Let
be a unit Tangent Vector of a Regular Surface
. Then the normal
curvature of in the direction
is
(1) |
(2) |
(3) |
The Maximum and Minimum values of the normal curvature at a point on a Regular Surface are called the Principal Curvatures and .
See also Curvature, Fundamental Forms, Gaussian Curvature, Mean Curvature, Principal Curvatures, Shape Operator, Tangent Vector
References
Euler, L. ``Recherches sur la courbure des surfaces.'' Mém. de l'Acad. des Sciences, Berlin 16, 119-143, 1760.
Gray, A. ``Normal Curvature.'' §14.2 in Modern Differential Geometry of Curves and Surfaces.
Boca Raton, FL: CRC Press, pp. 270-273 and 277, 1993.
Meusnier, J. B. ``Mémoire sur la courbure des surfaces.'' Mém. des savans étrangers 10 (lu 1776), 477-510, 1785.