info prev up next book cdrom email home

ANOVA

``Analysis of Variance.'' A Statistical Test for heterogeneity of Means by analysis of group Variances. To apply the test, assume random sampling of a variate $y$ with equal Variances, independent errors, and a Normal Distribution. Let $n$ be the number of Replicates (sets of identical observations) within each of $K$ Factor Levels (treatment groups), and $y_{ij}$ be the $j$th observation within Factor Level $i$. Also assume that the ANOVA is ``balanced'' by restricting $n$ to be the same for each Factor Level.


Now define the sum of square terms

$\displaystyle {\rm SST}$ $\textstyle \equiv$ $\displaystyle \sum_{i=1}^k \sum_{j=1}^n (y_{ij}-\bar{\bar y})^2$ (1)
  $\textstyle =$ $\displaystyle \sum_{i=1}^k \sum_{j=1}^n {y_{ij}}^2-{\left({\sum_{i=1}^k \sum_{j=1}^n y_{ij}}\right)^2\over Kn}$ (2)
$\displaystyle {\rm SSA}$ $\textstyle \equiv$ $\displaystyle {1\over n}\sum_{i=1}^k \left({\sum_{j=1}^n y_{ij}}\right)^2
-{1\over Kn}\left({\sum_{i=1}^k \sum_{j=1}^n y_{ij}}\right)^2$ (3)
$\displaystyle {\rm SSE}$ $\textstyle \equiv$ $\displaystyle \sum_{i=1}^k \sum_{j=1}^n (y_{ij}-\bar{y_i})^2$ (4)
  $\textstyle =$ $\displaystyle {\rm SST}-{\rm SSA},$ (5)

which are the total, treatment, and error sums of squares. Here, $\bar y_i$ is the mean of observations within Factor Level $i$, and $\bar{\bar y}$ is the ``group'' mean (i.e., mean of means). Compute the entries in the following table, obtaining the P-Value corresponding to the calculated F-Ratio of the mean squared values
\begin{displaymath}
F={{\rm MSA}\over{\rm MSE}}.
\end{displaymath} (6)

Category SS °Freedom Mean Squared F-Ratio
Treatment SSA $K-1$ ${\rm MSA}\equiv{{\rm SSA}\over K-1}$ ${{\rm MSA}\over{\rm MSE}}$
Error SSE $K(n-1)$ ${\rm MSE}\equiv{{\rm SSE}\over K(n-1)}$  
Total SST $Kn-1$ ${\rm MST}\equiv{{\rm SST}\over Kn-1}$  

If the P-Value is small, reject the Null Hypothesis that all Means are the same for the different groups.

See also Factor Level, Replicate, Variance



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25