info prev up next book cdrom email home

Matrix Multiplication

The product ${\hbox{\sf C}}$ of two Matrices ${\hbox{\sf A}}$ and ${\hbox{\sf B}}$ is defined by

\begin{displaymath}
c_{ik} = a_{ij}b_{jk},
\end{displaymath} (1)

where $j$ is summed over for all possible values of $i$ and $k$. Therefore, in order for multiplication to be defined, the dimensions of the Matrices must satisfy
\begin{displaymath}
(n\times m)(m\times p) = (n\times p),
\end{displaymath} (2)

where $(a\times b)$ denotes a Matrix with $a$ rows and $b$ columns. Writing out the product explicitly,


\begin{displaymath}
\left[{\matrix{c_{11} & c_{12} & \cdots & c_{1p}\cr c_{21} &...
...ots & \vdots\cr b_{m1} & b_{m2} & \cdots & b_{mp}\cr}}\right],
\end{displaymath} (3)

where

\begin{eqnarray*}
c_{11}&=&a_{11}b_{11}+a_{12}b_{21}+\ldots+a_{1m}b_{m1}\\
c_...
...{m2}\\
c_{np}&=&a_{n1}b_{1p}+a_{n2}b_{2p}+\ldots+a_{nm}b_{mp}.
\end{eqnarray*}




Matrix multiplication is Associative, as can be seen by taking

\begin{displaymath}[(ab)c]_{ij} = (ab)_{ik} c_{kj} = (a_{il}b_{lk})c_{kj}.
\end{displaymath} (4)

Now, since $a_{il}$, $b_{lk}$, and $c_{kj}$ are Scalars, use the Associativity of Scalar Multiplication to write
\begin{displaymath}
(a_{il}b_{lk})c_{kj} = a_{il}(b_{lk}c_{kj}) = a_{il}(bc)_{lj} = [a(bc)]_{ij}.
\end{displaymath} (5)

Since this is true for all $i$ and $j$, it must be true that
\begin{displaymath}
(ab)c = a(bc).
\end{displaymath} (6)

That is, matrix multiplication is Associative. However, matrix multiplication is not, in general, Commutative (although it is Commutative if ${\hbox{\sf A}}$ and ${\hbox{\sf B}}$ are Diagonal and of the same dimension).


The product of two Block Matrices is given by multiplying each block
$\left[{\matrix{o & o\cr o & o\cr & & o\cr & & & o & o & o\cr & & & o & o & o\cr...
...x\cr & & x\cr & & & x & x & x\cr & & & x & x & x\cr & & & x & x & x\cr}}\right]$
$=\left[{\matrix{\left[{\matrix{o & o\cr o & o\cr}}\right]\left[{\matrix{x & x\c...
...\right]\left[{\matrix{x & x & x\cr x & x & x\cr x & x & x\cr}}\right]}}\right].$

(7)

See also Matrix, Matrix Addition, Matrix Inverse, Strassen Formulas


References

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 178-179, 1985.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26