info prev up next book cdrom email home

Catenary Involute

\begin{figure}\begin{center}\BoxedEPSF{CatenaryInvolute.epsf scaled 600}\end{center}\end{figure}

The parametric equation for a Catenary is

\begin{displaymath}
{\bf r}(t) = a\left[{\matrix{t\cr \cosh t\cr}}\right],
\end{displaymath} (1)

so
$\displaystyle {d{\bf r}\over dt}$ $\textstyle =$ $\displaystyle a\left[\begin{array}{c}1\\  \sinh t\end{array}\right]$ (2)
$\displaystyle \left\vert{d{\bf r}\over dt}\right\vert$ $\textstyle =$ $\displaystyle a\sqrt{1+\sinh^2 t} = a\cosh t$ (3)

and
\begin{displaymath}
\hat {\bf T} = {{d{\bf r}\over dt}\over \left\vert{d{\bf r}\...
...t[{\matrix{\mathop{\rm sech}\nolimits t\cr \tanh t\cr}}\right]
\end{displaymath} (4)


\begin{displaymath}
ds^2=\vert d{\bf r}^2\vert = a^2(1+\sinh^2 t)\,dt^2 = a^2\cosh^2\,dt^2
\end{displaymath} (5)


\begin{displaymath}
{ds\over dt} = a\cosh t.
\end{displaymath} (6)

Therefore,
\begin{displaymath}
s=a\int \cosh t\,dt = a\sinh t
\end{displaymath} (7)

and the equation of the Involute is
$\displaystyle x$ $\textstyle =$ $\displaystyle a(t-\tanh t)$ (8)
$\displaystyle y$ $\textstyle =$ $\displaystyle a\mathop{\rm sech}\nolimits t.$ (9)

This curve is called a Tractrix.




© 1996-9 Eric W. Weisstein
1999-05-26