info prev up next book cdrom email home

Legendre Transformation

Given a function of two variables

\begin{displaymath}
df = {\partial f\over\partial x}\,dx+{\partial f\over\partial y}\, dy\equiv u\,dx+v\,dy,
\end{displaymath} (1)

change the differentials from $dx$ and $dy$ to $du$ and $dy$ with the transformation
\begin{displaymath}
g\equiv f-ux
\end{displaymath} (2)


$\displaystyle dg$ $\textstyle =$ $\displaystyle df-u\,dx-x\,du = u\,dx+v\,dy-u\,dx-x\,du$  
  $\textstyle =$ $\displaystyle v\,dy-x\,du.$ (3)

Then
$\displaystyle x$ $\textstyle \equiv$ $\displaystyle -{\partial g\over\partial u}$ (4)
$\displaystyle v$ $\textstyle \equiv$ $\displaystyle {\partial g\over\partial y}.$ (5)




© 1996-9 Eric W. Weisstein
1999-05-26