Given an Matrix
, the Moore-Penrose generalized Matrix Inverse is a unique
Matrix
which satisfies
(1) | |||
(2) | |||
(3) | |||
(4) |
(5) |
(6) |
If the inverse of
exists, then
(7) |
(8) |
(9) |
See also Least Squares Fitting, Matrix Inverse
References
Ben-Israel, A. and Greville, T. N. E. Generalized Inverses: Theory and Applications. New York: Wiley, 1977.
Lawson, C. and Hanson, R. Solving Least Squares Problems. Englewood Cliffs, NJ: Prentice-Hall, 1974.
Penrose, R. ``A Generalized Inverse for Matrices.'' Proc. Cambridge Phil. Soc. 51, 406-413, 1955.
© 1996-9 Eric W. Weisstein