info prev up next book cdrom email home

Plücker's Conoid

A Ruled Surface sometimes also called the Cylindroid. von Seggern (1993) gives the general functional form as

\begin{displaymath}
ax^2+by^2-zx^2-zy^2=0,
\end{displaymath} (1)

whereas Fischer (1986) and Gray (1993) give
\begin{displaymath}
z={2xy\over(x^2+y^2)}.
\end{displaymath} (2)

A polar parameterization therefore gives
$\displaystyle x(r,\theta)$ $\textstyle =$ $\displaystyle r\cos\theta$ (3)
$\displaystyle y(r,\theta)$ $\textstyle =$ $\displaystyle r\sin\theta$ (4)
$\displaystyle z(r,\theta)$ $\textstyle =$ $\displaystyle 2\cos\theta\sin\theta.$ (5)

A generalization of Plücker's conoid to $n$ folds is given by

$\displaystyle x(r,\theta)$ $\textstyle =$ $\displaystyle r\cos\theta$ (6)
$\displaystyle y(r,\theta)$ $\textstyle =$ $\displaystyle r\sin\theta$ (7)
$\displaystyle z(r,\theta)$ $\textstyle =$ $\displaystyle \sin(n\theta)$ (8)

(Gray 1993). The cylindroid is the inversion of the Cross-Cap (Pinkall 1986).

See also Cross-Cap, Right Conoid, Ruled Surface


References

Fischer, G. (Ed.). Mathematical Models from the Collections of Universities and Museums. Braunschweig, Germany: Vieweg, pp. 4-5, 1986.

Gray, A. Modern Differential Geometry of Curves and Surfaces. Boca Raton, FL: CRC Press, pp. 337-339, 1993.

Pinkall, U. Mathematical Models from the Collections of Universities and Museums (Ed. G. Fischer). Braunschweig, Germany: Vieweg, p. 64, 1986.

von Seggern, D. CRC Standard Curves and Surfaces. Boca Raton, FL: CRC Press, p. 288, 1993.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25