info prev up next book cdrom email home

Fermat's Spiral

\begin{figure}\begin{center}\BoxedEPSF{fermats_spiral.epsf}\end{center}\end{figure}

An Archimedean Spiral with $m=2$ having polar equation

\begin{displaymath}
r = a\theta^{1/2},
\end{displaymath}

discussed by Fermat in 1636 (MacTutor Archive). It is also known as the Parabolic Spiral. For any given Positive value of $\theta$, there are two corresponding values of $r$ of opposite signs. The resulting spiral is therefore symmetrical about the origin. The Curvature is

\begin{displaymath}
\kappa(\theta)={{3a^2\over 4\theta}+a^2\theta\over\left({{a^2\over 4\theta}+a^2\theta}\right)^{3/2}}.
\end{displaymath}


References

Dixon, R. Mathographics. New York: Dover, p. 121, 1991.

Gray, A. Modern Differential Geometry of Curves and Surfaces. Boca Raton, FL: CRC Press, pp. 69-70, 1993.

Lee, X. ``Equiangular Spiral.'' http://www.best.com/~xah/SpecialPlaneCurves_dir/EquiangularSpiral_dir/equiangularSpiral.html.

Lockwood, E. H. A Book of Curves. Cambridge, England: Cambridge University Press, p. 175, 1967.

MacTutor History of Mathematics Archive. ``Fermat's Spiral.'' http://www-groups.dcs.st-and.ac.uk/~history/Curves/Fermats.html.

Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. Middlesex, England: Penguin Books, 1991.




© 1996-9 Eric W. Weisstein
1999-05-26