Count the number of Lattice Points inside the boundary of a Circle of
Radius with center at the origin. The exact solution is given by the Sum
(1) |
Gauß showed that
(2) |
(3) |
See also Circle Lattice Points
References
Cheng, J. R. ``The Lattice Points in a Circle.'' Sci. Sinica 12, 633-649, 1963.
Cilleruello, J. ``The Distribution of Lattice Points on Circles.'' J. Number Th. 43, 198-202, 1993.
Guy, R. K. ``Gauß's Lattice Point Problem.'' §F1 in
Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 240-2417, 1994.
Huxley, M. N. ``Exponential Sums and Lattice Points.'' Proc. London Math. Soc. 60, 471-502, 1990.
Huxley, M. N. ``Corrigenda: `Exponential Sums and Lattice Points'.'' Proc. London Math. Soc. 66, 70, 1993.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 24, 1983.
Sloane, N. J. A. Sequence
A000328/M3829
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
Weisstein, E. W. ``Circle Lattice Points.'' Mathematica notebook CircleLatticePoints.m.
© 1996-9 Eric W. Weisstein