info prev up next book cdrom email home

Grinberg Formula

A formula satisfied by all Hamiltonian Circuits with $n$ nodes. Let $f_j$ be the number of regions inside the circuit with $j$ sides, and let $g_j$ be the number of regions outside the circuit with $j$ sides. If there are $d$ interior diagonals, then there must be $d+1$ regions

\begin{displaymath}
\hbox{[\char93  regions in interior]} = d+1=f_2+f_3+\ldots+f_n.
\end{displaymath} (1)

Any region with $j$ sides is bounded by $j$ Edges, so such regions contribute $jf_j$ to the total. However, this counts each diagonal twice (and each Edge only once). Therefore,
\begin{displaymath}
2f_2+3f_3+\ldots+nf_n=2d+n.
\end{displaymath} (2)

Take (2) minus $2\times$(1),
\begin{displaymath}
f_3+2f_4+3f_5+\ldots+(n-2)f_n=n-2.
\end{displaymath} (3)

Similarly,
\begin{displaymath}
g_3+2g_4+\ldots+(n-2)g_n=n-2,
\end{displaymath} (4)

so
\begin{displaymath}
(f_3-g_3)+2(f_4-g_4)+3(f_5-g_5)+\ldots+(n-2)(f_n-g_n)=0.
\end{displaymath} (5)




© 1996-9 Eric W. Weisstein
1999-05-25