info prev up next book cdrom email home

Lotka-Volterra Equations

An ecological model which assumes that a population $x$ increases at a rate $dx = Ax\,dt$, but is destroyed at a rate $dx=-Bxy\,dt$. Population $y$ decreases at a rate $dy=-Cy\,dt$, but increases at $dy=Dxy\,dt$, giving the coupled differential equations

\begin{displaymath}
{dx\over dt}=Ax-Bxy
\end{displaymath}


\begin{displaymath}
{dy\over dt}=-Cy+Dxy.
\end{displaymath}

Critical points occur when $dx/dt=dy/dt=0$, so

\begin{displaymath}
A-By=0
\end{displaymath}


\begin{displaymath}
-C+Dx=0.
\end{displaymath}

The sole Stationary Point is therefore located at $(x,y)=(C/D,A/B)$.




© 1996-9 Eric W. Weisstein
1999-05-25