info prev up next book cdrom email home

Field Axioms

The field axioms are generally written in additive and multiplicative pairs.

Name Addition Multiplication
Commutativity $a+b = b+a$ $ab = ba$
Associativity $(a+b)+c = a+(b+c)$ $(ab)c = a(bc)$
Distributivity $a(b+c) = ab+ac$ $(a+b)c = ac+bc$
Identity $a+0 = a = 0+a$ $a\cdot 1 = a = 1\cdot a$
Inverses $a+(-a) = 0 = (-a)+a$ $aa^{-1} = 1 = a^{-1}a\hbox{ if }a \not = 0$

See also Algebra, Field




© 1996-9 Eric W. Weisstein
1999-05-26