info prev up next book cdrom email home

Mertz Apodization Function

\begin{figure}\begin{center}\BoxedEPSF{MertzApodizationFunction.epsf scaled 700}\end{center}\end{figure}

An asymmetrical Apodization Function defined by

\begin{displaymath}
M(x,b,d)=\cases{
0 & for $x<-b$\cr
(x-b)/(2b) & for $-b<x<b$\cr
1 & for $b<x<b+2d$\cr
0 & for $x<b+2d$,}
\end{displaymath}

where the two-sided portion is $2b$ long (total) and the one-sided portion is $b+2d$ long (Schnopper and Thompson 1974, p. 508). The Apparatus Function is


\begin{displaymath}
M_A(k,b,d)={\sin[2\pi k(b+2d)\over 2\pi k}+i\left\{{{\cos[2\pi k(b+2d)]\over 2\pi k}-{\sin(2b)\over 4\pi^2 k^2 b}}\right\}.
\end{displaymath}


References

Schnopper, H. W. and Thompson, R. I. ``Fourier Spectrometers.'' In Methods of Experimental Physics 12A. New York: Academic Press, pp. 491-529, 1974.




© 1996-9 Eric W. Weisstein
1999-05-26