info prev up next book cdrom email home

Lichtenfels Surface

A Minimal Surface given by the parametric equation

$\displaystyle x$ $\textstyle =$ $\displaystyle \Re\left[{\sqrt{2}\cos({\textstyle{1\over 3}}\zeta)\sqrt{\cos({\textstyle{2\over 3}}\zeta)}\,}\right]$  
$\displaystyle y$ $\textstyle =$ $\displaystyle \Re\left[{-\sqrt{2}\cos({\textstyle{1\over 3}}\zeta)\sqrt{\cos({\textstyle{2\over 3}}\zeta)}\,}\right]$  
$\displaystyle z$ $\textstyle =$ $\displaystyle \Re\left[{-{\textstyle{1\over 3}}\sqrt{2}\,i\int_0^t {d\zeta\over \sqrt{\cos({\textstyle{2\over 3}}\zeta)}}}\right].$  


References

do Carmo, M. P. ``The Helicoid.'' §3.5F in Mathematical Models from the Collections of Universities and Museums (Ed. G. Fischer). Braunschweig, Germany: Vieweg, p. 47, 1986.

Lichtenfels, O. von. ``Notiz über eine transcendente Minimalfläche.'' Sitzungsber. Kaiserl. Akad. Wiss. Wien 94, 41-54, 1889.




© 1996-9 Eric W. Weisstein
1999-05-25