A number such that has its last digits equal to is called -automorphic. For example, and are 1-automorphic and and are 2-automorphic. de Guerre and Fairbairn (1968) give a history of automorphic numbers.
The first few 1-automorphic numbers are 1, 5, 6, 25, 76, 376, 625, 9376, 90625, ...
(Sloane's A003226, Wells 1986, p. 130). There are two 1-automorphic numbers with a given number of digits, one ending in 5 and
one in 6 (except that the 1-digit automorphic numbers include 1), and each of these contains the previous number with a
digit prepended. Using this fact, it is possible to construct automorphic numbers having more than 25,000 digits (Madachy 1979).
The first few 1-automorphic numbers ending with 5 are 5, 25, 625, 0625, 90625, ... (Sloane's A007185), and the first few
ending with 6 are 6, 76, 376, 9376, 09376, ... (Sloane's A016090). The 1-automorphic numbers ending in 5 are Idempotent
(mod ) since
The following table gives the 10-digit -automorphic numbers.
-Automorphic Numbers | Sloane | |
1 | 0000000001, 8212890625, 1787109376 | --, A007185, A016090 |
2 | 0893554688 | A030984 |
3 | 6666666667, 7262369792, 9404296875 | --, A030985, A030986 |
4 | 0446777344 | A030987 |
5 | 3642578125 | A030988 |
6 | 3631184896 | A030989 |
7 | 7142857143, 4548984375, 1683872768 | A030990, A030991, A030992 |
8 | 0223388672 | A030993 |
9 | 5754123264, 3134765625, 8888888889 | A030994, A030995, -- |
See also Idempotent, Narcissistic Number, Number Pyramid, Trimorphic Number
References
Beeler, M.; Gosper, R. W.; and Schroeppel, R. Item 59 in HAKMEM. Cambridge, MA: MIT
Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972.
Fairbairn, R. A. ``More on Automorphic Numbers.'' J. Recr. Math. 2, 170-174, 1969.
Fairbairn, R. A. Erratum to ``More on Automorphic Numbers.'' J. Recr. Math. 2, 245, 1969.
de Guerre, V. and Fairbairn, R. A. ``Automorphic Numbers.'' J. Recr. Math. 1, 173-179, 1968.
Hunter, J. A. H. ``Two Very Special Numbers.'' Fib. Quart. 2, 230, 1964.
Hunter, J. A. H. ``Some Polyautomorphic Numbers.'' J. Recr. Math. 5, 27, 1972.
Kraitchik, M. ``Automorphic Numbers.'' §3.8 in Mathematical Recreations. New York: W. W. Norton, pp. 77-78, 1942.
Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, pp. 34-54 and 175-176, 1979.
Sloane, N. J. A. Sequences
A016090,
A003226/M3752, and
A007185/M3940,
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex: Penguin Books,
pp. 171, 178, 191-192, 1986.
© 1996-9 Eric W. Weisstein