A self-intersecting Minimal Surface having zero Mean Curvature and nonconstant Gaussian Curvature.
Enneper's minimal surface can be generated using the Enneper-Weierstraß Parameterization with
(1) | |||
(2) |
(3) | |||
(4) | |||
(5) |
(6) | |||
(7) | |||
(8) |
See also Enneper-Weierstraß Parameterization
References
Dickson, S. ``Minimal Surfaces.'' Mathematica J. 1, 38-40, 1990.
do Carmo, M. P. ``Enneper's Surface.'' §3.5C in
Mathematical Models from the Collections of Universities and Museums (Ed. G. Fischer).
Braunschweig, Germany: Vieweg, p. 43, 1986.
Enneper, A. ``Analytisch-geometrische Untersuchungen.'' Z. Math. Phys. 9, 96-125, 1864.
Gray, A. ``Examples of Minimal Surfaces.'' §30.2 in
Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed.
Boca Raton, FL: CRC Press, pp. 358 and 684-685, 1997.
Maeder, R. The Mathematica Programmer. San Diego, CA: Academic Press, pp. 150-151, 1994.
Nordstrand, T. ``Enneper's Minimal Surface.''
http://www.uib.no/people/nfytn/enntxt.htm.
Wolfram Research ``Mathematica Version 2.0 Graphics Gallery.''
http://www.mathsource.com/cgi-bin/MathSource/Applications/Graphics/3D/0207-155.
© 1996-9 Eric W. Weisstein