info prev up next book cdrom email home

Pringsheim's Theorem

Let $C^\omega(I)$ be the set of real Analytic Functions on $I$. Then $C^\omega(I)$ is a Subalgebra of $C^\infty(I)$. A Necessary and Sufficient condition for a function $f\in C^\infty(I)$ to belong to $C^\omega(I)$ is that

\begin{displaymath}
\vert f^{(n)}(x)\vert\leq k^n n!
\end{displaymath}

for $n=0$, 1, ... for a suitable constant $k$.

See also Analytic Function, Subalgebra


References

Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 207, 1980.




© 1996-9 Eric W. Weisstein
1999-05-26