Carmichael's conjecture asserts that there are an Infinite number of Carmichael Numbers. This was proven by Alford *et al. *(1994).

**References**

Alford, W. R.; Granville, A.; and Pomerance, C. ``There Are Infinitely Many Carmichael Numbers.''
*Ann. Math.* **139**, 703-722, 1994.

Cipra, B. *What's Happening in the Mathematical Sciences, Vol. 1.* Providence, RI: Amer. Math. Soc., 1993.

Guy, R. K. ``Carmichael's Conjecture.'' §B39 in
*Unsolved Problems in Number Theory, 2nd ed.* New York: Springer-Verlag, p. 94, 1994.

Pomerance, C.; Selfridge, J. L.; and Wagstaff, S. S. Jr.
``The Pseudoprimes to .'' *Math. Comput.* **35**, 1003-1026, 1980.

Ribenboim, P. *The Book of Prime Number Records, 2nd ed.* New York: Springer-Verlag, pp. 29-31, 1989.

Schlafly, A. and Wagon, S. ``Carmichael's Conjecture on the Euler Function is Valid Below
.'' *Math. Comput.* **63**, 415-419, 1994.

© 1996-9

1999-05-26