[ 定义 ] [Definition]   形如 Shaped like 的函数称为指数函数 . The function is called exponential function.

a = e 时，为书写方便，有时把 When a = e, in order to facilitate the writing, sometimes 记作 exp x ，把 Denoted by exp x, the 记作 exp{ f ( x )} ，等等 . Denoted by exp {f (x)}, and the like.

[ 函数图形与特征 ] [Function graphics and features]

 方程与图形 Equations and graphics 特 Special    征 Levy 指数函数 Exponential function  曲线与 y 轴相交于点 A (0,1). Curve and the y-axis at point A (0,1). 渐近线为 y =0. Asymptote of y = 0. 对数函数 Logarithmic function  曲线与 x 轴相交于点 A (1,0). Curve intersects with the x axis at point A (1,0). 渐近线为 x =0. Asymptote for x = 0.

[ 指数运算法则 ] [Index algorithm] [ 对数的性质与运算法则 ] [Nature and algorithms logarithm]   在下面的公式中，假设 a >0 ，同时所遇到的函数都假设是在定义域里讨论的 . In the following formula, assuming a> 0, while the function are assumed to be encountered in the definition domain of discussion.

零与负数没有对数 No zero and negative logarithm     对数恒等式 Logarithmic identities 换底公式 Bottom change formula  [ 常用对数与自然对数 ] [Common logarithm of the natural logarithm]

1 o 1 o   常用对数：以 10 为底的对数称为常用对数，记作 Common logarithm: logarithm to the base 10 called the common logarithm, denoted 2 o 2 o   自然对数：以 e =2.718281828459 L 为底的对数称为自然对数，记作 Natural logarithm: logarithm of e = 2.718281828459 L called for the end of the natural logarithm, denoted 3 o 3 o   常用对数与自然对数的关系： Common logarithm of the natural logarithm of the relationship:  4 o 4 o   常用对数首数求法： Common logarithm method for finding the first few: