info prev up next book cdrom email home

Stieltjes-Wigert Polynomial

Orthogonal Polynomials associated with Weighting Function

\begin{displaymath}
w(x)=\pi^{-1/2} k\mathop{\rm exp}\nolimits (-k^2\ln^2 x)=\pi^{-1/2}k x^{-k^2\ln x}
\end{displaymath} (1)

for $x\in(0,\infty)$ and $k>0$. Using
\begin{displaymath}
\left[{\matrix{n\cr \nu\cr}}\right] = {(1-q^n)(1-q^{n-1})\cdots (1-q^{n-\nu+1})\over (1-q)(1-q^2)\cdots (1-q^\nu)}
\end{displaymath} (2)

where $0<\nu<n$,
\begin{displaymath}
\left[{\matrix{n\cr 0\cr}}\right]=\left[{\matrix{n\cr n\cr}}\right]=1,
\end{displaymath} (3)

and
\begin{displaymath}
q=\mathop{\rm exp}\nolimits [-(2k^2)^{-1}].
\end{displaymath} (4)

Then


\begin{displaymath}
p_n(x)=(-1)^n q^{n/2+1/4}[(1-q)(1-q^2)\cdots(1-q^n)]^{-1/2}\...
... \left[{\matrix{n\cr \nu\cr}}\right] q^{\nu^2}(-q^{1/2} x)^\nu
\end{displaymath} (5)

for $n>0$ and
\begin{displaymath}
p_0(x)= q^{1/4}.
\end{displaymath} (6)


References

Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., p. 33, 1975.




© 1996-9 Eric W. Weisstein
1999-05-26