info prev up next book cdrom email home

Hadamard's Inequality

Let ${\hbox{\sf A}}=a_{ii}$ be an arbitrary $n\times n$ nonsingular Matrix with Real elements and Determinant $\vert{\hbox{\sf A}}\vert$, then

\begin{displaymath}
\vert{\hbox{\sf A}}\vert^2\leq \prod_{i=1}^n\left({\,\sum_{k=1}^n {a_{ik}}^2}\right).
\end{displaymath}

See also Hadamard's Theorem


References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic Press, p. 1110, 1979.




© 1996-9 Eric W. Weisstein
1999-05-25