The integrals below involve a2-x2 where x2<a2
1) ∫ 1a2-x2 dx=12a ln (a+xa-x)
OR =1a tanh-1 (xa)
2) ∫xa2-x2 dx=-12 ln (a2-x2)
3) ∫x2a2-x2 dx=-x+a2 ln (a+xa-x)
4) ∫x3a2-x2 dx=-x22-a22 ln (a2-x2)
5) ∫ 1x(a2-x2) dx=12a2 ln (x2a2-x2)
6) ∫ 1x2(a2-x2) dx=-1a2x+12a3 ln (a+xa-x)
7) ∫ 1x3(a2-x2) dx=-12a2x2+12a4 ln (x2a2-x2)
8) ∫ 1(a2-x2)2 dx=x2a2(a2-x2)+14a3 ln (a+xa-x)
9) ∫ x(a2-x2)2 dx=12(a2-x2)
10) ∫ x2(a2-x2)2 dx=x2(a2-x2)-14a ln(a+xa-x)
11) ∫ x3(a2-x2)2 dx=a22(a2-x2)+12 ln (a2-x2)
12) ∫ 1x(a2-x2)2 dx=12a2(a2-x2)+12a4 ln (x2a2-x2)
13) ∫ 1x2(a2-x2)2 dx=-1a4x+x2a4(a2-x2)+34a5 ln (a+xa-x)
14) ∫ 1x3(a2-x2)2 dx=-12a4x2+12a4(a2-x2)+1a6 ln (x2a2-x2)
15) ∫1(a2-x2)n dx=x2(n-1)a2(a2-x2)n-1+2n-3(2n-2)a2 ∫ 1(a2-x2)n-1 dx
16) ∫x(a2-x2)n dx=12(n-1)(a2-x2)n-1
17) ∫ 1x(a2-x2)n dx=12(n-1)a2(a2-x2)n-1+1a2 ∫ 1x(a2-x2)n-1 dx
18) ∫ xm(a2-x2)n dx=a2 ∫ xm-2(a2-x2)n dx- ∫ xm-2(a2-x2)n-1 dx
19) ∫ 1xm(a2-x2)n dx=1a2 ∫ 1xm(a2-x2)n-1 dx+1a2 ∫ 1xm-2(a2-x2)n dx