info prev up next book cdrom email home

Memoryless

A variable $x$ is memoryless with respect to $t$ if, for all $s$ with $t\not=0$,

\begin{displaymath}
P(x > s+t\vert x > t) = P(x > s).
\end{displaymath} (1)

Equivalently,
\begin{displaymath}
{P(x > s+t, x > t)\over P(x > t)} = P(x > s)
\end{displaymath} (2)


\begin{displaymath}
P(x > s+t) = P(x > s)P(x > t).
\end{displaymath} (3)

The Exponential Distribution, which satisfies
$\displaystyle P(x > t)$ $\textstyle =$ $\displaystyle e^{-\lambda t}$ (4)
$\displaystyle P(x > s+t)$ $\textstyle =$ $\displaystyle e^{-\lambda (s+t)},$ (5)

and therefore
$\displaystyle P(x > s+t)$ $\textstyle =$ $\displaystyle P(x > s)P(x > t) = e^{-\lambda s}e^{-\lambda t}$  
  $\textstyle =$ $\displaystyle e^{-\lambda (s+t)},$ (6)

is the only memoryless random distribution.

See also Exponential Distribution




© 1996-9 Eric W. Weisstein
1999-05-26