info prev up next book cdrom email home

Lyapunov's Second Theorem

If all the Eigenvalues of a Real Matrix A have Real Parts, then to an arbitrary negative definite quadratic form $({\bf x},{\hbox{\sf W}}{\bf x})$ with ${\bf x}={\bf x}(t)$ there corresponds a positive definite quadratic form $({\bf x},{\hbox{\sf V}}{\bf x})$ such that if one takes

\begin{displaymath}
{d{\bf x}\over dt}={\hbox{\sf A}}{\bf x},
\end{displaymath}

then $({\bf x},{\hbox{\sf V}}{\bf x})$ and $({\bf x},{\hbox{\sf W}}{\bf x})$ satisfy

\begin{displaymath}
{d\over dt}({\bf x},{\hbox{\sf V}}{\bf x})=({\bf x},{\hbox{\sf W}}{\bf x}).
\end{displaymath}


References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic Press, p. 1122, 1979.




© 1996-9 Eric W. Weisstein
1999-05-25