info prev up next book cdrom email home

Ermakoff's Test

The series $\sum f(n)$ for a monotonic nonincreasing $f(x)$ is convergent if

\begin{displaymath}
\overline{\lim_{x\to\infty}}{e^x f(e^x)\over f(x)}<1
\end{displaymath}

and divergent if

\begin{displaymath}
\underline{\lim_{x\to\infty}}{e^x f(e^x)\over f(x)}>1.
\end{displaymath}


References

Bromwich, T. J. I'a and MacRobert, T. M. An Introduction to the Theory of Infinite Series, 3rd ed. New York: Chelsea, p. 43, 1991.




© 1996-9 Eric W. Weisstein
1999-05-25