info prev up next book cdrom email home

Fractional Part

\begin{figure}\begin{center}\BoxedEPSF{Frac.epsf}\end{center}\end{figure}

The function giving the fractional (nonintegral) part of a number and defined as

\begin{displaymath}
\mathop{\rm frac}(x)\equiv\cases{
x-\left\lfloor{x}\right\r...
...\geq 0$\cr
x-\left\lfloor{x}\right\rfloor -1 & $x\leq 0$,\cr}
\end{displaymath}

where $\left\lfloor{x}\right\rfloor $ is the Floor Function.

See also Ceiling Function, Floor Function, Nint, Round, Truncate, Whole Number


References

Spanier, J. and Oldham, K. B. ``The Integer-Value Int($x$) and Fractional-Value frac($x$) Functions.'' Ch. 9 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 71-78, 1987.




© 1996-9 Eric W. Weisstein
1999-05-26