info prev up next book cdrom email home

Schinzel's Hypothesis

If $f_1(x)$, ..., $f_s(x)$ are irreducible Polynomials with Integer Coefficients such that no Integer $n>1$ divides $f_1(x)$, ..., $f_s(x)$ for all Integers $x$, then there should exist infinitely many $x$ such that $f_1(x)$, ..., $f_s(x)$ are simultaneously Prime.


References

Schinzel, A. and Sierpinski, W. ``Sur certaines hypothèses concernant les nombres premiers. Remarque.'' Acta Arithm. 4, 185-208, 1958.




© 1996-9 Eric W. Weisstein
1999-05-26