info prev up next book cdrom email home

Brauer's Theorem

If, in the Gersgorin Circle Theorem for a given $m$,

\begin{displaymath}
\vert a_{jj}-a_{mm}\vert>\Lambda_j+\Lambda_m
\end{displaymath}

for all $j\not=m$, then exactly one Eigenvalue of ${\hbox{\sf A}}$ lies in the Disk $\Gamma_m$.


References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic Press, p. 1121, 1979.




© 1996-9 Eric W. Weisstein
1999-05-26