info prev up next book cdrom email home

Fibonacci Hyperbolic Tangent


\begin{displaymath}
\mathop{\rm tFh}(x)\equiv{\mathop{\rm sFh}(x)\over\mathop{\rm cFh}(x)},
\end{displaymath}

where $\mathop{\rm sFh}(x)$ is the Fibonacci Hyperbolic Sine and $\mathop{\rm cFh}(x)$ is the Fibonacci Hyperbolic Cosine.


References

Trzaska, Z. W. ``On Fibonacci Hyperbolic Trigonometry and Modified Numerical Triangles.'' Fib. Quart. 34, 129-138, 1996.




© 1996-9 Eric W. Weisstein
1999-05-26