info prev up next book cdrom email home

Fourier Transform--Sine


$\displaystyle {\mathcal F}[\sin(2\pi k_0x)]$ $\textstyle =$ $\displaystyle \int_{-\infty}^\infty e^{-2\pi ikx}\left({e^{2\pi ik_0x}-e^{-2\pi ik_0x}\over 2i}\right)\,dx$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}i\int_{-\infty}^\infty [-e^{-2\pi i(k-k_0)x}+e^{-2\pi i(k+k_0)x}]\,dt$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}i[\delta(k+k_0)-\delta(k-k_0)],$  

where $\delta(x)$ is the Delta Function.

See also Fourier Transform--Cosine, Sine




© 1996-9 Eric W. Weisstein
1999-05-26