info prev up next book cdrom email home

Rényi's Parking Constants

N.B. A detailed on-line essay by S. Finch was the starting point for this entry.


Given the Closed Interval $[0,x]$ with $x>1$, let 1-D ``cars'' of unit length be parked randomly on the interval. The Mean number $M(x)$ of cars which can fit (without overlapping!) satisfies

\begin{displaymath}
M(x)=\cases{
0 & for $0\leq x<1$\cr
1+{2\over x-1}\int_0^{x-1} M(y)\,dy & for $x\geq 1$.\cr}
\end{displaymath} (1)

The mean density of the cars for large $x$ is
$\displaystyle m$ $\textstyle \equiv$ $\displaystyle \lim_{x\to\infty} {M(x)\over x} =\int_0^\infty \mathop{\rm exp}\nolimits \left({-2\int_0^x {1-e^{-y}\over y}\,dy}\right)\,dx$  
  $\textstyle =$ $\displaystyle 0.7475979203\ldots.$ (2)

Furthermore,
\begin{displaymath}
M(x)=mx+m-1+{\mathcal O}(x^{-n})
\end{displaymath} (3)

for all $n$ (Rényi 1958), which was strengthened by Dvoretzky and Robbins (1964) to
\begin{displaymath}
M(x)=mx+m-1+{\mathcal O}\left[{\left({2e\over x}\right)^{x-3/2}}\right].
\end{displaymath} (4)

Dvoretzky and Robbins (1964) also proved that
\begin{displaymath}
\inf_{x\leq t\leq x+1} {M(t)+1\over t+1}\leq m\leq \sup_{x\leq t\leq x+1} {M(t)+1\over t+1}.
\end{displaymath} (5)


Let $V(x)$ be the variance of the number of cars, then Dvoretzky and Robbins (1964) and Mannion (1964) showed that


$\displaystyle v$ $\textstyle \equiv$ $\displaystyle \lim_{x\to\infty} {V(x)\over x}$  
  $\textstyle =$ $\displaystyle 2\int_0^\infty \left\{{x\int_0^1 e^{-xy}R_2(y)\,dy+x^2\left[{\int_0^\infty e^{-xy}R_1(y)\,dy}\right]^2}\right\}$  
  $\textstyle \phantom{=}$ $\displaystyle \times\mathop{\rm exp}\nolimits \left({-2\int_0^x {1-e^{-y}\over y}\,dy}\right)\,dx = 0.038156\ldots,$ (6)

where


$\displaystyle R_1(x)$ $\textstyle =$ $\displaystyle M(x)-mx-m+1$ (7)
$\displaystyle R_2(x)$ $\textstyle =$ $\displaystyle \left\{\begin{array}{ll} (1-m-mx)^2 & \mbox{for $0\leq x\leq 1$}\...
...+ \int_0^{x-1} R_1(y)R_1(x-y-1)\,dy}\right]& \mbox{for $x>1$}\end{array}\right.$ (8)

and the numerical value is due to Blaisdell and Solomon (1970). Dvoretzky and Robbins (1964) also proved that
\begin{displaymath}
\inf_{x\leq t\leq x+1} {V(t)\over t+1} \leq v\leq\sup_{x\leq t\leq x+1} {V(t)\over t+1},
\end{displaymath} (9)

and that
\begin{displaymath}
V(x)=vx+v+{\mathcal O}\left[{\left({4e\over x}\right)^{x-4}}\right].
\end{displaymath} (10)


Palasti (1960) conjectured that in 2-D,

\begin{displaymath}
\lim_{x,y\to\infty} {M(x,y)\over xy}=m^2,
\end{displaymath} (11)

but this has not yet been proven or disproven (Finch).


References

Blaisdell, B. E. and Solomon, H. ``On Random Sequential Packing in the Plane and a Conjecture of Palasti.'' J. Appl. Prob. 7, 667-698, 1970.

Dvoretzky, A. and Robbins, H. ``On the Parking Problem.'' Publ. Math. Inst. Hung. Acad. Sci. 9, 209-224, 1964.

Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/renyi/renyi.html

Mannion, D. ``Random Space-Filling in One Dimension.'' Publ. Math. Inst. Hung. Acad. Sci. 9, 143-154, 1964.

Palasti, I. ``On Some Random Space Filling Problems.'' Publ. Math. Inst. Hung. Acad. Sci. 5, 353-359, 1960.

Rényi, A. ``On a One-Dimensional Problem Concerning Random Space-Filling.'' Publ. Math. Inst. Hung. Acad. Sci. 3, 109-127, 1958.

Solomon, H. and Weiner, H. J. ``A Review of the Packing Problem.'' Comm. Statist. Th. Meth. 15, 2571-2607, 1986.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25