info prev up next book cdrom email home

Riemann Weighted Prime-Power Counting Function

The Riemann weighted prime-power counting function is defined by

$\displaystyle J_2(x)$ $\textstyle \equiv$ $\displaystyle \left\{\begin{array}{ll}\pi(x)+{\textstyle{1\over 2}}\pi(x^{1/2})...
...(x^{1/3})+\ldots & \mbox{}\\  \quad {\rm otherwise} & \mbox{}\end{array}\right.$ (1)
  $\textstyle =$ $\displaystyle \lim_{t\to\infty} {1\over 2\pi i} \int_{2-iT}^{2+iT} {x^s\over s} \ln \zeta(s)\,ds.$ (2)

The Prime Counting Function is given in terms of $J_2(x)$ by
\pi(x)=\sum_{n=1}^\infty {\mu(n)\over n} J_2(x^{1/n}).
\end{displaymath} (3)

The function also satisfies the identity
{\ln \zeta(s)\over s} = \int_1^\infty J_2(x)x^{-s-1}\,dx.
\end{displaymath} (4)

See also Mangoldt Function, Prime Counting Function, Riemann's Formula

© 1996-9 Eric W. Weisstein