info prev up next book cdrom email home

Runge-Kutta Method

A method of integrating Ordinary Differential Equations by using a trial step at the midpoint of an interval to cancel out lower-order error terms. The second-order formula is

$\displaystyle k_1$ $\textstyle =$ $\displaystyle h f(x_n,y_n)$  
$\displaystyle k_2$ $\textstyle =$ $\displaystyle h f(x_n+{\textstyle{1\over 2}}h, y_n+{\textstyle{1\over 2}}k_1)$  
$\displaystyle y_{n+1}$ $\textstyle =$ $\displaystyle y_n+k_2+{\mathcal O}(h^3),$  

and the fourth-order formula is
$\displaystyle k_1$ $\textstyle =$ $\displaystyle h f(x_n,y_n)$  
$\displaystyle k_2$ $\textstyle =$ $\displaystyle h f(x_n+{\textstyle{1\over 2}}h, y_n+{\textstyle{1\over 2}}k_1)$  
$\displaystyle k_3$ $\textstyle =$ $\displaystyle h f(x_n+{\textstyle{1\over 2}}h, y_n+{\textstyle{1\over 2}}k_2)$  
$\displaystyle k_4$ $\textstyle =$ $\displaystyle h f(x_n+h, y_n+k_3)$  
$\displaystyle y_{n+1}$ $\textstyle =$ $\displaystyle y_n+{\textstyle{1\over 6}}k_1+{\textstyle{1\over 3}}k_2+{\textstyle{1\over 3}}k_3+{\textstyle{1\over 6}}k_4+{\mathcal O}(h^5).$  

(Press et al. 1992). This method is reasonably simple and robust and is a good general candidate for numerical solution of differential equations when combined with an intelligent adaptive step-size routine.

See also Adams' Method, Gill's Method, Milne's Method, Ordinary Differential Equation, Rosenbrock Methods


References

Abramowitz, M. and Stegun, C. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 896-897, 1972.

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 492-493, 1985.

Cartwright, J. H. E. and Piro, O. ``The Dynamics of Runge-Kutta Methods.'' Int. J. Bifurcations Chaos 2, 427-449, 1992. http://formentor.uib.es/~julyan/TeX/rkpaper/root/root.html.

Lambert, J. D. and Lambert, D. Ch. 5 in Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. New York: Wiley, 1991.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. ``Runge-Kutta Method'' and ``Adaptive Step Size Control for Runge-Kutta.'' §16.1 and 16.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 704-716, 1992.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25