info prev up next book cdrom email home

Hilbert Matrix

A Matrix ${\hbox{\sf H}}$ with elements

\begin{displaymath}
H_{ij} \equiv (i+j-1)^{-1}
\end{displaymath}

for $i, j = 1$, 2, ..., $n$. Although the Matrix Inverse is given analytically by

\begin{displaymath}
(H^{-1})_{ij} = {(-1)^{i+j}\over i+j-1} {(n+i-1)!(n+j-1)!\over [(i-1)!(j-1)!]^2(n-i)!(n-j)!},
\end{displaymath}

Hilbert matrices are difficult to invert numerically. The Determinants for the first few values of ${\hbox{\sf H}}_n$ are given in the following table.

$n$ det( ${\hbox{\sf H}}$)
1 1
2 $8.33333\times 10^{-2}$
3 $4.62963\times 10^{-4}$
4 $1.65344\times 10^{-7}$
5 $3.74930\times 10^{-12}$
6 $5.36730\times 10^{-18}$




© 1996-9 Eric W. Weisstein
1999-05-25