A Quadrilateral for which a Circle can be circumscribed so that it touches each Vertex. The Area is then given by a special case of Bretschneider's Formula. Let the sides have lengths
, , , and , let be the Semiperimeter
(1) |
(2) | |||
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
The Area of a cyclic quadrilateral is the Maximum possible for any Quadrilateral with the given side lengths. Also, the opposite Angles of a cyclic quadrilateral sum to Radians (Dunham 1990).
A cyclic quadrilateral with Rational sides , , , and , Diagonals and , Circumradius , and Area is given by , , , , , , , and .
Let be a Quadrilateral such that the angles and are Right Angles, then is a cyclic quadrilateral (Dunham 1990). This is a Corollary of the theorem that, in a Right Triangle, the Midpoint of the Hypotenuse is equidistant from the three Vertices. Since is the Midpoint of both Right Triangles and , it is equidistant from all four Vertices, so a Circle centered at may be drawn through them. This theorem is one of the building blocks of Heron's derivation of Heron's Formula.
Place four equal Circles so that they intersect in a point. The quadrilateral is then a cyclic quadrilateral (Honsberger 1991). For a Convex cyclic quadrilateral , consider the set of Convex cyclic quadrilaterals whose sides are Parallel to . Then the of maximal Area is the one whose Diagonals are Perpendicular (Gürel 1996).
See also Bretschneider's Formula, Concyclic, Cyclic Polygon, Cyclic Quadrangle, Euler Brick, Heron's Formula, Ptolemy's Theorem, Quadrilateral
References
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 123, 1987.
Dunham, W. Journey Through Genius: The Great Theorems of Mathematics. New York: Wiley, p. 121, 1990.
Gürel, E. Solution to Problem 1472. ``Maximal Area of Quadrilaterals.'' Math. Mag. 69, 149, 1996.
Honsberger, R. More Mathematical Morsels. Washington, DC: Math. Assoc. Amer., pp. 36-37, 1991.
© 1996-9 Eric W. Weisstein