info prev up next book cdrom email home

Eulerian Integral of the Second Kind


$\displaystyle \Pi(z,n)$ $\textstyle \equiv$ $\displaystyle \int_0^n \left({1-{t\over n}}\right)^n t^{z-1}\,dt = n^z\int_0^1 (1-\tau)^n \tau^{z-1}\,d\tau$  
  $\textstyle =$ $\displaystyle {n!\over z(z+1)\cdots (z+n)}n^z.$  




© 1996-9 Eric W. Weisstein
1999-05-25