info prev up next book cdrom email home

Squeezing Theorem

\begin{figure}\begin{center}\BoxedEPSF{SqueezingTheorem.epsf}\end{center}\end{figure}

Let there be two functions $f_-(x)$ and $f_+(x)$ such that $f(x)$ is ``squeezed'' between the two,

\begin{displaymath}
f_-(x)\leq f(x)\leq f_+(x).
\end{displaymath}

If

\begin{displaymath}
r=\lim_{x\to a} f_-(x) =\lim_{x\to a} f_+(x),
\end{displaymath}

then $\lim_{x\to a} f(x)=r$. In the above diagram the functions $f_-(x)=-x^2$ and $f_+(x)=x^2$ ``squeeze'' $x^2\sin(c x)$ at 0, so $\lim_{x\to 0} x^2\sin(cx)=0$. The squeezing theorem is also called the Sandwich Theorem.




© 1996-9 Eric W. Weisstein
1999-05-26