info prev up next book cdrom email home

Sharpe's Differential Equation

A generalization of the Bessel Differential Equation for functions of order 0, given by

\begin{displaymath}
zy''+y'+(z+A)y=0.
\end{displaymath}

Solutions are

\begin{displaymath}
y=e^{\pm iz} {}_1F_1\left({{\textstyle{1\over 2}}\mp {\textstyle{1\over 2}}iA; 1; \mp 2iz}\right),
\end{displaymath}

where ${}_1F_1(a;b;x)$ is a Confluent Hypergeometric Function.

See also Bessel Differential Equation, Confluent Hypergeometric Function




© 1996-9 Eric W. Weisstein
1999-05-26