info prev up next book cdrom email home

Semialgebraic Number

A subset of $\Bbb{R}^n$ which is a finite Boolean combination of sets of the form $\{\bar x=(x_1, \ldots, x_m): f(\bar x)>0\}$ and $\{\bar x:g(\bar x)=0\}$, where $f,g\in\Bbb{R}[X_1,\ldots,X_n]$.


References

Bierstone, E. and Milman, P. ``Semialgebraic and Subanalytic Sets.'' IHES Pub. Math. 67, 5-42, 1988.

Marker, D. ``Model Theory and Exponentiation.'' Not. Amer. Math. Soc. 43, 753-759, 1996.




© 1996-9 Eric W. Weisstein
1999-05-26