info prev up next book cdrom email home

Dual Tensor

Given an antisymmetric second Rank Tensor $C_{ij}$, a dual pseudotensor $C_i$ is defined by

\begin{displaymath}
C_i \equiv {\textstyle{1\over 2}}\epsilon_{ijk}C_{jk},
\end{displaymath} (1)

where
$\displaystyle C_i$ $\textstyle \equiv$ $\displaystyle \left[\begin{array}{c}C_{23}\\  C_{31}\\  C_{12}\end{array}\right]$ (2)
$\displaystyle C_{jk}$ $\textstyle \equiv$ $\displaystyle \left[\begin{array}{ccccccc}
0 & C_{12} & -C_{31}\\
-C_{12} & 0 & C_{23}\nonumber\\
C_{31} & -C_{23} & 0\end{array}\right].$  

See also Dual Scalar


References

Arfken, G. ``Pseudotensors, Dual Tensors.'' §3.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 128-137, 1985.




© 1996-9 Eric W. Weisstein
1999-05-24