info prev up next book cdrom email home

Gauss's Transformation

If

\begin{displaymath}
(1+x\sin^2\alpha)\sin\beta = (1+x)\sin\alpha,
\end{displaymath}

then

\begin{displaymath}
(1+x)\int_0^\alpha {d\phi\over \sqrt{1-x^2\sin^2\phi}}=\int_0^\beta {d\phi \over\sqrt{1-{4x\over(1+x)^2}\sin^2\phi}}.
\end{displaymath}

See also Elliptic Integral of the First Kind, Landen's Transformation




© 1996-9 Eric W. Weisstein
1999-05-25