info prev up next book cdrom email home

Debye's Asymptotic Representation

An asymptotic expansion for a Hankel Function of the First Kind

$H_\nu^{(1)}(x)\sim{1\over\sqrt{\pi}} \mathop{\rm exp}\nolimits \{ix[\cos\alpha+(\alpha-\pi/2)\sin\alpha]\}$
$ \times\left[{{e^{i\pi/4}\over X}+({\textstyle{1\over 8}}+{\textstyle{5\over 24...
...{385\over 3456}}\tan^4\alpha){3\cdot e^{5\pi i/4}\over 2^2 X^5}+\ldots}\right],$
where

\begin{displaymath}
{\nu\over x}=\sin\alpha,
\end{displaymath}


\begin{displaymath}
1-{\nu\over x}>{3\over x}\nu^{1/2},
\end{displaymath}

and

\begin{displaymath}
X\equiv \sqrt{-x\cos({\textstyle{1\over 2}}\alpha)}.
\end{displaymath}

See also Hankel Function of the First Kind


References

Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1475, 1980.




© 1996-9 Eric W. Weisstein
1999-05-24