info prev up next book cdrom email home

Sphere Embedding

A 4-sphere has Positive Curvature, with

\begin{displaymath}
R^2 = x^2+y^2+z^2+w^2
\end{displaymath} (1)


\begin{displaymath}
2x{dx\over dw} + 2y{dy\over dw} + 2z{dz\over dw} + 2w = 0.
\end{displaymath} (2)

Since
\begin{displaymath}
{\bf r} \equiv x\hat{\bf x} + y\hat{\bf y} + z\hat{\bf z},
\end{displaymath} (3)


\begin{displaymath}
dw = - {x\,dx + y\,dy + z\,dz\over w} = -{{\bf r}\cdot d{\bf r}\over\sqrt{R^2-r^2}}.
\end{displaymath} (4)

To stay on the surface of the sphere,
$\displaystyle ds^2$ $\textstyle =$ $\displaystyle dx^2+dy^2+dz^2+dw^2$  
  $\textstyle =$ $\displaystyle dx^2+dy^2+dz^2 + {r^2\,dr^2\over R^2-r^2}$  
  $\textstyle =$ $\displaystyle dr^2+r^2\,d\Omega^2 + {dr^2\over {R^2\over r^2} - 1}$  
  $\textstyle =$ $\displaystyle dr^2\left({1 + {1\over{R^2\over r^2} - 1}}\right)+ r^2\,d\Omega^2$  
  $\textstyle =$ $\displaystyle dr^2\left({{R^2\over r^2}\over{R^2\over r^2} - 1}\right)+ r^2\,d\Omega^2$  
  $\textstyle =$ $\displaystyle {dr^2\over 1 - {r^2\over R^2}} + r^2\,d\Omega^2.$ (5)

With the addition of the so-called expansion parameter, this is the Robertson-Walker line element.




© 1996-9 Eric W. Weisstein
1999-05-26