info prev up next book cdrom email home

Chebyshev Integral Inequality


\begin{displaymath}
\int_a^b f_1(x)\,dx\int_a^b f_2(x)\,dx\cdots\int_a^b f_n(x)\,dx\leq (b-a)^{n-1} \int_a^b f(x_1)f(x_2) \cdots f_n(x)\,dx,
\end{displaymath}

where $f_1$, $f_2$, ..., $f_n$ are Nonnegative integrable functions on $[a,b]$ which are monotonic increasing or decreasing.


References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic Press, p. 1092, 1979.




© 1996-9 Eric W. Weisstein
1999-05-26