info prev up next book cdrom email home

Tetrachoric Function

The function defined by

\begin{displaymath}
T_n(x)\equiv {(-1)^{n-1}\over\sqrt{n!}} Z^{(n-1)}(x),
\end{displaymath}

where

\begin{displaymath}
Z(x)= {1\over\sqrt{2\pi}} e^{-x^2/2}
\end{displaymath}

and $Z^{(k)}(x)$ is the $k$th derivative of $Z(x)$.

See also Normal Distribution


References

Kenney, J. F. and Keeping, E. S. ``Tetrachoric Correlation.'' §8.5 in Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 205-207, 1951.




© 1996-9 Eric W. Weisstein
1999-05-26