N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Given the Closed Interval with , let 1-D ``cars'' of unit length be parked randomly on the interval.
The Mean number of cars which can fit (without overlapping!) satisfies
(1) |
(2) |
(3) |
(4) |
(5) |
Let be the variance of the number of cars, then Dvoretzky and Robbins (1964) and Mannion (1964) showed that
(6) |
where
(7) | |||
(8) |
(9) |
(10) |
Palasti (1960) conjectured that in 2-D,
(11) |
References
Blaisdell, B. E. and Solomon, H. ``On Random Sequential Packing in the Plane and a Conjecture of Palasti.''
J. Appl. Prob. 7, 667-698, 1970.
Dvoretzky, A. and Robbins, H. ``On the Parking Problem.'' Publ. Math. Inst. Hung. Acad. Sci. 9, 209-224, 1964.
Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/renyi/renyi.html
Mannion, D. ``Random Space-Filling in One Dimension.'' Publ. Math. Inst. Hung. Acad. Sci. 9, 143-154, 1964.
Palasti, I. ``On Some Random Space Filling Problems.'' Publ. Math. Inst. Hung. Acad. Sci. 5, 353-359, 1960.
Rényi, A. ``On a One-Dimensional Problem Concerning Random Space-Filling.''
Publ. Math. Inst. Hung. Acad. Sci. 3, 109-127, 1958.
Solomon, H. and Weiner, H. J. ``A Review of the Packing Problem.'' Comm. Statist. Th. Meth. 15, 2571-2607, 1986.
© 1996-9 Eric W. Weisstein