info prev up next book cdrom email home

Elliptic Logarithm

A generalization of integrals of the form

\begin{displaymath}
\int_\infty^x {dt\over \sqrt{t^2+at}},
\end{displaymath}

which can be expressed in terms of logarithmic and inverse trigonometric functions to

\begin{displaymath}
{\rm eln}\,(x) \equiv \int_x^\infty {dt\over \sqrt{t^3+at^2+bt}}.
\end{displaymath}

The inverse of the elliptic logarithm is the Elliptic Exponential Function.




© 1996-9 Eric W. Weisstein
1999-05-25