info prev up next book cdrom email home

Laplace's Integral


$\displaystyle P_n(x)$ $\textstyle =$ $\displaystyle {1\over \pi}\int_0^pi {du\over\left({x+\sqrt{x^2-1}\cos u}\right)^{n+1}}$  
  $\textstyle =$ $\displaystyle {1\over \pi}\int_0^\pi (x+\sqrt{x^2-1}\cos u)^n\,du.$  




© 1996-9 Eric W. Weisstein
1999-05-26