt P{ St ≤ x } =
ˆ

R+

dt P{ e−St ≥ e−x }

≤
ˆ

R+

dt ex E e−St = ex û1,

where the inequality is Markov’s; and û1 < ∞ since the first factor on the
left side of 7.5 is strictly positive for p = 1 .

Absolute continuity of the potential

This is a closer examination of the equation 7.5 for the Laplace transform
ûp . We start by introducing a measure ϕ on R+:

ϕ(dx) = b δ0(dx) + dx λ(x,∞) 1(0,∞)(x), x ∈ R+.7.8

Since the Lévy measure λ satisfies 1.13 , its tail x �→ λ(x,∞) is a real-valued
decreasing locally integrable function on (0,∞) . Thus, the measure ϕ is finite
on compacts. Note that its Laplace transform is

ϕ̂p =
ˆ

R+

ϕ(dx) e−px = b+
1
p

ˆ
R+

λ(dx) (1 − e−px), p > 0.

Hence, we may re-write 7.5 as ϕ̂p ûp = 1
p ; in other words, the convolution of

the measures U and ϕ is equal to the Lebesgue measure on R+, that is,
ˆ

R+

ϕ(dx)
ˆ

R+

U(dy) 1B(x+ y) = Leb B,

or equivalently,

b U(B) +
ˆ
B

dx

ˆ
[0,x]

U(dy) λ(x− y,∞) = Leb B, B ∈ BR+ .7.9

7.10 Remark. Suppose that b = 0 . Then, the preceding equation shows
that ˆ

[0,x]

U(dy) λ(x− y,∞) = 17.11

for Lebesgue-almost every x in (0,∞) . It is known that, in fact, this is true
for every x in (0,∞). We shall show this when S is compound Poisson; see
7.25ff. The proof in the remaining case, where b = 0 and λ(R+) = +∞, is
famously difficult; see notes and comments for this chapter.
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7.12 Theorem. Suppose that b > 0 . Then, U is absolutely continuous
and admits a bounded continuous function u : R+ �→ R+ as its density; and

b u(x) +
ˆ x

0

dy u(y) λ(x − y,∞) = 1, x ∈ R+.7.13

Proof. It follows from 7.9 that bU ≤ Leb, which implies via Radon-
Nikodym theorem that U(dx) = dx u(x), x ∈ R+,for some positive Borel
function bounded by 1/b . Then, 7.9 implies that 7.13 holds for Leb-almost
every x . Since u is bounded and x �→ λ(x,∞) is right-continuous and locally
integrable, the second term on the left side of 7.13 is continuous in x. Thus,
we may take u continuous, and 7.13 holds for every x . �

Level crossings

Let Tx denote the time of hitting (x,∞) by S ; we call it also the time of
crossing the level x :

Tx = inf { t ≥ 0 : St > x }, x ∈ R+.7.14

Each Tx is a stopping time of (Gt+), where G is the filtration generated by
S ; it is also a stopping time of F since F is right-continuous. The processes
(St) and (Tx) are functional inverses of each other. If S is compound Poisson,
then T0 > 0 almost surely, and (Tx) is a step process. Otherwise, S is strictly
increasing, and T0 = 0 almost surely, and (Tx) is continuous.

7.15 Proposition. For fixed x and t in R+,

P{ Tx ≤ t } =
{

P{ St > x } if S is compound Poisson,
P{ St ≥ x } otherwise.7.16

In both cases,

E Tx = U [0, x] =
ˆ ∞

0

dt P{ St ≤ x }.

Proof. Pick ω such that the regularity conditions hold for the correspond-
ing path of S . If S is compound Poisson, the path is a step function, and
Tx(ω) ≤ t if and only if St(ω) > x ; this proves 7.16 in this case. Otherwise,
the path is strictly increasing; then, St(ω) ≥ x implies that Tx ≤ t, and the
latter implies that x ≤ S(ω, Tx(ω)) ≤ S(ω, t) ; thus, Tx(ω) ≤ t if and only if
St(ω) ≥ x, and this proves 7.16 in this case.

As to expected values, it follows from 7.16 that

E Tx =
ˆ

R+

dt P{ Tx > t } =
{
U [0, x] if S is compound Poisson,
U [0, x) otherwise .

But if S is not compound Poisson, then U is diffuse (see Remark 7.7a) , and
we have U [0, x) = U [0, x] . �
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Jumping across

In the remainder of this section we shall consider the joint distribution of
Tx and the values of S just before and after Tx . We introduce (G for gauche,
and D for droit)

Gx = STx−, Dx = STx , x ∈ R+,7.17

with the convention that S0− = 0 always; see Figure 10 below. In general,
Gx ≤ x ≤ Dx . Crossing into (x,∞) occur either by drifting across x, which
is the case on the event { Gx = x = Dx }, or by jumping across x, which is
the case on { Gx < Dx } . The following gives the joint distribution in the
jump case.

7.18 Theorem. Let x ∈ (0,∞) . Let f : (R+)3 �→ R+ be Borel. Then,

E f(Tx , Gx , Dx) 1{Gx �=Dx } =
ˆ

R+

dt

ˆ
[0,x]

πt(dy)
ˆ

[x−y,∞)

λ(dz) f(t, y, y+z) .

7.19

7.20 Remark. Case of x = 0 . If S is not compound Poisson, there is
nothing to do, since T0 = 0 and G0 = D0 = 0 . If S is compound Poisson,
then 7.19 remains true for x = 0 : Then, T0 is the time of first jump, which
has the exponential distribution with parameter c = λ(R+) ; and G0 = 0
almost surely; and D0 is the size of the first jump, which is independent of
T0 and has the distribution (1/c)λ ; whereas, πt{0} = e−ct.

Proof. Fix x > 0 and f Borel. Let Z denote the random variable on the
left side of 7.19 . Being increasing, S can cross the level x only once. For
almost every ω, therefore, there is at most one jump time t with St−(ω) ≤
x ≤ St(ω) ; and if t is such, putting z = St(ω) − St−(ω) > 0, we obtain an

St

Dx

X

Gx

Tx
t

Figure 10: Level x is crossed at time Tx by a jump from the point Gx in [0, x]
to the point Dx in (x,∞).
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atom (t, z) of the measure M(ω, ·) defining S(ω) ; see 7.1 . Thus,

Z =
ˆ

R+×(0,∞)

M(dt, dz) f(t, St−, St− + z) 1{St−≤x≤St−+ z } ;

indeed, for almost every ω, the integral is a sum with at most one term,
namely, the term corresponding to t = Tx(ω) if St(ω) − St−(ω) = z > 0. So,
Z is a Poisson integral, and the integrand is predictable (see Theorem VI.6.2)
since t �→ St− is left-continuous and adapted. Hence,

E Z = E

ˆ
R+

dt

ˆ
(0,∞)

λ(dz) f(t, St−, St− + z) 1{St−≤x≤St−+z }

= E

ˆ
R+

dt

ˆ
(0,∞)

λ(dz) f(t, St, St + z) 1{St≤ x≤St+z },

where the last equality is justified by noting that replacing St− with St cannot
alter the Lebesgue integral over t, since St−(ω) differs from St(ω) for only
countably many t . We obtain 7.19 by evaluating the last expectation using
the distribution πt of St and recalling that λ{0} = 0 . �

At the time S crosses x, its left-limit Gx belongs to [0, x] and its right-
hand value Dx belongs to [x,∞) . Thus, if the crossing is by a jump, the jump
is either from somewhere in [0, x] into (x,∞) or from somewhere in [0, x) to
the point x . The following shows that the last possibility is improbable.

7.21 Corollary. For x in (0,∞),

P{ Gx < x = Dx } = 0.

Proof. Fix x. This is obvious when S is compound Poisson, because Dx >
x then. Suppose that S is not compound Poisson, and recall that, then, the
potential measure is diffuse. From the preceding theorem, taking f(t, y, z) =
1[0,x)(y) 1{x}(z), we get

P{ Gx < x = Dx } =
ˆ

[0,x)

U(dy) λ { x− y }.

Since λ is σ-finite, it can have x− y as an atom for at most countably many
y ; let A be the set of such y in [0, x) . We have U(A) = 0 since U is diffuse.
So, the last integral is zero as claimed. �

7.22 Corollary. For every x in R+,

P{ Gx = Dx } = P{ Dx = x } = 1 −
ˆ

[0,x]

U(dy) λ (x − y,∞).7.23
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Proof. For x = 0, this is by direct checking; see Remark 7.20 . Suppose
x > 0 . It follows from the last corollary that, on the event {Dx = x }, we
have Gx = x almost surely; hence,

P{ Dx = x } = P{ Gx = x = Dx } = P{ Gx = Dx }.
This proves the first equality. The second is obtained by computing P{Dx > x}
from 7.19 by taking f(t, y, z) = 1(x,∞)(z). �

Consider the preceding corollary in light of Theorem 7.12 . If b > 0, the
potential measure admits a density u, and comparing 7.13 and 7.23 , we see
that the probability of drifting across x is

P{ Gx = Dx } = P{ Dx = x } = b u(x) , x ∈ R+.7.24

If b = 0 and λ finite, that is, if S is compound Poisson, then Dx > x for every
x ; hence,

P{ Gx = Dx } = P{ Dx = x } = 1−
ˆ

[0,x]

U(dy) λ(x− y,∞) = 0,7.25

for x in R+ ; and we see that 7.11 is true for every x as a by-product. Indeed,
as remarked in 7.10 , it can be shown that 7.25 is true for every x as long as
b = 0 . Here is an example.

7.26 Example. Stable processes. Suppose that S is the increasing stable
process of Example 7.6. Recall that λ(dx) = dx a / xa+1 Γ(1 − a), which
yielded the potential measure U(dx) = dx / x1−a Γ(a) . Then, for 0 ≤ y ≤
x < z, we see from 7.19 that

P{ Gx ∈ dy, Dx ∈ dz } = U(dy) λ(dz − x)

= dy dz
a

Γ(a) Γ(1 − a)y1−a(z − y)1+a

= dy dz
a sinπa

πy1−a(z − y)1+a
.

Integrating over y in [0, x] and z in (x,∞), we get P{Dx > x } = 1, confirming
7.25 and 7.11 once more.

Drifting across

We concentrate here on the distribution of Tx in the event x is crossed by
drifting. Define

μx(A) = P{ Tx ∈ A, Gx = Dx }, x ∈ R+ , A ∈ BR+ .7.27

If b = 0 then this is zero. Suppose that b > 0 . Then, S is strictly increas-
ing, which implies that x �→ Tx is continuous, which in turn implies that
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x �→ μx(A) is Borel measurable for each A in BR+ . Hence, (x,A) �→ μx(A)
is a transition kernel; it is bounded, since μx(R+) = b u(x) in view of 7.24 ,
and u is bounded by 1/b . The following identifies it.

7.28 Theorem. Suppose that b > 0 . Then, μ is a transition kernel from
R+ into R+ which satisfies

dx μx(dt) = dt πt(dx) b, x ∈ R+, t ∈ R+.7.29

Proof. Let f : R+ �→ R+ be Borel. With b > 0, the form 7.1 of S shows
that dSt(ω) = b dt if St−(ω) = St(ω) . Hence,

ˆ
R+

dt b f(t, St) =
ˆ

R+

f(t, St) 1{St−=St }dSt

=
ˆ

R+

dx f(Tx, Dx) 1{Gx=Dx }

=
ˆ

R+

dx f(Tx, x) 1{Gx=Dx },

where we used the time change t = Tx, the definitions 7.17 of G and D, and
the observation that Dx = x on {Gx = Dx } . Next, we take expectations on
both sides; using the definition 7.27 , we get

b

ˆ
R+

dt

ˆ
R+

πt(dx) f(t, x) =
ˆ

R+

dx

ˆ
R+

μx(dt) f(t, x).

This proves 7.29 since f is an arbitrary positive Borel function. �

7.30 Remark. Fix t > 0 . let ν(A) be the expected amount of time that
S spends in the set A during the time interval [0, t] . Then, ν is a measure on
R+ whose total mass is t . According to 7.29, ν is absolutely continuous with
respect to the Lebesgue measure, and

μx [ 0, t ] = b
ν(dx)
dx

, x ∈ R+.

7.31 Example. Suppose that St = bt+Sot , where So is a gamma process
with shape rate a and scale parameter c . Then,

πt(dx) = dx
e−c(x−bt) cat (x− bt)at−1

Γ(at)
, x > bt;

and

μx(dt) = dt
b cat e−c(x−bt) (x− bt)at−1

Γ(at)
1(0,x)(bt).
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Exercises

7.32 Compound Poisson. Suppose that S is a compound Poisson process with
an exponential jump size distribution, that is, its Lévy measure is λ(dx) =
ca e−ax dx for some constants a and c in (0,∞) . Show that the corresponding
potential measure is

U(dx) =
1
c
δ0(dx) +

a

c
dx, x ∈ R+.

7.33 Atoms of πt. Theorem 7.28 might suggest that, when b > 0, the distri-
bution πt is absolutely continuous. This is false: Suppose that St = bt+Nt
where N is Poisson with rate c . For fixed x > 0, then

πt{ x } = P{ St = x } = P{ Nt = x− bt } ,
which is strictly positive if x− bt = n for some integer n ≥ 0 . In the positive
direction, it is known that πt is diffuse whenever the Lévy measure is infinite.

7.34 Poisson with drift. Suppose that St = t + Nt where N is a Poisson
process with rate 1. Fix x > 0 . Show that

{ Dx = x } =
⋃

k

{ Tx = x− k , Nx−k = k } =
⋃

k

{ Nx−k = k }

where the sum is over all integers k in [0, x) . Show that

u(x) = P{ Gx = Dx = x } =
∑

k<x

e−(x−k) (x− k)k

k!
.

Compute

μx[0, t] = P{ Tx ≤ t, Gx = Dx = x }
= P{ Tx ≤ t } − P{ Tx ≤ t, Gx �= Dx }.

7.35 Stable process with index a = 1/2. Suppose that S is stable with index
1/2 ; then, b = 0 and the Lévy measure is λ(dx) = dx (c/xa+1) 1(0,∞)(x) for
some constant c . Show that the distribution of (Gx, Dx ) is free of c . Use
Example 7.26 to show that

P{ Gx ∈ dy, Dx ∈ dz } = dy dz
1

2π
√
y (z − y)3

, y < x < z.

Show that, for y < x < z again,

P{ Gx < y, Dx > z } =
2
π

arcsin
√
y

z
.

In particular, then, for y < x,

P{ Gx < y } = P{ Dy > x } =
2
π

arcsin
√
y

x
.
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The distribution involved here is called the arcsine distribution; it is the beta
distribution with index pair ( 1

2 ,
1
2 ) .

7.36 Drifting. In general, if b > 0, show that

P{ Tx > t, Gx = Dx } = πt [0, x] −
ˆ ∞

t

du

ˆ
[0,x]

πu(dy) λ [x− y,∞ ).

7.37 Laplace transforms. Let ψ(p) = bp +
´
λ(dx) (1 − e−px), the Laplace

exponent for S, for p ≥ 0 . Show that, for p > 0,
ˆ

R+

dx e−px P{ Tx > t } =
1
p
e−tψ(p),

ˆ
R+

dx e−px P{ Tx > t, Gx = Dx } =
b

ψ(p)
e−tψ(p),

ˆ
R+

dx p e−px E Tx =
1

ψ(p)
= û(p).

7.38 Time changes. Let c : R+ �→ R+ be a strictly increasing continuous
function with c(0) = 0 and limt→∞ c(t) = +∞ . Define

Ŝt = Sc(t) , t ∈ R+.

Then, Ŝ is a process with independent increments, but the stationarity of
increments is lost unless c(t) = c0 t . Define T̂ , Ĝ, D̂ from the process Ŝ in
the same manner that T, G, D are defined from S .

a) Show that Ĝx = Gx and D̂x = Dx for all x.
b) Show that c (T̂x) = Tx ; thus, T̂x = a (Tx) where a is the functional

inverse of c .

7.39 Continuation. Observe that the preceding results remain true when c
is replaced by a stochastic clock C whose paths t �→ C(ω, t) satisfy the
conditions on c for every ω.





Chapter VIII

Brownian Motion

This chapter is on Brownian motions on the real line R with a few asides
on those in R

d. We concentrate on the Wiener process, the standard Brownian
motion.

Section 1 introduces Brownian motions, indicates their connections to
martingales, Lévy processes, and Gaussian processes, and gives several ex-
amples of Markov processes closely related to Brownian motions. Section 2 is
on the distributions of hitting times and on the arcsine law for the probabil-
ity of avoiding the origin. Section 3 treats the hitting times as a process; the
process turns out to be an increasing pure-jump Lévy process that is stable
with index 1/2.

The Wiener process W and its running maximum M are studied jointly
in Section 4; it is shown that M −W is a reflected Brownian motion and
that 2M −W is a Bessel process. The relationship of M to M −W is used to
introduce the local time process for W ; this is put in Section 5 along with the
features of the zero-set for W . Brownian excursions are taken up in Section 6;
the Poisson random measure of excursions is described, and the major arcsine
law (on time spent on the positive half-line) is derived as an application.

Section 7 is on the fine properties of Brownian paths: total variation,
quadratic variation, Hölder continuity, and the law of the iterated logarithm.
Finally, in Section 8, we close the circle by showing that Brownian motions do
exist; we give two constructions, one due to Lévy and one using Kolmogorov’s
theorem on continuous modifications.

1 Introduction

The aim is to introduce Brownian motions and Wiener processes. We
start with an elementary definition and enhance it to its modern version.
We shall also consolidate some results from the chapters on martingales
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and Lévy processes. Finally we describe several Markov processes which are
closely related to Brownian motions. Throughout, (Ω,H,P) is the probability
space in the background.

1.1 Definition. A stochastic process X = (Xt)t∈R+ with state space
(R,BR) is called a Brownian motion if it is continuous and has stationary
independent increments. A process W = (Wt)t∈R+ is called a Wiener process
if it is a Brownian motion with

W0 = 0, EWt = 0, Var Wt = t, t ∈ R+.1.2

Let X be a Brownian motion. Then, (Xt −X0)t∈R+ is a continuous Lévy
process. It follows from the characterization of such processes (see Theorem
VII.4.2) that X has the form

Xt = X0 + at+ bW t, t ∈ R+,1.3

where a and b are constants in R and W = (Wt) is a Wiener process inde-
pendent of X0. The constant a is called the drift rate, and b the volatility
coefficient. The case b = 0 is degenerate and is excluded from further consid-
eration.

Gaussian connection

Let W be a Wiener process. Its every increment Ws+t − Ws has the
Gaussian distribution with mean 0 and variance t:

P{Ws+t −Ws ∈ B} = P{Wt ∈ B} =
ˆ
B

dx
e−x

2/2t

√
2πt

, t > 0;1.4

see Theorem VII.4.2 et seq. This implies, via the independence of the incre-
ments over disjoint intervals, that the random vector (Wt1 , . . . ,Wtn) has the
n-dimensional Gaussian distribution with

EWti = 0, Cov(Wti ,Wtj ) = ti, 1 ≤ i ≤ j ≤ n,

for arbitrary integers n ≥ 1 and times 0 ≤ t1 < · · · < tn. Conversely, if
(Wt1 , . . . ,Wtn) has the n-dimensional Gaussian distribution described, then
the increments Wt1 , Wt2 −Wt1 , . . . , Wtn −Wtn−1 are independent Gaussian
variables with mean 0 and respective variances t1, t2 − t1, . . . , tn − tn−1.
These remarks prove the following.

1.5 Theorem. Let W = (Wt) be a process with state space R. It is a
Wiener process if and only if it is continuous and is a Gaussian process with
mean 0 and

Cov (Ws,Wt) = s ∧ t, s, t ∈ R+.
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The preceding theorem is often useful in showing that a given process is
Wiener; see the next theorem for an instance of its use. It also raises an inter-
esting question: Does Brownian motion exist? After all, the probability law
of a Gaussian process is determined completely by its mean and covariance
functions; how do we know that we can satisfy the further condition that its
paths be continuous? We shall give two proofs of its existence in Section 8.

Symmetry, scaling, time inversion

1.6 Theorem. Let W be a Wiener process. Then, the following hold:

a) Symmetry. The process (−Wt)t∈R+ is again a Wiener process.
b) Scaling. Ŵ = (c−1/2Wct)t∈R+ is a Wiener process for each fixed c in

(0,∞), that is, W is stable with index 2.
c) Time inversion. Putting W̃0 = 0 and W̃t = tW 1/t for t > 0 yields a

Wiener process W̃ = (W̃t)t∈R+ .

Proof. Symmetry and scaling properties are immediate from Definition 1.1
for Wiener processes. To show (c), we start by noting that {W̃t : t > 0} is
a continuous Gaussian process with mean 0 and Cov(W̃s, W̃t) = s ∧ t for
s, t > 0. Thus, the claim (c) will follow from Theorem 1.5 once we show that
W̃ is continuous at time 0, that is, almost surely,

lim
t↓0

t W 1/t = 0.1.7

Equivalently, we shall show that Wt/t → 0 almost surely as t → ∞.
To this end, we start by noting that, if n ≥ 0 is an integer and n < t ≤ n+1,

∣∣∣∣
1
t
Wt

∣∣∣∣ ≤
1
n
|Wn + (Wt −Wn)| ≤

∣∣∣∣
1
n
Wn

∣∣∣∣+
1
n

sup
0≤s≤1

|Wn+s −Wn| .1.8

By the strong law of large numbers, Wn/n → 0 almost surely, since Wn is
the sum of n independent copies of W1, and EW1 = 0. On the other hand,
by Kolmogorov’s inequality in continuous time (Lemma VII.1.39),

P

{
1
n

sup
0≤s≤1

|Wn+s −Wn| > ε

}
≤ 1
n2ε2

E |Wn+1 −Wn|2 =
1

n2ε2

for each fixed ε > 0. Since Σ 1/n2 is finite, Borel–Cantelli lemma (III.2.6)
applies to show that, as n → ∞, the very last term in 1.8 goes to 0 al-
most surely. Hence, Wt/t → 0 almost surely as t → ∞, and the proof is
complete. �

In connection with the stability property 1.6b, we recall from Exercise
VII.2.36 the following converse: if a continuous Lévy process is stable with
index 2, then it necessarily has the form cW for some fixed constant c and
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some Wiener process W . As to the property 1.6c, time inversion, we remark
at least two of its uses: first, the oscillatory behavior of a Wiener process
near the time origin can be translated to its behavior for large times; second,
conditioning on future values can be translated to become conditioning on
the past. The following illustrates the latter point.

1.9 Example. Let W be a Wiener process. For 0 < s < t, consider
the conditional distribution of Ws given that Wt = x. Instead of the direct
approach, it is easier to use the time inversion property: The conditional
distribution sought is that of sW 1/s given that tW 1/t = x, which is the same
as the distribution of s(W1/s −W1/t) + sx

t , which is Gaussian with mean sx/t
and variance s2(1/s −1/t) = s(1 − s/t). See Exercise 1.29 also.

Martingale connection

Let F = (Ft)t∈R+ be a filtration over (Ω,H,P), and let W = (Wt)t∈R+

be a continuous process, adapted to F, and having W0 = 0. Recall Definition
V.2.15: the process W is Wiener with respect to F if, for every t and u in
R+, the increment Wt+u − Wt is independent of Ft and has the Gaussian
distribution with mean 0 and variance u.

If W is Wiener with respect to F, then it is such in the sense of Definition
1.1 as well. Conversely, if W is Wiener in the sense of 1.1, then it is Wiener
with respect to the filtration Go generated by itself, and also with respect to
the filtration G, the augmentation of Go.

The following collects together characterizations in Proposition V.2.17
and Theorem V.2.19; see also Proposition V.6.21, Lemma V.6.22, and all
the proofs. Recall that W is continuous, has W0 = 0, and is adapted to the
filtration F.

1.10 Theorem. The following are equivalent:

a) W is a Wiener process with respect to F.
b) For each r in R, the process {exp(rWt − 1/2r

2t) : t ∈ R+} is an
F-martingale.

c) The processes W and
{
W 2
t − t : t ∈ R+

}
are F-martingales.

d) For every twice-differentiable function f : R 	→ R that is bounded
along with its first derivative f ′ and second derivative f ′′, the process

Mt = f ◦Wt − 1
2

ˆ t

0

ds f ′′ ◦Ws, t < R+,

is an F-martingale.

The preceding theorem is on the characterization of Wiener processes as
martingales. Indeed, the connections between them run deep in both direc-
tions. In particular, it is known that every continuous martingale is obtained
from a Wiener process by a random time change.
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Wiener on a stochastic base

This is to re-introduce Wiener processes in the modern setup for Lévy
processes; this is a repetition of Definitions VII.3.1 and VII.3.3 et seq. for
this particular case.

Recall that a stochastic base is a collection (Ω,H,F, θ,P), where (Ω,H,P)
is a complete probability space, F = (Ft) is an augmented right-continuous
filtration, and θ = (θt) is a semigroup of shift operators on Ω (each θt maps
Ω into Ω, we have θ0ω = ω for all ω, and θu ◦θt = θt+u for all t and u in R+).

1.11 Definition. A process W = (Wt) is said to be Wiener on a stochas-
tic base (Ω,H,F, θ,P) if it is a Wiener process with respect to F and is addi-
tive with respect to θ, the latter meaning that

Wt+u = Wt +Wu ◦ θt, t, u ∈ R+.

The shift operators and additivity are useful for turning heuristic feelings
into rigorous statements; for instance, Wu◦θt is the increment over the future
interval of length u when the present time is t, and the future is totally
independent of the past. The right-continuity of F is essential for certain times
to be F-stopping times; augmentedness is for technical comfort. There is no
loss of generality in all this: Every Wiener process in the sense of Definition 1.1
is equivalent to one in the sense of the preceding definition.

Brownian motions X on a stochastic base are defined similarly, except for
the way the shifts work:

Xu ◦ θt = Xt+u, t, u ∈ R+.1.12

This is equivalent to the additivity of W in the characterization 1.3 for X .
See Figure 9 on page 341 for additivity.

Strong Markov property

Let (Ω,H,F, θ,P) be a stochastic base, and W a Wiener process over it.
Let Go = (Got ) be the filtration generated by W , and G the augmentation
of Go. Recall from Theorem VII.3.20 that G is right-continuous in addition
to being augmented; it can replace F if needed. In particular, Blumenthal’s
zero-one law holds: every event in G0 has probability zero or one.

The following is the strong Markov property, Theorem VII.3.10, for the
special Lévy process W , we re-state it here for reasons of convenience. As
usual, we write ET for E(·|FT ).

1.13 Theorem. Let T be an F-stopping time. Then, for every bounded
variable V in G∞,

ET (V ◦ θT )1{T<∞} = (EV )1{T<∞}.

In particular, if T < ∞, the process W ◦ θT = (WT+u −WT )u∈R+ is inde-
pendent of FT and is again a Wiener process.
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Let U be a random time determined by the past FT and consider
WT+U −WT . Since W ◦ θT is independent of FT , we may treat U as if it is
fixed. We list the result next and give a direct proof. The heuristic idea is
simpler, but requires some sophistication in its execution; see Exercise 1.31.

1.14 Theorem. Let T be an F-stopping time, and let U be a positive
real-valued variable belonging to FT . Let f be a bounded Borel function on R,
and define g(u) = Ef ◦Wu, u ∈ R+. Then,

ET f (WT+U −WT ) 1{T<∞} = g(U) 1{T<∞}.1.15

Proof. a) The collection of f for which 1.15 holds is a monotone class.
Thus, it is enough to show 1.15 for f that are bounded continuous. Fix f
such, and note that the corresponding g is bounded and continuous in view of
the continuity of W and the bounded convergence theorem for expectations.

b) Suppose that U is simple, say, with values in a finite subset D of R+.
Since U is FT -measurable, {U = u} is in FT for each u in D. Thus,

ET f (WT+U −WT ) 1{U=u,T<∞}

= ET 1{U=u,T<∞} f(WT+u −WT ) = g(u)1{U=u}1{T<∞},

where we used the strong Markov property 1.13 at the last step. Summing
both sides over all u in D yields 1.15. So, 1.15 holds for simple U .

c) In general, U is the limit of an increasing sequence (Un) of simple
variables in FT . Write 1.15 for Un and take limits on both sides as n→ ∞. On
the right side, the continuity of g shows that the limit is the right side of 1.15.
On the left side, the continuity of W and f , together with the boundedness
of f , imply that the limit is the left side of 1.15. �

Wiener and Brownian motion in R
d

Let W = (Wt) be a process with state space R
d. It is called a d-

dimensional Wiener process, or a Wiener process in R
d, if its components

W (1), . . . ,W (d) are independent Wiener processes. Then, W is a continuous
Lévy process in R

d whose every increment Ws+t−Ws has the d-dimensional
Gaussian distribution with mean 0 and covariance matrix tI, the matrix I
being the identity matrix in d-dimensions. So, for Borel subsets B of R

d,

P {Ws+t −Ws ∈ B} =
ˆ
B

dx
e−|x|2/2t

(2πt)d/2
,1.16

where |x| is the length of the vector x in R
d, and the integral is with respect

to the Lebesgue measure on R
d.
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The properties of symmetry, 2-stability, and time inversion remain true
for the d-dimensional case. Moreover, symmetry is extended to isotropy, in-
variance of the law of W under rotations and reflections: the probability laws
of W and gW are the same for every orthogonal matrix g.

Brownian motions in R
d are defined as the ones in R, except that the

state space is R
d now. Every Brownian motion X in R

d is related to a Wiener
process in R

d by the formula 1.3, but here a is a fixed vector in R
d and b is

a fixed d× d matrix.

Markov processes

Brownian motions are the fundamental objects from which all continuous
Markov processes are constructed. Several examples occur naturally as parts
of the theory of Brownian motions. It will be convenient to provide a working
definition for our current purposes and give several examples; see the next
chapter for more.

Over some probability space (Ω,H,P), let X = (Xt)t∈R+ be a stochastic
process with some state space (E,E) and suppose that it is adapted to some
filtration Fo = (Fot ). For each t, let Pt be a markovian kernel on (E,E), that
is, a transition kernel from (E,E) into (E,E) with Pt(x,E) = 1 for every x
in E. Then, X is said to be an Fo-Markov process with transition semigroup
(Pt)t∈R+ if

P {Xs+t ∈ B |Fos} = Pt (Xs, B) , s, t ∈ Rt, B ∈ E.1.17

The term “Markov process” without the mention of a filtration refers to the
case where Fo is the filtration generated by the process itself.

The condition 1.17 implies that the Markovian kernels Pt, t ∈ R+, do
indeed form a semigroup: Ps Pt = Ps+t for s, t in R+, or, more explicitly,

Ps+t(x,B) =
ˆ
E

Ps(x, dy)Pt(y,B), s, t ∈ R+, x ∈ E, B ∈ E.1.18

Imagine a particle whose motion in E is represented by the process X .
The defining property 1.17 means, in particular, that

Pt(x,B) = P{Xs+t ∈ B |Xs = x}, x ∈ E, B ∈ E.

The independence of this conditional probability from the time parameter s
is referred to as time-homogeneity for X . Repeated use of 1.17 implies that,
given the past Fos , the conditional law of the future motion {Xs+t : t ∈ R+}
depends only on the present state Xs. A similar reasoning shows that the
probability law of the process X is determined by its transition semigroup
and its initial distribution (the distribution of X0).
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Examples

1.19 Brownian motion in R
d. Let Xt = X0 + Wt, t ∈ R+, where W is a

Wiener process in R
d independent of X0. Then, X is a Markov process with

state space R
d. Its transition semigroup is given as (see 1.16)

Pt(x, dy) = dy
e−|y−x|2/2t

(2πt)d/2
, x, y ∈ R

d.1.20

In particular, W is a Markov process (with initial state W0 = 0) with the
same transition semigroup.

1.21 Reflected Brownian motion. Let X = X0 +W be a standard Brownian
motion in R, with initial state X0. Define R = |X |, that is, Rt is the absolute
value of Xt. Then, R is a Markov process with state space R+. To compute
its transition semigroup (Pt), we start by noting that (see 1.20 with d = 1)

P {Rs+t ∈ dy|Xs = x} = dy

[
e−(y−x)2/2t

√
2πt

+
e−(−y−x)2/2t

√
2πt

]

for x in R and y in R+. The right side remains the same whether x is positive
or negative. Thus,

Pt(x, dy) = dy

[
e−(y−x)2/2t

√
2πt

+
e−(y+x)2/2t

√
2πt

]
, x, y ∈ R+.

1.22 Bessel processes of index d. This is the generalization of the preceding
to higher dimensional Brownian motions. Let W be a Wiener process in R

d

and define R = |W |, that is,

Rt =

√(
W

(1)
t

)2

+ · · · +
(
W

(d)
t

)2

, t+ R+.

Then, we call R a Bessel process of index d ; some authors call it a Bessel
process of order ν = d/2 − 1, or radial Brownian motion in R

d. It is a Markov
process with state space R+; we shall show this. The case d = 3 plays an
interesting role in describing the excursions of the one-dimensional Wiener
away from the origin; we shall compute its transition semigroup explicitly.

For arbitrary dimension d, fixed, let B denote the closed unit ball in R
d

and S its boundary, the unit sphere. For r in R+, then, Br = {xr : x ∈ B}
is the closed ball of radius r centered at the origin. From 1.16, we get

P {Ws+t ∈ Br |Ws = x} =
ˆ
Br

dy
e−|y−x|2/2t

(2πt)d/2
.

The left side remains unchanged if x, B, W are replaced with gx, gB, gW
respectively, where g is some orthogonal transformation. But gB = B since
B is a ball centered at the origin, and gW has the same law as W by isotropy.
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Hence, if |x| = q, choosing g such that gx = (q, 0, . . . , 0), we see that the
left side is a function of |x| = q only. Since |Ws| = Rs and {Ws+t ∈ Br} =
{Rs+t ≤ r}, we have shown that

P {Rs+t ≤ r |Rs = q } =
ˆ
Br

dy
e−|y−x|2/2t

(2πt)d/2
, q, r ∈ R+,1.23

with x = (q, 0, . . . , 0) on the right side. Moreover, Rs+t is conditionally inde-
pendent of (Wu)u≤s given Ws, and (Wu)u≤s determines (Ru)u≤s. Thus, Rs+t
is conditionally independent of (Ru)u≤s given Ws, and we have just seen that
the conditional distribution of Rs+t given Ws is determined by |Ws| = Rs.
Hence, R is Markov.

To evaluate the integral on the right side of 1.23, we turn to spherical
coordinates. Write y = ru with u = (u1, . . . , ud) on the unit sphere S. For
x = (q, 0, . . . , 0), then, |y − x|2 = q2 + r2 − 2qr u1. Hence,

Pt (q, dr) = dr rd−1 e−(q2+r2)/2t

(2πt)d/2

ˆ
S

σ (du) eqru1/t,1.24

where σ is the surface measure on S. The integral over S can be expressed in
terms of modified Bessel functions (see Exercises 1.33 and 1.34), and hence
the term Bessel process for R.

The surface integral is easy to evaluate when d = 3. We recall a result
from elementary geometry: For spherical zones between two parallel planes
that cut through S, the area is proportional to the distance h between the
planes. So,

ˆ
S

σ (du) epu1 = 2π
ˆ 1

−1

dh eph =
2π
p

(
ep − e−p

)

for p > 0, and the integral is the surface area 4π for p = 0. Putting this into
1.24 with p = qr/t, we see that, when d = 3,

Pt (q, dr) = dr
r

q

[
e−(r−q)2/2t

√
2πt

− e−(r+q)2/2t

√
2πt

]
if q > 0, r ≥ 0,1.25

and

Pt (q, dr) = dr · 2r2e−r
2/2t

√
2πt3

if q = 0, r ≥ 0,1.26

We shall see later that, for almost every ω, we have Rt(ω) > 0 for all t > 0;
see 4.17 and thereabouts.

Exercises and complements

1.27 Time reversal. Let W be a Wiener process (on R). Show that the prob-
ability laws of {Wt : 0 ≤ t ≤ 1} and {W1 −W1−t : 0 ≤ t ≤ 1} are the same.
Hint: They are both Gaussian processes.
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1.28 Brownian bridge. Let W be a Wiener process and define

Xt = Wt − tW1, 0 ≤ t ≤ 1.

Observe that X0 = X1 = 0 and hence the name for the process X = {Xt :
0 ≤ t ≤ 1}. Obviously, X is a continuous Gaussian process. Compute its
covariance function.

1.29 Continuation. Show that the probability law of X is the same as the
conditional law of {Wt : 0 ≤ t ≤ 1} given that W1 = 0. In other words, show
that, for 0 < t1 < . . . < tn < 1,

P {Wt1 ∈ dx1, . . . ,Wtn ∈ dxn|W1 = 0} = P {Xt1 ∈ dx1, · · · , Xtn ∈ dxn} .
Hint: Use time inversion (see Example 1.9) to show that the left side is an
n-dimensional Gaussian distribution just as the right side, and compare their
covariance matrices.

1.30 Wiener space. This is a special case of Exercise VII.3.24. Let W be a
Wiener process on some probability space (Ω,H,P). Let C = C(R+ 	→ R),
the space of continuous functions from R+ into R. On it, we put the topology
of uniform convergence on compacts: a sequence (wn) in C converges to w in
C in this topology if sups≤t |wn(s)−w(s)| → 0 as n→ ∞ for every t <∞. It
can be shown that the Borel σ-algebra BC corresponding to this topology is
the same as the σ-algebra generated by the coordinate process {Xt : t ∈ R+},
where Xt(w) = w(t) for every w in C. Let G0∞ be the σ-algebra generated by
{Wt : t ∈ R+}.

For each ω in Ω, the path W (ω) : t 	→ Wt(ω) is a point in C. Show that
the mapping ω 	→W (ω) is measurable with respect to Go∞ and BC .

Let Q = P◦W−1, the distribution ofW , where W is regarded as a random
variable taking values in (C,BC). Then, Q is the probability law of the Wiener
process W . The probability space (C,BC ,Q) is called the Wiener space, and
Q the Wiener measure. Finally, X is a Wiener process on (C,BC ,Q) and is
called the canonical Wiener process.

1.31 Alternative proof for Theorem 1.14. Assume that T < ∞. Define Yt =
Wt ◦ θT = WT+t−WT . By the strong Markov property, the process Y = (Yt)
is independent of FT and is a Wiener process. Regard Y as a random variable
taking values in (C,BC), and consider YU = WT+U −WT . Since U is in FT
and Y is independent of FT , Exercise IV.2.27 is applicable. Conclude that
1.15 holds since

g(u) = E f(Wu) = E f(Yu).

1.32 Geometric Brownian motion. Let W be a Wiener process and put

Xt = X0 exp(at+ bWt), t ∈ R+,

for fixed constants a and b in R. Show that X is a Markov process.
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1.33 Bessel process of index d = 2 . Let R be as in Example 1.22 but with
d = 2. It is a Markov process with state space R+. To compute its semigroup
(Pt), we use 1.24 with d = 2, in which case S becomes the unit circle in
R

2. Since
ˆ
S

σ(du)epu1 =
ˆ 2π

0

da ep cos a = 2π
∞∑

k=0

(p/2)2k

(k!)2
= 2π I0(p),

one obtains

Pt(q, dr) = dr
r

t
e−(q2+r2)/2t I0

(qr
t

)
, q, r ≤ 0.

Here, I0 is called the modified Bessel function of order 0, and hence the
alternative name “Bessel process of order 0” for this R.

1.34 Bessel processes. Let R be as in Example 1.22 with arbitrary index d ≥ 2.
For q > 0 and r ≥ 0, the formula 1.24 yields

Pt(q, dr) = dr · q
t

(
r

q

)d/2
e−(q2+r2)/2t Id/2−1

(qr
t

)
,

where Iν is the modified Bessel function of order ν:

Iν (p) =
∞∑

k=0

(p/2)2k+ν

k!Γ(k + ν + 1)
, p ≥ 0.

1.35 Ornstein-Uhlenbeck process. Let W be a Wiener process and write W (t)
for Wt. Let a and b be strictly positive constants, and define

Xt = X0 e
−at + b e−at W

(
e2at − 1

)
, t ∈ R+,1.36

where X0 is independent of W.
a) Show that X defined by 1.36 is a Markov process with state space R.

It is also a Gaussian process if X0 = x fixed, or if X0 is Gaussian.

b) Show that, as t → ∞, the distribution of Xt converges weakly to the
Gaussian distribution with mean 0 and variance b2. If X0 is Gaussian with
mean 0 and variance b2, and X0 is independent of W , then Xt has the same
distribution as X0 for all t.

2 Hitting Times and Recurrence Times

Let (Ω,H,F, θ,P) be a stochastic base, and W a Wiener process on it; see
Definition 1.11. By redefining t 	→Wt(ω) for a negligible set of ω if necessary,
we may and do assume that W0(ω) = 0 and t 	→ Wt(ω) is continuous for
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every ω in Ω. As before, we let Go be the filtration generated by W , and G

its augmentation. We are interested in the hitting times

Ta(ω) = inf {t > 0 : Wt(ω) > a} , a ∈ R+, ω ∈ Ω.2.1

It follows from general theorems that each Ta is a stopping time of G, and its
Laplace transform can be obtained by martingale techniques; see Chapter V
for these. However, it is enjoyable to do the treatment once more and obtain
the distribution directly by Markovian techniques.

Fix a in R+. For ω in Ω and t > 0, we have Ta(ω) < t if and only
if Wr(ω) > a for some rational number r in (0,t); this is because W is
continuous and W0 = 0. Since Wr is in G0

t for each such r, it follows that
the event {Ta < t} belongs to G0

t . Hence, by Theorem V.7.4, Ta is a stopping
time of the filtration

(
G0
t+

)
and, therefore, of the finer filtrations G = (Gt)

and F = (Ft).

Behavior at the origin

According to Blumenthal’s zero-one law, every event in G0 has probability
zero or one. The following is an application of it.

2.2 Proposition. Almost surely, T0 = 0.

Proof. The event {T0 = 0} belongs to G0 and, thus, has probability 0 or 1.
To decide which, note that {Wt > 0} has probability 1/2 and implies the event
{T0 < t} for every t > 0. Thus, P{T0 < t} ≥ 1/2 for every t > 0, and letting
t→ 0 concludes the proof. �

The preceding proposition is deeper than it appears. Considering the def-
inition 2.1 for a = 0 carefully, we see that the following picture holds for
almost every ω: For every ε > 0 there is u < ε such that Wu(ω) > 0; there is
also s < ε such that Ws(ω) < 0, this being by symmetry (see 1.6a). Taking
ε of the second phrase to be the time u of the preceding one, and recall-
ing the continuity of the paths, we conclude that for every ε > 0 there are
0 < s < t < u < ε such that Ws(ω) < 0, Wt(ω) = 0, Wu(ω) > 0. Iterating
the argument with s replacing ε yields the following.

2.3 Corollary. For almost every ω, there are times u1 > t1 > s1 >
u2 > t2 > s2 > . . . with limit 0 such that, for each n,

Wun(ω) > 0, Wtn(ω) = 0, Wsn(ω) < 0.

Thus, the Wiener path W (ω) is highly oscillatory. Starting with
W0 (ω) = 0, the path spends no time at 0; it crosses over and under 0
at least infinitely many times during the time interval (0, ε), however small
ε > 0 may be. This statement has an interesting counterpart for large times
obtained by time inversion, by applying 2.3 to the Wiener process of 1.6c.
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2.4 Corollary. For almost every ω there exist times u1 < t1 < s1 <
u2 < t2 < s2 < . . . with limit +∞ such that

limWsn(ω) = −∞, limWun(ω) = +∞,

and Wtn(ω) = 0 for every n; in particular, the set {t ∈ R+ : Wt(ω) = 0} is
unbounded.

We shall see shortly that the Wiener particle touches every point a in R,
and its path oscillates in the vicinity of a just as it does in the vicinity of the
point 0.

Distribution of Ta

We start with a useful formula based on the strong Markov property and,
more particularly, on Theorem 1.14. For its statement, it will be convenient
to introduce the Gaussian kernel

G (t, B) = P {Wt ∈ B} =
ˆ
B

dx
e−x

2/2t

√
2πt

, t ∈ R+, B ∈ BR,2.5

with G(0, B) interpreted as I(0, B) since W0 = 0. Recall that x+ yB is the
set of points x+ yz in R with z in B.

2.6 Lemma. For t and a in R+, and B a Borel subset of R,

P {Ta ≤ t,Wt ∈ B} = E G (t− Ta, B − a) 1{Ta≤t}.

Proof. The case a = 0 follows from Proposition 2.2; the case a > 0 and
t = 0 is trivially true. Fix a > 0 and t > 0 and B Borel, and write T for Ta.
On the event {T ≤ t}, we have WT = a by the continuity of W and, thus,

Wt = WT+U −WT + a, where U = (t− T )1{T≤t}.

Hence, by Theorem 1.14 with f = 1B−a and, therefore, g(u) = G(u, B − a),

ET 1{T≤t} 1B(Wt) = ET 1B−a (WT+U −WT ) 1{T≤t}
= G (t− T,B − a) 1{T≤t}.

Taking expectations on both sides completes the proof. �

2.7 Proposition. For a and t in R+, and B Borel,

P {Ta ≤ t,Wt ∈ B} = G(t, 2a−B), B ⊂ (−∞, a) .

Proof. Since W is symmetric, we have G(u,B − a) = G(u, a − B) =
G(u, (2a−B) − a); thus, by the preceding lemma,

P {Ta ≤ t,Wt ∈ B} = P {Ta ≤ t,Wt ∈ 2a−B} .
If B ⊂ (−∞, a), then 2a − B ⊂ (a,∞), and Wt(ω) > a implies that
Ta(ω) ≤ t. So, for B ⊂ (−∞, a), the right side becomes P{Wt ∈ 2a− B} =
G(t, 2a−B). �
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The preceding proposition is the basic computational formula. The
restriction of B to subsets of (−∞, a) is without harm: we may re-state the
result as

P {Ta > t,Wt ∈ B} = G(t, B) −G(t, 2a−B), B ⊂ (−∞, a),2.8

and now the restriction on B is entirely logical, since the left side vanishes
for subsets B of [a,∞).

In particular, taking B = (−∞, a) in 2.8, the event on the left side be-
comes {Ta > t}. So, since 2a−B = (a,∞) then, 2.8 becomes

P {Ta > t} = P {|Wt| ≤ a} = 2
ˆ a/

√
t

0

dx
e−x

2/2

√
2π

.2.9

The following collects together various interpretations of this formula.

2.10 Proposition. Let a > 0. Then, 0 < Ta < ∞ almost surely, but
ETa = +∞. The distribution of Ta is the same as that of a2/Z2, where Z is
standard Gaussian. The distribution admits a continuous density function:

P {Ta ∈ dt} = dt
ae−a

2/2t

√
2πt3

, t > 0.2.11

Proof. Let Z have the standard Gaussian distribution. Then, Wt has the
same distribution as

√
t Z. So, from 2.9,

P {Ta > t} = P

{√
t |Z| ≤ a

}
= P

{( a
Z

)2

≥ t

}
= P

{
a2

Z2
> t

}
,

which means that Ta and a2/Z2 have the same distribution. Since Z ∈ R\{0}
almost surely, it follows that Ta ∈ (0,∞) almost surely. The density function
in 2.11 is obtained by differentiating the last member of 2.9. It is seen from
2.11 that ETa = +∞, since the integral of 1/

√
t over (1,∞) is infinity. �

The distribution in 2.11 appeared before in connection with stable pro-
cesses with index 1/2; see VI.4.10 and also Chapter VII. Indeed, we shall see
in the next section that (Ta)a∈R+ is a stable Lévy process with index 1/2.
For the present we note the corresponding Laplace transform (see Exercise
2.23 for one method, and 3.9 for a painless computation):

E e−pTa = e−a
√

2p, p ∈ R+.2.12

Hitting times of points

The preceding Laplace transform appeared earlier, in Proposition V.5.20,
for the time of entrance to [a,∞). The following is the reason for coincidence.
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2.13 Proposition. Fix a in (0,∞); define

Ta− = inf {t > 0 : Wt ≥ a} = inf {t > 0 : Wt = a} .

Then, Ta− is a stopping time of Go, and Ta− = Ta almost surely.

Proof. Write T for Ta−. It is obviously a Go-stopping time. Clearly, T ≤
Ta. By Proposition 2.10, Ta <∞ almost surely. Thus, T <∞ almost surely,
and W◦ θT is again Wiener by the strong Markov property at T . Thus, by
Proposition 2.2, we have T0◦θT = 0 almost surely, which completes the proof
since Ta = T + T0 ◦ θT . �

Indeed, as the notation indicates, Ta− is the left-limit at a of the increasing
process b 	→ Tb. To see this, let (an) be a strictly increasing sequence with
limit a. For each n, then, Tan < ∞ almost surely and W is at the point an
at time Tan . Since W is continuous, it must be at the point a at the time
T = lim Tan . So, the limit T is equal to Ta−.

Hitting times of negative points

All the results above extend, by the symmetry of W , to hitting times of
(−∞, a) with negative a:

Ta = inf {t > 0 : Wt < a} , a ≤ 0.2.14

For a = 0, the hitting times of (0,∞) and (−∞, 0) are both equal to 0 almost
surely, and T0 acquires an unambiguous double-meaning.

By the symmetry of W , each Ta has the same distribution as T|a|. Thus,
Ta has the same distribution as a2/Z2, where Z is standard Gaussian; this is
for every a in R.

Arcsine laws

We recall some elementary facts. Let X and Y be independent standard
Gaussian variables. Then, X2 and Y 2 are independent gamma distributed
with shape index 1/2 and scale index 1/2. It follows that A = X2/(X2 + Y 2)
has the beta distribution with index pair (1/2, 1/2). This particular beta is
called the arcsine distribution, because

P {A ≤ u} =
ˆ u

0

dv
1

π
√
v(1 − v)

=
2
π

arcsin
√
u, 0 ≤ u ≤ 1.2.15

Since C = Y/X has the Cauchy distribution, we also have the connection
to Cauchy distribution via A = 1/(1+C2). Another connection can be noted
by recalling that C has the same distribution as tan B, where the angle B has
the uniform distribution on (0, 2π); thus, A = (sin B)2 where B is uniform
on (0, 2π), which explains 2.15 above.
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The following arcsine law for the Wiener process is about the probability
that W does not touch 0 during the time interval [s, u]. A more interesting
arcsine law will be given later as Theorem 6.22. For 0 ≤ s < u <∞,

P {Wt ∈ R\ {0} for all t ∈ [s, u]} =
2
π

arcsin
√
s

u
.2.16

We shall show this as a consequence of results on the recurrence times for
the point 0; see Remark 2.22 below.

Backward and forward recurrence times

Thinking of the Wiener particle, let Gt be the last time before t, and Dt

the first time after t, that the particle is at the origin: for t in R+,

Gt = sup {s ∈ [0, t] : Ws = 0} , Dt = inf {u ∈ (t,∞) : Wu = 0} .2.17

For t > 0 fixed, Wt differs from 0 almost surely, which implies that
Gt < t < Dt almost surely. Also, in view of Corollaries 2.3 and 2.4 on
the zeros of W for small and large times, it is evident that 0 < Gt and
Dt < ∞ almost surely. Finally, note that Dt is a stopping time, but Gt is
not; see Exercise 2.27 also.

2.18 Proposition. Let A have the arcsine distribution as in 2.15. For
each t in R+, then, Gt has the same distribution as tA, and Dt has the same
distribution as t/A.

Proof. Let X and Y be independent standard Gaussian variables. Recall
that Ta ≈ a2/Y 2 for every a, where the symbol “≈” stands for “has the same
distribution as”.

Consider Rt = Dt − t. If Wt(ω) = x, then Rt(ω) is the hitting time of
the point −x by the path W (θtω). Since W ◦ θt is Wiener independent of Ft,
and similarly for (−W ) ◦ θt by symmetry, we conclude that Rt ≈ Wt

2/Y 2,
where Y is independent ofWt. Thus, we may replaceWt with

√
tX ; we obtain

Rt ≈ tX2/Y 2. Hence,

Dt = t+Rt ≈ t
(
X2 + Y 2

)
/Y 2 ≈ t/A

as claimed. Finally, Gt ≈ t A since, for s in (0, t),

P {Gt < s} = P {Ds > t} = P

{ s
A
> t

}
= P {tA < s} . �

The terms forward and backward recurrence times refer to the variables

Rt = Dt − t, Qt = t−Gt.2.19

within the proof, it is shown that Rt ≈ tX2/Y 2 = t C2, where C has the
standard Cauchy distribution. The distribution of Qt is the same as that
of Gt:

P {Gt ≤ s} = P {Qt ≤ s} =
2
π

arcsin
√
s

t
, 0 ≤ s ≤ t;2.20
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this is because A and 1 − A have the same distribution. Various joint
distributions can be obtained from the observation that

{Gu < s} = {Ds > u} = {Gt < s,Dt > u} , 0 ≤ s < t < u.2.21

We put some such as exercises.

2.22 Remark. Arcsine law 2.16 is a consequence of the arcsine distribu-
tion for Gt, because the event on the left side of 2.16 is the same as {Gu < s}.

Exercises

2.23 Laplace transform for Ta. This is to avoid a direct computation using
the distribution 2.11. First, use 2.9 to show that

E e−pTa =
ˆ ∞

0

dt pe−pt P {Ta ≤ t} = P {|WS | > a} , p ≥ 0,

where S is independent of W and has the exponential distribution with pa-
rameter p. Recall that, then, WS has the same distribution as S1 −S2, where
S1 and S2 are independent exponential variables with parameter

√
2p. Con-

clude that 2.12 holds.

2.24 Potentials. Let X = X0 + W be the standard Brownian motion with
initial state X0. Write E

x for the expectation operator given that X0 = x.
For Borel f : R 	→ R+, define

Upf(x)=E
x

ˆ ∞

0

dt e−pt f ◦Xt

=E

ˆ ∞

0

dt e−pt f(x+Wt), p ∈ R+, x ∈ R.

The function Upf is called the p-potential of f . Show that, for p > 0,

Upf(x) =
ˆ

R

dy up(x− y) f (y) ,

where

up(x) =
ˆ ∞

0

dt e−pt
e−x

2/2t

√
2πt

=
1√
2p

e−
√

2px2
, x ∈ R.

2.25 Zeros to left and right. With Gt and Dt defined by 2.17, show that, for
0 < s < t < u,

P {Gt ∈ ds} = ds 1

π
√
s(t−s) , P {Dt ∈ du} = du t

πu
√
t(u−t) ,

P {Gt ∈ ds, Dt ∈ du} = ds du 1

2π
√
s(u−s)3 .
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2.26 Recurrence times. For Rt andQt defined by 2.19, show that, for 0 < q < t
and r ≥ 0,

P {Qt ∈ dq} = dq
1

π
√
q(t− q)

, P {Rt ∈ dr|Qt = q} =
1
2

√
q

(q + r)3
.

2.27 No stopping at Gt. Of course, Gt is not a stopping time. This is to show
that, moreover, Gt has no chance of coinciding with a stopping time: Let S
be a stopping time of F. We shall show that

P {S = Gt} = 0.

By replacing S with S ∧ t, we may assume that S ≤ t.

a) Show that T0 ◦ θS = 0 almost surely; this is by the strong Markov
property coupled with Proposition 2.2.

b) Show that, for almost every ω and every ε > 0, there is u in the interval
(S(ω), S(ω) + ε) such that Wu(ω) = 0.

c) Show that the preceding statement is incompatible with the definition
of Gt for ω in {S = Gt}.

3 Hitting Times and Running Maximum

The setup is as in the preceding section. We are interested in the pro-
cess T = (Ta)a∈R+ of hitting times and its relationship to the process M =
(Mt)t∈R+ of running maximum, where

Mt(ω) = max0≤s≤tWs(ω), t ∈ R+, ω ∈ Ω.3.1

The definition 2.1 of Ta(ω) remains true when Wt(ω) there is replaced with
Mt(ω). Indeed, the paths a 	→ Ta(ω) and t 	→ Mt(ω) are functional inverses
of each other:

Ta(ω) = inf {t > 0 : Mt(ω) > a} , Mt(ω) = inf {a > 0 : Ta(ω) > t} .3.2

This relationship, together with the previous results on the Ta, shows that the
following holds; see Figure 11 below as well. No further proof seems needed.

3.3 Lemma. For almost every ω, the path a 	→ Ta(ω) is right-continuous,
strictly increasing, real-valued, and with To(ω) = 0 and lima→∞ Ta(ω) = +∞.
For almost every ω, the path t 	→Mt(ω) is increasing, continuous, real-valued,
and with Mo(ω) = 0 and limt→∞Mt(ω) = +∞.

In particular, Ta(ω) < t if and only if Mt(ω) > a, this being true for every
a and t in R+. Thus, the formula 2.9 may be re-stated as follows.
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a

Ta− Ta

M

Figure 11: The path M is increasing and continuous; Ta is the time it hits
the interval (a,∞).

3.4 Proposition. For every a and t in R+,

P {Ta < t} = P {Mt > a} = P {|Wt| > a} .

3.5 Remark. The preceding implies that Mt has the same distribution
as |Wt| for each t; thus, EMt =

√
2t/π and EM 2

t = t in particular. The
probability law of the process M , however, is very different from that of
|W |. The law of M is specified by the relationship 3.2 and the law of the
process (Ta).

Hitting time process is stable Lévy

3.6 Theorem. The process T = (Ta)a∈R+ is a strictly increasing pure-
jump Lévy process. It is stable with index 1/2, and its Lévy measure is

λ(dt) = dt
1√
2πt3

, t > 0.3.7

Proof. Fix a and b in (0,∞). In order for the process W to hit the interval
(a+b,∞), it must hit (a,∞) first, and, then, the future process W ◦θTa must
hit (b,∞); in short,

Ta+b = Ta + Tb ◦ θTa .

Since Ta < ∞ almost surely, the process W ◦ θTa is independent of FTa

and is again a Wiener process; this is by the strong Marker property at
Ta. Thus, Ta+b − Ta = Tb ◦ θTa is independent of FTa and has the same
distribution as Tb. Together with Lemma 3.3, this shows that the process T
is a strictly increasing Lévy process over the stochastic base (Ω,H, F̂, θ̂,P),
where F̂a = FTa and θ̂a = θTa ; see Definition VII.3.3.



398 Brownian Motion Chap. 8

The distribution of Ta is the same as that of a2T1; this is by Proposition
2.10. Thus, the Lévy process T is stable with index 1/2. Every such process is
of the pure-jump type, and its Lévy measure has the form λ(dt) = dt c/t3/2;
see Example VII.2.1. Finally, the constant c must be equal to 1/

√
2π in this

case, since VII.2.1 and 2.12 imply

E e−pTa = exp− a
ˆ

R+

λ(dt)
(
1 − e−pt

)
= exp− a

√
2p.

�

Poisson jump measure

We use the preceding theorem to clarify the fine structure of the pro-
cesses T and M . Recall the Itô-Lévy decomposition for Lévy processes;
see Theorem VII.5.2 and VII.5.14 and et seq. The following needs no fur-
ther proof.

3.8 Theorem. Let N be the random measure on R+ × R+ defined by

N(ω,B) =
∑

a

1B
(
a, Ta(ω) − Ta−(ω)

)
, ω ∈ Ω, B ∈ B (R+ × R+) ,

where the sum is over all a for which Ta(ω) > Ta−(ω). Then, N is Poisson
with mean measure Leb × λ, where λ is as given by 3.7. Conversely,

Ta(ω) =
ˆ

(0,a]×R+

N(ω; db, du) u, a ∈ R+, ω ∈ Ω.

The relationship between the random measure N and the processes M
and T are shown in the Figure 12 below. We describe some of the features:

M(w)

Ta(w)Ta−(w)

a

u

Figure 12: Big sized atoms of N(ω, ·) are marked with little circles on the
graph left. Corresponding to the atom (a, u), there is a jump of size u from
Ta−(ω) to Ta−(ω) + u = Ta(ω), the path M(ω) stays constant at level a
during the time interval [Ta−(ω), Ta(ω)].
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The following holds for almost every ω: A point (a, u) is an atom of the
counting measure N(ω, ·) if and only if the path M(ω) has a flat stretch of
length u at the level a, and then, the hitting time Ta(ω) of the interval (a,∞)
is exactly u time units later than the hitting time Ta−(ω) of the point a. Since
N(ω, ·) has only countably many atoms, this situation occurs at countably
many a only. Since there are infinitely many atoms in the set (a, b)× (0,∞),
the path M(ω) stays flat at infinitely many levels on its way from a to b;
however, for ε > 0 however small, only finitely many of those sojourns exceed
ε in duration.

The situation at a fixed level a is simpler. For a > 0 fixed, almost surely,
there are no atoms on the line {a} × R+; therefore, Ta = Ta− almost surely.

Exercises

3.9 Time change. Show that, for every p in R+,

ˆ
R+

e−pt dM t =
ˆ

R+

da e−pTa .

This suggests a painless way of computing the Laplace transform for Ta. Since
(Ta) is Lévy, the Laplace transform has the form e−aϕ(p). Hence, the expected
value of the right side above is equal to 1/ϕ(p). Whereas, the expected value
of the left side is easy to compute using EMt =

√
2t/π; the result is 1/

√
2p.

So, ϕ(p) =
√

2p, confirming 2.12 once more.

3.10 Cauchy connection. Let X be a Wiener process independent of W and,
thus, independent of (Ta). Show that (XTa)a∈R+ is a Cauchy process; see
Example VII.2.14 for Cauchy.

3.11 Continuation. Let (Xt, Yt)t∈R+ be a standard Brownian motion in R
2

with initial state (X0, Y0) = (0, y) for some fixed y > 0. Let S be the first
time that the motion (X,Y ) touches the x-axis. Find the distribution of XS ,
the point touched on the x-axis.

4 Wiener and its Maximum

The setup and notations are as before in Sections 2 and 3. Our aim is to
examine the joint law of the Wiener process W and its running maximum
M defined by 3.1. We shall see that M −W is a reflected Brownian motion
and that it determines both M and W . As a supplement, we mention that
2M −W is a Bessel process of index 3, that is, it has the same law as the
radial Brownian motion in dimension 3. These results will lead to excursions
and local times in the next sections.
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Distribution of M and W at a fixed time

4.1 Proposition. For fixed times t > 0,

P {Mt ∈ da, Mt −Wt ∈ db} = da db
2(a+ b)e−(a+b)2/2t

√
2πt3

, a, b ∈ R+.

Proof. Recall that Ta(ω) < t if and only if Mt(ω) > a, and that the
distribution of Ta is diffuse. Thus, we may re-write Proposition 2.7 in the form

P {Mt > a,Wt ≤ x} = P {Wt > 2a− x} =
ˆ ∞

2a−x
dy

e−y
2/2t

√
2πt

, x ≤ a,

Differentiating this with respect to a and x, and putting a − x = b, we see
that the claimed expression holds. �

In the preceding proposition, it is worth noting the symmetry with respect
to the arguments a and b. It follows that Mt −Wt and Mt have the same
marginal distribution, and the distribution of the latter is the same as that
of |Wt|; see 3.4. This proves the following.

4.2 Corollary. For fixed t, the variables Mt, |Wt|, and Mt −Wt have
the same distribution.

As a process, M is very different from |W | and M −W . But, the latter
two are alike: they have the same law; see 4.6 below.

Construction of M from the zeros of M − W

Fix an outcome ω. The set

Dω = {t ∈ R+ : Mt(ω) −Wt(ω) > 0}4.3

is open, since it is the inverse image of the open set (0,∞) under the contin-
uous mapping t 	→Mt(ω)−Wt(ω). Thus, Dω is a countable union of disjoint
open intervals. For ε > 0, let Nt(ω, ε) be the number of those open intervals
contained in [0, t] and having lengths exceeding ε.

4.4 Theorem. For almost every ω,

lim
ε↓0

√
2πε Nt(ω, ε) = 2Mt(ω), t ∈ R+.

Remark. This shows that M is determined by N , which is in turn deter-
mined by the zero-set of M−W . Interestingly, thus, M−W determines both
M and W .
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Proof. In terms of the Poisson random measure N described by
Theorem 3.8,

Nt(ω, ε) = N(ω, (0,Mt(ω)) × (ε,∞)).

Thus, it is sufficient to show that, for each a in R+, almost surely,

lim
ε↓0

√
2πε N ((0, a) × (ε,∞)) = 2a.4.5

Recalling the mean measure of N (see 3.7 and 3.8), we have

E N

(
(0, a) ×

(
1
k2
,∞

))
= a

ˆ ∞

1/k2
dt

1√
2πt3

=
2 a√
2π

k.

Thus, since N is Poisson, the right side of the expression

N

(
(0, a) ×

(
1
n2
,∞

))
=

n∑

k=1

N

(
(0, a) ×

(
1
k2
,

1

(k − 1)2

])

is the sum of n independent and identically distributed random variables with
mean 2a/

√
2π each. Hence, by the strong law of large numbers,

lim
n→∞

1
n
N

(
(0, a) ×

(
1
n2
,∞

))
=

2a√
2π

almost surely. This proves 4.5 and completes the proof of 4.4. �

The preceding theorem can be strengthened: For almost every ω, the
convergence shown is indeed uniform in t over compacts.

Process M − W is a reflected Wiener

The following is the main result of this section. We shall prove it by
constructing a Wiener process V such that |V | = M –W .

4.6 Theorem. The processes M–W and |W | have the same law.

4.7 Remark. This theorem is a corollary to Theorem 4.8 below, where
we show the existence of a Wiener process V such that M –W = |V |. We
start by analyzing the problem of constructing V .

Observing Mt(ω) and Wt(ω) yields only the absolute value |Vt(ω)|; to
obtain Vt(ω) we need to supply the sign. To see how this should be done,
we examine Figure 13 below. Note that the path W (ω) coincides with the
path M(ω) at all times except those belonging to the open set Dω defined
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M

W

V

Figure 13: The path M(ω) is increasing continuous; W (ω) hangs like a sta-
lactite from each flat stretch of M(ω). To construct V (ω), each stalactite is
made to stand up or hang down from the time axis, the two choices being
equally likely.

by 4.3. Over each component of Dω, the path M(ω) stays flat and the path
W (ω) hangs from M(ω) like a stalactite. Over the same interval, then, V (ω)
will have to be either a stalactite hanging from the time axis, or a stalagmite
standing up, the two possibilities being equally likely. Thus, we need to assign
a sign, either positive or negative, to each stalactite hanging from M(ω).

To provide the needed signs, we need, independent of W , a countable
independency of Bernoulli variables taking the values +1 and −1 with equal
probabilities. If (Ω,H,P) does not support such a sequence (Bi)i∈N, we en-
large it as follows: Let D = {+1,−1}, D = 2D, μ = 1

2 δ1 + 1
2 δ−1 with δx

being Dirac at x as usual; replace (Ω,H,P) with
(
Ω̂, Ĥ, P̂

)
= (Ω,H,P) × (D,D, μ)N ,

and, for ω̂ = (ω, ω′) in Ω̂, define Ŵt(ω̂) = Wt(ω) and let Bi(ω̂) be the i-
coordinate of ω′. In the next theorem, we shall assume that this enlargement,
if needed, is done already. Theorem 4.6 is a corollary of the next theorem.

4.8 Theorem. There exists (on a possibly enlarged probability space) a
Wiener process V such that M −W = |V |.

Proof. We may and do assume that there is, independent of W , an in-
dependency (Bi)i∈N of variables taking the values +1 and −1 with equal
probabilities.
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a) Let N be the Poisson random measure described by Theorem 3.8, and
let (Ai, Ui)i∈N be a labeling of its atoms. Then, the triplets (Ai, Ui, Bi) are
the atoms of a Poisson random measure N̂ ; see Corollary VI.3.5.

Fix ω, and let (a, u, b) be an atom of N̂(ω, ·). Corresponding to that atom,
M(ω) remains equal to a over the time interval (s, s+u) = (Ta−(ω), Ta(ω));
we define

Vt(ω) = (Mt(ω) −Wt(ω)) b, t ∈ (s, s+ u) .4.9

Doing this for every atom, we obtain Vt(ω) for every t for which Mt(ω) =
Wt(ω); for all other t, we define Vt(ω) = Mt(ω) −Wt(ω) = 0.

For fixed t, we remarked in Corollary 4.2 that Mt−Wt has the same dis-
tribution as |Wt|. Thus, in view of 4.9 and the independence of the Bernoulli
variables Bi from W,

P {Vt ∈ A} = P {Wt ∈ A} = G (t, A) , A ∈ BR,4.10

with the same notation 2.5 for the Gaussian kernel G.

b) It is obvious that V is continuous and starts from V0 = 0. To show
that it is Wiener, we shall show that

P

{
Vs+t − Vs ∈ A | F̂s

}
= G(t, A), s, t ∈ R+, A ∈ BR,4.11

where F̂s is the σ-algebra generated by the union of Fs and σ{Vr : r ≤ s}.
This is obvious if s = 0 or t = 0. For the remainder of the proof, we fix s > 0
and t > 0 and define

D = inf {u > s : Wu = Ms} , R = D − s.

Observe that D is a stopping time of F and, thus, of F̂; moreover, almost
surely, D <∞, WD = MD = Ms, VD = 0. It is clear that, in view of 4.10,

P {VD+u − VD ∈ A} = P {Vu ∈ A} = G(u,A).4.12

c) On the event {R ≤ t, Vs = x}, we have s < D ≤ s+ t and VD = 0 and

Vs+t = VD+(t−R) − VD.

Thus, as in Theorem 1.14, it follows from 4.12 that

P

{
R ≤ t, Vs+t − Vs ∈ A | F̂D

}
= G(t−R,A+ x)1{R≤t}

on {Vs = x}, on which we also have R = Ta ◦ θs with a = |x|. Hence,
conditioning both sides on F̂s, since F̂s ⊂ F̂D and Ta ◦ θs is independent of
F̂s and has the same distribution as Ta, we get

P

{
R ≤ t, Vs+t − Vs ∈ A | F̂s

}
= f ◦ Vs4.13
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where

f(x) = EG (t− Ta, A+ x) 1{Ta≤t}, x ∈ R, a = |x| .4.14

d) On {R > t, Vs = x}, the variable Vs+t has the same sign as x, and

R = Ta ◦ θs, Vs+t − Vs = −b Wt ◦ θs with a = |x| , b = sgn x.

Thus, by the Markov property of W ,

P

{
R > t, Vs+t − Vs ∈ A | F̂s

}
= g ◦ Vs,4.15

where

g(x) = P {Ta > t, −bW t ∈ A} , x ∈ R, a = |x|, b = sgn x.

We use Lemma 2.6 and the symmetry of G(u, ·) to evaluate g(x):

g(x) = P {Wt ∈ −bA} − P {Ta ≤ t,Wt ∈ −bA}4.16

= G(t, A) − EG(t− Ta,−bA− a)1{Ta≤t}

= G(t, A) − EG(t− Ta, A+ x)1{Ta≤t},

where the last equality is justified by noting that −bA− a is equal to −A−x
if x ≥ 0 and to A+ x if x ≤ 0.

e) It follows from 4.14 and 4.16 that f(x)+g(x) = G(t, A), and we obtain
4.11 by putting 4.13 and 4.15 together. �

Process 2M − W is a Bessel with index d = 3

Let R = 2M −W . Since M −W ≥ 0, we have R ≥M . Recalling that M
is increasing and strictly positive on (0,∞) and with limit equal to +∞ as
t→ ∞, we conclude the following: For almost every ω, we have

R0(ω) = 0, Rt(ω) > 0 for every t > 0, limt→∞Rt(ω) = +∞.4.17

For each ω, the path R(ω) is obtained by reflecting the path W (ω) at its run-
ning maximum M(ω), that is, each stalactite of W (ω) hanging from M(ω)
is made into a stalagmite sitting on M(ω). From this picture, it is now evi-
dent that

Mt(ω) = inf
u≥t

Ru(ω), t ∈ R+.4.18

Thus, the path R(ω) defines the path M(ω) and, hence, the path W (ω) =
2M(ω) −R(ω).

Recall from Example 1.22 that a Bessel process of index d = 3 is a Markov
process whose law is identical to that of |X |, where X is a 3-dimensional
Wiener process. The proof of the following will be sketched in Exercises 4.27.
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4.19 Theorem. The process R = 2M −W is a Bessel process of index
d = 3.

The preceding clarifies the recurrence properties of Wiener processes in
R
d for d ≥ 3. Let X be a Wiener process in R

3. According to the preceding
theorem, its radial part |X | has the same law as R = 2M −W . It follows
from 4.17 that, for almost every ω,

|X0(ω)| = 0, |Xt(ω)| > 0 for every t, lim
t→∞ |Xt(ω)| = +∞.4.20

Thus, the Wiener particle X in R
3 starts from the origin, and never returns

to the origin, and the set of times spent in a bounded Borel set B is bounded.
The process X is transient in this sense. The same statements are true for a
Wiener process X in R

d with d > 3, since every choice of three components
of X define a Wiener process in R

3.

Exercises

4.21 Arcsine law for M .
a) Fix t. Show that, for almost every ω, Wt(ω) = Mt(ω) if and only if

Mt+ε(ω) > Mt(ω) for every ε > 0.

b) Show that, for 0 < s < t, the event {Ms = Mt} and the event
{Wu < Mu, s < u < t} have the same probability.

c) Show that P{Ms = Mt} = 2
π arcsin

√
s/t.

4.22 Continuation. For t > 0, let Ĝt = sup{s ≤ t : Ws = Ms}. Compute the
distribution of Ĝt.

4.23 Some joint distributions. It will be convenient to introduce

ht(a) =
a e−a

2/2t

√
2πt3

, kt(x, y) =
e−(x−y)2/2t

√
2πt

− e−(x+y)2/2t

√
2πt

for t > 0, a > 0, and x and y real. Note that t 	→ ht(a) is the density for the
distribution of Ta, the hitting time of a; thus

ˆ t

0

ds hs(a) ht−s(b) = ht(a+ b), a, b > 0.

a) Show that, for a and b in (0,∞),

ˆ t

0

ds
a e−a

2/2s

√
2πs3

· e
−b2/2(t−s)
√

2π(t− s)
=
e−(a+b)2/2t

√
2πt

.
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b) Show that, for a and x in (0,∞),

P {Ta > t, Wt ∈ a− dx} = dx kt(a, x),
P {Mt ∈ da,Wt ∈ a− dx} = da dx 2 ht(a+ x).

c) Another interpretation for kt(x, y): show that

P {Ws+t ∈ dy; Wu = 0 for u ∈ (s, s+ t)|Ws = x} = dy kt(x, y)

provided that x and y are either both positive or both negative.

4.24 The process Y = (M, M –W ). This is clearly a Markov process with
state space R+ × R+: for s, t in R+ and B in B(R+ × R+)

P {Ys+t ∈ B|Fs} = Pt(Ys, B).

The transition kernel Pt can be computed explicitly: in terms of ht and kt
introduced above, for a, b, y in (0,∞) and x ≥ a,

Pt (a, b; dx, dy)
= P {Ms+t ∈ dx,Ms+t −Ws+t ∈ dy | Ms = a,Ms −Ws = b}
= P {Tb > t, b−Wt ∈ dy} I(a, dx)

+
ˆ t

0

P {Tb ∈ t− du} P {a+Mu ∈ dx,Mu −Wu ∈ dy}
= I(a, dx) dy kt(b, y) + dx dy 2ht(x− a+ b+ y).

4.25 A martingale. For fixed p in R+,

Zt = e−pMt [1 + p(Mt −Wt)] , t ∈ R+,

is an F-martingale. Show this via the following steps.
a) Use 4.1 to show directly that EZt = 1 for every t.

b) In terms of the process Y of 4.24, note that Zt = f◦Yt, where f(x, y) =
e−px(1 + py) for x, y in R+. Use the Markov property for Y to show that Z
is a martingale if Ptf = f , that is, if f is harmonic for Y .

c) Use part (a) here and some of the stages in 4.24 to show that

Ptf(a, b) = e−pa E(1 + p(b−Wt))1{Tb>t}

+
ˆ t

0

P {Tb ∈ t−du} E e−p(a+Mu)(1 + p(Mu −Wu))

= e−pa + pe−pa E(b −Wt)1{Tb>t}.
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d) To conclude that Ptf(a, b) = f(a, b), show that

E(b−Wt)1{Tb>t} = E(b −Wt) + E(Wt − b)1{Tb≤t} = b+ 0 = b.

4.26 The process (M, 2M –W ). Define R = 2M −W as in Theorem 4.19.
In preparation for the proof of 4.19, we consider the process (M , R). It is
obvious that (M , R) is a Markov process whose state space is the region of
R+ × R+ above the diagonal. Of course, M0 = R0 = 0.

Show that, for t > 0,

μt(dx, dy) = P {Mt ∈ dx,Rt ∈ dy} = dx dy 2ht(y), 0 ≤ x ≤ y.

Qt(a, b; dx, dy) = P {Ms+t ∈ dx,Rs+t ∈ dy|Ms = a,Rs = b}
= I(a, dx) dy kt(b−a, y−x)+dx dy 2ht(b+ y − 2a)

for 0 < a ≤ b, a ≤ x ≤ y. In particular, given that Rt = y, the conditional
distribution of Mt is uniform on (0, y).

4.27 Proof of Theorem 4.19. For the process R = 2M −W , the results of the
preceding exercise can be used to compute that

νt(dx) = P {Rt ∈ dx} = dx 2 x ht(x)

Pt(x, dy) = P {Rs+t ∈ dy|Rs = x} = dy
y

x
kt(x, y)

for t > 0 and x, y > 0, of course, R0 = 0. These results coincide with their
counterparts in Example 1.22 (see 1.25 and 1.26) for the Bessel process with
index d = 3. To show that R = 2M −W is a Bessel process with index 3,
there remains to show that R is a Markov process. There does not seem to be
an elegant proof. A direct proof, elementary but computationally intensive,
can be obtained as follows.

Fix an integer n ≥ 2, and a positive Borel function on R
n
+. For times

0 < t1 < t2 < . . . < tn, by the Markov property of (M,R), we have

Ef(Rt1 , . . . , Rtn)

=
ˆ
μt1(dx1, dy1)

ˆ
Qt2−t1(x1, y1; dx2, dy2)

ˆ
· · ·

ˆ
Qtn−tn−1 (xn−1, yn−1; dxn, dyn) f(y1, y2, . . . , yn)

We need to show that the right side is as it should be, that is, that the right
side is equal to
ˆ
νt1(dy1)

ˆ
Pt2−t1(y1, dy2)

ˆ
· · ·
ˆ
Ptn−tn−1 (yn−1, dyn) f (y1, . . . , yn) .
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5 Zeros, Local Times

We keep the setup and notations of the previous sections: W = (Wt) is
a Wiener process, M = (Mt) is its running maximum, and T = (Ta) is the
process of hitting times. We are interested in the Cantor set like features of
the set C of times at which W is at 0, and in the existence of a random
measure whose support is C, called the local time measure.

Closed and perfect sets

This is to review some terminology. Let C be a closed subset of R+. Then,
its complement R+\C is open and, therefore, is a countable union of disjoint
open intervals. Those open intervals are said to be contiguous to C. A point
of C is isolated if it is the common end point of two distinct contiguous
intervals, or, if it is zero and is the left-end point of a contiguous interval.
The set C is dense in itself if it has no isolated points, that is, if every point
of C is a limit point of C.

A perfect set is a closed set with no isolated points. The simplest example
is a union of finitely many disjoint closed intervals. Another example, closer
to our present concerns, is the Cantor set. Every perfect set has the power of
the continuum, that is, there exists an injection of R+ into C; see I.5.22 for
this with the Cantor set.

Zeros of W

We are interested in the qualitative features of the set

Cω = {t ∈ R+ : Wt(ω) = 0} , ω ∈ Ω,5.1

the set of zeros of W . For fixed ω, it is the inverse image of the closed set
{0} under the continuous mapping t 	→ Wt(ω) from R+ into R; thus, it is
closed, and its complement is the union of a countable collection of disjoint
open intervals, called contiguous intervals.

Fix the integers m and n in N
∗. Consider those intervals contiguous to

Cω whose lengths belong to the interval
[

1
m ,

1
m−1

)
. Going from left to right,

let (Gm,n(ω), Dm,n(ω)) be the nth such interval if it exists; otherwise, put
Gm,n(ω) = Dm,n(ω) = +∞ and note that the interval becomes empty. Fi-
nally, to lighten the notation, use a bijection (m,n) 	→ i from N

∗ × N
∗ onto

N to re-label these intervals as (Gi(ω), Di(ω)). Thus,

R+\Cω =
⋃

i∈N

(Gi(ω), Di(ω)) , ω ∈ Ω.5.2

Clearly, each Di is a stopping time. Stability and recurrence properties
of W imply that each Di is almost surely finite. Incidentally, each Gi is a
random variable but not a stopping time; see Exercise 2.27 for the reasoning.
The following shows the Cantor set like features of the zero-set C.
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5.3 Theorem. For almost every ω, the set Cω is perfect and unbounded,
its interior is empty, its Lebesgue measure is zero, and it has the power of
the continuum.

Proof. We have already seen that Cω is closed. It is unbounded for almost
every ω in view of Corollary 2.4. Its Lebesgue measure is zero for almost
every ω, since

E Leb C = E

ˆ
R+

dt 1{0} ◦Wt =
ˆ

R+

dt P {Wt = 0} = 0.

This implies that the interior of Cω is empty for almost every ω, because
no set of zero Lebesgue measure can contain an open interval. To complete
the proof, there remains to show that, for almost every ω, the set Cω has no
isolated points; then, the closed set Cω is perfect and has the power of the
continuum necessarily.

We start by recalling that T0 = 0 almost surely. Thus, as mentioned in
Corollary 2.3, there is an almost sure set Ω00 such that, for every ω in it,
there is a strictly decreasing sequence (tk) in Cω with limit 0, that is, the
point 0 of Cω is a limit point of Cω for every ω in Ω00.

Similarly, for each i in N, the stopping time Di is almost surely finite, and
the strong Markov property yields that

T0 ◦Di = 0 almost surely.

Thus, there is an almost sure event Ωi such that Di(ω) is a limit point of
Cω for every ω in Ωi. Consider, finally, the intersection Ω′ of the events
Ω00, Ω0, Ω1, . . .. For ω in it, neither 0 nor any Di(ω) is isolated. In view of
5.2, then, Cω is perfect for every ω in the almost sure event Ω′. �
5.4 Remarks. a) It will be convenient to introduce here the almost sure
event Ω∗ = Ω′ ∩ Ω′′, where Ω′ is as in the proof above, and where Ω′′ is the
set of ω for which the claims of the preceding theorem hold in addition to
the regularity properties of the path W (ω).

b) We shall see in Corollary 5.11 below that there is a strictly increasing
function a 	→ Sa(ω) from R+ into R+ such that Sa(ω) belongs to Cω for
every a. This shows, directly, that Cω has at least “as many points” as R+.

Local time at zero

Imagine a clock whose mechanism is so rigged that the clock advances
when and only when the Wiener particle is at the origin. We shall show that
such a clock exists; it will be called the local time at zero.

First, some generalities. Let c : R+ 	→ R+ be increasing and continuous
with c(0) = 0. Think of it as a clock: when the standard time is t, the clock
shows c(t). The clock may remain stationary during some periods of time,
that is, the function is not forced to be strictly increasing. The set of times
of increase for c is defined to be

Incr c = {t ∈ R+ : c(t− ε) < c(t+ ε) for every ε > 0} ,5.5
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where we use the convention that c(t − ε) = 0 for t < ε. Corresponding to c
there is a unique measure on R+ whose “distribution” function is c. The set
Incr c is also called the support of this measure, namely, the smallest closed
set whose complement has measure zero. We shall show next the existence
of a random measure on R+ whose support is the zero-set C defined by 5.1.
This is interesting especially since C has zero as its Lebesgue measure.

Consider Figure 13 on page 402, and concentrate on the relationship of
M to the Wiener process V there; recall that |V | = M −W . For every ω, the
path M(ω) is increasing and continuous; and it increases at a time t if only
if Vt(ω) = 0, more precisely,

Incr M(ω) = {t ∈ R+ : Vt(ω) = 0} .5.6

Moreover, it follows from Theorem 4.4 that the time-set on the right side
determines the path M(ω).

Since W is a Wiener process just as V , there must be a process L that
is related to W just as M is to V . We state this conclusion next; there is
nothing new to prove. The process L = (Lt)t∈R+ is called the local time of
W at zero.

5.7 Theorem. There exists an increasing continuous process L that has
the same law as M and is such that

Incr L(ω) = Cω = {t ∈ R+ : Wt(ω) = 0} , ω ∈ Ω.

Inverse of the local time is a stable Lévy process

Heuristically, the local time process L is a random clock that advances
when and only when W is at the point 0. When the standard time is t, the
local time at 0 is Lt; conversely,

Sa = inf {t ∈ R+ : Lt > a}5.8

is the standard time when the local time is just about to pass a.

5.9 Theorem. The process S = (Sa)a∈R+ has the same law as the hitting
time process T = (Ta)a∈R+ . It is a strictly increasing pure-jump Lévy process;
it is stable with index 1/2; its Lévy measure is

λ(ds) = ds
1√

2πs3
, s > 0,

Proof. By comparing 5.8 and 3.2, we note that S bears the same relation
to L as T does to M . By the last theorem, L and M have the same law.
Hence, S and T have the same law. The statement about S as a Lévy process
is the same as Theorem 3.6 about T . �
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In terms of S, the local time L is defined as the functional inverse of S:

Lt = inf {a : Sa > t} , t ∈ R+;5.10

This is immediate from 5.8. The following is to clarify some further relation-
ships.

5.11 Corollary. For almost every ω, with Gi(ω) as in 5.2,

{Sa(ω) : a ∈ R+} = Cω\ {Gi(ω) : i ∈ N} .
Proof. Take ω such that L(ω) is continuous and S(ω) strictly increasing.

Fix a in R+ and let Sa(ω) = t. Then, 5.8 and the continuity of L(ω) imply that

Sa(ω) = t⇔ Lt(ω) = a, Lt+ε(ω) > a for every ε > 0.5.12

Next, note that the set of t for which the right side holds for some a is exactly
the set (Incr L(ω))\Ĝω, where Ĝω is the countable set consisting of the left-
end-points of the intervals contiguous to Incr L(ω). The proof is complete,
since Cω = Incr L(ω) by Theorem 5.7 and, thus, Ĝω = {Gi(ω) = i ∈ N}
by 5.2. �

Local times elsewhere

Fix a point x in R. Consider the hitting time Tx defined by 2.1 or 2.14. It
is almost rurely finite; the Wiener particle is at x at that time; and the point
x becomes the point 0 of the new Wiener process W ◦ θTx . With L as defined
earlier, L ◦ θTx is the local time at 0 for W ◦ θTx ; using it, we introduce the
following definition for every outcome ω and time t:

Lxt (ω) =

⎧
⎨

⎩

0 if t < Tx(ω),

Lt−s(θsω) if t ≥ s = Tx(ω).
5.13

It is immediate from Theorem 5.7 that

Incr Lx(ω) = {t ∈ R+ : Wt(ω) = x} .5.14

Thus, the process Lx = (Lxt)t∈R+
is called the local time at x for W . Note

that L0 = L.
For x = 0, the path Lx(ω) stays at 0 during [0, Tx] and, then, starts

increasing just as L did at 0. All computations regarding Lx can be reduced
to computations about L, but with special consideration for the delay at the
start; see Exercise 5.19 for an example.

Master theorem on equivalence

The essential argument underlying the results of this section is that L
bears the same relationship to W as M does to V . We put this observation
next and supplement it by recalling that |V | = M −W . This is a summary
of the results above; there is nothing new to prove.
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5.15 Theorem. The three-dimensional process (W , L, S) has the same
law as (V , M , T ). Further, (|W |, L, S) has the same law as (M −W , M ,
T ), and L− |W | has the same law as W .

Exercises

5.16 Minimum of W. Define mt(ω) = min0≤s≤t Ws(ω). Obviously, the pro-
cess (−mt) has the same law of (Mt). Show that |W | has the same law as
W −m.

5.17 Local time measure. For each ω, let A 	→ L(ω,A) be the unique mea-
sure on (R+,BR+) whose distribution function is the increasing continuous
function t 	→ Lt(ω). Show that the support of that measure is exactly the
set Cω of zeros of W (ω)–the support of a measure μ on R+ is the smallest
closed subset of R+ whose complement has μ-measure 0. Obviously, L(ω, ·)
is singular with respect to the Lebesgue measure, and

L(ω, [0, t]) = L(ω,Cω ∩ [0, t]) = Lt(ω).

5.18 Computing the local time. This is to relate L to the zero-set C. For
every ω and every ε > 0, let N̂t(ω, ε) be the number of intervals that are
contiguous to Cω, are contained in [0,t], and whose lengths exceed ε. Show
that, for almost every ω,

lim
ε↓0

√
2πε N̂t(ω, ε) = 2 Lt(ω).

5.19 Local time at x. Note that Lx and L−x have the same law for every x in
R. Fix x > 0. Compute P {Lxt = 0}. Show that, for a > 0,

P {Lxt ∈ da} =
ˆ

[0,t]

P {Tx ∈ ds}P {Lt−s ∈ da} = da
2e−(x+a)2/2t

√
2πt

.

5.20 Inverse of the local time at x. Fix x in R. Define Sxa from Lx as Sa is
defined from L in 5.8. Show that the process (Sxa )a∈R+

has the same prob-

ability law as (Tx + Ŝa)a∈R+ , where (Ŝa) is independent of Tx and has the
same law as the stable Lévy process (Sa) described in Theorem 5.9.

5.21 Occupation times. For x in R and t in R+, define

At(ω, x) =
ˆ t

0

ds 1(−∞,x] ◦Ws(ω),

the amount of time spent in (−∞, x] by W (ω) during [0, t]. Show that
x 	→ At(ω, x) is equal to 0 on (−∞, mt(ω)], and to t on [Mt(ω),+∞), and
is continuous and strictly increasing on [mt(ω), Mt(ω)]; what are mt(ω) and
Mt(ω)?
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5.22 Local times as derivatives. It can be shown that, for almost every ω, x 	→
At(ω, x) is differentiable, and its derivative at the point x is Lxt (ω), that is,

Lxt (ω) = lim
ε↓0

1
2ε

ˆ t

0

ds 1(x−ε,x+ε) ◦Ws(ω).

5.23 Occupation measure. This is the name for the measure on R whose
distribution function is x 	→ At(x). Letting it be denoted by Kt, we see from
5.21 and 5.22 that

Kt(ω,B) =
ˆ t

0

ds 1B ◦Ws(ω) =
ˆ
B

dx Lxt (ω), B ∈ BR,

or, for f positive Borel on R,

Ktf(ω) =
ˆ t

0

ds f ◦Ws(ω) =
ˆ

R

dx f(x) Lxt (ω).

5.24 Continuity of local times. It is known that, for almost every ω, the
mapping

(x, t) 	→ Lxt (ω)

from R × R+ into R+ is continuous.

6 Excursions

We continue with the setup and notations of the previous sections: W is
the Wiener process under consideration, C is its set of zeros, L is its local
time process at 0, and S is the inverse local time. Recall the almost sure
event introduced in Remark 5.4a; we take it to be the new Ω in order to avoid
boring repetitions of “almost every.” We are interested in the excursions ofW
outside the point 0, that is, basically, in the path segments over the intervals
contiguous to C.

Excursion space

The path segments in question are continuous functions that start from 0,
stay away from 0 for some strictly positive time, and return to 0 some finite
time later. It is convenient to let each such function remain at zero forever
after the return to 0. The following is the space of such functions.

We define E to be the collection of all continuous functions x : R+ 	→ R

such that

ζ (x) = inf {t > 0 : x(t) = 0}6.1
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local time local timeexcursion

excursion time

x
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s+u times

a

Figure 14: At the local time a there is an excursion x of duration u. There are
infinitely many excursions, one for each flat stretch of the local time clock.

is a strictly positive real number, and x vanishes outside (0, ζ(x)). Each ele-
ment x of E is called an excursion; ζ(x) is its duration; note that x is either
a positive function or negative. We let E be the Borel σ-algebra on E corre-
sponding to the topology of uniform convergence on compacts. Then, (E,E)
is called the excursion space.

Excursions of W

Fix an outcome ω. Let a be a point on the local time axis (see Figure 14
below) at which S(ω) has a jump, say, from s = Sa−(ω) to s+u = Sa(ω), with
u > 0. During the interval [s, s+u] the local time L(ω) stays constant at the
value a, and the Wiener path W (ω) has an excursion x defined formally by

x(t) =

⎧
⎨

⎩

Ws+t(ω) if 0 ≤ t ≤ u

0 if t > u.
6.2

This x is called the excursion of W (ω) at the local time a. It is an element
of E, and its duration is

ζ(x) = u = Sa(ω) − Sa−(ω),6.3

which is strictly positive and finite by the way a is chosen. Each excursion
corresponds to a local time at which S(ω) jumps.

Poisson random measure for excursions

The next theorem is fundamental. The measure ν on (E,E) describing the
mean here is called the Itô measure of excursions. We shall specify it later.

6.4 Theorem. For every ω, let N(ω, ·) be the counting measure on
(R+×E,BR+ ⊗ E) whose atoms are the pairs (a, x), where x is an excursion
of W (ω), and a the corresponding local time. Then, N is a Poisson random
measure whose mean has the form Leb× ν, where ν is a σ-finite measure on
the excursion space (E, E).
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Proof. Fix ε > 0. Let A1, A2, . . . be the successive points of jump for
a 	→ Sa with jump sizes exceeding ε. By Theorem 5.9, these Ai form a Poisson
random measure on R+ with mean cε Leb, where cε = λ(ε,∞) = 2/

√
2πε.

Corresponding to the local time Ai, let Xi be the excursion, and Di = SAi

the right-end point of the contiguous interval over which the local time is
Ai. Each Xi is a random variable taking values in (E,E). Each Di is a
finite stopping time with WDi = 0. Since 0 < A1 < A2 < . . ., we have
0 < D1 < D2 < . . ., and A1, X1, . . . , Ai, Xi belong to the past FDi . By the
strong Markov property atDi, then, the pair (Ai+1−Ai, Xi+1) is independent
of FDi and, therefore, of {A1, X1, . . . , Ai, Xi}, and has the same distribution
as (A1, X1). Noting further that A1 and X1 are independent, we conclude
the following: (Ai) forms a Poisson random measure on R+ with mean
cε Leb; (Xi) is independent of it and is an independency of variables with
some distribution με on (E,E) in common. It follows from Corollary VI.3.5
that the pairs (Ai, Xi), i ≥ 1, form a Poisson random measure Nε on
R+×E whose mean measure is Leb×νε, where νε = cε με is a finite measure
on (E,E).

Observe that, for every ω, the atoms (Ai(ω), Xi(ω)) are those atoms
(a, x) of N(ω, ·) with ζ(x) > ε. Thus, the Poisson random measure Nε is the
trace of N on R+ × Eε, where Eε = {x ∈ E : ζ(x) > ε}. Letting ε → 0,
we conclude that N is a Poisson random measure on R+ × E whose mean
measure is Leb × ν, where ν is the measure defined by

νf = lim
ε→0

νεf, f ∈ E+.

Since ν(Eε) = νε(E) = cε <∞ for every ε > 0, the measure ν is σ-finite. �

Excursions determine W

We have constructed the Poisson random measure N above, ω by ω, from
the Wiener process W . This can be reversed: N determines W .

Recall from 6.3 that the duration ζ(x) of an excursion x is the jump size
for S(ω) at the local time corresponding to that excursion. Thus, for every ω,

Sa(ω) =
ˆ

[0,a]×E
N (ω; db, dx) ζ(x), a ∈ R+,6.5

and L(ω) is the functional inverse of S(ω); and

Wt(ω) =
ˆ

[0,Lt(ω)]×E
N (ω; da, dx)x (t− Sa−(ω)) , t ∈ R+.6.6

In fact, the last integral is a countable sum with at most one non-zero term,
namely, the term corresponding to a = Lt(ω) if Sa−(ω) < Sa(ω).

Extents of excursions

In preparation for characterizing Itô’s measure ν on the excursion space
(E,E), we describe next the law it imparts on the extents of excursions.
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For an excursion x in E, we define the extent of x to be the point touched
by x that is at maximum distance from 0, that is,

m(x) =
{

maxt∈R+ x(t) if x is positive,
mint∈R+ x(t) if x is negative;6.7

recall that x is either positive or negative. The next theorem shows that the
local times and extents of excursions form a Poisson random measure on
R+ × R with an explicit mean measure.

6.8 Theorem. Let h be the mapping (a, x) 	→ (a, m(x)) from R+ × E
into R+ × R. Then, N̂ = N ◦ h−1 is a Poisson random measure on R+ × R

whose mean has the form Leb × ν̂, where

ν̂(db) = db
1

2b2
, b ∈ R.

Remark. It is curious that ν̂ is the Lévy measure of a Cauchy process,
namely, (1/2πYt) where Y is standard Cauchy process; see Example VII.2.14.

Proof. a) Since m : E 	→ R is continuous, the mapping h is measurable
with respect to the Borel σ-algebras on R+×E and R+×R. Since N is Poisson
on R+ ×E with mean Leb × ν, it follows that N̂ is Poisson on R+ × R with
mean Leb× ν̂, where ν̂ = ν ◦m−1. By the symmetry of W , the measure ν̂ on
R must be symmetric. Thus, for every b > 0,

ν̂(b,∞) = ν̂(−∞,−b) =
1
2

[ν̂(b,∞) + ν̂(−∞,−b)] =
1
2
ν(Eb),6.9

where

Eb = {x ∈ E : |m(x)| > b} .
To complete the proof, we shall show that ν(Eb) = 1/b.

b) Fix b > 0 and define

τ = inf {t : |Wt| > b} ;

recall that Eτ = b2. Consider Lτ , the local time at the standard time τ . Note
that it is also the local time corresponding to the first excursion belonging
to Eb. Thus, for every ω,

Lτ(ω)(ω) > a⇔ N(ω, [0, a]× Eb) = 0.

Since N is Poisson with mean Leb × ν, then,

P {Lτ > a} = exp a ν(Eb), a ∈ R+.6.10

c) For the same b > 0, define

σ = inf {t : Mt −Wt > b} .
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Since (|W |, L) has the same law as (M−W , M) by Theorem 5.15, we deduce
that (τ, Lτ ) has the same distribution as (σ, Mσ). Hence,

Eσ = E τ = b2, EMσ = E Lτ = 1/ν(Eb),6.11

the last equality being a consequence of 6.10. Since σ < ∞ almost surely,
Mσ −Wσ = b by the definition of σ and the continuity of M −W . Hence, to
complete the proof via 6.11 and 6.9, there remains to show that

EWσ = 0.6.12

d) Consider the martingale X =
(
W 2
t − t

)
t∈R+

. For each t, it is Doob on
[0, t] by V.5.6, and thus, EXσ∧t = 0. Hence,

EW 2
σ∧t = E (σ ∧ t) ≤ E σ = b2, t ∈ R+,

which shows that the martingale (Wσ∧t)t∈R+
is L2-bounded and, thus, uni-

formly integrable (see Remark II.3.13e). By Theorem V.5.14, this is equiva-
lent to saying that the martingale W is Doob on [0, σ]. Hence, 6.12. �

Itô measure on excursions

Recall the Poisson random measure N of excursions; see Theorem 6.4.
Its mean measure on R+ × E is the product measure Leb × ν, where ν is a
σ-finite measure on (E,E). Our aim is to state a characterization for ν, the
Itô measure.

Let (Ai, Xi), i ∈ N, be an enumeration of the atoms of N, that is, the
pairs (Ai, Xi) are random variables taking values in R+ ×E, and they form
N . Then, the pairs (Ai, m◦Xi) are the atoms of the Poisson random measure
N̂ described in Theorem 6.8. Finally, the triplets (Ai, m ◦ Xi, Xi) must
form a Poisson random measure Ñ , namely, Ñ = N ◦ h−1 where h(a, x) =
(a, m(x), x). The following is immediate from Theorems 6.4 and 6.8; no
proof is needed.

6.13 Proposition. The mean μ of the Poisson random measure Ñ is
given by

μ(da, db, dx) = da db
1

2 b2
Q(b, dx), a ∈ R+, b ∈ R, x ∈ E,6.14

where Q is the transition probability kernel from (R, BR) into (E,E) de-
fined by

Q(b,D) = P {Xi ∈ D|m ◦Xi = b} , b ∈ R, D ∈ E.6.15

6.16 Corollary. Itô measure ν for excursions is given by

ν(D) =
ˆ

R

db
1

2 b2
Q(b,D), D ∈ E.
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Figure 15: Excursion Xb with a given extent b > 0. Run a bessel process R
upward until it hits b; then run a new Bessel process R′ downward from b
until it hits 0.

Proof is immediate from the form 6.14 for the mean of Ñ , since N =
Ñ ◦ h−1 with h(a, b, x) = (a, x), which implies that Leb× ν = μ ◦ h−1. �

The preceding corollary reduces the task of characterizing the Itô measure
ν to that of characterizing the probability measure Q(b, ·) for each b, namely,
the probability law of an excursion whose extent is given to be b.

It is obvious that Q(b, D) = Q(−b, −D) for b < 0, with −D = {−x : x ∈
D}; this is by the symmetry of W . It is also obvious that, if b > 0, then Q(b, ·)
must put all its mass on the set of positive excursions. Thus, the following
characterization specifies Q completely, and via the last corollary, Itô measure
ν. See Figure 15 as well. This theorem of D. Williams’s is put here without
proof; see the notes for this chapter.

6.17 Theorem. Let R and R′ be independent Bessel processes with index
3. Let τb be the hitting time of the level b > 0 by R, and τ ′b the same for R′.
Define, for ω in Ω and t in R+,

Xb
t (ω) =

⎧
⎨

⎩

Rt(ω) if 0 ≤ t ≤ τb(ω)
b−R′

t−τb(ω)(ω) if τb(ω) ≤ t ≤ τb(ω) + τ ′b(ω)
0 if t > τb(ω) + τ ′b(ω).

6.18

Then, Q(b, ·) is the probability law of the process Xb.

The preceding theorem together with Corollary 6.16 characterizes the
Itô measure in terms of well-understood operations. For Bessel processes see
Example 1.22; recall that R here is the radial part of a three-dimensional
Wiener process. See also Theorem 4.19, which shows that R has the same
law as 2M −W .
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Local times of some hits

This is to expand on the observation, within the proof of Theorem 6.8,
that the local time Lτ at the time τ of exit from (−b, b) has the exponential
distribution with mean b. Recall that Ta is the time W hits (a,∞) if a ≥ 0,
and is the time of hitting (−∞, a) if a ≤ 0.

6.19 Proposition. Let a, b > 0. Then, LTa and LT−b
are independent

and exponentially distributed with means 2a and 2b respectively. Moreover,
LTa∧T−b

is equal to LTa∧LT−b
and has the exponential distribution with mean

2ab/(a+ b).

Proof. In terms of the Poisson random measure N of excursions, we have
{
LTa > u, LT−b

> v
}

= {N ([0, u] ×A) = 0} ∩ {N ([0, v] ×B) = 0}6.20

where

A = {x ∈ E : m(x) > a} , B = {x ∈ E : m(x) < −b} .

Since A and B are disjoint, the right side of 6.20 is the intersection of two
independent events. Hence, by 6.4,

P
{
LTa > u,LT−b

> v
}

= e−uν(A)e−vν(B), u, v ∈ R+,

where, by Theorem 6.8,

ν(A) = 1/2a, ν(B) = 1/2b.

This proves the first statement. The second is immediate from it and the
computation ν(A) + ν(B) = (a+ b)/2ab. �

The arcsine law

As another illustration of the uses of excursion theory, we prove next the
arcsine law, the most celebrated of the arcsine laws. It specifies the distribu-
tion of

At =
ˆ

[0,t]

ds 1R+ ◦Ws, t ∈ R+,6.21

and is the main ingredient in computations about occupation times and Brow-
nian quantiles; see Exercises 6.41–6.47.

6.22 Theorem. The distribution of At is the same as that of tA, where
A has the arcsine distribution as in 2.15.

6.23 Remark. In view of the (simpler to obtain) arcsine law given in
Proposition 2.18, we see that Gt and At have the same distribution. See
Exercise 6.40 for the underlying reasons.
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Proof. Consider the standard time Sa corresponding to the local time a.
It is obtained via 6.5 from the Poisson random measure N of excursions.
Then, (Sa) is a pure-jump Lévy process whose Lévy measure λ is given by
(see 6.5 and 5.9)

λf =
ˆ ∞

0

ds
1√

2πs3
f(s) =

ˆ
E

ν(dx) f(ζ(x)),6.24

where ν is the Itô measure of excursions. We now decompose S as

S = S+ + S−,

where S+
a is the time spent on positive excursions during [0, Sa], and S−

a is
that on negative excursions:

S+
a =

ˆ
[0,a]×E+

N(db, dx) ζ(x), where E+ = {x ∈ E : x ≥ 0} ,6.25

and S− is defined similarly but with E− = {x ∈ E : x ≤ 0}.
Since E+ and E− are disjoint, and since N is Poisson, the processes S+

and S− are independent. Comparing 6.25 with 6.5, we see that S+ and, by
symmetry, S− are pure-jump Lévy processes with the same Lévy measure,
namely, 1/2λ. We conclude that S+

a and S−
a are independent and have the

same distribution as Sa/2, that is,

P
{
S+
a ∈ du, S−

a ∈ dv
}

= du dv
a e−a

2/8u

2
√

2πu3
· a e

−a2/8v

2
√

2πv3
.

Hence, for positive Borel functions f on R+×R+, an easy computation yields

E

ˆ
R+

da f
(
S+
a , S

−
a

)
=
ˆ

R+

du

ˆ
R+

dv
1√

2π(u+ v)3
f(u, v).6.26

b) It follows from the scaling property of W that At has the same distri-
bution as tA1. Thus, we concentrate on the distribution of A1.

Fix a > 0; for almost every ω, the counting measure N(ω, ·) has exactly
one atom (a, x) such that Sa−(ω) ≤ 1 < Sa(ω) = Sa−(ω) + ζ(x), and, then,

A1(ω) =
{
S+
a−(ω) if x ∈ E−,

1 − S−
a−(ω) if x ∈ E+.

In other words, for Borel f : R+ 	→ R+,

f(A1) =
ˆ

R+×E
N(da, dx) g(S+

a−, S
−
a−, x)6.27

where

g(u, v, x) = 1[0,1](u+ v) 1(1,∞)(u+ v + ζ(x))[f(u)1E+ (x) + f(1 − v)1E−(x)].



Sec. 6 Excursions 421

Applying Theorem VI.6.2 to the Poisson integral in 6.27, recalling that
the mean of N is Leb × ν, we see that

Ef(A1) = E

ˆ
R+

da

ˆ
E

ν(dx) g
(
S+
a , S

−
a , x

)

=
ˆ
E

ν(dx)
ˆ

R+

du

ˆ
R+

dv
1√

2π(u+ v)3
g(u, v, x),6.28

where we used 6.26 at the last step. In view of 6.24,

ˆ
E

ν(dx)g(u, v, x) = 1[0,1](u+ v)
ˆ ∞

0

ds
1√

2πs3
1(1,∞)(u+ v + s)

× [1/2f(u) + 1/2f(1 − v)
]

= 1[0,1](u+ v)
1√

2π(1 − u− v)
[f(u) + f(1 − v)] .

Putting this into 6.28 we obtain, with s = u+ v and r = u/s,

Ef(A1) =
ˆ 1

0

ds
1

π
√
s(1 − s)

ˆ 1

0

dr
[
1/2f(sr) + 1/2 f(1 − s+ sr)

]

= E
[
1/2f(AU) + 1/2 f(1 −A+AU)

]
,6.29

where A and U are independent, A has the arcsine distribution as in 2.15,
and U is uniform on (0, 1).

It is easy to show that, then, AU has the beta distribution with parameter
(1/2, 3/2), and so does A − AU = A(1 − U) since 1 − U is also uniform on
(0, 1); see Exercise 6.39. Hence, 6.29 yields

E f(A1) =
´ 1

0
dv 2

π
v−

1/2(1 − v)
1/2
[
1/2 f(v) + 1/2 f(1 − v)

]

=
´ 1

0 du
1

π
√
u(1−u)

f(u).

This proves that A1 has the arcsine distribution as does A in 2.15, which
completes the proof since At and tA1 have the same distribution. �

Exercises

Notation: W , M , T , L, S, N , V retain the meanings they had within
the present section and earlier. Below, for random variables X and Y (or
processes X and Y ), we write X ≈ Y to mean that X and Y have the same
distribution. Throughout, A will denote a random variable having the arcsine
distribution as in 2.15.
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6.30 Skew Brownian motion. Recall the Itô measure ν regulating the excur-
sions, and the sets E+ and E− of positive and negative excursions. Let ν+
be the trace of 2ν on E+, and ν− the trace of 2ν on E−. Then,

ν(D) = ν(D ∩ E+) + ν(D ∩ E−) =
1
2
ν+(D) +

1
2
ν−(D), D ∈ E.

This is a precise expression of the heuristic that each excursion is positive
with probability 1/2 and negative with 1/2. Define, for 0 < p < 1 and q = 1−p,
a new measure on (E,E). Let

ν∗ = p ν+ + q ν−,

and let N∗ be the Poisson random measure on R+ × E with mean measure
Leb × ν∗. Define W ∗ from N∗ as W is defined from N through 6.5 and 6.6.
The resulting process W ∗ is called skew Brownian motion; it is a Markov
process. It is not symmetric, its increments are not independent. Find the
distribution of W ∗

t . Compute its transition function (Pt).

6.31 Random time changes. Many interesting Markov processes are obtained
from Wiener processes by random time changes. Here is the general setup.
Let H = (Ht) be a random clock; assume that t 	→ Ht(ω) is increasing and
continuous, starting from H0(ω) = 0. We think of Ht as the clock time when
the standard time is t. Then,

τu = inf {t : Ht > u}

is the standard time when the clock reads u, and

Xu = Wτu

is the position of the Wiener particle at that time. The simplest case is
when t 	→ Ht is deterministic, strictly increasing, and continuous, then X
has (possibly non-stationary) independent increments. Following are some
special cases.

6.32 Reflected Brownian motion. In 6.31, Suppose that

Ht =
ˆ t

0

ds 1R+ ◦Ws.

show that X is a reflected Brownian motion, that is, X ≈ |W |.
Hint: The net effect of the time change on the picture of W is to remove the
negative excursions. Modify the excursion measure N accordingly.

6.33 Processes with two states. Fix b > 0, Let

Ht = L◦
t + Lbt ,
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where L0 = L is the local time at 0, and Lb at b. Show that X = Wτ is a
process with only two states, 0 and b.

a) Show that its jump times form a Poisson process with rate 1/2b,
and that the successive jump sizes are +b, −b, +b, −b, . . .. Hint: use
proposition 6.19.

b) Compute

pt(x, y) = P {Xs+t = y|Xs = x}
for x, y ∈ {0, b}.
6.34 Processes with three states. Let a < 0 < b be fixed. Put

Ht = L◦
t + Lat + Lbt .

Show that X is a Markor process whose state space is D = {0, a, b}. Of
course, X0 = 0. Show that the successive states visited by X is a Markov
chain (Yn)n∈N with Y0 = 0 and transition probability matrix (with states
ordered as 0, a, b)

P =

⎡

⎣
0 q p
1 0 0
1 0 0

⎤

⎦

where p = P{Yn+1 = b|Yn = 0} = −a/(−a+ b), and q = 1 − p. Describe X
completely by specifying the distributions of

P {Rn ∈ dt|Yn = x} , x ∈ D,

for the time Rn between the nth and (n + 1)th jumps (which is the sojourn
time in Yn).

6.35 Process on the integers. Recall that Z is the set of all integers, positive
and negative. Define

Ht =
∑

x∈Z

Lxt .

For fixed t and ω, show that Ht(ω) is in fact a finite sum of finite quantities;
so, Ht <∞ almost surely for all t in R+. Show that X = Wτ is a compound
Poisson process, whose jump times form a Poisson process with rate 1 and
whose every jump has size ±1 with equal probabilities.

6.36 Brownian motion with sticky 0. Let

Ht = t+ Lt.

The process X is Markov with state space R. It goes through the same states
as W does, and in the same order. Show thatˆ u

0

ds 1{0} ◦Xs = Lτu ,
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which is strictly positive for u > 0 and increases to +∞ as u→ ∞. Describe
a method for recovering the path W (ω) given the path X(ω).
6.37 Distribution of AU. Let A and U be independent, A with the arcsine
distribution, and U the uniform on (0,1). Let X , Y , Z be independent gamma
variables with shape indices 1/2,

1/2, 1 respectively, and with the same scale
parameter. Show that

A =
X

X + Y
, U =

X + Y

X + Y + Z

satisfy the assumptions on A and U . Conclude that AU has the beta distri-
bution with the index pair (1/2, 3/2).

6.38 Joint distribution of G and AG. Write G = G1. In the notation of the
proof of Theorem 6.22, similar to 6.27, we can write

f(G,AG) =
ˆ

R+×E
N (da, dx) h

(
S+
a−, S

−
a−, x

)

where

h(u, v, x) = f(u+ v, u)1[0,1](u+ v)1(1,∞)(u + v + ζ(x)).

Show that

E f(G,AG) =
ˆ 1

0

ds
1

π
√
s(1 − s)

ˆ 1

0

dr f(s, sr).

Thus, G has the arcsine distribution (as we already know from 2.18); and,
given G, the variable AG has the uniform distribution on [0, G].

6.39 Occupation times. For t in R+ and r in R, define

At(r) =
ˆ t

0

ds 1(−∞,r] ◦Ws.

By Theorem 6.22, then, t−At(0) ≈ tA, where A has the arcsine distribution
as before. Show that

At(r) ≈ t A1

(
r√
t

)
, A1(−r) ≈ 1 −A1(r).

In view of these, it is enough to concentrate on A(r) = A1(r) for r > 0.

6.40 Distribution of A(r). Fix r > 0. Show that

A(r, ω) =

{
1 if Tr(ω) ≥ 1,
Tr(ω) +A1−Tr(ω)

(
θTr(ω)ω

)
if Tr(ω) < 1.

Show that, with A independent of Tr,

A(r) ≈ 1{Tr≥1} + [Tr + (1 + Tr)A] 1{Tr<1}.
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Conclude that, for u ≤ 1,

P {A(r) < u} =
ˆ u

0

ds
re−r

2/2s

√
2π s3

P {s+ (1 − s)A < u} .

6.41 Continuation. This is mere calculus. For u < 1, show that

P {A(r) ∈ du} = du

ˆ u

0

ds
re−r

2/2s

√
2πs3

1
π
√

(1 − u)(u − s)

= du
1

π
√
u(1 − u)

ˆ u

0

ds
re−r

2/2s

√
2πs3(1 − s/u)

= du
e−r

2/2u

π
√
u(1 − u)

.

Hint: In the last integral, replace s with u/(1 + v); the integral becomes
ˆ ∞

0

dv
re−r

2(1+v)/2u

√
2πuv

= e−r
2/2u

ˆ ∞

0

dv
e−cvcava−1

r(a)
= e−r

2/2u,

where we recognize the gamma density with a = 1/2 and c = r2/2u.

6.42 Continuation. To sum up, with Z standard Gaussian, show that

P {A(r) ∈ du} = du
e−r

2/2u

π
√
u(1 − u)

1(0,1)(u) + δ1(du)P {|Z| ≤ r} .

6.43 Gamma tails and Laplace transforms. It follows from the preceding com-
putation that

E e−r
2/2A =

ˆ 1

0

du
e−r

2/2u

π
√
u(1 − u)

= P {|Z| > r} .

Taking r =
√

2p and recalling that 1/2 Z
2 has the standard gamma distribu-

tion with shape index 1/2, we obtain

E e−p/A = P

{
1
2
Z2 > p

}
=
ˆ ∞

p

dy
e−y y−1/2

Γ(1/2)
.

In other words, the tail of the gamma distribution with shape index 1/2 is
the Laplace transform of 1/A, where A has the arcsine distribution.

6.44 Brownian Quantiles. The mapping r 	→ A(r) is the cumulative distri-
bution function of a random probability measure on R. We define the corre-
sponding quantile function by

Qu = inf {r ∈ R : A(r) > u} , 0 < u < 1.

Obviously, {Qu > r} = {A(r) < u}, and the probabilities of these events
can be obtained by using the results of Exercises 6.41–6.42. In particular, for
r > 0, show that

P {Qu ∈ dr} =
ˆ u

0

dv
r e−r

2/2v

π
√
v3(1 − v)

.



426 Brownian Motion Chap. 8

6.45 Continuation. It is possible to give a simpler formula for the preceding
expression: Since u < 1, and r > 0, in view of 6.40,

P {Qu > r} = P {A+ Tr · (1 −A) < u}
= P

{
A < u, Tr <

u−A

1 −A

}

=
ˆ u

0

dv
1

π
√
v(1 − v)

ˆ ∞

r

dz
2 e−z

2(1−v)/2(u−v)
√

2π(u− v)/(1 − v)

since Tr ≈ r2/Z2, with Z standard Gaussian. Some elementary opera-
tions give

P {Qu ∈ dr} =
2√
2π

ˆ u

0

dv
1

π
√
v(u − v)

exp−
r2

2
1 − v

u− v

=
2√
2π

ˆ 1

0

dx
1

π
√
x(1 − x)

exp−
r2

2

(
1 +

(
1 − u

u

)
· 1
v

)

=
2√
2π
e−r

2/2
E exp−

r2(1 − u)
2u

· 1
A
.

The last expectation can be evaluated using 6.43 to obtain

P {Qu ∈ dr} =
2√
2π
e−r

2/2
P

{
|Z| > r

√
1 − u

u

}
.

7 Path Properties

This section is on the oscillatory behavior of Brownian paths. We shall
see that, for almost every ω, the following are true for the Wiener path
t 	→ Wt(ω): The path is continuous, but nowhere differentiable. Over every
interval, it has infinite total variation, but finite quadratic variation; thus,
the path is highly oscillatory, but the oscillations are of small amplitude.
In addition to clarifying these points, we shall discuss Hölder continuity of
the paths, describe the exact modulus of continuity, and give the law of
the iterated logarithm. These help to visualize the paths locally in terms of
deterministic functions.

Throughout this section, W is a Wiener process over some probability
space (Ω,H,P). We assume that the path W (ω) : t 	→ Wt(ω) is continuous
for every ω. By a subdivision of an interval [a, b] we mean a finite collection
of disjoint intervals of the form (s, t] whose union is (a, b]; it is a partition of
(a, b] whose elements are intervals. If A is a subdivision, we write ‖A‖ for its
mesh, defined as ‖A‖ = sup{t− s : (s, t] ∈ A}.
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Quadratic variation

Let f : R+ 	→ R be right-continuous. Fix an interval [a, b] in R+. For
p > 0 and A a subdivision of [a, b], consider

∑

(s,t]∈A

|f(t) − f(s)|p .7.1

The supremum of this over all such subdivisions A is called the true p-
variation of f over [a, b]. For p = 1, the supremum is called the total variation
of f on [a, b], and for p = 2 the true quadratic variation.

These deterministic concepts prove to be too strict when applied to a
typical Wiener path: for almost every ω, if f = W (ω), the total variation
over [a, b] is +∞, and so is the true quadratic variation. However, at least for
the quadratic variation, a probabilistic version proves interesting:

7.2 Theorem. Let the interval [a, b] be fixed. Let (An) be a sequence of
subdivisions of it with ‖An‖ → 0. Then, the sequence of random variables

Vn =
∑

(s,t]∈An

|Wt −Ws|27.3

converges in L2 and in probability to the length b – a.

Proof. Recall that |Wt −Ws|2 has the same distribution as (t − s) Z2,
where Z is standard Gaussian, and that E Z2 = 1, var Z 2 = 2. Since the
intervals (s, t] in An are disjoint, the corresponding increments Wt −Ws are
independent. Thus,

EVn =
∑

(s,t]∈An

(t− s) = b− a,

Var Vn =
∑

(s,t]∈An

(t− s2) · 2 ≤ 2 · (b− a) · ‖An‖.

Hence, E|Vn− (b−a)|2 = Var Vn → 0 as n→ ∞. This shows the convergence
in L2 and implies the convergence in probability. �

The limit in the preceding theorem is called the quadratic variation of
W over [a, b]. Heuristically, it is a sum of squares of the increments over
infinitesimal subintervals. The following clarifies this picture by taking the
limit for each ω separately.

7.4 Proposition. For each n in N, let An be the subdivision of [a, b]
that consists of 2n intervals of the same length. Then, (Vn) defined by 7.3
converges to b− a almost surely.
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Proof. Since each (s, t] in An has length (b−a) ·2−n, we have E Vn = b−a
as before, but Var Vn = 2n · 2 · (b− a)2 · 2−2n. Thus, Chebyshev’s inequality
yields that, for ε > 0,

P {|Vn − (b − a)| > ε} ≤ 1
ε2

· 2 · (b− a)2 · 2−n.

Since the right side is summable in n, Borel-Cantelli lemma I.2.6 applies, and
Vn → b - a almost surely. �

7.5 Remark. a) The preceding proposition can be strengthened. The
conclusion remains true when (An) is an arbitrary nested sequence with
‖An‖ → 0, the term nested meaning that each interval of the subdivision
An+1 is a subset of some interval in An.

b) But, it is essential that (An) be chosen deterministically. Otherwise,
there are counter-examples. For example, for almost every ω there is a
nested sequence (An(ω)) with ‖An(ω)‖ → 0 such that Vn(ω) defined by 7.3
goes to +∞.

Total variation

The following proposition shows that each typical path is highly oscilla-
tory over every interval. But the amplitudes must be small enough that their
squares sum to the finite number called the quadratic variation.

7.6 Proposition. For almost every ω, the path W (ω) has infinite total
variation over every interval [a, b] with a < b.

Proof. In the setting of Proposition 7.4, let Ωab be the almost sure set of
convergence. Pick ω in Ωab, write w for W (ω), and let v∗ ≤ +∞ be the total
variation of w over [a, b]. We observe that, with sums and supremum over all
(s, t] in An,

∑
|wt − ws|2 ≤ (sup |wt − ws|)

∑
|wt − ws| ≤ (sup |wt − ws|) · v∗,

the last inequality being by the definition of v∗ as the supremum over all
subdivisions. Now, let n→ ∞. The left side goes to b−a = 0 by the way ω is
picked. On the right side, the supremum goes to 0 by the uniform continuity
of w on [a, b]. It follows that v∗ cannot be finite.

Let Ω0 be the intersection of Ωab over all rationals a and b with 0 ≤ a < b.
The claim of the proposition holds for W (ω) for every ω in the almost sure
event Ω0. �

Hölder continuity, nowhere differentiability

Let α ∈ R+, B ⊂ R+, and f : R+ 	→ R. The function f is said to be
Hölder continuous of order α on B if there is a constant k such that

|f(t) − f(s)| ≤ k · |t− s|α if s, t ∈ B.7.7
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It is said to be locally Hölder continuous of order α if it is such on [0, b] for
every b < ∞. Note that if f is differentiable at some point then it is Hölder
continuous of order 1 on some neighborhood of that point.

The next proposition is another consequence of the finiteness of the
quadratic variation, Proposition 7.4. Its proof is similar to that of
Proposition 7.6.

7.8 Proposition. For almost every ω, the Wiener path W (ω) is Hölder
continuous of order α on no interval for α >1/2. In particular, for almost
every ω, the path is nowhere differentiable.

Proof. Pick ω, write w for W (ω), and suppose that

|wt − ws| ≤ k · |t− s|α

for all s and t in some interval [a, b], a < b, for some α > 1/2 and some constant
k. With An as in Proposition 7.4, with summations and supremum over (s, t]
in An,

∑
|wt − ws|2 ≤ k2

∑
|t− s|2α ≤ k2 · (b− a) · sup |t− s|2α−1 .

As n → ∞, the supremum vanishes since 2α > 1, which means that the left
side vanishes as well. Thus, ω does not belong to the almost sure set Ωab
of convergence in Proposition 7.4. Hence, the claims hold for every ω in the
intersection of Ωab over all rationals a < b. �

7.9 Remark. We shall see shortly that the claim of the preceding propo-
sition remains true for α = 1/2 as well; see Theorem 7.13 below.

By contrast, the following is a positive result. Its proof is based on a
lemma of independent interest; the lemma is put last in this section in order
to preserve the continuity of presentation; see 7.32.

7.10 Proposition. For almost every ω, the path W (ω) is locally Hölder
continuous of order α for every α < 1/2.

Proof. For Z standard Gaussian, cp = E Z2p <∞, and

E |Wt −Ws|2p = cp |t− s|p , p ≥ 1.

Thus, Lemma 7.32 below applies, and almost every path is Hölder continuous
of order α = (p − 1)/2p = 1/2 − 1/2p on [0,1]. Scaling property allows us to
replace [0,1] with [0,b] for each b <∞, and the proof is complete since p can
be taken as large as desired. �
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Modulus of continuity

Let f and g be functions from [0,1] into R. The function g is said to be a
modulus of continuity for f if

s, t ∈ [0, 1] , [t− s] ≤ δ ⇒ |f(t) − f(s)| ≤ g(δ)7.11

for every δ > 0 small enough. Of course, then, so is cg for every constant
c ≥ 1. The following theorem, due to Lévy, shows that

g(t) =
√

2t log(1/t), t ∈ [0, 1],7.12

is the exact modulus of continuity for the paths of (Wt)t∈[0,1] in the following
sense: cg is a modulus of continuity for almost every path if c > 1, and is a
modulus of continuity for almost no path if c < 1. The proof will be delayed
somewhat; see 7.26.

7.13 Theorem. Let g be as defined by 7.12. Then, for almost every ω,

lim sup
δ→0

1
g(δ)

sup
0 ≤ s < t ≤ 1
t− s ≤ δ

|Wt(ω) −Ws(ω)| = 1.

As a corollary, since
√
δ/g(δ) goes to 0 as δ goes to 0, we obtain the proof

of Remark 7.9. Details are left as an exercise.

Law of the iterated logarithm

This is about the oscillatory behavior of Wiener paths near the time 0
and for very large times. The name comes from its use of

h(t) =
√

2t log log(1/t), t ∈ [0, 1],7.14

as the control function.

7.15 Theorem. With h as in 7.14, the following hold for almost every ω:

lim sup
t→0

1
h(t)

Wt(ω) = 1, lim inf
t→0

1
h(t)

Wt(ω) = −1.

7.16 Remark. By time inversion, the same results hold when Wt(ω) is
replaced with t W 1/t(ω). Then, replacing 1/t with t, we obtain that the follow-
ing hold for almost every ω:

lim sup
t→∞

Wt(ω)√
2t log log t

= 1, lim inf
t→∞

Wt(ω)√
2t log log t

= −1.7.17

We know from Lemma 3.3 that the running maximum increases to +∞, and
the running minimum decreases to −∞ in the limit as t → ∞. These are
re-confirmed by 7.17 and are made more precise.
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Proofs. We list here two approximation lemmas before giving the proofs
of the last two theorems.

7.18 Lemma. P

{
sup
t≤1

(
Wt − 1/2 pt

)
> q

}
≤ e−pq for positive p and q.

Proof. Let Xt = exp
(
pWt − 1/2 p

2t
)
. The probability in question is

P

{
sup
t≤1

Xt > epq
}

≤ e−pq E X1 = e−pq,

where the inequality follows from the maximal inequality V.5.33 applied to
the exponential martingale X . �

7.19 Lemma. Let Z be a standard Gaussian variable. Then, for b > 0,

1
4
· b

1 + b2
e−b

2/2 < P {Z > b} < 1
2b
e−b

2/2.

Proof. Observe thatˆ ∞

b

dx e−x
2/2 <

ˆ ∞

b

dx
x

b
e−x

2/2 =
1
b
e−b

2/2,

and ˆ ∞

b

dx e−x
2/2 >

ˆ ∞

b

dx
b2

x2
e−x

2/2 = b e−b
2/2 − b2

ˆ ∞

b

dx e−x
2/2,

the last equality being through integration by parts. The rest is arithmetic.
�

7.20 Proof of Theorem 7.15. a) We show first that, for almost every ω,

α(ω) = lim sup
t→0

1
h(t)

Wt(ω)7.21

is at most 1.
Let 0 < a < 1 < b. Put pn = b h(an)/an and qn = 1/2 h(an). By Lemma

7.18,

P

{
sup
t≤1

(
Wt − 1/2 pnt

)
> qn

}
≤ e−pnqn =

(
n log 1/a

)−b
,

and the right side is summable in n. Thus, by the Borel-Cantelli lemma, there
is an almost sure event Ωab such that for every ω in it there is nω such that

Wt(ω) ≤ qn + 1/2 pnt for every t ≤ 1 and n ≥ nω.7.22

The function h is increasing on [0, e−c], where c = e1/c. Choose n ≥ nω
large enough that an−1 ≤ e−c, and let t ∈ (an, an−1]. By 7.22,

Wt(ω) ≤ qn + 1/2pn a
n−1 =

1
2
·
(

1 +
b

a

)
h(an) ≤ 1

2

(
1 +

b

a

)
h(t).
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Hence, for ω in Ωab,

α(ω) ≤ 1
2

(
1 +

b

a

)
.7.23

write Ωn for Ωab with a = 1 − (1/n) and b = 1 + (1/n). Now 7.23 implies that
α(ω) ≤ 1 for every ω in the almost sure event ∩nΩn.

b) Next, we prove that α(ω) ≥ 1 for almost every ω. Let ε ∈ (0, 1) and
put tn = ε2n. Observe that h(tn+1) ≤ 2 ε h(tn) for all n large enough. And,
by part(a) applied to the Wiener process (−Wt), there is an almost sure set
Ωo such that 7.21 holds, with −W replacing W , for almost every ω. Thus,

ω ∈ Ω0 ⇒ −Wtn+1(ω) ≤ 2 h(tn+1) ≤ 4 ε h(tn) for all n large enough.
7.24

On the other hand, by Lemma 7.19 applied with b = (1−ε)h(tn)/
√
tn − tn+1,

pn = P
{
Wtn −Wtn+1 > (1 − ε)h(tn)

}
>

1
4

b

1 + b2
e−b

2/2,

and e−b
2/2 = (2 n log 1/ε)−c, where c = (1 − ε)/(1 + ε) is less than 1. It

follows that Σpn = +∞. Since the increments Wtn −Wtn+1 are independent,
the divergence part of the Borel-Cantelli lemma applies. There is an almost
sure event Ωε such that

ω ∈ Ωε ⇒Wtn(ω)−Wtn±1(ω) > (1− ε) h(tn) for infinitely many n.7.25

Combining 7.24 and 7.25, we see that

ω ∈ Ω0 ∩ Ωε ⇒Wtn(ω) > (1 − 5ε) h(tn)

⇒ lim sup
t→0

1
h(t)

Wt(ω) ≥ lim sup
n→∞

1
h(tn)

Wtn(ω) ≥ 1 − 5ε.

For k ≥ 1, put Ωk = Ωo ∧ Ωε with ε = 1/k. Then, for ω in
⋂

Ωk,

lim sup
t→0

1
h(t)

Wt(ω) ≥ 1.

This completes the proof of the statement about the limit superior. The
one about the limit inferior is obtained by recalling that lim inf xn =
− lim sup(−xn) and that −W is again Wiener.

7.26 Proof of Theorem 7.13. a) First we show that

α(ω) = lim sup
δ→0

1
g(δ)

sup
0 ≤ s < t ≤ 1
t− s ≤ δ

|Wt(ω) −Ws(ω)|7.27

is equal to 1 or more for every ω in an almost sure event Ωo.



Sec. 7 Path Properties 433

Take a in (0,1), put u = 2−n, and recall g from 7.12. Note that g(u)/
√
u =

b
√
n, where b =

√
2 log 2, and e−nb

2/2 = 2−n. For Z standard Gaussian, it
follows from Lemma 7.19 that

p = P
{√

u |Z| > a g(u)
}
>

1
2

ab
√
n

1 + a2b2n
e−a

2b2n/2 > c 2−na
2
/
√
n,

for some constant c depending on a only. Thus, since the increments Wku −
Wku−u are independent and identically distributed as

√
u Z,

P

{
max

1≤k≤2n
|Wku −Wku−u| ≤ a g(u)

}

= (1 − p)2
n ≤ e−p2

n ≤ exp
(
−c2n−na2/√n

)

since 1 − p ≤ e−p. The right-most member is summable in n. Hence, by the
Borel-Cantelli lemma, there is an almost sure event Ωa such that

ω ∈ Ωa, u = 2−n ⇒ max
1≤k≤2n

|Wku(ω) −Wku−u(ω)| > a g(u)

for all n large enough, which means that α(ω) > a; see 7.27 for α(ω). Let Ω0

be the intersection of Ωa over a in {1/2,
2/3,

3/4, . . .}; then, Ω0 is almost sure,
and α(ω) ≥ 1 for ω in Ω0.

b) We show next that α(ω) ≤ 1 for almost every ω. Choose b > 1. Put
a = 2/(1 + b). Note that a ∈ (0, 1) and ab > 1. For u in (0, 2−na), since
g(u)/

√
u ≥ √

2na log 2, it follows from Lemma 7.19 that

P
{√

u |Z| > b g(u)
} ≤ P

{
|Z| > b

√
2na log 2

}

≤ e−b
2 na log 2

b
√

2na log 2
= c · 2−na b2/√n,7.28

where c depends only on b.
Let Bn be the set of all pairs of numbers s and t in the set Dn = {k/2n :

0 ≤ k ≤ 2n} satisfying 0 < t − s < 2−na; there are at most 2na such pairs
(s, t). Using 7.28 with u = t− s, we get

P

{
max

(s,t)∈Bn

1
g(t− s)

|Wt −Ws| > b

}
≤ 2na · c · 2−na b2/√n;

and the right side is summable in n, since ab2 − a > b− a > 0. Thus, by the
Borel-Cantelli lemma, there is an almost sure event Ωb such that for every ω
in it there is nω such that

n ≥ nω, (s, t) ∈ Bn ⇒ |Wt(ω) −Ws(ω)| ≤ b g(t− s).7.29

Fix ω in Ωb; write n∗ for nω, and w for W (ω). Let D =
⋃∞

0 Dm, the set of
all dyadic numbers in [0,1]. For s and t in D, put sm = inf Dm ∩ [s, 1] and
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tm = sup Dm∩ [0, t]. Then, (sm) is decreasing, (tm) is increasing, and sm = s
and tm = t for all m large enough. Thus,

wt − ws =
∑

m≥n

(
wtm+1 − wtm

)
+ wtn − wsn +

∑

m≥n

(
wsm − wsm+1

)
.7.30

Suppose that 0 < t− s < 2−n
∗a and choose n ≥ n∗ such that

2−na−a ≤ t− s < 2−na < e−1.7.31

Then, s ≤ sn ≤ tn ≤ t, and the times tm+1, tm, sm, sm+1 belong to Bm+1

for every m ≥ n. It follows from 7.29 and 7.30 that

|wt − ws| ≤
∑

m≥n
b g(tm+1 − tm) + b g(t− s) +

∑

m≥n
b g (sm − sm+1) .

Moreover, g is increasing on [0, e−1], and tm+1 − tm ≤ 2−m−1 ≤ e−1 and
sm − sm+1 ≤ 2−m−1 ≤ e−1 for m ≥ n by the way n is chosen. So,

|wt − ws| ≤ b g(t− s) + 2b
∑

m≥n
g(2−m−1).

Also,
∑

m>n

g(2−m) = g(2−n)
∑

m>n

√
2−m+nm/n ≤ g(2−n)

∑

p≥1

√
2p 2−p

and

g
(
2−n

) ≤ g(t− s)g(2−n)/g(2−na−a) ≤ g(t− s)
√

2−n(1−a) · 2a/a

in view of 7.31. Combining the last three expressions, we see that

|wt − ws| ≤ b g(t− s) + 2bc g(t− s)
√

2−n(1−a)

with c chosen appropriately. This was for s and t in D satisfying 7.31; by
the continuity of w, the same holds for all s and t in [0,1] satisfying 7.31.
Consequently, letting n → ∞ and recalling that 1 − a > 0, we see for α(ω)
of 7.27 that α(ω) ≤ b for the arbitrarily fixed ω in Ωb. Thus, α(ω) ≤ 1 for
every ω in

⋂
Ωb, where the intersection is over b in {1 + 1/n : n ≥ 1}. This

completes the proof. �

Kolmogorov’s moment condition

The next lemma was used to prove Hölder continuity in Proposition 7.10.
It is the main part of Kolmogorov’s theorem on the existence of continuous
modifications. These are stated in a form that will be of use in the next
section. Recall that D is the set of all dyadic numbers in [0,1]. Here, X =
(Xt)t∈[0,1] is a process with state space R.
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7.32 Lemma. Suppose that there exist constants c, p, q in (0,1) such that

E |Xt −Xs|p ≤ c · |t− s|1+q , s, t ∈ [0, 1].7.33

Then, for every α in [0,q/p) there is a random variable K such that E Kp is
finite and

|Xt −Xs| ≤ K · |t− s|α , s, t ∈ D.7.34

If X is also continuous, then 7.34 holds for all s, t in [0,1].

Proof. Fix α in [0, q/p). Let

K = sup
s,t∈D, s=t

|Xt −Xs|
|t− s|α .7.35

SinceD×D is countable, this defines a random variable. Now, 7.34 is obvious,
and it extends to s, t in [0,1] when X is continuous, since D is dense in [0,1].
Thus, the proof reduces to showing that

E Kp <∞.7.36

a) Let Mn = sup |Xt − Xs|, where the supremum is over all pairs of
numbers s and t in Dn with t− s = 2−n. Since there are 2n such pairs, the
assumption 7.33 implies that

EMp
n ≤ 2n · c · (2−n)1+q = c · 2−nq.7.37

b) For s and t in D, let sn = inf Dn ∩ [s, 1] and tn = sup Dn ∩ [0, t].
Then, (sn) is decreasing, (tn) is increasing, and sn = s and tn = t for all n
large enough. Thus,

Xt −Xs =
∑

n≥m

(
Xtn+1 −Xtn

)
+Xtm −Xsm +

∑

n≥m

(
Xsn −Xsn+1

)
.

If 0 < t− s ≤ 2−m, then tm − sm is either 0 or equal to 2−m; hence,

|Xt −Xs| ≤
∑

n≥m
Mn+1 +Mm +

∑

n≥m
Mn+1 ≤ 2

∑

n≥m
Mn.7.38

c) Consider 7.35. Take the supremum there first over s and t with 2−m−1 <
|t− s| ≤ 2−m and then over m. In view of 7.38, we get

K ≤ sup
m

(
2m+1

)α · 2
∑

n≥m
Mn ≤ 21+α

∑

n≥0

2nαMn.

If p ≥ 1, letting ‖ · ‖ denote the Lp-norm, we see from 7.37 that

‖K‖ ≤ 21+α
∑

n

2nα c1/p 2−nq/p <∞
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since α < q/p. If p < 1, then (x + y)p ≤ xp + yp for positive x and y, and

EKp ≤ (21+α)p
∑

n

2nαpc · 2−nq <∞

again. Thus, 7.36 holds in either case, as needed to complete the proof. �

The following is Kolmogorov’s theorem on modifications. Recall that X̃
is a modification of X if for every t there is an almost sure event Ωt on which
X̃t = Xt.

7.39 Theorem. Suppose that 7.33 holds for some constants, c, p, q in
(0,∞). Then, for every α in [0, q/p] there is a modification X̃ of X such that
the path X̃(ω) is Hölder continuous of order α on [0, 1] for every ω.

Proof. Fix α as described. Let K be as in Lemma 7.32. Since E Kp <∞,
the event Ω0 = {K < ∞} is almost sure. For ω outside Ω0, put X̃(ω) = 0
identically. For ω in Ω0, Lemma 7.32 ensures that X(ω) is Hölder continuous
of order α on D. Thus, putting

X̃t(ω) = lim
s → t
s ∈ D

Xs(ω), t ∈ [0, 1], ω ∈ Ω0,7.40

we obtain a path X̃(ω) that is Hölder continuous of order α on [0,1]. The
same property holds trivially for X̃(ω) with ω ∈ Ω0. Finally, for each t in
[0,1], we have Xt = X̃t almost surely in view of 7.40 and 7.33. �

Exercises

7.41 p-variation. Let An be the subdivision of [0,1] that consist of (0, δ],
(δ, 2δ], . . . , (1 − δ, 1] with δ = 1/n. Show that, for p > 0,

1
n

√
np

∑

(s,t]∈An

|Wt −Ws|p

converges, as n→ ∞, to E|Z|p in probability, where Z is standard Gaussian.
Hint: Use time inversion and the weak law of large numbers.

7.42 Monotonicity. For almost every ω, the Wiener path is monotone in no
interval. Show. Hint: Compare Proposition 7.6 with Exercise I.5.24.

7.43 Local maxima. Let f : [0, 1] 	→ R be continuous. It is said to have a
local maximum at t if there is ε > 0 such that f(s) ≤ f(t) for every s in
(t− ε, t+ ε). Suppose that f is monotone in no interval. Show the following:

a) f has a local maximum.

b) If f has local maxima at s and at t, then it has a local maximum at
some point u in (s, t).

c) The set of all local maxima is dense in [0,1].
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7.44 Exponential inequality. This is similar to Lemma 7.18. Let Mt =
maxs≤t Ws. Show that, for a > 0,

P {Mt > at} ≤ e−a
2t/2.

Hint: Recall that Mt ≈
√
t|Z|. So, M2

t ≈ t Z2 ≤ t(Z2 + Y 2) ≈ 2tX, where Y
and Z are independent standard Gaussians, and X is standard exponential.

8 Existence

This is to end the chapter by completing the circle, by showing that
Brownian motions do exist. The question of existence is mathematical: Does
there exist a probability space, and a process defined over it, such that the
process is continuous and appropriately Gaussian.

We give two very different constructions. The first is via Kolmogorov’s
extension theorem and existence of continuous modifications; here, the com-
plexities of the Wiener process are built into the probability measure in an
abstract fashion. By contrast, the second, due to Lévy, uses a very simple
probability space, and the intricacies of the process are built explicitly into
the paths.

First construction

The basic ingredients are Theorem IV.4.18, the Kolmogorov extension
theorem, and Theorem 7.39 on the existence of continuous modifications.

8.1 Theorem. There exist a probability space (Ω,H,P) and a stochastic
process W = (Wt)t∈R+ such that W is a Wiener process over (Ω,H,P).

Proof. We follow the setup of Theorem IV.4.18. Let Ω be the set of all
mappings from R+ into R. For t in R+ and ω in Ω, put Xt(ω) = ω(t). Let
H be the σ-algebra on Ω generated by {Xt : t ∈ R+}. For each finite subset
J of R+, if J has n ≥ 1 elements, let πJ be the n-dimensional Gaussian
distribution on R

J with mean 0 and covariances s ∧ t for s and t in J .
These finite-dimensional distributions πJ form a consistent family. Thus, by
Theorem IV.4.18, there exists a probability measure P on (Ω,H) such that
the distribution of (Xt)t∈J under P is given by πJ for every finite subset J of
R+. It follows that the processX = (Xt)t∈R+ has stationary and independent
increments, has X0 = 0 almost surely, and every increment Xt −Xs has the
Gaussian distribution with mean 0 and variance t− s.

Consider (Xt)t∈[0,1]. Note that the condition 7.33 holds, for instance, with
p = 4, q = 1, c = 3. Thus, Theorem 7.39 applies: there is a modifica-
tion (X̃t)t∈[0,1] that is continuous. Applying 7.39 repeatedly to (Xt)t∈[n,n+1],

n ∈ N, we obtain a process X̃ = (X̃t)t∈R+ that is continuous and has the
same finite-dimensional distributions as X . Thus, X̃ is the Wiener process
W sought. �
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Lévy’s construction

This starts with a probability space on which there is defined a countable
independency of standard Gaussian variables Zq , one for each q in the set D
of all dyadic numbers in [0,1]. This is easy to do; see the next theorem, and
also the exercises below which show that the probability space can be taken
to be ((0,1), B(0,1), Leb).

The object is to construct X = {X(t) : t ∈ [0, 1]} such that X is a Wiener
process on [0,1]. It will be obtained as the limit of a sequence of piecewise
linear continuous processes Xn. The initial process is defined as

X0(t) = t Z1, t ∈ [0, 1].8.2

By the nth step, the variables X(t) will have been defined for t in Dn =
{k/2n : k = 0, 1, . . . , 2n}, and the process Xn = {Xn(t) = t ∈ [0, 1]} is
the piecewise linear continuous process with Xn(t) = X(t) for t in Dn. At
the next step, X(t) is specified for t in Dn+1\Dn and Xn+1 is defined to be
the piecewise linear continuous process with Xn+1(t) = X(t) for t in Dn+1.
See Figure 16.

To implement this plan, we need to specify X(q) for q in Dn+1\Dn

consistent with the values X(t) for t in Dn. This problem is solved by
Example 1.9 since X is to be Wiener: Given X(p) and X(r) for adjacent
points p and r in Dn, the conditional distribution of X(q) at the mid-
point q of [p, r] must be Gaussian with mean 1/2X(p) + 1/2X(r) and variance
2−n−2; note that the conditional mean is exactly Xn(q); thus, we should put
X(q) = Xn+1(q) = Xn(q) +

√
2−n−2 Zq. Finally, piecewise linearity of Xn

and Xn+1 require that we put

Xn+1(t) = Xn(t) +
∑

q∈Dn+1\Dn

hq(t) Zq , n ≥ 0, t ∈ [0, 1],8.3

where

hq(t) =
√

2−n−2
(
1 − |t− q| · 2n+1

)+
, q ∈ Dn+1\Dn.8.4

p q r

Xn+1

Xn

Figure 16: Approximation Xn+1 coincides with Xn at the points p and r in
Dn and differs from Xn at the midpoint q by an amount Zq/

√
2n+2.
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8.5 Remarks. a) For q in Dn+1\Dn, the function hq achieves its maxi-
mum

√
2−n−2 at the point q and vanishes outside the interval of length 2−n

centered at q. Thus, in particular, for each t, the sum in 8.3 has at most one
non-zero term.

b) Note that all the hq are re-scaled translations of the “mother wavelet”
h(t) = (1 − |t|)+, t ∈ [−1, 1].

The following is the formal construction and the proof that the sequence
of process Xn converges to a Wiener process.

8.6 Theorem. Let μ be the standard Gaussian distribution on (R,BR).
Define

(Ω,H,P) = (R,BR, μ)D ,8.7
and let Zq, q ∈ D, be the coordinate variables. Let X0, X1, . . . be defined by
8.2 and 8.3. Then, there exists a process X = {X(t) : t ∈ [0, 1]} such that,
for almost every ω in Ω,

lim
n→∞ sup

t∈[0,1]

|Xn(ω, t) −X(ω, t)| = 0;8.8

and the process X is a Wiener process with parameter set [0,1].

Proof. a) Existence and construction of the probability space of 8.7 is
immediate from Theorem IV.4.7; see IV.5.1 et seq. as well. It is clear that
{Zq : q ∈ D} is an independency of standard Gaussian variables.

b) For f : [0, 1] 	→ R, let ‖f‖ = supt |f(t)|, the supremum norm. We shall
show that (Xn) is Cauchy for almost sure convergence in the norm ‖ · ‖. This
implies the existence of a continuous process X such that ‖Xn − X‖ → 0
almost surely, and there remains to show that X is Gaussian with mean 0
and covariance s∧ t for X(s) and X(t). To that end, we observe from 8.2 and
8.3 that {Xn(t) : t ∈ Dn} is Gaussian with mean 0 and covariance s∧ t; and
the same is true for {Xn+k(t) : t ∈ Dn} for every k, since Xn+k(t) = Xn(t)
for t ∈ Dn. Hence, {X(t) : t ∈ Dn} is Gaussian with mean 0 and variance
s ∧ t, which means that the same is true for {X(t) : t ∈ D}. In view of
the continuity of X , approximating X(t) by X(q), q ∈ D, we see that X is
Gaussian as desired, thus completing the proof.

c) Fix n ≥ 8. Put ε = 2−(n+2)/4. In view of 8.3 and Remark 8.5a, noting
that the maximum of hq is ε2, we see that ‖Xn+1 −Xn‖ = ε2M , where M
is the maximum of |Zq| as q ranges over the set Dn+1\Dn of cardinality 2n.
Since the Zq are independent copies of the standard Gaussian Z0,

P {‖Xn+1 −Xn‖ > ε} = P
{
ε2M > ε

}

≤ 2n P
{|Z0| > 1/ε

} ≤ 2n · ε · e−1/2ε2 ,

the last inequality being by Lemma 7.19. Since (1/2ε2) =
√

2n ≥ 2n for
n ≥ 8, and since e−2n ≤ 2−2n, we conclude that, with εn = 2−(n+2)/4,

∑

n

P {‖Xn+1 −Xn‖ > εn} <∞,
∑

n

εn <∞.8.9
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By the Borel-Cantelli lemma, then, there exists an almost sure event Ω0 such
that, for every ω in it there is nω with

‖Xn+1(ω, ·) −Xn(ω, ·)‖ ≤ εn for all n ≥ nω.

Thus, for ω in Ω0, if i, j ≥ n ≥ nω,

‖Xi(ω, ·) −Xj · (ω, ·) ‖ ≤
∞∑

k=n

εk,

and the right side goes to 0 as n → ∞ since (εk) is summable. So, for ω
in Ω0, the sequence (Xn(ω, ·)) is Cauchy for convergence in the norm and,
hence, has a limit X(ω, ·) in the norm. We re-define X(ω, ·) = 0 identically
for ω not in Ω0. This X is the process that was shown to be Wiener in part
(b) above. �

Exercises

8.10 Construction on [0,1] with its Lebesgue measure. This is to show that,
in Lévy’s construction, we can take (Ω,H,P) to be ([0, 1],B[0,1],Leb). This
is tedious but instructive.

Let A = {0, 1}, A = 2A, and α the measure that puts weight 1/2 at the
point 0, and 1/2 at the point 1; then (A, A, α) is a model for the toss of a
fair coin once. Thus,

(Ω,H,P) = (A,A, α)N
∗

is a model for an infinite sequence of tosses, independently. We know that
(Ω, H, P) is basically the same as ([0,1], B[0,1], Leb).

Let b : N
∗ × N

∗ 	→ N
∗ be a bijection, and define

Ui(ω) =
∞∑

j=1

2−jωb(i,j) if ω = (ω1, ω2, · · ·) .

Show that U1, U2, . . . are independent and uniformly distributed on [0,1].
Let h be the quantile function (inverse functional) corresponding to the
cumulative distribution function for the standard Gaussian. Then, Y1 =
h ◦ U1, Y 2 = h ◦ U2, . . . are independent standard Gaussian variables. Fi-
nally, let g : D 	→ N

∗ be a bijection, and put Zq =Yg(q) for q ∈ D. Then,
{Zq : q ∈ D} is an independency of standard Gaussian variables over
the probability space (Ω,H,P). Lévy’s construction yields a Wiener path
Wt(ω), t ∈ [0, 1], for each sequence ω of zeros and ones.
88.11 Lévy’s construction, an alternative. Start with the probability space
(Ω, H, P) and the standard Gaussians Zq, q ∈ D. Put W0 = 0, W1 = Z1.
Having defined Wp for every p in Dn, put

Wq =
1
2

(Wp +Wr) +
√

2−n−2 Zq, q ∈ Dn+1\Dn,

where p = supDn ∩ [0, q] and r = infDn ∩ [q, 1].
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a) Show that {Wt : t ∈ D} is a Gaussian process; specify its mean and
covariance function.,

b) Show that the condition 7.33 is satisfied (with p=4, q= 1) for
{Wt : t ∈ D} with s, t in D. Then 7.34 holds. Show that this implies
that, for almost every ω, the function t 	→Wt(ω) from D into R is uniformly
continuous; let t 	→ W̄t(ω) be its continuous extension onto [0, 1]. For the
negligible set of ω remaining, put W̄t(ω) = 0. Show that W̄ is a Wiener
process on [0,1].





Chapter IX

Markov Processes

A stochastic process is said to have the Markov property if, at every
instant, given the past until that instant, the conditional probability law
governing its future depends only on its present state. This property is the
probabilistic generalization of the classical notion that, if the present state of a
physical system is described in sufficient detail, the system’s future evolution
would be determined by the present state, without regard to how the system
arrived at that state.

The definitions of “time” and “state” depend on the application at hand
and on the demands of mathematical tractability. Otherwise, if such practical
considerations are ignored, every stochastic process can be made Markovian
by enhancing its state space sufficiently.

The theory of Markov processes is the most extensively developed part
of probability theory. It covers, in particular, Poisson processes, Brownian
motions, and all other Lévy processes. Our aim is to introduce the basic
concepts and illustrate them with a few examples and counter-examples. No
attempt is made at completeness.

Section 1 is on the Markov property in general. There are examples of
Markov chains (discrete-time), of Markov processes (continuous-time), and
of anomalous processes lacking the strong Markov property.

Sections 2 and 3 are on two important classes of processes: Itô diffusions
and jump-diffusions. They are introduced as solutions to stochastic integral
equations. Markov and strong Markov properties are proved directly, gener-
ators and resolvents are calculated, and forward and backward equations of
Kolmogorov are derived. A quick introduction to stochastic differential equa-
tions is given as an appendix in Section 7 for the needs of these sections.
These sections can be omitted if the interest is on the general theory.

Markov processes are re-introduced in Section 4 within a modern ax-
iomatic setting. Their Markov property is discussed once more, Blumenthal’s
zero-one law is proved, the states are classified as holding versus instanta-
neous, and the behavior at holding states is clarified.

E. Çınlar, Probability and Stochastics, Graduate Texts 443
in Mathematics 261, DOI 10.1007/978-0-387-87859-1 9,
c© Springer Science+Business Media, LLC 2011



444 Markov Processes Chap. 9

Section 5 continues the axiomatic treatment by introducing Hunt
processes and Feller processes. The meaning of quasi-left-continuity is ex-
plained, the total unpredictability of jump times is given, and the effects of
strong Markov property are illustrated.

Section 6 is on resolvents and excessive functions, the connections between
them, and their relationships to martingales. It is almost independent of the
earlier sections and can be read after Section 2 if desired.

1 Markov Property

Throughout this section, T is a subset of R; its elements are called times; it
will mostly be R+ and sometimes N. Throughout, (Ω, H, P) is a probability
space, and F = (Ft)t∈T is a filtration over it.

Let X = (Xt)t∈T be a stochastic process with some state space (E, E) and
adapted to the filtration F. We let Go = (Got )t∈T

be the filtration generated
by it and put Gt∞ = σ{Xu : u ≥ t, u ∈ T}, its future after time t.

1.1 Definition. The process X is said to be Markovian relative to F if,
for every time t, the past Ft and the future Gt∞ are conditionally independent
given the present state Xt.

If X is Markovian relative to F, then it is such relative to Go as well,
because Got ⊂ Ft by the adaptedness of X to F. It is said to be Markovian,
without mentioning a filtration, if it is such relative to Go.

A similar notion, the strong Markov property, is said to hold if the fixed
times t in the preceding definition can be replaced by stopping times. Most
Markovian processes are strong Markov, but there are exceptions (see the
Examples 1.28 and 1.29).

Characterization

The next theorem uses the definition of conditional independence and
properties of repeated conditioning. We use the common shorthand for con-
ditional expectations.

1.2 Theorem. The following are equivalent:

a) The process X is Markovian relative to F.
b) For every time t and time u > t and function f in E+,

E (f ◦Xu |Ft) = E (f ◦Xu |Xt) .1.3

c) For every time t and positive variable V in Gt∞,

E (V |Ft) = E (V |Xt) .1.4

d) For every time t and positive variable V in Gt∞,

E (V |Ft) ∈ σXt.1.5
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1.6 Remark. i) The statement (d) is the closest to the intuitive mean-
ing of the Markov property: estimate of a variable determined by the future
is a deterministic function of the present state only (regardless of all the past
information) – recall that σXt is the σ-algebra generated by Xt.

ii) The collection of all f for which 1.3 holds is a monotone class. Thus,
the theorem remains true, when, in the statement (b), the condition 1.3 holds
for every f in Eb (bounded E-measurable), or every f in Eb+, or every indica-
tor f = 1A with A in E, or every indicator f = 1A with A in some p-system
generating E.

iii) Similarly, by monotone class arguments again, the theorem remains
true if 1.4 (or, equivalently, 1.5) is required only for V having the form

Vn = f1 ◦Xu1 · · · fn ◦Xun1.7

with some integer n ≥ 1, some times t ≤ u1 < u2 < . . . < un, and some
functions f1, . . . , fn in E+. Moreover, the functions fi can be restricted further
as in the preceding remark.

Proof. (a) ⇔ (c) by the definition of conditional independence; (c) ⇒ (b)
trivially; and we shall show that (b) ⇒ (d) ⇒ (c). The last implication is
easy: assuming 1.5,

E (V |Ft) = E (E (V |Ft) |Xt) = E (V |Xt) .

To prove that (b) ⇒ (d), assume (b). By Remark 1.6 iii, it is enough to show
1.5 for V having the form 1.7. We do this by induction. For n = 1, we have
1.5 from (b). Assume that 1.5 holds for every Vn having the form 1.7. Note
that

E (Vn+1|Fun) = Vn E
(
fn+1 ◦Xun+1 |Fun

)
= Vn · g ◦Xun = V̂n

for some g in E+ in view of (b). Since V̂n has the form 1.7 with gf n replacing
fn, the induction hypothesis applies to V̂n to yield

E (Vn+1|Ft) = E

(
V̂n|Ft

)
∈ σXt.

Thus, 1.5 holds for Vn+1 as well. �

Transition functions

Recall that a Markov kernel on (E,E) is a transition probability kernel
from (E,E) into (E,E); see I.6.5 et seq. Let (Pt,u) be a family of Markov
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kernels on (E,E) indexed by pairs of times t ≤ u. It is said to be a Markovian
transition function on (E,E) if

Ps,t Pt,u = Ps,u, 0 ≤ s < t ≤ u.1.8

The preceding is called the Chapman-Kolmogorov equation.
The Markovian processX is said to admit (Pt,u) as a transition function if

E (f ◦Xu|Xt) = (Pt,uf) ◦Xt, t < u, f ∈ E+.1.9

Obviously, it is sufficient to check 1.9 for f that are indicators. This provides
the intuitive meaning for the kernels:

Pt,u (x,A) = P {Xu ∈ A|Xt = x} .1.10

1.11 Remark. There are Markov processes that have no transition func-
tions. Here is an example. Suppose that T = R+, and E = R+ × Ω, and E

consists of subsets A of E such that the section {ω ∈ Ω : (t, ω) ∈ A} belongs
to Ft for every t. Suppose, further, that Xt(ω) = (t, ω) for t in R+ and ω
in Ω. Then, X = (Xt)t∈R+ is a stochastic process with state space (E,E) and
is adapted to F. Note that the σ-algebra generated by Xt is exactly Ft, and,
hence, the condition 1.3 holds automatically. This Markovian process has no
transition function. It is also devoid of interest, since there is nothing further
to be said about it.

1.12 Remark. The preceding example illustrates that every process can
be made Markovian, but at the cost of mathematical tractability. Begin with
a process X0 with some state space (D,D). Let F be the filtration generated
by it. Define (E,E) and X as in the preceding remark. Now, the “state” of X
at time t is the whole history of X0 until t. By this device, X0 is converted
to the Markovian process X .

Time-homogeneity

Suppose that X is Markovian and admits (Pt,u) as its transition function.
It is said to be time-homogeneous if, for every time t and time u > t, the
dependence of Pt,u on the pair (t,u) is through u− t only, that is, if

Pt,u = Pu−t1.13

for some Markov kernel Pu−t. Theoretically, there is no loss of generality
in assuming time-homogeneity: if X is not, then it can be studied through
X̂ = (t,Xt), and X̂ is Markovian and time-homogeneous. Note that this trick
makes time a part of the state description. See Exercise 1.40.

Chains and Processes

Suppose that X is Markovian and time-homogeneous. We call it a Markov
chain if T = N, and Markov process if T = R+.
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Suppose that X is a Markov chain. Then, Q = Pt,t+1 is free of t, and the
Chapman-Kolmogorov equation 1.8 yields

Pt,u = Qn, t ∈ N, u− t = n ∈ N.1.14

This is expressed by saying thatX is a Markov chain with transition kernel Q.
Suppose that X is a Markov process. Then, the Markov kernels Pt, t ∈

R+, must satisfy the semigroup property

Pt Pu = Pt+u, t, u ∈ R+,1.15

this being the Chapman-Kolmogorov equation in view of 1.13. Then, it is
usual to call (Pt) a transition semigroup and to say that X is a Markov
process with transition function (Pt).

For a chain, since the time-set has only one limit point, the analysis
required is more straight forward and has more to do with limits in distribu-
tion of Xn as n→ ∞. For a process, the mathematical treatment has greater
ties to classical analysis and semigroups and partial differential equations.
We shall concentrate on processes; an analogous program for chains can be
carried out without difficulty. However, as a way of displaying the Markov
property in its most direct form, we give examples of chains next.

Markov chains

Every Markov chain encountered in applications is constructed from a
sequence of independent and identically distributed random variables through
a deterministic transformation. In fact, if the state space (E,E) is standard,
we may construct every Markov chain in this fashion; see Exercise 1.38 for
an illustration with E = R. Interestingly, this form shows that every Markov
chain (and, by extension, every Markov process) is a Lévy chain (or Lévy
process) in an abstract sense.

Let (E,E) and (D,D) be measurable spaces. Let ϕ : E × D �→ E be
measurable with respect to E⊗D and E. Let X0 be a random variable taking
values in (E,E) and, independent of it, let (Zn)n∈N be an independency of
identically distributed variables taking values in (D,D). Define

Xn+1 = ϕ (Xn, Zn+1) , n ∈ N.1.16

Together with X0, this defines a Markov chain X = (Xn)n∈N with state space
(E,E) and transition kernel

Q(x,A) = P {ϕ(x, Z0) ∈ A} , x ∈ E, A ∈ E.1.17

The formula 1.16 encapsulates the essence of Markov chains: the next state
Xn+1 is a deterministic function of the present state Xn and the next random
influence Zn+1. The deterministic function ϕ remains the same over all time;
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this is time-homogeneity. In this context, ϕ is called the structure function
and the Zn are the driving variables. Here are some examples and implications
of this construction.

1.18 Random walks. Suppose that E = D = R
d with the attendant Borel

σ-algebras E and D. Take ϕ(x, z) = x + z. The resulting Markov chain is
called a random walk on R

d.

1.19 Gauss-Markov chains. Let E = D = R
d again. Suppose that the Zn

have the d-dimensional standard Gaussian distribution. Take

ϕ(x, z) = Ax+Bz, x, z ∈ R
d,

where A and B are some d × d matrices. The resulting chain X is called a
Gauss–Markov chain. If X0 is fixed or has some Gaussian distribution, then
the chain (Xn) is Gaussian; this can be seen by noting that

Xn = AnXo +An−1B Z1 + · · · +AB Zn−1 +B Zn.

1.20 Products of random matrices. Suppose that E = D = R
d×d, the space of

d×d matrices with real entries. Then, the Zn are independent and identically
distributed random matrices. Take ϕ(x, z) = zx, the matrix x multiplied on
the left by the matrix z. The resulting chain is given by Xn = Zn · · ·Z1X0;
it is a “left random walk” on the set of d × d matrices. Similarly, taking
ϕ(x, z) = xz yields a “right random walk”.

1.21 Continuation. Suppose that E = R
d and D = R

d×d; and take ϕ(x, z) =
zx, the product of the matrix z and the column vector x, Then, the chain
(Xn) becomes the orbit of the random point X0 under successive applications
of the random linear transformations represented by the matrices Z1, Z2, . . . .

1.22 Random dynamical systems. This is to give a different interpretation to
1.16. Leave (E,E) arbitrary. Define, for each n, a random transformation Φn

from E into E by letting

Φω
n(x) = ϕ (x, Zn(ω)) , ω ∈ Ω, x ∈ E.

Then, Φ1,Φ2, . . . are independent and identically distributed random trans-
formations from (E,E) into (E,E), and Xn+1 = Φn+1 (Xn). So, the chain
X is obtained by successive applications of independent and identically dis-
tributed random transformations.

1.23 Continuation. Let ϕωm,n be the composition of the transformations
Φω
m+1, . . . ,Φ

ω
n, that is, define

ϕωm,n =
{

identity if m = n,
(Φω

n) ◦ · · · ◦ (Φω
m+1

)
if m < n,

for 0 ≤ m ≤ n < ∞. For each ω, the family
{
ϕωm,n : 0 ≤ m ≤ n <∞} is a

flow, that is, the flow equation

ϕωm,n
(
ϕωk,m(x)

)
= ϕωk,n(x), 0 ≤ k ≤ m ≤ n,
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is satisfied. And, the Markov chain X is the path of X0 under the action of
the random flow ϕ = (ϕm,n)0≤m≤n<∞.

Regarding ϕm,n as the “increment” of ϕ over the interval (m, n], we see
that ϕ has stationary and independent increments. Thus, the Markov chain
X is, in this abstract sense, a discrete-time Lévy process in the space of
transformations.

Examples of Markov processes

Brownian motion is a Markov process. A number of Markov pro-
cesses related to it were given in Chapter VIII on Brownian motion; see
Examples VIII.1.19, VIII.1.21, VIII.1.22. The following examples are to
forge some connections, and also give some pathological (see 1.28) and
fascinating (see 1.29) cases where the strong Markov property fails.

1.24 Lévy processes. Suppose that E = R
d and E = B(Rd), and assume that

Xt = X0 + Yt, t ∈ R+, where Y = (Yt) is a Lévy process independent of X0.
Let πt be the distribution of Yt, and recall that A − x = {y − x : y ∈ A}.
Then, X is a Markov process with transition function

Pt(x,A) = πt(A− x), x ∈ E, A ∈ E, t ∈ R+.1.25

In other words, X is both time-homogeneous and spatially homogeneous.
Conversely, if X is such, that is, if X is a Markov process whose transition
semigroup (Pt) has the form 1.25, then X = X0+Y for some Lévy process Y .

1.26 Markov chains subordinated to Poisson. Let (Yn)n∈N be a Markov chain
with state space (E, E) and transition kernelQ. Let (Nt) be a Poisson process,
with rate c, independent of the chain (Yn). Suppose that

Xt = YNt , t ∈ R+.

Then, X is a Markov process with state space (E, E) and transition function
(Pt), where

Pt(x,A) =
∞∑

n=0

e−ct(ct)n

n!
Qn(x,A).1.27

1.28 Delayed uniform motion. The state space is E = R+. The process
depicts the motion of a particle that is at the origin initially, stays there
an exponentially distributed amount T of time, and then moves upward at
unit speed:

Xt = (t− T )+ , t ∈ R+.

This X is a Markov process. Its transition function (Pt) is easy to compute
by using the working formula

Ptf(x) = E (f ◦Xs+t|Xs = x) :
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If x > 0, then Xs+t = x + t. If x = 0, the particle’s sojourn at 0 has not
ended yet, that is, T > s. By the exponential nature of T , then, the remaining
sojourn time T − s has the same exponential distribution as T itself. Letting
c be the parameter of that exponential distribution, we get

Ptf(x) =
{
f(x+ t) if x > 0,
e−ct f(0) +

´ t
0
du ce−cu f(t− u) if x = 0.

Suppose now that the filtration F is taken to be
(
Got+
)
. Then, T is a stopping

time of F, and XT = X0 = 0. If X were strong Markov, the future after T
would have the same law as the future at t = 0. But it is not so; future at
t = 0 starts with a sojourn of some length at 0, whereas the future at T is
that of immediate motion. So, this process is not strong Markov.

Intuitive notion of the Markov property is that the present state de-
termines the law of the future; and this is tacitly extended to cases where
“the present time” is allowed to be a stopping time. The present example
is cautionary. At the same time, it displays the reason for the failure of the
strong Markov property: the state 0 is allowed to play two different roles: as
a point of sojourn, and as a launching pad for the motion. If we re-define the
process as

X̂t(ω) =
{ −1 if t < T (ω),
t− T (ω) if t ≥ T (ω),

then we have a strong Markov process X̂ with state space {−1} ∪ R+.

1.29 Lévy’s increasing continuous process. This is an example, due to Lévy, of
another process whose Markov property does not extend to stopping times.
Moreover, it illustrates the importance of choosing the correct state space
and the correct construction of the process. As a by-product, it shows the
advantages of concentrating on the dynamics of the random motion, instead
of the analytic machinery of transition functions and the like.

The canonical process has state space R+. Started at 0, its paths are
increasing continuous with limit +∞ as time goes to +∞. Every rational
number in R+ is a holding point, that is, the process has an exponential
sojourn there before resuming its upward creep. The process spends no time
in the set of irrationals. By re-labeling the states, we shall get a bizarre
Markov process with state space N̄ = {0, 1, . . . ,+∞}.

Let Q+ denote the set of rational numbers in R+. Over the probability
space (Ω,H,P), we suppose that {Zq : q ∈ Q+} is an independency of R+-
valued exponential random variables with Zq having the mean m(q), where

∑

q∈Q+∩[0,1)

m(q) = 1,

and, for each integer n ≥ 1, we have m(q) = m(q − n) for q in [n, n + 1).
We are thinking of a particle that moves upward in R+, having a sojourn
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of length Zq at each rational q, and spending no time elsewhere. Thus, the
cumulative time it spends in the set [0,x] is

Sx =
∑

q∈Q+∩[0, x]

Zq, x ∈ R+,1.30

and, therefore, the particle’s position at time t is

Xt = inf {x ∈ R+ : Sx > t} , t ∈ R+.1.31

In view of the way the means m(q) are chosen, for almost every ω, we have
Sx(ω) <∞ for all x in R+, but with limit +∞ as x→ ∞. Clearly, x �→ Sx(ω)
is right-continuous and strictly increasing, which implies that t �→ Xt(ω) is
continuous increasing. Moreover, since the path S(ω) is of the pure-jump type,

Leb {t ∈ R+ : Xt(ω) �∈ Q+} = 0.1.32

The process (Sx)x∈R+ is a pure-jump process with independent (but non-
stationary) increments; see Exercise VI.4.24. It jumps at every rational q
by the exponential amount Zq. Thus, X = (Xt)t∈R+ is a Markov process
(time-homogeneous) with a transition function (Pt) that can be specified, see
Exercise 1.39; it is Markov relative to

(
Got+
)

as well.
Heuristically, given that Xt = x and x ∈ Q+, then, the particle will stay

at x a further amount of time that is exponential with mean m(x) and then
start its upward motion. This is for fixed time t. But, when t is replaced by
the random time T at which the particle departs the fixed rational point x,
the future looks different. Thus, X lacks the strong Markov property.

Next, we take advantage of 1.32 to define a Markov process with a discrete
state space. Let b be a bijection from Q+ onto N; this is just a re-labeling of
the rationals by integers. Define

Yt(ω) =
{
b ◦Xt(ω) if Xt(ω) ∈ Q+,
+∞ otherwise.1.33

Then, Y = (Yt) is a Markov process with state space N̄. Its paths are difficult
to describe directly: if Yt = i, then the particle stays there an exponential
time, but there is no “next” integer state to go. The state +∞ is “fictitious”;
the total amount of time spent there by Y is zero by 1.32. The paths have
discontinuities of the second kind. We may define

Qt(i, A) = P {Ys+t ∈ A|Ys = i} , t ∈ R+, i ∈ N, A ⊂ N,

to obtain a Markov transition semigroup, that is, QtQu = Qt+u and
Qt(i,N) = 1 for each i. For this reason, Y is said to have N as its min-
imal state space. This process is a good example of inadequacy of transition
functions (and generators to come) as the base to build the theory on. Despite
this sentiment, we continue with . . .
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Probability Laws

We return to the general case with index set T and suppose that X is
Markovian and admits (Pt,u) as its transition function. Suppose, further,
that T ⊂ R+ and 0 ∈ T. Let μ0 be the distribution of X0. Then, for times
0 = t0 < t1 < · · · < tn,

P {Xt0 ∈ dx0, Xt1∈ dx1, Xt2 ∈ dx2, . . . , Xtn ∈ dxn}
= μt0(dx0)Pt0,t1(x0, dx1)Pt1,t2(x1, dx2) · · ·Ptn−1,tn (xn−1, dxn) .1.34

This follows from repeated applications of the Markov property. It shows, as
well, that the probability law of X is determined by the initial distribution
μ0 and the transition function (Pt,u). Modern theory treats (Pt,u) as fixed,
but μ0 as a variable; it is usual to write P

μ for P when μ0 = μ, and P
x when

μ0 = δx, Dirac at x.

Existence and construction

Let μ be a probability measure and (Pt,u) a Markov transition function,
both on some measurable space (E,E). If T = N, then Theorem IV.4.7 shows
the existence of a probability space (Ω,H,Pμ) and a process X = (Xt)t∈T

such that X is Markovian with initial distribution μ and transition function
(Pt,u), that is, such that 1.34 holds. If T = R+, the same existence result
follows from the Kolmogorov extension theorem, IV.4.18, under a slight con-
dition on (E,E). We refer to Chapter IV, Sections 4 and 5, for the details
as well as for a discussion of some special cases and issues regarding “time”
and “space”.

In practice, however, one rarely has (Pt,u) specified from the start. Instead,
X is constructed from well-known objects, and (Pt,u) is defined implicitly
from X . For instance, the example 1.28 is constructed from one exponential
variable, and the example 1.29 from a countable independency of exponen-
tials. As we know, Wiener processes and Poisson random measures on R

2

can be constructed from a countable independency of uniform variables, and
Lévy processes are constructed from Wiener processes and Poisson random
measures. Similarly, most Markov processes are constructed from a countable
independency of uniform variables via Wiener processes and Poisson random
measures; the constructions are sometimes direct, and often by means of
stochastic integral equations. Sections 2 and 3 illustrate the method.

Exercises and complements

1.35 Processes with discrete state spaces. Suppose that X is a Markov pro-
cess (time-set R+, time-homogeneous) with state space (E,E) and transition
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function (Pt). Suppose that (E,E) is discrete, that is, E is countable and
E = 2E , the discrete σ-algebra on E. Then, each Pt has the form

Pt(x,A) =
∑

y∈A
pt(x, y), x ∈ E, A ∈ E,

and we may regard y �→ pt(x, y) as the density of the measure A �→ Pt(x,A)
with respect to the counting measure on (E,E). Of course, then, we may
identify the kernel Pt with the matrix whose entries are the probabilities
pt(x, y). We shall do this without further comment.

1.36 Continuation. Suppose that E consists of two elements, a and b. Let

Pt =
[
q + pe−ct p− pe−ct

q − qe−ct p+ qe−ct

]
, t ≥ 0,

where p and q are numbers in [0,1] with p+ q = 1, and c is a number in R+.
Show that the matrices Pt satisfy P0 = I and PtPu = Pt+u. When E consists
of two states, this is the most general form of a transition function (Pt). The
case c = 0 is degenerate (what happens then?). Describe the paths in the
cases p = 0 or q = 0.

1.37 Subordination of Markov to Lévy. Let X be a Markov process with state
space (E,E) and transition function (Pt). Let S = (St) be an increasing Lévy
process independent of X , and with distribution πt for St. Define

X̂t = XSt , t ∈ R+.

Show that X̂ is again a Markov process with state space (E,E). Compute its
transition function (P̂t) in terms of (Pt) and (πt).

1.38 Markov chains. Let Q be a Markov kernel on (R,BR). For each x in R,
define

ϕ (x, u) = inf {y ∈ R : Q(x, (−∞, y]) > u} , u ∈ (0, 1).

Then, u �→ ϕ(x, u) is increasing and right-continuous.

a) Show that x �→ ϕ(x, u) is Borel measurable for each u. Conclude that
ϕ is a Borel function on R × (0, 1).

b) Let (Zn) be an independency of uniform variables taking values in
(0,1). Suppose X0 is independent of (Zn), and define (Xn) by 1.16. Show that
(Xn) is a Markov chain with transition kernel Q.

1.39 Lévy’s example. Let X be as in Example 1.29. Let (Pt) be its transition
function. Show that, for real numbers 0 ≤ x ≤ y,

Pt(x, (y,∞)) = P

⎧
⎨

⎩
∑

x≤q≤y
Zq < t

⎫
⎬

⎭
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where the sum is over the rationals q in the interval [x, y]. Show that
ˆ ∞

0

dt e−ptPt (x, (y,∞)) =
1
p

∏

x≤q≤y

1
1 +m(q)p

, p ∈ R+.

This specifies (Pt), at least in principle.

1.40 Time-homogeneity. Suppose that X is Markovian with state space
(E,E) and admits (Pt,u) as its transition function (we do not assume time-
homogeneity). Define

X̂t = (t,Xt) , t ∈ R+.

Then, X̂ is Markovian with state space (Ê, Ê) = (R+ × E, BR+ ⊗ E). Show
that it is time-homogeneous. Show that its transition function (P̂t) is given
by, for positive f in Ê,

P̂tf (x̂) =
ˆ
E

Ps,s+t(x, dy)f(s+ t, y), x̂ = (s, x) ∈ Ê.

1.41 Processes with independent increments. Let X be a process in R
d having

independent increments, but without stationarity of increments. Then, X is
Markovian, but without time-homogeneity; we have

Pt,u(x,A) = P {Xu ∈ A|Xt = x} = P {Xu −Xt ∈ A− x} = πt,u (A− x) .

Define X̂t = (t, Xt) as in the preceding example. Then, X̂ is a time-
homogeneous Markov process. Compute its transition function (P̂t) in terms
of πs,t. Note that X̂ has independent increments, but still without the
stationarity of increments.

1.42 Expanded filtrations. Suppose that X is Markovian relative to the fil-
tration F. Let H0 be a sub-σ-algebra of H that is independent of F∞. Put
F̂t = H0 ∨ Ft for each time t. Then, X is Markovian relative to F̂ as well.
Show. This is helpful when X is being studied in the presence of other pro-
cesses that are independent of X .

1.43 Entrance laws. Suppose that X is Markovian with time-set T and
transition function (Pt,u). Suppose that T does not have an initial element;
T = (0,∞) or T = (−∞,+∞) for instance. Let μt be the distribution of Xt.
Then, the formula 1.34 holds for times t0 < t1 < . . . < tn in T. Note that,
necessarily, ˆ

E

μt(dx)Pt,u (x,A) = μu (A) , t < u,A ∈ E.1.44

In general, if a family (μt) of probability measures satisfies 1.44 for some
transition function (Pt,u), then (μt) is said to be an entrance law for (Pt,u).
If T has an initial element t0, then μt = μt0 Pt0,t, t ≥ t0, defines an entrance
law (μt) from the initial law μt0 .
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2 Itô Diffusions

Itô diffusions are continuous strong Markov processes satisfying certain
stochastic differential equations. They are generalizations of Brownian mo-
tions in the following way.

Over some probability space, let X be a Brownian motion on R. It has
the form Xt = X0 + at + b Wt, where W is a Wiener process, and a and b
constants. The dynamics of the motion is expressed better in the classical
fashion:

dX t = a dt+ b dW t,

that is, velocity is equal to a constant a perturbed by some “noise.” We notice
that X will remain Markovian in the more general case where a is replaced
with a(Xt), some function of the current position Xt, and the noise multiplier
b is replaced with b(Xt), some function of Xt. The result is

dX t = a ◦Xt dt+ b ◦Xt dW t2.1

or, equivalently, in the formal language of integrals,

Xt = X0 +
ˆ t

0

a ◦Xs ds+
ˆ t

0

b ◦Xs dW s.2.2

But there arises a problem: the second integral does not have a conventional
meaning, because the paths t �→ Wt have infinite total variation over every
interval [s, s+ u] with u > 0. Fortunately, it is possible to give a meaning to
such integrals, called stochastic integrals of Itô to distinguish them from the
ordinary ones.

This section can be read without previous exposure to stochastic calculus
if one is willing to take some results on faith. Nevertheless, we put a summary
of stochastic integration, as an appendix, in Section 7.

Stochastic base

The motion of interest will be a continuous process with state space
(E, E), where E = R

d for some fixed dimension d ≥ 1 and E = B(Rd).
The process will be the solution of a stochastic differential equation driven
by a multi-dimensional Wiener process.

Throughout this section, (Ω,H,P) is a complete probability space,
F = (Ft)t∈R+ is an augmented right-continuous filtration, and W =
(W 1, . . . ,Wm) is an m-dimensional Wiener process adapted to F; the integer
m will remain fixed. In addition, X0 is an E-valued random variable in F0

and is, thus, independent of W . We let (x,H) �→ P
x(H) be a regular version

of the conditional probabilities

P
x(H) = P (H |X0 = x) .2.3
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Equation of motion

The deterministic data are some vector fields u0, . . . , um on E = R
d, that

is, each un is a mapping from E into E. Throughout, we assume that the
following condition of Lipschitz continuity holds; here |x| is the length of the
vector x for each x in E.

2.4 Condition. There is a constant c in R+ such that

|un(x) − un(y)| ≤ c |x− y| , x, y ∈ E, 0 ≤ n ≤ m. �

This condition ensures that the following equation of motion makes sense
and has a unique solution (see Theorem 2.13 below):

Xt = X0 +
ˆ t

0

u0 ◦Xs ds+
m∑

n=1

ˆ t

0

un ◦Xs dW n
s ;2.5

here, the integrals involving the Wn are to be understood as Itô integrals of
stochastic calculus (see Section 7, Appendix).

Somewhat more explicitly, writing X i
t for the i-component of Xt, and

uin(x) for the i-component of the vector un(x), the stochastic integral equa-
tion 2.5 becomes

Xi
t = Xi

0 +
ˆ t

0

ui0 ◦Xs ds+
m∑

n=1

ˆ t

0

uin ◦Xs dW
n
s , 1 ≤ i ≤ d.2.6

Again equivalently, 2.5 can be written as a stochastic differential equation:

dX t = u0 ◦Xt dt+
m∑

n=1

un ◦Xt dW
n
t .2.7

The looks of the preceding line can be simplified: put a(x) = u0(x) and let
b(x) be the d×m matrix whose (i,n)-entry is uin(x); then 2.7 becomes

dXt = a ◦Xt dt+ b ◦Xt dW t,2.8

which looks exactly like 2.1, and 2.5 gets to look like 2.2. But, 2.5 and 2.7 are
better at conveying the role of each Wn: the effect of Wn is carried to the
motion by the vector field un; this issue becomes important when we consider
a cloud of particles whose motions satisfy the same differential equation 2.7.

Examples

2.9 Geometric Brownian motion. With d = m = 1, and b and c constants in
R, consider the geometric Brownian motion

Xt = X0 exp (bW t + ct) , t ∈ R+.
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Using Itô’s formula (Theorem 7.20), we see that X is the solution to

dXt = aXt dt+ bXt dW t,

where a = c + 1/2 b
2. In particular, when a = 0, we obtain the exponential

martingale Xt = Xo exp(bWt − 1/2b
2t) as the solution to dXt = bXt dWt.

2.10 Ornstein–Uhlenbeck process. In 2.8, suppose that a(x) = Ax and b(x) =
B, where A and B are matrices of dimensions d× d and d×m respectively;
we get

dX t = AXt dt+B dW t,

which is also called the Langevin equation. The solution is

Xt = etAX0 +
ˆ t

0

e(t−s)AB dW s,

where etA =
∑∞

k=0

(
tk/k!

)
Ak. In the particular case where d = m = 1, the

matrices reduce to real numbers; and assuming that A is a negative constant,
say A = −c and B = b, we obtain

Xt = e−ctX0 + b

ˆ t

0

e−c(t−s) dW s, t ∈ R+.

This is the one-dimensional velocity process in the model of Ornstein and
Uhlenbeck for the physical Brownian motion; see Exercise 2.60 also.

2.11 Brownian motion on the unit circle. This is the motion X , on the unit
circle in R

2, whose components are

X1
t = cosWt, X2

t = sinWt,

where W is a Wiener process; one can think of it as the complex-valued
motion exp(iWt). Using Itô’s formula, Theorem 7.20, we see that X satisfies
(here d = 2 and m = 1)

dXt = a ◦Xt dt+ b ◦Xt dW t

where a(x) = −1/2(x1, x2) and b(x) = (−x2, x1) for x = (x1, x2).

2.12 Correlated Brownian motions. With d = 1 and m = 2, consider the
equation 2.7 with u0 = 0, u1 = sin, u2 = cos, that is, consider

dXt = (sinXt) dW 1
t + (cosXt) dW 2

t .

This process X is a continuous martingale and its quadratic variation has
the differential (see Example 7.5, Theorem 7.15, and Lemma 7.22 for these)

(dXt)
2 = (sinXt)

2
dt+ (cosXt)

2
dt = dt.

It follows from Theorem 7.24 that X −X0 is a Wiener process. For studying
X , then, writing X = X0 + Ŵ would be simpler. But this simple description
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is inadequate for describing two motions under the same regime. For instance,
in addition to X with X0 = x, let Y satisfy the same equation with Y0 = y,
that is, with the same W 1 and W 2 as for X ,

dY t = (sinYt) dW 1
t + (cosYt) dW 2

t .

Then, X and Y are standard Brownian motions, but they depend on each
other. Their correlation structure is specified by the cross variation process
〈X,Y 〉, which is given by (in differential form)

dXt dYt = (sinXt) (sinYt) dt+ (cosXt) (cosYt) dt = cos (Xt − Yt) dt.

Existence and uniqueness

Consider the stochastic integral equation 2.5 under Condition 2.4 on the
vector fields un. As with deterministic differential equations, Lipschitz con-
tinuity 2.4 ensures the existence of a unique solution (in the sense to be
explained shortly). The method of solution is also the same as in the deter-
ministic case, namely, Pickard’s method of successive approximations. The
result is listed next; its proof is delayed to 2.52.

2.13 Theorem. The equation 2.5 has a pathwise unique solution X; the
process X is continuous.

2.14 Remark. The proof 2.52 will also show that X is a strong solution
in the following sense, thus explaining pathwise uniqueness : There exists a
unique mapping

ϕ : E × C (R+ �→ R
m) �→ C (R+ �→ E)

such that, for almost every ω, the paths X(ω) : t �→ Xt(ω) and W (ω) : t �→
Wt(ω) =

(
W 1
t (ω), . . . , Wm

t (ω)
)

satisfy

X(ω) = ϕ (X0(ω),W (ω)) .

Markov property

The next theorem shows that X is a (time-homogeneous) Markov process
with state space E and transition function (Pt), where

Ptf(x) = E
x f ◦Xt, x ∈ E, f ∈ E+, t ∈ R+.2.15

2.16 Theorem. For each t in R+, the process X̂ = (Xt+u)u∈R+ is con-
ditionally independent of Ft given Xt; moreover, given that Xt = y, the
conditional law of X̂ is the same as the law of X under P

y.

2.17 Remark. The claim of the theorem is that, for every integer k ≥ 1
and positive Borel function f on Ek,

E
x (f (Xt+u1 , . . . , Xt+uk

) |Ft) = E
Xtf (Xu1 , . . . , Xuk

) ,
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where the right side stands for g ◦ Xt with g(y) = E
yf(Xu1 , . . . , Xuk

). Of
course, as in Theorem 1.2, this is also equivalent to

E
x (f ◦Xt+u|Ft) = Puf ◦Xt, x ∈ E, f ∈ E+, t, u ∈ R+.

Proof. Fix t and let Ŵ = (Wt+u −Wt)u∈R+ . Note that, in the notation
system of 2.8,

X̂u = Xt +
ˆ t+u

t

a ◦Xs ds+
ˆ t+u

t

b ◦Xs dWs

= X̂0 +
ˆ u

0

a ◦ X̂s ds+
ˆ u

0

b ◦ X̂s dŴs.

Thus, with ϕ defined as in Remark 2.14,

X = ϕ (X0,W ) , X̂ = ϕ
(
X̂0, Ŵ

)
.

By the Lévy nature of W , the process Ŵ is independent of Ft and is again a
Wiener process just as W . Thus, X̂ is conditionally independent of Ft given
X̂0 = Xt. Moreover, given that Xt = X̂o = y, the conditional law of X̂ is the
law of ϕ(y, Ŵ ), which is in turn the same as the law of ϕ(y,W ), namely, the
law of X given X0 = y. �

Strong Markov property

The preceding theorem remains true when the deterministic time t is
replaced with a stopping time T , provided that we make provisions for the
possibility that T might take the value +∞. To that end we introduce the
following.

2.18 Convention. Let ∂ be a point outside E; put Ē = E ∪ {∂}, and
let Ē be the σ-algebra on Ē generated by E. We define X∞(ω) = ∂ for all
ω. Every function f : E �→ R is extended onto Ē by setting f(∂) = 0. If the
original f is in E+, for instance, then the extended function is in Ē+, but
we still write f ∈ E+. The convention applies to the function Ptf as well:
Ptf(∂) = 0. Finally, F∞ = limFt = ∨tFt as usual.

2.19 Theorem. The process X is strong Markov: For every stopping
time T of F, the variable XT is FT – measurable, and the process X̂ =
(XT+u)u∈R+ is conditionally independent of FT given XT ; moreover, for y
in E, on the event {XT = y}, the conditional law of X̂ given XT is the same
as the law of X under P

y.

Proof. Since X is continuous and adapted to F, the random variable XT

is measurable with respect to FT and Ē. The rest of the proof follows that
of the last theorem: replace t by T throughout to handle the conditional
expectations on the event {T <∞}. On the event {T = ∞}, we haveXT+u =
∂ for all u, and the claim holds trivially in view of the conventions 2.18. �
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Generator

We introduce a differential operator which will describe the differential
structure of the transition function (Pt). First, some notation: We put

C = C(E �→R),CK = CK (E �→R) , C2 = C2(E �→R), C2
K = C2 ∩ CK ;2.20

Thus, C is the set of all continuous functions f : E �→ R, and CK is the set
of such f with compact support, and C2 is the set of such f that are twice
differentiable with continuous derivatives of first and second order. For f in
C2, we write ∂if for the partial derivative with respect to the ith argument,
and ∂ijf for the second order partial derivative with respect to the ith and
jth arguments; the classical notations are ∂i = ∂

∂xi
and ∂ij = ∂2

∂xi∂xj
. When

d = 1, these become f ′, the derivative, and f ′′, the second derivative. With
these notations, we introduce the operator G on C2 by

Gf(x) =
d∑

i=1

ui0(x)∂if(x)+
1
2

d∑

i=1

d∑

j=1

m∑

n=1

uin(x)u
j
n(x) ∂ijf(x), x ∈ E.2.21

When d = 1 (and more generally with proper interpretation, in the notation
system of 2.8) this becomes

Gf(x) = a(x)f ′(x) + 1/2 b(x)
2
f ′′ (x) .

2.22 Example. Brownian motion. Suppose thatX is a standard Brownian
motion in R

d, that is, take m = d and put u0(x) = 0 and let uin(x) be free of
x and equal to 1 or 0 according as i = n or i �= n. Then

Gf =
1
2

d∑

i=1

∂iif, f ∈ C2;

thus, Gf = 1/2Δf , where Δ is the Laplacian operator of classical analysis.

Itô’s formula

The equation 2.5 of motion shows that X is a semimartingale. Applying
to it Itô’s formula, Theorem 7.20, yields the following.

2.23 Theorem. For every f in C2
K,

Mt = f ◦Xt − f ◦X0 −
ˆ t

0

ds Gf ◦Xs, t ∈ R+,2.24

is a martingale; it is given by

Mt =
m∑

n=1

d∑

i=1

ˆ t

0

(
uin ◦Xs

)
(∂if ◦Xs) dWn

s .
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Proof. We use Itô’s formula, Theorem 7.20:

d (f ◦Xt) =
d∑

i=1

(∂if ◦Xt) dX i
t +

1
2

d∑

i=1

d∑

j=1

(∂ijf ◦Xt) dX i
t dX

j
t .

In view of 2.6 for X i
t , this yields the claim once we note that

dX i
t dX

j
t =

m∑

n=1

(
uin ◦Xt

) (
ujn ◦Xt

)
dt

in view of the rules of Theorem 7.19 and Lemma 7.22. �

2.25 Corollary. Let f ∈ C2
K . Then, Gf ∈ CK , and

E
x f ◦Xt = f(x) + E

x

ˆ t

0

ds Gf ◦Xs, x ∈ E, t ∈ R+.

Proof. The vector fields un are continuous by Condition 2.4. Thus, for f in
C2
K , the formula 2.21 shows that Gf is continuous and has compact support.

The claimed formula is now immediate from the preceding theorem, since
E
xMt = 0. �

Moreover, in the preceding corollary, since Gf ∈ CK and thus is bounded,
we may change the order of integration and expectation (by Fubini’s theo-
rem). Recalling 2.15, then, we obtain the following.

2.26 Corollary. Let f ∈ C2
K . Then, Gf ∈ CK and

Ptf(x) = f(x) +
ˆ t

0

ds Ps Gf(x), x ∈ E, t ∈ R+.

Dynkin’s formula

This is essentially Corollary 2.25, but with a stopping time replacing the
deterministic time.

2.27 Theorem. Let f ∈ C2
K . Let T be an F-stopping time. For fixed x

in E, suppose that E
xT <∞; then,

E
x f ◦XT = f(x) + E

x

ˆ T

0

ds Gf ◦Xs.

Proof. Let f , T , x be as described. By Theorem 2.23, the proof is reduced
to showing that E

xMT = 0 for the martingale M there. Since M is a sum
of finitely many martingales, it is enough to show that E

xM̂T = 0 for one of
the terms there, say, for the martingale

M̂t =
ˆ t

0

g ◦Xs dŴs,

where, for fixed i and n, we put g = uin∂if and Ŵ = Wn.
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Since f has compact support, and since ∂if and uin are continuous, the
function g is continuous and bounded, say by c. Thus, applying 7.6 with F
there taken as the bounded left-continuous process s �→ (g ◦Xs)1{s≤T},

E
x
(
M̂T∧t

)2

= Ex
(ˆ t

0

g ◦Xs 1{s≤T} dŴs

)2

= E
x

ˆ t

0

(g ◦Xs)
2 1{s≤T} ds ≤ E

xc2T <∞

by theassumption thatE
xT <∞. So, on (Ω,H,Px), themartingale (M̂T∧t)t∈R+

isL2-boundedand, therefore, is uniformly integrable.ByTheoremV.5.14, then,
M̂ is a Doob martingale on [0,T], which implies that E

xM̂T = E
xM̂0 = 0 as

needed. �

Infinitesimal generator

This is an extension of the operator G defined by 2.21. We keep the same
notation, but we define it anew.

Let DG be the collection of functions f : E �→ R for which the limit

Gf(x) = lim
t↓0

1
t

[Ptf(x) − f(x)]2.28

exists for every x in E. Then, G is called the infinitesimal generator of X ,
and DG is called its domain.

2.29 Lemma. Let f ∈ C2
K. Then, f ∈ DG, and the limit in 2.28 is given

by 2.21.

Proof. Let f ∈ C2
K , define Gf by 2.21. By Corollary 2.26, then, Gf is

continuous and bounded, which implies that PsGf(x) = E
xGf◦Xs goes to

Gf(x) as s → 0; this is by the bounded convergence theorem and the conti-
nuity of X . Thus, from the formula of 2.26, Gf(x) is equal to the limit on the
right side of 2.28. �

Forward and backward equations

2.30 Theorem. Let f ∈ C2
K . Then, f ∈ DG, Gf is given by 2.21, and

d

dt
Ptf(x) = PtGf(x), x ∈ E, t ∈ R+.2.31

Moreover, for f in C2
K again, Ptf ∈ DG and, with G as in 2.28,

d

dt
Ptf(x) = GP tf(x), x ∈ E, t ∈ R+.2.32
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2.33 Remark. The equation 2.31 is called Kolmogorov’s forward equa-
tion, becauseG is in front of Pt. By the same logic, 2.32 is called Kolmogorov’s
backward equation. Writing u(t, x) for Ptf(x) for fixed f , the backward equa-
tion can be re-written as

d

dt
u = Gu, u(0, x) = f(x),

with the understanding that G applies to the spatial variable, that is, to
x �→ u(t, x). This sets up a correspondence between diffusions and partial dif-
ferential equations, since functions in DG can be approximated by sequences
of functions in C2

K .

Proof. The first statement is mostly in Lemma 2.29 and Corollary 2.26:
Let f ∈ C2

K . Then, Gf is given by 2.21, belongs to DG, and s �→ Gf ◦ Xs
is continuous and bounded. Thus, by the bounded convergence theorem,
s �→ PsGf(x) = E

x Gf ◦ Xs is continuous and bounded. Hence, in the
equation for Ptf given in Corollary 2.26, the integral on the right side defines
a differentiable function in t; and, taking derivatives on both sides yields 2.31.

For f in C2
K , we have just shown that t �→ Ptf(x) is differentiable. Thus,

since PsPt = Pt+s, the limit

GP tf(x) = lim
s→0

1
s

[PsPtf(x) − Ptf(x)]

= lim
s→0

1
s

[Pt+sf(x) − Ptf(x)] =
d

dt
Ptf(x)

exists, that is, Ptf ∈ DG and 2.32 holds. �

Potentials, resolvent

Let f ∈ Eb and p > 0. By the continuity ofX , the mapping (t, ω) �→ Xt(ω)
is measurable relative to BR+ ⊗ H and B(Rd). Thus, the following defines a
function in Eb:

Upf(x) = E
x

ˆ ∞

0

dt e−pt f ◦Xt =
ˆ ∞

0

dt e−pt Ptf(x), x ∈ E.2.34

The function Upf is called the p-potential of f , and Up is called the p-potential
operator, and the family (Up)p>0 is called the resolvent of (Pt) or of X . Of
course, 2.34 makes sense for f in E+ and p ≥ 0 as well. The next theorem
relates the resolvent to the infinitesimal generator: the operators Up and p−G
are inverses of each other.

2.35 Theorem. For p > 0 and f ∈ C2
K ,

Up(p−G)f = (p−G)Upf = f.
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Proof. Fix p and f such. From Corollary 2.26, then,

pUpf =
ˆ ∞

0

dt pe−pt f +
ˆ ∞

0

dt pe−pt
ˆ t

0

ds Ps Gf = f + UpGf

by a change in the order of integration over s and t. Thus, Up(pf −Gf) = f .
For the other claim, we start by noting that, since PsPt = Ps+t and f is
bounded,

PsUpf =
ˆ ∞

0

dt e−pt Ps+t f = eps Upf − eps
ˆ s

0

dt e−pt Ptf.

In the rightmost integral, the integrand goes to f as t → 0. Thus,

GUpf = lim
s→0

1
s

(PsUpf − Upf)

= lim
s→0

eps − 1
s

Upf − lim
s→0

1
s
eps
ˆ s

0

dt e−pt Ptf = pUpf − f.

Thus, (p−G)Upf = f as well. �

Interpretations

Fix f in Eb and p > 0. Let Tp be a random variable having the exponential
distribution with parameter p. Suppose that Tp is independent of X . Since
P{Tp > t} = e−pt, we may express 2.34 as

Upf(x) = E
x

ˆ ∞

0

dt 1{Tp>t}f ◦Xt = E
x

ˆ Tp

0

dt f ◦Xt,2.36

which is the expected earnings during (0, Tp) if the rate of earnings is f(y)
per unit of time spent at y. A related interpretation is that

pUpf(x) = E
x

ˆ ∞

0

dt pe−pt f ◦Xt = E
x f ◦XTp ,2.37

and, equivalently, writing PTpf(x) for g ◦ Tp with g(t) = Ptf(x),

pUpf(x) = E PTp f(x).2.38

These show, in particular, that pUp is a Markov kernel on (E,E). Moreover,
noting that T = pTp is standard exponential, and since 1

p
T → 0 as p → ∞,

it follows from 2.38 that

lim
p→∞ pUp f(x) = f(x)2.39

provided that limt→0 Ptf(x) = f(x), for instance, if f is continuous in addi-
tion to being bounded.
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Resolvent equation

2.40 Theorem. For p > 0 and q > 0, we have UpUq = Uq Up, and

Up + p Up Uq = Uq + q Uq Up.2.41

Proof. Let f ∈ Eb. Let Tp and Tq be independent of each other and of
X , both exponential variables, with respective parameters p and q. Since
PsPt = PtPs, it follows from 2.38 that

pq UpUqf(x) = E PTp PTq f(x) = E PTqPTp f(x) = qp UqUpf(x),

that is, Up Uq = Uq Up. To show the resolvent equation 2.41, we start with
the ordinary Markov property:

E
x

ˆ s+t

0

du f ◦Xu = E
x

ˆ s

0

du f ◦Xu + E
x

ˆ t

0

du f ◦Xs+u

= E
x

ˆ s

0

du f ◦Xu +
ˆ
E

Ps(x, dy) E
y

ˆ t

0

du f ◦Xu.

Since Tp and Tq are independent of X , we may replace s with Tp, and t with
Tq. Then, using the interpretations 2.36 and 2.38, we get

E
x

ˆ Tp+Tq

0

du f ◦Xu = Upf(x) + p UpUqf(x).

This proves 2.41 since Tp + Tq = Tq + Tp. �

Killing the diffusion

This is to describe an operation that yields an absorbing Markov process
that coincides with X over an initial interval of time. Here X is the diffusion
(described by Theorem 2.5 and examined above) with state space E = R

d.
Let k be a positive Borel function on E. Let T be independent of the

process X and have the standard exponential distribution (with mean 1).
Define, for t in R+ and ω in Ω,

X̂t(ω) =
{
Xt(ω) if T (ω) >

´ t
0
ds k ◦Xs(ω),

∂ otherwise,
2.42

where ∂ is a point outside E. This defines a stochastic process X̂ with state
space Ē = E ∪ {∂}. We think of ∂ as the cemetery; it is a trap, and

ζ = inf
{
t ∈ R+ : X̂t = ∂

}
2.43

is the time X is killed. It follows from 2.42 and the assumptions on T that,
with exp−x = e−x and G0∞ = σ{Xs = s ∈ R+},

P
{
ζ > t |G0

∞
}

= exp−

ˆ t

0

ds k ◦Xs.2.44
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Thus, in the language of Chapter VI, the particle X is killed at the time ζ of
first arrival in a conditionally Poisson process with random intensity process
k ◦X . It is common to refer to X̂ as the process obtained from X by killing
X at the rate k(x) when at x.

The process X̂ is Markov with state space (Ē, Ē); its living space is (E,E).
We adopt the conventions 2.18 regarding the trap ∂; recall that every f in
E+ is extended onto Ē by setting f(∂) = 0. Thus, the transition function of
X̂ is determined by

P̂tf (x) = E
x f ◦ X̂t2.45

= E
x f ◦Xt 1{ζ>t} = E

x (f ◦Xt)
(

exp−

ˆ t

0

ds k ◦Xs

)
,

with f in E+ and t in R+ and x in E. The Markov property of X̂ implies that
(P̂t) is a transition semigroup. Each P̂t is a sub-Markov kernel on (E,E); the
defect 1 − P̂t(x, E) being P

x{ζ ≤ t}. The following relates (P̂t) to (Pt).

2.46 Proposition. Let t ∈ R+, x ∈ E, f ∈ E+. Then,

Ptf(x) = P̂tf(x) +
ˆ t

0

ds

ˆ
E

P̂s (x, dy) k(y) Pt−sf(y).2.47

Proof. We condition on whether killing occurs before or after time t, and
we use the Markov property of X :

Ptf(x) = E
x f ◦Xt 1{ζ>t} + E

x f ◦Xt 1{ζ≤t}

= E
x f ◦ X̂t +

ˆ
[0,t]×E

P
x {ζ ∈ ds,Xζ ∈ dy}Pt−s f(y).

This yields the claim via 2.45 and the observation that

P
x {ζ ∈ ds, Xζ ∈ dy} = ds P̂s(x, dy) k(y). �

Let (Ûp) denote the resolvent of the semigroup (P̂t), and recall the resol-
vent (Up) of (Pt). Taking Laplace transforms on both sides of 2.47 we get

Upf(x) = Ûpf(x) +
ˆ
E

Ûp(x, dy) k(y) Upf(x).2.48

We use this to obtain the generator Ĝ corresponding to (P̂t) from the gen-
erator G of (Pt); see 2.21 and 2.28; in particular, Ĝ is defined by 2.28 from
(P̂t).

Let f ∈ C2
K . Recall Theorem 2.35 to the effect that f = Up(p−G)f . Thus,

in view of 2.48,

f = Ûp(p−G) f + Ûp(kf) = Ûp(p− Ĝ)f
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where

Ĝf(x) = Gf(x) − k(x)f(x), f ∈ C2
K , x ∈ E.2.49

In words, every f in C2
K is in the domain of Ĝ, and Ĝ is related to G and

k through 2.49. Considering the relationship 2.28 for Ĝ and (P̂t), and con-
sidering the formula 2.45 for P̂t, we obtain the following. This is known as
Feynman-Kac formula.

2.50 Proposition. Let f ∈ C2
K and put

u(t, x) = E
x (f ◦Xt)

(
exp−

ˆ t

0

ds k ◦Xs

)
, t ∈ R+, x ∈ E.

Then, u satisfies the partial differential equation

∂

∂t
u = Gu− ku, u (0, ·) = f.

Proof of existence and uniqueness

We start the proof of Theorem 2.13 with a lemma on some approxima-
tions. We omit time subscripts that are variables of integration. Condition
2.4 is in force throughout.

2.51 Lemma. Let Y and Z be continuous processes with state space E =
R
d, put

At =
ˆ t

0

(u0 ◦ Y − u0 ◦ Z) ds, Mt =
m∑

n=1

ˆ t

0

(un ◦ Y − un ◦ Z) dWn.

Then,

E sup
s≤t

|As +Ms|2 ≤ (2t+ 8m) c2
ˆ t

0

E |Y − Z|2 ds.

Proof. By ordinary considerations, using the Lipschitz condition 2.4,

E |At|2 ≤ t

ˆ t

0

|u0 ◦ Y − u0 ◦ Z|2 ds ≤ tc2
ˆ t

0

E |Y − Z|2 ds.

Applying the rule 7.6 to each component of the d-dimensional martingale M ,
recalling that the W n are independent, we get

E |Mt|2 =
m∑

n=1

ˆ t

0

|un ◦ Y − un ◦ Z|2 ds ≤ mc2
ˆ t

0

E |Y − Z|2 ds,

where the last step used the Lipschitz condition. From these, we obtain

E sup
s≤t

|As|2 ≤ tc2
ˆ t

0

E |Y − Z|2 ds,

E sup
s≤t

|Ms|2 ≤ 4 E |Mt|2 ≤ 4 mc2
ˆ t

0

E |Y − Z|2 ds,
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where we used the Doob-Kolmogorov inequality in the last line. These two
last expressions yield the lemma. �

2.52 Proof of Theorem 2.13. Consider the equation 2.5 with X0 = x for some
fixed x in E. We define a sequence of continuous processes X(k) by setting
X

(0)
t = x for all t, and by letting

X
(k+1)
t = x+

ˆ t

0

u0 ◦X (k)
s ds+

m∑

n=1

ˆ t

0

un ◦X (k)
s dWn

s2.53

for k ≥ 0. Then, X(k+1) − X(k) = A + M , where A and M are as in the
preceding lemma with Y = X(k) and Z = X(k−1). Fix τ in R+ and put
α = (2τ + 8m)c2. It follows from the lemma that

E sup
s≤t

∣∣∣X(k+1)
s −X(k)

s

∣∣∣
2

≤ α

ˆ t

0

E

∣∣∣X(k)
s −X(k−1)

s

∣∣∣
2

ds2.54

for every t ≤ τ and k ≥ 1. Whereas, by the lemma again, this time with
Y = X(1) and Z = X(0) = x,

E

∣∣∣X(1)
t −X

(0)
t

∣∣∣
2

= E

∣∣∣∣∣u0(x)t +
m∑

n=1

un(x)Wn
t

∣∣∣∣∣

2

2.55

= |u0(x)|2 t2 +
m∑

n=1

|un(x)|2 t ≤ β

where β = (τ2+mτ) c2(1 + |x|)2 in view of Condition 2.4.
We put the bound 2.55 into 2.54 with k = 1, put the resulting inequality

back into 2.54 with k = 2, and continue recursively. We get

E sup
s≤τ

∣∣∣X(k+1)
s −X(k)

s

∣∣∣
2

≤ β αkτk/k!,

which, via Markov’s inequality, yields

P

{
sup
s≤τ

∣∣∣X(k+1)
s −X(k)

s

∣∣∣
2

>
1
2k

}
≤ β (4ατ)k/k!.2.56

The right side is summable over k. By the Borel–Cantelli lemma, then,
there is an almost sure event Ωτ such that, for every ω in Ωτ , the sequence(
X

(k)
t (ω)

)

k∈N

is convergent in E = R
d uniformly for t in [0, τ ]. We define

Xt(ω) to be the limit for ω in Ωτ and put Xt(ω) = x for all other ω.
It follows from the uniformity of convergence and the continuity of X(k)

that X is continuous on [0, τ ]. It follows from 2.53 that X satisfies the equa-
tion 2.5 for t ≤ τ . And, τ is arbitrary.
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There remains to show the uniqueness. Let X and X̂ be solutions to 2.5
with X0 = X̂0 = x. Then, X − X̂ = A +M in the notation of Lemma 2.51
with Y = X and Z = X̂. Thus, for fixed τ in R+, we have

E sup
s≤t

∣∣∣Xs − X̂s

∣∣∣
2

≤ (2τ + 8m) c2
ˆ t

0

E

∣∣∣Xs − X̂s

∣∣∣
2

ds

for all t ≤ τ . It now follows from Gronwall’s inequality (see Exercise 2.70)
that the left side vanishes. Thus, almost surely, Xt = X̂t for all t ≤ τ ; and τ
is arbitrary. �

Dependence on the initial position

Let Xt(ω, x) denote the position Xt(ω) when X0 = x. The next proposi-
tion shows that the dependence of Xt on x is continuous in the L2-space of
(Ω,H,P) and, hence, in probability.

2.57 Proposition. For each t in R+,

lim
x→y

E |Xt(x) −Xt(y)|2 = 0.

Proof. Fix x and y in E. Note that Xt(x) − Xt(y) = x − y + At + Mt

in the notation of Lemma 2.51 with Yt = Xt(x) and Zt = Xt(y). Thus with
fixed τ <∞ and α = (2τ + 8m)c2, we have

E |Xt(x) −Xt(y)|2 ≤ 2 |x− y|2 + 2α
ˆ t

0

E |Xs(x) −Xs(y)|2 ds

for all t ≤ τ . Via Gronwall’s inequality (see 2.70), this implies that

E |Xt(x) −Xt(y)|2 ≤ 2 |x− y|2 e2αt, 0 ≤ t ≤ τ.

The claim is immediate since τ is arbitrary. �

The preceding proposition implies that Xt(x) → Xt(y) in probability as
x→ y in E = R

d. Thus, for f : E �→ R bounded and continuous, as x→ y,

Ptf(x) = E f ◦Xt(x) → E f ◦Xt(y) = Ptf(y)2.58

as in Theorem III.1.6. In other words, if f is bounded continuous, then so is
Ptf for each t. This is called the Feller property for (Pt); it will show that
Itô diffusions form a subset of Hunt processes to be introduced in Section 5.

Exercises and complements

2.59 Differential operator. Specify the operator G defined by 2.21 for

a) the geometric Brownian motion of Example 2.9,
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b) Ornstein-Uhlenbeck process of 2.10,
c) Brownian motion on the unit circle, Example 2.11.

2.60 Ornstein-Uhlenbeck model. Let V be the Ornstein–Uhlenbeck velocity
process for the physical Brownian motion on R; it satisfies

dV t = −cV t dt+ b dW t,

where c > 0 and b > 0 are constants, and W is Wiener. Then, the particle
position process X satisfies dXt = Vt dt. Write the equation of motion for
the R

2-valued motion (Vt, Xt). What is the corresponding generator G on
C2
K(R2 �→ R)? show that V and X are Gaussian processes assuming that

V0 = v and X0 = x are fixed.
Hint: Write the solution for V , and use integration by parts to express V as
an ordinary integral of W .

2.61 Graphs. Let X be an Itô diffusion satisfying 2.5. Put Yt = (t,Xt). Write
Itô’s formula for f ◦ Yt with f in C2

K(R × R
d �→ R). Show that Y is an Itô

diffusion that satisfies

dY t =
m∑

n=0

vn ◦ Yt d Znt ,

where Zot = t and Znt = Wn
t for n ≥ 1 and the vector fields v0, . . . , vm on

R
d+1 chosen appropriately. Specify the vn.

2.62 Applications to Brownian motion. Here and in Exercises 2.63–2.66 be-
low, X is a standard Brownian motion in E = R

d as in Example 2.22. For
Borel subsets D of E define τD to be the time of exit from D, that is,

τD = inf {t ∈ R+ : Xt �∈ D} .
Recall that, when d = 1 and D = (−r, r), we have E

0τD = r2. Show that, in
general, E

xτD <∞ for x in D, for D bounded.
Hint: If D is bounded, it is contained in an open ball of some radius r <
∞ centered at x, and that ball is contained in the cylinder C = (x1 − r,
x1 + r) × R

d−1 if x = (x1, . . . , xd). Then, τD ≤ τC , and E
xτC = r2.

2.63 Continuation. Let D be a ball of radius r centered at the origin. Show
that, for x in D,

E
x τD =

r2 − |x|2
d

Hint: Use Dynkin’s formula, Theorem 2.27, with f in C2
K chosen so that

f(x) = |x|2 for x in D.

2.64 Hitting of spheres. For r ≥ 0, let Tr be the time that Brownian motion
X hits the sphere of radius r centered at the origin of R

d. For 0 < q < |x| < r,
consider the probability

α = P
x {Tq < Tr} ,

that is, the probability that X exits D = {x ∈ E : q < |x| < r} by touching
the inner sphere.
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a) For d = 1, X is a Doob martingale on [0, τD]; use this to show that
α = (r − |x|)/(r − q).

b) Let d = 2. Show that α = (log r − log |x|)/(log r − log q).

Hint: Let f ∈ C2
K such that f(x) = log |x| for x in D. Use Dynkin’s formula

for such f and stopping time τD.

c) Let d = 3. Show that

α =
(
r2−d − |x|2−d

)/(
r2−d − q2−d

)
.

Hint: use Dynkin’s formula with f in C2
K such that f |x| = |x|2−d for x in D.

2.65 Recurrence properties. For d = 1, the Brownian motion X will hit every
point y repeatedly without end; see Chapter VIII.

a) Let d = 2. Let r → ∞ in 2.64b to show that

P
x {Tq <∞} = 1, 0 < q < |x| ,

however small the disk of radius q is. Show, however, that

P
x {T0 <∞} = 0, |x| > 0.

b) Let d = 3 and 0 < q < |x|. Show that

P
x {Tq <∞} = (q/|x|)d−2 .

In summary, standard Brownian motion is “point recurrent” for d = 1,
fails to be point recurrent but is “disk recurrent” for d = 2, and is “transient”
for d ≥ 3.

2.66 Bessel processes with index d ≥ 2. Let X = X0 + W , a standard
Brownian motion in R

d. Define R = |X |. Started at x �= 0, the process X
never visits the point 0; see 2.65a. Thus, the true state space for R is (0,∞).
Since d ≥ 2, the function f : x �→ |x| is twice differentiable everywhere except
the origin.

a) Use Itô’s formula on R = f ◦X to show that

dRt =
d− 1
2 Rt

dt+
d∑

i=1

1
Rt
X i
t dW

i
t =

d− 1
2Rt

dt+ dŴt

with an obvious definition for Ŵ .
b) Show that Ŵ is a continuous local martingale with Ŵ0 = 0. Show,

using 7.24, that Ŵ is a Wiener process (one-dimensional).

2.67 Bessel with index 2. Let d = 2 in the preceding exercise, and let R0 =
r > 0 be fixed. Define

Yt = log Rt, t ∈ R+.
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a) Show that Y is a continuous local martingale with Y0 = log r.
b) Let τ be the time of exit for R from the interval (p, q), where 0 <

p < r < q. Show that τ < ∞ almost surely and that Y is bounded on [0, τ ].
Show that, as in 2.64b,

P {Rτ = p} =
log q − log r

log q − log p
.

2.68 Continuation. a) Show that C = 〈Y, Y 〉 is given by

Ct =
ˆ t

0

ds e−2Ys .

Use Theorem 7.27 to conclude that

Yt = log r + W̃Ct

for some Wiener process W̃ .

b) Solve the last equation for Y by expressing Ct in terms of W̃ .
c) Conclude that the Bessel process R is a time-changed geometric

Brownian motion: R = ZC , where

Zs = reW̃s , Su =
ˆ u

0

ds (Zs)2, Ct = inf {u > t : Su > t} .

2.69 Bessel with index d ≥ 3 . Take d = 3 in 2.66 and fix R0 = r > 0.

a) Show that Y = R2−d is a local martingale.
b) Use Theorem 7.27 to show that Y = Y0 + W̃C , where W̃ is a Wiener

process and C = 〈Y, Y 〉. Thus,

Yt = ZCt ,

where Zu = r2−d + W̃u, u ≥ 0, a Brownian motion.
c) Show that C is the functional inverse of S, where

Su = (d− 2)−2

ˆ u

0

(Zs)
(2−2d)/(d−2)

ds.

Conclude that R is a deterministic function of a random time-changed
Brownian motion:

Rt = (ZCt)
−1/(d−2) .

2.70 Gronwall’s inequality. Let f and g be positive continuous functions on
R+. Suppose that, for some c in R,

f(t) ≤ g(t) + c

ˆ t

0

f(s)ds.
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show that, then,

f(t) ≤ g(t) + c

ˆ t

0

ec(t−s) g(s) ds.

Hint: First show that

e−ct
ˆ t

0

f(s) ds ≤
ˆ t

0

e−cs g(s) ds.

3 Jump-Diffusions

Jump-diffusions are processes that are Itô diffusions between the jumps.
The jump times form a point process, and the diffusions and jumps interact.
The treatment uses notions from Itô diffusions and Poisson random measures.

The motion of interest is a right-continuous, piecewise continuous process
with state space E = R

d and the attendant σ-algebra E = B(Rd). Through-
out, (Ω,H,P) is a complete probability space, and F is an augmented right-
continuous filtration. Adapted to F, and independent of each other, W is an
m-dimensional Wiener process and M is a standard Poisson random measure
on R+ × R+ (with mean Leb× Leb). In addition, X0 is an E-valued random
variable in F0; it will often be treated as a deterministic parameter. As before,
(x,H) �→ P

x(H) is a regular version of the conditional probabilities 2.3.

The motion

The deterministic data are some vector fields u0, . . . , um on E and a Borel
function j : E × R+ �→ E. The vector fields are as in the preceding section;
the function j rules the jump sizes. The motion X of interest satisfies the
following stochastic integral equation:

Xt = X0+
ˆ t

0

a ◦Xs ds+
ˆ t

0

b ◦Xs dWs+
ˆ

[0,t]×R+

M (ds, dv) j(Xs−, v).

3.1
Here, a = u0 and b is the d ×m matrix whose columns are u1, . . . , um; see
2.5–2.8 for various equivalent ways of expressing the first two integrals. Unless
stated otherwise, the next condition is in force throughout.

3.2 Condition. a) Lipschitz condition 2.4 holds. b) There is a constant c
in R+ such that j(x, v) = 0 for v > c for all x in E.

This condition is sufficient to ensure the existence and uniqueness of a
piecewise continuous solution to 3.1. The condition on j makes the last in-
tegral in 3.1 to be effectively over [0, t] × [0, c], which means that the jump
times of X form a subset of the arrival times in a Poisson process with rate c.
Between two successive jumps, the motion is an Itô diffusion satisfying

dX̄t = a ◦ X̄t dt+ b ◦ X̄t dW t.3.3
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In particular, the initial segment (before the first jump) of X coincides with
the Itô diffusion X̄ satisfying 3.3 with the initial condition X̄0 = X0.

Obviously, if j = 0, then X = X̄ ; this was the subject of the preceding
section. At the other extreme is the case u0 = · · · = um = 0, in which case X
is piecewise constant, that is, each path X(ω) is a step function; the reader
is invited to take this to be the case on a first reading; we shall treat this
special case toward the end of this section. In the middle, there is the case
where u1 = · · · = um = 0, in which case X is piecewise deterministic.

Construction of X

The next theorem describes X under the standing condition 3.2. The
proof is constructive and is helpful for visualizing the paths.

3.4 Theorem. The equation 3.1 has a pathwise unique solution X that
is piecewise continuous, right-continuous, and locally bounded.

Proof. For fixed x in E and s in R+, let (t, ω) �→ X̄s,t(ω, x) be the process
that is the solution X̄t to 3.3 with t ≥ s and X̄s = x. Under the Lipschitz
condition 2.4, Theorem 2.13 applies, and t �→ X̄s,t(ω, x) is pathwise unique
and continuous for almost every ω. Under condition 3.2b, the last integral
in 3.1 is over [0, t] × [0, c] effectively. Since M is standard Poisson, its atoms
over R+ × [0, c] can be labeled (Sn, Vn) so that, for almost every ω,

0 < S1(ω) < S2(ω) < · · · , lim Sn(ω) = +∞.3.5

By eliminating from Ω a negligible event, we assume that these properties
(on X̄ and M) hold for every ω.

Fix ω, put S0(ω) = 0, and suppose that Xt(ω) is specified for all t ≤ s,
where s = Sn(ω) for some n ≥ 0. We proceed to specify it for t in (s,u], where
we put u = Sn+1(ω). Since Mω has no atoms in (s, u)× [0, c], the equation 3.1
implies that

Xt(ω) = X̄s,t(ω,Xs(ω)), s ≤ t < u.

Since t �→ X̄s,t(ω, x) is continuous and bounded on the interval [s,u], we have

Xu−(ω) = lim
t↗u

Xt(ω) = X̄s,u(ω,Xs(ω)),

which point is in E. Now, 3.1 implies that

Xu(ω) = Xu−(ω) + j (Xu−(ω), Vn+1(ω)) .

This completes the specification of Xt(ω) for t ≤ Sn+1(ω), and therefore for
all t in R+, by recursion, in view of 3.5. The other claims of the theorem are
immediate from this construction. �

In the proceding proof, the times Sn are the arrival times of the Poisson
process t �→M([0, t]× [0, c]). The proof shows that the path X(ω) is contin-
uous except possibly at times Sn(ω). Generally, not every Sn(ω) is a jump
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time for X(ω). See Exercise 3.88 for an example where X has at most finitely
many jumps, and, in fact, there is a strictly positive probability that it has
no jumps.

Markov and strong Markov properties

The process X has both. The proofs follow the same lines as those for
diffusions: uniqueness of solutions to 3.1, and the Markov and strong Markov
properties for W and M .

3.8 Theorem. For each time t, the process X̂ = (Xt+u)u∈R+ is condi-
tionally independent of Ft given Xt; given that Xt = y, the conditional low
of X̂ is the same as the law of X under P

y.

Proof. Analogous to the proof of Theorem 2.16, we have

X̂u = X̂0 +
ˆ u

0

a ◦ X̂s ds+
ˆ u

0

b ◦ X̂s dŴs+
ˆ

[0,u]×R+

M̂ (ds, dv) j
(
X̂s−, v

)
,

where Ŵ = (Wt+u −Wt)u∈R+ and M̂ = {M(Bt) : B ∈ B(R+ × R+)} with
Bt = {(t+ u, z) : (u, z) ∈ B}. Note that Ŵ and M̂ are independent of Ft and
of each other, Ŵ is Wiener just as W , and M̂ is Poisson just as M. Finally, the
uniqueness shown in Theorem 3.4 implies that X̂ is obtained from (X̂0, Ŵ , M̂)
by the same mechanism as X is obtained from (X0,W,M). Hence, the
claim. �

The strong Markov property is shown next; the wording repeats Theorem
2.19; the conventions 2.18 are in force regarding the end of time.

3.9 Theorem. The process X is strong Markov: For every F-stopping
time T , the variable XT is FT -measurable, and X̂ = (XT+u)u∈R+ is con-
ditionally independent of FT given XT ; moreover, for y in E, on the event
{XT = y}, the conditional law of X̂ given XT is the same as the law of X
under P

y.

Proof. The measurability claimed for XT is via Theorem V.1.14 and the
right-continuity of X , and the adaptedness to F. On {T = +∞}, the claims
regarding the conditional law given FT are immediate from the conventions
2.18. On {T < ∞}, the claims are proved as in the preceding proof: replace
t with T , recall that Ŵ is again Wiener by the strong Markov property for
W (see Theorem VII.3.10), and use the next lemma.

3.10 Lemma. Let T be an F-stopping time. For ω in {T < ∞}, define
M̂(ω,B) = M(ω,BT (ω)), where Bt = (t, 0) + B, B ∈ B(R+ × R+). Then,
on {T < ∞}, the conditional law of M̂ given FT is the law of the standard
Poisson random measure M .
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Proof. Define h(v) = v−2 for v > 0. Note that the lebesgue integral of
h ∧ 1 over R+ is equal to 2, a finite number. It follows, since M is Poisson,
adapted to F, and with mean Leb × Leb on R+ × R+, that

Zt =
ˆ

[0,t]×(0,∞)

M (ds, dv) h(v)

defines an increasing pure-jump Lévy process adapted to F; in fact, Z is
stable with index 1/2. By Theorem VII.3.10, then, Z is strong Markov: on
the event {T < ∞}, the conditional law of Ẑ = (ZT+u − ZT )u∈R+ given FT
is the same as the law of Z.

Since h is a homeomorphism of (0,∞) onto (0,∞), the measure Mω

and the path Z(ω) determine each other for almost every ω. Similarly, on
{T < ∞}, the measure M̂ω and the path Ẑ(ω) determine each other. Obvi-
ously, M̂ bears the same relationship to Ẑ, as M does to Z. Thus, the claim
follows from the strong Markov property of Z. �

Lévy kernel for jumps

This is a transition kernel from (E,E) into (E,E). It gives the rates and
effects of jumps. It is defined by, for x in E and B in E,

L (x,B) = Leb {v ≥ 0 : j(x, v) �= 0, x+ j(x, v) ∈ B} .3.11

Note that L(x, {x}) = 0. In a sense to be made precise by the next theorem,
L(x,B) is the rate of jumps from x into B per unit of time spent at x. If X
were a Lévy process with a Lévy measure λ for its jumps, then j(x, v) would
be free of x, and L(x,B) would be equal to λ(B−x). Hence, the term “Lévy
kernel” for L.

Heuristically, then, the “rate” of jumps when at x is

k(x) = L(x,E) = Leb {v ≥ 0 : j(x, v) �= 0} , x ∈ E.3.12

Clearly, k is a positive Borel function on E. The general theory allows k(x) =
+∞ for some or for all x; Condition 3.2b implies that k is bounded by the
constant c of 3.2b, and then, L is a bounded kernel. The next theorem does
not assume 3.2b.

3.13 Theorem. Let f be a positive Borel function on E ×E. Let F be a
positive left-continuous process adapted to F. Then, for every x in E,

E
x
∑

s∈R+

Fs f ◦ (Xs−, Xs) 1{Xs− �=Xs}3.14

= E
x

ˆ
R+

ds Fs

ˆ
E

L(Xs, dy) f ◦ (Xs, y).
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3.15 Remarks. a) The proof below will show that this theorem holds
without condition 3.2; all that is needed is that X be right-continuous and
have left-limits in E, and that X satisfy the equation 3.1.

b) On the left side of 3.14, the sum is over the countably many times s
of jumps. On the right side, we may replace Xs by Xs− since the integration
over s will wash away the difference; the result with Xs− is closer to intuition.

c) Take F to be the indicator of [0, t] for some fixed t, and let f be
the indicator of a Borel rectangle A × B. The sum on the left side of 3.14
becomes the number Nt(A × B) of jumps, during [0, t], from somewhere in
A to somewhere in B. Thus,

E
xNt(A×B) = E

x

ˆ t

0

ds (1A ◦Xs−)L (Xs−, B) .3.16

This is the precise meaning of the heuristic phrase that L(y,B) is the
rate of jumps from y into B. The phrase is short for the statement that
s �→ (1A ◦Xs−)L(Xs−, B) is the random intensity for the point process
s �→ Ns(A×B) in the sense employed in Chapter IV, Section 6.

c) In particular, for the total number Nt(E×E) of jumps X makes during
[0, t], we see from 3.16 that

E
x Nt(E × E) = E

x

ˆ t

0

ds k ◦Xs− = E
x

ˆ t

0

ds k ◦Xs.3.17

Proof. Since X satisfies 3.1, the sum on the left side of 3.14 is equal to

ˆ
R+×R+

M(ds, dv) Fs f̂ (Xs−, Xs− + j(Xs−, v))

where f̂(y, z) = f(y, z) for y �= z, and f̂(y, z) = 0 for y = z. Here, the
integrand is a process (ω, s, v) �→ G(ω, s, v) that satisfies the predictability
conditions of Theorem VI.6.2 on Poisson integrals: F is left-continuous, s �→
Xs− is left-continuous, both are adapted to F, and f̂ and j are Borel. It follows
from that theorem that the left side of 3.14 is equal to

E
x

ˆ
R+×R+

ds dv Fs f̂ (Xs−, Xs− + j (Xs−, v))

= E
x

ˆ
R+

ds Fs

ˆ
E

L (Xs−, dy) f(Xs−, y),

where we used the definition 3.11 of L to evaluate the integral over v. The
last expression is equal to the right side of 3.14 since Xs− differs from Xs for
only countably many s. �

Under Condition 3.2b, the kernel L is bounded, as k(x) = L(x, E) ≤ c.
We repeat this, and add a consequence:
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3.18 Corollary. The kernel L is bounded. For every bounded Borel
function f on E × E,

mt =
∑

s≤t
f ◦ (Xs−, Xs) 1{Xs− �=Xs} −

ˆ t

0

ds

ˆ
E

L (Xs, dy) f(Xs, y), t ≥ 0,

is an F-martingale with m0 = 0.

Proof. Fix 0 ≤ t < u, fix f bounded and positive. For an event H in Ft,
put Fs = 1H 1(t,u](s). Then, F is left-continuous and adapted, and it follows
from the preceding theorem that

E
x 1H

∑

t<s≤u
f (Xs−, Xs) 1{Xs− �=Xs} = E

x1H
ˆ u

t

ds

ˆ
E

L(Xs, dy) f(Xs, y).

Since f is bounded, and L is a bounded kernel, the right side is real-valued;
passing it to the left, we see that

E
x 1H · (mu −mt) = 0.

That is, (mt) is a martingale when f is bounded positive Borel. For f bounded
Borel, the same conclusion holds obviously. �

Generator

Recall the Itô diffusion X̄, which is the solution to 3.3 with X̄0 = X0. Let
Ḡ be its generator, that is, Ḡf(x) is given by the right side of 2.21 for f in
C2
K = C2

K(E �→ R). We introduce (condition 3.2 is in force)

Gf(x) = Ḡf(x) +
ˆ
E

L (x, dy) [f(y) − f(x)] , f ∈ C2
K .3.19

This integro-differential operator is the generator for X :

3.20 Theorem. For every f in C2
K,

Mt = f ◦Xt − f ◦X0 −
ˆ t

0

ds Gf ◦Xs, t ∈ R+,

is an F-martingale.

Proof. a) Fix f in C2
K . Put T0 = 0, and let T1, T 2, . . . be the successive

jump times of X , defined recursively via Tn+1 = inf{t > Tn : Xt− �= Xt}
with n ≥ 0. On the event {Tn ≤ t < Tn+1} consider the telescoping sum

f ◦Xt − f ◦X0 =
n∑

i=1

(
f ◦XTi − f ◦XT

i−
)

3.21

+
n∑

i=1

(
f ◦XTi− − f ◦XTi−1

)
+ f ◦Xt − f ◦XTn

= A+B + C.
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b) The term A is a sum over the jump times during [0,t]. By
Corollary 3.18,

A =
∑

s≤t
(f ◦Xs − f ◦Xs−) = mt+

ˆ t

0

ds

ˆ
E

L (Xs, dy) [f(y) − f(Xs)] .3.22

c) We now prepare to evaluate B + C. Let S and T be stopping times,
chosen so that, on the event {T < ∞}, we have S < T and X continuous
over the interval (S, T). Thus, on {T < ∞}, the process X coincides over
(S, T) with some diffusion satisfying 3.3; and, since that diffusion has the
generator Ḡ,

f ◦XT− − f ◦XS = m̄T − m̄S +
ˆ T

S

ds Ḡf ◦Xs,3.23

by Theorem 2.23, with m̄ as the martingale on the right side of 2.24.
d) Apply 3.23 repeatedly, with S = Ti−1 and T = Ti for i = 1, . . . , n,

and with S = Tn and T = t. We see that, on the event {Tn ≤ t < Tn+1}

B + C = m̄t +
ˆ t

0

ds Ḡf ◦Xs.3.24

Finally, put 3.22 and 3.24 into 3.21, recall the definition 3.19 of G, and put
M = m+ m̄. The result is the claim, since the union of the events {Tn ≤ t <
Tn+1} is the event {lim Tn = +∞}, and the latter event is almost sure in
view of Condition 3.2b. �

Transition function, forward equation

The transition function (Pt) for X is defined, as usual, by

Ptf(x) = E
xf ◦Xt, x ∈ E, f ∈ E+.3.25

It follows from the preceding theorem that, for f in C2
K ,

Ptf(x) = f(x) + E
x

ˆ t

0

ds Gf ◦Xs3.26

= f(x) +
ˆ t

0

ds PsGf(x),

where the interchange of expectation and integration is justified by noting
that Gf is bounded: For f in C2

K , Corollary 2.25 shows that Ḡf is bounded
continuous, and L is a bounded kernel under the standing condition 3.2.

The equation 3.26 is the integrated form of Kolmogorov’s forward equa-
tion; see Corollary 2.26 and Theorem 2.30 for the diffusion case. Indeed, a
formal differentiation of 3.26 yields the counterpart of the differential equa-
tions 2.31. The differentiability here, however, requires some continuity for the
jump function j (in addition to Lipschitz continuity for the velocity fields un).
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3.27 Theorem. Suppose that x �→ j(x, v) is continuous for every v in
R+. Then, for f ∈ C2

K , Gf is bounded and continuous, and

d

dt
Ptf = PtGf.3.28

Proof. Fix f in C2
K . As mentioned in Corollary 2.25, then, Ḡf ∈ CK

and thus bounded continuous. On the other hand, by the definition of L, and
by 3.2b, ˆ

E

L (x, dy) [f(y) − f(x)] =
ˆ c

0

dv [f(x+ j(x, v)) − f(x)].3.29

Since f is bounded continuous, and x �→ j(x, v) is continuous by assumption,
the integral on the right side yields a bounded continuous function (via the
bounded convergence theorem). Adding 3.29 to Ḡf , we see that Gf is bounded
continuous.

Consequently, by the right-continuity of X ,

lim
s→0

Pt+sGf(x) = lim
s→0

E
x Gf ◦Xt+s = E

x Gf ◦Xt = PtGf(x).

Hence, with the help of 3.26, we get

lim
u→0

1
u

[Pt+uf(x) − Ptf(x)] = lim
u→0

1
u

ˆ u

0

ds Pt+sGf(x) = PtGf(x). �

The first jump time

We return to the master equation 3.1. Define R to be the time of first
jump:

R = inf {t > 0 : Xt− �= Xt} .3.30

We show next that R is the lifetime of the diffusion X̄ killed at the rate k(x)
when at x; recall X̄ of 3.3 with X̄0 = X0, and recall the notation exp− x
for e−x.

3.31 Lemma. P{R > t|X̄} = exp−
´ t
0
ds k ◦ X̄s, t ∈ R+.

Proof. Pick an outcome ω. Note that R(ω) > t if and only if Xs(ω) =
X̄s(ω) for all s ≤ t, which is in turn equivalent to having

M (ω,Dω) = 0 for Dω =
{
(s, v) ∈ R+ × R+ : s ≤ t, j

(
X̄s−(ω), v

) �= 0
}
.

The diffusion X̄ is determined by W , and M is independent of W . Thus,
since M is Poisson with mean μ = Leb × Leb,

P
{
R > t|X̄} = P

{
M(D) = 0|X̄} = e−μ(D).

Finally, it follows from the definition 3.12 of k that

μ(Dω) =
ˆ t

0

ds k ◦ X̄s(ω). �
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3.32 Remark. The preceding lemma is without conditions on the jump
function. As a result, all values in [0,∞] are possible for R. When Condition
3.2b is in force, k is bounded and, thus, R > 0 almost surely. But R can take
+∞ as a value, that is, it is possible that there are no jumps; see Exercise 3.88
for an example.

3.33 Proposition. Let x ∈ E, f ∈ E+, t ∈ R+. Then,

E
xf ◦Xt 1{R>t} = E

x f ◦ X̄t exp−

ˆ t

0

ds k ◦ X̄s,

where X̄ is the diffusion that is the solution to 3.3 with X̄0 = X0 = x.

Proof. On the left side, we may replace Xt with X̄t, since they are the
same on the event {R > t}. Now, conditioning on X̄ and applying the last
lemma yield the claim. �

The preceding proposition establishes a connection to the Feynman-Kac
formula discussed earlier. Define

P̂tf(x) = E
x f ◦ X̄t exp−

ˆ t

0

ds k ◦ X̄s, x ∈ E, f ∈ E+, t ∈ R+,3.34

which is the right side of the formula in the preceding proposition. Then, (P̂t)
is the sub-Markov transition semigroup of the Markov process X̂ obtained
from the diffusion X̄ by killing the latter at the rate k(x) when at x. See 2.42–
2.50 for these matters, the semigroup, computational results for it, and the
associated resolvant and generator. At this point, we regard (P̂t) as known.

Regeneration at R

Heuristically, R is the killing time of X̄. On the event that the killing
succeeds, it occurs at the location X̄R = XR−, and a new diffusion is born
at the point XR. We think of R as the time of first regeneration for X .

3.35 Theorem. For every x in E,

P
x{R ∈ ds, XR− ∈ dy, XR ∈ dz} = ds P̂s (x, dy)L(y, dz), s ∈ R+, y ∈ E, z ∈E.

Proof. The claim is equivalent to the more precise claim that

E
x g ◦R f ◦ (XR−, XR) =

ˆ
R+

ds g(s)
ˆ
E

P̂s (x, dy)
ˆ
E

L(y, dz) f(y, z)3.36

for f positive Borel on E × E and g positive continuous and with compact
support in R+. Fix f and g such. Let Fs = g(s) 1{s≤R} in Theorem 3.13.
On the left side of 3.14, the sum consists of a single term, namely, g ◦ R
f ◦(XR−, XR); this is because the only jump time s in [0, R(ω)] is at s = R(ω)
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if R(ω) <∞, and g ◦ R(ω) = 0 if R(ω) = +∞ since g has compact support.
Hence, 3.14 becomes

E
x g◦R f ◦ (XR−, XR) = E

x

ˆ
R+

ds g(s) 1{s≤R}

ˆ
E

L (Xs, dz) f(Xs, z).

On the right side, we may replace {s ≤ R} with {R > s} without altering
the integral. The result is the right side of 3.36 in view of Proposition 3.33
and the definition 3.34. �

3.37 Remark. With k as defined by 3.12, we let K be a Markov kernel
on (E,E) that satisfies

L(x,B) = k(x) K (x,B) , x ∈ E, B ∈ E.

If k(x) > 0, then this defines K(x, ·) uniquely; when k(x) = 0, it matters
little how K(x, ·) is defined, we choose K(x, {x}) = 1 in that case, note that
K(x, {x}) = 0 if k(x) > 0. Replacing L(y, dz) with k(y) K(y, dz) yields the
following heuristic explanation of the preceding theorem: Suppose that the
particle is started at x. It survives until t and moves as a diffusion to arrive
at dy; this has probability P̂t(x, dy). Then, it gets killed during dt; this has
probability k(y) dt. Finally, it is reborn in dz; this has probability K(y, dz).

The process at its jumps

This is to describe X at its successive jumps. We do it under the standing
condition 3.2, although much of this requires less.

Put T0 = 0 and let T1, T 2, . . . be the successive jump times, that is,

Tn+1 = inf {t > Tn : Xt− �= Xt} , n ∈ N.3.38

we have T1 = R as in 3.30. Condition 3.2b implies that R > 0 almost surely,
which implies, through the strong Markov property at Tn, that Tn+1 > Tn
almost surely on {Tn < ∞}. Moreover, as the construction in Theorem 3.4
makes clear,

lim Tn = +∞ almost surely;3.39

in other words, for almost every ω, for every t in R+ there is n (depending
on t and ω) such that Tn(ω) ≤ t < Tn+1(ω); it is possible that Tn+1(ω) = ∞.
Finally, with the conventions in 2.18, we define

Yn = XTn , n ∈ N.3.40

The strong Markov property at the stopping times Tn implies that
(Y, T ) = (Yn, Tn)n∈N is a Markov chain with state space Ē × R̄+. It has a
special structure: For A in E and B in BR+,

P {Yn+1 ∈ A, Tn+1 − Tn ∈ B |FTn} = Q (Yn, A×B) ,3.41
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that is, given (Yn), the conditional law of (Tn) is that of an increasing process
with independent increments. The process (Y, T) is called a Markov renewal
chain, and the times Tn are said to be regeneration times for X .

The kernel Q is specified by Theorem 3.35: take n = 0 in 3.41 and recall
that Y0 = X0 and T1 − T0 = R. So,

Q(x,A×B) =
ˆ
B

ds

ˆ
E

P̂s(x, dy)L (y, A) =
ˆ
B

ds P̂sL (x,A) .3.42

It specifies the finite dimensional distributions of (Y, T) via 3.41. In partic-
ular, we have the iterative formula

Qn(x,A×B) = P
x {Yn ∈ A, Tn ∈ B}3.43

=
ˆ
E×R+

Q (x, dy, ds)Qn−1 (y,A× (B − s))

for n ≥ 1, and obviously, Q1 = Q and Q0(x,A×B) = I(x,A)δ0(B). Compu-
tationally, in terms of the Laplace transforms

Qnp (x,A) =
ˆ

R+

Qn (x,A× ds) e−ps = E
x e−pTn1A ◦ Yn,3.44

we see from 3.43 and 3.42 that Q1
p = Qp, and Q◦

p = I, and

Qp = ÛpL, Qnp = (Qp)n, n ∈ N, p ∈ R+,3.45

where (Ûp) is the resolvent of the semigroup (P̂t).

Transition function

This is to give an explicit formula for the transition function (Pt) in terms
of the known objects P̂t, L, and Qn. The result is made possible by 3.39, that
is, by the fact (guaranteed by 3.2b) that there can be at most finitely many
jumps during [0, t].

3.46 Theorem. Let x ∈ E, f ∈ E+, t ∈ R+. Then,

Ptf(x) =
∞∑

n=0

ˆ
E×[0,t]

Qn(x, dy, ds) P̂t−sf(y).

Proof. By the strong Markov property at Tn,

E
x f ◦Xt 1{Tn≤t<Tn+1}

=
ˆ
E×[0,t]

P
x {Yn ∈ dy, Tn ∈ ds}E

yf ◦Xt−s 1{R>t−s}

=
ˆ
E×[0,t]

Qn(x, dy, ds) P̂t−sf(y),
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where we used the definition of Qn in 3.43, and Proposition 3.33 for the
meaning of P̂t. Summing both sides over n in N yields the claimed formula
since lim Tn = ∞; see 3.39 et seq. �

The formula in the preceding theorem gives the unique solution of the
integro-differential equation 3.28 for (Pt). The uniqueness follows from 3.39.
By avoiding generators, we have also avoided the continuity condition on j
used in Theorem 3.27.

Nevertheless, it may be useful to characterize (Pt) as the unique solution
to something resembling the backward equations.

3.47 Theorem. Let x ∈ E, f ∈ E+, t ∈ R+. Then,

Ptf(x) = P̂tf(x) +
ˆ t

0

ds P̂sLPt−sf(x).

Proof. We use the so-called renewal argument at the time R of first jump:

Ptf(x) = E
xf ◦Xt · 1{R>t} + E

xf ◦Xt 1{R≤t}

= P̂tf(x) +
ˆ

[0,t]×E
P
x {R ∈ ds,XR ∈ dz}E

z f ◦Xt−s

= P̂tf(x) +
ˆ t

0

ds

ˆ
E

P̂s(x, dy)
ˆ
E

L(y, dz)Pt−sf(z)

where we used the strong Markov property at R followed by the distribution
provided by Theorem 3.35. �

Resolvent

Let (Up) be the resolvent of (Pt), defined by 2.34, but for the present
X and (Pt). Taking Laplace transforms on both sides of 3.26, assuming the
same conditions hold, we get

p Upf = f + Up Gf, t ∈ C2
K .3.48

with the generator as defined by 3.19. It is usual to write this in the form
Up(p−G)f = f , thus emphasizing that Up is the inverse of p−G.

We can avoid differentials by using the probabilistic derivations for (Pt).
With Qp = ÛpL as in 3.45, we see from Theorems 3.46 and 3.47 that

Upf =
∞∑

n=0

(Qp)
n
Ûpf, f ∈ E+,3.49

Upf = Ûp f +Qp Upf, f ∈ E+.3.50

Indeed, 3.49 is the unique solution to the integral equation 3.50.
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3.51 Proposition. Let p > 0 and f ∈ Eb+. Then, g = Upf given by 3.49
is the unique bounded solution to

g = Ûpf +Qpg.

Proof. Replace g on the right side with Ûpf +Qpg repeatedly. With the
notation of 3.45, we get

g = Ûpf +Qp g

= Ûpf +QpÛpf +Q2
p g = · · · =

(
I +Qp + · · · +Qnp

)
Ûpf +Qn+1

p g.

In the last member, the first term is increasing to Upf given by 3.49. Thus,
there remains to show that

lim
n→∞Qnp g = 0.

for every g bounded positive, say, bounded by b. But, then,

Qnp g(x) ≤ b Qnp (x,E) = b E
x e−pTn → 0

as n→ ∞, because p > 0 and Tn → ∞ almost surely. �

Simple step processes

These are pure-jump processes obtained by setting the vector fields
u0, . . . , um equal to zero, and keeping the condition 3.2b on the jump func-
tion j. Then, the Wiener processes Wn have no rôle to play, and the diffusion
X̄ satisfying 3.3 becomes motionless: X̄t = X0 for all t. Thus, the process X
is a right-continuous step process with a bounded Lévy kernel. In the next
subsection, we shall discuss dropping the boundedness condition on the Lévy
kernel and thus weakening the condition 3.2b.

The Markov and strong Markov properties remain unchanged.
Theorem 3.13 on the Lévy kernel L stays the same, as is Corollary 3.18.
The generator G is simpler: since X̄ is motionless, Ḡ disappears;

Gf(x) =
ˆ
E

L (x, dy) [f(y) − f(x)] , f ∈ Eb.3.52

Theorem 3.20 becomes stronger; the claim holds for every f in Eb. Similarly,
3.26 holds for every f in Eb. Theorem 3.27 is stronger:

d

dt
Ptf = PtGf, f ∈ Eb,3.53

without the continuity assumption on j. That assumption was used in the
proof to show that s �→ Gf ◦ Xs is bounded and right-continuous; we have
boundedness via 3.52 and the boundedness of f and L; and s �→ Gf ◦ Xs
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is right-continuous because s �→ Xs is a right-continuous step function (and
thus s �→ g ◦Xs is a right-continuous step function for arbitrary g).

Since X̄ is motionless, killing it becomes simpler. For the time R of first
jump, since Xt = X̄t = X0 on {R > t}, Lemma 3.31 and 3.33 and 3.34
become

P
x {R > t} = e−k(x)t, P̂tf(x) = E

xf ◦Xt 1{R>t} = e−k(x)t f(x),

and Theorem 3.35 becomes elementary (we drop XR− = X0 and use the
notation of Remark 3.37)

P
x {R ∈ ds,XR ∈ dy} = (ds k(x) e−k(x)s)K(x, dy).

3.54 Heuristics. Suppose that the initial state is x. The particle stays there
an exponential amount of time with parameter k(x), and, independent of
that amount, jumps to a new point y with probability K(x, dy); then, it has
a sojourn at y of exponential duration with parameter k(y), followed by a
jump to a new point chosen in accord with the probability law K(y, ·); and so
on. It is possible that, somewhere along its path, the particle lands at a point
z with k(z) = 0; that z is a trap, and the particle stays there forever after.

For the transition function (Pt) and the resolvent (Up), it is possible to
give explicit and easy to interpret formulas. Heuristically, instead of the jumps
of X , the idea is to concentrate on the kicks by the atoms of the Poisson M .
Some kicks cause jumps, some not. If the particle is at x when it is kicked
by an atom (s, v), it jumps to x + j(x, v) if j(x, v) �= 0, and it stays put
if j(x, v) = 0. Following this reasoning as in the proof of Theorem 3.4, we
obtain (with c as a bound for k)

Pt(x,A) =
∞∑

n=0

e−ct(ctn)
n!

Qn(x,A), t ∈ R+, x ∈ E, A ∈ E,3.55

where Qn is the nth power of the Markov kernel Q on (E,E) given by

Q(x,A) =
(

1 − k(x)
c

)
I(x,A) +

k(x)
c

K(x,A).3.56

Thus, X has the form of a Markov chain subordinated to a Poisson process;
see 1.26. The corresponding resolvent is

Up =
1

c+ p

∞∑

n=0

(
c

c+ p

)n
Qn, p > 0.3.57

Step processes and extensions

We continue with the vector fields un set to zero, and we weaken condition
3.2b: instead of assuming that the Lévy kernel is bounded, we shall assume
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only that it is finite. The classical examples are the processes with discrete
state spaces.

The process X of interest has state space E = R
d as before. It is adapted

to the filtration F, it is right-continuous and has left-limits in E, and it
satisfies

Xt = X0 +
ˆ

[0,t]×R+

M (ds, dv) j(Xs−,v),3.58

with the same Poisson random measure M as before. Theorem 3.13 remains
true (as remarked in 3.15a) with the Lévy kernel L defined by 3.11. We
assume throughout that the following holds.

3.59 Condition. The Lévy kernel L is finite.

In other words, k(x) = L(x,E) < ∞ for every x in E. Further, we may
assume that j(x, v) �= 0 for 0 ≤ v ≤ k(x) only. Then, 3.58 is easier to visualize;
see Exercise 3.84 also.

The process X has well-defined times T1, T2, . . . of the first jump, the
second jump, . . .. It is a step process if and only if

Tα = lim
n

Tn3.60

is almost surely equal to +∞. Otherwise, t �→ Xt is a step function only over
the interval [0, Tα). In either case, the evolution of X over [0, Tα) is as de-
scribed in 3.54. The following two examples are instructive; see Exercises 3.90
and 3.91 as well.

3.61 Example. Upward staircase. Take E = R. Let D = {x0, x1, . . .}
where 0 = x0 < x1 < · · · and limxn = 1. Let k(x) ∈ (0,∞) for each x
in D, and put k(1) = 0. If x = xn for some n and v ≤ k(xn), then put
j(x, v) = xn+1 − xn; put j(x, v) = 0 for all other x and v.

If X0 = x0 = 0, then X stays at x0 until T1 and jumps to x1, stay at x1

until T2 and jumps to x2, and so on. The sojourn lengths T1, T2−T1, . . . are in-
dependent exponential variables with respective parameters k(x0), k(x1), . . ..
Their sum is the variable Tα defined by 3.60. So,

E
0 Tα =

∑

x∈D

1
k(x)

.3.62

If E
0Tα <∞, then Tα <∞ almost surely, and we let Xt = 1 for t ≥ Tα. We

show next that, if E
0Tα = +∞, then Tα = +∞ almost surely and Xt ∈ D for

all t. In either case, we call X a staircase over [0, Tα) with steps at x0, x1, . . ..
For the main computation, we use 3.16. For fixed n, let A consist of xn,

and B of xn+1; then Nt(A × B) becomes the indicator of {Xt > xn}, and
3.16 yields

P
0 {Xt > xn} =

ˆ t

0

ds P
0 {Xs = xn} k(xn).3.63
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Pass the factor k(xn) to the left side and note that {Tα ≤ t} ⊂ {Xt > xn}.
Thus,

1
k(xn)

P
0 {Tα ≤ t} ≤

ˆ t

0

ds P
0 {Xs = xn}

Sum both sides over all n, note 3.62, and note that the sum of the right side
is at most t. We get

E
0Tα P

0 {Tα ≤ t} ≤ t.

We conclude that, if E
0Tα = +∞ then P

0{Tα ≤ t} = 0 for all t, which means
that Tα = +∞ almost surely.

We re-state the essential content of the preceding example:

3.64 Lemma. Let S be the sum of a countable independency of exponen-
tially distributed random variables. If ES <∞ then S <∞ almost surely; if
ES = +∞ then S = +∞ almost surely.

3.65 Example. Let E,D, k, j be as in the last example, but with
∑

x∈D

1
k(x)

= 1.3.66

Let μ be a probability measure on D. We now describe a process that is a
concatenation of staircases.

Started at x = xi for some i, the process is a staircase over [0, Tα) with
steps at xi, xi+1, . . .; in view of 3.66, we have E

xTα ≤ 1, and thus Tα < ∞
almost surely. At Tα, we deviate from Example 3.61: we choose the random
variable XTα independent of FTα according to the distribution μ on D. If
XTα turns out to be xj , we let X form a staircase over [Tα, T2α) with steps
at xj , xj+1, . . .; note that E

xT2α ≤ 2 and thus T2α < ∞ almost surely. We
choose XT2α independent of FT2α and with distribution μ again, and proceed
to form another staircase over [T2α, T3α). And we repeat this over and over.
The result is a process whose jump times can be ordered as

T1, T2, . . . , Tα;Tα+1, Tα+2, . . . , T2α;T2α+1, T2α+2, . . . , T3α; . . . .3.67

Each Tnα is the limit of a strictly increasing sequence of jump times; at each
Tnα the process jumps from its left-limit 1 to its right-hand value XTnα , the
latter being independent of FTnα and having the distribution μ. It follows
that T2α − Tα, T3α − T2α, . . . are independent and identically distributed,
and, hence, lim

n
Tnα = +∞ almost surely. So, Xt is well-defined for every t in

R+; the process X is right-continuous, is left-limited (as a process with state
space E), and satisfies 3.58. Incidentally, this example shows that 3.58 can
have many solutions.

We resume the treatment of the process X of 3.58–3.59, concentrating on
the transition semigroups (Pt) and (P ∗

t ), where

Ptf(x) = E
x f ◦Xt, P ∗

t f(x) = E
x f ◦Xt 1{Tα>t}.3.68
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Recall that for the time R = T1 of first jump, we have

Q (x, dy, ds) = P
x {XR ∈ dy,R ∈ ds} = ds k(x)e−k(x)s K(x, dy),3.69

as with simple step processes; and k(x) <∞ by assumption. Also as before,
Tn is the time of nth jump and Yn = XTn for n ∈ N, and

Qn(x, dy, ds) = P
x {Yn ∈ dy, Tn ∈ ds} , x, y ∈ E, s ∈R+.3.70

Obviously, Q◦(x, dy, ds) = I(x, dy) δ0(ds) and Q1 = Q, and Qn can be com-
puted recursively via 3.43.

3.71 Proposition. Let x ∈ E, f ∈ E+, t ∈ R+. Then,

P ∗
t f(x) =

∞∑

n=0

ˆ
E×[0,t]

Qn(x, dy, ds) e−k(y)(t−s)f(y).

Proof. This is essentially as in the proof of Theorem 3.46: On the set
{Tα > t} we have Tn ≤ t < Tn+1 for some n in N. Hence,

P ∗
t f(x) =

∞∑

n=0

E
x f ◦Xt 1{Tn≤t<Tn+1}

=
∞∑

n=0

ˆ
E×[0,t]

P
x {Yn ∈ dy, Tn ∈ ds} f(y) P

y {R > t− s} ,

which is the claim. �

If Tα = +∞ almost surely, then P ∗
t = Pt for all t; see 3.68. A simple

criterion for ensuring this condition is obtained from Lemma 3.64: Since the
sojourn lengths T1, T2 − T1, . . . are conditionally independent given (Yn) and
are conditionally exponential with parameters k ◦Y0, k ◦Y1, . . ., Lemma 3.64
applies to the conditional law of (Tn) given (Yn). The result is put next.

3.72 Proposition. If
∑
n 1/k ◦ Yn = +∞ almost surely, then Tα = +∞

almost surely and Pt = P ∗
t for all t.

The preceding proposition is effective in a number of special situations:
If k is bounded, then Tα = +∞ almost surely. If there is a recurrent point x
for the chain Y , that is, if

P
x {Yn = x for infinitely many n} = 1,

then k ◦ Yn = k(x) for infinitely many n, and hence Tα = +∞ almost surely
under P

x. Similarly, if there is a recurrent set A (which Y visits infinitely
often) and if k is bounded on A, then Tα = +∞ almost surely and P ∗

t = Pt.
The next proposition is a summary of easy observations and a criterion

for deciding whether Tα = +∞ almost surely.
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3.73 Proposition. The following are equivalent:

a) X is a step process, that is, Tα = +∞ almost surely.

b) P ∗
t = Pt for all t.

c) There exists τ > 0 such that P ∗
τ (x,E) = 1 for all x in E.

d) For some (and therefore all) p > 0, the only solution to

h = Qph, 0 ≤ h ≤ 1, h ∈ E,3.74

is h = 0; here Qp(x,A) = k(x)
k(x)+p

K(x,A); see 3.69.

Proof. Obviously, (a) ⇔ (b) ⇒ (c). To see that (c) ⇒ (a), fix τ > 0 such,
that is, P ∗

τ 1 = 1. Then, P ∗
s+τ1 = P ∗

s P
∗
τ 1 = P ∗

s 1 for all s. Replacing s with
τ, 2τ, . . .we see that P ∗

nτ1 = 1 for every n, which means that P
x{Tα > nτ} = 1

for all x and n. Hence, Tα = +∞ almost surely.
Finally, we show that (d) ⇔ a. It follows from 3.69, 3.70, 3.43 that, for

fixed p > 0,

h∗(x) = E
x e−pTα = lim

n
E
xe−pTn = lim

n
Qnp1(x),

where Qnp = (Qp)n. Thus, Qp h∗ = lim Qn+1
p 1 = h∗, that is, h∗ is a solution

to 3.74. Moreover, it is the maximal solution to it: if h is a solution, then
h ≤ h∗, since

h = Qnph ≤ Qnp1 → h∗.

Hence, h∗ = 0 if and only if h = 0 is the only solution to 3.74. This shows
that (d) ⇔ (a), since h∗ = 0 if and only if Tα = +∞ almost surely. �

The next theorem lists the backward equations for the derivatives of (Pt)
and (P ∗

t ). We re-introduce the generator G:

Gf(x) =
ˆ
E

L (x, dy) [f(y) − f(x)], x ∈ E, f ∈ Eb.3.75

3.76 Theorem. Let f ∈ Eb. We have the backward equations

d

dt
Ptf = GPtf,

d

dt
P ∗
t f = GP ∗

t f.

These equations have a unique solution (and Ptf = P ∗
t f for all t) if and only

if X is a step process.

The proof will be given together with the proof of the following, more
comprehensive, result on the backward equations in integral form.
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3.77 Theorem. Let f ∈ Eb+ . For bounded Borel g : E × R+ �→ R+,
consider the equation

g(x, t) = e−k(x)tf(x) +

ˆ t

0

ds k(x) e−k(x)s

ˆ
E

K(x, dy) g(y, t − s)3.78

for x in E and t in R+. This equation holds for both go and g∗, where

go (x, t) = Ptf(x), g∗(x, t) = P ∗
t f(x).

If X is a step process, then 3.78 has exactly one solution: g = go = g∗.
Otherwise, the uniqueness fails, and g∗ is the minimal solution.

3.79 Remark. If X is not a step process, the backward equation
characterizes P ∗

t f as the minimal solution, but does not specify Ptf . For
instance, for Example 3.65, there are as many solutions as there are choices
of μ. See Exercise 3.91 for the computation of Ptf .

Proof of 3.76, assuming 3.77. We re-write 3.78:

g(x, t) = e−k(x)t
[
f(x) +

ˆ t

0

ds ek(x)s
ˆ
E

L (x, dy) g(y, s)
]
.

On the right side, since g is bounded Borel, the integration over E yields a
bounded Borel function, and the integration over [0, t] yields a continuous
function in t. Thus, on the left, t �→ g(x, t) must be bounded continuous. We
put this back into the right side: since s �→ g(y, s) is bounded continuous,
the integration over E yields a bounded continuous function in s, and the
integration over [0, t] yields a differentiable function in t. So, t �→ g(x, t) is
differentiable. Taking derivatives, we get

∂

∂t
g(x, t) = −k(x)g(x, t)+

ˆ
E

L (x, dy) g(y, t) =
ˆ
E

L (x, dy) [g(y, t) − g(x, t)] .

Assuming Theorem 3.77, then, the functions go and g∗ must satisfy the pre-
ceding; hence the backward equations of Theorem 3.76. The other assertion,
on uniqueness, is immediate from Theorem 3.77. �

Proof of Theorem 3.77
We start by showing that g∗ satisfies 3.78; showing the same for go is

similar and simpler. We use the strong Markov property at the time R of
first jump. Since R < Tα and Xt = X0 on {R > t},

P ∗
t f(x) = E

x f ◦Xt 1{R>t} + E
x f ◦Xt 1{R≤t}1{Tα>t}

= e−k(x)t f(x) +
ˆ
E×[0,t]

Q (x, dy, ds)P ∗
t−sf(y),

where Q is as in 3.69. This is the same as 3.78 for g∗.
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Consider the solutions g to 3.78. We employ Laplace transforms with Qp
as in 3.74 (see also 3.69, 3.70, 3.43) and

gp(x) =
ˆ ∞

0

dt e−pt g(x, t), fp(x) =
1

k(x) + p
f(x).

Then, 3.78 becomes
gp = fp +Qp gp.

Replace gp on the right side with fp +Qpgp, and repeat n times. We get

gp =
(
I +Qp + · · · +Qnp

)
fp +Qn+1

p gp.

Since f is positive, the first term on the right is increasing in n; the limit is,
in view of 3.71,

∞∑

n=0

Qnpfp =
ˆ ∞

0

dt e−ptP ∗
t f

Hence, g∗ is the minimal solution to 3.78. The uniqueness has to do with

hp = lim
n

Qnp gp.

We note that hp is bounded, positive, and satisfies

hp = Qp hp.

Thus, the remaining assertions of the theorem follow from Proposition 3.73. �
Forward equations are more sensitive to whether X is a steps process.

The next theorem shows that (P ∗
t ) satisfies the forward equation, but (Pt)

does not. We list a needed result first; see 3.70 and 3.71.

3.80 Lemma.

∑∞
n=1 Qn(x, dy, ds) = ds P ∗

sL(x, dy), y ∈ E, s ∈ R+.

Proof. In view of 3.70, what we need to show can be stated more precisely
as

E
x

∞∑

n=1

1A ◦ Yn 1{Tn≤t} =
ˆ t

0

ds

ˆ
E

P ∗
s (x, dy)L(y,A).

The left side is the same as the left side of 3.14 with Fs = 1{s≤t∧Tα} and
f(x, y) = 1A(y). Thus, the left side is equal to

E
x

ˆ ∞

0

ds 1{s≤t∧Tα}

ˆ
E

L(Xs, dy) 1A(y)

= E
x

ˆ t

0

ds 1{Tα>s}L(Xs, A) =
ˆ t

0

ds

ˆ
E

P ∗
s (x, dy)L(y,A),

where we used the definition of P ∗
t in 3.68 for the last equality. �
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3.81 Theorem. Let f ∈ Eb+ and let the generator G be as in 3.75. Then,
P ∗
t f satisfies the equation

d

dt
P ∗
t f = P ∗

t Gf

and is the minimal solution of it with P ∗
0 f = f . For (Pt) we have

d

dt
Ptf ≥ PtGf ;

the equality holds if and only if X is a step process, and, then, Ptf = P ∗
t f .

Proof. Combining Proposition 3.71 and Lemma 3.80, we have

P ∗
t f(x) = e−k(x)tf(x) +

ˆ t

0

ds

ˆ
E

P ∗
s L(x, dy)e−k(y)(t−s)f(y).3.82

By Theorem 3.76, this is differentiable. Taking derivatives on both sides we
obtain

d
dt
P ∗
t f(x)=−k(x)e−k(x)tf(x) + P ∗

t Lf(x)

− ´ t
0 ds P

∗
s L(x, dy)e−k(y)(t−s)k(y)f(y)

=−k(x)e−k(x)tf(x) + P ∗
t Lf(x) − [P ∗

t (kf)(x) − e−k(x)tk(x)f(x)
]

where we used 3.82 at the last step. Hence, we have

d

dt
P ∗
t f = P ∗

t Lf − P ∗
t (kf) = P ∗

t Gf.3.83

For Ptf , we have differentiability by Theorem 3.76. And,

Pt+s f − Ptf = Pt(Psf − f) ≥ Pt (P ∗
s f − f)

by 3.68 and positivity of f . Thus, using the boundedness of f ,

d

dt
Ptf = lim

s→0

Pt+sf − Ptf

s
≥ lim

s→0
Pt
P ∗
s f − f

s
= Pt Gf,

where we used 3.83 at the last step. The other assertions are repetitions of
some claims in Theorem 3.77. �

Much of the foregoing are classical results for Markov processes with dis-
crete state spaces. We have chosen the state space to be E = R

d. Obviously,
every countable set D with the discrete topology can be embedded in E, but
our requirement of right-continuity for X leaves out an interesting class of
processes which have discrete state spaces but permit discontinuities of the
second kind; see the notes for this chapter.
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Exercises and complements

3.84 Lévy kernel and the jump function. Let L be a finite kernel, that is,
k(x) = L(x,E) < ∞ for every x in E, and take E = R. Suppose that
L(x, {x}) = 0 for each x and define j(x, v) by

x+ j(x, v) = inf {y ∈ R : L(x, (−∞, y]) > v}

for v in (0,k(x)), and set j(x, v) = 0 for other v in R+.

a) Show that y �→ L(x, (−∞, y]) and v �→ x + j(x, v) are functional
inverses of each other.

b) Show that L is the Lévy kernel defined from j by 3.11.

3.85 Exponential decay with jumps. Let E = R, let X0 ∈ (0,∞), and let X
satisfy 3.1 with

a(x) = −cx, b(x) = 0, j(x, v) = xv 1(0,1)(xv),

for x > 0. Note that X remains in (0,∞) forever. Plot the atoms of M(ω, ·)
for a typical ω. Draw the path t �→ Xt(ω) corresponding to M(ω, ·) and with
X0(ω) = 1.

3.86 Continuation. In the preceding exercise, replace j with

j(x, v) = j0(v)1(0,3)(v)

for some increasing right-continuous function j0 on (0,3). Describe the evolu-
tion of X with special attention to jump times, jump amounts, dependence
and independence. Show that X satisfies the integral equation

Xt(ω) = X0(ω) − c

ˆ t

0

ds Xs(ω) + Zt(ω), ω ∈ Ω, t ∈ R+,

where Z is a compound Poisson process. Solve this equation for X .

3.87 Piecewise deterministic processes. In 3.1, let b = 0, and let a = u0 satisfy
the Lipschitz condition 2.4, and j satisfy 3.2b. Then, between two consecutive
jumps, the path t �→ Xt(ω) satisfies the ordinary differential equation

d

dt
xt = a(xt),

whose solution is unique and deterministic given its initial condition. Show
that Theorem 3.27 holds with the generator

Gf(x) =
d∑

i=1

ai(x) ∂if(x) +
ˆ ∞

0

dv [f(x+ j(x, v)) − f(x)] , f ∈ C1
K .
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3.88 Probably no jumps. This is to give an example of X that has at most
finitely many jumps. Suppose that E = R,

a(x) = −1, b(x) = 1, j(x, v) = −1R+(x)1(0,c)(v).

Note that X̄ of 3.3 is a Brownian motion with downward drift. Show (see
Chapter V for this) that

A = Leb
{
t ≥ 0 : X̄t ∈ R+

}

is almost surely finite. Show that, for the time R of first jump,

P
x
{
R = +∞|X̄} = e−cA.

Conclude that P
x{R = +∞} = E

xe−cA is strictly positive.

3.89 Brownian motion plus jumps. Let X be as in 3.1–3.2. Suppose that
E = R and X̄ = X0 +W , a standard Brownian motion. Define j(x, v) = −ax
for 0 ≤ v ≤ 1−e−|x|, and j(x, v) = 0 otherwise, where a is a constant in (0,1).

a) Describe the motion X during [0,R) and at R, where R is the time
of first jump.

b) Specify the Lévy kernel L
c) Specify the generator G given by 3.19.

3.90 Downward staircase. Let X satisfy 3.58 with X0 = x0 ∈ (0, 1] and

j(x, v) = x3v 1[0,1](x2v), x ∈ [0, 1], v ∈ R+.

Let T1, T2, . . . be the successive jump times and define Tα = lim Tn.

a) Describe the Markov chain (Yn), where Yn = XTn.
b) Show that Y1, Y 2, . . . are the atoms of a Poisson random measure on

the interval (0, x0). What is the mean measure?
c) Compute E

x0 Tα. Note that Xt = 0 on {t ≥ Tα}.
d) Compute the transition function (Pt) for X .

3.91 Transition function for 3.65. Let X be the process described in
Example 3.65. Let Pt and P ∗

t be as defined by 3.68. In view of Proposition 3.71,
we assume that (P ∗

t ) is known. This is to compute (Pt). We use P
μ =´

D
μ(dx)Px.

a) Show that P
x{Tα ≤ t} = 1 − P ∗

t (x, D). Thus,

ν(B) = P
μ {Tα ∈ B} =

ˆ
D

μ(dx) P
x {Tα ∈ B} , B ∈ BR+ ,

is well-specified. Let νn be the n-fold convolution of ν with itself, with ν0 = δ0
obviously.
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b) Define ρ =
∑∞
n=0 ν

n. Obviously,

ρ(B) = E
μ

∞∑

n=0

I(Tnα, B).

Show that ρ(B) <∞ for B compact. Hint:

P
μ {Tnα ≤ t} = P

μ
{
e−Tnα ≥ e−t

} ≤ et E
μe−Tnα = et (Eμ e−Tα)n.

c) Show that E
μf ◦Xt =

´
[0,t]

ρ(ds)
´
D
μ(dx)P ∗

t−sf(x).

d) Show that Ptf(x) = Pt
∗f(x) +

´
[0,t]

ν(ds)Eμf ◦Xt−s.

3.92 Step processes with discrete state spaces. Let D be a countable set; we
identify it with N or a subset of N, and regard D as a subset of E = R. We
use the notational principles mentioned in Exercise 1.35.

Let X be a step process (right-continuous) satisfying 3.58 and whose
values are in D. Then, its Lévy kernel satisfies

L(x,A) =
∑

y∈A
�(x, y), x ∈ D,A ⊂ D

for some positive numbers �(x, y) with

�(x, x) = 0, k(x) =
∑

y∈D
�(x, y) <∞.

We may assume that the jump function j has the following form: For each
x, let {Axy : y ∈ D} be a partition of [0, k(x)] such that, for each y, the set
Axy is an interval of length �(x, y). Then, put

j(x, v) =
∑

y∈D
(y − x)1Axy (v), x ∈ D, v ∈ R+.

Show that the generator G of X has the form

Gf (x) =
∑

y∈D
g(x, y)f(y), x ∈ D,

and identify the entries g(x, y) of the matrix G. Let pt(x, y) = P
x{Xt = y}

as before in 1.35. show that

d

dt
pt(x, y) =

∑

z∈D
pt(x, z) g(z, y), x, y ∈ D,

and also
d

dt
pt(x, y) =

∑

z∈D
g(x, z) pt(z, y), x, y ∈ D.
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If the kernel L is bounded, that is, if the function k is bounded, then we
have

Pt = etG =
∞∑

n=0

tn

n!
Gn,

where Pt is the matrix whose (x,y)-entry is pt(x, y), and G is the matrix with
entries g(x, y) similarly.

3.93 Semigroups on discrete spaces. Let D be a countable set. Let the ma-
trices Pt = [pt(x, y)] satisfy PtPu = Pt+u. Without reference to a Markov
process, suppose that limt→0 pt(x, x) = 1 for every x in D. Then, it can be
shown that

g(x, y) = lim
t→0

d

dt
pt(x, y), x, y ∈ D,

exist and satisfy g(x, x) = −k(x), with k(x) ∈ [0,+∞], and g(x, y) ∈ [0,∞)
for x �= y, and

∑
y �=x

g(x, y) ≤ k(x). The state x is a trap if k(x) = 0, is holding

(stable is another term for the same) if 0 < k(x) <∞, and is instantaneous if
k(x) = +∞. (Pt) is said to be conservative

∑
y �=x g(x, y) = k(x) for every x.

3.94 Continuation. Let D = N. For x and y in D, let

pt(x, y) = P {Ys+t = y|Ys = x} ,
where Y is the process defined by 1.33. Show that pt(x, x) → 1 as t → 0.
Show that k(x) ∈ (0,∞) for each x; identify k(x) in terms of the data m(q),
rational q. Show that

g(x, y) = 0, x �= y.

3.95 Itô processes. These are Markov processes X that satisfy a stochastic
integral equation of the form

Xt = X0 +
ˆ t

0

a ◦Xs ds+
ˆ t

0

b ◦Xs dW s

+
ˆ

[0,t]×R+

(M(ds, dv) − ds dv)j(Xs−,v)1{j(Xs−,v)≤1}

+
ˆ

[0,t]×R+

M(ds, dv)j(Xs−, v)1{j(Xs− ,v)>1}.

Here, a, b,M,W, j are as in 3.1, but without the condition 3.2, and j must
satisfy ˆ

R+

du
[(
j(x, v)2 ∧ 1

)]
<∞,

and the third integral is a stochastic integral, defined as a limit in probability.
This class of processes includes all Lévy processes (see Itô-Lévy decomposi-
tion), all Itô diffusions, all jump-diffusions, and more. See the complement
5.51 for more.



498 Markov Processes Chap. 9

4 Markov Systems

This section is to introduce Markov processes in the modern setting. We
shall introduce a probability measure P

x for each state x; it will serve as
the conditional probability law given that the process X is at x initially. We
shall introduce a shift operator θt for each time t; it will indicate that t is
the present time. And, we shall think of X as the motion of a particle that
lives in E, but might die or be killed at some random time; this will require
an extra point to serve as the cemetery.

The space E will be kept fairly general. Although the Markov property
has nothing to do with the topology of E, the analytical machinery requires
that E be topological and X right-continuous. The reader is invited to take
E = R on a first reading. This section is independent of Sections 2 and 3;
but some familiarity with at least Section 2 would be helpful as motivation.
Also helpful is the formalism of Lévy processes; the connections are spelled
out in Exercises 4.31 and 4.32.

The system

This is to describe the setting for Markov processes. The time-set is R+;
it will be extended to R̄+.

4.1 State space. Let E be a locally compact separable metrizable space, and
E the Borel σ-algebra on it. If E is compact, we let ∂ be an isolated point
outside E. If E is not compact, ∂ will be the “point at infinity” in the one
point compactification of E. We put

Ē = E ∩ {∂} , Ē = σ(E ∪ {Ē}).

4.2 Convention. Every function f : E �→ R̄ is extended onto Ē automatically
by setting f(∂) = 0. Thus, writing f ∈ E indicates also a function in Ē with
f(∂) = 0; otherwise, we write f̄ ∈ Ē to mean that f̄ is defined on Ē and is
Ē-measurable without an assumption on f̄(∂).

4.3 Transition semigroups. Let (Pt) be a family of sub-Markov kernels on
(E,E) such that PtPu = Pt+u. Each Pt is extended to become a Markov
kernel P̄t on (Ē, Ē) by putting

P̄t(x,B) = Pt(x,B ∩ E) + (1 − Pt(x,E))I(∂,B), x ∈ Ē, B ∈ Ē.

Note that P̄t(∂,B) = I(∂,B) = 1B(∂) by the preceding convention applied to
the function x �→ Pt(x,E) on E, namely, the convention that puts Pt(∂,E) =
0. It is easy to check that P̄tP̄u = P̄t+u.

4.4 Stochastic base. Let (Ω,H) be a measurable space, F = (Ft) a filtration
over it, and θ = (θt) a family of “shift” operators θt : Ω �→ Ω such that
θ0ω = ω and

θu(θtω) = θt+u ω
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for every ω in Ω. We assume that there is a special point ω∂ in Ω, and that
θtω∂ = ω∂ for all t, and θ∞ω = ω∂ for all ω. Finally, let P

• = (Px) be a
family of probability measures P

x on (Ω,H) such that (x,H) �→ P
x(H) is a

transition kernel from (Ē, Ē) into (Ω,H).

4.5 Stochastic process. Let X = (Xt) be a process with state space (Ē, Ē),
adapted to the filtration F, and with the point ∂ as a trap; the last phrase
means that if Xt(ω) = ∂ then Xt+u(ω) = ∂ for all u ≥ 0. We assume that
X0(ω∂) = ∂, and that X∞(ω) = ∂ for all ω, and that

Xu(θtω) = Xt+u(ω), ω ∈ Ω, t, u ∈ R̄+.

We let Go = (Got ) be the filtration generated by X , and put Go∞ = νt Got as
usual.

Markov system

Throughout this section and further we are working with the system de-
scribed in 4.1–4.5 above. In conditional expectations and probabilities, we
use the old conventions (see V.2.21 et seq.) and put

P
x
T = P

x(·|FT ), E
x
T = E

x(·|FT ).4.6

The following is the enhanced version of Markovness.

4.7 Definition. The system X = (Ω,H,F, θ,X,P•) is said to be Markov
with living space E and transition semigroup (Pt) if the following hold:

Normality. P
x{X0 = x} = 1 for every x in Ē.

Right-continuity for F. The filtration (Ft) is right-continuous.

Regularity of paths. For every ω, the path t �→ Xt(ω) is right-continuous

and has left-limits as a function from R+ into Ē.

Markov property. For every x in E and every t and u in R+,

E
x
t f ◦Xt+u = Puf ◦Xt, f ∈ E+. �4.8

The normality condition makes P
x the probability measure on (Ω,H)

under which X is started at x. The right-continuity of F enriches the pool of
stopping times and will be of further use with the strong Markov property;
note that Got+ ⊂ Ft+ = Ft.

4.9 Remark. In terms of the definitions of Section 1, the Markov prop-
erty of the preceding definition implies the following for each x in Ē: Over the
probability space (Ω,H,Px), the process X is a (time-homogeneous) Markov
process with state space (Ē, Ē) and transition function (P̄t) given in 4.3. This
can be seen by noting that, in view of the conventions, 4.8 implies that

E
x f̄ ◦Xt+u = P̄uf̄ ◦Xt, f̄ ∈ Ē+.
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Thus, Definition 4.7 introduces a family of Markov processes, one for each
x in Ē, but all these processes have the same transition function and are
intertwined in a systematic manner.

4.10 Remark. The meaning of Pt is implicit in 4.8. There, putting t = 0,
applying the expectation operator E

x to both sides, and using the normality,

E
x f ◦Xu = Puf(x), x ∈ E, u ∈ R+, f ∈ E+.4.11

This remains true for x = ∂ as well, because Xu = ∂ almost surely under P
∂ ,

and the conventions yield f(∂) = 0 and Puf(∂) = 0. Hence, we may re-write
the condition 4.8, using Xt+u = Xu ◦ θt as in 4.5, in the form

E
x
t f ◦Xu ◦ θt = E

Xt f ◦Xu, f ∈ E+,4.12

but with a cautionary remark: the right side stands for g ◦Xt where

g(y) = E
yf ◦Xu = Puf(y).4.13

Almost surely

Since there is a multitude of probability measures P
x, it is convenient

to say “almost surely” to mean “almost surely under P
x for every x in Ē”.

Similarly, a proposition π(ω) for ω is said to hold for almost every ω in H ,
and then we write

π a.e. on H, or, π(ω) for a.e. ω in H,4.14

if H ∈ H and for every x in Ē there is a subset Hx of H in H such that
P
x(H\Hx) = 0 and π(ω) holds for every ω in Hx.

Lifetime of X

According to 4.5, the “boundary” point ∂ is a trap; it is the final resting
place for X . Thus

ζ = inf {t ∈ R+ : Xt = ∂}4.15

is called the lifetime of X . Note that ζ(ω) > u if and only if Xu(ω) ∈ E;
hence the term “living space” for E. When X is Markov, it follows from 4.11
with f = 1E that

P
x {ζ > u} = Pu (x,E) , x ∈ E, u ∈ R+.

This gives meaning to the defect 1 − Pu(x, E) when Pu is sub-Markov. The
process X is said to be conservative if Pt(x, E) = 1 for all x in E, that is, if
every Pt is Markov.



Sec. 4 Markov Systems 501

Markov property

Here we explore the essential condition in Definition 4.7, the Markov
property.

4.16 Remark. The collection of functions f in E for which 4.8 holds
is a monotone class. Thus, in order for 4.8 to hold for all f in E+, it is
sufficient that it hold for the indicators of Borel subsets of E, or for the
indicators of open subsets of E, or for bounded continuous functions on E,
or for continuous functions on E with compact support.

The next theorem captures the essence of Markov property by replacing
f ◦Xu in 4.12 with an arbitrary functional V of X . Note, for example, that

V = f(Xu1 , . . . , Xun) ⇒ V ◦ θt = f(Xt+u1 , . . . , Xt+un).

Thus, the proof of the next theorem is immediate from Remark 4.10,
Theorem 1.2, and 4.12 above.

4.17 Theorem. (Markov property). Suppose that X is a Markov sys-
tem. Then, for every x in Ē and t in R+ and positive V in Go∞,

E
x
t V ◦ θt = E

XtV.

4.18 Example. This is to illustrate the preceding theorem with a specific
V . The aim is to clarify some technical matters which are implicit, and also
to re-iterate the heuristics.

a) Let f ∈ Eb, that is, let f : E �→ R be a bounded Borel function. Since
X is right-continuous and each Xt is measurable with respect to Go∞ and Ē,
the mapping (t, ω) �→ Xt(ω) is measurable with respect to BR+ ⊗ Go∞ and Ē.
Thus, (t, ω) �→ f ◦Xt(ω) is in BR+ ⊗ Go∞.

b) Hence, Fubini’s theorem shows that, for fixed p > 0,

V =
ˆ

R+

du e−pu f ◦Xu

defines a bounded variable V in Go∞; and

g(y) = E
y V, y ∈ E,

defines a function g in Eb; this is because P
• is a transition kernel, and

g(y) = P
yV in the kernel-function notation. Similarly, and since Xu ◦ θt =

Xt+u by 4.5,

V ◦ θt =
ˆ

R+

du e−pu f ◦Xt+u

is a well-defined bounded random variable in G◦∞.
c) Now, the heuristic part: g(y) is our estimate of V made at time 0 if

the initial state is y. The initial state of the process X ◦θt is Xt. The variable
V ◦ θt is the same functional of X ◦ θt as V is of X . Thus, our estimate of
V ◦ θt made at time t should be g(Xt) if we think that t is the origin of time
and all the past is past. �
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Blumenthal’s zero-one law

This useful result is a consequence of the normality, the Markov property,
and the right-continuity of the filtration F.

4.19 Theorem. Let X be Markov. Let H be an event in Go0+. For each x
in Ē, then, P

x(H) is either 0 or 1.

Proof. Put V = 1H . Clearly, V = V · V , and V = V ◦ θ0 since θ0ω = ω
for all ω; hence, V = V · (V ◦ θ0). On the other hand, the filtration (Got )
generated by X is coarser than (Ft) by the adaptedness of X to F; and, thus,
Got+ ⊂ Ft+ = Ft, the last equality being the definition of right-continuity for
F. This implies, since V ∈ Go0+ by assumption, that V ∈ F0. It now follows
from the Markov property 4.17 at t = 0 that, since E

x = E
x
E
x
0 ,

E
x V = E

xV · V ◦ θ0 = E
xV E

X0V.

But, by normality,X0 = x with P
x-probability one. Hence, E

xV = E
xV E

xV ,
which implies that E

xV = P
x(H) is either 0 or 1. �

Holding points, instantaneous points

Started at a point x, the process either exits x instantaneously or stays
at x some strictly positive amount of time. This dichotomy is a consequence
of the preceding zero-one law.

Suppose that the system X is Markov. Define

R = inf {t > 0 : Xt �= X0} .4.20

Then, R is a stopping time of
(
Got+
)
, and thus, the event {R = 0} belongs to

Go0+. Hence, for fixed x in Ē, the zero-one law applies to show that

P
x {R = 0}4.21

is either 0 or 1. It this probability is 0, then x is said to be a holding point ; if
it is 1, then x is said to be instantaneous. A holding point x is called a trap,
or an absorbing point, if P

x{R = ∞} = 1.
The point ∂ is a trap; there may be other traps. For step processes of

Section 3, and for Poisson and compound Poisson processes, every point of
E is a holding point. For Brownian motions in E = R

d, every point of E
is instantaneous; similarly for Itô diffusions. For Lévy processes other than
compound Poisson, every point of E = R

d is instantaneous.
Let x be a holding point. Started at x, the process stays there for a strictly

positive amount R of time. The next theorem shows that the distribution of
R is exponential, and the state XR is independent of R. We shall show later
(see 5.23) that when X is strong Markov, it must exist x by a jump.
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4.22 Theorem. Let X be Markov, and let x be a holding point. Then,

P
x {R > t,XR ∈ B} = e−k(x)tK(x,B), t ∈ R+, B ∈ Ē,

for some number k(x) <∞ and some measure B �→ K(x,B) on (Ē, Ē).

Proof. For every ω, the definition of R implies that

R(ω) > t+ u⇔ R(ω) > t and R(θtω) > u,

and, then,

XR(ω) = Xt+R(θtω)(ω) = XR(θtω) (θtω) = XR(θtω).

Thus, for B in Ē,

P
x {R > t+ u, XR ∈ B} = P

x {R > t, R ◦ θt > u, XR ◦ θt ∈ B}4.23
= E

x1{R>t}PXt {R > u,XR ∈ B}
= P

x {R > t}P
x {R > u,XR ∈ B} ;

here, the second equality is justified by the Markov property of 4.17 at time t,
and the third equality by the observation that Xt = X0 on {R > t} followed
by the normality condition.

In 4.23, take B = Ē. The result is

P
x {R > t+ u} = P

x {R > t}P
x {R > u}

for all t and u in R+; and t �→ P
x{R > t} is obviously right-continuous and

is equal to 1 at t = 0 (since x is holding). Thus, there exists k(x) in R+

such that

P
x {R > t} = e−k(x)t, t ∈ R+.4.24

Next, put this into 4.23 and set u = 0. Since x is holding, P
x{R > 0} = 1,

and 4.23 becomes

P
x {R > t,XR ∈ B} = e−k(x)t P

x {XR ∈ B} ,
which has the form claimed. �
4.25 Remark. The point x is a trap if and only if k(x) = 0. In fact, 4.24
holds for instantaneous x as well; then, k(x) = +∞.

Measures Pµ

For each x in Ē, the distribution of X0 under P
x is the Dirac measure δx;

this is by the normality of X. Thus, for an arbitrary probability measure on
(Ē, Ē),

P
μ (H) =

ˆ
E

μ (dx) P
x(H), H ∈ H,4.26

defines a probability measure on (Ω,H), under which X0 has the distri-
bution μ. This follows from Theorem I.6.3 via the hypothesis in 4.4 that
(x, H) �→ P

x(H) is a transition probability kernel.
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Exercises

4.27 Compound Poissons. Let X = X0 +Y , where Y is a compound Poisson
process (with Y0 = 0) whose jump times form a Poisson process with rate c,
and whose jump sizes have the distribution μ. Classify the states as holding
or instantaneous. What are k(x) and K(x,B) of Theorem 4.22 in this case?

4.28 Step processes. Let X be a step process as in Section 3. Show that
every point x in E = R

d is a holding point. Compute k(x) and K(x,B) of
Theorem 4.22 in terms of the Lévy kernel L of X .

4.29 Brownian motion with holding boundary points. Let a < 0 < b be fixed.
Started in the interval (a, b), the motion X is standard Brownian until it
exits the interval; if the exit is at a, then X stays at a an exponential time
with parameter k(a) and then jumps to the point 0; if the exit is at b, then
X stays at b an exponential time with parameter k(b) and then jumps to 0.
Once at 0, the motion resumes its Brownian character, and so on. Classify the
points of E = [a, b]; identify the distributions K(x, ·) for the holding points x.

4.30 Achilles’ run. The living space E is (0,1]; then ∂ = 0 necessarily. Started
at x in E, the particle stays at x an exponential amount of time with mean
x and, then, jumps to y = x/2; at y, it stays an exponential time with mean
y and, then, jumps to z = y/2; and so on. Let T1, T2, . . . be the successive
jump times, put ζ = lim Tn, and define Xt = ∂ = 0 for t in [ζ,+∞]. Show
that all points are holding points. Identify the parameters k(x) and K(x,B).
Compute E

xζ.

4.31 Lévy processes. Let X = (Ω,H,F, θ,X,P•) be a Markov system with
living space E = R

d. Suppose that its transition semigroup (Pt) is such that,
for each t,

Ptf(x) =
ˆ
E

πt(dy) f(x+ y), x ∈ E, f ∈ E+.

for some probability measure πt on E. Show that, then, X has stationary
and independent increments under each P

x. More precisely, for each x in E,
the process Y = (Xt − X0)t∈R+ is a Lévy process over the stochastic base
(Ω,H,Fx, θ,Px) in the sense of Definition VII.3.3; here Fx is the augmenta-
tion of F with respect to the probability measure P

x. Show this.

4.32 Continuation. This is a converse to the preceding. Let X and B =
(Ω,H,F, θ,P) be as in Definitions VII.3.1 and VII.3.3. Put E = R

d, E =
B(Rd), and set ∂ to be the “point at infinity.” Define

Ω̂ = Ē × Ω, Ĥ=Ē ⊗ H, F̂t = Ē ⊗ Ft, P̂
x = δx × P

for x in Ē; and, for ω̂ = (x, ω) in Ω̂, put

X̂t(ω̂) = x+Xt(ω), θ̂tω̂ = (X̂t(ω̂), θtω).
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Show that X = (Ω̂, Ĥ, F̂, θ̂, X̂, P̂•) is a Markov system, in the sense of Defini-
tion 4.7, with living space E and transition function (Pt) given by

Pt(x,B) = P {x+Xt ∈ B} .

5 Hunt Processes

These are Markov processes which have almost all the properties desired
of a Markov process. Itô diffusions, jump-diffusions, simple step processes,
and all Lévy processes (including, of course, Poisson and Brownian motions)
are Hunt processes. We choose them to form the central reference system for
the theory; even when a Markov process is not Hunt, it is best to describe it
by telling how it differs from a Hunt process.

Throughout this section, X = (Ω,H,F, θ,X,P•) is a Markov system with
living space E and transition semigroup (Pt); see Definition 4.7 and the setup
4.1–4.6. Recall, in particular, that the filtration F is right-continuous and that
the path t �→ Xt is right-continuous and has left-limits in Ē. Recall also that
(Got ) is the filtration generated by X .

In preparation for the definition of strong Markov property next, we note
that f̄ ◦ XT is FT -measurable for every F-stopping time T and every Ē-
measurable f̄ : Ē �→ R̄+. For continuous f̄ , this follows from Theorem V.1.14
via the right-continuity of f̄ ◦X . Then, a monotone class argument extends
it to all Ē-measurable f̄ . For positive V in Go∞, putting f̄(y) = E

yV yields a
function f̄ that is Ē-measurable; and, then, f̄ ◦XT belongs to FT as required
for it to be a conditional expectation given FT .

5.1 Definition. The Markov system X is said to be strong Markov if,
for every F-stopping time T and every positive random variable V in Go∞,

E
x
T V ◦ θT = E

XT V, x ∈ E.5.2

It is said to be quasi-left-continuous if, for every increasing sequence (Tn)
of F-stopping times with limit T ,

lim
n

XTn = XT almost surely on {T <∞}.5.3

It is said to be a Hunt system if it is strong Markov and quasi-left-continuous.

We shall explore the contents of these definitions and their ramifications.
We start with the less familiar concept.

Quasi-left-continuity

If X is continuous, then X is quasi-left-continuous automatically. The
continuity is not necessary. For instance, if X − X0 is a Poisson process,
then X is quasi-left-continuous even though X has infinitely many jumps.
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Similarly, if X −X0 is a Lévy process, or if X is a jump-diffusion or a step
process, then X is quasi-left-continuous. These comments will become clear
shortly.

Recall the notation Xt− for the left-limit of X at t; we put X0− = X0

for convenience. For a random time T , then, XT− is the random variable
ω �→ XT−(ω) = XT (ω)−(ω). Suppose now that (Tn) is an increasing sequence
of F-stopping times with limit T , and pick ω such that T (ω) <∞. If Tn(ω) =
T (ω) for all n large enough, then limXTn(ω) = XT (ω) trivially. Otherwise, if

Tn(ω) < T (ω) for all n,5.4

then lim XTn(ω) = XT−(ω), and quasi-left-continuity would require that
XT−(ω) = XT (ω), unless ω happens to be in the negligible exceptional set of
5.3. In other words, if X is quasi-left-continuous, then 5.4 is incompatible with

T (ω) <∞, XT−(ω) �= XT (ω),5.5

except for a negligible set of ω.
We may interpret 5.4 as “predictability” for T (ω), because the sequence of

times Tn(ω) enables the observer to foresee T (ω). So, heuristically, quasi-left-
continuity is about the continuity of paths at predictable times and, equiv-
alently, about the unpredictability of jump times. We make these remarks
precise next.

Predictable times, total unpredictability

We recall some definitions introduced in passing in Chapter V, adapted
to the newer meaning of “almost everywhere” given around 4.14. We shall
use the notation (read T on H)

TH(ω) =
{
T (ω) if ω ∈ H,
+∞ otherwise,5.6

for F-stopping times T and events H in FT ; and, then, TH is also an F-
stopping time.

5.7 Definition. Let T be an F-stopping time. It is said to be predictable
if there exists an increasing sequence (Tn) of F-stopping times with limit T
such that

Tn < T for all n a.e. on {0 < T <∞} .5.8

It is said to be totally unpredictable if, for every predictable F-stopping
time S,

T = S almost nowhere on {T <∞} .5.9

For Brownian motion, every hitting time is predictable, and more. For a
Poisson process, Proposition VI.5.20 implies that the first jump time is totally
unpredictable; see also V.7.31. In Example 3.65, the time Tα is predictable,
so are T2α, T3α, etc. The other times in 3.67 are totally unpredictable. The
following enhances the definition.
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5.10 Lemma. Let T be a totally unpredictable F-stopping time. Suppose
that (Tn) is an increasing sequence of F-stopping times with limit T on the
event {T <∞}. Then, 5.4 fails for almost every ω in {T <∞}.

Proof. Let Hn = {Tn < T } and H = ∩nHn. We need to show that

P
x (H ∩ {T <∞}) = 05.11

for every x. Define S = TH , see 5.6, and define Sn similarly from Tn and Hn;
these are all F-stopping times. Since (Tn) is increasing, the sequence (Hn)
is shrinking to H , and (Sn) is increasing to S. Moreover, if ω ∈ H , then
Sn(ω) = Tn(ω) < T (ω) = S(ω). Since {0 < S < ∞} ⊂ H , we conclude that
S is predictable. It follows from the total unpredictability of T that 5.9 holds;
and 5.9 is the same as 5.11 for all x. �

Total unpredictability of jumps

Let T be an F-stopping time. We call T a time of continuity for X if
(recall that X0− = X0)

XT− = XT a.e. on {T <∞} ,5.12

and a jump time for X if

XT− �= XT a.e. on {T <∞} .5.13

The following clarifies the true meaning of quasi-left-continuity.

5.14 Theorem. The following are equivalent:

a) The Markov system X is quasi-left-continuous.

b) Every predictable F-stopping time is a time of continuity.

c) Every jump time is totally unpredictable.

Proof. Suppose (a). Let T be predictable. Then, there is (Tn) increasing
to T such that 5.8 holds. Therefore, limXTn = XT− a.e. on {T < ∞}. But
the limit is XT a.e. on {T <∞} by the assumed quasi-left-continuity. Thus,
5.12 holds. Hence (a) ⇒ (b).

Suppose (b). Let T be a jump time, that is, let 5.13 hold, and let S be
predictable. Then, XT− = XS− = XS = XT almost everywhere on {T =
S, T < ∞} in view of (b) for S. This means, in view of 5.13 for T , that 5.9
holds. Hence, T is totally unpredictable. So, (b) ⇒ (c).

Suppose (c). Let (Tn) be an increasing sequence of F-stopping times with
limit T . On {XT− = XT , T < ∞}, we have limXTn = XT obviously. To
show quasi-left-continuity at T , we show next that

lim XTn = XT a.e. on H = {XT− �= XT , T <∞} .5.15
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Define S = TH as in 5.6; it is obviously a jump time. By the assumed
(c), then, S is totally unpredictable. Moreover, limTn = T = S on {S <∞},
because {S <∞} = H ⊂ {T <∞}. It follows from Lemma 5.10 that, almost
surely on {S <∞} = H , we have Tn = S for all n large enough. Since S = T
on H , we have 5.15. So, (c) ⇒ (a). �

Classification of stopping times

A hasty reading of the last theorem might suggest that a stopping time
is predictable if and only if it is a continuity time. This is false in general;
see Example 5.22. However, it is true provided that we limit ourselves to
the stopping times of

(
Got+
)
. We offer this without proof. Note that, when

X = (. . . ,F, . . .) is quasi-left-continuous, then so is the Markov system X0 =(
. . . ,

(
Got+
)
, . . .

)
; so, half of the statements next follow from the last theorem.

5.16 Theorem. Suppose that X is quasi-left-continuous. Consider a
stopping time of

(
Got+
)
. It is predictable if and only if it is a continuity time

for X; it is totally unpredictable if and only if it is a jump time for X. �

5.17 Remark. Let S be an F-stopping time. We call it σ-predictable if
there is a sequence (Sn) of predictable F-stopping times such that, for almost
every ω with S(ω) < ∞, we have S(ω) = Sn(ω) for some n. An arbitrary
F-stopping time R can be written as

R = S ∧ T,5.18

where S is σ-predictable and T totally unpredictable. The preceding the-
orem implies, in particular, that for a quasi-left-continuous system, every
σ-predictable stopping time of

(
Got+
)

is necessarily predictable. Hence, every(
Got+
)
-stopping time R has the form 5.18 with S predictable and T totally

unpredictable; indeed, in the notation 5.6,

S = R{XR−=XR,R<∞}, T = R{XR− �=XR,R<∞}.

Examples

All continuous Markov processes are obviously quasi-left-continuous. So,
we concentrate on processes with jumps. The reader will see that quasi-left-
continuity at a jump time depends on whether that jump is endogeneous (as
in the first example below) or exogeneous (and is caused by kicks from a
Poisson).

5.19 Brownian motion with jump boundaries. This is a variation on Exer-
cise 4.29. The motion X is Brownian inside the interval (a,b) until the time
T of exit; if XT− is a, then XT has some distribution μa on (a,b); if XT− is
b, then XT has some distribution μb on (a,b). This X is strong Markov; it is
not quasi-left-continuous. To see the latter point, let Tn be the time of exit
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from
(
a+ 1/n, b− 1/n

)
; then, (Tn) increases to T , but XT− �= XT . Note that,

in this example, the jumps are triggered by the particle itself. The process of
Example 4.29, by contrast, is quasi-left-continuous; its jumps are exogeneous;
they are caused by kicks from a Poisson.

5.20 Step processes. Suppose that X is a step process. Then X is strong
Markov, we show now that it is quasi-left-continuous. So, X is Hunt.

We start by showing that quasi-left-continuity hold at the time R of first
jump. Let (Rn) be a sequence of stopping times increasing to R. Fix x in E
and recall that, under P

x, the time R has the exponential distribution with
some parameter k(x) <∞.

If x is a trap, then k(x) = 0 and P
x{R = +∞} = 1, and thus the condition

5.3 holds at R by default. Suppose that x is not a trap. Observe that, on
{Rn < R}, we have R = Rn +R ◦ θRn . Thus,

E
xR = E

x R1{Rn=R} + E
x (Rn +R ◦ θRn) 1{Rn<R}

= E
x Rn1{Rn=R} + E

x Rn1{Rn<R} + E
x1{Rn<R}EX(Rn)R

= E
xRn + E

xR P
x {Rn < R} ;

here, we used the strong Markov properly at Rn and noted that XRn = x on
{Rn < R, X0 = x}. Since (Rn) is increasing to R and E

xR < ∞ (since x is
not a trap), we conclude that

lim
n

P
x {Rn < R} = 0.

But, the events {Rn < R} are shrinking to {Rn < R for all n}. So,

P
x {Rn < R for all n} = 0,

that is, for P
x-almost every ω, we have Rn(ω) = R(ω) for all n large enough,

and hence, limXRn(ω) = XR(ω). Thus, quasi-left-continuity holds at R.
Fix m in N, let T be the (m+ 1)th jump time and let (Tn) an increasing

sequence of stopping times with limit T . Let S denote the mth jump time
and put Rn = S ∨ Tn. Then, (Rn) is increasing to T , and S ≤ Rn ≤ T , and
T = S +R ◦ θS with R as before (the time of first jump). The arguments of
the last paragraph apply with the conditional law P

x
S replacing P

x; this is by
the strong Markov property at S. Thus, almost surely on {T <∞}, Rn = T
for all n large enough and

lim
n
XTn = limXRn = XT .

So, quasi-left-continuity holds at T; and since m is arbitrary and the process
X is a step process, this implies quasi-left-continuity for X.

5.21 Lévy processes. Suppose that X − X0 is a Lévy process; see Exercise
4.31. Then, X is strong Markov. We now show that it is quasi-left-continuous
and, hence, a Hunt process.
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If X is continuous, there is nothing to prove. Suppose that it has jumps.
Fix an integer m ≥ 1, and consider the successive jump times at which X
jumps by an amount whose magnitude is in the interval [1/m, 1/m−1). Those
jump times form a Poisson process N; in fact,

Xm = (Ω,H,F, θ,X0 +N,P•)

is a Markov system and X0 +N is a simple step process. It follows from the
preceding example that Xm is quasi-left-continuous. So, every one of its jump
times is totally unpredictable.

Since this is true for every m ≥ 1, and since all those jump times put
together exhaust all the jump times of X , we conclude that X is quasi-left-
continuous.

5.22 Brown and Poisson. This is to show the necessity, in Theorem 5.16,
of restriction to

(
Got+
)
-stopping times. Let X∗ = (Ω,H,F, θ,X∗,P•) be a

Lévy, where X∗ = X0 + W + N , with W Wiener, N Poisson, and W and
N independent. So, X∗ is Hunt. Consider X = (Ω,H,F, θ,X,P•) where X =
X0 + W , which is also a Hunt process. Let T be the time of first jump for
the Poisson process N; it is an F-stopping time and it is totally unpredictable
(since X∗ is Hunt). But, for the Brownian motion X , we have XT− = XT .
This is possible because T is not a stopping time of

(
Got+
)
, the filtration of

X itself.

Exiting a holding point

This is to supplement Theorem 4.22 by showing that a strong Markov
process exits a holding point only by a jump.

5.23 Proposition. Suppose that the system X has the strong Markov
property. Let R be the time of exit from X0 as in 4.20. Then, for every
holding point x in E,

P
x {XR− �= XR} = 1.

Proof. If x is a trap in E, then R = ∞ and XR− = X0 = x and XR = ∂
almost surely; thus the claim holds trivially. Suppose that x is a holding point
but not a trap. Observe that, for every ω in {X0 = x},

R(ω) = r, Xr(ω) = x ⇒ R(θrω) = 0

by the definition of R. Thus,

P
x {XR = x, R ◦ θR = 0} = P

x {XR = x} .5.24

On the other hand, R is a stopping time of
(
Got+
)

and, therefore, of (Ft). By
the strong Markov property applied at R,

P
x {XR = x, R ◦ θR = 0} = E

x1{XR=x}PXR {R = 0}5.25
= E

x1{XR=x}Px {R = 0} = 0
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since P
x{R = 0} = 0 by the assumption that x is a holding point. It follows

from 5.24 and 5.25 that
P
x {XR = x} = 0,

which proves the claim since P
x{XR− = x} = 1. �

The preceding propositions supplies the rigorous reason for the failure
of strong Markov property for Examples 1.28 and 1.29, the delayed uniform
motion and Lévy’s continuous increasing process. Of course, the proposition
has further implications: for instance, if T is a stopping time, on the event
that XT is a holding point, we have XR ◦θT �= XR− ◦θT = XT almost surely.
A somewhat stronger result is next.

No rest for a continuous strong Markov

5.26 Proposition. Suppose that X is strong Markov, and X continuous.
Then, almost surely, t �→ Xt has no flat segments of finite duration.

Proof. We are to show that, for almost every ω, there exists no interval
[r,t] with 0 ≤ r < t < ∞ such that Xs(ω) = Xt(ω) for all s in [r,t] and
Xu(ω) �= Xt(ω) for some u in (t,∞). Define

Qt(ω) = t− inf {r ≥ 0 : Xs(ω) = Xt(ω) for all s in [r , t ]} .
If there were such an interval, then there would exist t such that Qt(ω) > ε
for some rational number ε > 0 and that R(θtω) < ∞; note that R(θtω) is
the length of the interval from t until the exit from Xt(ω). Hence, with

Tε = inf {t : Qt > ε} , Uε = Tε +R ◦ θTε ,

it is enough to show that, for every x in E and every ε > 0,

P
x {Uε <∞} = 0.5.27

Fix x and ε such, and drop ε from the notations Tε and Uε. The process
(Qt) is adapted to (G◦

t ); thus, T is a stopping time of
(
G◦
t+

)
and so is U

consequently. Observe that, on the event {U <∞} we have, by the definitions
of R, T, U ,

T <∞, R ◦ θT > 0, XT = XU , R ◦ θU = 0,

the last being due to the continuity of X . So,

P
x {U <∞} = P

x {U <∞, R ◦ θU = 0} = E
x1{U<∞}P

XU {R = 0}
by the strong Markov property at U; and on the event {U <∞},

P
XU {R = 0} = P

XT {R = 0} = P
x
T {R ◦ θT = 0} = 0

since XU = XT and R ◦ θT > 0 on {U <∞}. Hence, 5.27 holds. �



512 Markov Processes Chap. 9

The paths are locally bounded

5.28 Proposition. Suppose that X is quasi-left-continuous. Then, for
almost every ω and every t < ζ(ω), the set {Xs(ω) : 0 ≤ s ≤ t} is contained
in some compact subset Kω of E.

Proof. Since E is locally compact, there is a sequence (Kn) of compact
subsets increasing to E and such that Kn is contained in the interior of
Kn+1 for each n. Let Tn be the time of exit from Kn for each n. Then, (Tn)
is an increasing sequence of

(
G◦
t+

)
-stopping times, and its limit T is again

a stopping time. Thus, by the assumed quasi-left-continuity, limXTn = XT

almost surely on {T <∞}. By the right-continuity of X and the way the Kn

are picked, XTn+1 is outside Kn for every n. Hence, the limit XT is outside
E on {T < ∞}; in other words, T ≥ ζ on {T < ∞} and, therefore, on Ω
almost surely. Consequently, for almost every ω, if t < ζ(ω), then t < Tn(ω)
for some n, in which case Xs(ω) ∈ Kn for all s ≤ t.

Strong Markov property

In Definition 5.1, the strong Markov property is stated in its most useful,
intuitive form. Several uses of it appeared in the development above. But,
how does one tell whether the given system X is strong Markov?

For primary processes such as Poisson, Brownian, and Lévy, the strong
Markov property was proved directly. For Itô diffusions and jump-diffusions,
its proof exploited the dynamics of the motion and the same property for
Poisson and Wiener. Next we aim at processes X introduced axiomatically;
after some preliminaries, we state a condition on (Pt) that ensures both the
strong Markov property and the quasi-left-continuity, see Definition 5.36.

5.29 Proposition. The Markov system X is strong Markov if and only if

E
x
T f ◦XT+u = Puf ◦XT , x ∈ E, u ∈ R+,5.30

for every f in E+ and every stopping time T of F.

Proof. Necessity is obvious. Sufficiency is essentially as in the proof of
Theorem 1.2: It is enough to show that 5.30 implies 5.2 for V having the form

Vn = f1 ◦Xt1 · · · fn ◦Xtn

for some n ≥ 1, times 0 ≤ t1 < . . . < tn, and functions f1, . . . , fn in E+. This
is done by induction on n, whose steps are the same as those of the proof of
1.2; basically, replace ui there with T + ti. We leave out the details. �

5.31 Lemma. The system X is strong Markov if and only if

E
x f ◦XT+u = E

x Pu f ◦XT , x ∈ E, u ∈ R+,5.32

for every f in E+ and every F-stopping time T .
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Proof. Applying E
x to both sides of 5.30 yields 5.32. For the converse, fix

f and T , let H be an event in FT , and consider the stopping time TH (T on
H defined in 5.6). Assuming 5.32, we get

E
x1H f ◦XT+u = E

x f ◦XTH+u

= E
x Puf ◦XTH = E

x1H Puf ◦XT .

Since H in FT is arbitrary, this is equivalent to 5.30. �

5.33 Lemma. Let T be an F-stopping time that takes values in a count-
able subset of R̄+. Then, the strong Markov property holds at T .

Proof. For fixed t in R+,

E
x1{T=t} f ◦Xt+u = E

x1{T=t}Puf ◦Xt5.34

by the Markov property, since {T = t} ∈ Ft. The same holds (and both sides
vanish) for t = +∞ as well, via the conventions on X∞ and f(∂) and Puf(∂).
Now, summing both sides of 5.34 over the countably many possible values t
for T , we obtain 5.32 via the monotone convergence theorem. �

5.35 Remark. Consider the strong Markov property in the form 5.32.
For an arbitrary F-stopping time T , Proposition V.1.20 provides a sequence
(Tn) of countably-valued stopping times decreasing to T . By the preced-
ing lemma, 5.32 holds for each Tn. By the right-continuity of X , we have
XTn+u → XT+u and XTn → XT as n→ ∞. Thus, if f and Puf are continu-
ous and bounded, then 5.32 will hold for T . And, if 5.32 holds for f continuous,
then it will hold for all f in E+ by a monotone class argument, and hence
the strong Markov property. For this program to work, we need an assump-
tion that the function Puf be continuous for f continuous, both regarded as
functions on the compact space Ē. We take this up next.

Feller processes

Let C0 = C0(E �→ R), the set of all continuous functions f : E �→ R with
limx→∂ f(x) = 0. Elements of C0 are called continuous functions vanishing at
infinity. These are functions on E whose automatic extensions (with f(∂) =
0) onto Ē yield continuous functions on Ē. Since Ē is compact, every such
function is bounded. Every continuous function f̄ : Ē �→ R has the form
f̄(x) = f(x) + c for some f in C0 and some constant c, namely, c = f̄(∂).

5.36 Definition. The Markov system X is called a Feller system if

f ∈ C0 ⇒ Ptf ∈ C0 for every t in R+.5.37

5.38 Remark. a) Since X is right-continuous, the condition 5.37
implies that
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f ∈ C0 ⇒ lim
t→0

Ptf(x) = f(x), x ∈ E.5.39

For, as t → 0, we have Xt → X0, and f ◦Xt → f ◦X0 by the continuity of
f; thus

Ptf(x) = E
x f ◦Xt → E

x f ◦X0 = f(x)

by the bounded convergence theorem and the normality of X.
b) In the absence of X, a sub-Markov semigroup (Pt) is said to satisfy

the Feller condition if 5.37 and 5.39 hold. Given such a semigroup, and given
E as in 4.1, it is possible to construct a system X that satisfies 4.1–4.6 and
is a Markov system in the sense of Definition 4.7. The construction is long
and tedious. Following the modern sensibilities, we have defined the Markov
system X axiomatically, rather than treating the semigroup (Pt) (which is
rarely explicit except for Wiener and Poisson) as the primary object. The
next theorem shows that every Feller process is a Hunt process, that is, it is
strong Markov and quasi-left-continuous.

5.40 Theorem. If X is a Feller system, then it is a Hunt system.

Proof. Suppose that X has the Feller property 5.37, we need to show that,
then, X is strong Markov and quasi-left-continuous.

a) For the first, we follow the program outlined in Remark 5.35. Let T
be an F-stopping time, choose stopping times Tn decreasing to T such that
each Tn is countably-valued. By Lemma 5.33,

E
x f ◦XTn+u = E

x Pu f ◦XTn

for f in Eb. Now let f ∈ C0 and let n → ∞. We obtain 5.32 through the
right-continuity of X , the continuity of f and Puf in C0 when extended onto
Ē, and the bounded convergence theorem. Finally, 5.32 extends to f in E+

by a monotone class argument. Thus, X is strong Markov.
b) To show quasi-left-continuity, let T be a stopping time of F, and (Tn)

an increasing sequence of such times with limit T; we need to show that

limXTn = XT almost surely on {T <∞} .5.41

It is enough to show that it is so almost surely on {T ≤ b} for every b < ∞;
then, letting b→ ∞ over the integers yields the desired end. But, on {T ≤ b},
we have T = T ∧ b and Tn = Tn ∧ b, which are all bounded stopping times.
Thus, we may and do assume that T is bounded.

Since X is left-limited in Ē, the limits

L = lim
n
XTn , Lu = lim

n
XTn+u5.42

exist, the latter for every u > 0. For u > 0, we have Tn(ω) + u > T (ω) for
all n large enough; thus, Lu → XT as u → 0, by the right-continuity of X .
Hence, for continuous f̄ and ḡ on Ē,

E
x f̄ ◦ L ḡ ◦XT = lim

u→0
lim
n→∞ E

x f̄ ◦XTn ḡ ◦XTn+u.5.43
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We can write ḡ = c+g, where g ∈ C0 and c = ḡ(∂). Using the already proved
strong Markov property at Tn, we see that the right side of 5.43 is equal to

lim
u→0

lim
n→∞ E

x
(
f̄ ◦XTn

)
(c+ Pug ◦XTn)

= lim
u→0

E
x
(
f̄ ◦ L) (c+ Pug ◦ L) ,

where the last equality follows from the bounded continuity of f̄ and Pug,
the latter being through the assumed Feller property 5.37 applied to g in C0.
Thus, using Remark 5.38a to the effect that Pug → g as u → 0, we see that
5.43 becomes,

E
xf̄ ◦ L ḡ ◦XT = E

x f̄ ◦ L ḡ ◦ L.5.44

Since continuous functions of the form f̄ × ḡ generate the Borel σ-algebra
on Ē × Ē, a monotone class argument applied to 5.44 shows that

E
x h̄ ◦ (L,XT ) = E

x h̄ ◦ (L,L)

for every bounded Borel function h̄ on Ē × Ē. Taking h̄ to be the indicator
of the diagonal of Ē × Ē, and noting the definition of L in 5.42, we obtain
the desired result 5.41. �

Markovian bestiary

Poisson processes are the quintessential Markov processes with jumps.
Brownian motions are the continuous Markov processes par excellence. They
are both Lévy processes.

All Lévy processes are Itô processes; the latter are processes that satisfy
stochastic integral equations like 3.1, but with a further term that define
a compensated sum of jumps; see 3.95. Itô diffusions, jump-diffusions, and
simple processes are special cases of Itô processes.

All Itô processes are Feller processes. The latter are introduced through
their transition functions, with conditions on how the transition kernels Pt
treat continuous functions. From those conditions follow the real objectives:
regularity properties of the sample paths, strong Markov property, quasi-left-
continuity, etc.

All Feller processes are Hunt processes. The latter are introduced ax-
iomatically by saying that we have a process and it has the following desir-
able properties. This is the straightforward approach; it puts the process as
the central object, the axioms can be checked directly in practical situations
or in the case of Itô processes.

All Hunt processes are “standard;” the latter allow quasi-left-continuity to
fail at ζ, at the end of life. Finally, all standard processes are “right processes,”
the latter form a class of Markov processes that is invariant under certain
useful transformations such as killing, time changes, spatial transformations.
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These are the objects of the general theory of Markov processes. (See the
notes for this chapter for references.)

There is a class of processes that is totally outside of all the previous
classes: It consists of Markov processes (in continuous-time) with discrete
state spaces, but without the sample path regularities such as right-continuity.
When the state space is discrete (with the discrete topology), every right-
continuous left-limited path is necessarily a step process; too simple, theoret-
ically. On the other hand, on a general state space, it is impossible to build a
theory without right-continuity etc. for the paths. But, with a discrete state
space, it is possible to create a rich theory that allows sample paths to have
discontinuities of the second type. Such processes should be called Chung
processes.

Exercises and Complements

5.45 Additive functionals. Let X be a Markov system with living space E.
Let f ∈ Eb+ and put

At =
ˆ t

0

ds f ◦Xs, t ∈ R+.

Show that, for every ω,

At+u(ω) = At(ω) +Au(θtω), t, u ∈ R+;

then, A is said to be additive.

5.46 Continuation. Let X be a Markov system. Let A = (At) be an increasing
right-continuous process with Ao = 0. It is said to be an additive functional
of X if it is additive and is adapted to

(
G◦
t+

)
. The preceding exercise gave an

example of a continuous additive functional. If X is a Brownian motion, the
local time at 0 is another example of a continuous additive functional. If X
is a jump-diffusion as in Section 3, then

At =
∑

s≤t
f ◦ (Xs−, Xs) 1{Xs− �=Xs}, t ∈ R+,

is an additive functional of the pure-jump type.

5.47 Time changes. Let X be a Hunt system with living space E. Let f : E �→
(0, 1) be Borel and define

Ct =
ˆ t

0

ds f ◦Xs, t ∈ R+.

Then, C is a strictly increasing continuous additive functional. Using C as
a random clock, let S be its functional inverse (that is, Su = inf{t ≥ 0 :
Ct > u}, u ∈ R+). Each St is a stopping time of

(
G◦
t+

)
and of (Ft). Define

X̂t = XSt , θ̂t = θSt , F̂t = FSt , t ∈ R+.
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Show that X̂ = (Ω, H, F̂, θ̂, X̂, P
•) is again a Hunt system with living

space E.
5.48 Increasing continuous processes. Let X be a Hunt system with living
space E = R+. Suppose that t �→ Xt is increasing and continuous, and that
ζ = +∞.

a) Show that t �→ Xt is strictly increasing.
b) Put Ct = Xt −X0. Show that C is an strictly increasing continuous

additive functional of X .
c) Let X̂ be the time-changed process. Note that X̂t = X0 + t, de-

terministic, except for the initial state. Show that (St) is a continuous ad-
ditive functional of X̂. In particular, this means that St is determined by
{X̂s : s ≤ t}.

d) Conclude that (St) and, therefore, (Ct) and (Xt) are deterministic
except for the dependence onX0. Here is the form ofX : Let f be a continuous
strictly increasing function on R+ with f(0) = 0. If X0(ω) = x, choose the
unique time t0 such that f(t0) = x; Then Xt(ω) = f(t0 + t) for all t ≥ 0.

5.49 Step processes. Let X be such that X is a step process; let (Yn), (Tn),
and k(x) be as in 3.69 et seq., with no traps. Let

Ct =
ˆ t

0

ds k ◦Xs, t ∈ R+,

and consider the process X̂ obtained as in 5.47, but from this C.
a) Show that X̂ has the form

X̂t = Yn on
{
T̂n ≤ t < T̂n+1

}
,

where T̂0 = 0, and {T̂n+1 − T̂n : n ∈ N} is an independency of standard
exponential variables that is independent of (Yn). Thus, X̂t = YNt , where N
is a standard Poisson process independent of Y .
5.50 Continuation. Let X be as in Example 5.19 above, where X is a Brow-
nian motion inside (a, b) and has sojourns at a and b before jumping into
(a, b). Define

Ct =
ˆ t

0

ds 1(a,b) ◦Xs.

Note that C remains flat during sojourns of X . Now, C is still a continuous
additive functional, but not strictly increasing. Define (St) and X̂ as in the
preceding exercise.

a) Show that X̂ is a Markov system with living space [a, b] except that
the normality fails (for P

a and P
b). Of course, the actual state space for X̂ is

the interval (a, b); and X̂ is a Markov system with living space (a, b), since
normality does hold for x in (a, b) and x = ∂.

b) Describe the process X̂ .
c) Is X̂ with living space (a,b) a Hunt process?
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5.51 Semimartingale Hunt processes. Let X be an Itô process; see 3.95. Let
f, C, S, X̂ be as in Exercise 5.47 above. Then, X̂ is a Hunt system as mentioned
in 5.47. Moreover, every component X̂ i of X̂ is a semimartingale.

This has a converse. Every Hunt process X̂ whose components are semi-
martingales has the structure described. Somewhat more explicitly, let X̂
be a Hunt process with state space E = R

d. Then, there are deterministic
measurable functions a, b, j, f and (on an enlargement of the original prob-
ability space) a Wiener process W and a Poisson random measure M such
that X̂t = XSt where X is an Itô process as described in 3.95 and S is defined
from X and f as in 5.47. See the notes for this chapter.

6 Potentials and Excessive Functions

This section is independent of Section 5, and its dependence on the earlier
sections is slight. Throughout, X = (Ω,H,F, θ,X,P•) is a Markov system
with living space E and transition semigroup (Pt); see 4.1–4.6 and Definition
4.7 for these and the attendant conventions.

For f in Eb and p > 0, by the arguments of Example 4.18,

Upf(x) = E
x

ˆ ∞

0

dt e−pt f ◦Xt, x ∈ E,6.1

defines a function Upf in Eb. The same makes sense for f in E+ and p ≥ 0,
and the result is a function Upf in E+. In both cases,

Upf(x) =
ˆ
E

Up(x, dy) f(y), x ∈ E,6.2

where

Up(x,A) = E
x

ˆ ∞

0

dt e−pt 1A ◦Xt =
ˆ ∞

0

dt e−pt Pt(x,A).6.3

If p > 0, then Up is a bounded kernel: Up(x,E) ≤ 1/p. When p = 0, writing
the integral over t as a sum of integrals over [n, n + 1) shows that U0 is
Σ-bounded, but generally not σ-finite.

The function Upf is called the p-potential of f, and Up the p-potential
kernel or p-potential operator depending on the role it plays. The family
(Up)p>0 of operators Up : Eb �→ Eb is called the resolvent of the semigroup
(Pt) or of the Markov process X .

6.4 Theorem. a) The resolvent equation

Up − Uq + (p− q)Up Uq = 06.5

holds for p, q > 0; in particular, Up Uq = Uq Up.
b) For each p > 0, the kernel pUp is sub-Markov; and

lim
p→∞ pUp f(x) = f(x)
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for every f in Eb that is continuous at the point x of E.

Proof. Follows from the same arguments as in 2.36–2.39 and Theorem
2.40. �

Potentials and supermartingales

6.6 Theorem. Let p > 0 and f ∈ Eb+. Then, for each x in E,

Mt =
ˆ t

0

ds e−ps f ◦Xs + e−pt Up f ◦Xt, t ∈ R+,

is a uniformly integrable F-martingale over (Ω,H,Px).

Proof. Define

At =
ˆ t

0

ds e−ps f ◦Xs, t ∈ R+.6.7

The process (At) is increasing, and the limit A∞ is a bounded positive vari-
able in G∞ since p > 0 and f is bounded. Note that

A∞ = At +
ˆ ∞

t

ds e−ps f ◦Xs = At + e−pt A∞ ◦ θt.

Thus, by the Markov property at t,

E
x
t A∞ = At + e−pt E

Xt A∞ = At + e−pt Upf ◦Xt = Mt,

since E
yA∞ = Upf(y) by definition. Via Theorem V.5.13, this shows that M

is a uniformly integrable martingale, with respect to F, under every P
x. �

6.8 Corollary. Under each P
x,

Vt = e−pt Upf ◦Xt, t ∈ R+,

is a positive supermartingale with limt→∞ Vt = 0.

Proof. We have V = M − A with the definitions in 6.6 and 6.7, and the
process A is increasing. Thus, V is a supermartingale. And, limt→∞ Vt = 0,
because, by the martingale convergence theorem,

lim
t→∞ Mt = lim

t
E
x
t A∞ = A∞ = lim

t→∞ At. �

In martingale terminology, the process (Vt) is a potential; see V.4.53. The
decomposition

V = M −A

is an instance of Doob-Meyer decomposition for supermartingales, which is
the continuous-time version of Doob’s decomposition given in Theorem V.3.2.
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Going back to Theorem 6.6, the uniform integrability of M implies that
M is a Doob martingale on [0,∞], and thus

E
x MT = E

xM0 = Upf(x)

for every stopping time T of F. This proves the following corollary to 6.6.

6.9 Theorem. Let p > 0 and f ∈ Eb+. Then, for every x in E,

Upf(x) = E
x

ˆ T

0

ds e−ps f ◦Xs + E
x e−pT Upf ◦XT

for every F-stopping time T . In particular, if f ◦Xs = 0 on {s < T }, then

E
x e−pT Up f ◦XT = Up f(x), x ∈ E.

The particular case is useful in computing the distributions of T and XT

by choosing f appropriately. The theorem is the potential counterpart of
Dynkin’s formula using generators; see Theorem 2.27 for Dynkin’s formula
for Itô diffusions.

Excessive functions

6.10 Definition. Let p ∈ R+. A function f in E+ is said to be p-
excessive if

a) f ≥ e−pt Ptf for every t in R+, and

b) limt→0 e
−pt Ptf(x) = f(x) for every x in E.

The condition (a) is called the p-supermedian property for f ; other terms
in use are p-super-mean-valued, p-superaveraging. It implies, via the semi-
group property PtPu = Pt+u, that the mapping t �→ e−ptPtf(x) is decreas-
ing. Hence, the limit in (b) is an increasing limit, and the condition (b) can
be written as

sup
t

e−pt Pt f(x) = f(x).6.11

If the conditions (a) and (b) hold for Borel f , without requiring that f be
positive, then f is said to be p-superharmonic. In all this, when p = 0, it is
dropped both from notation and terminology. The following is the connection
to supermartingales.

6.12 Proposition. Let p ≥ 0. Let f be p-supermedian. Then, for each x
in E with f(x) <∞, the process

Yt = e−pt f ◦Xt, t ∈ R+,

is an F-supermartingale over (Ω,H,Px).
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Proof. Obviously, Y is adapted to F. Fix x such that f(x) < ∞. Then,
since f is p-supermedian,

f(x) ≥ e−pt Ptf(x) = E
x e−pt f ◦Xt = E

x Yt,

showing that Yt is integrable under P
x. And, by the Markov property of X ,

E
x
t Yt+u = e−p(t+u)

E
x
t f ◦Xt+u

= e−pt e−pu Pu f ◦Xt ≤ e−pt f ◦Xt = Yt,

where the inequality is via the p-supermedian property of f . �

In the preceding proposition, if f is p-excessive, it can be shown that Y is
right-continuous. Thus, p-excessive functions are, roughly speaking, continu-
ous over the paths of X .

Potentials are excessive

6.13 Proposition. Let p ≥ 0 and f ∈ E+. Then, Upf is p-excessive.

Proof. Clearly, Upf ∈ E+. Also, by Fubini’s theorem,

e−pt Pt Up f = e−pt
ˆ ∞

0

du e−pu Pt Pu f =
ˆ ∞

t

ds e−ps Psf.

The last integral is dominated by Upf and increases to Upf as t decreases
to 0. Hence, Upf is p-excessive. �

The following is one-half of a theorem characterizing excessive functions
in terms of the resolvent. But it is sufficient for our purposes.

6.14 Proposition. Let p ≥ 0 and let f be p-supermedian. Then q �→
qUp+qf is increasing and dominated by f . Its limit is f as q → ∞ if f is
p-excessive.

Proof. Fix p ≥ 0. For q > 0,

q Up+q f =
ˆ ∞

0

dt q e−qt e−pt Ptf =
ˆ ∞

0

du e−ue−pu/q Pu/q f.

As q increases, u/q decreases and the integrand increases by the
p-supermedian property of f . By the same property, the last integrand
is dominated by e−uf , and hence, the integral is dominated by f . Finally, if
f is p-excessive, the integrand increases to e−uf as q → ∞, and the monotone
convergence theorem implies that the integral becomes f in the limit. �
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Approximation by bounded potentials

Let f be p-excessive. Then, for each n, the function nUp+nf = Up+n(nf)
is a potential, and as n→ ∞ the limit is f . So, every p-excessive function is
the limit of an increasing sequence of potentials. The following sharpens the
result when p > 0.

6.15 Theorem. Let p > 0. Let f be p-excessive. Then, there exists a
sequence (gn) in Eb+ such that the sequence (Upgn) increases to f.

Proof. For each integer n ≥ 1, put fn = f ∧ n; each fn is bounded and
p-supermedian (since f is such and the constant n is such a function). By the
resolvent equation 6.5,

Up+q fn = Up fn − q Up Up+q fn;

the right side is well-defined as the difference of two bounded functions since
fn is bounded and p > 0. Thus, with gn = n(fn − nUp+nfn), we have

nUp+n fn = Up gn.6.16

Since fn is p-supermedian, Proposition 6.14 yields fn ≥ nUp+nfn, and
hence gn ∈ Eb+ for every n. There remains to show that the left side of
6.16 increases to f as n → ∞. To that end, we note that (fn) is increasing
to f , and that qUp+qfn is increasing in q, since fn is p-supermedian (see
Proposition 6.14). Thus, the left side of 6.16 is increasing in n, and

lim
n

nUp+n fn = lim
q

lim
n

qUp+q fn = lim
q

q Up+q f = f,

the last equality being via Proposition 6.14 applied to the p-excessive func-
tion f . �

Supermedian property at stopping times

This is essentially Doob’s stopping theorem for the supermartingale Y
of Proposition 6.12. See Exercises 6.23–6.26 for its interpretation in optimal
stopping games.

6.17 Theorem. Let p ≥ 0. Let f be p-excessive. Then, for every
F-stopping time T ,

f(x) ≥ E
x e−pT f ◦XT , x ∈ E.6.18

Proof. Suppose that p > 0. Let (gn) be as in Theorem 6.15, so that
Upgn ↗ f . By Theorem 6.9,

Up gn(x) ≥ E
x e−pT Upgn ◦XT .

Letting n→ ∞ we obtain 6.18 when p > 0.
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If p = 0 and f is excessive, then f is p-excessive for every p > 0, and
thus 6.18 holds for every p > 0. Let p decrease to 0 strictly. By the monotone
convergence theorem,

f(x) ≥ lim
p→0

E
x e−pT f ◦XT = E

x 1{T<∞}f ◦XT = E
x f ◦XT ,

since XT = ∂ on {T = ∞} and f(∂) = 0.

Exercises

6.19 Poisson process. Let X = X0 + N where N is a Poisson process with
rate c; we take E = R+. Show that

Uf (x) = E
x

ˆ ∞

0

dt f ◦Xt =
1
c

∞∑

j=0

f(x+ j), x ∈ E,

for every f positive Borel, more generally, for p ≥ 0, show that

Upf(x) =
1

c+ p

∞∑

j=0

(
c

c+ p

)j
f (x+ j) .

6.20 Stable processes. Suppose that X = X0 + S, where S is an increasing
stable process with index a in (0,1). Suppose that its Lévy measure is given
as λ(dx) = (c/xa+1)dx, with c = a/Γ(1 − a); see Example VII.7.6b. Show
that, with E = R+,

Uf (x) =
1

Γ(a)

ˆ ∞

x

dy (y − x)a−1 f(y), x ∈ E.

6.21 Brownian motion. Suppose that X = X0 +W , the standard Brownian
motion in R

d.

a) For d = 1 or d = 2, show that

Uf (x) = +∞, x ∈ R
d,

for every f positive Borel on R
d, except for f = 0 in which case Uf = 0.

b) Show, if d ≥ 3, that

Uf(x) =
Γ
(
d
2
− 1
)

2 πd/2

ˆ
Rd

dy |y − x|2−d f(y)

for all x in R
d and positive Borel f on Rd. Thus, except for multiplication by

a constant, Uf is the Newtonian potential of f in classical potential theory.

6.22 Excessive functions. For the Markov system X, prove the following.

a) If f = c for some constant c ≥ 0, then f is p-excessive for every
p ≥ 0.
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b) If f is p-excessive, then it is q-excessive for every q ≥ p.
c) If f is p-excessive and c ≥ 0 is a constant, then cf is p-excessive. If

f and g are p-excessive, then so is f + g.
d) If (fn) is an increasing sequence of p-excessive functions with limit

f , then f is p-excessive. Hint: e−pt Pt fn is increasing in n, and increasing
with decreasing t.

e) If f and g are p-supermedian, then so is f ∧ g.
6.23 Brownian motion on R. Let X be a standard Brownian motion on R.
Let f be excessive (p = 0). Show that f = c for some constant c ≥ 0. Hint:
Use 6.18 with T = Ty, the hitting time of the point y.

6.24 Continuation. Let X̂ be a standard Brownian motion on R, and let
Xt = X̂τ∧t, where τ is the time of exit for X̂ from the fixed interval (a,b).
Thus, X lives in E = [a, b], and the boundary points a and b are traps. Show
that every excessive function for X is a concave function on [a,b]. Hint: Recall
the formula for E

x f ◦ XT for y < x < z and T the time of exit from the
interval (y, z) ⊂ [a, b]. Fix y and z, take x = αy + (1 − α)z for 0 ≤ α ≤ 1.

6.25 Optimal stopping. We are to receive a one-time reward of f ◦XT dollars
if we choose time T to ask for the reward. We want to choose a stopping time
To that maximizes

E
x e−rT f ◦XT , T is an F-stopping time,

if possible, or, if this proves impossible, come close to the value

v(x) = sup
T

E
x e−rT f ◦XT ,

where the supremum is over all F-stopping times. Here, f is a positive Borel
function on E, called the payoff function. We interpret r as the interest rate,
and v is called the value of the game.

a) If f is r-excessive, then v = f and T0 = 0 is an optimal stopping time.
b) In general, v is the minimal r-excessive function that dominates f .

6.26 Continuation. Suppose that X is the standard Brownian motion on R.
Let f be a bounded positive function on R, and take r = 0. Show that v = c,
no computations needed, where

c = sup
y∈R

f(y).

If the supremum is attained, that is, there exists x∗ in R such that f(x∗) = c,
then the time T0 of hitting x∗ is an optimal stopping time. If f(x) = 1− e−x

for x > 0 and is 0 otherwise, then v(x) = c = 1 for all x in R; but there is
no optimal stopping time; recall that X∞ = ∂ and f(∂) = 0 – the dead pay
nothing. As this example indicates, there might be no optimal stopping time.
But, for every ε > 0 there is a stopping time Tε such that

E
x f ◦XTε ≥ v(x) − ε.
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7 Appendix: Stochastic Integration

This is a quick introduction to stochastic calculus. It is driven by the
needs of Section 2 on Itô diffusions. We limit ourselves mostly to continuous
processes and omit almost all proofs.

Throughout, (Ω,H,P) is a complete probability space, and F = (Ft) is an
augmented right-continuous filtration. All processes are adapted to this F,
without further mention. Also, all processes have the state space (R, BR). We
introduce the term Stieltjes process as a short substitute for a process whose
almost every path is right-continuous, is left-limited, and has bounded total
variation over every bounded interval. Then, to repeat Definition V.5.18, a
process X is a semimartingale if it can be written as the sum of a local
martingale and a Stieltjes process.

Stochastic integrals

For our current purposes, we call σ = (ti) a subdivision of R+ if 0 =
t0 < t1 < · · · and lim tn = +∞. A subdivision of [0,t] is a finite sequence
σ = (t0, t1, . . . , tn) with 0 = t0 < t1 < · · · < tn = t. In both cases, ‖σ‖ =
sup
i

(ti+1 − ti) is called the mesh of σ.

Let F be a left-continuous process, and X continuous. For every subdivi-
sion σ = (ti) of R+, we define a new process Y σ by putting Y σ0 = 0 and

Y σt =
j∑

i=1

Fti−1 .
(
Xti −Xti−1

)
+ Ftj ·

(
Xt −Xtj

)
if tj < t ≤ tj+1.7.1

Then, Y σ is a continuous process. Note the resemblance to V.3.4, the integral
in discrete time. We omit the proof of the following fundamental result.

7.2 Theorem. Let F be a left-continuous process, and X a continuous
semimartingale. Then, there exists a unique process Y such that

lim
‖σ‖→0

P

{
sup

0≤t≤u
|Y σt − Yt| > ε

}
= 0

for every ε > 0 and u < ∞. The process Y is a continuous
semimartingale. �

7.3 Definition. The process Y of the preceding theorem is called the
stochastic integral of F with respect to X, and the notations

ˆ
F dX and

ˆ t

0

Fs dXs

are used, respectively, for the process Y and the random variable Yt.
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7.4 Remark. a) The theorem can be re-phrased: as ‖σ‖ → 0, Y σt → Yt
in probability, uniformly in t over compacts. The uniqueness of Y is up to
indistinguishability.

b) If X is a Stieltjes process, then the stochastic integral coincides with
the path-by-path ordinary integral, that is, for almost every ω, the number
Yt(ω) is the Riemann-Stieltjes integral of the function s �→ Fs(ω) with respect
to the bounded variation function s �→ Xs(ω) over the interval [0,t]. Of course,
then Y is a continuous Stieltjes process.

c) If X is not Stieltjes, if X = W Wiener for instance, then Yt(ω) is not
the limit of Y σt (ω) with ω held fixed. In fact, in most cases, lim‖σ‖→0 Yt

σ(ω)
will not exist.

7.5 Example. Wiener driven integrals. Suppose that F is left-continuous
and bounded, andX = W , a Wiener process. Then, Y is an L2-martingale and

E|
ˆ t

0

Fs dWs|2 = E

ˆ t

0

|Fs|2 ds.7.6

Here is the explanation. Given a subdivision σ = (ti), define the left-
continuous step process Fσ by letting Fσt = Fti−1 for ti−1 < t ≤ ti, and
F σ0 = F0. Note that, in fact, Y σ is the integral of F σ with respect to X by
every reasonable definition of integration. It is evident from 7.1 that Y σ is
now a martingale with

E |Y σt |2 = E

ˆ t

0

|Fσs |2 ds;7.7

this is an easy computation recalling that the increments Wti −Wti−1 are
independent with mean 0 and variances ti− ti−1. In fact, since F is bounded,
Y σt → Yt in the sense of L2-convergence as ‖σ‖ → 0. And, F σ → F by the
left-continuity of F . Thus, letting ‖σ‖ → 0 on both sides of 7.7 we obtain 7.6.

Arithmetic of integration

Stochastic integrals are the same as ordinary integrals in linearity etc.
The next proposition shows them; proofs are immediate from 7.1–7.3.

7.8 Theorem. Let F and G be left-continuous processes, X and Y con-
tinuous semimartingales, and a and b constants. Then,

ˆ
(aF + b G) dX = a

ˆ
F dX + b

ˆ
G dX,

ˆ
F d(aX + bY ) = a

ˆ
F dX + b

ˆ
F dY ,

Y =
ˆ

F dX ⇒
ˆ

G dY =
ˆ

(F ·G) dX.
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7.9 Remark. Let X be a continuous semimartingale. Then,

X = L+ V,7.10

where L is a continuous local martingale and V is a continuous Stieltjes
process. For F left-continuous, then

ˆ
F dX =

ˆ
F dL+

ˆ
F dV ,7.11

and, on the right side, the first term is a continuous local martingale, and the
second is a continuous Stieltjes. In particular, if L is a martingale and F is
bounded, then the first term is a martingale; Example 7.5 is a special case.

Cross variation, quadratic variation

Given processes X and Y , and a subdivision σ = (ti) of R+, let

Cσt =
∑

ti<t

(
Xti+1 −Xti

) (
Yti+1 − Yti

)
, t ∈ R+.7.12

When X = Y = W , Wiener, we have seen in Theorem VIII.7.2 that Cσt → t
in probability as ‖σ‖ → 0. The following is the general case.

7.13 Theorem. Let X and Y be continuous semimartingales. Then,
there is a continuous Stieltjes process C such that Cσt → Ct in probability for
every t in the limit as ‖σ‖ → 0. �

The process C of the preceding theorem is called the cross variation of
X and Y , and the notation 〈X,Y 〉 is employed for it, that is,

〈X,Y 〉t = Ct, t ∈ R+.7.14

In particular, 〈X,X〉 is called the quadratic variation for the continuous semi-
martingale X; it is an increasing process in view of 7.12. The approximation
7.12 shows as well that

〈X + Y, X + Y 〉 = 〈X,X〉 + 2〈X,Y 〉 + 〈Y, Y 〉.7.15

Solving this for 〈X,Y 〉, since all other terms are increasing processes, we see
that 〈X,Y 〉 is indeed the difference of two increasing processes (as a Stieltjes
process must be).

7.16 Proposition. Let X and Y be continuous semimartingales; if X or
Y is Stieltjes, then 〈X,Y 〉 = 0. In particular, if X = L+ V as in 7.10, then
〈X,X〉 = 〈L,L〉.

Proof. Suppose Y is Stieltjes. From 7.12, we have

|Cσt | ≤ sup
tj<t

∣∣ Xtj+1 −Xtj

∣∣
∑

ti<t

∣∣Yti+1 − Yti
∣∣ .
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As ‖σ‖ → 0, the supremum goes to 0 by the continuity of X, and the sum goes
to the total variation of Y over [0,t]. The latter is finite since Y is assumed
to be Stieltjes. Thus, Cσt → 0, that is, 〈X,Y 〉 = 0. The particular statement
follows from 7.15 for 〈L+ V, L+ V 〉, because 〈L, V 〉 = 〈V, V 〉 = 0 since V is
continuous Stieltjes.

Stochastic differentials

In analogy with ordinary calculus, we write

dY = F dX ⇔ Yt = Y0 +
ˆ t

0

Fs dXs, t ∈ R+.7.17

Similarly, in view of 7.12–7.14, we introduce the notation

dX dY = d〈X,Y 〉.7.18

In particular, dX dX = (dX)2 becomes the notation for the differential of
the increasing continuous process 〈X,X〉. Next are the rules of stochastic
differential calculus.

7.19 Theorem. Let F and G be left-continuous processes, X and Y con-
tinuous semimartingales, and a and b constants. Then,

a) d(aX + bY ) = a dX + b dY ,

b) F · (dX + dY ) = F dX + b dY ,

c) (aF + b G) dX = a F dX + b G dX,

d) F · (G dX) = (F ·G) dX,

e) (F dX)(G dY ) = (F ·G) dX dY , and

f) if X or Y is Stieltjes, then dX dY = 0.

Proof. (a) is direct from the definitions; (b), (c), (d) are the differential
versions of the properties listed in Theorem 7.8; (e) follows by a simple com-
putation from 7.12 upon replacingX there with

´
F dX , and Y with

´
G dY ;

finally, (f) is a re-statement of Proposition 7.16.

Itô’s formula

This is the chain rule of differentiation for stochastic calculus. Recall that
C2(Rd �→ R) is the class of function f : R

d �→ R that are twice continu-
ously differentiable, and that we write ∂if(x) for ∂

∂xi
f(x), and ∂ijf(x) for

∂2

∂xi∂xj
f(x). When d = 1, we write f ′ for the first derivative, and f ′′ for the

second. The next is Itô’s formula for continuous semimartingales.
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7.20 Theorem. Let X1, . . . , Xn be continuous semimartingales, and put
X = (X1, . . . , Xn). For f in C2(Rn �→ R), then, f ◦X is a semimartingale,
and

d(f ◦X) =
n∑

i=1

(∂if ◦X) dXi +
1
2

n∑

i=1

n∑

j=1

(∂ijf ◦X) dXi dXj .

7.21 Remark. a) For n = 1, Itô’s formula becomes

d(f ◦X) = (f ′ ◦X) dX +
1
2

(f ′′ ◦X) (dX)2 .

b) If X1, . . . , Xn are continuous Stieltjes processes, then dXi dXj = 0
for all i and j, and Itô’s formula becomes the chain rule of differential calculus:

d (f ◦X) =
n∑

i=1

(∂if ◦X) dX i.

c) We re-state the conclusion of the theorem above in the formal nota-
tion of stochastic integrals:

f◦Xt = f◦X0+
n∑

i=1

ˆ t

0

(∂if ◦Xs) dXi
s+

1
2

n∑

i=1

n∑

j=1

ˆ t

0

(∂ijf ◦Xs) d〈Xi, Xj〉s.

d) Taking n = 2 and f(x, y) = xy in the preceding formula, we obtain
the following formula for integration by parts for continuous semimartingales
X and Y :

XtYt = X0Y0 +
ˆ t

0

Xs dY s +
ˆ t

0

Ys dXs + 〈X,Y 〉t.

Wiener driven integrals

7.22 Lemma. Let X and Y be independent Wiener processes. Then,
dX dY = 0.

Proof. We have 〈X,X〉t = 〈Y, Y 〉t = t by Theorem VIII.7.2. By the same
theorem, since X+Y =

√
2W for some Wiener W, we have 〈X+Y,X+Y 〉t =

2t. The claim now follows from 7.15. �

Adding the preceding lemma to Itô’s formula proves the following.

7.23 Theorem. Let W 1, . . . ,Wn be independent Wiener processes and
put W = (W 1, . . . ,Wn). For f in C2(Rn �→ R), then,

d (f ◦Wt) =
n∑

i=1

(∂if ◦Wt) dW i
t +

1
2

n∑

i=1

(∂iif ◦Wt) dt.
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Characterizations for Wiener processes

Recall the martingale characterization for Wiener processes; see
Theorem V.2.19 and Proposition V.6.21: The processesW and Y =

(
W 2
t − t

)

are continuous martingales with W0 = Y0 = 0 if and only if W is a Wiener
process. Itô’s formula in 7.20 with n = 1 and f(x) = x2 identifies the
process Y ,

W 2
t − t = 2

ˆ t

0

Ws dW s,

and shows, furthermore, that
(
W 2
t − t

)
is a martingale if and only if

〈W,W 〉t = t. This last property characterizes Wiener processes among all
continuous local martingales:

7.24 Theorem. Let X be a continuous local martingale with X0 = 0.
Then, X is a Wiener process if and only if 〈X,X〉t = t for all t ≥ 0.

Proof. Necessity is by Theorem VIII.7.2. We show the sufficiency next.
Suppose that 〈X,X〉t = t for all t. Then, by Itô’s formula with n = 1 and f
in C2(R �−→ R),

f ◦Xt = f(0) +
ˆ t

0

(f ′ ◦Xs) dXs +
1
2

ˆ t

0

(f ′′ ◦Xs) ds.

Assuming further that f, f ′, f ′′ are bounded, the stochastic integral term
on the right side defines a martingale. This is the content of Lemma V.6.22,
and the proof of Proposition V.6.21 applies to show that X is a Wiener
process. �

The next theorem is the n-dimensional version of the preceding. The ne-
cessity part of its proof is by Lemma 7.22; we omit the proof of sufficiency
(it is similar to that of V.6.21).

7.25 Theorem. Let X1, . . . , Xn be continuous local martingales with
Xi

0 = 0 for every i. Then, X1, . . . , Xn are independent Wiener processes if
and only if

〈X i, Xj〉t = I (i, j) t, t ∈ R+,

where I is the identity matrix in n-dimensions.

Itô’s formula and the characterization above in terms of cross variations
form a summary of stochastic integrals driven by Wiener processes.

Local martingales as stochastic integrals

If dX = F dW , then (dX)2 = F 2 (dW )2 = F 2 dt. The following theorem
provides a converse as well.

7.26 Theorem. Let X be a continuous local martingale. Suppose that
(dXt)2 = (Ft)2 dt for some left-continuous process F . Then, there is a
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Wiener process W (possibly on an enlargement of the original probability
space) such that

Xt = X0 +
ˆ t

0

Fs dW s

Proof. For the case F > 0. Then, since 1/F is left-continuous,

dW =
1
F
dX, W0 = 0,

defines a continuous local martingale W . Since (dW )2 = (1/F )2 (dX)2 = dt
by the assumption on (dX)2, we see from the characterization theorem 7.24
that W is Wiener. Obviously, dX = F dW as claimed. �

Local martingales are time changed Wieners

7.27 Theorem. Let X be a continuous local martingale. Let C = 〈X,X〉.
Then, there is a Wiener process W such that

Xt = X0 +WCt , t ∈ R+.

Proof is omitted, but its essentials can be seen in Figure 17 below. If time
is reckoned with the random clock C = 〈X,X〉, then X − X0 appears as a
Wiener process.

Su

Su

C  t

Xt

Xo

t

t

Wu

u

a

a

b

b

u

Figure 17: Using C = 〈X,X〉 as a random clock converts the local martingale
X into a Wiener process. Conversely, X is obtained from the Wiener process
by reversing the procedure.
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For the outcome ω pictured in Figure 17, the path t �→ Ct(ω) remains flat
over the interval [a(ω), b(ω)], and then, t �→ Xt(ω) = WCt(ω)(ω) must remain
constant over the same interval. This observation proves the following.

7.28 Proposition. Let X be a continuous local martingale. Suppose that
it is also a Stieltjes process. Then, for almost every ω, we have Xt(ω) = X0(ω)
for all t ≥ 0. �

To put it another way, if X is a continuous local martingale and shows
some signs of life, then its total variation must be infinite over some intervals.



Notes and Comments

The aim here is to provide some background and references for the
material covered and for some extensions. No attempt is made to give a
systematic account of all the sources.

Chapter I

This is a minimalist review of measure and integration for the proba-
bilist. The analysts treat sigma-algebras and measurability as technical mat-
ters to be endured. The probabilists are serious: to them, a sigma-algebra
represents a body of information, and measurability means observability and
determinability. Consequently, most books on probability include at least an
appendix on abstract measure theory. In particular, Billingsley (1979) and
Dudley (1989) treat measure and probability together, as one topic. Doob
(1994) is interesting along the same lines.

The classical text on measure theory is Halmos (1950). Royden (1968) and
Rudin (1976) are also useful classics. The best reference for measure theory
is Cohn (1980); it has a straightforward treatment which is well-informed of
the needs of probability theory.

The notational principles used throughout are those of Dellacherie and
Meyer (1975–87). For the integral notation μf, for instance, we follow the
maxim that the most useful concepts should have the simplest notations.
When integral signs appear, we follow the physicists and put the measure
element next to the integral sign. This follows the summation notation and
is almost necessary when there are multiple integral signs. Even the most
tradition bound probabilist will use this system when several Markov kernels
appear on the same line.

Standard measurable spaces are also called Borel spaces; for a brief in-
troduction to them and to related issues, see the appendices in Dynkin and
Yushkevich (1979).

E. Çınlar, Probability and Stochastics, Graduate Texts 533
in Mathematics 261, DOI 10.1007/978-0-387-87859-1,
c© Springer Science+Business Media, LLC 2011
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Chapter II

The material in this chapter is standard ever since Kolmogorov (1933). It
can be found in most books on probability. Billingsley (1979), Dudley (1989),
Durrett (1995), Breiman (1968), Shiryaev (1995), Chung (1974), and Neveu
(1965) are the main examples. The last two have been the main influences on
my thinking. The comprehensive work Kallenberg (2002) is the best reference
for researchers.

The notations and terminology are standard, except for the term “in-
dependency” for a collection of mutually (totally) independent things. The
distribution functions are avoided; as Neveu (1965) noted, they should have
disappeared long ago.

Chapter III

The material here is available in most textbooks. The treatment parallels
Chung (1974) and Lamperti (1966). Most of the results belong to the classic
period of probability, the first half of the 20th century. The clever proof of
the strong law is due to Etemadi (1981). For further reading on characteristic
functions and convergence in distribution, see Feller (1971) and Loève (1977).
For weak convergence on general spaces, we refer to Billingsley (1968), Dudley
(1989), and Pollard (1984).

Chapter IV

Conditional expectations are introduced heuristically first and are ex-
plained as projections in L2-spaces and also through the Radon-Nikodym
theorem. The concept is fundamental in probability theory. There are many
related concepts: conditional probabilities, conditional distributions, condi-
tional densities, etc. We made an effort to show the connections and to unify
the notational systems. Much of the material here is standard; we follow
Neveu (1965).

Conditional distributions are often the primary data in applications. Con-
structions of probability spaces start with them. The construction in the
discrete-time case illustrates the point well; it is due to Cassius Ionescu-
Tulcea (1949). A number of special cases are given to illustrate “stochastic
modeling” of periodicity and temporal inhomogeneity in applications.

Chapter V

Filtrations and stopping times are introduced along standard lines, as
in Dellacherie (1972) and in Dellacherie and Meyer (1975–87). The notation
EtX for the conditional expectation of X given Ft goes back to Lévy (1936)
where martingales appear for the first time.
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The term “martingale” is used first by Ville (1939). The theory is mostly
due to Doob, who recognized its intrinsic importance and made it a versatile
tool in probability theory. The modern theory is covered well in Doob (1953),
Neveu (1975), Dellacherie and Meyer (1975–87). The account here is influ-
enced by these and Meyer (1972) and the excellent exposition in Williams
(1991).

The integral in 3.4 was first introduced in Burkholder (1966). The martin-
gale convergence theorem is Doob’s; its basic ingredient is Doob’s upcrossing
inequality, which is proved here using the financial intuition of Steele (2001).
I followed the past literature and attributed Theorem 4.2 to Hunt; Blackwell
and Dubins (1962) is earlier and has the same result with a slight gener-
alization. For strong inequalities, the classic reference is Burkholder, Davis,
Gundy (1972).

In continuous time, the treatment here is organized around Doob’s stop-
ping theorem; this is similar to making the strong Markov property the central
concept for Markov processes. The term “Doob martingale” is coined for the
central object; it is a stopped martingale that is uniformly integrable, that
is, a stopped martingale of “class D”. This treatment seems to achieve some
simplicity both in theory and in applicability.

Martingale characterization for Brownian motion is due to Lévy (1948);
we followed Doob (1953) for its proof, a bare hands approach, without us-
ing the modern tools of stochastic calculus. The martingale characterization
for Poisson processes is due to Watanabe (1964); for some extensions see
Brémaud (1981).

For further treatments on martingales, starting points are, in addition
to the books mentioned above, Jacod (1979), Jacod and Shiryaev (1987),
Durrett (1984), Revuz and Yor (1991), and most books on stochastic calculus.

Chapter VI

Poisson random measures have manifold uses in statistics, in applied prob-
ability, and in the theories of point processes and Markov processes. In chap-
ters to follow, they will be used to explain the structure of Lévy processes,
the excursions of Brownian motion, and the jumps of Markov processes. This
chapter is to give a serious introduction to them.

Kallenberg (1983) is a rigorous introduction to random measures and
weak convergence of such. Many related matters, extensions, and applications
can be found in Jacod (1975), Karr (1991), Kingman (1993), Serfozo (1999),
Jacobsen (2006), and Daley and Vere-Jones (2008).

The main theorem on random transformations is Theorem 3.2. Its origins
seem lost in time. It is called the marking theorem in Kingman (1993); the
version in Theorem 3.26 is due to Serfozo (1999) with a missing condition. A
forerunner of it, the application mentioned following 3.13, appears in Doob
(1953) with a long proof.
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Additive random measures are generalizations, to abstract spaces, of
additive processes of Lévy (1948) and Itô (1942); see Itô (2004) for a
complete account of such processes. On abstract spaces, they are called com-
pletely random measures in Kingman (1967), (1993); the converse mentioned
immediately after Theorem 4.4 is due to Kingman (1967).

Section 5 brings together many strands on Poisson processes considered
as submartingales, as Markov processes, as Lévy processes, and as point pro-
cesses. The simplest characterization is in Theorem 5.9; the proof here follows
Doob (1953) with a slight improvement. Theorem 5.12 is due to Kallenberg.

Section 6 is an introduction to stochastic calculus driven by Poisson ran-
dom measures and the uses of it to construct self-exciting point processes.
Similar material can be found in Brémaud (1981), Jacod (1979), Jacod and
Shiryaev (1987).

Chapter VII

Lévy processes are the continuous time versions of partial sums of inde-
pendent and identically distributed random variables. Much of the pioneering
work is summarized in Lévy (1937). The stochastic approach we followed is
due to Itô (1942), where the first sentence is “The aim of this paper is to give
a new rigorous proof of the known formula of P. Lévy (1937) on the infinitely
divisible law (of probability) by making use of the scheme of stochastic differ-
ential processes introduced by J.L. Doob (1937)”. Such processes were called
variously as additive processes, differential processes, or processes with sta-
tionary and independent increments. The term “Lévy process” was coined by
P.-A. Meyer.

There are at least two good books on them: Bertoin (1996) treats them
as special Markov processes; Sato (1999) has wider coverage, especially of
connections to infinite divisibility. The treatment here follows Itô (2004) with
some assist from Sato (1999). The strong Markov property, Theorem 3.10,
was historically the first rigorous formulation of that property; it is due to
Hunt (1956). The difficult case mentioned in Remark 7.10 was proved by
Kesten (1969) for Lévy processes in d-dimensions; see Bretagnolle (1971)
for the same. The problem is important in the theory of Markov processes.
Indeed, subordinators are important in the general theory of regenerative
systems; see Maisonneuve (1971) for the connections.

Lévy processes have stationary and independent increments. Dropping
stationarity, we get additive processes of Itô and Lévy. For them we refer
to Sato (1999), Itô (2004), and Jacod (1979). In fact, increasing additive
processes were treated in Chapter VI, Section 4, under the name of additive
measures; take E = R there. A further generalization is to Markov additive
processes introduced in Çınlar (1972). Such a process is a pair (X,Y) where
X is a Markov process and the conditional law of Y given X is that of an
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additive process whose local characteristics are modulated by X. They found
applications to regenerative processes and excursions of Markov processes
from a set of states; see Çınlar (1975), Maisonneuve (1974), Kaspi (1983),
and Çınlar and Kaspi (1983).

Lévy, additive, and Markov additive processes are used heavily in applied
probability. Moran (1956) was the first to use gamma processes to model the
input process to a dam; see Çınlar (1973) for another instance. See Breuer
(2003) and Pachego, Tang, Prabhu (2009) for uses in queueing and telecom-
munications. An area of intense applications is mathematical finance; see
Applebaum (2009), Cont (2003), and Schoutens (2003) for starters.

Chapter VIII

This introduction to Brownian motion is along the lines of Lévy (1948)
and Itô and McKean (1965). For more comprehensive accounts see Freedman
(1971), Karatzas and Shreve (1988), Revuz and Yor (1991), and Mörters
and Peres (2010). The present treatment differs from the earlier ones by the
methodical use of Poisson random measures, especially on matters related to
excursions and local times.

Hitting times, maximum processes, and local times were the brainchildren
of Lévy’s, along with much else. For most of these matters the complete
reference is Revuz and Yor (1991). Theorem 4.19 is due to Pitman (1975)
with a proof via random walk approximations. See Williams (1979) for a
great exposition of all these. The source on the Poisson nature of excursions
is Theorem 6.14, which is due to Itô (1970). In identifying the Itô measure
of excursions, we chose to disintegrate it with respect to the Lévy measure
of extents; this is due to Williams and is explained in Williams (1979); we
followed the proof in Rogers (1981) with minor changes. Another approach is
that in Ikeda and Watanabe (1989), where the Itô measure is disintegrated
with respect to the Lévy measure of durations. For further appearances of
Poisson random measures in Brownian theory see Pitman (1981) and Çınlar
(1992).

For path properties of Section 7 see Freedman (1971), Knight (1981),
Karatzas and Shreve (1988), and Mörters and Peres (2010). The construction
of Theorem 8.6, due to Lévy, is the best way to visualize the paths. Finally, a
fantastic collection of facts and results is available in Borodin and Salminen
(1996).

The titubations of a microscopic particle suspended in water were first
observed by the botanist Robert Brown in 1826 and were the cause of much
excitement in religio-scientific circles. Unaware of the phenomenon, Einstein
predicted it in 1905 by theoretical reasoning as the visible consequence of the
unseen molecular motions of the surrounding medium; he derived the heat
equation for the visible motion, cW in our terms, and gave a formula for
the constant c in terms of physical quantities. For us the theory starts with
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Bachelier (1900) and with Wiener (1920), the latter showing the existence
of the mathematical Brownian motion via construction as a random Fourier
series.

Chapter IX

Markov processes form the most extensively studied part of probability
theory. They are ubiquitous in the theory and applications of probability.
Indeed, as clarified in 1.12, it is an old remark of Doob’s that every process
becomes Markovian if one calls “state at time t” the whole past until t. An
even better idea is found in Knight (1992): given a process, one obtains a
good Markov process if one calls “state at time t” the conditional law of the
future given the past until t.

We use the term “chain” only for processes with discrete time-parameter.
The best reference to their theory is Revuz (1984). The special case of random
walks is of great importance; see Lawler and Limic (2010) for them. For chains
with discrete state spaces, almost every book on applied probability gives a
treatment of ergodic behavior following the treatment in Feller (1957b); for
an alternative approach see Thorison (2000); and for the same for arbitrary
state spaces see Nummelin (2004) and Meyn and Tweedy (2009). In the case
of transient chains with discrete state spaces, the boundary theory is explored
in Feller (1956), Hunt (1960), and Dynkin (1969). For the potential theory of
chains see Revuz (1984) and Kemeny, Snell, Knapp (1966), the latter being
a comprehensive treatment for chains with discrete state spaces.

We concentrate on Markov processes (with continuous time-parameter).
Their theory starts with Kolmogorov (1931); introduced there are the no-
tions of Markov kernels and transition functions, the Chapman-Kolmogorov
equation, Kolmogorov’s differential equations in the discrete state space case,
and the partial differential equations corresponding to diffusions. Much of the
early theory followed Kolmogorov and was concerned with transition func-
tions, evolution equations for them, and their ergodic behavior. This period
culminates with Feller (1954a), (1954b), (1955) on the characterization of
differential operators that are generators for diffusions on the real line. An
account can be found in Karlin and Taylor (1981) and also in Dynkin (1965).

The modern theory starts with Itô (1942), where the dynamics of motion
is described by stochastic integral equations, and transition functions and
generators become derivative concepts. As developed in Itô (1942) and (1951),
the Markovian motion is an integral path in a field of Lévy processes: when the
particle is at x, the tangent to its path is a Lévy process whose characteristics
depend on x. This is the meaning of the equation 3.95 and its particular cases
2.2 and 3.1. We concentrate on the particular cases in Sections 2 and 3. For
the needs of Section 2, we give a brief introduction to stochastic integration
in Section 7 following he formalism of Ikeda and Watanabe (1989); for further
reading we refer to McKean (1969), Letta (1984), Chung and Williams (1990),
Øksendal (2003), and Protter (2003).
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Section 2 introduces Itô diffusions. The equation of motion is a stochastic
differential equation driven by Wiener processes. Under a Lipschitz condi-
tion on the coefficients, it has a unique strong solution, which is a continuous
strong Markov process (a diffusion, in short). The interplays between the gen-
erators, resolvents, and transition functions are derived easily. For diffusions
in general, see Itô and McKean (1965). For a deep study of the equation of
motion in one-dimension, we refer to Engelbert and Schmidt (1989–91); see
Assing and Schmidt (1998) also. Generators establish a link between Markov
processes and partial differential equations; see Dynkin (1982) for connec-
tions to some problems of classical analysis. Since a Markov process is a
much richer structure than its generator or its transition function, the prob-
ability theory can obtain analytical results which are beyond the analytic
theory; see Stroock and Varadhan (1979) for such examples; see Williams
(1974) for an excellent expository account.

Theorem 2.23 is the key relationship between generators and martingales.
More generally, let G be defined by 2.21 but without the Lipshitz condition
on the coefficients; if 2.24 defines a martingale for every f there, then X is a
Markov process. This is the martingale characterization for Markov processes;
it was introduced in Stroock and Varadhan (1969) and elaborated on in
Stroock and Varadhan (1979). See Ethier and Kurtz (1986) for the same
and for generators of semigroups in general. See Jacod (1979) for martingale
problems in more general settings.

Section 3 introduces Itô processes with jumps. The equation of motion is a
stochastic integral equation driven by Wiener processes and a standard Pois-
son random measure. At first, we work under conditions that make the motion
piecewise continuous. The generators, resolvents, and transition functions are
derived as secondary objects and are related to the diffusions between the
successive jumps. The theory here is a blend of that for diffusions and Poisson
random measures. It can be extended to the more general case where 3.95 is
the equation of motion; the general case allows infinitely many jumps during
small intervals of time; Stroock (1975) gives sufficient conditions that yield
strong Markov processes.

Later half of Section 3 is devoted to the case where there is no movement
between the jumps, and the jump times are allowed to have accumulation
points. In part, this is a modern introduction (using integral equations and
Poisson random measures) to processes with discrete state spaces; they were
studied deeply in Chung (1960), (1963), (1966), (1970), and Feller (1957a).

Section 4 introduces Markov processes in the abstract setting pioneered
by Hunt (1957–58). The Markov process is introduced axiomatically and
takes the center stage; generators are eliminated, and resolvents and transi-
tion semigroups are secondary objects defined by the process. Here, and in
Section 5 and 6, we follow the classic text Blumenthal and Getoor (1968). Sec-
tion 5 introduces Hunt processes; these are Markov processes of Section 4 with
the added assumptions of strong Markov property and quasi-left-continuity.
We discuss the last two properties and their implications, and we show that
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the Feller property for the transition semigroup implies that the process is
Hunt. In discussing the stopping times, we replaced the standard terms “ac-
cessible” and “totally inaccessible” with the terms “sigma-predictable” and
“totally unpredictable”; the rectified terms seem more natural and more cor-
rect; the earlier terms allude to the hitting times of accessible and totally
inaccessible subsets of the state space. For the general theory of Markov pro-
cesses, the best references are Sharpe (1988) and the volumes 4 and 5 of
Dellacherie and Meyer (1975–87). For excursions of Markov processes, gener-
alizing Itô’s excursion theory for Brownian motions, see Blumenthal (1992)
and Kaspi (1983). Section 6 is an introduction to Hunt’s extension of the
classical potential theory. For this material, the best treatments are in the
works mentioned above and Chung and Walsh (2005).

Finally, what is a Hunt process? The answer shows that Wiener and
Poisson processes are the building blocks for all Hunt processes. Let Y be
a Hunt process whose state space is R

d and suppose that each one of the d
components is a semimartingale. Then there exist a Wiener process on R

d and
a standard Poisson random measure such that, after a random time change,
Y becomes a process X that satisfies the equation 3.95 for some choice of the
coefficients a, b, j. Thus, the only randomness in Y comes from Wiener and
Poisson processes. We refer to Çınlar and Jacod (1981) – there, the comment
in page 164 on continuous processes with bounded variation turns out to be
too hasty. Preliminaries for this paper and the connections between martin-
gale theory and Markov processes can be found in Çınlar, Jacod, Protter,
and Sharpe (1980). The case of a Hunt process Z with a Lusin state space
E is somewhat similar: one can find a continuous function f : E �→ R∞ such
that f ◦ Z is like the process Y above, but infinite dimensional.



Bibliography
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L. BREIMAN (1968) Probability. Addison-Wesley, Reading, MA.

P. BREMAUD (1981) Point Processes and Queues. Springer, New York.

J. BRETAGNOLLE (1971) Résultats de KESTEN sur les processus à
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